WO2017033492A1 - 有機性排水の生物処理装置及び処理方法 - Google Patents
有機性排水の生物処理装置及び処理方法 Download PDFInfo
- Publication number
- WO2017033492A1 WO2017033492A1 PCT/JP2016/062464 JP2016062464W WO2017033492A1 WO 2017033492 A1 WO2017033492 A1 WO 2017033492A1 JP 2016062464 W JP2016062464 W JP 2016062464W WO 2017033492 A1 WO2017033492 A1 WO 2017033492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biological treatment
- treatment tank
- strainer
- tank
- tower
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/08—Aerobic processes using moving contact bodies
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a biological treatment apparatus for organic wastewater that can be widely used for the treatment of organic wastewater such as domestic wastewater, sewage, food factories, pulp factories, semiconductor production wastewater, and liquid crystal production wastewater.
- the present invention relates to a biological treatment apparatus for organic wastewater provided with a biological treatment tower for biologically treating water.
- this invention relates to the biological treatment method of the organic waste water using this processing apparatus.
- the activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance.
- the BOD volumetric load in the activated sludge method is generally about 0.5 to 0.8 kg / m 3 / d, a large site area is required.
- 20 to 40% of the decomposed BOD is converted into bacterial cells, that is, sludge, a large amount of excess sludge treatment is also a problem.
- Patent Document 1 organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, and then in a second treatment tank. It is described that excess sludge can be reduced by predatory removal of the sticking protozoa. Further, this method enables high-load operation and improves the processing efficiency of the activated sludge method.
- Patent Document 2 describes a countermeasure against deterioration in processing performance due to fluctuations in the quality of raw water, which is a problem in the processing method of Patent Document 1.
- the method includes “adding a microbial preparation or seed sludge to the first treatment tank when the quality of the first treated water deteriorates”.
- Patent Document 3 flocs that are preyed by ultrasonic treatment or mechanical agitation when protozoa or metazoans prey on bacteria, yeast, actinomycetes, algae, molds, wastewater treatment primary sludge or surplus sludge. A method to make the flock size smaller than the animal's mouth is proposed.
- Patent Document 4 There is a method described in Patent Document 4 as a biological treatment method of organic wastewater by a multi-stage treatment of fluidized bed and activated sludge process.
- the latter activated sludge method is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge can be self-oxidized and the amount of sludge extraction can be greatly reduced.
- a tank body of a conventional biological treatment tank As a tank body of a conventional biological treatment tank, a concrete tank or a tower-like elevated tank is used.
- the concrete tank has the following problems.
- the tower-shaped elevated tank has the following problems.
- (Vi) In order to secure the capacity while suppressing the installation space, it is necessary to increase the tank height, and at least about 7 m is required. In this case, it is necessary to climb to the upper part of the tank during on-site piping construction and daily maintenance, and usually a staircase or a ladder is installed. For this reason, workability
- (Vii) The burden of the transition piping work from the upper part of the tank is likely to increase.
- (Viii) Depending on the tank material and liquid quality, it is necessary to repair the tank inner lining.
- the conventional concrete tank or tower-shaped elevated tank has the following problems. 1) The installation area of the concrete tank is large. 2) The construction period will be longer in concrete tanks. 3) It is not easy to reinforce equipment in a concrete tank. 4) Tower-type water tanks with large tank heights have poor work efficiency due to work at high places, and it is necessary to improve workability and prevent falling accidents. 5) In tower-type water tanks with large tank heights, piping from the top of the tank to the outside will be generated, increasing the burden of on-site construction, so it is necessary to simplify on-site construction.
- a strainer is installed in a biological treatment tank for organic waste water, and the biological treatment liquid is filtered out by the strainer. If sludge, carrier, oil or other foreign matter adheres to this strainer, scrub with a brush or the like.
- the strainer is provided in the lower part of the biological treatment tank, the water level in the biological treatment tank may be lowered and the worker may enter the tank and clean it with a brush. In addition, the operation interruption time of the biological treatment tank becomes longer. Although it is conceivable that the washing machine is inserted into the water instead of the worker entering the tank, it is difficult to reliably place the washing machine on the strainer. Although it is conceivable to install a brush type washing machine in the tank in advance, the cost is high and the maintenance of the washing machine takes time and cost.
- the first object of the present invention is to provide a biological treatment apparatus and treatment method for organic wastewater that solves these problems, is easy to construct, and can reduce work at high places and save space. Objective.
- the second object of the present invention is to provide a biological treatment apparatus and treatment method for organic wastewater that can easily wash a strainer installed in a biological treatment tank.
- the organic wastewater biological treatment apparatus of the present invention is an apparatus for biologically treating organic wastewater in a biological treatment tank provided in multiple stages.
- the organic wastewater is dispersed by decomposing organic matter by dispersal bacteria.
- the first biological treatment tank and the second biological treatment tank in the organic wastewater biological treatment apparatus for generating the second biological treatment water in the second biological treatment tank in the subsequent stage, generating the first biological treatment water in which the bacteria increased.
- gas supply means for supplying gas into the strainer is provided.
- the ratio (H / D) of the height (H) to the diameter (D) of the tower is 1.5 to 5.0.
- the strainer is provided in the middle of the tower body in the vertical direction or on the lower side thereof.
- the tower body is made of FRP and is integrally molded as a whole from the tower bottom to the tower top.
- the strainer may include a box having a rear surface opened and a screen provided on the front surface, and the rear edge of the box may be bonded to the inner peripheral surface of the tower body.
- the biological wastewater treatment method of the present invention uses such a biological treatment apparatus of the present invention.
- the organic wastewater treatment apparatus of the present invention is provided with a plurality of water treatment units having towers of standard dimensions (same shape, same size), and each water treatment unit is manufactured in advance in a factory. I can leave.
- the design and construction of the apparatus are also made common and can be performed easily and quickly. Moreover, the space between tanks can also be made small. Furthermore, it is easy to add a biological treatment tank.
- the strainer can be back-washed by supplying gas into the strainer immersed in the biological treatment tank. Therefore, it is not necessary to insert a brush or a strainer washer into the biological treatment tank, and the strainer can be cleaned very easily even if the strainer is installed at the bottom of the tank.
- the air supply amount is preferably about 1 to 15 m / s as the screen permeation flow rate.
- the strainer By constructing the tower body integrally with FRP, the weight is reduced, and transportation and installation work are facilitated.
- the strainer includes a box having a rear surface opened and a screen provided on the front surface, and the rear edge of the box is bonded to the inner peripheral surface of the tower body.
- the internal structure can be simplified, and the water circulation flow inside the tower body can be made smooth.
- FIG. 3 is a view taken along the line III-III in FIG. 1.
- 4a to 4h are plan views showing examples of arrangement of water treatment units in the biological wastewater treatment apparatus of the present invention.
- 6A is a cross-sectional view taken along line AA in FIG. 5, and
- FIG. 6B is a cross-sectional view taken along line BB in FIG.
- FIG. 7 is a sectional view taken along line VII-VII in FIG. 5.
- FIG. 9A is a configuration diagram showing another embodiment
- FIG. 9B is a cross-sectional view taken along the line IXb-IXb in FIG. 9A. It is a block diagram which shows another embodiment.
- FIG. 1 shows an embodiment of a biological treatment apparatus for organic wastewater according to the present invention.
- a first biological treatment tank 1 and a second biological treatment tank 2 are erected on a foundation 3 and are connected by a pipe 4. Connected in series.
- the outflow pipe 14 is connected to the outflow port 14a.
- the outflow pipe 14 extends downward along the outer surface of the tower body 10, and the lower end is a pipe connection part 14b having a flange structure.
- a crank-shaped bent portion 14c is provided in the middle of the outflow pipe 14 in the vertical direction.
- An opening 15 a is provided at the top of the tower body 10, and one end of the atmosphere communication pipe 15 is connected. As shown in FIG. 2, the atmosphere communication pipe 15 extends downward on the outer surface of the tower body 10 along the tower body 10, and the lower end 15 b is opened downward in the immediate vicinity of the foundation 3. The upper end of the outflow pipe 14 communicates with the laterally extending portion 15b of the atmospheric communication pipe 15 through an inverted U-shaped communication pipe 14d.
- a spare seat 16 is provided at the top of the tower body 10, and a manhole 17 and a spare seat 18 are provided at the lower portion.
- the second biological treatment tank 2 includes a cylindrical tower body 20 having the same shape and size as the tower body 10, a flanged structure inlet 21 provided on the lower side surface of the tower body 20, and the inside of the tower body 20. Are provided with a diffuser tube 22 provided at the bottom, a strainer 23 installed in the tower 20, and the like.
- the inflow port 21 is connected to the pipe connection portion 14b through the pipe 4.
- the air diffuser 22 is connected to a blower (not shown). This blower is shared with a blower for supplying air to the air diffuser 12.
