WO2017033245A1 - ガラス繊維の製造方法 - Google Patents

ガラス繊維の製造方法 Download PDF

Info

Publication number
WO2017033245A1
WO2017033245A1 PCT/JP2015/073630 JP2015073630W WO2017033245A1 WO 2017033245 A1 WO2017033245 A1 WO 2017033245A1 JP 2015073630 W JP2015073630 W JP 2015073630W WO 2017033245 A1 WO2017033245 A1 WO 2017033245A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass
fiber
glass fiber
composition
Prior art date
Application number
PCT/JP2015/073630
Other languages
English (en)
French (fr)
Inventor
貴史 野中
平山 紀夫
和明 南
洋佑 貫井
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to PCT/JP2015/073630 priority Critical patent/WO2017033245A1/ja
Priority to EP15902216.9A priority patent/EP3339264B1/en
Priority to CN201580082493.0A priority patent/CN107922252B/zh
Priority to US15/752,717 priority patent/US11040908B2/en
Priority to KR1020187000616A priority patent/KR102421591B1/ko
Priority to JP2017536086A priority patent/JP6642579B2/ja
Priority to TW105124782A priority patent/TWI685474B/zh
Publication of WO2017033245A1 publication Critical patent/WO2017033245A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing glass fiber.
  • Glass fiber is prepared by melting a glass raw material prepared so as to have a glass composition having a desired composition in a melting furnace to form molten glass (a melt of glass composition), and several tens to thousands of the molten glass. It is discharged from a container (bushing) having a nozzle plate on which the nozzle tip is formed, wound at a high speed, cooled while being stretched, solidified into a fibrous form (hereinafter this operation is sometimes referred to as “spinning”) ).
  • the bushing is made of a noble metal such as platinum.
  • glass having a composition composed of SiO 2 , Al 2 O 3 , and MgO is known as one of the glasses forming the glass fiber.
  • S glass glass fiber having high fiber strength and high fiber elastic modulus can be obtained as compared with general-purpose glass such as E glass, but in terms of 1000 poise temperature and liquidus temperature, glass fiber. There is a problem that spinning is not always easy.
  • the 1000 poise temperature means a temperature at which the viscosity of the molten glass becomes 1000 poise (100 Pa ⁇ s), and the liquidus temperature first causes crystal precipitation when the temperature of the molten glass is lowered.
  • temperature refers to temperature.
  • glass fibers can be efficiently spun when the viscosity of the molten glass is about 1000 poise. Therefore, usually, spinning of glass fiber can be performed more easily and stably as the temperature range (working temperature range) between the 1000 poise temperature and the liquidus temperature is wider.
  • S glass has an extremely close 1000 poise temperature and a liquidus temperature, and the working temperature range is narrow, so that the molten glass is easily crystallized (devitrified) even under the influence of a slight temperature drop. For this reason, in order to stably spin the S glass, it is necessary to precisely control the spinning conditions in the glass fiber manufacturing process.
  • the content of SiO 2 is 57.0 to 63 with respect to the total amount. 0.0% by mass, Al 2 O 3 content is 19.0-23.0% by mass, MgO content is 10.0-15.0% by mass, and CaO content is 4.0-11.0%.
  • the present applicant has proposed a glass composition having a composition that is mass% and that the total content of SiO 2 , Al 2 O 3 , MgO, and CaO is 99.5 mass% or more (Patent Document). 1).
  • a molten glass obtained by melting a glass raw material prepared so as to be a glass composition having a composition in the above range can be spun at a 1000 poise temperature and a liquidus temperature. By doing this, it is possible to easily produce glass fibers having higher fiber strength and higher fiber elastic modulus than the general-purpose glass.
  • a bushing having a circular nozzle tip is usually used.
  • the temperature is controlled to be higher than the liquidus temperature of the molten glass.
  • the molten glass discharged from the circular nozzle tip has a strong action of being rounded by its own surface tension, a glass fiber having a cross-sectional shape close to a perfect circle can be easily obtained.
  • the viscosity of the molten glass is 200 poise (20 Pa ⁇ s) or less, the glass discharged from the nozzle tip becomes droplets and does not become fibers. For this reason, the bushing is controlled below a temperature at which the viscosity of the molten glass becomes 200 poise.
  • a bushing having a flat nozzle tip is used.
  • the bushing provided with the flat nozzle tip is controlled to a temperature that is higher than the liquidus temperature of the molten glass and has a viscosity of 1000 poise or more.
  • the present invention eliminates such inconvenience, and can stably spin glass glass without mixing red crystals, and has higher fiber strength and fiber elastic modulus than general-purpose glass (E glass). It aims at providing the manufacturing method of the glass fiber which can obtain a fiber.
  • the red crystal is melted in a large furnace with a monthly production of several hundred tons or more, and the molten glass as the obtained glass composition is discharged from a nozzle tip of a bushing to obtain a flat shape or the like. It has been found that this rarely occurs when glass fibers having an irregular cross section and glass fibers having a perfect circular cross section having a fiber diameter of 3 ⁇ m or more and less than 10 ⁇ m are produced.
  • the large furnace is heated by, for example, an indirect flame heating method using a gas burner, and a chromium oxide brick having excellent glass corrosion resistance at high temperatures is used in a portion in contact with the molten glass.
  • a chromium oxide brick having excellent glass corrosion resistance at high temperatures is used in a portion in contact with the molten glass.
  • the present inventors have produced a glass fiber by spinning a molten glass obtained by melting a glass raw material prepared to be a specific glass composition. It has been found that the above disadvantage can be solved by including an additive capable of suppressing the generation of the red crystals in the glass composition, and the present invention has been achieved.
  • the glass fiber manufacturing method of the present invention when melted, contains SiO 2 in the range of 57.0 to 62.0% by mass with respect to the total amount, and 15.0 to 20%.
  • the glass composition includes B 2 O 3 , Li 2 O or B 2 O 3 and Li 2 O as an additive capable of suppressing generation of red crystals. .
  • the glass composition is added to SiO 2 , Al 2 O 3 , MgO and CaO in the above-mentioned range, and further B 2 as an additive capable of suppressing the generation of the red crystals.
  • B 2 an additive capable of suppressing the generation of the red crystals.
  • the glass composition cannot improve the mechanical strength of the obtained glass fiber when the content of SiO 2 with respect to the total amount is less than 57.0% by mass. It becomes chemically unstable.
  • the content of SiO 2 with respect to the total amount of the glass composition exceeds 62.0% by mass, the 1000 poise temperature and the liquidus temperature become high, making it difficult to produce glass fibers.
  • the content of SiO 2 with respect to the total amount is preferably in the range of 57.2 to 60.5% by mass, and more preferably in the range of 57.5 to 59.5% by mass.
  • the range of 58.0 to 59.3% by mass is more preferable, the range of 58.2 to 59.0% by mass is particularly preferable, and the range of 58.5 to 58.8% by mass is preferable.
  • Most preferred. the said glass composition for glass fibers can acquire the effect that a wide working temperature range can be maintained, maintaining high fiber strength.
  • the glass composition can not content of Al 2 O 3 with respect to the total amount to increase the fiber elastic modulus of the glass fiber obtained is less than 15.0 wt%, 20.0 wt% If it exceeds 1, the liquidus temperature becomes high and the working temperature range becomes narrow. On the other hand, when the content of Al 2 O 3 exceeds 20.0 mass%, red crystals are easily generated.
  • the content of Al 2 O 3 is preferably in the range of 16.8 to 19.8% by mass and more preferably in the range of 18.0 to 19.5% by mass with respect to the total amount. More preferred is a range of 18.2 to 19.0% by mass.
  • the said glass composition cannot make the fiber elastic modulus of the obtained glass fiber high that content of MgO with respect to the whole quantity is less than 7.5 mass%, and exceeds 12.0 mass%. Since the liquidus temperature is high, the working temperature range is narrowed. On the other hand, when the content of MgO exceeds 12.0% by mass, red crystals are easily generated.
  • the content of MgO with respect to the total amount is preferably in the range of 8.3 to 11.8% by mass, more preferably in the range of 8.8 to 11.5% by mass, More preferably, it is in the range of 9.0 to 11.0% by mass.
  • the content of CaO with respect to the total amount of the glass composition is less than 9.0% by mass, the liquidus temperature becomes high, so that the working temperature range is narrowed and red crystals are easily generated.
  • the content of CaO exceeds 16.5% by mass, the fiber elastic modulus of the obtained glass fiber cannot be increased, and the linear expansion coefficient of the glass fiber increases.
  • the glass composition preferably has a CaO content in the range of 9.9 to 14.4% by mass, more preferably in the range of 10.3 to 12.5% by mass, The range of 10.5 to 12.0% by mass is more preferable.
  • the glass composition has a relatively high content of other impurity components when the total amount of SiO 2 , Al 2 O 3 , MgO and CaO is less than 98.0% by mass relative to the total amount of the glass composition. .
  • the total amount of SiO 2 , Al 2 O 3 , MgO and CaO with respect to the total amount of the glass composition is preferably 98.0% by mass or more and less than 99.5% by mass, and 98.5% by mass or more and 99%. More preferably, it is less than 0.0 mass%.
  • Main impurity components that the glass composition may contain are Na 2 O, K 2 O, and Fe 2 O 3 . These may be contained in a total amount of 0.1 to 2.0% by mass with respect to the total amount of the glass composition. In order to widen the working temperature range and increase the fiber strength and fiber elastic modulus of the glass fiber obtained, the total amount of Na 2 O, K 2 O and Fe 2 O 3 is based on the total amount of the glass composition. Therefore, it is preferable to be suppressed to 0.1 to 0.5% by mass.
  • the glass fiber has a ratio of the major axis to the minor axis of the cross-sectional shape (major axis / minor axis) in the range of 2.0 to 6.0, or the cross-sectional area is a perfect circle.
  • the glass fiber has a ratio of the major axis to the minor axis of the cross-sectional shape (major axis / minor axis) in the range of 2.0 to 6.0, and a fiber diameter of 10 to 10 when the cross-sectional area is converted to a perfect circle. It may be in the range of 30 ⁇ m.
  • an elliptical shape (a shape having a semicircular shape attached to both ends of a rectangle or a shape similar thereto), an elliptical shape, a central portion in the longitudinal direction
  • a constricted bowl shape can be mentioned, and since it is excellent in the fluidity
  • the glass fiber manufacturing method of the present invention when the glass fiber has the irregular cross section, it is possible to stably manufacture the glass fiber by preventing red crystals from being mixed into the obtained glass fiber. be able to.
  • the glass fiber manufacturing method of the present invention is also suitable when the glass fiber has a perfect circular cross section and the fiber diameter is in the range of 3 ⁇ m to less than 10 ⁇ m. According to the glass fiber manufacturing method of the present invention, red crystals are mixed into the obtained glass fiber even when the glass fiber has the perfect circular cross section and the fiber diameter is in the above range. This can be prevented and the glass fiber can be produced stably.
  • a glass raw material prepared so as to be the glass composition is melted using a melting furnace in which a portion in contact with the molten glass is made of a brick containing chromium oxide. It can be suitably used in some cases. According to the method for producing glass fiber of the present invention, even when the glass composition is melted using the melting furnace in which the chromium oxide brick is used, red crystals are formed on the obtained glass fiber. It can prevent mixing and can manufacture glass fiber stably.
