WO2017033297A1 - 強磁性合金および強磁性合金の製造方法 - Google Patents

強磁性合金および強磁性合金の製造方法 Download PDF

Info

Publication number
WO2017033297A1
WO2017033297A1 PCT/JP2015/073928 JP2015073928W WO2017033297A1 WO 2017033297 A1 WO2017033297 A1 WO 2017033297A1 JP 2015073928 W JP2015073928 W JP 2015073928W WO 2017033297 A1 WO2017033297 A1 WO 2017033297A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferromagnetic
alloy
crystal structure
ferromagnetic alloy
rare earth
Prior art date
Application number
PCT/JP2015/073928
Other languages
English (en)
French (fr)
Inventor
啓幸 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201580082256.4A priority Critical patent/CN107849653B/zh
Priority to US15/754,811 priority patent/US20200227186A1/en
Priority to PCT/JP2015/073928 priority patent/WO2017033297A1/ja
Priority to JP2017536122A priority patent/JP6483839B2/ja
Publication of WO2017033297A1 publication Critical patent/WO2017033297A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present application relates to a ferromagnetic alloy and a manufacturing method thereof.
  • the rare earth element in this specification is at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoid.
  • the lanthanoid is a general term for 15 elements from lanthanum to lutetium.
  • RFe 12 As a ferromagnetic alloy having a relatively small composition ratio of rare earth elements contained, RFe 12 (R is at least one kind of rare earth elements) having a body-centered tetragonal ThMn 12 type crystal structure is known. However, RFe 12 has a problem that the crystal structure is thermally unstable in the binary system. Patent Document 1 teaches that a ThMn 12 type is produced in a Y—Fe binary system by selecting Y as R and using a superquenching method.
  • the ferromagnetic alloy of the present invention is any one of a Y—Fe based ferromagnetic alloy, a Y—Fe—Co based ferromagnetic alloy, and a Y—Sm—Fe—Co based ferromagnetic alloy.
  • R′-TM ferromagnetic alloy R ′ is a rare earth element including at least the element species Y and Gd, the TM is a transition metal including at least the element species Fe, and one of the rare earth sites included in the rare earth element.
  • the method for producing a ferromagnetic alloy of the present invention includes a Y—Fe based ferromagnetic alloy, a Y—Fe—Co based ferromagnetic alloy, and a Y—Sm—Fe—Co based ferromagnetic alloy.
  • the R ′ is a rare earth element including at least the element species Y and Gd
  • the TM is a transition metal including at least the element species Fe
  • the R ′ By preparing a molten alloy of the alloy containing TM and cooling and solidifying the molten alloy, at least a part of the occupied sites of the rare earth element is randomly replaced by Fe atom pairs, and ferromagnetic And a step B of forming an R′-TM ferromagnetic alloy containing an R′-TM ferromagnetic compound as a compound.
  • a new ferromagnetic alloy capable of solving a low magnetic anisotropic magnetic field and a method for producing the same can be provided.
  • FIG. 3 is a diagram showing a correspondence relationship between sites of a crystal structure, a ThMn 12 type crystal structure, and a TbCu 7 type crystal structure of an R′-TM ferromagnetic compound in the present invention.
  • FIG. 3 is a diagram showing a crystal structure, a ThMn 12 type crystal structure, and a TbCu 7 type crystal structure of an R′-TM ferromagnetic compound in the present invention.
  • the R′-TM ferromagnetic alloy according to the present invention is an R′-TM ferromagnetic alloy containing an R′-TM ferromagnetic compound having a space group of Immm.
  • R ′ is a rare earth element including at least Y (yttrium) and Gd (gadolinium), and may further include Sm.
  • TM is a transition metal containing Fe, and may contain Co. However, Fe is composed of a composition having a larger atomic ratio than Co.
  • this R′-TM ferromagnetic compound at least part of the rare earth element occupied sites (possible occupying sites) in the body-centered tetragonal ThMn 12 type crystal structure is randomly substituted by a pair of Fe atoms (Fe dumbbells). Ferromagnetic compounds.
  • this R′-TM ferromagnetic compound is constituted by an intermediate crystal structure between a TbCu 7 type crystal structure and a ThMn 12 type crystal structure.
  • the Fe dumbbell is naturally included in the TM, but in the composition range of the present invention, the Co atom is not coordinated to the Fe dumbbell site, and hence is represented as an Fe dumbbell.
  • FIG. 1 schematically shows the crystal structure of the R′-TM ferromagnetic compound according to the present invention.
  • the sites that can be occupied by the rare earth elements R ′, LRE, and Fe dumbbells are described with large circles overlapping with Fe dumbbells. More specifically, 2a site (gray circle) and 2d site (white circle) are shown as occupied sites of the rare earth element R '.
  • 4g 1 site and 4g 2 site are shown as the occupied sites of the Fe dumbbell.
  • the Fe dumbbell can occupy the occupied site of the rare earth element R ′ to some extent at random.
  • the Fe dumbbell is not completely randomly substituted with the rare earth element R ′.
  • the crystal structure in which the Fe dumbbell pair is completely randomly substituted with the rare earth element R ′ is a TbCu 7- type crystal structure. Therefore, in the X-ray diffraction pattern of the R′-TM ferromagnetic compound, superlattice diffraction indicating the development of regularity from the TbCu 7 type crystal structure to the ThMn 12 type crystal structure is observed.
  • the intensity of these superlattice diffraction peaks is weak compared to the intensity of the superlattice diffraction peaks generated from the well-known ThMn 12- type crystal structure in which the rare earth elements and Fe dumbbells are substituted to develop the regularity.
  • the diffraction peaks of (310) and (002) are appropriate as indices in that they do not overlap with the intensity or other peaks in powder X-ray diffraction. These diffraction peaks cannot be observed in the TbCu 7 type crystal structure and are weaker than the intensity observed in the ThMn 12 type crystal structure.
  • FIG. 2 shows by site correspondence that the crystal structure of the R′-TM ferromagnetic compound according to the present invention is an intermediate structure between a ThMn 12 type crystal structure and a TbCu 7 type crystal structure. . Since the R′-TM ferromagnetic compound according to the present invention continuously forms an intermediate structure between the TbCu 7- type crystal structure and the ThMn 12- type crystal structure depending on the heat treatment conditions, this intermediate structure is indicated. For this purpose, the space group Immm is used. By eliminating the 6-fold rotational symmetry around the c-axis of the TbCu 7 type and the 4-fold rotational symmetry around the c-axis of the ThMn 12 type, leaving the symmetry of the body center, this intermediate crystal structure can be transformed into a rare earth element. Can be expressed as a continuous replacement of Fe and dumbbell.
  • FIG. 3 schematically shows the crystal structure, the ThMn 12 type crystal structure, and the TbCu 7 type crystal structure of the R′-TM ferromagnetic compound according to the present invention in order to clarify the relationship between them.
  • the Fe dumbbell is located on the Fe dumbbell line among the occupied sites of the rare earth element R ′.
  • the Fe dumbbell is an arbitrary site occupied by the rare earth element R ′. Can be present at
  • the occupation probability of the Fe dumbbell is not different between the Fe dumbbell line and the rare earth element line.
  • the occupation probability of the Fe dumbbell is not equal between the Fe dumbbell line and the rare earth element line.
  • orthorhombic crystals there is a prohibition of a ortho ⁇ b ortho , but by removing this prohibition, a continuous change in crystal structure is expressed.
  • the R′-TM ferromagnetic compound according to the present invention has a composition expressed by Y 1- ⁇ -x Gd ⁇ Sm x (Fe 1-y Co y ) z and 10.5 ⁇ z ⁇ 14.0. A composition range is desirable.
  • composition range 11.5 ⁇ z ⁇ 14.0, an orthorhombic crystal (disordered ThMn 12 type crystal structure) having the same length in the a-axis and the b-axis is finally formed, and 10.5 ⁇ In the composition range of z ⁇ 11.5, the orthorhombic crystals (pseudo-disorder ThMn 12- type crystal structure) in which the lengths of the a-axis and b-axis differ by only about 0.1% at the maximum are finally formed. is there. Appropriate heat treatment to that end is appropriate to produce these final structures. Furthermore, it is desirable that the composition range is 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, and 0 ⁇ ⁇ 1 (note that 0 ⁇ x + ⁇ ⁇ 1).
  • Sm changes in magnetic anisotropy energy at room temperature depending on the amount of substitution, but the increase and decrease varies depending on the amount of Gd substitution as described later and is complicated.
  • substitution amount of Sm is too large as x> 0.5, the main phase is not produced in an amount sufficient for practical use.