- the strainer 23 is installed near the middle of the vertical direction of the tower body 20 or below it. For this reason, there are few opportunities for floating foreign substances such as fats and oils to contact the strainer 23, and clogging of the strainer 23 due to fats and oils is suppressed.
- a valve 24 k is provided below the outflow pipe 24.
- An air supply pipe 24m for supplying strainer backwash air is connected to the strainer 23 side of the valve 24k, and a valve 24n is provided on the pipe 24m.
- the air supply pipe 24m is connected to an air supply blower to the diffuser pipes 12 and 22.
- An opening 25 a is provided at the top of the tower body 20, and one end of the atmosphere communication pipe 25 is connected thereto. As shown in FIG. 3, the atmosphere communication pipe 25 extends downward on the outer surface of the tower body 20 along the tower body 20, and the lower end 25 b is opened downward in the immediate vicinity of the foundation 3.
- a preliminary seat 26 is provided at the top of the tower body 20, and a manhole 27, a preliminary seat 28, and an air supply pipe 22a to the diffuser pipe are provided at the lower portion.
- a fluidized bed carrier 29 is packed in the tower body 20.
- Reference numeral 27a denotes a maintenance manhole for the strainer 23.
- the tower bodies 10 and 20 are preferably made of resin such as FRP in order to eliminate the need for lining, but may be steel plates depending on the water quality.
- FRP resin
- it is preferable to apply a weather-resistant paint for example, a tank stainless coat made by Torch Co., Ltd.
- a tank stainless coat made by Torch Co., Ltd.
- the upper and lower parts of the tower body may be thicker than the upper part, and the lower part may be thicker than that.
- the first and second biological treatment tanks 1 and 2 are provided with an extra sludge take-out pipe, a drain pipe, an insertion pipe for a surveillance camera in the tank, a wiring insertion opening, a sampling opening (not shown), and the like.
- Monitoring in the tank is performed by always or appropriately inserting a camera or a photographing device (preferably with illumination or an infrared camera) having a moving image shooting function into the tank.
- Shooting data is transmitted wirelessly or by wire.
- the photographing data may be stored in the photographing equipment.
- a heat insulating material may be wound around the tower in advance.
- water level gauges pressure gauges, flow meters, water temperature gauges, water quality gauges, and other measuring instruments in water tanks or peripheral equipment, piping, etc.
- it is used for optimizing the treatment in the water tank in combination with incidental facilities (for example, facilities equipped with water supply, heating, chemical injection, aeration, dehydration functions, etc.).
- raw water organic wastewater
- Bacteria non-aggregating bacteria
- soluble BOD organic components
- the pH of the first biological treatment tank 1 is preferably 6 to 8.5.
- the pH is 8 It may be set to ⁇ 9.
- the water flow to the 1st biological treatment tank 1 shall be a transient type.
- the BOD volumetric load of the first biological treatment tank 1 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d
- HRT raw water residence time
- HRT raw water residence time
- a fluid bed carrier may be filled as the carrier.
- the material is preferably a foamed synthetic resin, particularly a flexible polyurethane foam.
- a porous sheet-like oscillating bed carrier such as a thin plate-like or strip-like lightweight polyurethane foam is installed in the first biological treatment tank 1, the oscillating bed carrier has sufficient elasticity, Even if it is thin, it has sufficient mechanical strength and does not break by being bent in the flow of water in the tank. Moreover, by bending, it mixes uniformly, without inhibiting the water flow in a tank, and a sludge containing liquid comes to flow uniformly also into the porous structure of a support
- carrier is preferably a foamed synthetic resin, particularly a flexible polyurethane foam.
- the filling rate of the carrier in the first biological treatment tank 1 is high, dispersal bacteria are not generated, and bacteria adhere to the carrier or filamentous bacteria grow. Therefore, the filling rate of the carrier added to the first biological treatment tank 1 is 10% or less, for example 1 to 10% in the case of a fluidized bed carrier, and 5% or less, for example, in the case of a fixed bed carrier or a rocking carrier. By setting the content to 0.5 to 5%, it becomes possible to produce dispersal bacteria that are easy to prey without being affected by concentration fluctuations.
- the dissolved oxygen (DO) concentration in the first biological treatment tank 1 may be 1 mg / L or less, preferably 0.5 mg / L or less to suppress the growth of filamentous bacteria.
- the treated water (first biological treated water) in the first biological treatment tank 1 is introduced into the second biological treatment tank 2 in the subsequent stage through the outlet 14a, the pipes 14, 4 and the inlet 21, and aerated and remains.
- the amount of excess sludge is reduced by oxidative degradation of organic components, self-degradation of dispersible bacteria, and predation of minute animals.
- the treatment liquid in the second biological treatment tank 2 is taken out via the strainer 23 and the outflow pipe 4.
- the second biological treatment tank 2 it is necessary to use an operation condition and a treatment apparatus that allow the microanimal and the bacteria to remain in the system in order to use the action of the microanimal having a slower growth rate than the bacteria and the autolysis of the bacteria. . Therefore, in this embodiment, the second biological treatment tank 2 is filled with a fluidized bed carrier 29 to increase the amount of minute animals retained in the tank.
- the shape of the fluidized bed carrier 29 is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, a plate shape, and the size (diameter) is about 0.1 to 10 mm.
- the material of the carrier 29 is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.
- the carrier is not limited to a fluidized bed carrier, and may be a fixed bed carrier or a rocking carrier.
- the second biological treatment tank 2 may be further filled with a rocking bed carrier in addition to the fluidized bed carrier.
- the filling rate of the carrier is excessively high, mixing in the tank, sludge decay, etc. may occur.
- the filling rate is preferably 0.5 to 50%, particularly 1 to 40%.
- the pH of the second biological treatment tank 2 may be 7.0 or less.
- the second biological treatment tank 2 not only the filtration predation type micro-animal that prey on the dispersed cells but also the aggregate predation type micro-animal that can prey on the floc sludge grows. Since the latter prey on flocs while swimming, if priority is given, sludge is eaten and becomes sludge in which fine floc pieces are scattered (sludge with poor sedimentation). In addition, this floc piece causes clogging of the membrane particularly in the membrane activated sludge method in which membrane separation is performed in the latter stage. Therefore, in order to thin out the aggregate predatory microanimals, it is desirable to control the SRT to be constant within a range of 60 days or less, preferably 45 days or less. However, if it is less than 15 days, it is unnecessarily frequent, and the number of not only aggregate predation type micro-animals but also filtration predation type micro-animals is excessively reduced.
- the first biological treatment tank 1 it is necessary to decompose most of the organic matter, that is, 70% or more of the wastewater BOD, desirably 80% or more, and convert it into microbial cells.
- the organic substances When the organic substances are completely decomposed, flocs are not formed in the second biological treatment tank 2, and there is not enough nutrients for the growth of micro-animals. Only sludge with poor compaction (sludge with poor sedimentation) is excellent. It becomes an occupied biological treatment tank. Therefore, a part of the raw water is bypassed and supplied to the second biological treatment tank 2 so that the sludge load due to the soluble BOD in the second biological treatment tank 2 is 0.025 kg-BOD / kg-MLSS / d or more. You may drive.
- the MLSS at this time includes MLSS for the carrier adhering.
- any of membrane separation, coagulation sedimentation, and pressurized flotation is performed as solid-liquid separation in order to obtain a higher quality of treated water. May be.
- the amount of coagulant added can be reduced.
- the sedimentation water from the second biological treatment tank 2 may be agglomerated in a coagulation tank, and then precipitated in a solid-liquid separation tank (sedimentation tank) to separate into treated water and sedimented sludge.
- the valve 24k When the strainer 23 is clogged or when the apparatus is stopped, the valve 24k is closed, the valve 24n is opened, air is supplied into the strainer 23 from the air supply pipe 24m, and the strainer 23 is back-air washed. As a result, gas-liquid agitation occurs in the vicinity of the primary side of the screen of the strainer 23, and foreign matter adhering to the screen is removed. Therefore, the strainer 23 can be easily cleaned without bringing a brush, a washing machine or the like into the tower and even if the strainer 23 is installed in the lower part of the tower body. In addition, by installing the strainer 23 in the lower part of the tower body, it is possible to prevent floating foreign substances such as fats and oils from adhering to the strainer.
- a biological treatment apparatus for organic wastewater according to another embodiment of the present invention will be described with reference to FIGS.
- the first biological treatment tank 41 and the second biological treatment tank 42 are erected on the foundation 43 and connected in series by a pipe 70.
- the first biological treatment tank 41 includes a cylindrical tower body 50 made of FRP, a raw water (treated water) inlet 51a having a flange structure provided on a lower side surface of the tower body 50, and continuous from the inlet 51a.
- An opening 50a is provided at the top of the tower body 50, and the inside of the tower body 50 communicates with the atmosphere through the opening 50a.