  • the glass composition preferably contains an additive capable of suppressing the generation of red crystals in the range of 0.5 to 1.5% by mass with respect to the total amount.
  • the content of SiO 2, Al 2 O 3, MgO and CaO to the total amount of the glass composition by a range described above, the amount of the above range Even when an additive capable of suppressing the generation of red crystals is added, glass fibers having higher fiber strength and higher fiber elastic modulus than general-purpose glass (E glass) can be produced.
  • the content of the additive capable of suppressing the generation of the red crystals is less than 0.5% by mass with respect to the total amount, the red crystals are mixed into the obtained glass fiber. This may not be prevented, and if it exceeds 1.5% by mass, the physical properties of the obtained glass fiber may be impaired.
  • the glass composition preferably contains an additive capable of suppressing the generation of the red crystals in a range of 0.6 to 1.4% by mass with respect to the total amount, and 0.7 to 1.3% by mass.
  • the content is more preferably in the range, further preferably in the range of 0.8 to 1.2% by mass, and particularly preferably in the range of 0.9 to 1.1% by mass.
  • the additive capable of suppressing the generation of red crystals is in such a range, and in the obtained glass fiber, the generation of red crystals can be suppressed while maintaining a high fiber elastic modulus. An effect can be obtained.
  • B 2 O 3 Li 2 O content of the relative content (mass%) of ( The ratio of (mass%) (Li 2 O (mass%) / B 2 O 3 (mass%)) is preferably in the range of 0 to 1.0.
  • the glass composition has a product of the content (mass%) of the additive capable of suppressing the generation of red crystals and the content (mass%) of CaO, and the content (mass%) of Al 2 O 3.
  • ) ((Additive capable of suppressing generation of red crystals (mass%) ⁇ CaO (mass%)) / Al 2 O 3 (mass%)) is in the range of 0.25 to 1.00 Preferably there is.
  • Al 2 O 3 content is 19.5% by mass or less
  • (additive (mass%) ⁇ CaO (mass%) capable of suppressing the generation of red crystals) / Al 2 O 3 ( (Mass%) is more preferably in the range of 0.28 to 0.95.
  • the ratio of the content (% by mass) of Li 2 O to the content (% by mass) of B 2 O 3 (Li 2 O ( Mass%) / B 2 O 3 (mass%)) is in the range of 0 to 1.0 and (additive (mass%) ⁇ CaO (mass%) capable of suppressing the generation of red crystals) / Al 2 O 3 (% by mass) is particularly preferably in the range of 0.28 to 0.64.
  • the ratio of the product of the additive content (mass%) and CaO content (mass%) capable of suppressing the occurrence of red crystals to the content ratio (mass%) of Al 2 O 3 is as described above.
  • the content of each component described above is measured by using an ICP emission spectroscopic analyzer for B or Li which is a light element, and wavelength dispersive X-ray fluorescence analysis for other elements. This can be done using an apparatus.
  • glass batch mixed and mixed with glass raw materials
  • glass fiber when organic matter is attached to the surface of glass fiber, or glass fiber is mainly contained in organic matter (resin)
  • organic matter refin
  • the mixture is kept at a temperature of 1550 ° C. for 6 hours and melted with stirring to obtain a homogeneous molten glass.
  • the obtained molten glass is poured out on a carbon plate to produce a glass cullet, it is pulverized into powder.
  • the glass powder is alkali-melted and decomposed.
  • the glass powder is acid-dissolved, and then quantitatively analyzed using an ICP emission spectroscopic analyzer.
  • Other elements are quantitatively analyzed using a wavelength dispersive X-ray fluorescence analyzer after glass powder is formed into a disk shape by a press.
  • These quantitative analysis results are converted into oxides to calculate the content and total amount of each component, and the content of each component described above can be obtained from these numerical values.
  • the additive capable of suppressing the generation of red crystals is added simultaneously with the preparation of the glass raw material.
  • the glass composition preferably has a 1000 poise temperature in the range of 1300 to 1370 ° C. and a liquidus temperature in the range of 1200 to 1270 ° C.
  • the glass composition is stable when the 1000 poise temperature is in the range of 1300 to 1370 ° C., the liquidus temperature is in the range of 1200 to 1270 ° C., and the working temperature range is 50 ° C. or more. It can be spun and is suitable for large-scale production of glass fibers with a monthly production of several hundred tons or more.
  • the glass fiber produced from the glass composition preferably has a fiber elastic modulus of 80 GPa or more and a fiber strength of 4.0 GPa or more.
  • a glass fiber having higher fiber strength and higher fiber elastic modulus than general-purpose glass (E glass) is obtained. Can do.
  • crystallization in the glass obtained from the glass composition of Example 11 shows the presence or absence of precipitation of the red crystal
  • crystallization in the glass obtained from the glass composition of the comparative example 2.
  • the glass fiber manufacturing method of the present embodiment first, when melted, SiO 2 in the range of 57.0 to 62.0% by mass and the range of 15.0 to 20.0% by mass with respect to the total amount.
  • a glass raw material so that the glass composition has a composition in which the total amount of SiO 2 , Al 2 O 3 , MgO and CaO is 98.0% by mass or more.
  • the additive capable of suppressing the generation of red crystals (hereinafter abbreviated as red crystal suppressing additive) is either B 2 O 3 or Li 2 O alone, or B 2 O 3 and Li 2 O. Can be used.
  • the glass composition having the above composition has a 1000 poise temperature in the range of 1300 to 1370 ° C. and a liquidus temperature in the range of 1200 to 1270 ° C.
  • the glass batch is supplied to a melting furnace and melted in a temperature range of 1000 poise temperature or more, specifically in a temperature range of 1450 to 1550 ° C. Then, the molten glass melted at the above temperature is discharged from a nozzle tip of a bushing controlled at a predetermined temperature, cooled while being stretched by winding at high speed, and solidified to form glass fibers.
  • the melting furnace is a large furnace with a monthly production of several hundred tons or more, for example, heated by an indirect flame heating method using a gas burner, and a chromium oxide brick with excellent glass corrosion resistance at high temperatures is used for the portion that contacts the molten glass Has been.
  • the nozzle tip when manufacturing glass fibers having a deformed cross section such as a flat shape, has a ratio of the major axis to the minor axis (major axis / minor axis) of 2 to 10 on the nozzle plate on the bottom surface of the bushing.
  • An opening (orifice hole) having a major axis of 1.0 to 10.0 mm and a minor axis of 0.5 to 2.0 mm, and a notch for rapidly cooling the molten glass that has passed through the opening A thing provided with cooling means, such as a projection part, can be used.
  • the nozzle tip has, for example, a circular opening having a perfect circular cross section and an opening diameter of 0.5 to 1.5 mm when manufacturing glass fibers having a fiber diameter of 3 ⁇ m or more and less than 10 ⁇ m.
  • the thing provided with a part can be used.
  • the control temperature of the bushing is 1260 to 1370 ° C.
  • the control temperature of the bushing is less than 1260 ° C.
  • the viscosity of the molten glass is extremely high, and in addition, the glass-derived crystal (devitrification) is likely to precipitate because it approaches the liquidus temperature. It becomes difficult to manufacture the glass fiber itself.
  • the control temperature of the bushing exceeds 1370 ° C.
  • the viscosity of the molten glass becomes low and the surface tension tends to act, so that it is not possible to obtain a glass fiber having an irregular cross section such as the flat shape.
  • the control temperature of the bushing is 1300 to 1470 ° C.
  • the control temperature of the bushing is less than 1300 ° C.
  • the viscosity of the molten glass becomes high, so that it is difficult to discharge from the thin nozzle tip, and the production of the glass fiber itself becomes difficult.
  • the control temperature of the bushing exceeds 1470 ° C., the molten glass discharged from the nozzle tip becomes droplets and does not become fibers.
  • the glass fiber having a deformed cross section such as the flat shape or the glass fiber having a perfect circular cross section and having a fiber diameter of 3 ⁇ m or more and less than 10 ⁇ m is made red as described above. Spinning can be performed stably without mixing of crystals.
  • the glass fiber having the irregular cross section has a ratio of a major axis to a minor axis of the sectional shape (major axis / minor axis) in the range of 2.0 to 6.0, or a fiber when the sectional area is converted into a perfect circle.
  • the diameter may be in the range of 10 to 30 ⁇ m.
  • the glass fiber having an irregular cross section has a ratio of the major axis to the minor axis of the cross sectional shape in the range of 2.0 to 6.0, and a fiber diameter of 10 to 30 ⁇ m when the cross sectional area is converted into a perfect circle. It may be in the range.
  • Example 1 In this example, first, when melted, 59.3 mass% of SiO 2 , 19.0 mass% of Al 2 O 3 , 10.0 mass% of MgO, and 11.0 mass of CaO with respect to the total amount. %, B 2 O 3 0.5% by mass, and other components Na 2 O, K 2 O, and Fe 2 O 3 0.2% by mass so as to become a melt (molten glass) of a glass composition.
  • a glass batch was obtained by blending glass raw materials.
  • the total amount of SiO 2 , Al 2 O 3 , MgO, and CaO is 99.3% by mass. Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • the glass batch was placed in a platinum crucible, and was melted while being stirred in an electric furnace at 1550 ° C. for 6 hours to obtain a homogeneous molten glass.
  • the obtained molten glass was poured out on a carbon plate to produce a glass cullet.
  • the 1000 poise temperature and the liquidus temperature of the molten glass were measured, and the working temperature range ( ⁇ T) was calculated.
  • the 1000 poise temperature was continuously melted using a high temperature electric furnace equipped with a rotational viscometer (manufactured by Shibaura System Co., Ltd.) in a platinum crucible and changing the melting temperature using a rotating Brookfield viscometer. The viscosity of the molten glass was measured and the temperature corresponding to the rotational viscosity of 1000 poise was measured.
  • a rotational viscometer manufactured by Shibaura System Co., Ltd.
  • the liquidus temperature was determined by the following procedure. First, glass cullet is pulverized, 40 g of glass particles having a particle size of 0.5 to 1.5 mm are put into a platinum boat of 180 ⁇ 20 ⁇ 15 mm, and a tubular electric furnace provided with a temperature gradient of 1000 to 1400 ° C. for 8 hours. After heating as described above, the sample was taken out from the tubular electric furnace and observed with a polarizing microscope, and the position where the glass-derived crystal (devitrification) began to be deposited was specified. The temperature in the tubular electric furnace was measured using a B thermocouple, and the temperature at the position where the deposition started was determined as the liquidus temperature.
  • the obtained glass cullet is placed in a small cylindrical platinum bushing having one circular nozzle tip at the bottom of the container, heated to a predetermined temperature and melted, and then the molten glass discharged from the nozzle tip is predetermined.
  • the glass fiber was cooled and solidified while being stretched by winding at a speed of 5 mm to obtain a glass fiber having a perfect circular section and a fiber diameter of 13 ⁇ m.
  • the relationship between the glass composition and the red crystal suppression component and the red crystal was verified by reproducing the rare occurrence of red crystals in glass fiber production. .
  • Cr 2 O 3 is added to the glass composition.