  • partial substitution of Co is preferable from the viewpoint of improving magnetization at room temperature and improving magnetic anisotropy associated with an increase in Curie temperature.
  • the amount of substitution is too large, it is undesirable because it results in a decrease in magnetization and a decrease in magnetic anisotropy.
  • the ratio between the rare earth element and the transition metal is generated in an amount sufficient for the main phase to be practically used.
  • a composition range of 0 ⁇ x ⁇ 0.5, 0.1 ⁇ y ⁇ 0.3, and 10.5 ⁇ z ⁇ 14.0 is more desirable.
  • Gd is an element capable of forming a ThMn 12 type intermetallic compound without a structural stabilizing element by a rapid quenching method, and is antiferromagnetic with respect to the TM element.
  • TM element a structural stabilizing element
  • the magnetization tends to decrease, but the magnetic anisotropic magnetic field improves.
  • Step of producing R′-TM master alloy An alloy composed of R ′ and TM is mixed and melted in a vacuum or an inert gas to prepare a mother alloy, whereby a molten metal is prepared.
  • the alloy composition is made uniform by melting.
  • an R′-TM alloy having a known composition prepared in advance there is an advantage that the composition can be easily adjusted when the metal is melted in the rapid solidification method.
  • the composition deviation in the ingot of the produced R′-TM master alloy can be corrected in the step (B) described later.
  • a plurality of alloys having different compositions can be separately produced and mixed in the step (B) described later.
  • the composition analysis of the R′-TM master alloy ingot can be performed, for example, by an inductively coupled plasma optical emission spectroscopy (ICP-OES) method.
  • the compositional deviation can be suppressed by shortening the temperature raising time for dissolution or by adding a rare earth metal lump.
  • the latter is effective because the vapor pressure of Sm is high and it is easy to evaporate.
  • Step of rapidly solidifying the mother alloy the R′-TM mother alloy prepared as a molten metal is rapidly solidified to produce a rapidly solidified alloy.
  • the rapid solidification method include a roll rapid cooling method such as a gas atomizing method, a single roll rapid cooling method, a twin roll rapid cooling method, a strip casting method, and a melt spinning method. Since the rare earth iron alloy is easily oxidized, it is preferable to rapidly cool it in a vacuum or in an inert atmosphere at a high temperature.
  • R ′ 2 TM 17 which is a disordered Th 2 Ni 17 type compound phase, has higher thermal stability than the R′-TM ferromagnetic compound in the present invention, and even when the heat treatment step (C) described later is performed, It does not change to the R′-TM ferromagnetic compound in the invention and remains irregular R ′ 2 TM 17 . Therefore, it is preferable to suppress the formation of irregular R ′ 2 TM 17 during rapid solidification in terms of securing the amount of R′-TM ferromagnetic compound produced in the present invention. This is possible by increasing the cooling rate.
  • the roll peripheral speed it is preferable to set the roll peripheral speed to a certain speed or higher.
  • the roll peripheral speed exceeds a certain speed, the R′-TM ferromagnetic compound is generated at a rate of 50 wt% or more.
  • the structure of the R′-TM ferromagnetic compound in the present invention changes and thermal decomposition occurs. Therefore, depending on the heat treatment temperature in step (C), even if the roll peripheral speed is increased, the amount of R′-TM ferromagnetic compound produced in the present invention does not change. Therefore, it is preferable to determine the upper limit value of the roll peripheral speed from the viewpoint of productivity.
  • a nanoparticle process or a thin film process examples include a molecular beam epitaxy method, a sputtering method, an EB vapor deposition method, a reactive vapor deposition method, a laser ablation method, a vapor phase method such as a resistance heating vapor deposition method, a liquid phase method such as a microwave heating method, and a mechanical alloy method.
  • the R′-TM ferromagnetic compound according to the present invention comprises a rare earth element and a dumbbell type Fe atom from a TbCu 7 type crystal structure in which a rare earth element and a dumbbell type Fe atom pair are completely irregularly substituted.
  • the crystal structure is continuously changed by heat treatment to a ThMn 12 type crystal structure in which pairs are regularly substituted. Therefore, the heat treatment temperature and the heat treatment time are important in the sense of controlling the crystal structure of the R′-TM ferromagnetic compound.
  • a large magnetic anisotropy energy can be obtained by ordering into a ThMn 12- type crystal structure.
  • heat treatment is performed in a preferred embodiment. Holding the sample in a high temperature environment for a long time may cause evaporation of rare earth elements and oxidation of the sample, and may reduce productivity. For this reason, it is desirable to carry out the heat treatment step at a temperature at which uniform heat treatment can be performed in a relatively short time.
  • the temperature of the heat treatment can be set between 600 ° C. and 1000 ° C., for example.
  • the heat treatment time can be set within a range of, for example, 0.01 hours or more and less than 10 hours.
  • the atmosphere of the heat treatment must be inert, and an Ar atmosphere is desirable. When Sm is contained, an Sm atmosphere is desirable because Sm in the sample is lost due to the high vapor pressure of Sm.
  • the decomposition of the R′-TM ferromagnetic compound is not negligible.
  • a heat treatment temperature at which the ferromagnetic compound is not easily decomposed is more desirable.
  • the heat treatment was performed at a temperature considering the convenience of evaluating the magnetic anisotropy magnetic field by the singular point detection (SPD) method.
  • SPD singular point detection
  • the SPD method cannot detect a singular point when exchange bonds between nanocrystals are strong.
  • Example 1 Method for producing Y-Gd-Fe ferromagnetic alloy
  • Process A First, in order to obtain a raw material alloy having a composition of 7.7Y-92.3Fe (at%) (chemical formula YFe 12 ) and a total weight of 1 kg, Y (purity 99.9%) and electrolytic iron (purity 99.99%) were obtained. 9%). In consideration of evaporation of Y at high temperature, Y and Fe were weighed so that Y was 5 mass% higher than the target composition 7.7Y-92.3Fe. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
  • the molten metal was spread on a water-cooled copper hearth and solidified to obtain an alloy ingot.
  • the composition was 7.7Y-92.3Fe (at%).
  • an alloy having a composition of 8.4 Gd-91.6 Fe (at%) was produced.
  • the total composition is, for example, Y 0.4 Gd 0.6 Fe 11 in terms of chemical formula.
  • -92.3Fe, 8.4Gd-91.6Fe, a Y metal lump and a Gd metal lump were weighed and added to a tapping pipe.
  • 7.7Y-92.3Fe ingot, 8.4Gd-91.6Fe ingot, Y metal lump and tapping pipe charged with Gd metal lump were introduced into a high frequency induction heating type furnace, and 20 kPa Ar was applied by applying a high frequency electric field. The ingot and the metal lump were heated and dissolved in the atmosphere.
  • the molten metal is ejected onto a roll that rotates at high speed with Ar at a tapping pipe pressure of 48 kPa, and then rapidly solidified to form a band-shaped alloy (hereinafter referred to as “super alloy”).
  • super alloy a band-shaped alloy
  • the first roll peripheral speed (high speed) is set as a basic condition.
  • the cooling rate of the molten alloy is expressed by “roll peripheral speed”.
  • the roll peripheral speed is the thermal conductivity, heat capacity, atmospheric pressure, tap pipe pressure, etc. of the roll used for cooling. Therefore, it is possible to control using these parameters.
  • Process C The ultra-quenched ribbon produced in step B is wrapped in Nb foil and loaded into a quartz tube having an Ar flow atmosphere, and then the quartz tube is placed in a tubular furnace set in advance at a constant temperature. Held for hours. Thereafter, the quartz tube was dropped into water and sufficiently cooled.
  • the heat treatment in the Ar flow can suppress evaporation of the Y element and the Gd element as compared with the heat treatment in the vacuum.
  • heat treatment was performed in the Ar flow for the purpose of suppressing composition deviation.
  • Magnetic anisotropic magnetic field The ultra-quenched ribbon produced in step C was pulverized to 75 ⁇ m or less to obtain a fine powder. This fine powder and paraffin were packed in an acrylic container and heated to prepare an evaluation sample in which non-oriented binding was performed. This sample was introduced into a superconducting electromagnet-type vibrating sample magnetometer maintained at 20 ° C., and after applying a maximum magnetic field of 5T or 10T, it was swept to 0T to measure a magnetization curve.