- the raw water introduction pipe 51 is provided so as to penetrate the lower side wall of the tower body 50.
- the one end side of the air pipe 53 passes through the lower part of the tower body 50 and protrudes outside the tower body 50, and an air supply pipe from the blower is connected to the tip of the air pipe 53.
- the other end of the air pipe 53 is connected to the diffuser pipe 52.
- the air pipe 53 rises above the water level in the tower body 50, and one end of the siphon break pipe 53A is connected to the highest portion 53b of the rise.
- the siphon break pipe 53 ⁇ / b> A is routed downward in the tower body 50, and the other end side penetrates the lower part of the tower body 50 and projects out of the tower body 50.
- a valve 53a is provided at the tip of the siphon break pipe 53A.
- the strainer 54 is installed near the middle in the vertical direction of the tower body 50 or below it. As shown in FIG. 7, the strainer 54 includes a box 54a attached by being bonded to the inner peripheral surface of the tower body 50, and a screen 54b made of a wedge wire or the like provided on the front surface of the box 54a.
- the rear surface of the box 54 a is open, and the rear end of the box 54 a is bonded to the inner peripheral surface of the tower body 50.
- connection pipe 55 In this embodiment, two strainers 54 are provided apart from each other in the vertical direction, and the inside of each strainer 54 is connected by a connection pipe 55.
- the connecting pipe 55 is also a half cylinder and is bonded to the inner peripheral surface of the tower body 50.
- the treated water outlet 56 communicates with the connection pipe 55 through an opening provided in the tower body 50.
- the tower body 50 is provided with a hand hole.
- the drain pipe 57 extends in the vertical direction along the inner peripheral surface of the tower body 50.
- the drain pipe 57 has a half-cylindrical shape as shown in FIG. 6B except for the uppermost part, and is adhered to the inner peripheral surface of the tower body 50.
- the uppermost part of the drain pipe 57 has a cylindrical shape and opens into the tower body 50 above the water level.
- the lower end portion of the drain pipe 57 communicates with the drain outlet 57 at the lower part of the tower body 50.
- the defoamer water injection pipe 58 is routed in the vertical direction in the tower body 50, and the upper end portion is bent in a substantially U shape so as to face downward, above the water level in the tower body 50. It is open. The lower end of the water injection pipe 58 penetrates the tower body 50 and protrudes outside the tower body 50.
- the second biological treatment tank 42 has all the configurations of the first biological treatment tank 41, and the same reference numerals are given to the same parts as the first biological treatment tank 41.
- the second biological treatment tank 42 is provided with a treated water extraction pipe 60 connected to the treated water outlet 56 in addition to the above-described configuration of the first biological treatment tank 41.
- the treated water extraction pipe 60 is drawn upward outside the tower body 50, then passes through the side wall of the tower body 50 and is drawn into the tower body 50, and above the water surface of the second biological treatment tank 10.
- a rising portion 61 that rises up to one end
- a horizontal extending portion 62 that is connected to the rising portion 61 at one end side, and is connected to the other end side of the horizontal extending portion 62 and extends to the lower portion in the tower body 50.
- And has an upright portion 63 protruding out of the tower body 50, and the end of the upright portion 63 serves as an outlet 64.
- the upright portion 61 and the upright portion 63 extend in the vertical direction along the inner peripheral surface of the tower body 50.
- the upright portion 61 and the upright portion 63 have a half-cylindrical shape, and are connected to the inner peripheral surface of the tower body 50.
- Two valves 66 and 67 are provided in a portion of the pipe 60 routed outside the tower body 50.
- An air supply pipe 68 having a valve 68 a is connected between the valves 66 and 67.
- a sampling pipe 69 for taking out sample water is connected between the valves 66 and 67.
- the pipe 69 is provided with a valve 69a.
- Two valves 71 and 72 are provided in a pipe 70 connecting the treated water outlet 56 of the first biological treatment tank 41 and the inlet 51a of the second biological treatment tank 42.
- An air supply pipe 73 having a valve 74 is connected between the valves 71 and 72.
- the first and second biological treatment tanks 41 and 42 are filled with a fluidized bed carrier.
- a fluidized bed carrier the same one as in the above embodiment can be used.
- raw water (organic wastewater) is introduced into the first biological treatment tank 51 via the introduction pipe 51 of the first biological treatment tank 41, and the diffuser pipe 52.
- 70% or more, desirably 80% or more, more desirably 85% or more of the organic component (soluble BOD) is oxidatively decomposed by dispersible bacteria (non-aggregating bacteria).
- the valve 53a of the pipe 53A is closed during aeration. Suitable conditions such as pH, BOD volumetric load, carrier filling rate, dissolved oxygen (DO) concentration, etc. of the first biological treatment tank 41 are the same as those in the embodiment of FIGS.
- the treated water (first biological treated water) of the first biological treatment tank 41 is introduced from the outlet 56 into the second biological treatment tank 42 in the subsequent stage via the pipe 70, aerated, and the remaining organic components are oxidized. Reduce excess sludge by decomposition, self-degradation of dispersible bacteria and predation of micro-animals.
- the valves 71 and 72 of the pipe 70 and the valves 66 and 67 of the pipe 60 are opened.
- the preferred carrier filling rate, pH, SRT, and sludge load due to the soluble BOD in the second biological treatment tank 42 are the same as in the above embodiment.
- the air during aeration in the first and second biological treatment tanks 41 and 42 is discharged out of the tower through the opening 50a at the top of the tower. Bubbles generated during aeration are discharged to the drain pit outside the tower body 50 through the pipe 57. A foam sensor is provided in this drainage pit, and when there are many bubbles, an antifoaming agent or water is injected.
- the valve 72 when the screen 54b of the strainer 54 of the first biological treatment tank 41 is clogged, the valve 72 is closed, the valve 74 is opened, and air is supplied from the air supply pipe 73 to the strainer of the first biological treatment tank 41. 54 is supplied and backwashed with air.
- the valve 67 When the screen 54b of the strainer 54 of the second biological treatment tank 42 is clogged, the valve 67 is closed, the valve 68a is opened, and air is supplied from the air pipe 68 into the strainer 54 of the second biological treatment tank 42. Backwash.
- the strainer 54 can be easily washed with air, the washing is easy even if the strainer 54 is installed in the lower part of the tower. By installing the strainer 54 in the lower part of the tower body, it is possible to prevent floating foreign matters such as oil and fat from adhering to the strainer 54.
- each valve 53a is opened to prevent the water in the biological treatment tanks 41 and 42 from flowing backward in the pipe 53 due to the siphon phenomenon.
- the strainer 54 is installed in two upper and lower stages, but may be installed in one stage or three or more stages. A plurality of strainers may be provided at the same level. An example is shown in FIGS.
- FIG. 9a and 9b two strainers 54 and 54 are installed at the same level, their lower portions are connected to each other by a pipe 55, and a treated water outlet 56 is provided so as to communicate with the inside of the pipe 55.
- 9a is a side view of a portion of the tower body 50 where the strainer 54 is provided
- FIG. 9b is a cross-sectional view taken along the line IXb-IXb of FIG. 9a.
- FIG. 10 is a side view of a portion of the tower body 50 where the strainer 54 is provided.
- the biological treatment tank may be provided in three or more stages by providing a third biological treatment tank after the first biological treatment tank 1, 41 or the second biological treatment tank 2, 42.
- FIG. 4a to 4h are plan views showing various arrangement patterns of the first biological treatment tank 1 and the second biological treatment tank 2.
- FIG. 4a shows the first biological treatment tank 1 and the second biological treatment tank 2 installed one by one and connected in series.
- FIG. 4b shows one first biological treatment tank 1 installed and a plurality of second biological treatment tanks 2 arranged in parallel.
- FIG. 4 c shows a configuration in which a plurality of first biological treatment tanks 1 are installed in parallel and one second biological treatment tank 2 is installed.
- FIG. 4d shows a series connection of the first biological treatment tank 1 and the second biological treatment tank 2 arranged in parallel.
- first biological treatment tanks 1 and second biological treatment tanks 2 show a plurality of first biological treatment tanks 1 arranged in parallel and a plurality of second biological treatment tanks 2 arranged in parallel.
- the number of first biological treatment tanks 1 is the first. More than the two biological treatment tanks 2, the number of the second biological treatment tanks 2 is larger than that of the first biological treatment tank 1 in FIG. Although illustration is omitted, the first biological treatment tank 1 and the second biological treatment tank 2 may be the same number.
- FIG. 4g shows a plurality of second biological treatment tanks 2 and 2 'installed in series.
- FIG. 4h shows a configuration in which a plurality of FIG. 4g are installed in parallel.
- the remaining first biological treatment tanks are maintained while being stopped and maintained in some of the first biological treatment tanks or the second biological treatment tanks.
- the operation of the organic wastewater treatment apparatus can be continued using the second biological treatment tank.