  • the amount of Cr 2 O 3 added is such that the portion in contact with the molten glass is This is based on the maximum concentration of Cr 2 O 3 contained in a glass block staying in a glass melting furnace made of chromium oxide brick. Since Cr 2 O 3 eluted from the chromium oxide brick over a long period of time is condensed in the glass lump, Cr 2 that can be contained in molten glass that passes through the melting furnace in a short time and is made into fiber is contained. The O 3 concentration does not exceed the maximum concentration of Cr 2 O 3 in the glass block.
  • the glass composition of this example was to prepare a glass batch to contain 0.10 wt% chromium oxide (Cr 2 O 3).
  • the glass batch containing the said chromium oxide was put into the crucible made from platinum, and it hold
  • the obtained molten glass was poured out on a carbon plate to produce a glass cullet.
  • the glass raw material when melted, is a glass composition melt (molten glass) containing 58.8% by mass of SiO 2 and 1.0% by mass of B 2 O 3 with respect to the total amount.
  • a glass batch was obtained in exactly the same manner as in Example 1 except that was prepared.
  • Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 1 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the obtained glass cullet was made exactly the same as in Example 1.
  • the temperature was lowered to 1250 ° C. and held for 12 hours.
  • the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 3 when melted, the glass raw material is a glass composition melt (molten glass) containing 58.3% by mass of SiO 2 and 1.5% by mass of B 2 O 3 with respect to the total amount.
  • a glass batch was obtained in exactly the same manner as in Example 1 except that was prepared.
  • Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • 1000 poise temperature, liquidus temperature, working temperature range of the glass composition of this example, fiber strength of the glass fiber (monofilament) obtained in this example, fiber The elastic modulus was measured. The results are shown in Table 1.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 4 when melted, a glass composition melt (melted) containing 59.2% by mass of SiO 2 , 0.6% by mass of Li 2 O, and no B 2 O 3 with respect to the total amount.
  • a glass batch was obtained in exactly the same manner as in Example 1 except that the glass raw material was prepared so as to be glass.
  • Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 1 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 5 when melted, a glass composition melt (melted) containing 58.8% by mass of SiO 2 , 1.0% by mass of Li 2 O and no B 2 O 3 with respect to the total amount.
  • a glass batch was obtained in exactly the same manner as in Example 1 except that the glass raw material was prepared so as to be glass.
  • Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • 1000 poise temperature, liquidus temperature, working temperature range of the glass composition of this example, fiber strength of the glass fiber (monofilament) obtained in this example, fiber The elastic modulus was measured. The results are shown in Table 1.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 6 when melted, a glass composition melt containing 58.9% by mass of SiO 2 , 0.6% by mass of B 2 O 3 and 0.3% by mass of Li 2 O with respect to the total amount.
  • a glass batch was obtained in exactly the same manner as in Example 1 except that the glass raw material was prepared so as to be (molten glass).
  • the glass composition of the present embodiment based on the total amount, contains 0.9% by weight and B 2 O 3 and Li 2 O as a mixture.
  • Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 1 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 7 when melted, 59.6% by mass of SiO 2 , 18.2% by mass of Al 2 O 3 , 9.2% by mass of MgO, 11.8% by mass of CaO with respect to the total amount, A melt of glass composition containing 0.9% by mass of B 2 O 3 , 0.1% by mass of Li 2 O and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components A glass batch was obtained in exactly the same manner as in Example 1 except that the glass raw material was prepared so as to be (molten glass).
  • the glass composition of the present embodiment based on the total amount, contains 1.0% by weight and B 2 O 3 and Li 2 O as a mixture. Table 1 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 1 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 8 In this example, when melted, 58.8% by mass of SiO 2 , 19.5% by mass of Al 2 O 3 , 9.0% by mass of MgO, 12.0% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 0.5% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components. A glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared. Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 9 In this example, when melted, 58.8% by mass of SiO 2 , 19.0% by mass of Al 2 O 3 , 9.0% by mass of MgO, 12.0% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.0% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components. A glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared. Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 10 when melted, 58.8% by mass of SiO 2 , 18.5% by mass of Al 2 O 3 , 9.0% by mass of MgO, 12.0% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.5% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components.
  • a glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared.
  • Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 11 when melted, 62.0% by mass of SiO 2 , 16.0% by mass of Al 2 O 3 , 8.8% by mass of MgO, 12.0% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.0% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components.
  • a glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared.
  • Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • the fiber strength and fiber elastic modulus of the glass fiber (monofilament) obtained in this example were measured. The results are shown in Table 2.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 12 when melted, 59.0% by mass of SiO 2 , 18.0% by mass of Al 2 O 3 , 8.0% by mass of MgO, 13.8% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.0% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components.
  • a glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared.
  • Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • the fiber strength and fiber elastic modulus of the glass fiber (monofilament) obtained in this example were measured. The results are shown in Table 2.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 13 In this example, when melted, 58.3% by mass of SiO 2 , 18.0% by mass of Al 2 O 3 , 9.0% by mass of MgO, 13.5% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.0% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components. A glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared. Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • the fiber strength and fiber elastic modulus of the glass fiber (monofilament) obtained in this example were measured. The results are shown in Table 2.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Example 14 In this example, when melted, 59.8% by mass of SiO 2 , 20.0% by mass of Al 2 O 3 , 8.0% by mass of MgO, 11.0% by mass of CaO with respect to the total amount, Glass so as to be a melt (molten glass) of a glass composition containing 1.0% by mass of B 2 O 3 and 0.2% by mass of Na 2 O, K 2 O and Fe 2 O 3 as other components. A glass batch was obtained in the same manner as in Example 1 except that the raw materials were prepared. Table 2 shows the composition of the glass composition obtained by melting the glass batch of this example.
  • Example 2 a glass cullet was prepared in exactly the same manner as in Example 1 except that the glass batch of this example was used, and glass fibers were spun in exactly the same manner as in Example 1 except that the glass cullet was used.
  • the fiber strength and fiber elastic modulus of the glass fiber (monofilament) obtained in this example were measured. The results are shown in Table 2.
  • Example 2 a glass cullet containing chromium oxide was produced in exactly the same manner as in Example 1 except that the glass batch obtained in this example was used, and the glass cullet was made exactly the same as in Example 1 and made of platinum. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Comparative Example 1 In this comparative example, when melted, the glass raw material is prepared so as to become a melt (molten glass) of a glass composition containing 59.8% by mass of SiO 2 and not containing B 2 O 3 with respect to the total amount. A glass batch was obtained in exactly the same manner as in Example 1 except that. Table 3 shows the composition of the glass composition obtained by melting the glass batch of this comparative example.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Comparative Example 2 In this comparative example, a glass batch was obtained in exactly the same manner as in Example 2, except that Na 2 O was used instead of B 2 O 3 . Table 3 shows the composition of the glass composition obtained by melting the glass batch of this comparative example.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Comparative Example 3 In this comparative example, a glass batch was obtained in exactly the same manner as in Example 2, except that K 2 O was used instead of B 2 O 3 . Table 3 shows the composition of the glass composition obtained by melting the glass batch of this comparative example.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Comparative Example 4 In this comparative example, a glass batch was obtained in exactly the same manner as in Example 2, except that SrO was used instead of B 2 O 3 . Table 3 shows the composition of the glass composition obtained by melting the glass batch of this comparative example.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • Comparative Example 5 In this comparative example, a glass batch was obtained in exactly the same manner as in Example 2 except that Y 2 O 3 was used instead of B 2 O 3 . Table 3 shows the composition of the glass composition obtained by melting the glass batch of this comparative example.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • a glass cullet containing chromium oxide was prepared in exactly the same manner as in Example 1 except that the glass batch obtained in this comparative example was used. It was put into a boat, melted in an electric furnace at 1550 ° C. for 2 hours, then cooled to 1250 ° C. and held for 12 hours. Next, in exactly the same manner as in Example 1, the interface portion with the glass on the platinum surface was observed at a magnification of 200 times using a laser microscope to examine whether red crystals were precipitated. The results are shown in FIG.
  • one of B 2 O 3 , Li 2 O, or a mixture of B 2 O 3 and Li 2 O is added to 0.5% of the total amount of the glass composition.
  • it is contained in the range of ⁇ 1.5% by mass (Examples 1 to 7), it can be seen that no fine particles (red crystals) are generated at the interface with the glass on the platinum surface.
  • the content of CaO is less than 9.0% by mass even when 1.0% by mass of B 2 O 3 is included in the total amount of the glass composition (Comparative Example 6). Or, when the content of Al 2 O 3 exceeds 20.0 mass% (Comparative Example 7), fine particles are generated at the interface portion with the glass on the platinum surface, and generation of red crystals is caused. It turns out that it cannot suppress.
  • Example 15 the glass batch obtained in Example 1 was melted in a large melting furnace in which the portion in contact with the molten glass was made of chromium oxide bricks, and the obtained molten glass was adjusted to a temperature of 1300 ° C. It was discharged from the nozzle tip of the bushing.
  • the nozzle tip has an oblong orifice hole.
  • the obtained glass fiber having a deformed cross section did not contain red crystals, and could be spun for 8 hours or more without causing any spinning cutting.
  • Example 16 the glass batch obtained in Example 1 was melted in a large melting furnace in which the portion in contact with the molten glass was made of chromium oxide bricks, and the obtained molten glass was adjusted to a temperature of 1350 ° C. It was discharged from the nozzle tip of the bushing.
  • the nozzle tip has a circular orifice having a diameter of 1 mm.
  • the obtained glass fiber having a circular cross-sectional shape and a fiber diameter of 5 ⁇ m did not contain red crystals and could be spun for 8 hours or more without being spun and cut.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