  • the position where the first derivative of the magnetic field of the magnetization curve shows a peak is defined as a magnetic anisotropic magnetic field, and the composition tendency and the main phase ratio are taken into account for peak extraction. Since the volume magnetization of the measurement sample is unclear and has an indefinite shape, no demagnetizing field correction was performed. Further, from powder X-ray diffraction measurement, diffraction peaks of (310) and (002) indicating the development of ordering of R ′ and Fe dumbbells into a ThMn 12 type crystal structure were observed with a finite intensity.
  • Example 2 (Method for producing Y-Gd-Fe-Co ferromagnetic alloy) (Process A) First, in order to obtain a raw material alloy having a total weight of 0.9 kg represented by a composition of 7.7Y-80.8Fe-11.5Co (at%) (Y (Fe 0.87 Co 0.13 ) 12 in chemical formula) Y (purity 99.9%), electrolytic iron (purity 99.9%), and electrolytic Co (purity 99.9%) were weighed. In consideration of evaporation of Sm at a high temperature, Y, Fe, and Co were weighed so that Y was 3 mass% higher than the target composition 7.7Y-80.8Fe-11.5Co.
  • the weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting. Thereafter, the molten metal was spread on a water-cooled copper hearth and solidified to obtain an alloy ingot.
  • the composition was 7.4Y-81.3Fe-11.3 Co (at%).
  • an alloy having a composition of 7.6 Gd-81.0 Fe-11.4 Co (at%) was produced.
  • the overall composition is, for example, Y 0.4 Gd 0.6 ( Fe 0.83 Co 0.17 ) 11 so that 7.4Y-81.3Fe-11.3Co ingot, 7.6Gd-81.0Fe-11.4Co ingot, Y metal lump, Gd metal mass and Co metal mass were weighed and added to a tapping pipe.
  • 7.4Y-81.3Fe-11.3Co ingot, 7.6Gd-81.0Fe-11.4Co ingot, Y metal lump, Gd metal lump, and tapping pipe charged with Co metal lump are high frequency induction heating type furnaces
  • the ingot and the metal lump were heated and melted by applying a high frequency electric field in an Ar atmosphere of 20 kPa.
  • 7.7Y-92.3Fe and 8.4Gd-91.6Fe ingots were heated in a similar manner as described above by adding appropriate amounts of Y, Gd, and Co metal masses in the same procedure as above. And dissolved.
  • the alloy composition is expressed by a chemical formula.
  • Process B After confirming that the Y-Gd-Fe-Co-based alloy was sufficiently dissolved in step A, the molten metal was ejected onto a roll rotating at high speed with Ar having a tapping pipe pressure of 48 kPa, and rapidly solidified by cooling. , Ultra-quenched ribbon).
  • the first roll peripheral speed (high speed) is set as a basic condition. By increasing the roll peripheral speed, it is possible to suppress the formation of irregular Th 2 Ni 17 type in as-spun samples (samples not subjected to heat treatment after rapid solidification), and phase separation during the heat treatment process. This is because it is easy to track the structural changes. However, in order to make it easy to detect an anisotropic magnetic field by the SPD method by generating relatively large crystal grains, it was also produced at a second roll peripheral speed lower than the first roll peripheral speed.
  • the cooling rate of the molten alloy is expressed by “roll peripheral speed”.
  • the roll peripheral speed is the thermal conductivity, heat capacity, atmospheric pressure, tap pipe pressure, etc. of the roll used for cooling. Therefore, it is possible to control using these parameters.
  • Process C The ultra-quenched ribbon produced in step B is wrapped in Nb foil and loaded into a quartz tube having an Ar flow atmosphere, and then the quartz tube is placed in a tubular furnace set in advance at a constant temperature. Held for hours. Thereafter, the quartz tube was dropped into water and sufficiently cooled.
  • the heat treatment in the Ar flow can suppress evaporation of the Y element and the Gd element as compared with the heat treatment in the vacuum.
  • heat treatment was performed in the Ar flow for the purpose of suppressing composition deviation.
  • Magnetic anisotropic magnetic field The ultra-quenched ribbon produced in step C was pulverized to 75 ⁇ m or less to obtain a fine powder. This fine powder and paraffin were packed in an acrylic container and heated to prepare an evaluation sample in which non-oriented binding was performed. This sample was introduced into a superconducting electromagnet-type vibrating sample magnetometer maintained at 20 ° C., and after applying a maximum magnetic field of 5T or 10T, it was swept to 0T to measure a magnetization curve.
  • the position where the first derivative of the magnetic field of the magnetization curve shows a peak is defined as a magnetic anisotropic magnetic field, and the composition tendency and the main phase ratio are taken into account for peak extraction. Since the volume magnetization of the measurement sample is unclear and has an indefinite shape, no demagnetizing field correction was performed. Further, from powder X-ray diffraction measurement, diffraction peaks of (310) and (002) indicating the development of ordering of R ′ and Fe dumbbells into a ThMn 12 type crystal structure were observed with a finite intensity.
  • Example 3 (Method for producing Y-Gd-Sm-Fe-Co-based ferromagnetic alloy) (Process A) First, in order to obtain a raw material alloy having a total weight of 0.9 kg represented by a composition of 7.7 Sm-80.8 Fe-11.5 Co (at%) (chemical formula Sm (Fe 0.87 Co 0.13 ) 12 ) , Sm (purity 99.9%), electrolytic iron (purity 99.9%) and electrolytic Co (purity 99.9%) were weighed. In consideration of evaporation of Sm at high temperature, Sm, Fe, and Co were weighed so that Sm was 10 mass% higher than the target composition of 7.7 Sm-80.8Fe-11.5Co.
  • the weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting. Thereafter, the molten metal was spread on a water-cooled copper hearth and solidified to obtain an alloy ingot.
  • the composition was 9.0 Sm-78.1 Fe-12.8 Co (at%).
  • the total composition of 9.0 Sm-78.1Fe-12.8Co is such that, for example, the chemical formula is Y 0.2 Gd 0.4 Sm 0.4 (Fe 0.83 Co 0.17 ) 11 .
  • the alloy composition is expressed by a chemical formula.
  • Process B After confirming that the Y-Gd-Sm-Fe-Co-based alloy is sufficiently dissolved in step A, the molten metal is ejected onto a roll rotating at high speed with Ar at a tapping pipe pressure of 48 kPa and rapidly solidified by cooling. (Hereafter, ultra-quenched ribbon) was prepared.
  • the first roll peripheral speed (low speed) is set as a basic condition. This is because it is easy to detect an anisotropic magnetic field by the SPD method by generating relatively large crystal grains.
  • the cooling rate of the molten alloy is expressed by “roll peripheral speed”.
  • the roll peripheral speed is the thermal conductivity, heat capacity, atmospheric pressure, tap pipe pressure, etc. of the roll used for cooling. Therefore, it is possible to control using these parameters.
  • Process C The ultra-quenched ribbon produced in step B is wrapped in Nb foil and loaded into a quartz tube having an Ar flow atmosphere, and then the quartz tube is placed in a tubular furnace set in advance at a constant temperature. Held for hours. Thereafter, the quartz tube was dropped into water and sufficiently cooled.
  • the heat treatment in the Ar flow can suppress evaporation of the Y element and the Gd element as compared with the heat treatment in the vacuum.
  • heat treatment was performed in the Ar flow for the purpose of suppressing composition deviation.
  • Magnetic anisotropic magnetic field The ultra-quenched ribbon produced in step C was pulverized to 75 ⁇ m or less to obtain a fine powder. This fine powder and paraffin were packed in an acrylic container and heated to prepare an evaluation sample in which non-oriented binding was performed. This sample was introduced into a superconducting electromagnet-type vibrating sample magnetometer maintained at 20 ° C., and after applying a maximum magnetic field of 10 T, it was swept to 0 T, and a magnetization curve was measured.
  • the position where the first derivative of the magnetic field of the magnetization curve shows a peak is defined as a magnetic anisotropic magnetic field, and the composition tendency and the main phase ratio are taken into account for peak extraction. Since the volume magnetization of the measurement sample is unclear and has an indefinite shape, no demagnetizing field correction was performed. Further, from powder X-ray diffraction measurement, diffraction peaks of (310) and (002) indicating the development of ordering of R ′ and Fe dumbbells into a ThMn 12 type crystal structure were observed with a finite intensity.
  • the R′-TM ferromagnetic alloy of the present invention can be suitably used for a bulk magnet, for example.
  • the apparatus using the ferromagnetic alloy of the present invention is used for a motor, a generator, a driving apparatus having other driving parts, and a medical apparatus such as MRI.
  • miniaturization of the devices can be mentioned.
  • the effects when used in these devices can prevent procurement delays and manufacturing delays due to the supply of rare earth elements, and can also reduce the risk of price fluctuations of the completed devices.

Abstract

超急冷法で生成するFe元素の一部を構造安定化元素で置換していないY-Fe系強磁性合金は、高い磁化を有しているが実用に供するには磁気異方性の大きさが依然として小さい。 本発明は、主成分がY-Feの2元系、Y-Fe-Coの3元系に対してGdを部分置換することで磁気異方性磁場を向上させることができ、またY-Sm-Fe-Coの4元系に対してGdを部分置換することで磁気異方性磁場が同等ないし低下することを教示する。

Description

強磁性合金および強磁性合金の製造方法
 本願は、強磁性合金およびその製造方法に関する。
 近年、希土類元素の含有量を低減した磁石の開発が求められている。本明細書における希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素である。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。
特開2014-47366号公報
 含有する希土類元素の組成比率が相対的に小さな強磁性合金として、体心正方晶のThMn12型結晶構造を有するRFe12(Rは希土類元素の少なくとも1種)が知られている。しかし、RFe12には、2元系では結晶構造が熱的に不安定であるという問題がある。特許文献1は、RにYを選択しかつ超急冷法を使用することで、Y-Feの2元系でThMn12型が生成することを教示している。
 特許文献1の強磁性合金では、Fe元素の一部を構造安定化元素M(M=Si、Al、Ti、V、Cr、Mn、Mo、W、Re、Be、Nbなど)で置換していないため高い磁化を有しているが、実用に供するために、磁気異方性の大きさをより大きくしたいという課題がある。
 上記の課題を解決するために本発明の強磁性合金は、Y-Fe系強磁性合金、Y-Fe-Co系強磁性合金、Y-Sm-Fe-Co系強磁性合金のいずれかであるR’―TM系強磁性合金において、前記R’は少なくとも元素種YとGdを含む希土類元素であり、前記TMは少なくとも元素種Feを含む遷移金属であり、前記希土類元素が有する希土類サイトの一部をGdが部分的に置換した主相を含み、前記主相がTbCu型結晶構造とThMn12型結晶構造との中間的な結晶構造を有するY-Fe系強磁性化合物、Y-Fe-Co系強磁性化合物、Y-Sm-Fe-Co系強磁性化合物のいずれかであるR’-TM系強磁性化合物であることを特徴とする。
 また、上記の課題を解決するために本発明の強磁性合金の製造方法は、Y-Fe系強磁性合金、Y-Fe-Co系強磁性合金、Y-Sm-Fe-Co系強磁性合金のいずれかであるR’―TM系強磁性合金において、前記R’は少なくとも元素種YとGdを含む希土類元素であり、前記TMは少なくとも元素種Feを含む遷移金属であり、前記R’および前記TMを含有する合金の溶湯を用意する工程Aと、前記合金の溶湯を冷却して凝固させることにより、前記希土類元素の占有サイトの少なくとも一部がFe原子ペアによってランダムに置換され、強磁性化合物であるR’-TM系強磁性化合物を含むR’―TM系強磁性合金を形成する工程Bとを含むことを特徴とする。
 本発明によれば、低い磁気異方性磁場を解決できる新たな強磁性合金およびその製造方法を提供することができる。
本発明におけるR’-TM系強磁性化合物の結晶構造を模式的に示している。 本発明におけるR’-TM系強磁性化合物の結晶構造、ThMn12型結晶構造、およびTbCu型結晶構造のサイトの対応関係を示す図である。 本発明におけるR’-TM系強磁性化合物の結晶構造、ThMn12型結晶構造、およびTbCu型結晶構造を示す図である。
 [R’-TM系強磁性化合物の組成と構造と磁気異方性磁場]
 本発明に係るR’-TM系強磁性合金は、空間群ImmmのR’-TM系強磁性化合物を含むR’-TM系強磁性合金である。なお、本明細書において、「R’」は、少なくともY(イットリウム)とGd(ガドリニウム)を含む希土類元素であり、更にSmを含んでいても良い。また、「TM」はFeを含む遷移金属であり、Coを含んでいても良い。ただし、原子比でFeのほうがCoよりも多い組成で構成されている。
 このR’-TM系強磁性化合物は、体心正方晶ThMn12型結晶構造における希土類元素の占有サイト(占有し得るサイト)の少なくとも一部が一対のFe原子(Feダンベル)によってランダムに置換された強磁性化合物である。言い換えると、このR’-TM系強磁性化合物は、TbCu型結晶構造とThMn12型結晶構造との中間的な結晶構造によって構成されている。ここで、Feダンベルは当然ながらTMに含まれるが、本発明の組成範囲ではCo原子はFeダンベルサイトに配位しないため、Feダンベルと表記する。
 図1は、本発明に係るR’-TM系強磁性化合物の結晶構造を模式的に示している。図1では、希土類元素R’とLREおよびFeダンベルが占めることが可能なサイトが、大きな丸とFeダンベルとが重なり合って記載されている。より詳細には、希土類元素R’の占有サイトとして2aサイト(グレイの丸)および2dサイト(白丸)が示されている。
 一方、Feダンベルの占有サイトとして、4gサイトおよび4gサイトが示されている。本発明に係るR’-TM系強磁性化合物では、Feダンベルは、希土類元素R’の占有サイトを、ある程度はランダムに占有し得る。
 つまり、本発明におけるR’-TM系強磁性化合物の結晶構造は、Feダンベルが完全にランダムに希土類元素R’と置換しているわけではない。Feダンベルペアが完全にランダムに希土類元素R’と置換した結晶構造は、TbCu型結晶構造である。そのため、R’-TM系強磁性化合物のX線回折パターンでは、TbCu型結晶構造からThMn12型結晶構造への規則性の発達を示す超格子回折が観察される。
 しかしながら、それら超格子回折ピークの強度は希土類元素とFeダンベルとが置換して規則性が発達した良く知られたThMn12型結晶構造から生じる超格子回折ピークの強度と比較すると弱い。特に、(310)と(002)の回折ピークは粉末X線回折において強度や他のピークと重ならない点で指標として適切である。これらの回折ピークはTbCu型結晶構造では観察できず、ThMn12型結晶構造で観察される強度よりは弱いのである。
 図2は、本発明に係るR’-TM系強磁性化合物の結晶構造が、ThMn12型結晶構造とTbCu型結晶構造との中間的な構造であることをサイトの対応関係で示している。本発明に係るR’-TM系強磁性化合物は、熱処理条件によりTbCu型結晶構造とThMn12型結晶構造との中間的な構造を連続的に形成するため、この中間的な構造を表記するために空間群Immmを使用している。TbCu型のc軸周りの6回回転対称性とThMn12型のc軸周りの4回回転対称性を排除し、体心の対称性を残すことで、この中間的な結晶構造を希土類元素とFeダンベルとの連続的な置換として表記することが可能となる。
 図3は、本発明に係るR’-TM系強磁性化合物の結晶構造、ThMn12型結晶構造、およびTbCu型結晶構造をお互いの関係を明示するため模式的に示している。ThMn12型結晶構造では、Feダンベルは希土類元素R’の占有サイトのうちのFeダンベルライン上に位置しているが、TbCu型結晶構造では、Feダンベルが希土類元素R’の占有サイトの任意の位置に存在し得る。
 すなわち、TbCu型結晶構造では、Feダンベルの占有確率は、Feダンベルラインと希土類元素ラインとの間で差が無い。これに対して、本発明に係るR’-TM系強磁性化合物の結晶構造では、Feダンベルの占有確率は、Feダンベルラインと希土類元素ラインとの間で等しくない。Feダンベルの位置にこのような不規則性を有し、かつ格子定数でaortho=borthoを満足する結晶構造を「不規則ThMn12型」と称することにする。斜方晶ではaortho≠borthoの禁則があるが、この禁則を外すことで連続的な結晶構造の変化を表現している。
 本発明に係るR’-TM系強磁性化合物は、Y1-α-xGdαSm(Fe1-yCoで組成を表記した場合、10.5<z<14.0の組成範囲が望ましい。なぜなら、11.5≦z<14.0の組成範囲では、a軸およびb軸が同じ長さの斜方晶(不規則ThMn12型結晶構造)が最終的に生成し、また10.5<z<11.5の組成範囲では、a軸およびb軸の長さが最大でわずか0.1%程度異なった斜方晶(擬不規則ThMn12型結晶構造)が最終的に生成するためである。そのために適切な熱処理を行うことは、これらの最終的な構造を生成するのに適当である。更に、0≦x≦0.5、かつ0<y<0.5、かつ0<α<1(ただし、当然ながら0<x+α<1)の組成範囲にあることが望ましい。
 Smは、その置換量に応じて室温での磁気異方性エネルギーに変化が生じるが、その増減は後述するようにGd置換量に応じて変化し複雑である。一方、Smの置換量がx>0.5と多すぎる場合は主相が実用に供するに十分な量で生成しない。また、キュリー温度向上に伴う室温での磁化向上と磁気異方性向上の観点から、Coの部分置換は好ましい。しかし置換量が多すぎる場合は、磁化低下と磁気異方性低下をもたらすため望ましくない。
 最後に、希土類元素と遷移金属との比は、主相が実用に供するに十分な量で生成することが望ましい。磁気特性の観点からは、0≦x≦0.5、かつ0.1≦y≦0.3かつ10.5<z<14.0の組成範囲がより望ましい。
 本発明者らは、Yと同様にGdは、超急冷法で構造安定化元素なしでThMn12型の金属間化合物を形成することが可能な元素であり、TM元素に対して反強磁性的に結合する元素であることに着目した。Gdの置換量に応じて磁化は低下傾向を示す半面、磁気異方性磁場が向上する。
 ただし、Smが含まれる場合は、磁気異方性を担う希土類サイトへのGdとSmの選択配位の競合が生じることが推察されるため、磁気異方性磁場の挙動は複雑である。ゆえに、磁気異方性磁場の観点で、Y-Fe系強磁性化合物とY-Fe-Co系強磁性化合物、すなわちx=0の場合においてはGdをできるだけ多く置換したα<1が好ましく、より好ましくはα≧0.4である。また、Y-Sm-Fe-Co系強磁性化合物、すなわち0<x≦0.5の場合においては磁気異方性磁場の挙動は複雑で、例えばx=0.4においてはz≧11.5ではα<1、またz<11.5では入れないほうが良い。
 以下、本発明のR’-TM系強磁性合金の製造方法の実施形態の一例を工程ごとに説明する。また、本願に関連する特許文献として特許文献1を挙げたが、本願を説明する上でその内容を適宜援用可能であることを予め述べておく。
 [R’-TM系強磁性合金の作製方法]
(A)R’-TM母合金を作製する工程
 R’とTMで構成される合金を混合して真空あるいは不活性ガス中で溶解して母合金を作製することで溶湯として準備される。溶解により、合金組成が均一化される。前もって作製した組成が既知のR’-TM合金を使用することにより、急冷凝固法における金属溶融時に組成を調整しやすい利点がある。作製したR’-TM母合金のインゴットにおける組成ずれは、後述する工程(B)で修正することが可能である。また、別の方法として、組成の異なる複数の合金を別々で作製し、後述する工程(B)で混合する方法も可能である。
 R’-TM母合金インゴットの組成分析は、例えば誘導結合プラズマ発光分光(Inductively coupled plasma optical emission spectrometry、ICP-OES)法で可能である。組成ずれの抑制は、溶解のための昇温時間を短くするか、希土類元素の金属塊を後入れにすることなどによって可能である。とくにR’にSmを含む場合、Smの蒸気圧が高く蒸発しやすいため、後入れは効果的である。
 上記の方法に代えて、構成元素の酸化物や金属を粒状金属カルシウムと混合して、不活性ガス雰囲気中で加熱反応させる還元拡散法などを使用してもよい。包晶反応を介さないため、軟磁性であるFe(-Co)相の生成を抑制することができ利点がある。
(B)母合金を急冷凝固させる工程
 本実施形態では、上記で溶湯として準備したR’-TM母合金を急冷凝固させて急冷凝固合金を作製する。急冷凝固法としては、例えばガスアトマイズ法や、単ロール急冷法、双ロール急冷法、ストリップキャスト法、メルトスピニング法などのロール急冷法が挙げられる。希土類鉄合金は酸化しやすいため、高温では真空中または不活性雰囲気中で急冷することが好ましい。
 不規則ThNi17型の化合物相であるR’TM17は、本発明におけるR’-TM系強磁性化合物よりも熱安定性が高く、後述する熱処理工程(C)を行っても本発明におけるR’-TM系強磁性化合物に変化せず不規則R’TM17のままである。そのため、本発明におけるR’-TM系強磁性化合物の生成量を確保するという点において、急冷凝固時に不規則R’TM17の生成を抑制するのが好ましい。これは冷却速度を上げることにより可能である。
 空冷式のロールによるメルトスピニング法を用いる場合、ある実施形態では、ロール周速度を一定速度以上に設定することが好ましい。ロール周速度が一定速度以上になると、R’-TM系強磁性化合物は50wt%以上の割合で生成する。ロール周速度をさらに高速にすることにより不規則ThNi17型化合物相の生成を抑制することができ、本発明におけるR’-TM系強磁性化合物の生成量は増加する。
 一方、後述する熱処理工程(C)の熱処理温度に応じて、本発明におけるR’-TM系強磁性化合物の構造は変化すると共に熱分解が生じる。そのため、工程(C)の熱処理温度によってはロール周速度をより高速にしても本発明におけるR’-TM系強磁性化合物の生成量は変わらない。従って、生産性の観点からロール周速度の上限値を定めることが好ましい。
 本発明の他の実施形態として、急冷凝固法以外の準安定相を生成する非平衡プロセスによっても可能である。例えば、ナノ粒子プロセスや薄膜プロセスである。分子線エピタキシー法、スパッタ法、EB蒸着法、反応性蒸着法、レーザアブレーション法、抵抗加熱蒸着法などの気相法や、マイクロ波加熱法などの液相法、メカニカルアロイ法が挙げられる。
(C)熱処理工程
 本発明に係るR’-TM系強磁性化合物は、希土類元素とダンベル型のFe原子ペアが完全に不規則に置換したTbCu型結晶構造から希土類元素とダンベル型のFe原子ペアが規則的に置換したThMn12型結晶構造へと熱処理することで結晶構造が連続的に変化する。そのため、R’-TM系強磁性化合物の結晶構造を制御するという意味においても熱処理温度と熱処理時間は肝要である。ThMn12型結晶構造への規則化が進行することで大きな磁気異方性エネルギーを獲得することができる。
 したがって、上述の方法によって形成した本発明に係るR’-TM系強磁性合金または本発明に係るR’-TM系強磁性化合物の構造を適正化するため、好ましい実施形態では、熱処理を行う。試料を高温環境で長時間保持することは、希土類元素の蒸発や試料の酸化を招くと共に生産性を低下させ得る。このため、比較的に短い時間で均一な熱処理ができる程度の温度で、熱処理工程を実施することが望ましい。熱処理の温度は、例えば、600℃から1000℃の間に設定され得る。熱処理の時間は、例えば0.01時間以上10時間未満の範囲内に設定され得る。熱処理の雰囲気は、不活性でなければならず、Ar雰囲気が望ましい。Smを含む場合は、Smの高い蒸気圧により試料中のSmが失われるため、Sm雰囲気が望ましい。
 R’-TM系強磁性化合物のTbCu型結晶構造からThMn12型結晶構造への規則化を考慮すると高温が好ましいがR’-TM系強磁性化合物の分解が無視できないため、R’-TM系強磁性化合物の分解されにくい熱処理温度がより望ましい。本発明では、特異点検出(Singular Point Detection、SPD)法により磁気異方性磁場を評価する都合、これらを考慮した温度で熱処理を行った。SPD法はナノ結晶同士の交換結合が強い場合には特異点を検出できない。主相比率の低下をある程度許容して熱処理温度を上げることで交換結合が支配的にならない大きさまで結晶粒を肥大化させた。
 [各実施例の説明]
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1](Y-Gd-Fe系強磁性合金の作製方法)
(工程A)
 まず、組成が7.7Y―92.3Fe(at%)(化学式でYFe12)で示される総重量が1kgの原料合金を得るため、Y(純度99.9%)と電解鉄(純度99.9%)を秤量した。高温でのYの蒸発を考慮し、狙い組成7.7Y―92.3FeよりもYが5質量%多くなるように、Yと、Feとをそれぞれ秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。その後、水冷の銅ハース上に溶融金属を展開し、凝固させて合金のインゴットを得た。作製した合金インゴットを、ICP(Inductively Coupled Plasma)分析装置を用いて分析した結果、組成は7.7Y―92.3Fe(at%)であった。また、同様にして組成が8.4Gd―91.6Fe(at%)の合金を作製した。
 こうして得た組成が7.7Y―92.3Feと8.4Gd―91.6Feのインゴットに対して、全体の組成が例えば化学式でY0.4Gd0.6Fe11になるよう、7.7Y―92.3Feと、8.4Gd―91.6Feと、Yの金属塊とGdの金属塊とを秤量添加し、それらを出湯管に投入した。7.7Y―92.3Feインゴット、8.4Gd―91.6Feインゴット、Y金属塊およびGd金属塊が投入された出湯管を高周波誘導加熱型の炉に導入し、高周波電界の印加によって20kPaのAr雰囲気中でインゴットおよび金属塊を加熱し溶解した。そして、7.7Y―92.3Feと8.4Gd―91.6Feのインゴットに対して、上記と同様の手順でYおよびGdの金属塊を適量添加することにより全体の組成を調整した試料を加熱し溶解した。組成は化学式でY1-αGdαFe(0<α<1、z=11、12)の範囲で調整した。以下、本実施例では合金組成は化学式で表記する。
(工程B)
 工程AにおいてY-Gd-Fe系合金が十分に溶解したことを確認した後、出湯管圧48kPaのArで高速回転するロール上に溶融金属を出射して急冷凝固させ帯状の合金(以下、超急冷薄帯)を作製した。本実施例では、第1のロール周速度(高速)を基本条件として設定した。ロール周速度を高速にすることにより、as-spun試料(急冷凝固後熱処理していない試料)での不規則ThNi17型の生成を抑制することが可能であり、熱処理過程での相分離や構造変化を追跡しやすいためである。ただし、比較的に大きな結晶粒を生成してSPD法による異方性磁場を検出しやすくするため、第1のロール周速度より遅い第2のロール周速度(低速)でも作製した。
 なお、本明細書では、合金溶湯の冷却速度を「ロール周速度」によって表現しているが、ロール周速度は、冷却に使用するロールの熱伝導率、熱容量、雰囲気の圧力、出湯管圧などによっても変化し得るため、これらのパラメータを用いて制御することも可能である。
(工程C)
 工程Bにおいて作製した超急冷薄帯をNb箔に包み、Arフロー雰囲気とした石英管に装填した後、石英管を予め一定温度に設定された管状炉内に投入し0.3-0.5時間保持した。その後、石英管を水中に投下し十分冷却した。Arフロー中での熱処理は、真空中での熱処理よりもY元素とGd元素の蒸発を抑制することができる。そのため、本実施例では組成ずれを抑制する目的でArフロー中において熱処理を実施した。
(磁気異方性磁場)
 工程Cにおいて作製した超急冷薄帯を75μm以下に粉砕して微粉とした。この微粉とパラフィンとをアクリル容器に詰め、加熱することで無配向結着した評価試料を作製した。この試料を20℃に保たれた超電導電磁石型の振動試料型磁力計に導入し、一旦、最大磁場5Tまたは10Tを印加した後に0Tまで掃引して、磁化曲線を測定した。磁化曲線の磁場の1階微分がピークを示す位置を磁気異方性磁場と定義し、ピーク抽出には組成傾向や主相比率を考慮した。測定試料の体積磁化が不明瞭で、かつ不定形状であるため、反磁場補正は行わなかった。また、粉末X線回折測定から、ThMn12型結晶構造へのR’とFeダンベルとの規則化の発達を示す(310)と(002)の回折ピークを有限の強度で観測した。
Figure JPOXMLDOC01-appb-T000001
 表1には、Y1-αGdαFe(0<α<1、z=11、12)強磁性化合物の20℃での磁気異方性磁場を示す。Gd置換することで磁気異方性磁場が増加することがわかり、特に置換量がα≧0.4の組成範囲付近から急激に大きくなることがわかった。室温での磁気異方性磁場という観点においてはα≧0.4の置換範囲がより好ましい。
 [実施例2](Y-Gd-Fe-Co系強磁性合金の作製方法)
(工程A)
 まず、組成が7.7Y―80.8Fe―11.5Co(at%)(化学式でY(Fe0.87Co0.1312)で示される総重量が0.9kgの原料合金を得るため、Y(純度99.9%)と電解鉄(純度99.9%)と電解Co(純度99.9%)を秤量した。高温でのSmの蒸発を考慮し、狙い組成7.7Y―80.8Fe―11.5CoよりもYが3質量%多くなるように、Yと、Feと、Coとをそれぞれ秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。その後、水冷の銅ハース上に溶融金属を展開し、凝固させて合金のインゴットを得た。作製した合金インゴットを、ICP分析装置を用いて分析した結果、組成は7.4Y―81.3Fe―11.3Co(at%)であった。また、同様にして組成が7.6Gd―81.0Fe―11.4Co(at%)の合金を作製した。
 こうして得た組成が7.4Y―81.3Fe―11.3Coと7.6Gd―81.0Fe―11.4Coのインゴットに対して、全体の組成が例えば化学式でY0.4Gd0.6(Fe0.83Co0.1711になるように、7.4Y―81.3Fe―11.3Coのインゴットと、7.6Gd―81.0Fe―11.4Coのインゴットと、Yの金属塊とGdの金属塊とCoの金属塊とを秤量添加し、それらを出湯管に投入した。7.4Y―81.3Fe―11.3Coインゴット、7.6Gd―81.0Fe―11.4Coインゴット、Y金属塊およびGd金属塊およびCo金属塊が投入された出湯管を高周波誘導加熱型の炉に導入し、20kPaのAr雰囲気中でインゴットおよび金属塊を高周波電界の印加によって加熱し溶解した。7.7Y―92.3Feと8.4Gd―91.6Feのインゴットに対して、上記と同様の手順でYおよびGdおよびCoの金属塊を適量添加することにより全体の組成を調整した試料を加熱し溶解した。組成は化学式でY1-xGd(Fe0.83Co0.17(0<x<1、z=11、12)の範囲で調整した。以下、本実施例では合金組成は化学式で表記する。
(工程B)
 工程AにおいてY-Gd-Fe―Co系合金が十分に溶解したことを確認した後、出湯管圧48kPaのArで高速回転するロール上に溶融金属を出射して急冷凝固させ帯状の合金(以下、超急冷薄帯)を作製した。本実施例では、第1のロール周速度(高速)を基本条件として設定した。ロール周速度を高速にすることにより、as-spun試料(急冷凝固後熱処理していない試料)での不規則ThNi17型の生成を抑制することが可能であり、熱処理過程での相分離や構造変化を追跡しやすいためである。ただし、比較的に大きな結晶粒を生成してSPD法による異方性磁場を検出しやすくするため、第1のロール周速度より遅い第2のロール周速度でも作製した。
 なお、本明細書では、合金溶湯の冷却速度を「ロール周速度」によって表現しているが、ロール周速度は、冷却に使用するロールの熱伝導率、熱容量、雰囲気の圧力、出湯管圧などによっても変化し得るため、これらのパラメータを用いて制御することも可能である。
(工程C)
 工程Bにおいて作製した超急冷薄帯をNb箔に包み、Arフロー雰囲気とした石英管に装填した後、石英管を予め一定温度に設定された管状炉内に投入し0.3-0.5時間保持した。その後、石英管を水中に投下し十分冷却した。Arフロー中での熱処理は、真空中での熱処理よりもY元素とGd元素の蒸発を抑制することができる。そのため、本実施例では組成ずれを抑制する目的でArフロー中において熱処理を実施した。
(磁気異方性磁場)
 工程Cにおいて作製した超急冷薄帯を75μm以下に粉砕して微粉とした。この微粉とパラフィンとをアクリル容器に詰め、加熱することで無配向結着した評価試料を作製した。この試料を20℃に保たれた超電導電磁石型の振動試料型磁力計に導入し、一旦最大磁場5Tまたは10Tを印加した後に0Tまで掃引して、磁化曲線を測定した。磁化曲線の磁場の1階微分がピークを示す位置を磁気異方性磁場と定義し、ピーク抽出には組成傾向や主相比率を考慮した。測定試料の体積磁化が不明瞭で、かつ不定形状であるため、反磁場補正は行わなかった。また、粉末X線回折測定から、ThMn12型結晶構造へのR’とFeダンベルとの規則化の発達を示す(310)と(002)の回折ピークを有限の強度で観測した。
Figure JPOXMLDOC01-appb-T000002
 表2には、Y1-αGdα(Fe0.83Co0.17(0<α<1、z=11、12)強磁性化合物の20℃での磁気異方性磁場を示す。Gd置換することで磁気異方性磁場が増加することがわかり、特に置換量がα≧0.4の組成範囲付近から急激に大きくなることがわかった。室温での磁気異方性磁場という観点においてはα≧0.4の置換範囲がより好ましい。
 [実施例3](Y-Gd-Sm-Fe-Co系強磁性合金の作製方法)
(工程A)
 まず、組成が7.7Sm―80.8Fe―11.5Co(at%)(化学式でSm(Fe0.87Co0.1312)で示される総重量が0.9kgの原料合金を得るため、Sm(純度99.9%)と電解鉄(純度99.9%)と電解Co(純度99.9%)を秤量した。高温でのSmの蒸発を考慮し、狙い組成7.7Sm―80.8Fe―11.5CoよりもSmが10質量%多くなるように、Smと、Feと、Coとをそれぞれ秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。その後、水冷の銅ハース上に溶融金属を展開し、凝固させて合金のインゴットを得た。作製した合金インゴットを、ICP分析装置を用いて分析した結果、組成は9.0Sm―78.1Fe―12.8Co(at%)であった。
 こうして得た組成が9.0Sm―78.1Fe―12.8Coと実施例2で作製した組成が7.4Y―81.3Fe―11.3Coと7.6Gd―81.0Fe―11.4Coのインゴットに対して、全体の組成が例えば化学式でY0.2Gd0.4Sm0.4(Fe0.83Co0.1711になるよう、9.0Sm―78.1Fe―12.8Coのインゴットと、7.4Y―81.3Fe―11.3Coのインゴットと、7.6Gd―81.0Fe―11.4Coのインゴットと、Yの金属塊とCoの金属塊を秤量添加し、それらを出湯管に投入した。9.0Sm―78.1Fe―12.8Coインゴット、7.4Y―81.3Fe―11.3Coインゴット、7.6Gd―81.0Fe―11.4Coインゴット、Y金属塊およびCo金属塊が投入された出湯管を高周波誘導加熱型の炉に導入し、20kPaのAr雰囲気中でインゴットおよび金属塊を高周波電界の印加によって加熱し溶解した。これらのインゴットに対して、上記と同様の手順でYおよびCoの金属塊を適量添加することにより全体の組成を調整した試料を加熱し溶解した。組成は化学式でY0.6-αGdαSm0.4(Fe0.83Co0.17(0<α<0.6、z=11、12)の範囲で調整した。以下、本実施例では合金組成は化学式で表記する。
(工程B)
 工程AにおいてY-Gd―Sm-Fe―Co系合金が十分に溶解したことを確認した後、出湯管圧48kPaのArで高速回転するロール上に溶融金属を出射して急冷凝固させ帯状の合金(以下、超急冷薄帯)を作製した。本実施例では、第1のロール周速度(低速)を基本条件として設定した。比較的に大きな結晶粒を生成してSPD法による異方性磁場を検出しやすくするためである。ただし、ロール周速度を高速にすることにより、as-spun試料(急冷凝固後熱処理していない試料)での不規則ThNi17型の生成を抑制することが可能であり、熱処理過程での相分離や構造変化を追跡しやすいため、第1のロール周速度より速い第2のロール周速度でも作製した。
 なお、本明細書では、合金溶湯の冷却速度を「ロール周速度」によって表現しているが、ロール周速度は、冷却に使用するロールの熱伝導率、熱容量、雰囲気の圧力、出湯管圧などによっても変化し得るため、これらのパラメータを用いて制御することも可能である。
(工程C)
 工程Bにおいて作製した超急冷薄帯をNb箔に包み、Arフロー雰囲気とした石英管に装填した後、石英管を予め一定温度に設定された管状炉内に投入し0.3-0.5時間保持した。その後、石英管を水中に投下し十分冷却した。Arフロー中での熱処理は、真空中での熱処理よりもY元素とGd元素の蒸発を抑制することができる。そのため、本実施例では組成ずれを抑制する目的でArフロー中において熱処理を実施した。
(磁気異方性磁場)
 工程Cにおいて作製した超急冷薄帯を75μm以下に粉砕して微粉とした。この微粉とパラフィンとをアクリル容器に詰め、加熱することで無配向結着した評価試料を作製した。この試料を20℃に保たれた超電導電磁石型の振動試料型磁力計に導入し、一旦最大磁場10Tを印加した後に0Tまで掃引して、磁化曲線を測定した。磁化曲線の磁場の1階微分がピークを示す位置を磁気異方性磁場と定義し、ピーク抽出には組成傾向や主相比率を考慮した。測定試料の体積磁化が不明瞭で、かつ不定形状であるため、反磁場補正は行わなかった。また、粉末X線回折測定から、ThMn12型結晶構造へのR’とFeダンベルとの規則化の発達を示す(310)と(002)の回折ピークを有限の強度で観測した。
Figure JPOXMLDOC01-appb-T000003
 表3には、Y0.6-αGdαSm0.4(Fe0.83Co0.17(0<α<0.6、z=11、12)強磁性化合物の20℃での磁気異方性磁場を示す。Gd置換による磁気異方性磁場は、z=11組成では低下し、またz=12組成ではほとんど変化しないまたは低下傾向にあることがわかった。これは構成希土類元素であるY、Sm、Gdのサイト選択性に起因すると推察される。結晶学的な希土類サイトは2aと2dの2つあり、Y元素は2aサイトに強く選択配位する一方で、SmとGdはR’とFeダンベルとの置換量に応じた希土類サイト周りの空間の大きさに依存して配位量が変化する。
 Y元素の換わりにGd元素を置換していくと、磁気異方性に大きな影響を与える希土類サイトからSmが追い出されて磁気異方性が低下すると推定している。Smは本発明の強磁性化合物の磁気異方性磁場の多くを担っているため非常に大切であり、生成量が大きく低下しない範囲でできるだけ多く導入したほうが良い元素である。x=0.4の場合にはz≧11.5ではα<1、またz<11.5では入れないほうが望ましい。
 なお、本発明のR’-TM系強磁性合金は、例えばバルク状の磁石に好適に利用され得る。そして、本発明の強磁性合金を用いた装置としては、モーターや発電機、その他の駆動部品を有する駆動装置、およびMRIを始めとする医療装置に用いられる。これらの装置に用いたときの効果は、装置の小型化が挙げられる。そして、これらの装置に用いたときの効果は、希土類元素の供給不安による調達遅延や製造遅延を防止し、また完成した装置の価格変動のリスクを低減することも可能である。
1:2aサイト、2:2dサイト、3:4g1サイト、4:4g2サイト、5:4eサイト、6:4fサイト

Claims (10)

  1.  Y-Fe系強磁性合金、Y-Fe-Co系強磁性合金、Y-Sm-Fe-Co系強磁性合金のいずれかであるR’―TM系強磁性合金において、
     前記R’は少なくとも元素種YとGdを含む希土類元素であり、
     前記TMは少なくとも元素種Feを含む遷移金属であり、
     前記希土類元素が有する希土類サイトの一部をGdが部分的に置換した主相を含み、
     前記主相がTbCu型結晶構造とThMn12型結晶構造との中間的な結晶構造を有するY-Fe系強磁性化合物、Y-Fe-Co系強磁性化合物、Y-Sm-Fe-Co系強磁性化合物のいずれかであるR’-TM系強磁性化合物であることを特徴とする強磁性合金。
  2.  請求項1において、
     前記中間的な結晶構造とは、希土類元素とダンベル型のFe原子ペアが不規則に置換したTbCu型結晶構造と希土類元素とダンベル型のFe原子ペアが規則的に置換したThMn12型結晶構造との中間的な結晶構造を有するR’-TM系強磁性化合物であることを特徴とする強磁性合金。
  3.  請求項2において、
     前記強磁性化合物は、回折測定における、空間群Immmにおいて特に(310)と(002)の回折ピーク強度が有限の値を示す結晶構造を有するR’-TM系強磁性化合物であることを特徴とする強磁性合金。
  4.  請求項1乃至3において、
     前記R’は、さらに元素種Smを含み、
     前記TMは、さらに元素種Coを含みかつ原子比でFeのほうがCoよりも多い組成で構成され、
     組成式Y1-α-xGdαSm(Fe1-yCo(0≦x≦0.5、かつ0≦y<0.5かつ10.5<z<14.0、α>0)で示されること特徴とする強磁性合金。
  5.  請求項1乃至3において、
     前記TMは、さらに元素種Coを含みかつ原子比でFeのほうがCoよりも多い組成で構成され、
     組成式Y1-α-xGdα(Fe1-yCo(0≦y<0.5かつ10.5<z<14.0、0<α<1)で示されることを特徴とする強磁性合金。
  6.  請求項5において、
     前記αは、0.4≦α<1の組成範囲にあることを特徴とする強磁性合金。
  7.  請求項4において、
     前記xが0<x≦0.5の場合、前記zおよび前記αは、z≧11.5かつ0<α<1の組成範囲にあることを特徴とする強磁性合金。
  8.  Y-Fe系強磁性合金、Y-Fe-Co系強磁性合金、Y-Sm-Fe-Co系強磁性合金のいずれかであるR’―TM系強磁性合金において、前記R’は少なくとも元素種YとGdを含む希土類元素であり、前記TMは少なくとも元素種Feを含む遷移金属であり、
     前記R’および前記TMを含有する合金の溶湯を用意する工程Aと、
     前記合金の溶湯を冷却して凝固させることにより、前記希土類元素の占有サイトの少なくとも一部がFe原子ペアによってランダムに置換され、強磁性化合物であるR’-TM系強磁性化合物を含むR’―TM系強磁性合金を形成する工程Bとを含む、強磁性合金の製造方法。
  9.  請求項8において、
     前記工程Bの後に、前記R’-TM系強磁性合金を加熱する熱処理工程を含む、強磁性合金の製造方法。
  10.  請求項8または9において、
     前記R’-TM系強磁性化合物は、六方晶TbCu型結晶構造と体心正方晶ThMn12型結晶構造との中間的な結晶構造を有することを特徴とする強磁性合金の製造方法。
PCT/JP2015/073928 2015-08-26 2015-08-26 強磁性合金および強磁性合金の製造方法 WO2017033297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580082256.4A CN107849653B (zh) 2015-08-26 2015-08-26 强磁性合金和强磁性合金的制造方法
US15/754,811 US20200227186A1 (en) 2015-08-26 2015-08-26 Ferromagnetic Alloy and Method of Manufacturing the Ferromagnetic Alloy
PCT/JP2015/073928 WO2017033297A1 (ja) 2015-08-26 2015-08-26 強磁性合金および強磁性合金の製造方法
JP2017536122A JP6483839B2 (ja) 2015-08-26 2015-08-26 強磁性合金および強磁性合金の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073928 WO2017033297A1 (ja) 2015-08-26 2015-08-26 強磁性合金および強磁性合金の製造方法

Publications (1)

Publication Number Publication Date
WO2017033297A1 true WO2017033297A1 (ja) 2017-03-02

Family

ID=58100735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073928 WO2017033297A1 (ja) 2015-08-26 2015-08-26 強磁性合金および強磁性合金の製造方法

Country Status (4)

Country Link
US (1) US20200227186A1 (ja)
JP (1) JP6483839B2 (ja)
CN (1) CN107849653B (ja)
WO (1) WO2017033297A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151244A1 (ja) * 2018-01-30 2019-08-08 Tdk株式会社 永久磁石
US11159451B2 (en) 2018-07-05 2021-10-26 Cisco Technology, Inc. Stretched EPG and micro-segmentation in multisite fabrics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262457A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 磁気冷凍用磁性材料
JP2014047366A (ja) * 2012-08-29 2014-03-17 Hitachi Metals Ltd 強磁性合金およびその製造方法
JP2015156436A (ja) * 2014-02-20 2015-08-27 日立金属株式会社 強磁性合金およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW503409B (en) * 2000-05-29 2002-09-21 Daido Steel Co Ltd Isotropic powdery magnet material, process for preparing and resin-bonded magnet
CN100437841C (zh) * 2006-09-19 2008-11-26 北京大学 各向异性稀土永磁材料及其磁粉和磁体的制造方法
JP6076705B2 (ja) * 2012-11-20 2017-02-08 株式会社東芝 永久磁石とそれを用いたモータおよび発電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262457A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 磁気冷凍用磁性材料
JP2014047366A (ja) * 2012-08-29 2014-03-17 Hitachi Metals Ltd 強磁性合金およびその製造方法
JP2015156436A (ja) * 2014-02-20 2015-08-27 日立金属株式会社 強磁性合金およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151244A1 (ja) * 2018-01-30 2019-08-08 Tdk株式会社 永久磁石
JPWO2019151244A1 (ja) * 2018-01-30 2021-02-04 Tdk株式会社 永久磁石
US11335484B2 (en) 2018-01-30 2022-05-17 Tdk Corporation Permanent magnet
JP7358989B2 (ja) 2018-01-30 2023-10-11 Tdk株式会社 永久磁石
US11159451B2 (en) 2018-07-05 2021-10-26 Cisco Technology, Inc. Stretched EPG and micro-segmentation in multisite fabrics
US11949602B2 (en) 2018-07-05 2024-04-02 Cisco Technology, Inc. Stretched EPG and micro-segmentation in multisite fabrics

Also Published As

Publication number Publication date
CN107849653B (zh) 2019-10-18
JPWO2017033297A1 (ja) 2018-08-09
US20200227186A1 (en) 2020-07-16
CN107849653A (zh) 2018-03-27
JP6483839B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6561117B2 (ja) 希土類永久磁石およびその製造方法
Zeng et al. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials
Hirosawa et al. Unusual effects of Ti and C additions on structural and magnetic properties of Nd–Fe–B nanocomposite magnets in a B-rich and Nd-poor composition range
JP4310480B2 (ja) アモルファス合金組成物
Pei et al. Effects of Ce-substitution on magnetic properties and microstructure of Nd–Pr–Fe–B melt-spun powders
JP6248689B2 (ja) 強磁性合金およびその製造方法
JP5163630B2 (ja) 希土類磁石およびその製造方法
JP2014047366A (ja) 強磁性合金およびその製造方法
JP5916983B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
Fazakas et al. Preparation of nanocrystalline Mn–Al–C magnets by melt spinning and subsequent heat treatments
Rehman et al. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives
Xiang et al. Effect of cooling rates on the microstructure and magnetic properties of MnAl permanent magnetic alloys
Rehman et al. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets
EP3401416B1 (en) Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using fe-based soft magnetic alloy
JP6483839B2 (ja) 強磁性合金および強磁性合金の製造方法
Chen et al. Influence of annealing treatment on soft magnetic properties of Fe76Si10B10Cr2Y2 amorphous ribbon
Hirosawa et al. Rapidly Solidified La (Fe $ _1-x $ Si $ _x $) $ _13 $ Alloys and Their Magnetocaloric Properties
Lopez et al. Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning
CN109952621B (zh) 稀土-过渡金属系强磁性合金
EP2320436A1 (en) Amorphous magnetic alloys, associated articles and methods
JP7349173B2 (ja) 準安定単結晶希土類磁石微粉及びその製造方法
JP2017166018A (ja) ネオジム−鉄−ボロン系合金
JP2022053187A (ja) Sm-Fe-N系磁性材料及びその製造方法
Rehman et al. Evolution of Microstructure, Magnetic Properties, and Thermal Stabilities of Isotropic Alnico Ribbons
Kong et al. Magnetic hardening in amorphous alloy Sm60Fe30Al10

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902266

Country of ref document: EP

Kind code of ref document: A1