- the first biological treatment tank 1 and the second biological treatment tank 2 can be installed in various patterns, depending on the amount and quality of raw water at the site. It can be an array.
- at least one of the first biological treatment tank and the second biological treatment tank is additionally installed in parallel or in series with the existing organic wastewater treatment apparatus of the present invention structure to cope with an increase in raw water flow rate and water quality fluctuation. be able to.
- the towers of the first and second biological treatment tanks 1, 2 and 41, 42 have the same shape and the same size, even when many biological treatment tanks are installed, the tower bodies are close to each other. Installed, the space between the towers can be reduced, and the installation space of the entire organic wastewater treatment apparatus can be reduced. In addition, the manufacturing cost of the tower is also low.
- the structure of each tower is the same, so the installation work of the towers and the pipe connection work of each tower are the same, improving work efficiency and shortening the construction period. be able to.
- Each of the towers 10, 20, and 50 has a diameter of 2.2 to 3.6 m, particularly 2.4 to 3.3 m, a height of 6 to 11 m, particularly 8 to 11 m, and a height H and a diameter.
- the ratio H / D with D is preferably 1.5 to 5.0, more preferably 3.0 to 4.5.
- the height of the main pipe connection part, manholes 17 and 27, carrier 13, strainers 23 and 54, and diffuser pipes 12, 22, and 52 from the foundation 3 is 4 m or less, particularly 3.0 m or less. Is preferred.
- manholes 17, 27, carrier 13, strainers 23, 54, diffuser pipes 12, 22, 52, etc. at low positions, pipe connection work, equipment installation work, and various maintenance work are performed at high places. This improves work efficiency and safety.
- an anaerobic treatment tank may be installed in front of the first biological treatment tanks 1 and 41, and treated water from the anaerobic treatment tank may be introduced into the first biological treatment tank.
- the size of the tower body of the anaerobic treatment tank may be the same as that of the tower bodies 10 and 20 or the tower body 50.
- an adjustment tank may be installed in the forefront of the anaerobic or aerobic treatment tank.
- the adjustment tank include, but are not limited to, a raw water tank for leveling the raw water flow rate, a settling tank for settling solid matter, and a pressurized flotation device.
- each biological treatment tank is preliminarily attached to the tower with attached equipment such as a diffuser pipe at the factory, transferred to the site, and installed on the foundation.
- attached equipment such as a diffuser pipe
- the distance between the inlet of raw water (treated water) and the outlet of treated water into the biological treatment tank that is, the distance between the upper end of the raw water introduction pipe 11 and the outlet 14a in FIGS. 5 to 8, the distance between the upper end portion of the raw water introduction pipe 51 and the strainer 54 (upper one) is preferably 1.5 m or more, particularly 2 m or more.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Activated Sludge Processes (AREA)
- Filtration Of Liquid (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
ストレーナの洗浄が容易である有機性排水の生物処理装置が提供される。有機性排水を第一生物処理槽41において処理し、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、第二生物処理槽42において、分散菌を微小動物に捕食させる。第一生物処理槽41及び第二生物処理槽42は同一形状及び同一大きさの塔体50を有しており、塔体の高さが6~11mである。各生物処理槽41,42内にストレーナ54が設置されている。各ストレーナ54に逆洗用空気が配管73,68から供給される。
Description
本発明は、生活排水、下水、食品工場、パルプ工場、半導体製造排水、液晶製造排水等の有機性排水の処理に広く利用することができる有機性排水の生物処理装置に係り、特に有機性排水を生物処理する生物処理塔を備えた有機性排水の生物処理装置に関する。また、本発明は、この処理装置を用いた有機性排水の生物処理方法に関する。
有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は一般に0.5~0.8kg/m3/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20~40%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。
有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m3/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30~50%程度で、通常の活性汚泥法より高くなることが欠点となっている。
特許文献1には、有機性排水をまず、第一処理槽で細菌により処理し、排水に含まれる有機物を酸化分解して非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることで余剰汚泥の減量化が可能になることが記載されている。さらに、この方法では高負荷運転が可能となり、活性汚泥法の処理効率も向上するとされている。
このように細菌の高位に位置する原生動物や後生動物の捕食を利用した廃水処理方法は、多数考案されている。例えば、特許文献2には、特許文献1の処理方法で問題となる原水の水質変動による処理性能悪化の対策が記載されている。具体的な方法としては、「被処理水のBOD変動を平均濃度の中央値から50%以内に調整する」、「第一処理槽内および第一処理水の水質を経時的に測定する」、「第一処理水の水質悪化時には微生物製剤または種汚泥を第一処理槽に添加する」等の方法をあげている。
特許文献3では、細菌、酵母、放線菌、藻類、カビ類や廃水処理の初沈汚泥や余剰汚泥を原生動物や後生動物に捕食させる際に超音波処理または機械攪拌により、捕食されるフロックのフロックサイズを動物の口より小さくさせる方法を提案している。
流動床と活性汚泥法の多段処理による有機性排水の生物処理方法としては、特許文献4に記載のものがある。この方法では、後段の活性汚泥法をBOD汚泥負荷0.1kg-BOD/kg-MLSS/dの低負荷で運転することで、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。
従来の生物処理槽の槽体としては、コンクリート水槽又はタワー状高架水槽が用いられている。