ガラス繊維に赤色の結晶が混入することなく安定に紡糸を行うことができるガラス繊維の製造方法を提供する。 溶融したときに、全量に対し、57.0~62.0質量%の範囲のSiOと、15.0~20.0質量%の範囲のAlと、7.5~12.0質量%の範囲のMgOと、9.0~16.5質量%の範囲のCaOとを含み、且つ、SiO、Al、MgO及びCaOの合計量が98.0質量%以上であるガラス組成物となるように調合されたガラス原料を溶融して得られた溶融ガラスをノズルチップから吐出してガラス繊維を形成するときに、該ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、B、LiO又はBとLiOとを含む。

Description

ガラス繊維の製造方法
 本発明は、ガラス繊維の製造方法に関する。
 ガラス繊維は、所望の組成を有するガラス組成物となるように調合されたガラス原料を溶融炉で溶融して溶融ガラス(ガラス組成物の溶融物)とし、該溶融ガラスを数十から数千個のノズルチップを形成したノズルプレートを有する容器(ブッシング)から吐出し、高速で巻き取ることにより引き伸ばしながら冷却し、固化して繊維状とする(以下、この操作を「紡糸」と言うことがある)ことにより製造されている。前記ブッシングは、例えば、白金等の貴金属により形成されている。
 従来、前記ガラス繊維を形成するガラスの1つとして、SiOと、Alと、MgOとからなる組成を有するガラス(Sガラス)が知られている。前記Sガラスによれば、Eガラス等の汎用ガラスに比較して、高い繊維強度や高い繊維弾性率を備えるガラス繊維を得ることができるが、1000ポイズ温度及び液相温度の点で、ガラス繊維の紡糸が必ずしも容易ではないという問題がある。
 ここで、1000ポイズ温度とは、溶融ガラスの粘度が1000ポイズ(100Pa・s)となる温度をいい、液相温度とは、溶融ガラスの温度を低下させたときに最初に結晶の析出が生じる温度をいう。一般に、ガラス繊維は溶融ガラスの粘度を1000ポイズ付近にした場合に効率的に紡糸可能である。従って、通常、ガラス繊維の紡糸は、1000ポイズ温度と液相温度との間の温度範囲(作業温度範囲)が広いほど容易に、安定に行うことができる。
 Sガラスは、1000ポイズ温度と液相温度とが極めて近く、前記作業温度範囲が狭いため、溶融したガラスがわずかな温度の低下の影響下においても結晶化(失透)しやすい。このため、Sガラスの紡糸を安定に行うためには、ガラス繊維の製造工程において、紡糸条件を精度よく制御する必要がある。
 そこで、Sガラスよりも製造容易で、前記汎用ガラスよりも高い繊維強度や高い繊維弾性率を備えるガラス繊維のためのガラス組成物として、全量に対し、SiOの含有量が57.0~63.0質量%、Alの含有量が19.0~23.0質量%、MgOの含有量が10.0~15.0質量%、CaOの含有量が4.0~11.0質量%であり、且つ、SiO、Al、MgO及びCaOの合計含有量が99.5質量%以上である組成を有するガラス組成物が、本出願人により提案されている(特許文献1参照)。
 特許文献1記載のガラス組成物によれば、1000ポイズ温度及び液相温度を低くすることができ、前記範囲の組成のガラス組成物となるように調合されたガラス原料を溶融した溶融ガラスを紡糸することにより前記汎用ガラスよりも高い繊維強度や高い繊維弾性率を備えるガラス繊維を容易に製造することができる。
 特許文献1記載の範囲の組成のガラス組成物となるように調合されたガラス原料を溶融した溶融ガラスを紡糸する際に、通常は、円形のノズルチップを備えたブッシングが用いられ、該ブッシングは、溶融ガラスの液相温度より高い温度に制御されている。このようにすると、前記円形のノズルチップから吐出された溶融ガラスは、それ自体の表面張力により丸まろうとする作用が強いため、断面形状が真円に近いガラス繊維を容易に得ることができる。また、溶融ガラスの粘度が200ポイズ(20Pa・s)以下となると、ノズルチップから吐出されたガラスが液滴状になり、繊維とならない。このため、前記ブッシングは、溶融ガラスの粘度が200ポイズとなる温度以下で制御されている。
 一方、扁平形状等の異形断面を備えるガラス繊維を得る場合には、扁平形状のノズルチップを備えたブッシングが用いられる。ただし、溶融ガラスを1000ポイズ以下の粘度で紡糸すると、ノズルチップから吐出されたガラスの粘度が低すぎて、それ自体の表面張力により丸まってしまい異形断面のガラス繊維を得ることが困難となる。そこで、扁平形状のノズルチップを備えたブッシングを溶融ガラスの液相温度より高く、且つ粘度が1000ポイズ以上となる温度に制御することが行われている。このようにすると、前記扁平形状のノズルチップから吐出された溶融ガラスの粘度が高くなり、溶融ガラス自体の表面張力が働きにくくなるため、該ノズルチップの開口部の形状に沿う扁平形状等の異形断面を備えるガラス繊維を得ることができる。
国際公開第2011/155362号
 しかしながら、特許文献1記載の範囲の組成のガラス組成物となるように調合されたガラス原料を溶融した溶融ガラスを紡糸すると、得られたガラス繊維に赤色の結晶が混入し、紡糸切断が多発して生産性が低下することが稀に生じるという不都合がある。
 本発明は、かかる不都合を解消して、ガラス繊維に赤色の結晶が混入することなく安定に紡糸を行うことができ、汎用ガラス(Eガラス)よりも高い繊維強度や繊維弾性率を備えたガラス繊維を得ることができるガラス繊維の製造方法を提供することを目的とする。
 本発明者らは、特許文献1記載の範囲の組成のガラス組成物となるように調合されたガラス原料を溶融した溶融ガラスを紡糸したときに、得られたガラス繊維に赤色の結晶が混入する原因及び条件について、鋭意検討した。
 この結果、前記赤色の結晶は、前記ガラス原料を月産数百トン以上の大型炉で溶融し、得られたガラス組成物としての溶融ガラスをブッシングのノズルチップから吐出して、扁平形状等の異形断面を備えるガラス繊維や、繊維径が3μm以上10μm未満の真円状の円形断面を備えるガラス繊維を製造する際に稀に発生することを知見した。
 また、扁平形状等の異形断面を備えるガラス繊維を製造する場合には、紡糸切断や外部環境の温度変動により、ブッシング内端部やノズルチップ付近に温度低下が生じた際に、赤色の結晶が発生することを知見した。
 さらに、繊維径が3μm以上10μm未満の真円状の円形断面を備えるガラス繊維を製造する場合には、ブッシングに流入する前記溶融ガラス量が少ないため、該溶融ガラスが該ブッシングに持ち込む熱量が低下して、制御温度より低い温度域がブッシング内端部やその上部に生じた際に、赤色の結晶が発生することを知見した。
 前記大型炉は、例えばガスバーナーによる間接火炎加熱方式で加熱され、溶融ガラスに接触する部分には、高温におけるガラス耐食性に優れた酸化クロムレンガが使用されている。前記赤色の結晶は、前記酸化クロムレンガに含まれるCr成分が溶融ガラス中に溶出し、該溶融ガラスがブッシング内や上部の温度低下した部分に停滞したときに、溶出したCr成分とガラス中の成分とが反応することによって、スピネル系のCr、Mg、Alの複合酸化物からなる結晶として析出するものと考えられる。
 本発明者らは、前記知見に基づいてさらに検討を重ねた結果、特定のガラス組成物となるように調合されたガラス原料を溶融した溶融ガラスを紡糸してガラス繊維を製造する際に、該ガラス組成物が前記赤色の結晶の発生を抑制可能な添加物を含むことにより、前記不都合を解決することができることを見出し、本発明に到達した。
 そこで、前記目的を達成するために、本発明のガラス繊維の製造方法は、溶融したときに、全量に対し、57.0~62.0質量%の範囲のSiOと、15.0~20.0質量%の範囲のAlと、7.5~12.0質量%の範囲のMgOと、9.0~16.5質量%の範囲のCaOとを含み、且つ、SiO、Al、MgO及びCaOの合計量が98.0質量%以上であるガラス組成物となるように調合されたガラス原料を溶融して得られた溶融ガラスをノズルチップから吐出してガラス繊維を形成するときに、該ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、B、LiO又はBとLiOとを含むことを特徴とする。
 本発明のガラス繊維の製造方法によれば、前記ガラス組成物が上述の範囲のSiO、Al、MgO及びCaOに、さらに前記赤色の結晶の発生を抑制可能な添加物としてB、LiO又はBとLiOとを含むことにより、得られたガラス繊維に赤色の結晶が混入することを防止し、ガラス繊維の製造を安定に行うことができる。
 本発明のガラス繊維の製造方法において、前記ガラス組成物は、その全量に対するSiOの含有量が57.0質量%未満であると得られたガラス繊維の機械的強度を向上させることができず、化学的にも不安定になる。一方、前記ガラス組成物は、その全量に対するSiOの含有量が62.0質量%を超えると1000ポイズ温度及び液相温度が高くなり、ガラス繊維の製造が困難になる。
 前記ガラス組成物は、その全量に対するSiOの含有量を、57.2~60.5質量%の範囲とすることが好ましく、57.5~59.5質量%の範囲とすることがより好ましく、58.0~59.3質量%の範囲とすることがさらに好ましく、58.2~59.0質量%の範囲とすることが特に好ましく、58.5~58.8質量%の範囲とすることが最も好ましい。前記ガラス繊維用ガラス組成物は、このようにすることにより、高い繊維強度を維持しつつ広い作業温度範囲を維持することができるという効果を得ることができる。
 また、前記ガラス組成物は、その全量に対するAlの含有量が15.0質量%未満であると得られたガラス繊維の繊維弾性率を高くすることができず、20.0質量%を超えると液相温度が高くなるため作業温度範囲が狭くなる。また、Alの含有量が20.0質量%を超えると、赤色の結晶物が発生し易くなる。
 前記ガラス組成物は、その全量に対するAlの含有量を、16.8~19.8質量%の範囲とすることが好ましく、18.0~19.5質量%の範囲とすることがより好ましく、18.2~19.0質量%の範囲とすることがさらに好ましい。前記ガラス繊維用ガラス組成物は、このようにすることにより、高い繊維弾性率を維持しつつ赤色の結晶の析出を抑制することができるという効果を得ることができる。
 また、前記ガラス組成物は、その全量に対するMgOの含有量が7.5質量%未満であると得られたガラス繊維の繊維弾性率を高くすることができず、12.0質量%を超えると液相温度が高くなるため作業温度範囲が狭くなる。また、MgOの含有量が12.0質量%を超えると、赤色の結晶物が発生し易くなる。
 前記ガラス組成物は、その全量に対するMgOの含有量を、8.3~11.8質量%の範囲とすることが好ましく、8.8~11.5質量%の範囲とすることがより好ましく、9.0~11.0質量%の範囲とすることがさらに好ましい。前記ガラス繊維用ガラス組成物は、このようにすることにより、高い繊維弾性率を維持しつつ広い作業温度範囲を維持できるという効果を得ることができる。