コンクリート水槽には次の課題がある。
(i)槽本体が現地土木工事となり、更に槽内部装置の設置が槽施工後となり、現地での工期が長くなる。施工・品質管理の面でも不安が残る。
(ii)実用上で水深が通常4m程度までであるため、現地での設置スペースが大きくなる。
(iii)原水負荷増加に対応して設備を増強したい場合であっても、現地土木工事でかつ設置面積が大きいことから、増設が容易に出来ない。
(iv)底部からの液漏れの点検がしづらい。
(v)槽内面ライニング補修を行う必要がある。
(i)槽本体が現地土木工事となり、更に槽内部装置の設置が槽施工後となり、現地での工期が長くなる。施工・品質管理の面でも不安が残る。
(ii)実用上で水深が通常4m程度までであるため、現地での設置スペースが大きくなる。
(iii)原水負荷増加に対応して設備を増強したい場合であっても、現地土木工事でかつ設置面積が大きいことから、増設が容易に出来ない。
(iv)底部からの液漏れの点検がしづらい。
(v)槽内面ライニング補修を行う必要がある。
タワー状高架水槽には次の課題がある。
(vi)設置スペースを抑制しつつ容量を確保するためには、槽高を大きくする必要があり、少なくとも7m程は必要になる。この場合、現地配管施工や日常保守時には槽上部に登る必要があり、通常は階段や梯子等を設置する。このため作業性が悪くなる。
(vii)現地における槽上部からの渡り配管工事の負担が大きくなりやすい。
(viii)槽材質や液質によっては、槽内面ライニング補修を行う必要がある。
(vi)設置スペースを抑制しつつ容量を確保するためには、槽高を大きくする必要があり、少なくとも7m程は必要になる。この場合、現地配管施工や日常保守時には槽上部に登る必要があり、通常は階段や梯子等を設置する。このため作業性が悪くなる。
(vii)現地における槽上部からの渡り配管工事の負担が大きくなりやすい。
(viii)槽材質や液質によっては、槽内面ライニング補修を行う必要がある。
上記の通り、従来のコンクリート水槽又はタワー状高架水槽には、次のような課題があった。
1)コンクリート水槽では設置平面積が大きい。
2)コンクリート水槽では工期が長くなる。
3)コンクリート水槽では、設備増強が容易ではない。
4)槽高が大きいタワー型水槽では、高所作業により作業効率が悪く、作業性の向上や転落事故防止を図る必要がある。
5)槽高が大きいタワー型水槽では、槽上部から外部への配管が生じ現地工事の負担が大きくなるため現地工事の簡素化を図る必要がある。
1)コンクリート水槽では設置平面積が大きい。
2)コンクリート水槽では工期が長くなる。
3)コンクリート水槽では、設備増強が容易ではない。
4)槽高が大きいタワー型水槽では、高所作業により作業効率が悪く、作業性の向上や転落事故防止を図る必要がある。
5)槽高が大きいタワー型水槽では、槽上部から外部への配管が生じ現地工事の負担が大きくなるため現地工事の簡素化を図る必要がある。
従来、有機性排水の生物処理槽内にストレーナを設置し、生物処理液を該ストレーナで濾過して取り出すことがある。このストレーナに汚泥や、担体、油脂、その他の異物が付着した場合、ブラシ等で擦り洗いを行う。
しかしながら、生物処理槽の槽高が大きいときには、このブラシ等による洗浄は容易ではない。例えば、ストレーナが生物処理槽内の上部に設けられている場合には、槽上部まで作業員が登ってブラシ等で擦り洗いすることになるが、高所作業となり、作業が容易ではない。
ストレーナが生物処理槽内の下部に設けられている場合には、生物処理槽内の水位を低下させ、作業員が槽内に入ってブラシ等で洗浄することが考えられるが、作業が容易ではなく、生物処理槽の運転中断時間も長くなる。作業員が槽内に入る代りに、洗浄機を水中に差し込むことも考えられるが、洗浄機をストレーナに確実の当てることが難しい。ブラシ式等の洗浄機を槽内に予め設置しておくことも考えられるが、コスト高であると共に洗浄機のメンテナンスに手間及びコストがかかる。
本発明は、これらの課題を解決し、施工が容易であると共に、高所作業の低減及び省スペース化を図ることができる有機性排水の生物処理装置及び処理方法を提供することを第1の目的とする。
本発明は、生物処理槽内に設置されたストレーナの洗浄を容易に行うことができる有機性排水の生物処理装置及び処理方法を提供することを第2の目的とする。
本発明の有機性排水の生物処理装置は、有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、後段の第二生物処理槽において、第二生物処理水を生成させる有機性排水の生物処理装置において、第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの塔体を有しており、塔体の高さが6~11mであり、いずれか一方の塔体内に、塔体内の生物処理液を濾過するためのストレーナが設置されており、該ストレーナを気体で逆洗するためにストレーナ内に気体を供給する気体供給手段が設けられていることを特徴とするものである。
本発明の一態様では、塔体の高さ(H)と直径(D)の比(H/D)が1.5~5.0である。本発明の一態様では、ストレーナは、塔体の上下方向の中間又はそれよりも下側に設けられている。
本発明の一態様では、塔体はFRP製であり、塔底から塔頂まで全体として一体に成形されたものである。ストレーナは、後面が開放し、前面にスクリーンが設けられたボックスを備えており、該ボックスの後縁が前記塔体の内周面に接着されていてもよい。
本発明の有機性排水の生物処理方法は、かかる本発明の生物処理装置を用いるものである。
本発明の有機性排水の処理装置は、規格寸法(同一形状、同一大きさ)の塔体を有する水処理ユニットを複数個備えたものであり、各水処理ユニットは予め工場にて製作しておくことができる。
本発明では、各槽のサイズが統一されているので、装置の設計・施工も共通化され、簡易・迅速に行うことができる。また、槽同士の間のスペースを小さくすることもできる。さらに、生物処理槽の増設も容易である。
本発明では、生物処理槽内に浸漬配置されたストレーナ内に気体を供給してストレーナを逆洗することができる。従って、生物処理槽内にブラシを差し込んだりストレーナ洗浄機を持ち込んだりする必要がなく、ストレーナが槽下部に設置されていてもストレーナの洗浄をきわめて容易に行うことができる。
ストレーナ内に気体を供給すると、スクリーンの一次側付近で気液の撹拌が生じ、スクリーン表面の異物が剥離される。この場合の空気供給量は、スクリーン透過流速として1~15m/s程度であることが好ましい。
ストレーナを生物処理槽内の上下方向の中間部付近又はそれよりも下位に設置した場合、油脂などの浮上性の異物がスクリーンに接触することが少なくなり、油脂などの付着が抑制される。
塔体をFRPで一体に構成することにより、軽量となり、運搬や設置施工も容易となる。この場合、ストレーナは、後面が開放し、前面にスクリーンが設けられたボックスを備えており、該ボックスの後縁が前記塔体の内周面に接着されている構成とすることにより、塔体内部の構造を簡素化し、塔体内部での水の循環流をスムーズなものとすることができる。
以下に図面を参照して本発明の有機性排水の生物処理装置及び処理方法の実施の形態を詳細に説明する。図1は本発明の有機性排水の生物処理装置の実施の形態を示すものであり、第一生物処理槽1と、第二生物処理槽2とが基礎3上に立設され、配管4によって直列に接続されている。
第一生物処理槽1は、円筒形の塔体10と、該塔体10の下部側面に設けられたフランジ構造の原水流入口11aと、該原水流入口11aに連なり、塔体10内を上方に延在し、上端部が流出口14aよりも上位にて開放した原水導入管11と、塔体10内の底部に設けられた散気管12と、該塔体10内において散気管12の上側に設置された固定床又は揺動床担体13と、塔体10の上部に設けられた処理水の流出口14a等を備えている。なお、散気管12は、気体供給装置としての図示しないブロワに接続されている。ここでブロワとしては、水位が高い場合には、スクリューブロワ、ターボブロワ等の吐出圧力60kPa以上の能力を備える高圧ブロワが好ましい。
該流出口14aに流出配管14が連なっている。該流出配管14は、塔体10の外面に沿って下方に延設され、下端がフランジ構造の配管接続部14bとなっている。図2の通り、流出配管14の上下方向の途中にはクランク状曲成部14cが設けられている。
塔体10の頂部に開口15aが設けられ、大気連通管15の一端が接続されている。大気連通管15は、図2の通り、塔体10の外面を塔体10に沿って下方に延設され、下端15bが基礎3の直近において下方に向って開放している。流出配管14の上端は、逆U字形の連通管14dを介して大気連通管15の横引部15bに連通している。
図2の通り、塔体10の頂部には予備座16が設けられ、下部にはマンホール17及び予備座18が設けられている。
第二生物処理槽2は、塔体10と同一形状、同一大きさの円筒形の塔体20と、該塔体20の下部側面に設けられたフランジ構造の流入口21と、塔体20内の底部に設けられた散気管22と、該塔体20内に設置されたストレーナ23等を備えている。流入口21が配管4を介して配管接続部14bに接続されている。散気管22は、図示しないブロワに接続されている。このブロワは、散気管12への空気供給用ブロワと共用されている。
ストレーナ23は、塔体20の上下方向の中間付近又はそれよりも下位に設置されている。そのため、油脂などの浮上性の異物がストレーナ23に接触する機会が少なく、油脂等によるストレーナ23の目詰まりが抑制される。
該ストレーナ23に流出配管24が連なっている。該流出配管24は図3の通り、塔体20の外面に沿って前記第一生物処理槽10の流出口14aと同レベルまで立ち上がる立上部24aと、該立上部24aに一端側が連なり、水平方向に引き回された横引部24bと、該横引部24bの他端側に連なり、塔体20の外面に沿って基礎3の近傍にまで延在する立下部24cとを有し、該立下部24cの下端が流出口24dとなっている。流出配管24の立上部24aの上端からは大気開放管24eが上方に延設され、該大気開放管24eの上端が大気に開放している。流出配管24の立下部24cの途中にはクランク状曲成部24fが設けられている。
塔体20外において、流出配管24の下部にバルブ24kが設けられている。このバルブ24kよりもストレーナ23側に、ストレーナ逆洗用空気を供給するための空気供給配管24mが接続され、この配管24mにバルブ24nが設けられている。
空気供給配管24mへは、散気管12,22への空気供給用ブロワに接続されている。
塔体20の頂部に開口25aが設けられ、大気連通管25の一端が接続されている。大気連通管25は、図3の通り、塔体20の外面を塔体20に沿って下方に延設され、下端25bは基礎3の直近において下方に向って開放している。
図3の通り、塔体20の頂部には予備座26が設けられ、下部にはマンホール27、予備座28及び散気管への空気供給管22aが設けられている。塔体20内には流動床担体29が充填されている。なお、27aはストレーナ23のメンテナンス用のマンホールである。