 また、前記ガラス組成物は、その全量に対するCaOの含有量が9.0質量%未満であると液相温度が高くなるため作業温度範囲が狭くなり、赤色の結晶が発生し易くなる。また、CaOの含有量が16.5質量%を超えると得られたガラス繊維の繊維弾性率を高くすることができず、ガラス繊維の線膨張係数も大きくなる。
 前記ガラス組成物は、その全量に対するCaOの含有量を、9.9~14.4質量%の範囲とすることが好ましく、10.3~12.5質量%の範囲とすることがより好ましく、10.5~12.0質量%の範囲とすることがさらに好ましい。前記ガラス繊維用ガラス組成物は、このようにすることにより、低い線膨張係数を維持しつつ赤色の結晶析出を抑制することができるという効果を得ることができる。
 また、前記ガラス組成物は、その全量に対するSiO、Al、MgO及びCaOの合計量が、98.0質量%未満であると、他の不純物成分の含有量が相対的に多くなる。この結果、作業温度範囲が狭くなり、或いは得られるガラス繊維の繊維強度や繊維弾性率を高くすることができない。前記ガラス組成物の、その全量に対するSiO、Al、MgO及びCaOの合計量は、98.0質量%以上99.5質量%未満であることが好ましく、98.5質量%以上99.0質量%未満であることがより好ましい。前記ガラス組成物は、このようにすることにより、作業温度範囲を広くすることができ、得られたガラス繊維の繊維強度や繊維弾性率を高くすることができる。
 前記ガラス組成物が含みうる主な不純物成分は、NaO、KO及びFeである。これらは合計で、ガラス組成物の全量に対して0.1~2.0質量%含まれうる。作業温度範囲を広くし、また、得られるガラス繊維の繊維強度や繊維弾性率を高めるためには、NaO、KO及びFeの合計量が、ガラス組成物の全量に対して0.1~0.5質量%に抑制されることが好ましい。
 本発明のガラス繊維の製造方法は、前記ガラス繊維が、断面形状の短径に対する長径の比(長径/短径)が2.0~6.0の範囲にあるか、又は断面積を真円に換算したときの繊維径が10~30μmの範囲にある異形断面を備える場合に好適に用いることができる。前記ガラス繊維は、断面形状の短径に対する長径の比(長径/短径)が2.0~6.0の範囲にあり、且つ、断面積を真円に換算したときの繊維径が10~30μmの範囲にあってもよい。
 ここで、異形断面を備えるガラス繊維がとる断面形状としては、長円形(長方形の両端に半円状の形状を付けたもの、あるいはそれに類似した形状をいう)、楕円形、長手方向の中央部がくびれた繭形を挙げることができ、このガラス繊維を含む樹脂成形品を製造する際の流動性に優れることから、長円形であることが好ましい。
 本発明のガラス繊維の製造方法によれば、前記ガラス繊維が前記異形断面を備える場合に、得られたガラス繊維に赤色の結晶が混入することを防止して、ガラス繊維の製造を安定に行うことができる。
 また、本発明のガラス繊維の製造方法は、前記ガラス繊維が、真円状の円形断面を備え、繊維径が3μm以上10μm未満の範囲にある場合にも適している。本発明のガラス繊維の製造方法によれば、前記ガラス繊維が前記真円状の円形断面を備え、その繊維径が前記範囲にある場合にも、得られたガラス繊維に赤色の結晶が混入することを防止して、ガラス繊維の製造を安定に行うことができる。
 さらに、本発明のガラス繊維の製造方法は、前記ガラス組成物となるように調合されたガラス原料が、前記溶融ガラスに接触する部分が酸化クロムを含むレンガからなる溶融炉を用いて溶融される場合に好適に用いることができる。本発明のガラス繊維の製造方法によれば、前記ガラス組成物が、前記酸化クロムレンガが用いられている前記溶融炉を用いて溶融される場合にも、得られたガラス繊維に赤色の結晶が混入することを防止して、ガラス繊維の製造を安定に行うことができる。
 本発明のガラス繊維の製造方法において、前記赤色の結晶の発生を抑制可能な添加物としては、B又はLiOのいずれかを単独で、又はBとLiOとの混合物を用いることができ、前記ガラス組成物は、赤色の結晶の発生を抑制可能な添加物を、全量に対し0.5~1.5質量%の範囲で含むことが好ましい。
 また、本発明のガラス繊維の製造方法によれば、前記ガラス組成物の全量に対するSiO、Al、MgO及びCaOの含有量を上述の範囲とすることにより、前記範囲の量の前記赤色の結晶の発生を抑制可能な添加物を添加したときにも、汎用ガラス(Eガラス)よりも高い繊維強度や高い繊維弾性率を備えるガラス繊維を製造することができる。
 前記ガラス組成物は、前記赤色の結晶の発生を抑制可能な添加物の含有量が、全量に対して0.5質量%未満であると、得られたガラス繊維に前記赤色の結晶が混入することを防止できないことがあり、1.5質量%を超えると得られたガラス繊維の物性を損なうことがある。
 前記ガラス組成物は、前記赤色の結晶の発生を抑制可能な添加物を全量に対して0.6~1.4質量%の範囲で含むことが好ましく、0.7~1.3質量%の範囲で含むことがより好ましく、0.8~1.2質量%の範囲で含むことがさらに好ましく、0.9~1.1質量%の範囲で含むことが特に好ましい。
 前記赤色の結晶の発生を抑制可能な添加物は、このような範囲にすることにより、得られたガラス繊維において、高い繊維弾性率を維持しつつ赤色の結晶の発生を抑制することができるという効果を得ることができる。
 また、前記赤色の結晶の発生を抑制可能な成分として、BとLiOとの添加物を用いる場合、Bの含有率(質量%)に対するLiOの含有率(質量%)の比(LiO(質量%)/B(質量%))は、0~1.0の範囲であることが好ましい。Bの含有率(質量%)に対するLiOの含有率(質量%)の比をこのような範囲にすることにより、得られたガラス繊維において、高い繊維強度や低い線膨張係数を維持する効果を得ることができる。
 また、前記ガラス組成物は、赤色の結晶の発生を抑制可能な添加物の含有率(質量%)とCaOの含有率(質量%)との積と、Alの含有率(質量%)との比((赤色の結晶の発生を抑制可能な添加物(質量%)×CaO(質量%))/Al(質量%))が、0.25~1.00の範囲であることが好ましい。特に、Alの含有率が19.5質量%以下の場合においては、(赤色の結晶の発生を抑制可能な添加物(質量%)×CaO(質量%))/Al(質量%)は、0.28~0.95の範囲であることがより好ましい。さらに、Alの含有率が19.5質量%以下の場合においては、Bの含有率(質量%)に対するLiOの含有率(質量%)の比(LiO(質量%)/B(質量%))が、0~1.0の範囲であり、且つ、(赤色の結晶の発生を抑制可能な添加物(質量%)×CaO(質量%))/Al(質量%)が0.28~0.64の範囲であることが特に好ましい。前記赤色の結晶の発生を抑制可能な添加物の含有率(質量%)とCaOの含有率(質量%)との積と、Alの含有率(質量%)との比をこのような範囲にすることにより、得られたガラス繊維において、高い繊維強度と繊維弾性率とを維持しつつ、赤色の結晶の発生を抑制することができるという効果を得ることができる。
 尚、本発明のガラス組成物において、上述した各成分の含有率の測定は、軽元素であるB又はLiについてはICP発光分光分析装置を用いて、その他の元素は波長分散型蛍光X線分析装置を用いて行うことができる。
 測定方法としては、初めにガラスバッチ(ガラス原料を混合して調合したもの)、又は、ガラス繊維(ガラス繊維表面に有機物が付着している場合、又は、ガラス繊維が有機物(樹脂)中に主に強化材として含まれている場合には、例えば、300~600℃のマッフル炉で2~24時間程度加熱する等して、有機物を除去してから用いる)を白金ルツボに入れ、電気炉中で1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得る。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した後、粉砕し粉末化する。軽元素であるBについてはガラス粉末をアルカリ溶融分解し、Liについてはガラス粉末を酸溶解した後、ICP発光分光分析装置を用いて定量分析する。その他の元素はガラス粉末をプレス機で円盤状に成形した後、波長分散型蛍光X線分析装置を用いて定量分析する。これらの定量分析結果を酸化物換算して各成分の含有量及び全量を計算し、これらの数値から上述した各成分の含有率を求めることができる。
 前記赤色の結晶の発生を抑制可能な添加物は、前記ガラス原料を調合する際に同時に添加する。
 本発明のガラス繊維の製造方法において、前記ガラス組成物は、1000ポイズ温度が1300~1370℃の範囲の温度であり、液相温度が1200~1270℃の範囲の温度であることが好ましい。
 前記ガラス組成物は、1000ポイズ温度が1300~1370℃の範囲の温度であり、液相温度が1200~1270℃の範囲の温度であり、作業温度範囲が50℃以上であることにより、安定した紡糸が可能になり、月産数百トン以上といったガラス繊維の大規模製造に適する。
 また、本発明のガラス繊維の製造方法において、前記ガラス組成物から製造されたガラス繊維は、繊維弾性率が80GPa以上であり、繊維強度が4.0GPa以上であることが好ましい。本発明のガラス繊維の製造方法によれば、前記繊維弾性率、繊維強度を前記範囲とすることにより、汎用ガラス(Eガラス)よりも高い繊維強度や高い繊維弾性率を備えるガラス繊維を得ることができる。