各塔体10,20は、ライニングを不要とするためFRP等の樹脂製が好ましいが、水質によっては鋼板であってもよい。FRPの場合には紫外線による劣化の防止、耐食性の向上を目的として耐候性塗料(例えば(株)トーチ製タンクステンコート等)を塗布するのが好ましい。また、塔体10,20をFRP製とした場合、水圧が大きくなる塔体下部の肉厚を上部よりも大きくすることが好ましい。塔体の上下の途中を上部よりも厚肉とし、下部をそれよりもさらに厚肉としてもよい。
第一及び第二生物処理槽1,2には余剰汚泥の取出管、ドレン管や槽内監視カメラの挿入管、配線挿通口、サンプリング口(図示略)等が設けられている。槽内の監視は、カメラ又は動画撮影機能を備えた撮影機材(望ましくは照明付きもしくは赤外線カメラ)を常時又は適宜に槽内に挿入して行う。撮影データは無線又は有線にて送信する。撮影機材に撮影データを保管してもよい。塔体に予め保温材を巻いておいてもよい。
必要に応じ、水槽或いは周辺設備、配管等に、水位計、圧力計、流量計、水温計、水質計等の測定器を設置し、運転状況の監視や運転制御、運用管理等に用いる。また、付帯設備(例えば、送水、加温、薬品注入、曝気、脱水機能等を備えた設備)との組合せにより、水槽における処理を最適化するために利用する。
この有機性排水の生物処理装置によって有機性排水を処理するには、導入管11を介して原水(有機性排水)を第一生物処理槽1に導入し、散気管12で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。この第一生物処理槽1のpHは好ましくは6~8.5とする。ただし、食品製造排水など原水中に油分を多く含む場合や、半導体製造排水や液晶製造排水など原水中に有機性の溶媒や洗浄剤を多く含む場合には分解速度を高くするため、pHは8~9としても良い。
第一生物処理槽1への通水は、一過式とする。第一生物処理槽1のBOD容積負荷を1kg/m3/d以上、例えば1~20kg/m3/d、HRT(原水滞留時間)を24h以下、好ましくは8h以下、例えば0.5~8hとすることにより、分散性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。
第一生物処理槽1には、後段の生物処理槽からの汚泥の一部を返送したり、この第一生物処理槽1を二槽以上の多段構成としたり、担体13を設置したりすることにより、BOD容積負荷5kg/m3/d以上の高負荷処理も可能となる。担体として流動床担体を充填してもよい。
担体13が揺動床担体である場合、素材は発泡合成樹脂特に軟質ポリウレタンフォームが好ましい。第一生物処理槽1にこのような薄い板状ないし短冊状の軽量ポリウレタンフォームのような多孔質のシート状揺動床担体を設置すると、揺動床担体が、十分な弾力性を有し、槽内の水の流れの中でたわむ(形状維持しない)ことにより、薄くても十分な機械的強度を持ち、破損することがない。また、たわむことで槽内の通水を阻害することなく均一に混合され、担体の多孔質構造内にも均等に汚泥含有液が通水されるようになる。
第一生物処理槽1における担体の充填率が高い場合、分散菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖する。そこで、第一生物処理槽1に添加する担体の充填率を、流動床担体の場合は10%以下、例えば1~10%とし、固定床担体、揺動性担体の場合は5%以下、例えば0.5~5%とすることで、濃度変動に影響されず、捕食しやすい分散菌の生成が可能になる。
第一生物処理槽1の溶存酸素(DO)濃度を1mg/L以下、好ましくは0.5mg/L以下として、糸状性細菌の増殖を抑制しても良い。
第一生物処理槽1の処理水(第一生物処理水)を、流出口14a、配管14,4、流入口21を介して後段の第二生物処理槽2に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。第二生物処理槽2の処理液は、ストレーナ23、流出配管4を介して取り出される。
第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いる必要がある。そこで、この実施の形態では、第二生物処理槽2には、流動床担体29を充填して微小動物の槽内保持量を高めている。
流動床担体29の形状は、球状、ペレット状、中空筒状、糸状、板状等の任意であり、大きさ(径)は0.1~10mm程度である。担体29の材料は、天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。担体は、流動床担体に限定されるものではなく、固定床担体、揺動性担体のいずれでも良い。
第二生物処理槽2には、流動床担体のほかにさらに揺動床担体を充填してもよい。
第二生物処理槽2では、微小動物を維持するための多量の足場が必要となるが、過度に担体の充填率が多いと槽内の混合不足、汚泥の腐敗などが起こるため、添加する担体の充填率は、0.5~50%、特に1~40%程度とすることが望ましい。
微小動物による捕食を促進させるため、第二生物処理槽2のpHを7.0以下としても良い。
第二生物処理槽2では、分散状態の菌体を捕食する濾過捕食型微小動物だけでなく、フロック化した汚泥を捕食できる凝集体捕食型微小動物も増殖する。後者は遊泳しながらフロックを捕食するため、優先化した場合、汚泥は食い荒らされ、微細化したフロック片が散在する汚泥(沈降性の悪い汚泥)となる。また、このフロック片により、特に後段で膜分離を行う膜式活性汚泥法では膜の目詰まりが発生する。そこで、凝集体捕食型微小動物を間引くため、SRTを60日以下望ましくは45日以下の範囲内で一定に制御することが望ましい。ただし15日未満では不必要に頻繁すぎて凝集体捕食型微小動物だけでなく濾過捕食型微小動物の数が減少しすぎるので15日以上とするのが好ましい。
第一生物処理槽1では有機物の大部分、すなわち排水BODの70%以上、望ましくは80%以上を分解し、菌体へと変換しておく必要があるが、第一生物処理槽1で溶解性有機物を完全に分解した場合、第二生物処理槽2ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥(沈降性の悪い汚泥)のみが優占化した生物処理槽となる。そこで、原水の一部をバイパスして第二生物処理槽2に供給し、第二生物処理槽2への溶解性BODによる汚泥負荷が0.025kg-BOD/kg-MLSS/d以上となるように運転してもよい。この時のMLSSには担体付着分のMLSSも含む。
第二生物処理槽2からストレーナ23及び配管24を介して取り出される処理水に対して、より高度な処理水水質を得るために固液分離として膜分離、凝集沈殿、加圧浮上のいずれを行ってもよい。なお、凝集沈殿や加圧浮上を行うときは、凝集剤の添加量の低減することができる。第二生物処理槽2からの沈降分離水を凝集槽で凝集処理し、次いで固液分離槽(沈殿槽)で沈殿処理して処理水と沈降汚泥とに分離してもよい。
このストレーナ23が目詰まりしたときや、装置の休止時に、バルブ24kを閉、バルブ24nを開とし、ストレーナ23内に空気を空気供給配管24mから供給し、ストレーナ23を空気逆洗する。これにより、ストレーナ23のスクリーン一次側付近で気液の撹拌が生じ、スクリーンに付着した異物が除去される。従って、ブラシや洗浄機等を塔内に持ち込むことなく、またストレーナ23が塔体内の下部に設置されていても、ストレーナ23を容易に洗浄することができる。なお、ストレーナ23を塔体内の下部に設置することにより、油脂などの浮上性の異物がストレーナに付着することが防止される。
図5~8を参照して本発明の別の実施の形態に係る有機性排水の生物処理装置を説明する。図5の通り、この有機性排水の生物処理装置においても、第一生物処理槽41と、第二生物処理槽42とが基礎43上に立設され、配管70によって直列に接続されている。
第一生物処理槽41は、FRP製の円筒形の塔体50と、該塔体50の下部側面に設けられたフランジ構造の原水(被処理水)流入口51aと、この流入口51aから連続した原水導入管51と、塔体50内の底部に設けられた散気管52と、散気管52を図示しないブロワに接続する空気配管53と、空気配管53の途中に連なるサイホンブレーク用配管53Aと、塔体50の上下方向の中間又はそれよりも下位に設けられた複数個のストレーナ54,54と、ストレーナ54同士を接続する接続配管55と、該接続配管55内に連通する処理水取出口56と、塔体50の内周面に沿って上下方向に延在したドレン配管57と、塔体50内に上下方向に設けられた消泡剤水溶液の注入配管58等を備えている。
塔体50の頂部に、開口50aが設けられ、塔体50内が該開口50aを介して大気に連通している。
原水導入管51は、塔体50の下部側壁を貫くように設けられている。
空気配管53は、一端側が塔体50の下部を貫通して塔体50外に突出し、その先端にブロワからの空気供給配管が接続されている。空気配管53の他端が散気管52に接続されている。
空気配管53は、塔体50内において、水面位よりも上方に立ち上っており、この立ち上がりの最高位部53bにサイホンブレーク用配管53Aの一端が接続されている。サイホンブレーク用配管53Aは、塔体50内を下方に引き回されており、その他端側は塔体50の下部を貫通して塔体50外に突出している。このサイホンブレーク用配管53Aの先端部にバルブ53aが設けられている。
ストレーナ54は、塔体50の上下方向の中間付近又はそれよりも下位に設置されている。ストレーナ54は、図7に示す通り、塔体50の内周面に接着されることにより取り付けられたボックス54aと、該ボックス54aの前面に設けられたウェッジワイヤ等よりなるスクリーン54bとを有する。ボックス54aの後面は開放しており、ボックス54aの後端が塔体50の内周面に接着されている。
この実施の形態では、ストレーナ54は上下に離隔して2個設けられており、各ストレーナ54内が接続配管55によって連通されている。
この接続配管55も半割円筒状であり、塔体50の内周面に接着されている。処理水取出口56は、塔体50に設けられた開口を介して該接続配管55内に連通している。
図示は省略するが、ストレーナ54内をメンテナンスするために、塔体50にハンドホールが設けられている。
ドレン配管57は、塔体50の内周面に沿って上下方向に延設されている。ドレン配管57は、最上部を除いて、図6bの通り、半割円筒状であり、塔体50の内周面に接着されている。ドレン配管57の最上部は、円筒状であり、水面位よりも上方において塔体50内に開放している。ドレン配管57の下端部は塔体50の下部のドレン取出口57に連通している。
消泡剤の注水配管58は、塔体50内を上下方向に引き回されており、上端部は略U字状に曲成されて下向きとされ、塔体50内の水面位よりも上方において開放している。注水配管58の下端は、塔体50を貫通して塔体50外に突出している。
第二生物処理槽42は、上記第一生物処理槽41の構成をすべて具備しており、第一生物処理槽41と同一部分に同一符号が付されている。
第二生物処理槽42は、第一生物処理槽41の上記構成に加え、さらに処理水取出口56に接続された処理水取出配管60を備えている。この処理水取出配管60は、塔体50外を上方に引き回された後、塔体50の側壁を貫通して塔体50内に引き込まれ、第二生物処理槽10の水面よりも上方にまで立ち上がる立上部61と、該立上部61に一端側が連なり、水平方向に引き回された横引部62と、該横引部62の他端側に連なり、塔体50内の下部にまで延在し、塔体50外に突出した立下部63とを有し、該立下部63の末端が流出口64となっている。
立上部61の上端61aは、下向きに湾曲し、塔体50内に開放している。このため、横引部62のレベルが第二生物処理槽42内の水面レベルとなる。また、第一生物処理槽41の取出口56と第二生物処理槽42の流入口51aとが配管70で連通しているので、第一生物処理槽41内の水面レベルは第二生物処理槽42の水面レベルと同一となる。
図6bに示すように、立上部61、立下部63は、塔体50の内周面に沿って上下方向に延在している。立上部61、及び立下部63は半割円筒状であり、塔体50の内周面に接続されている。
配管60のうち塔体50外を引き回されている部分には、2個のバルブ66、67が設けられている。このバルブ66,67間に、バルブ68aを有した空気供給配管68が接続されている。また、バルブ66,67間に、サンプル水を取り出すためのサンプリング配管69が接続されている。この配管69にバルブ69aが設けられている。
第一生物処理槽41の処理水取出口56と第二生物処理槽42の流入口51aとを接続する配管70に2個のバルブ71,72が設けられている。バルブ71,72間に、バルブ74を有した空気供給配管73が接続されている。
なお、図示は省略するが、第一及び第二生物処理槽41,42には、余剰汚泥の取出管や槽内監視カメラの挿入管、配線挿通口、マンホール、予備座(図示略)等が設けられている。
第一及び第二生物処理槽41,42には、流動床担体を充填する。この流動床担体としては、前記実施の形態と同様のものを用いることができる。
この有機性排水の処理装置によって有機性排水を処理するには、第一生物処理槽41の導入管51を介して原水(有機性排水)を第一生物処理槽51に導入し、散気管52で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。なお、曝気時には配管53Aのバルブ53aは閉とする。この第一生物処理槽41のpHやBOD容積負荷、担体の充填率、溶存酸素(DO)濃度等の好適条件は、前記図1~3の実施の形態と同様である。
第一生物処理槽41の処理水(第一生物処理水)を、流出口56から配管70を介して後段の第二生物処理槽42に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。なお、このとき、配管70のバルブ71,72及び配管60のバルブ66,67は開とされている。
第二生物処理槽42の好適な担体の充填率やpH、SRT、溶解性BODによる汚泥負荷は、前記実施の形態と同様である。
第一及び第二生物処理槽41,42内で曝気を行っている時の空気は、塔頂の開口50aから塔外に排出される。曝気に際して生じた泡は配管57を介して塔体50外の排水ピットに排出される。この排水ピットに泡センサを設けておき、泡が多いときには消泡剤や水を注入する。
この実施の形態では、第一生物処理槽41のストレーナ54のスクリーン54bが目詰りしたときには、バルブ72を閉、バルブ74を開とし、空気供給配管73から空気を第一生物処理槽41のストレーナ54内に供給し、空気逆洗する。第二生物処理槽42のストレーナ54のスクリーン54bが目詰りしたときには、バルブ67を閉、バルブ68aを開とし、空気配管68から空気を第二生物処理槽42のストレーナ54内に供給し、空気逆洗する。このようにストレーナ54を空気によって容易に洗浄することができるので、ストレーナ54が塔内の下部に設置されていてもその洗浄が容易である。ストレーナ54を塔体内の下部に設置することにより、油脂などの浮上性の異物がストレーナ54に付着することが防止される。
生物処理装置の運転の停止時には、各バルブ53aを開とし、生物処理槽41,42内の水が配管53内をサイホン現象で逆流することを防止する。
図5~8の実施の形態では、ストレーナ54を上下2段に設置しているが、1段又は3段以上に設置してもよい。また、ストレーナを同レベルに複数個設けてもよい。その一例を図9a,9b,10に示す。
図9a,9bでは、2個のストレーナ54,54を同レベルに設置し、それらの下部同士を配管55で接続し、配管55内に連通するように処理水取出口56を設けている。図9aは、塔体50のうちストレーナ54を設けた部分の側面図であり、図9bは、図9aのIXb-IXb線断面図である。
図10では、2個のストレーナ54,54を同レベルに設置し、各々の下部にそれぞれ処理水取出配管80,80を接続している。配管80,80は、上方に引き回され、塔体50内において合流して立上部となり、横引部を経て立下部81となり、その下端が取出口56に連通している。なお、図10は塔体50のうちストレーナ54を設けた部分の側面図である。
図1~3,5~10は、本発明の実施の形態の一例を示すものであり、本発明は何ら図示のものに限定されない。例えば、第一生物処理槽1,41又は第二生物処理槽2,42の後段に第三生物処理槽を設けるなどして、生物処理槽を3段以上に設けてもよい。
図4a~4hは、第一生物処理槽1、第二生物処理槽2の種々の配置パターンを示す平面図である。図4aは、第一生物処理槽1、第二生物処理槽2を1基ずつ設置して直列に接続したものである。図4bは、第一生物処理槽1を1基設置し、第二生物処理槽2を並列に複数基設置したものである。図4cは、第一生物処理槽1を並列に複数基設置し、第二生物処理槽2を1基設置したものである。図4dは、第一生物処理槽1及び第二生物処理槽2の直列接続体を並列に複数列設置したものである。
図4e、4fは、第一生物処理槽1を並列に複数基設置し、第二生物処理槽2を並列に複数基設置したものであり、図4eでは第一生物処理槽1の数が第二生物処理槽2よりも多く、図4fでは第二生物処理槽2の数が第一生物処理槽1よりも多い。図示は省略するが、第一生物処理槽1と第二生物処理槽2の数が同数でもよい。
図4gは、第二生物処理槽2,2’を直列に複数基設置したものである。図4hは、図4gのものを並列に複数設置したものである。
第一生物処理槽又は第二生物処理槽を並列に設置した場合には、一部の第一生物処理槽又は第二生物処理槽で運転を停止してメンテナンスしながら残りの第一生物処理槽、第二生物処理槽を用いて有機性排水の処理装置の運転を継続させることもできる。
図4a~4hの通り、本発明によると、第一生物処理槽1と第二生物処理槽2を種々のパターンにて設置することができ、現場での原水の水量や水質に応じて所望の配列とすることができる。また、既存の本発明構造の有機性排水の処理装置に対して第一生物処理槽及び第二生物処理槽の少なくとも一方を並列又は直列に追加設置して原水流量の増大や水質変動に対応することができる。
本発明では、第一及び第二生物処理槽1,2同士及び41,42同士の塔体が同一形状、同一大きさであるため、各生物処理槽を多数設置する場合でも各塔体を近接して設置し、塔体間のスペースを小さくし、有機性排水処理装置全体の設置スペースを小さくすることができる。また、塔体の製造コストも安価となる。複数の塔体を並列に設置する場合、各塔体の構成が同一であるから、塔体の据付作業や各塔体の配管接続作業が同じとなり、作業効率が向上し、工期の短縮を図ることができる。
各塔体10,20,50は、直径が2.2~3.6m、特に2.4~3.3mであり、高さが6~11m、特に8~11mであり、高さHと直径Dとの比H/Dが1.5~5.0特に3.0~4.5であることが好ましい。また、主要な配管の接続部やマンホール17,27、担体13、ストレーナ23,54、散気管12,22,52などは、基礎3からの高さが4m以下、特に3.0m以下であることが好ましい。このように接続部、マンホール17,27、担体13、ストレーナ23,54、散気管12,22,52などを低位置に設けることにより、配管接続作業や機器設置作業、各種メンテナンス作業が高所作業ではなくなり、作業効率及び安全性が向上する。
本発明では、第一生物処理槽1,41の前段に嫌気処理槽を設置し、嫌気処理槽の処理水を第一生物処理槽に導入するようにしてもよい。この嫌気処理槽の塔体の大きさも塔体10,20又は塔体50と同一としてもよい。
本発明では、嫌気又は好気処理槽の最前段に調整槽を設置してもよい。この調整槽としては、原水流量を平準化するための原水槽、固形物を沈降させるための沈降槽、加圧浮上装置などが例示されるが、これに限定されない。
本発明では、各生物処理槽は、予め塔体に散気管などの付属機器を工場で取り付けておき、現場に移送し、基礎上に据え付けるように施工を行うのが好ましい。これにより、現場作業数を減少させ、工期の短縮や、組み立て精度の向上などを図ることができる。
本発明では、生物処理槽内への原水(被処理水)の流入口と処理水の流出口との距離、すなわち図1~3では原水導入管11の上端部と流出口14aとの距離、図5~8では原水導入管51の上端部とストレーナ54(上側のもの)との距離を1.5m以上特に2m以上とすることが好ましい。このように構成することにより、短絡流の割合が少なくなり、CODの分解時間を十分に確保できるようになる。
本出願は、2015年8月26日付で出願された日本特許出願2015-166844に基づいており、その全体が引用により援用される。
1,41 第一生物処理槽
2,42 第二生物処理槽
10,20,50 塔体
12,22,52 散気管
13 固定床又は揺動床担体
15,25 大気連通管
23,54 ストレーナ
29 流動床担体
2,42 第二生物処理槽
10,20,50 塔体
12,22,52 散気管
13 固定床又は揺動床担体
15,25 大気連通管
23,54 ストレーナ
29 流動床担体
Claims (6)
- 有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、
第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
後段の第二生物処理槽において、第二生物処理水を生成させる有機性排水の生物処理装置において、
第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの塔体を有しており、塔体の高さが6~11mであり、
いずれか一方の塔体内に、塔体内の生物処理液を濾過するためのストレーナが設置されており、
該ストレーナを気体で逆洗するためにストレーナ内に気体を供給する気体供給手段が設けられていることを特徴とする有機性排水の生物処理装置。 - 請求項1において、塔体の高さが6~11mであり、塔体の高さ(H)と直径(D)との比(H/D)が1.5~5.0であり、