実施例1のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例2のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例3のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例4のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例5のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例6のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例7のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例8のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例9のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例10のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例11のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例12のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例13のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 実施例14のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例1のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例2のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例3のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例4のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例5のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例6のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。 比較例7のガラス組成物から得られたガラスにおける赤色の結晶の析出の有無を示すレーザー顕微鏡写真。
 次に、本発明の実施の形態についてさらに詳しく説明する。
 本実施形態のガラス繊維の製造方法では、まず、溶融したときに、全量に対し、57.0~62.0質量%の範囲のSiOと、15.0~20.0質量%の範囲のAlと、7.5~12.0質量%の範囲のMgOと、9.0~16.5質量%の範囲のCaOと、0.5~1.5質量%の範囲の赤色の結晶の発生を抑制可能な成分とを含み、且つ、SiO、Al、MgO及びCaOの合計量が98.0質量%以上の組成を有するガラス組成物となるように、ガラス原料を調合してガラスバッチを得る。前記赤色の結晶の発生を抑制可能な添加物(以下、赤色結晶抑制添加物と略記する)は、B又はLiOのいずれかを単独で、又はBとLiOとの混合物を用いることができる。
 前記組成を備えるガラス組成物は、1000ポイズ温度が1300~1370℃の範囲の温度であり、液相温度が1200~1270℃の範囲の温度である。
 次に、前記ガラスバッチを溶融炉に供給し、前記1000ポイズ温度以上の温度域、具体的には1450~1550℃の範囲の温度で溶融する。そして、前記温度に溶融された溶融ガラスを所定の温度に制御されたブッシングのノズルチップから吐出し、高速で巻き取ることにより引き伸ばしながら冷却し、固化することによりガラス繊維を形成する。
 前記溶融炉は、月産数百トン以上の大型炉であり、例えばガスバーナーによる間接火炎加熱方式で加熱され、溶融ガラスに接触する部分には、高温におけるガラス耐食性に優れた酸化クロムレンガが使用されている。
 また、前記ノズルチップは、例えば、扁平形状等の異形断面を備えるガラス繊維を製造する場合には、ブッシング底面のノズルプレートに、短径に対する長径の比(長径/短径)が2~10の範囲にあり、開口径が長径1.0~10.0mm、短径0.5~2.0mmである開口部(オリフィス孔)及び、開口部を通過した溶融ガラスを急冷するための切欠部や突起部といった冷却手段を備えるものを用いることができる。
 また、前記ノズルチップは、例えば、真円状の円形断面を備え、繊維径が3μm以上10μm未満のガラス繊維を製造する場合には、開口径が0.5~1.5mmである円形の開口部を備えるものを用いることができる。
 前記扁平形状等の異形断面を備えるガラス繊維を製造する場合、前記ブッシングの制御温度は、1260~1370℃である。前記ブッシングの制御温度が、1260℃未満では前記溶融ガラスの粘性が極めて高く、加えて、液相温度に近づくためガラス由来の結晶(失透)が析出しやすくなるため、ノズルチップからの吐出が困難となりガラス繊維の製造自体が困難になる。また、前記ブッシングの制御温度が1370℃を超えると、溶融ガラスの粘度が低くなり表面張力が作用しやすくなるので、前記扁平形状等の異形断面を備えるガラス繊維を得ることができない。
 一方、前記真円状の円形断面を備え繊維径が3μm以上10μm未満のガラス繊維を製造する場合、前記ブッシングの制御温度は、1300~1470℃である。前記ブッシングの制御温度が1300℃未満では溶融ガラスの粘性が高くなるため、細いノズルチップからの吐出が困難となり、ガラス繊維の製造自体が困難になる。また、前記ブッシングの制御温度が1470℃を超えると、ノズルチップから吐出した溶融ガラスが液滴状となり繊維とならない。
 本実施形態の製造方法では、前述のようにすることにより、前記扁平形状等の異形断面を備えるガラス繊維又は、真円状の円形断面を備え繊維径が3μm以上10μm未満のガラス繊維に赤色の結晶が混入することなく安定に紡糸を行うことができる。
 前記異形断面を備えるガラス繊維は、断面形状の短径に対する長径の比(長径/短径)が2.0~6.0の範囲にあるか、又は断面積を真円に換算したときの繊維径が10~30μmの範囲にあるものとすることができる。前記異形断面を備えるガラス繊維は、断面形状の短径に対する長径の比が2.0~6.0の範囲にあり、且つ、断面積を真円に換算したときの繊維径が10~30μmの範囲にあるものであってもよい。
 次に、本発明の実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、溶融したときに、全量に対し、SiOを59.3質量%、Alを19.0質量%、MgOを10.0質量%、CaOを11.0質量%、Bを0.5質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合してガラスバッチを得た。本実施例のガラス組成物は、SiO、Al、MgO及びCaOの合計量が99.3質量%となっている。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
 次に、前記ガラスバッチを白金ルツボに入れ、電気炉中、1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得た。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した。このとき前記溶融ガラスの1000ポイズ温度と液相温度とを測定し、作業温度範囲(ΔT)を算出した。
 1000ポイズ温度は、回転粘度計付高温電気炉(芝浦システム株式会社製)を用い、白金ルツボ中でガラスカレットを溶融し、回転式ブルックフィールド型粘度計を用いて溶融温度を変化させながら連続的に溶融ガラスの粘度を測定し、回転粘度が1000ポイズのときに対応する温度を測定することにより求めた。
 また、液相温度は、以下の手順により求めた。まず、ガラスカレットを粉砕し、粒径0.5~1.5mmのガラス粒子40gを180×20×15mmの白金製ボートに入れ、1000~1400℃の温度勾配を設けた管状電気炉で8時間以上加熱した後、該管状電気炉から取り出し、偏光顕微鏡で観察して、ガラス由来の結晶(失透)が析出し始めた位置を特定した。管状電気炉内の温度をB熱電対を用いて実測し、析出が開始した位置の温度を求めて液相温度とした。
 また、上述の方法で測定した1000ポイズ温度と液相温度との差を作業温度範囲(ΔT)として算出した。
 次に、得られたガラスカレットを容器底部に1つの円形ノズルチップを有する小型の筒型白金製ブッシング内に入れ、所定の温度に加熱して溶融したのち、ノズルチップから吐出した溶融ガラスを所定の速度で巻き取ることにより引き伸ばしながら冷却固化して、真円状の円形断面を備え、繊維径13μmのガラス繊維を得た。
 次に、ノズルチップと巻き取り機の間の一本の繊維(モノフィラメント)を採取し、接触や摩擦による劣化のない状態のものをサンプルとして、本実施例で得られたガラス繊維の繊維強度、繊維弾性率を測定した。
 繊維強度は、接触、摩擦等による傷、劣化等のないモノフィラメントを、中央に直径25mmの穴の開いた所定の台紙に接着して試験片とし、該試験片を引張試験機(株式会社オリエンテック製)のつかみ具にセットし、台紙の端部を切除した後、クロスヘッド速度5mm/分で引張試験を行い、破断時の最大荷重値と繊維断面積から算出した。前記繊維断面積は、走査型電子顕微鏡(日立株式会社製、商品名:S-3400)にてモノフィラメントを観察して得られた繊維径から算出した。測定中に糸抜けや糸折れが生じた試験片は除外し、n=30の平均値を繊維強度の測定値とした。
 繊維弾性率は、前記モノフィラメントを、中央に直径50mmの穴の開いた所定の台紙に接着して試験片とし、該試験片を前記引張試験機のつかみ具にセットし、台紙の端部を切除した後、クロスヘッド速度5mm/分で引張試験を行い、初期の強度変動値とそれに対応する伸び率から算出した。測定中に糸抜けが生じた試験片は除外し、n=15の平均値を繊維弾性率の測定値とした。結果を表1に示す。
 次に、本実施例では、ガラス繊維製造において、稀に生じる赤色の結晶が発生する状況を再現することにより、前記ガラス組成物及び前記赤色結晶抑制成分と赤色の結晶との関係性を検証した。
 本実施例では、赤色の結晶が発生する状況を再現するために、前記ガラス組成物にCrを添加するが、このCrの添加量は、溶融ガラスに接触する部分が前記酸化クロムレンガからなるガラス溶融炉内に滞留しているガラス塊に含まれるCrの最大濃度に基づいている。前記ガラス塊には、前記酸化クロムレンガから長時間をかけて溶出したCrが凝縮しているため、前記溶融炉を短時間で通過して繊維化される溶融ガラスが含み得るCr濃度は、該ガラス塊中のCrの最大濃度を超えることはない。
 そこで、次に、本実施例のガラス組成物の全量に対し、0.10質量%の酸化クロム(Cr)を含むようにガラスバッチを調合した。次に、前記酸化クロムを含むガラスバッチを白金製ルツボに入れ、電気炉中、1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得た。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した。
 得られたガラスカレット40gを60×30×15mmの白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、ブッシングの制御温度より低い1250℃に降温して12時間保持した。次に、前記白金製ボートからガラスを取り除き、白金表面上の該ガラスとの界面部分をレーザー顕微鏡(オリンパス株式会社製、商品名:レーザー走査型顕微鏡 LEXT OLS)を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図1に示す。