前記ストレーナは塔体の上下方向の中間又はそれよりも下側に設けられていることを特徴とする有機性排水の生物処理装置。 - 請求項1又は2において、前記塔体はFRP製であり、塔底から塔頂まで全体として一体に成形されたものであることを特徴とする有機性排水の生物処理装置。
- 請求項3において、前記ストレーナは、後面が開放し、前面にスクリーンが設けられたボックスを備えており、
該ボックスの後縁が前記塔体の内周面に接着されていることを特徴とする有機性排水の生物処理装置。 - 請求項1ないし4のいずれか1項の生物処理装置を用いた有機性排水の生物処理方法。
- 有機性排水の生物処理槽内にストレーナが浸漬配置されており、該生物処理槽内の生物処理液が該ストレーナで濾過されて取り出される生物処理装置において、
該ストレーナを逆洗するために該ストレーナ内に気体を供給する気体供給手段を備えたことを特徴とする生物処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-166844 | 2015-08-26 | ||
JP2015166844A JP6112162B2 (ja) | 2015-08-26 | 2015-08-26 | 有機性排水の生物処理装置及び処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033492A1 true WO2017033492A1 (ja) | 2017-03-02 |
Family
ID=58099802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062464 WO2017033492A1 (ja) | 2015-08-26 | 2016-04-20 | 有機性排水の生物処理装置及び処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6112162B2 (ja) |
WO (1) | WO2017033492A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113713490A (zh) * | 2021-10-18 | 2021-11-30 | 北京首创生态环保集团股份有限公司 | 一种塔式生物沉降过滤装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10910130B2 (en) | 2017-03-07 | 2021-02-02 | Mitsubishi Materials Corporation | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire-end structure |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939522A (ja) * | 1982-08-30 | 1984-03-03 | Nippon Polyester Kk | Frp製タンクの製造装置 |
JPS5955393A (ja) * | 1982-09-25 | 1984-03-30 | Kubota Ltd | 高濃度有機性廃水の処理方法 |
JPS62160198A (ja) * | 1986-01-09 | 1987-07-16 | Kurita Water Ind Ltd | 流動層型反応装置 |
JPH10128366A (ja) * | 1996-10-29 | 1998-05-19 | Nkk Corp | 微生物固定化担体を用いた廃水処理方法 |
JP2000254670A (ja) * | 1999-03-09 | 2000-09-19 | Suiko Kinzoku Kk | 汚水浄化処理システム |
JP2001246396A (ja) * | 2000-02-07 | 2001-09-11 | Matsumura Masatoshi | バイオリアクター内における菌体を保持する方法及び装置 |
WO2003055808A1 (en) * | 2001-12-21 | 2003-07-10 | Dermot Peter Nicholson | Waste treatment apparatus |
JP2005118746A (ja) * | 2003-10-20 | 2005-05-12 | Suido Kiko Kaisha Ltd | 横流型移動床式ろ過装置 |
JP2009202115A (ja) * | 2008-02-28 | 2009-09-10 | Kurita Water Ind Ltd | 有機性排水の生物処理方法および装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626370Y2 (ja) * | 1986-09-30 | 1994-07-20 | 株式会社丸山製作所 | 薬液散布車のタンク |
JP5304499B2 (ja) * | 2008-12-15 | 2013-10-02 | 株式会社Ihi | ストレーナ |
-
2015
- 2015-08-26 JP JP2015166844A patent/JP6112162B2/ja active Active
-
2016
- 2016-04-20 WO PCT/JP2016/062464 patent/WO2017033492A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939522A (ja) * | 1982-08-30 | 1984-03-03 | Nippon Polyester Kk | Frp製タンクの製造装置 |
JPS5955393A (ja) * | 1982-09-25 | 1984-03-30 | Kubota Ltd | 高濃度有機性廃水の処理方法 |
JPS62160198A (ja) * | 1986-01-09 | 1987-07-16 | Kurita Water Ind Ltd | 流動層型反応装置 |
JPH10128366A (ja) * | 1996-10-29 | 1998-05-19 | Nkk Corp | 微生物固定化担体を用いた廃水処理方法 |
JP2000254670A (ja) * | 1999-03-09 | 2000-09-19 | Suiko Kinzoku Kk | 汚水浄化処理システム |
JP2001246396A (ja) * | 2000-02-07 | 2001-09-11 | Matsumura Masatoshi | バイオリアクター内における菌体を保持する方法及び装置 |
WO2003055808A1 (en) * | 2001-12-21 | 2003-07-10 | Dermot Peter Nicholson | Waste treatment apparatus |
JP2005118746A (ja) * | 2003-10-20 | 2005-05-12 | Suido Kiko Kaisha Ltd | 横流型移動床式ろ過装置 |
JP2009202115A (ja) * | 2008-02-28 | 2009-09-10 | Kurita Water Ind Ltd | 有機性排水の生物処理方法および装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113713490A (zh) * | 2021-10-18 | 2021-11-30 | 北京首创生态环保集团股份有限公司 | 一种塔式生物沉降过滤装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6112162B2 (ja) | 2017-04-12 |
JP2017042713A (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10053384B2 (en) | System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system | |
WO2009033271A1 (en) | Apparatus for waste water treatment | |
CN106430847A (zh) | 一种集约化养猪废水处理设备 | |
RU156232U1 (ru) | Установка для биологической очистки воды | |
WO2015137386A1 (ja) | 有機性排水の生物処理装置及び処理方法 | |
JP6202161B2 (ja) | 有機性排水の生物処理装置 | |
JP6112162B2 (ja) | 有機性排水の生物処理装置及び処理方法 | |
KR100678657B1 (ko) | 우수의 집수와 오폐수 처리를 연결한 통합 처리 방법 및 장치 | |
JP5786998B1 (ja) | 有機性排水の生物処理方法及び装置 | |
JP2017042714A (ja) | 有機性排水の生物処理装置及び処理方法 | |
CN206328210U (zh) | 可移动集装箱式一体化cmbr膜生物反应污水处理装置 | |
CN211367339U (zh) | 一种农村生活污水处理用mbr膜集装箱 | |
JP6024807B2 (ja) | 生物処理槽、その運転方法及び有機性排水の処理方法 | |
CN204643968U (zh) | 一种膜生物废水处理装置 | |
WO2016132881A1 (ja) | 生物処理槽、その運転方法及び有機性排水の処理方法 | |
CN216837549U (zh) | 一种适用于农村集镇的污水处理装置 | |
JP2018023931A (ja) | 生物処理槽の運転方法 | |
CN212655635U (zh) | 一体化高效污水处理设备 | |
CN109467269B (zh) | 污水处理装置及利用其进行污水处理的方法 | |
JP5000594B2 (ja) | 合併処理浄化槽 | |
JP2016150276A (ja) | 生物処理槽及び有機性排水の処理方法 | |
CN112158942A (zh) | 一种用于污水处理的沉淀池 | |
KR200485972Y1 (ko) | 수중 펌프내 토출부 개선장치 | |
CN106542694A (zh) | 一体化污水处理装置 | |
CN111718083A (zh) | 一种分级去除污染物的高浓度农村污水处理装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16838839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16838839 Country of ref document: EP Kind code of ref document: A1 |