 尚、顕微鏡倍率200倍の視野(1.30×1.05mm)で10μm以上の結晶物が5個以下であるときに、赤色結晶の析出が無いと判定した。
 〔実施例2〕
 本実施例では、溶融したときに、全量に対し、SiOを58.8質量%、Bを1.0質量%含むガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、得られたガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図2に示す。
 〔実施例3〕
 本実施例では、溶融したときに、全量に対し、SiOを58.3質量%、Bを1.5質量%含むガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図3に示す。
 〔実施例4〕
 本実施例では、溶融したときに、全量に対し、SiOを59.2質量%、LiOを0.6質量%含み、Bを全く含まないガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図4に示す。
 〔実施例5〕
 本実施例では、溶融したときに、全量に対し、SiOを58.8質量%、LiOを1.0質量%含み、Bを全く含まないガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図5に示す。
 〔実施例6〕
 本実施例では、溶融したときに、全量に対し、SiOを58.9質量%、Bを0.6質量%、LiOを0.3質量%含むガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラス組成物は、全量に対して、BとLiOとをその混合物として0.9質量%含んでいる。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図6に示す。
 〔実施例7〕
 本実施例では、溶融したときに、全量に対し、SiOを59.6質量%、Alを18.2質量%、MgOを9.2質量%、CaOを11.8質量%、Bを0.9質量%、LiOを0.1質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラス組成物は、全量に対して、BとLiOとをその混合物として1.0質量%含んでいる。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表1に示す。
次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表1に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図7に示す。
 〔実施例8〕
 本実施例では、溶融したときに、全量に対し、SiOを58.8質量%、Alを19.5質量%、MgOを9.0質量%、CaOを12.0質量%、Bを0.5質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図8に示す。
 〔実施例9〕
 本実施例では、溶融したときに、全量に対し、SiOを58.8質量%、Alを19.0質量%、MgOを9.0質量%、CaOを12.0質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図9に示す。
 〔実施例10〕
 本実施例では、溶融したときに、全量に対し、SiOを58.8質量%、Alを18.5質量%、MgOを9.0質量%、CaOを12.0質量%、Bを1.5質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例のガラス組成物の1000ポイズ温度、液相温度、作業温度範囲と、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図10に示す。
 〔実施例11〕
 本実施例では、溶融したときに、全量に対し、SiOを62.0質量%、Alを16.0質量%、MgOを8.8質量%、CaOを12.0質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図11に示す。
 〔実施例12〕
 本実施例では、溶融したときに、全量に対し、SiOを59.0質量%、Alを18.0質量%、MgOを8.0質量%、CaOを13.8質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図12に示す。
 〔実施例13〕
 本実施例では、溶融したときに、全量に対し、SiOを58.3質量%、Alを18.0質量%、MgOを9.0質量%、CaOを13.5質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図13に示す。
 〔実施例14〕
 本実施例では、溶融したときに、全量に対し、SiOを59.8質量%、Alを20.0質量%、MgOを8.0質量%、CaOを11.0質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本実施例のガラスバッチを溶融して得られたガラス組成物の組成を表2に示す。
 次に、本実施例のガラスバッチを用いた以外は実施例1と全く同一にしてガラスカレットを作製し、該ガラスカレットを用いた以外は実施例1と全く同一にしてガラス繊維を紡糸した。次に、実施例1と全く同一にして、本実施例で得られたガラス繊維(モノフィラメント)の繊維強度、繊維弾性率とを測定した。結果を表2に示す。
 次に、本実施例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図14に示す。
 〔比較例1〕
 本比較例では、溶融したときに、全量に対し、SiOを59.8質量%含み、Bを全く含まないガラス組成物の溶融物(溶融ガラス)となるようにガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図15に示す。
 〔比較例2〕
 本比較例では、Bに代えてNaOを用いた以外は、実施例2と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図16に示す。
 〔比較例3〕
 本比較例では、Bに代えてKOを用いた以外は、実施例2と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図17に示す。
 〔比較例4〕
 本比較例では、Bに代えてSrOを用いた以外は、実施例2と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図18に示す。
 〔比較例5〕
 本比較例では、Bに代えてYを用いた以外は、実施例2と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図19に示す。
 〔比較例6〕
 本比較例では、溶融したときに、全量に対し、SiOを61.0質量%、Alを20.0質量%、MgOを12.0質量%、CaOを5.8質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図20に示す。
 〔比較例7〕
 本比較例では、溶融したときに、全量に対し、SiOを57.1質量%、Alを20.7質量%、MgOを12.0質量%、CaOを9.0質量%、Bを1.0質量%、その他の成分としてNaO、KO及びFeを0.2質量%含むガラス組成物の溶融物(溶融ガラス)となるように、ガラス原料を調合した以外は、実施例1と全く同一にしてガラスバッチを得た。本比較例のガラスバッチを溶融して得られたガラス組成物の組成を表3に示す。
 次に、本比較例で得られたガラスバッチを用いた以外は、実施例1と全く同一にして酸化クロムを含むガラスカレットを作製し、該ガラスカレットを実施例1と全く同一にして白金製ボートに入れ、電気炉中1550℃で2時間溶融した後、1250℃に降温して12時間保持した。次に、実施例1と全く同一にして、白金表面上の該ガラスとの界面部分をレーザー顕微鏡を用いて倍率200倍で観察し、赤色結晶の析出の有無を調べた。結果を図21に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 図15~19及び表3から、B及びLiOを全く含有しない(比較例1)か、B又はLiOに代えて、Na、KO、SrO、Yのいずれか1種を含む場合(比較例2~5)には、白金表面上のガラスとの界面部分に微小な粒子(赤色の結晶)が生じていることがわかる。
 これに対し、図1~14及び表1~2から、B、LiOのいずれか、又はBとLiOとの混合物を、ガラス組成物の全量の0.5~1.5質量%の範囲で含む場合(実施例1~7)には、白金表面上のガラスとの界面部分に微小な粒子(赤色の結晶)が全く生じていないことがわかる。
 しかしながら、図20~21及び表3から、Bをガラス組成物の全量の1.0質量%含んでいても、CaOの含有量が9.0質量%未満である(比較例6)か、Alの含有量が20.0質量%を超える(比較例7)場合には、白金表面上のガラスとの界面部分に微小な粒子が生じており、赤色の結晶の発生を抑制できていないことがわかる。
 従って、本発明の製造方法によれば、実施例1~14のガラス組成物を用いることにより、ガラス繊維に赤色の結晶が混入することなく安定に紡糸を行うことができることが明らかである。
 また、表1~2から、本発明の製造方法によれば、80GPa以上の十分な繊維弾性率と、4.0GPa以上の十分な繊維強度とを備えるガラス繊維を得ることができることが明らかである。
 〔実施例15〕
 本実施例では、実施例1で得られたガラスバッチを、溶融ガラスに接触する部分が酸化クロムレンガからなる大型溶融炉で溶融し、得られた溶融ガラスを、1300℃の温度に調整されたブッシングのノズルチップから吐出させた。前記ノズルチップは長円形状のオリフィス孔を有する。
 この結果、断面形状が長円形であり、断面形状の短径に対する長径の比(長径/短径)が4である異形断面を備えるガラス繊維を得た。
 得られた異形断面を備えるガラス繊維には、赤色の結晶が含まれず、8時間以上にわたり紡糸切断が生じずに紡糸を行うことができた。
 〔実施例16〕
 本実施例では、実施例1で得られたガラスバッチを、溶融ガラスに接触する部分が酸化クロムレンガからなる大型溶融炉で溶融し、得られた溶融ガラスを、1350℃の温度に調整されたブッシングのノズルチップから吐出させた。前記ノズルチップは直径1mmの円形状のオリフィス孔を有する。
 この結果、断面形状が円形であり、繊維径が5μmであるガラス繊維を得た。
 得られた断面形状が円形であり、繊維径が5μmのガラス繊維には、赤色の結晶が含まれず、8時間以上にわたり紡糸切断が生じずに紡糸を行うことができた。

Claims (9)

  1.  溶融したときに、全量に対し、57.0~62.0質量%の範囲のSiOと、15.0~20.0質量%の範囲のAlと、7.5~12.0質量%の範囲のMgOと、9.0~16.5質量%の範囲のCaOとを含み、且つ、SiO、Al、MgO及びCaOの合計量が98.0質量%以上であるガラス組成物となるように調合されたガラス原料を溶融して得られた溶融ガラスをノズルチップから吐出してガラス繊維を形成するときに、該ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、B、LiO又はBとLiOとを含むことを特徴とするガラス繊維の製造方法。
  2.  請求項1記載のガラス繊維の製造方法において、前記ガラス繊維は、断面形状の短径に対する長径の比(長径/短径)が2.0~6.0の範囲にある異形断面を備えることを特徴とするガラス繊維の製造方法。
  3.  請求項1又は請求項2記載のガラス繊維の製造方法において、前記ガラス繊維は、断面積を真円に換算したときの繊維径が10~30μmの範囲にある異形断面を備えることを特徴とするガラス繊維の製造方法。
  4.  請求項1記載のガラス繊維の製造方法において、前記ガラス繊維は、真円状の円形断面を備え、繊維径が3μm以上10μm未満の範囲にあることを特徴とするガラス繊維の製造方法。
  5.  請求項1~請求項4のいずれか1項記載のガラス繊維の製造方法において、前記ガラス組成物となるように調合されたガラス原料は、前記溶融ガラスに接触する部分が酸化クロムを含むレンガからなる溶融炉を用いて溶融されることを特徴とするガラス繊維の製造方法。
  6.  請求項1~請求項5のいずれか1項記載のガラス繊維の製造方法において、前記ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、全量に対し0.5~1.5質量%のBを含むことを特徴とするガラス繊維の製造方法。
  7.  請求項1~請求項5のいずれか1項記載のガラス繊維の製造方法において、前記ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、全量に対し0.5~1.5質量%のLiOを含むことを特徴とするガラス繊維の製造方法。
  8.  請求項1~請求項5のいずれか1項記載のガラス繊維の製造方法において、前記ガラス組成物は、赤色の結晶の発生を抑制可能な添加物として、全量に対し0.5~1.5質量%のBとLiOとを含むことを特徴とするガラス繊維の製造方法。
  9.  請求項1~請求項8のいずれか1項記載のガラス繊維の製造方法において、前記ガラス組成物は、1000ポイズ温度が1300~1370℃の範囲の温度であり、液相温度が1200~1270℃の範囲の温度であり、作業温度範囲が50℃以上であることを特徴とするガラス繊維の製造方法。
PCT/JP2015/073630 2015-08-21 2015-08-21 ガラス繊維の製造方法 WO2017033245A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2015/073630 WO2017033245A1 (ja) 2015-08-21 2015-08-21 ガラス繊維の製造方法
EP15902216.9A EP3339264B1 (en) 2015-08-21 2015-08-21 Glass fiber production method
CN201580082493.0A CN107922252B (zh) 2015-08-21 2015-08-21 玻璃纤维的制造方法
US15/752,717 US11040908B2 (en) 2015-08-21 2015-08-21 Glass fiber production method
KR1020187000616A KR102421591B1 (ko) 2015-08-21 2015-08-21 유리 섬유의 제조방법
JP2017536086A JP6642579B2 (ja) 2015-08-21 2015-08-21 ガラス繊維の製造方法
TW105124782A TWI685474B (zh) 2015-08-21 2016-08-04 玻璃纖維之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073630 WO2017033245A1 (ja) 2015-08-21 2015-08-21 ガラス繊維の製造方法

Publications (1)

Publication Number Publication Date
WO2017033245A1 true WO2017033245A1 (ja) 2017-03-02

Family

ID=58100176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073630 WO2017033245A1 (ja) 2015-08-21 2015-08-21 ガラス繊維の製造方法

Country Status (7)

Country Link
US (1) US11040908B2 (ja)
EP (1) EP3339264B1 (ja)
JP (1) JP6642579B2 (ja)
KR (1) KR102421591B1 (ja)
CN (1) CN107922252B (ja)
TW (1) TWI685474B (ja)
WO (1) WO2017033245A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142871A (ja) * 1995-11-24 1997-06-03 Nippon Electric Glass Co Ltd ガラス繊維製造装置
JP2006527158A (ja) * 2003-06-11 2006-11-30 サン−ゴバン ベトロテックス フランス ソシエテ アノニム 有機及び/又は無機材料の強化に適したガラス糸、この糸を含む複合体、及びこの糸に用いられる組成物
JP2008524100A (ja) * 2004-12-16 2008-07-10 サン−ゴバン ベトロテックス フランス 有機及び/又は無機材料を強化し得るガラスストランド
JP2008230949A (ja) * 2007-02-23 2008-10-02 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維、ガラス繊維の製造方法、及び可視光透過複合材
WO2012086470A1 (ja) * 2010-12-21 2012-06-28 日東紡績株式会社 ガラス溶融装置、ガラス繊維製造装置およびガラス繊維製造方法
JP2012531373A (ja) * 2009-07-02 2012-12-10 チョンチン ポリコンプ インターナショナル コーポレイション 高強度高弾性ガラス繊維
JP2013500939A (ja) * 2009-08-04 2013-01-10 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 弾性率が改善されたリチウムを含まないガラス
WO2013084895A1 (ja) * 2011-12-06 2013-06-13 日東紡績株式会社 非円形の断面形状を備えるガラス繊維及びそれを用いる繊維強化樹脂成形体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391924A (en) * 1977-01-21 1978-08-12 Kanebo Ltd Alkaliiproof glass composition and alkaliiproof glass fiber
US4812372A (en) * 1988-01-25 1989-03-14 Owens-Corning Fiberglas Corporation Refractory metal substrate and coatings therefor
EP1348723A3 (en) * 1995-01-24 2004-09-29 E.I. Du Pont De Nemours And Company Alpha-olefins and olefin polymers and processes for their preparation
CN101838110B (zh) * 2010-05-19 2014-02-26 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
JP5152437B2 (ja) 2010-06-08 2013-02-27 日東紡績株式会社 ガラス繊維
ES2574309T3 (es) * 2010-06-30 2016-06-16 Ocv Intellectual Capital, Llc Composición de vidrio para producir fibras de elevada resistencia y módulo elevado
US9783454B2 (en) * 2010-12-22 2017-10-10 Agy Holding Corp. High strength glass composition and fibers
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
LT3191421T (lt) * 2014-09-09 2020-08-10 Electric Glass Fiber America, LLC Stiklo kompozicijos, pluoštinio stiklo gamybai skirto stiklo kompozicijos, ir iš jų pagaminti pluoštai

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142871A (ja) * 1995-11-24 1997-06-03 Nippon Electric Glass Co Ltd ガラス繊維製造装置
JP2006527158A (ja) * 2003-06-11 2006-11-30 サン−ゴバン ベトロテックス フランス ソシエテ アノニム 有機及び/又は無機材料の強化に適したガラス糸、この糸を含む複合体、及びこの糸に用いられる組成物
JP2008524100A (ja) * 2004-12-16 2008-07-10 サン−ゴバン ベトロテックス フランス 有機及び/又は無機材料を強化し得るガラスストランド
JP2008230949A (ja) * 2007-02-23 2008-10-02 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維、ガラス繊維の製造方法、及び可視光透過複合材
JP2012531373A (ja) * 2009-07-02 2012-12-10 チョンチン ポリコンプ インターナショナル コーポレイション 高強度高弾性ガラス繊維
JP2013500939A (ja) * 2009-08-04 2013-01-10 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 弾性率が改善されたリチウムを含まないガラス
WO2012086470A1 (ja) * 2010-12-21 2012-06-28 日東紡績株式会社 ガラス溶融装置、ガラス繊維製造装置およびガラス繊維製造方法
WO2013084895A1 (ja) * 2011-12-06 2013-06-13 日東紡績株式会社 非円形の断面形状を備えるガラス繊維及びそれを用いる繊維強化樹脂成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3339264A4 *

Also Published As

Publication number Publication date
TW201726576A (zh) 2017-08-01
EP3339264A1 (en) 2018-06-27
KR20180042215A (ko) 2018-04-25
EP3339264A4 (en) 2019-04-03
KR102421591B1 (ko) 2022-07-15
JPWO2017033245A1 (ja) 2018-06-07
US11040908B2 (en) 2021-06-22
JP6642579B2 (ja) 2020-02-05
CN107922252A (zh) 2018-04-17
CN107922252B (zh) 2021-07-09
TWI685474B (zh) 2020-02-21
US20180237335A1 (en) 2018-08-23
EP3339264B1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
JP5988013B1 (ja) ガラス繊維用ガラス組成物
Anderegg Strength of glass fires
FR2596387A1 (fr) Fibres de verre a faible constante dielectrique
FR2651223A1 (fr) Verre resistant aux alcalis pour la fabrication de fibres de verre.
WO2018123327A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP2021536529A (ja) 繊維形成プレートのための合金
WO2017033245A1 (ja) ガラス繊維の製造方法
JP2019119615A (ja) ガラスの製造方法
US20220212980A1 (en) Glass composition for glass fiber
JP6990249B2 (ja) 繊維形成用プレートのための合金
JP2020100538A (ja) ガラス製造用混合原料及びこれを用いたガラスの製造方法
JPH08231240A (ja) 高強度ガラス繊維用組成物
US4234342A (en) Glass composition
JP2017226582A (ja) ガラス繊維の製造方法
JP2016117627A (ja) ガラス繊維の製造方法
JP5582381B2 (ja) オキシナイトライドガラス繊維およびその製造方法
JP2016113349A (ja) ガラス繊維ガラス組成物、ガラス繊維及びガラス繊維の製造方法
KR810000742B1 (ko) 유리 조성물
JP2016113339A (ja) ガラス繊維ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP2004115931A (ja) 無機繊維製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187000616

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017536086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15752717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE