WO2017030122A1 - イオン液体、潤滑剤及び磁気記録媒体 - Google Patents

イオン液体、潤滑剤及び磁気記録媒体 Download PDF

Info

Publication number
WO2017030122A1
WO2017030122A1 PCT/JP2016/073919 JP2016073919W WO2017030122A1 WO 2017030122 A1 WO2017030122 A1 WO 2017030122A1 JP 2016073919 W JP2016073919 W JP 2016073919W WO 2017030122 A1 WO2017030122 A1 WO 2017030122A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
hydrocarbon group
acid
bis
ionic liquid
Prior art date
Application number
PCT/JP2016/073919
Other languages
English (en)
French (fr)
Inventor
近藤 洋文
弘毅 初田
信郎 多納
パンカジュ バヘル
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016057804A external-priority patent/JP6780945B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US15/753,231 priority Critical patent/US20180237713A1/en
Publication of WO2017030122A1 publication Critical patent/WO2017030122A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • G11B5/7253Fluorocarbon lubricant
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/15Six-membered rings
    • C07D285/16Thiadiazines; Hydrogenated thiadiazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/70Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/72Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated

Definitions

  • the present invention relates to an ionic liquid, a lubricant containing the ionic liquid, and a magnetic recording medium using the same.
  • a lubricant is applied to the surface of the magnetic layer in order to reduce friction and wear on the magnetic head and the medium surface.
  • the actual film thickness of the lubricant is at the molecular level in order to avoid adhesion such as stiction. Therefore, in thin film magnetic recording media, it is no exaggeration to say that the most important thing is the selection of a lubricant having excellent wear resistance under all circumstances.
  • the lubricant be present on the surface of the medium without causing desorption, spin-off, chemical degradation, and the like.
  • the presence of the lubricant on the medium surface becomes more difficult as the surface of the thin film magnetic recording medium becomes smoother. This is because the thin film magnetic recording medium does not have a lubricant replenishment capability unlike the coating type magnetic recording medium.
  • the lubricant film thickness decreases during heating and sliding, which accelerates wear and requires a large amount of lubricant. It is said. A large amount of lubricant becomes a mobile lubricant and can have a function of replenishing the lost lubricant. However, the excess lubricant makes the film thickness of the lubricant larger than the surface roughness, causing problems related to adhesion, and in the fatal case, it becomes a stiction and causes drive failure. There is.
  • Non-Patent Document 1 the increase rate of the in-plane recording density of the product hard disk drive has been decreasing for the past several years, but it has achieved an annual rate of 25%, which is one target of 4Tb. / In 2 is about to arrive.
  • FIG. 2 it can be seen that the distance between the head disk interfaces is decreasing with the increase in recording density, but there is always a need to improve the reliability. This is described, for example, in Non-Patent Documents 2 to 4 below.
  • the current recording density is about 1 Tb / in 2
  • the spacing is about 6 nm
  • the lubricant thickness is 0.8 nm.
  • the thickness of the lubricant must be reduced. Don't be.
  • PFPE perfluoropolyether
  • a new lubricant is molecularly designed and synthesized in order to eliminate these trade-offs.
  • Many reports on the lubricity of PFPE have been submitted.
  • the lubricant is very important in the magnetic recording medium.
  • Table 1 shows the chemical structure of a typical PFPE lubricant.
  • Z-DOL in Table 1 is one of the commonly used lubricants for thin film magnetic recording media.
  • Z-tetraol (ZTMD) is one in which a functional hydroxyl group is further introduced into the main chain of PFPE, and it has been reported that the reliability of the drive is improved while reducing the gap in the head media interface.
  • A20H suppresses decomposition of the PFPE main chain by Lewis acid or Lewis base and improves tribological properties.
  • Mono has a report that the polymer main chain and the polar group are polynormalpropyloxy and amine, respectively, unlike the above-mentioned PFPE, and reduce the adhesion interaction in the near contact.
  • the liquid lubricant has mobility such that the lubricant removed by abrasion by the head moves from the adjacent lubricant layer and is replenished.
  • the disk spins off during disk operation and lubricant is reduced, resulting in a loss of protection.
  • a high-viscosity and low-volatile lubricant is suitably used, and the evaporation rate can be suppressed and the life of the disk drive can be extended.
  • requirements for low friction and low wear lubricants used in thin film magnetic recording media are as follows. (1) Low volatility. (2) Low surface tension for the surface replenishment function. (3) There is an interaction between the terminal polar group and the disk surface. (4) High thermal and oxidative stability so that there is no decomposition or decrease during the period of use. (5) It is chemically inert to metals, glass, and polymers and does not generate wear powder on the head or guide. (6) There must be no toxicity or flammability. (7) Excellent boundary lubrication characteristics. (8) Dissolve in an organic solvent.
  • ionic liquids are attracting attention as one of the environmentally friendly solvents for synthesizing organic and inorganic materials in power storage materials, separation technologies, and catalyst technologies.
  • Ionic liquids fall into the large category of low melting point molten salts, but generally, those having a melting point of 100 ° C. or lower among them.
  • Important characteristics of ionic liquids used as lubricants include low volatility, lack of flammability, thermal stability, and excellent dissolution performance.
  • friction and wear on the metal or ceramic surface may be reduced by using a certain ionic liquid as compared with a conventional hydrocarbon-based lubricant.
  • a fluoroalkyl group imidazole cation based ionic liquids are synthesized, tetrafluoroborate or hexafluorophosphate alkyl imidazolium, steel, aluminum, copper, single crystal SiO 2, silicon, sialon ceramics
  • Si—Al—O—N When used for (Si—Al—O—N), it has been reported that the tribological properties are superior to those of cyclic phosphazene (X-1P) and PFPE.
  • perfluorooctanoic acid alkylammonium salt is a protonic ionic liquid (PIL), but it has been reported that it has a remarkable effect of reducing friction of magnetic recording media as compared with Z-DOL described above.
  • PIL protonic ionic liquid
  • these perfluorocarboxylic acid ammonium salts have a weak cation-anion interaction in the reaction shown in the following reaction formula (A), and the equilibrium is on the left at high temperatures due to Le Chatelier's law. , It becomes a dissociated neutral compound and the thermal stability is deteriorated. That is, proton transfer occurs at a high temperature, and the equilibrium moves to a neutral substance and dissociates (see, for example, Non-Patent Document 8).
  • the limit of the surface recording density of the hard disk is said to be 1-2.5 Tb / in 2 .
  • the limit is approaching, but energetic development of high-capacity technology has been continued on the premise of miniaturization of magnetic particles. Technologies for increasing the capacity include reduction of effective flying height, introduction of single write (BMP), and the like.
  • FIG. 3 shows an outline of the heat-assisted magnetic recording.
  • reference numeral 1 indicates laser light
  • reference numeral 2 indicates near-field light
  • reference numeral 3 indicates a recording head (PMR element)
  • reference numeral 4 indicates a reproducing head (TMR element).
  • PMR element recording head
  • TMR element reproducing head
  • the protic ionic liquid is generally a substance having high thermal stability in order to form ions as described above.
  • the equilibrium is shown in the following Scheme 1.
  • HA represents a Bronsted acid
  • B represents a Bronsted base.
  • the acid (HA) and the base (B) react to form a salt (A ⁇ HB + ) as shown in Scheme 1.
  • the dissociation constants K a1 and K b2 of the acid and the base can be expressed as the following Scheme 2 in a form including the concentration.
  • the difference ⁇ pKa in acid dissociation constant between acid and base will be discussed.
  • the acid / base reaction is influenced by the acidity / basicity of each other (or the acidity of the conjugate acid), and the acidity difference ⁇ pKa can be expressed together in the following Scheme 3.
  • Non-Patent Documents 11 and 12. pyrrolidinium-based ionic liquids having geminal dications may have better heat resistance than ordinary monocation ionic liquids.
  • Non-Patent Document 13 pyrrolidinium-based ionic liquids having geminal dications may have better heat resistance than ordinary monocation ionic liquids.
  • Non-Patent Document 14 For example, see Non-Patent Document 14.
  • this is not the only way to increase viscosity, for example by changing the alkyl chain of imidazole, which also affects the melting point, surface tension, and thermal stability, but the effect of its anion.
  • it is possible to change their physical or chemical properties by a combination of cations and anions, but it is difficult to predict.
  • the solubility in fluorine-based solvents used in production lines is the same as commercially available perfluoropolyethers. Is required.
  • the fluorine-based solvent is preferably used as a solvent for the lubricant in the hard disk production line because it is not necessary to make the production line explosion-proof.
  • the solubility of the compounds other than perfluoropolyethers in the fluorine-based solvent is not so good, and therefore the use for hard disks has been limited despite good lubrication characteristics.
  • the present invention has been proposed in view of such conventional situations, and has an excellent lubricity even at high temperatures and an ionic liquid excellent in suitability for production lines of magnetic recording media, and also excellent at high temperatures.
  • the present invention provides a lubricant having excellent lubricity and excellent suitability for production lines of magnetic recording media, and a magnetic recording medium having excellent practical characteristics.
  • the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less
  • the conjugate acid includes the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F). It is a lubricant as described in said ⁇ 1> represented by either.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom
  • a hydrocarbon group R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom, and a hydrocarbon group
  • R 3 represents a hydrocarbon group
  • R 4 represents either a hydrogen atom, and a hydrocarbon group
  • R 5 is a fluorinated 4 or more carbon atoms carbide
  • a group containing a fluorinated hydrocarbon group containing 8 or more carbon atoms containing hydrogen is represented.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • n represents an integer of 1 to 3.
  • ⁇ 3> The conjugated base according to any one of ⁇ 1> to ⁇ 2>, wherein the conjugate base is represented by any one of the following general formula (X), the following general formula (Y), and the following general formula (Z).
  • Lubricant in said general formula (X), l represents an integer of 1-12.
  • n represents an integer of 1-12.
  • n represents the integer of 0-6.
  • a magnetic material comprising a nonmagnetic support, a magnetic layer on the nonmagnetic support, and the lubricant according to any one of ⁇ 1> to ⁇ 3> on the magnetic layer. It is a recording medium.
  • the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms,
  • the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less
  • Solubility CF 3 (CHF) 2 CF 2 CF 3 are, with respect to CF 3 (CHF) 2 CF 2 CF 3 100 parts by weight
  • ionic liquids characterized in that at least 0.1 part by weight.
  • the conjugate acid includes the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F).
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom, and a hydrocarbon group.
  • R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom, and a hydrocarbon group.
  • R 3 represents a hydrocarbon group
  • R 4 represents either a hydrogen atom
  • R 5 is a fluorinated 4 or more carbon atoms carbide
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • n represents an integer of 1 to 3.
  • ⁇ 7> The ⁇ 5> to ⁇ 6>, wherein the conjugate base is represented by any one of the following general formula (X), the following general formula (Y), and the following general formula (Z). It is an ionic liquid.
  • l represents an integer of 1-12.
  • n represents an integer of 1-12.
  • n represents the integer of 0-6.
  • the present invention it is possible to improve thermal stability such as evaporation and thermal decomposition of a lubricant and to maintain excellent lubrication characteristics over a long period of time. Further, when a lubricant is used for a magnetic recording medium, it is excellent in lubrication characteristics and can improve practical characteristics such as runnability, wear resistance and durability. Furthermore, it is possible to provide a lubricant that does not require the production line to be explosion-proof.
  • FIG. 1 is a graph showing the transition and prediction of the in-plane recording density of a hard disk drive.
  • FIG. 2 is a road map of head media spacing (HMS) with respect to the in-plane recording density of the hard disk.
  • FIG. 3 is a schematic diagram showing heat-assisted magnetic recording.
  • FIG. 4 is a cross-sectional view showing an example of a hard disk according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of a magnetic tape according to an embodiment of the present invention.
  • the lubricant shown as one embodiment of the present invention contains an ionic liquid having a conjugate acid and a conjugate base.
  • the ionic liquid shown as one embodiment of the present invention has a conjugate acid and a conjugate base.
  • the conjugate acid has a group containing a hydrocarbon group.
  • the hydrocarbon group is a linear hydrocarbon group having 6 or more carbon atoms.
  • the “linear hydrocarbon group having 6 or more carbon atoms” may be a partially fluorinated hydrocarbon group in which a part of hydrogen atoms bonded to carbon is substituted with a fluorine atom.
  • the partially fluorinated hydrocarbon group examples include a fluorinated hydrocarbon group having 8 or more carbon atoms including a fluorinated hydrocarbon having 4 or more carbon atoms.
  • the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less.
  • the ionic liquid solubility CF 3 (CHF) 2 CF 2 CF 3 are, with respect to CF 3 (CHF) 2 CF 2 CF 3 100 parts by weight, is 0.1 parts by mass or more, 0.3 wt Part or more is preferable, and 0.5 part by mass or more is more preferable.
  • the solubility is the solubility at 25 ° C.
  • the ionic liquid in this embodiment has a conjugate acid and a conjugate base, and the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less, and therefore exhibits excellent thermal stability. be able to.
  • the cationic portion has a group containing a hydrocarbon group having 6 or more carbon atoms, it can have excellent lubricating properties.
  • CF 3 (CHF) 2 CF 2 CF 3 often used as a fluorinated solvent, a lubricant using a fluorinated solvent can be produced. As a result, there is no need to make the magnetic recording medium production line explosion-proof.
  • the lubricant containing the ionic liquid is usually used at a concentration of about 0.05% by mass or 0.1% by mass of the ionic liquid. Therefore, the solubility of the ionic liquid in the fluorine-based solvent needs to be 0.05% by mass or more, and preferably 0.1% by mass or more. Further, depending on the use situation, higher solubility may be required. Furthermore, in consideration of changes in the usage and storage conditions of the lubricant, 0.1% by mass or more [0.1 parts by mass of ionic liquid with respect to 100 parts by mass of CF 3 (CHF) 2 CF 2 CF 3 ], Preferably 0.3% by mass or more is required.
  • solubility in a solvent there is an interpretation using a solubility parameter as a general method, and a substance having a similar solubility parameter empirically tends to be mixed.
  • these empirical values are often only for reference, because there is a limit in the application of solubility estimation based on the original solubility parameter values.
  • this method is based on regular solution theory, and the force acting between the solvent and the solute is modeled as only the intermolecular force, and the interaction that causes the liquid molecules to agglomerate is considered to be only the intermolecular force. ing.
  • the pKa is a strong acid of 10 or less, and preferably 6.0 or less.
  • the lower limit of the pKa is not particularly limited and may be appropriately selected depending on the intended purpose. However, the pKa is preferably ⁇ 5.0 or more.
  • pKa in the present specification is an acid dissociation constant, which is an acid dissociation constant in acetonitrile.
  • the conjugate base is not particularly limited as long as the pKa in acetonitrile of the base acid is 10 or less, and can be appropriately selected according to the purpose. For example, it is represented by the following general formula (V).
  • the conjugate base represented by the following general formula (X), the conjugate base represented by the following general formula (Y), and the following general formula in that the solubility of the ionic liquid in the fluorine-based solvent can be increased.
  • the conjugate base represented by (Z) is preferable, and the conjugate base represented by the following general formula (X) and the conjugate base represented by the following general formula (Y) are more preferable.
  • l represents an integer of 1 or more and 12 or less, preferably an integer of 1 or more and 6 or less, and more preferably an integer of 3 or more and 6 or less.
  • n represents the integer of 1-12, and an integer of 1-6 is preferable.
  • n represents the integer of 0-6.
  • the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
  • the number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 or more, and can be appropriately selected according to the purpose, but is preferably 10 or more.
  • the upper limit of the carbon number of the linear hydrocarbon group having 6 or more carbon atoms is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of procurement of raw materials, the carbon number Is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less. When the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
  • the group containing a linear hydrocarbon group having 6 or more carbon atoms is preferably a linear hydrocarbon group having 6 or more carbon atoms.
  • the carbon number of the hydrocarbon group takes into consideration the effect of reducing the friction coefficient and the solubility in a fluorinated solvent. Is preferably determined.
  • the hydrocarbon group may be linear, and may be either a saturated hydrocarbon group, an unsaturated hydrocarbon group partially having a double bond, or an unsaturated branched hydrocarbon group partially having a branch. Good.
  • an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance.
  • hydrocarbon group examples include a group represented by the following general formula (I) and a group represented by the following general formula (II).
  • the group represented by the general formula (II) corresponds to the partially fluorinated hydrocarbon group.
  • General Formula (I) — (CH 2 ) m — (CF 2 ) n —CF 3
  • l represents an integer of 5 or more, preferably an integer of 9 to 29, more preferably an integer of 9 to 24, and particularly preferably an integer of 9 to 19.
  • m represents an integer of 1 to 6
  • n represents an integer of 3 to 20.
  • m + n is 7 or more.
  • m is preferably an integer of 1 to 3
  • n is preferably an integer of 5 to 10.
  • conjugate acid examples include a conjugate acid represented by the following general formula (A), a conjugate acid represented by the following general formula (B), a conjugate acid represented by the following general formula (C), and the following general formula (E )
  • a conjugated acid represented by the following general formula (F) are preferable in that they are excellent in solubility in a fluorine-based solvent.
  • the conjugate acid of the following general formula is excellent in solubility in a fluorinated solvent.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom, and a hydrocarbon group.
  • R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R ⁇ 1 > represents group containing a C6 or more linear hydrocarbon group.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom, and a hydrocarbon group.
  • R 3 represents a hydrocarbon group
  • R 4 represents either a hydrogen atom
  • R 5 is a fluorinated 4 or more carbon atoms carbide
  • a group containing a fluorinated hydrocarbon group containing 8 or more carbon atoms containing hydrogen is represented.
  • R 1 represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
  • n represents an integer of 1 to 3.
  • the carbon number of the hydrocarbon group in R 1 of the general formula (A), the general formula (B), the general formula (C), the general formula (D), and the general formula (F) If it is 6 or more, there is no restriction in particular, and it can select suitably according to the objective, However, 10 or more is preferable.
  • the upper limit of the carbon number of the hydrocarbon group in R 1 is not particularly limited and may be appropriately selected according to the purpose. However, from the viewpoint of procurement of raw materials, the carbon number is preferably 30 or less. 25 or less is more preferable, and 20 or less is particularly preferable.
  • the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
  • R 1 is preferably a linear hydrocarbon group having 6 or more carbon atoms.
  • the carbon number of the hydrocarbon group takes into consideration the effect of reducing the friction coefficient and the solubility in a fluorinated solvent. Is preferably determined.
  • the hydrocarbon group in R 1 may be linear, and may be a saturated hydrocarbon group, an unsaturated hydrocarbon group having a double bond in part, or an unsaturated branched hydrocarbon having a branch in part. Any of the groups may be used. Among these, an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance. Moreover, it is also preferable that it is a linear hydrocarbon group which does not have a branch in part.
  • R 1 examples include a group represented by the following general formula (III). — (CH 2 ) 1 —CH 3 General Formula (III)
  • l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, and more preferably an integer of 9 or more and 19 or less.
  • the hydrocarbon group in R 3 and R 4 of the general formula (E) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • R 5 in the general formula (E) is a group including a fluorinated hydrocarbon group having 8 or more carbon atoms including a fluorinated hydrocarbon having 4 or more carbon atoms.
  • R 5 is preferably a group represented by the following general formula (IV).
  • m represents an integer of 1 to 6
  • n represents an integer of 3 to 20.
  • m + n is 7 or more.
  • m is preferably an integer of 1 to 3
  • n is preferably an integer of 7 to 10. If the number of carbon atoms of the fluorinated carbon is too long, the solubility in a solvent is lowered, and therefore the length is determined by other components in the molecule.
  • Examples of the ionic liquid include an ionic liquid represented by the following general formula (1), an ionic liquid represented by the following general formula (2), an ionic liquid represented by the following general formula (3), and the following general formula (4).
  • An ionic liquid represented by the following general formula (5) and an ionic liquid represented by the following general formula (6) are preferable.
  • a - represents a conjugate base
  • R 1 is the number of carbon atoms represents a group containing 6 or more linear hydrocarbon group
  • R 2 is a hydrogen atom and, Represents any hydrocarbon group.
  • the general formula (2), A - represents a conjugate base, R 1 is the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group.
  • the general formula (3), A - represents a conjugate base, R 1 is the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group.
  • a - represents a conjugate base, R 1 is the number of carbon atoms represents a group containing 6 or more linear hydrocarbon group, R 2 is a hydrogen atom and, Represents any hydrocarbon group.
  • a ⁇ represents a conjugate base
  • R 3 represents a hydrocarbon group
  • R 4 represents one of a hydrogen atom and a hydrocarbon group
  • R 5 represents A group containing a fluorinated hydrocarbon group having 8 or more carbon atoms including a fluorinated hydrocarbon having 4 or more carbon atoms is represented.
  • a ⁇ represents a conjugate base
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • n represents 1 or more and 3 or less. Represents an integer.
  • an ionic liquid represented by the general formula (1) an ionic liquid represented by the following general formula (1-1) and an ionic liquid represented by the following general formula (1-2) are preferable.
  • R 1 represents a group containing a straight-chain hydrocarbon group having 6 or more carbon atoms
  • R 2 represents either a hydrogen atom or a hydrocarbon group
  • l represents an integer of 1 to 12.
  • an ionic liquid represented by the general formula (2) an ionic liquid represented by the following general formula (2-1) and an ionic liquid represented by the following general formula (2-2) are preferable.
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • l represents an integer of 1 to 12.
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • n represents an integer of 1 to 12.
  • an ionic liquid represented by the general formula (4) an ionic liquid represented by the following general formula (4-1) and an ionic liquid represented by the following general formula (4-2) are preferable.
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • R 2 represents any one of a hydrogen atom and a hydrocarbon group.
  • l represents an integer of 1 to 12.
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • R 2 represents any one of a hydrogen atom and a hydrocarbon group.
  • N represents an integer of 1-12.
  • an ionic liquid represented by the general formula (5) an ionic liquid represented by the following general formula (5-1) and an ionic liquid represented by the following general formula (5-2) are preferable.
  • R 3 represents a hydrocarbon group
  • R 4 represents either a hydrogen atom or a hydrocarbon group
  • R 5 represents fluorine having 4 or more carbon atoms.
  • R 3 represents a hydrocarbon group
  • R 4 represents either a hydrogen atom or a hydrocarbon group
  • R 5 represents fluorine having 4 or more carbon atoms.
  • l represents an integer of 1 to 12
  • the ionic liquid represented by the general formula (6) is preferably an ionic liquid represented by the following general formula (6-1).
  • R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
  • n represents an integer of 1 to 3
  • l is Represents an integer of 1 to 12.
  • the preferable range of R 1 in the general formula of the ionic liquid is the same as the preferable range of R 1 in the general formula of the corresponding conjugate acid.
  • the preferable range of R 2 in the general formula of the ionic liquid is the same as the preferable range of R 2 of the general formula of the corresponding conjugate acid.
  • the preferable range of R 3 in the general formula of the ionic liquid is the same as the preferable range of R 3 in the general formula of the corresponding conjugate acid.
  • the preferable range of R 4 in the general formula of the ionic liquid is the same as the preferable range of R 4 in the general formula of the corresponding conjugate acid.
  • the preferable range of R 5 in the general formula of the ionic liquid is the same as the preferable range of R 5 in the general formula of the corresponding conjugate acid.
  • the preferred range of l in the conjugate base of the general formula of the ionic liquid is the same as the preferred range of l of the corresponding general formula of the conjugate base.
  • the preferable range of n in the conjugate base of the general formula of the ionic liquid is the same as the preferable range of n of the general formula of the corresponding conjugate base.
  • the above-described ionic liquid may be used alone or in combination with a conventionally known lubricant.
  • it can be used in combination with long chain carboxylic acid, long chain carboxylic acid ester, perfluoroalkyl carboxylic acid ester, carboxylic acid perfluoroalkyl ester, perfluoroalkyl carboxylic acid perfluoroalkyl ester, perfluoropolyether derivative, etc. Is possible.
  • an extreme pressure agent may be used in combination at a mass ratio of about 30:70 to 70:30.
  • the extreme pressure agent acts to prevent friction and wear by forming a reaction product film by reacting with the metal surface due to frictional heat generated when metal contact occurs partially in the boundary lubrication region.
  • the extreme pressure agent for example, any of a phosphorus extreme pressure agent, a sulfur extreme pressure agent, a halogen extreme pressure agent, an organometallic extreme pressure agent, a composite extreme pressure agent, and the like can be used.
  • the rust inhibitor may be any rust inhibitor that can be used as a rust inhibitor for this type of magnetic recording medium.
  • the rust preventive agent may be used as a lubricant, but a magnetic layer is formed on a nonmagnetic support, a rust preventive layer is applied thereon, and then a lubricant layer is applied. Thus, it may be applied in two or more layers.
  • solvent for the lubricant for example, alcohol solvents such as isopropyl alcohol (IPA) and ethanol can be used alone or in combination.
  • IPA isopropyl alcohol
  • ethanol can be used by mixing a hydrocarbon solvent such as normal hexane or a fluorine solvent.
  • a fluorine-based solvent is preferable.
  • fluorine-based solvent examples include hydrofluoroethers [for example, C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 , CF 3 (CHF) 2 CF 2 CF 3 ], etc., and alcohols such as IPA, ethanol or methanol may be used in combination.
  • the fluorinated solvent may be a commercially available product. Examples of the commercially available products include Novec TM 7000, 7100, 7200, 7300, 71IPA manufactured by 3M, Vertrel XF, X-P10 manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and the like.
  • a magnetic recording medium shown as an embodiment of the present invention has at least a magnetic layer on a nonmagnetic support, and the magnetic layer contains the above-mentioned lubricant.
  • the lubricant in the present embodiment can be applied to a so-called metal thin film type magnetic recording medium in which a magnetic layer is formed on the surface of a nonmagnetic support by a technique such as vapor deposition or sputtering.
  • the present invention can also be applied to a magnetic recording medium having a configuration in which an underlayer is interposed between a nonmagnetic support and a magnetic layer. Examples of such a magnetic recording medium include a magnetic disk and a magnetic tape.
  • FIG. 4 is a cross-sectional view showing an example of a hard disk.
  • This hard disk has a structure in which a substrate 11, an underlayer 12, a magnetic layer 13, a carbon protective layer 14, and a lubricant layer 15 are sequentially laminated.
  • FIG. 5 is a cross-sectional view showing an example of a magnetic tape.
  • This magnetic tape has a structure in which a backcoat layer 25, a substrate 21, a magnetic layer 22, a carbon protective layer 23, and a lubricant layer 24 are sequentially laminated.
  • the nonmagnetic support corresponds to the substrate 11 and the underlayer 12, and in the magnetic tape shown in FIG. 5, the nonmagnetic support corresponds to the substrate 21.
  • a rigid substrate such as an Al alloy plate or a glass plate
  • an oxide film such as an alumite treatment or Ni-P film may be formed on the substrate surface to harden the surface. Good.
  • the magnetic layers 13 and 22 are formed as a continuous film by a technique such as plating, sputtering, vacuum deposition, or plasma CVD.
  • the magnetic layers 13 and 22 include metals such as Fe, Co, Ni, Co—Ni alloys, Co—Pt alloys, Co—Ni—Pt alloys, Fe—Co alloys, Fe—Ni alloys, In-plane magnetization recording metal magnetic film made of Fe—Co—Ni alloy, Fe—Ni—B alloy, Fe—Co—B alloy, Fe—Co—Ni—B alloy, etc., Co—Cr alloy Examples thereof include perpendicular magnetic recording metal magnetic thin films such as thin films and Co—O thin films.
  • a nonmagnetic material such as Bi, Sb, Pb, Sn, Ga, In, Ge, Si, or Tl is previously formed on the nonmagnetic support as the underlayer 12.
  • metal magnetic materials are vapor-deposited or sputtered from the vertical direction, and these non-magnetic materials are diffused in the magnetic metal thin film to eliminate orientation and ensure in-plane isotropy and improve coercive force. You may do it.
  • hard protective layers 14 and 23 such as a carbon film, a diamond-like carbon film, a chromium oxide film, and a SiO 2 film may be formed on the surfaces of the magnetic layers 13 and 22.
  • the top surface of the magnetic layers 13 and 22 or the surface of the protective layers 14 and 23 is used.
  • the method of coating is mentioned.
  • the coating amount of the lubricant is preferably 0.1 mg / m 2 to 100 mg / m 2 , more preferably 0.5 mg / m 2 to 30 mg / m 2 , and 0.5 mg / m 2 to Particularly preferred is 20 mg / m 2 .
  • a back coat layer 25 may be formed as necessary.
  • the back coat layer 25 is formed by adding a carbon-based fine powder for imparting conductivity to the resin binder and an inorganic pigment for controlling the surface roughness.
  • the aforementioned lubricant may be added to the back coat layer 25 by internal addition or top coat. Further, the above-described lubricant may be added to both the magnetic layer 22 and the back coat layer 25 by internal addition or top coat.
  • the lubricant can be applied to a so-called coating type magnetic recording medium in which a magnetic coating film is formed as a magnetic layer by applying a magnetic paint to the surface of a nonmagnetic support. is there.
  • a coating type magnetic recording medium any conventionally known magnetic powder, resin binder and the like constituting the nonmagnetic support, the magnetic coating film, and the like can be used.
  • the nonmagnetic support for example, a polymer support formed of a polymer material typified by polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, polycarbonates and the like. Examples thereof include metal substrates made of aluminum alloy, titanium alloy, etc., ceramics substrates made of alumina glass, etc., glass substrates, and the like.
  • the shape is not limited at all, and any shape such as a tape shape, a sheet shape, or a drum shape may be used.
  • the non-magnetic support may be subjected to a surface treatment so as to form fine irregularities in order to control the surface property.
  • the magnetic powder examples include ferromagnetic iron oxide particles such as ⁇ -Fe 2 O 3 and cobalt-coated ⁇ -Fe 2 O 3 , ferromagnetic chromium dioxide particles, metals such as Fe, Co, Ni, and the like. Examples thereof include ferromagnetic metal particles made of an alloy containing hexagonal plate-like ferrite fine particles.
  • the resin binder examples include vinyl chloride, vinyl acetate, vinyl alcohol, vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, butadiene, acrylonitrile, or a combination of these two or more, polyurethane Resins, polyester resins, epoxy resins and the like are exemplified.
  • a hydrophilic polar group such as a carboxylic acid group, a carboxyl group or a phosphoric acid group may be introduced in order to improve the dispersibility of the magnetic powder.
  • a dispersant In addition to the magnetic powder and the resin binder, a dispersant, an abrasive, an antistatic agent, an antirust agent, and the like may be added to the magnetic coating film as an additive.
  • Examples of a method for retaining the lubricant in such a coating type magnetic recording medium include a method of internally adding the magnetic layer constituting the magnetic coating film formed on the nonmagnetic support, There is a method of top-coating the surface of the layer, or a combination of both.
  • the lubricant is internally added to the magnetic coating film, it is added in the range of 0.2 to 20 parts by mass with respect to 100 parts by mass of the resin binder.
  • the coating amount is preferably 0.1 mg / m 2 to 100 mg / m 2 , and 0.5 mg / m 2 to 20 mg / m 2. 2 is more preferable.
  • an ionic liquid is dissolved in a solvent, and the obtained solution is applied or sprayed, or a magnetic recording medium is immersed in this solution.
  • the magnetic recording medium to which the lubricant in the present embodiment is applied exhibits excellent running performance, wear resistance, durability, and the like due to the lubricating action, and can further improve the thermal stability.
  • Example> Hereinafter, specific examples of the present invention will be described.
  • an ionic liquid was synthesized to produce a lubricant containing the ionic liquid.
  • Bertrell CF 3 (CHF) 2 CF 2 CF 3
  • the lubricant solution was applied to the surfaces of a magnetic disk and a magnetic tape, and the disk durability and tape durability were evaluated, respectively.
  • the production of the magnetic disk, the disk durability test, the production of the magnetic tape, and the tape durability test were performed as follows. The present invention is not limited to these examples.
  • a magnetic thin film was formed on a glass substrate to produce a magnetic disk as shown in FIG. Specifically, a chemically strengthened glass disk made of aluminum silicate glass with an outer diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm is prepared, and the surface is polished so that Rmax is 4.8 nm and Ra is 0.43 nm. did.
  • the glass substrate was subjected to ultrasonic cleaning in pure water and isopropyl alcohol (IPA) having a purity of 99.9% or more for 5 minutes each, left in IPA saturated vapor for 1.5 minutes and then dried. did.
  • IPA isopropyl alcohol
  • a NiAl alloy Ni: 50 mol%, Al: 50 mol%) thin film is formed as a seed layer by DC magnetron sputtering, and a CrMo alloy (Cr: 80 mol%, Mo: 20 mol) is used as the underlayer 12. %)
  • a thin film having a thickness of 8 nm and a CoCrPtB alloy (Co: 62 mol%, Cr: 20 mol%, Pt: 12 mol%, B: 6 mol%) as a magnetic layer 13 were sequentially formed to a thickness of 15 nm.
  • a carbon protective layer 14 made of amorphous diamond-like carbon is formed to 5 nm by plasma CVD, and the disk sample is ultrasonicated in isopropyl alcohol (IPA) having a purity of 99.9% or more for 10 minutes in a cleaner. Cleaning was performed to remove impurities on the disk surface, and then drying was performed. After that, the lubricant layer 15 was formed to have a thickness of about 1 nm by applying it to the disk surface by a dip coating method using a mixed solvent of ionic liquid n-hexane and ethanol in an environment of 25 ° C. and 50% relative humidity (RH).
  • IPA isopropyl alcohol
  • TG / DTA measurement EXSTAR6000 manufactured by Seiko Instruments Inc. is used, and measurement is performed in a temperature range of 30 ° C-600 ° C at a temperature increase rate of 10 ° C / min while introducing air at a flow rate of 200 ml / min. went.
  • ⁇ Disk durability test> Using a commercially available strain gauge type disk friction and wear tester, after mounting the hard disk on the rotating spindle with a tightening torque of 14.7 Ncm, the center of the air bearing surface on the inner circumference side of the hard disk of the head slider is A head slider was mounted on the hard disk so as to be 17.5 mm from the center, and a CSS durability test was conducted.
  • the head used in this measurement is an IBM 3370 type inline head, the material of the slider is Al 2 O 3 —TiC, and the head load is 63.7 mN.
  • the maximum value of the frictional force was monitored for each CSS (Contact, Start, Stop) in an environment of clean cleanliness 100 and 25 ° C. 60% RH.
  • the number of times the friction coefficient exceeded 1.0 was taken as the result of the CSS durability test.
  • “> 50,000” was displayed.
  • the CSS durability test after performing the heat test for 3 minutes at the temperature of 200 degreeC was similarly done.
  • a magnetic tape having a cross-sectional structure as shown in FIG. 5 was produced.
  • Co was deposited on a substrate 21 made of a Toray Mikutron (aromatic polyamide) film having a thickness of 5 ⁇ m by an oblique deposition method to form a magnetic layer 22 made of a ferromagnetic metal thin film having a thickness of 100 nm.
  • a carbon protective layer 23 made of 10 nm diamond-like carbon was formed on the surface of the ferromagnetic metal thin film by plasma CVD, and then cut to a width of 6 mm.
  • An ionic liquid dissolved in IPA was applied onto the carbon protective layer 23 so as to have a film thickness of about 1 nm to form a lubricant layer 24, thereby preparing a sample tape.
  • ⁇ Tape durability test> About each sample tape, the still durability under a temperature of -5 ° C and a temperature of 40 ° C and 30% RH, and the friction coefficient and shuttle durability under a temperature of -5 ° C and a temperature of 40 ° C and 90% RH. Measurements were made. For the still durability, the decay time until the output in the pause state decreased by -3 dB was evaluated. Shuttle durability was evaluated by the number of shuttles until the output decreased by 3 dB after repeatedly running the shuttle for 2 minutes each time. Moreover, in order to investigate heat resistance, the durability test after performing the heat test for 10 minutes at the temperature of 100 degreeC was similarly done.
  • the ionic liquid in the present embodiment has a conjugate base and a conjugate acid, and the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less. Furthermore, it is preferable to have a group containing a hydrocarbon group having 6 or more carbon atoms in the cation portion. The influence on the thermal stability of such an ionic liquid and the durability of a magnetic recording medium using the ionic liquid was investigated. Furthermore, the solubility in a fluorinated solvent was examined.
  • Example 1A Synthesis of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene> Bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene was synthesized according to the following scheme.
  • 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene (6-octadecyl DBU) is a non-patent document [N. Matsumura, H.M. Nishiguchi, M. Okada, and S. Yoneda, J.A. Heterocyclic Chem. Pp. 885-887, Vol / 23. Synthesized according to Issue 3 (1986)].
  • FTIR in this specification was measured by a permeation method using a KBr plate method or a KBr tablet method using FT / IR-460 manufactured by JASCO Corporation.
  • the resolution at that time is 4 cm ⁇ 1 .
  • An aqueous solution of 3.07 g of bis (nonafluorobutanesulfonyl) imide lithium salt is prepared by dissolving 2.52 g of 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide by heating water. Was added. After stirring at room temperature for 1 hour, heating under reflux was performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative.
  • the product was identified as nonafluorobutanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
  • the pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium is 0.7.
  • Bromooctadecane 52.4 g and potassium hydroxide 8.75 g were added to acetonitrile, and pyrrolidine 11.09 g was added. Thereafter, heating under reflux was performed for 24 hours. After filtering the crystals, the solvent of the organic layer was removed and the residue was purified by silica gel column chromatography using a mixed solvent of hexane and ethyl acetate to obtain 44.05 g of octadecylpyrrolidine. The purity by gas chromatography was 99.0% or more.
  • the product was identified as bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium.
  • the pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium, is 0.0 It is.
  • the product was identified as bis (nonafluorobutanesulfonyl) imide-N-octadecylpyrrolidinium.
  • the product was identified as nonafluorobutanesulfonic acid-N-octadecylpyrrolidinium.
  • the pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-N-octadecylpyrrolidinium is 0.7.
  • Example 2A 8.29 g of 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide synthesized in Example 2A was dissolved by heating water to obtain 1.36 g of potassium trifluoromethanesulfonate. An aqueous solution of was added. After stirring at room temperature for 1 hour, heating under reflux was performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative.
  • 1-octadecyl imidazole was obtained by dissolving 3 g of imidazole in 100 mL of acetonitrile, adding 14.9 g of octadecyl bromide and 2.51 g of potassium hydroxide, heating the mixture with stirring, and refluxing for 4 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by column chromatography. When analyzed by gas chromatography, the purity was 98.5% or more.
  • bis (nonafluorobutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecylimidazolium It was. It should be noted that bis (nonafluorobutanesulfonyl) imide-1-1′H, 1′H, 2′H, 2′H heptadecafluorodecyl-3-octadecylimidazolium has an acid [bis (nona PKa in acetonitrile of fluorobutanesulfonyl) imide] is 0.0.
  • the product was identified as bis (nonafluorobutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium. It was. It should be noted that the bis (nonafluorobutanesulfonyl) imide-1-1′H, 1′H, 2′H, 2′H heptadecafluorodecyl-3-methylimidazolium has an acid [bis (nona PKa in acetonitrile of fluorobutanesulfonyl) imide] is 0.0.
  • Nonafluorobutanesulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium is 0.7.
  • Example 11A ⁇ Synthesis of 1,3-bis [bis (nonafluorobutanesulfonyl) imide-N-octadecylimidazolium)] propane> 1,3-bis [bis (nonafluorobutanesulfonyl) imide-N-octadecylimidazolium)] propane was synthesized according to the following scheme.
  • the product was identified as 1,3-bis [bis (nonafluorobutanesulfonyl) imide-N-octadecylimidazolium)] propane.
  • Example 1A Synthesis of Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
  • the acid of Example 1A was changed from bis (nonafluorobutanesulfonyl) imide to hexafluorocyclopropane-1,3-bis (sulfonyl) imide, hexafluorocyclopropane-1,3-bis (sulfonyl) )
  • Imido-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
  • Example 2A Synthesis of Heptadecafluorooctanesulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
  • the acid of Example 1A was changed from bis (nonafluorobutanesulfonyl) imide to heptadecafluorooctanesulfonic acid, heptadecafluorooctanesulfonic acid-6-octadecyl-1,8-diazabicyclo [5.4 .0] -7-undecenium was synthesized according to the following scheme.
  • Example 1A 5.00 g of heptadecafluorooctane sulfonic acid was added to 4.04 g of ethanol solution of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in Example 1A and stirred at room temperature for 1 hour. Thereafter, heating under reflux was performed for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed.
  • the product is hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium.
  • PKa of acetonitrile in hexafluorocyclopropane-1,3-bis (sulfonyl) imide is ⁇ 0.8.
  • hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium is a base of conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) imide] in acetonitrile.
  • the pKa at ⁇ is ⁇ 0.8.
  • Nonafluorobutanesulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecylimidazolium Nonafluorobutanesulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecylimidazolium base acid (nonafluorobutanesulfonic acid) PKa in acetonitrile is 0.7.
  • the product was identified as bis (nonafluorobutanesulfonyl) imido-1-butyl-3-n-octadecylimidazolium.
  • the product was identified as 1,9-bis [bis (nonafluorobutanesulfonyl) imido-1-octadecylimidazolium] nonane.
  • -Less than 0.1% by mass Any addition of 0.5 parts by mass and 0.1 parts by mass is insoluble.
  • the solubility of the ionic liquid of Example 1A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 2A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 3A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 4A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 5A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 6A in the fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
  • the solubility of the ionic liquid of Example 7A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 8A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
  • the solubility of the ionic liquid of Example 9A in the fluorine-based solvent was 0.5% by mass or more.
  • the solubility of the ionic liquid of Example 10A in the fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
  • the solubility of the ionic liquid of Example 11A in the fluorinated solvent was 0.5% by mass or more.
  • the solubility of the ionic liquids of Comparative Examples 1A to 10A in the fluorine-based solvent was less than 0.1% by mass.
  • the ionic liquids used in the examples have a solubility of 0.1% by mass or more with respect to the fluoric solvent Vertrel XF, and are sufficient for use in production as a hard disk application.
  • Example 1B Even in the case of having the same 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton, as in Example 1B, it has bis (nonafluorobutanesulfonyl) imide as an anion.
  • hexafluorocyclopropane-1,3-bis (sulfonyl) imide Comparative Example 1B
  • heptadecafluorooctanesulfonic acid Comparative Example 2B
  • tris trifluoromethanesulfonyl methide
  • the fluorine content contained in the molecular weight of the anion moiety is 0.589, 0.389, 0.649, and 0.372, respectively, as shown in Table 3, and heptadecafluorooctanesulfonic acid having a high fluorine content.
  • the solubility is low.
  • the solubility cannot be considered with a simple fluorine content. It can be seen that bis (nonafluorobutanesulfonyl) imide-based ionic liquids have improved solubility in fluorine-based solvents.
  • Example 8B and Comparative Example 7B were compared, the structure of imidazole in the cation part was the same, and the solubility was improved when the anion part was changed from sulfonic acid to sulfonylimide.
  • the solubility is improved because the first design is a molecular design in which fluorinated carbon is introduced to the butyl group.
  • the bis (nonafluorobutanesulfonyl) imide-based ionic liquid has improved solubility in a fluorinated solvent with respect to the corresponding nonafluorobutanesulfonic acid.
  • Example 9B and 10B since the fluorine content of the whole molecule was increased by changing the octadecyl group of Example 8B to a methyl group, its solubility was improved, so that it can be dissolved in a sulfonate. became.
  • Example 11B, Comparative Example 9B and Comparative Example 10B are comparisons of dications, but the lengths of the bonding groups are 3, 5, and 9, respectively. As a result, it was found that the solubility in a fluorinated solvent can be improved when the length of the bonding group is short.
  • solubility of ionic liquid having octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure differs depending on the structure of its anion. That is, it has been found that hexafluorocyclopropane-1,3-bis (sulfonyl) imide and heptadecafluorooctane sulfonic acid as anions do not dissolve, but trifluoromethane sulfonic acid dissolves. In this case, the solubility cannot be explained by the fluorine content of the anion moiety.
  • a structure having a methyl group at the 3-position is more soluble than that having an octadecyl group, and nonafluorobutanesulfonate is also soluble in Vertrel XF.
  • solubility in the fluorinated solvent was improved because the fluorine content of the whole molecule was increased by changing the long-chain hydrocarbon to a methyl group.
  • the solubility in a fluorinated solvent is 0.5% by mass or more, but 0.1% by mass in the case of a dication. If it is less than 1, the solubility will deteriorate.
  • the solubility of butyl-octadecylimidazole monocation in a fluorine-based solvent is less than 0.1% by mass, but it has been found that the solubility is improved by using a dication.
  • R 1 and R 2 are , As described above.
  • R 21 represents a hydrocarbon group.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a long-chain hydrocarbon group. However, at least one of R 1 , R 2 , and R 3 is a long-chain hydrocarbon group.
  • l is as described above.
  • n is as described above.
  • Example 1C ⁇ Thermal stability measurement result>
  • the 5%, 10% and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene are 352.9 ° C. and 378 .2 ° C., 396.7 ° C., which is 100 when compared with a commercially available perfluoropolyether Z-DOL (Comparative Example 11C), which is generally known as a lubricant for use in magnetic recording media as a comparative example. It can be seen that it is higher by 50 ° C. or higher than that of Z-TETRAOL (Comparative Example 12C).
  • Example 2C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene were 341.1 ° C. and 372, respectively. -9 ° C, 396.3 ° C. It can be seen that the thermal stability is improved by 100 ° C. or more as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
  • Nonafluorobutanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene has 5%, 10% and 20% weight loss temperatures of 346.9 ° C. and 373.1 ° C., respectively. It is 396.8 ° C., which is 150 ° C. or higher when compared with a commercially available perfluoropolyether Z-DOL (Comparative Example 11C) which is generally known as a lubricant for use in magnetic recording media as a comparative example. It can also be seen that it is higher by 100 ° C. or more than Z-TETRAOL (Comparative Example 12C).
  • Example 4C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium were 331.4 ° C., 360.2 ° C., and 382.5 ° C., respectively. It was. It can be seen that the thermal stability is improved by 90 ° C. or more as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
  • Example 5C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-octadecylpyrrolidinium were 312.6 ° C., 334.4 ° C., and 355.5 ° C., respectively. It can be seen that the thermal stability is improved by 70 ° C. or more as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
  • Example 6C ⁇ Thermal stability measurement result>
  • the 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-N-octadecylpyrrolidinium were 339.4 ° C., 359.0 ° C., and 377.3 ° C., respectively. It can be seen that the thermal stability is improved by 95 ° C. or more as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
  • Example 7C ⁇ Thermal stability measurement result>
  • the 5%, 10%, and 20% weight loss temperatures of trifluoromethanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium are 319.2 ° C., 346.6 ° C., respectively. It is 389.0 ° C., which is 140 ° C. or higher when compared with a commercially available perfluoropolyether Z-DOL (Comparative Example 11C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example. Even when compared with Z-TETRAOL (Comparative Example 12C), it is found that the temperature is 80 ° C. or higher.
  • Example 8C ⁇ Thermal stability measurement result> Bis (nonafluorobutanesulfonyl) imide-1-1′H, 1′H, 2′H, 2′H heptadecafluorodecyl-3-octadecylimidazolium 5%, 10%, 20% weight loss temperature is The temperatures were 335.8 ° C., 358.5 ° C. and 377.7 ° C., respectively. Even when compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C), it can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively.
  • Example 9C ⁇ Thermal stability measurement result> Bis (nonafluorobutanesulfonyl) imide-1-1′H, 1′H, 2′H, 2′H heptadecafluorodecyl-3-methylimidazolium 5%, 10%, 20% weight loss temperature is 350.3 ° C., 355.5 ° C., and 381.3 ° C., respectively, which are commercially available perfluoropolyether Z-DOLs (comparative examples) that are generally known as lubricants for use in magnetic recording media. It can be seen that it is 150 ° C. or higher compared to Example 11C) and 90 ° C. or higher compared to Z-TETRAOL (Comparative Example 12C).
  • Nonafluorobutanesulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium has 5%, 10% and 20% weight loss temperatures of 373. They were 8 degreeC, 389.3 degreeC, and 401.7 degreeC. Even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C), it can be seen that the thermal stability is improved by 170 ° C. and 120 ° C. or more, respectively.
  • Example 11C ⁇ Thermal stability measurement result>
  • the 5%, 10% and 20% weight loss temperatures of 1,3-bis [bis (nonafluorobutanesulfonyl) imide-N-octadecylimidazolium)] propane are 352.3 ° C., 381.9 ° C. and 401.degree. C., respectively. It was 4 ° C.
  • Nonafluorobutanesulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecylimidazolium has 5%, 10%, and 20% weight loss temperatures of 257. It was 5 degreeC, 267.6 degreeC, and 278.4 degreeC. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
  • Comparative Example 11C ⁇ Thermal stability measurement result>
  • a comparative example 11C as a result of measuring commercially available perfluoropolyether Z-DOL having a hydroxyl group at the terminal and a molecular weight of about 2000, the 5%, 10%, and 20% weight loss temperatures were 165.0 ° C., 197.0 ° C., 226.0 ° C. The weight loss is attributed to evaporation.
  • the 5%, 10%, and 20% weight loss temperatures of Z-TETRAOL are 240.0 ° C., 261.0 ° C., and 282.0 ° C., respectively.
  • the weight loss is caused by evaporation.
  • Table 4 summarizes the results of Example 1C to Example 11C and Comparative Example 1C to Comparative Example 12C.
  • the ionic liquid lubricant is excellent in thermal stability as compared with the commercially available perfluoropolyethers of Comparative Examples 11C and 12C.
  • thermal stability those having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure are shown in Examples 1C to 3C. Comparison can be made from Example 7C and Comparative Examples 1C to 3C. In this case, the weight reduction temperature is higher in the comparative example of about 10 ° C. to 50 ° C.
  • the ionic liquid having the octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure has a considerably high weight loss temperature, and the 20% weight loss temperature is close to 400 ° C., so that it has sufficient thermal stability. It is considered to have Further, for the ionic liquid having the N-octadecylpyrrolidine structure, the thermal stability is not significantly different between the example and the comparative example as compared with Example 4C to Example 6C and Comparative Example 6C. However, since it is an ionic liquid as described above, it exhibits a very high thermal stability as compared with a commercially available perfluoropolyether structure.
  • Example 1D to Example 11D and Comparative Example 1D to Comparative Example 10D ⁇ Disk durability test> Lubricants containing the ionic liquids of Examples 1A to 11A and Comparative Examples 1A to 10A were applied to produce magnetic disks. As shown in Tables 5-1 and 2, the CSS measurement of the magnetic disk exceeded 50,000 times, and the CSS measurement after the heating test exceeded 50,000 times, indicating excellent durability.
  • Example 1D to Example 11D and Comparative Example 1D to Comparative Example 12D are summarized in Tables 5-1 and 5-2.
  • Example 1E to Example 11E Magnetic tapes described above were prepared using lubricants containing the ionic liquids of Examples 1A to 11A, the ionic liquids of Comparative Examples 1A to 10A, Z-DOL, and Z-TETRAOL, respectively. And the following measurements were performed. The results are shown in Table 6-1 and Table 6-2.
  • Friction coefficient of magnetic tape after 100 times of shuttle operation Temperature -5 °C or 40 °C, relative humidity 90% ⁇ Still endurance test -5 °C or 40 °C relative Under 30% humidity environment ⁇ Shuttle endurance test -5 ° C environment or 40 ° C temperature, 90% relative humidity environment ⁇ Coefficient of friction of magnetic tape after 100 shuttle runs after heating test Environment or temperature 40 ° C, relative humidity 90% • Still durability test after heating test Temperature ⁇ 5 ° C environment or temperature 40 ° C, relative humidity 30% environment • Shuttle durability test after heating test Temperature Under an environment of -5 ° C or under a temperature of 40 ° C and relative humidity of 90%
  • an ionic liquid having a conjugate base and a conjugate acid is contained, and the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
  • PKa in acetonitrile of the base acid of the conjugate base is 10 or less, and the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is CF 3 (CHF) 2 CF 2 CF 3 It was found that excellent heat resistance and durability in a magnetic tape and a magnetic disk can be obtained by using an ionic liquid lubricant of 0.1 part by mass or more with respect to 100 parts by mass.
  • the magnetic recording medium contains an ionic liquid having a conjugate base and a conjugate acid, and the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms,
  • the pKa in acetonitrile of the base acid of the conjugate base is 10 or less, and the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is CF 3 (CHF) 2 CF 2 CF 3.
  • An ionic liquid lubricant that is 0.1 parts by mass or more with respect to 100 parts by mass has a high decomposition temperature and 5%, 10%, and 20% weight loss temperature and is excellent in thermal stability.
  • excellent lubricity can be maintained even under high temperature conditions as compared with conventional perfluoropolyethers, and lubricity can be maintained over a long period of time. Therefore, the magnetic recording medium using the lubricant containing the ionic liquid can obtain very excellent running performance, wear resistance, and durability.
  • it since it is also soluble in fluorine-based solvents, there is no problem in the manufacturing process, especially when considering the application of hard disks.

Abstract

共役塩基と、共役酸とを有するイオン液体を含有し、 前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、 前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、 前記イオン液体のCF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上である潤滑剤である。

Description

イオン液体、潤滑剤及び磁気記録媒体
 本発明は、イオン液体、該イオン液体を含有する潤滑剤、及びそれを用いた磁気記録媒体に関する。
 従来、薄膜磁気記録媒体では、磁気ヘッドと媒体表面における摩擦や摩耗を減少させるために磁性層表面に潤滑剤が塗布される。実際の潤滑剤の膜厚は、スティクションのような接着を避けるため、分子レベルになる。それゆえ、薄膜磁気記録媒体において、最も重要なことは、あらゆる環境下においても、優れた耐摩耗性を有する潤滑剤の選択にあるといっても過言ではない。
 磁気記録媒体のライフにおいて、脱離、スピンオフ、化学的な劣化などを生じさせずに、潤滑剤を媒体表面に存在させることは重要である。潤滑剤を媒体表面に存在させることは、薄膜磁気記録媒体の表面が平滑になるほど困難となる。これは、薄膜磁気記録媒体が塗布型磁気記録媒体のような潤滑剤の補充能力を有していないからである。
 また、潤滑剤と磁性層表面の保護膜との接着力が弱い場合には、加熱や摺動時に潤滑剤膜厚の減少が生じ、摩耗を加速することになるため、多量の潤滑剤が必要とされる。多量の潤滑剤は、移動性の潤滑剤となり、消失した潤滑剤の補充機能を持たせることができる。しかし、過剰な潤滑剤は、潤滑剤の膜厚を表面疎度よりも大きくするため、接着に関連する問題が生じ、致命的な場合にはスティクションとなってドライブ不良の原因になるというジレンマがある。
 また図1に示すように非特許文献1において、生産品のハードディスクドライブの面内記録密度の増加率はここ数年減少しているものの年率25%を達成しており、一つの目標である4Tb/inに届こうとしている。図2に示すようにその記録密度の増加に対するヘッドディスクインターフェイス間の距離は減少していることが分かるが、それに伴い常に信頼性を改善する必要性が存在する。そのことは、例えば次の非特許文献2~非特許文献4に述べられている。
 現在の記録密度は約1Tb/inで、スペーシングは約6nm、潤滑剤の厚みは0.8nmであり、将来的な4Tb/inの記録密度ではその潤滑剤の厚さも減少させなければならない。ところが、従来のPFPE潤滑剤では膜厚を減少させるためにはその分子量を小さくする必要があるが、そうすると熱安定性が劣化してしまう欠点がある。これらの信頼性の問題は、従来のパーフルオロポリエーテル(PFPE)系潤滑剤では、十分には解決されていないことがわかる。
 特に、表面平滑性の高い薄膜磁気記録媒体では、これらのトレードオフを解消するために、新規潤滑剤が分子設計され、合成されている。また、PFPEの潤滑性に関する報告が数多く提出されている。このように、磁気記録媒体において、潤滑剤は、大変重要なものである。
 表1に、代表的なPFPE系潤滑剤の化学構造を示す。
Figure JPOXMLDOC01-appb-T000005
 表1中のZ-DOLは、一般に使用されている薄膜磁気記録媒体用の潤滑剤の一つである。また、Z-tetraol(ZTMD)は、機能性の水酸基をPFPEの主鎖にさらに導入したものであり、ヘッドメディアインターフェイスの隙間を減少させながらドライブの信頼性を高めるとの報告がある。A20Hは、PFPE主鎖のルイス酸やルイス塩基による分解を抑え、トライボロジー特性を改善するとの報告がある。一方、Monoは、高分子主鎖及び極性基が、上記のPFPEと異なり、それぞれポリノルマルプロピルオキシとアミンであり、ニアコンタクトにおける接着相互作用を減少させるとの報告がある。
 しかし、融点が高く熱的に安定と考えられる一般的な固体潤滑剤では、非常に高感度である電磁変換プロセスを妨害し、また、ヘッドによって削られた摩耗粉が走行トラックに生じるために摩耗特性が悪くなる。前述のように液体潤滑剤では、ヘッドによる摩耗によって取り除かれた潤滑剤に対して隣の潤滑層から移動して補充するといった移動性がある。しかし、この移動性のために、特に高温では、ディスク稼働中にディスク表面からスピンオフして潤滑剤が減少し、その結果、防護機能が失われる。このため、粘度が高くまた低揮発性の潤滑剤が好適に用いられており、蒸発速度を抑え、ディスクドライブの寿命を延ばすことを可能としている。
 これらの潤滑機構から鑑みると、薄膜磁気記録媒体に用いられる低摩擦、低摩耗の潤滑剤への要求としては、以下のようになる。
(1)低揮発性であること。
(2)表面補充機能のために低表面張力であること。
(3)末端極性基とディスク表面への相互作用があること。
(4)使用期間での分解、減少がないように、熱的及び酸化安定性が高いこと。
(5)金属、ガラス、高分子に対して化学的に不活性で、ヘッドやガイドに対して摩耗粉を生じないこと。
(6)毒性、可燃性がないこと。
(7)境界潤滑特性に優れていること。
(8)有機溶媒に溶解すること。
 近年、蓄電材料、分離技術、触媒技術などにおいて、イオン液体が、有機や無機材料合成のための環境にやさしい溶媒の一つとして、注目を集めている。イオン液体は、低融点の溶融塩という大きな範疇に入るが、一般的には、その中でも融点が100℃以下のものをいう。潤滑剤として使用するイオン液体の重要な特性として、揮発性が低いこと、可燃性がないこと、熱的に安定であること、溶解性能に優れていることがある。
 例えば金属やセラミックス表面での摩擦及び摩耗が、あるイオン液体を用いることにより、従来の炭化水素系潤滑剤と比較して低減することがある。例えばフルオロアルキル基で置換してイミダゾールカチオンベースのイオン液体が合成され、アルキルイミダゾリウムのテトラフルオロホウ酸塩やヘキサフルオロリン酸塩が、鋼、アルミニウム、銅、単結晶SiO、シリコン、サイアロンセラミックス(Si-Al-O-N)に用いた場合、環状フォスファゼン(X-1P)やPFPEよりも優れたトライボロジー特性を示すとの報告がある。また、アンモニウムベースのイオン液体では、弾性流体から境界潤滑領域において、ベースオイルよりも摩擦を低下させる報告もある。また、イオン液体は、ベースオイルへの添加剤としての効果が調べられたり、化学的な及びトライボ化学的な反応が潤滑機構を理解するうえで研究されたりしているが、分子レベルでの潤滑特性が要求される磁気記録媒体としての応用例はほとんどない。
 その中でパーフルオロオクタン酸アルキルアンモニウム塩は、プロトン性イオン液体(PIL)であるが、既述のZ-DOLと比較して、著しく磁気記録媒体の摩擦低減の効果があることを報告している(例えば、特許文献1、及び2、並びに非特許文献5~7参照)。
 しかし、これらのパーフルオロカルボン酸アンモニウム塩は、以下の反応式(A)に示す反応の中で、カチオンとアニオンの相互作用が弱く、Le Chatelier’sの法則から、高温では平衡が左側になり、解離した中性の化合物となって熱的な安定性が悪くなる。つまり、高温ではプロトンの移動が起こり、平衡が中性の物質へと移動して解離する(例えば、非特許文献8参照)。
Figure JPOXMLDOC01-appb-C000006
 ところで、ハードディスクの面記録密度の限界は、1-2.5Tb/inと言われている。現在、その限界に近付きつつあるが、磁性粒子の微細化を大前提として、大容量化技術への精力的な開発が続けられている。大容量化の技術として、実効フライングハイトの減少、Shingle Writeの導入(BMP)などがある。
 また、次世代記録技術として、「熱アシスト磁気記録(Heat Assisted Magnetic Recording)」がある。図3に、熱アシスト磁気記録の概略を示す。なお、図3において、符号1は、レーザー光を示し、符号2は、近接場光を示し、符号3は、記録ヘッド(PMR素子)を示し、符号4は、再生ヘッド(TMR素子)を示す。この技術の課題としては、記録再生時にレーザーで記録部分を加熱するために、磁性層表面の潤滑剤の蒸発あるいは分解による耐久性の悪化が挙げられる。熱アシスト磁気記録は、短い時間ではあるが400℃以上とも言われる高温に晒される可能性があり、一般に使用されている薄膜磁気記録媒体用の潤滑剤パーフルオロポリエーテル、例えばZ-DOLやZ-TETRAOLでは、その熱的な安定性が懸念されている。
 プロトン性イオン液体は、前述のようにイオンを形成するために一般的には熱的な安定性が高い物質である。その平衡は次のScheme1に示される。
Figure JPOXMLDOC01-appb-C000007
 ここでHAはブレンステッド酸を、Bはブレンステッド塩基を示す。酸(HA)と塩基(B)はScheme1に示すように反応して塩(AHB)となる。
 このときに酸及び塩基のそれぞれの解離定数Ka1及びKb2は、濃度を含めた形で次のScheme2のように表すことができる。
Figure JPOXMLDOC01-appb-C000008
 Ka1及びKb2は物質によって大きく異なり、場合によっては大きな桁数になるため、取扱いに不便なため、負の常用対数で表される場合が多い。つまり、次のScheme3に示すように-log10a1=pKa1と定義し、明らかにpKa1が小さい酸ほど酸性が強い。
 ここで酸と塩基の酸解離定数の差ΔpKaについて議論する。酸・塩基反応はお互いにその酸性・塩基性(あるいはその共役酸の酸性)に影響され、その酸性度の差ΔpKaは併せて次のScheme3に表すことができる。
Figure JPOXMLDOC01-appb-C000009
 ΔpKaは、酸濃度及び塩基濃度に対して塩濃度[AHB]が大きくなると大きくなる、ことがわかる。
 その中でYoshizawaらは、酸と塩基のpKaの差(ΔpKa)が10以上となるとプロトン移動が起こりやすくなり、
[AH]+[B]⇔[AHB
 上記式の平衡がイオン側(右側)へシフトし、より安定性が増すことを報告している(例えば、非特許文献8参照)。また、渡邉らは、プロトン性イオン液体のプロトン移動性と熱的な安定性がΔpKaに大きく依存し、塩基としてDBU(1,8-ジアザビシクロ[5,4,0]ウンデ-7-センを用いた場合、そのΔpKaが15以上となる酸を用いることにより、イオン液体の熱的安定性が大きく向上することを報告している(非特許文献9参照)。また、近藤らは、ΔpKaが大きいパーフルオロオクタンスルホン酸オクタデシルアンモニウム塩系のプロトン性イオン液体が磁気記録媒体の耐久性を改善することを報告している(非特許文献10、特許文献3参照)。また、イオン液体の耐熱性に関しての最近の近藤らの報告では、ΔpKaがある程度までは分解温度は上昇するが、それ以上ではΔpKaを大きくしてもその分解温度はそれほど高くはならないことが報告されている(非特許文献11、及び12参照)。また、ジェミナルなジカチオンを持つピロリジニウム系イオン液体では、通常のモノカチオンのイオン液体よりも耐熱性を改善する場合があることが報告されている(非特許文献13参照)。しかし、非特許文献13にも掲載されているように、それを構成する分子構造と物理的又は化学的な性質との関係についてはよく理解されていない。カチオンとアニオンとのコンビネーションは、イオン液体の物理的又は化学的な性質に非常に影響を与える。アニオン部分はバライアティに富むが、構造的に類似なカチオンでなければその関係性は明確にはならない(例えば、非特許文献14参照)。例えば、ハロゲンの水素結合力が強いほど(Cl>Br>I)液体の粘性は増加する。しかし、粘性を増加させる方法はこれだけではなく、例えば、イミダゾールのアルキル鎖を変化させることによっても可能である。同様に融点、表面張力、熱安定性についても影響を与えるが、そのアニオンの効果は広範囲にわたっては研究されていない。それゆえ、カチオンやアニオンのコンビネーションにより、これらの物理的又は化学的な性質を変化させることは可能であるが、予測することは難しい。
 また、ハードディスクへの応用を考えた場合には、市販のパーフルオロポリエーテルがそうであるように、生産ラインで使用されているフッ素系溶媒(例えば、デュポン社製特殊溶媒バートレル)への溶解性が必要になる。なお、フッ素系溶媒は、生産ラインを防爆仕様にする必要がない点から、ハードディスクの生産ラインにおいて、潤滑剤に使用する溶媒として好適に使用されている。しかし、パーフルオロポリエーテル系以外の化合物のフッ素系溶媒への溶解性はあまり良くなく、それゆえ潤滑特性が良いにもかかわらずハードディスクへの用途は制限されていた。
特許第2581090号公報 特許第2629725号公報 国際公開第2014/104342号パンフレット
Advances in Tribology  Volume 2013, ArticleID 521086 C.M.Mate, Q. Dai, R. N. Payne, B. E. Knigge, and P. Baumgart, "Will the numbers add up for sub-7-nm magnetic spacings? Futuremetrology issues for disk drive lubricants, overcoats, and topographies," IEEE Transactions onMagnetics, vol. 41,no. 2, pp.626-631, 2005. B.Marchon and T. Olson, "Magnetic spacing trends: from LMR to PMR and beyond," IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3608-3611, 2009. J. Gui, "Tribology challenges for head-disk interface toward 1Tb/in2," IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 716-721, 2003. Kondo, H., Seto, J., Haga. S., Ozawa, K.,(1989) Novel Lubricants for Magnetic Thin Film Media, Magnetic Soc. Japan, Vol. 13, Suppl. No. S1, pp.213-218 Kondo, H., Seki, A., Watanabe, H., & Seto, J., (1990). Frictional Properties of Novel Lubricants for Magnetic Thin Film Media, IEEE Trans. Magn. Vol.26, No. 5, (Sep. 1990), pp.2691-2693, , ISSN:0018-9464 Kondo, H., Seki, A., & Kita, A., (1994a). Comparison of an Amide and Amine Salt as Friction Modifiers for a Magnetic Thin Film Medium. Tribology Trans. Vol.37, No. 1, (Jan. 1994), pp. 99-105, ISSN: 0569-8197 Yoshizawa, M., Xu, W., Angell, C. A., Ionic Liquids by Proton Transfer: Vapor pressure, Conductivity, and the Relevance of ΔpKa from Aqueous Solutions, J. Am. Chem. Soc.,Vol.125, pp.15411-15419(2003) Miran, M.S., Kinoshita, H., Yasuda, T., Susan, M.A.B.H., Watanabe, M., Physicochemical Properties Determined by ΔpKa for Protic Ionic Liquids Based on an Organic Super-strong Base with Various Bronsted Acids, Phys. Chem. Chem. Phys., Vol 14, pp.5178-5186 (2012) Hirofumi Kondo, Makiya Ito, Koki Hatsuda, KyungSung Yun and Masayoshi Watanabe, "Novel Ionic Lubricants for Magnetic Thin Film" Media,IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 7, pp.3756-3759,JULY (2013) Hirofumi Kondo, Makiya Ito, Koki Hatsuda, Nobuo Tano, KyungSung Yun and Masayoshi Watanabe, IEEE International magetic conference Dresden, Germany, May 4-8,2014 Hirofumi Kondo, Makiya Ito, Koki Hatsuda, Nobuo Tano, KyungSung Yun and Masayoshi Watanabe,IEEE Trans. Magn., 2014, Vol. 50, Issue 11, Article#:3302504 Anderson, J. L., Ding R., Ellern A., Armstrong D. W., "Structure and Properties of High Stability Geminal DicationicIonic Liquids", J.Am. Chem.Soc., 2005, 127, 593-604. Dzyuba, S. V.; Bartsch, R. A. ,"Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on Physical Properties of the Ionic Liquids,Chem. Phys. Phys. Chem. 2002, 3, 161-166
 本発明は、このような従来の実情に鑑みて提案されたものであり、高温においても優れた潤滑性を有し、かつ磁気記録媒体の生産ラインへの適性に優れるイオン液体、高温においても優れた潤滑性を有し、かつ磁気記録媒体の生産ラインへの適性に優れる潤滑剤、及び優れた実用特性を有する磁気記録媒体を提供する。
 <1> 共役塩基と、共役酸とを有するイオン液体を含有し、
 前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
 前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
 前記イオン液体のCF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であることを特徴とする潤滑剤である。
 <2> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される前記<1>に記載の潤滑剤である。
Figure JPOXMLDOC01-appb-C000010
 ただし、前記一般式(A)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(E)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
 ただし、前記一般式(F)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
 <3> 前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される前記<1>から<2>のいずれかに記載の潤滑剤である。
Figure JPOXMLDOC01-appb-C000011
 ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
 ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
 ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
 <4> 非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に前記<1>から<3>のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体である。
 <5> 共役塩基と、共役酸とを有し、
 前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
 前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
 CF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であることを特徴とするイオン液体である。
 <6> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される前記<5>に記載のイオン液体である。
Figure JPOXMLDOC01-appb-C000012
 ただし、前記一般式(A)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(E)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
 ただし、前記一般式(F)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
 <7> 前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される前記<5>から<6>のいずれかに記載のイオン液体である。
Figure JPOXMLDOC01-appb-C000013
 ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
 ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
 ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
 本発明によれば、潤滑剤の蒸発や熱分解といった熱的な安定性を改善し、かつ優れた潤滑特性を長期に亘り維持させることができる。また、潤滑剤を磁気記録媒体に用いた場合も、潤滑特性に優れ、走行性、耐摩耗性、耐久性等の実用特性を向上させることができる。更に、生産ラインを防爆仕様にする必要がない潤滑剤を提供できる。
図1は、ハードディスクドライブの面内記録密度の推移と予測を表すグラフである。 図2は、ハードディスクの面内記録密度に対するヘッドメディアスペーシング(HMS)のロードマップである。 図3は、熱アシスト磁気記録を示す概略図である。 図4は、本発明の一実施の形態に係るハードディスクの一例を示す断面図である。 図5は、本発明の一実施の形態に係る磁気テープの一例を示す断面図である。
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1. 潤滑剤及びイオン液体
2. 磁気記録媒体
3. 実施例
<1.潤滑剤及びイオン液体>
 本発明の一実施形態として示す潤滑剤は、共役酸と、共役塩基とを有するイオン液体を含有する。
 本発明の一実施形態として示すイオン液体は、共役酸と、共役塩基とを有する。
 前記イオン液体において、前記共役酸は、炭化水素基を含む基を有する。前記炭化水素基は、炭素数が6以上の直鎖状の炭化水素基である。ここで、「炭素数が6以上の直鎖状の炭化水素基」は、炭素に結合する水素原子の一部がフッ素原子に置換された部分フッ素化炭化水素基であってもよい。前記部分フッ素化炭化水素基としては、例えば、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基が挙げられる。
 前記イオン液体において、前記共役塩基の元となる酸のアセトニトリル中でのpKaは、10以下である。
 前記イオン液体は、CF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であり、0.3質量部以上が好ましく、0.5質量部以上がより好ましい。溶解性の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、一例としては、2.0質量部などが挙げられる。
 なお、前記溶解性は、25℃における溶解性である。
 本実施の形態におけるイオン液体は、共役酸と、共役塩基とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるため、優れた熱安定性を発揮することができる。またカチオン部分に炭素数6以上の炭化水素基を含む基を持つために優れた潤滑特性を併せ持つことができる。
 さらに、フッ素系溶媒としてよく使用されるCF(CHF)CFCFに一定量溶解するため、フッ素系溶媒を用いた潤滑剤を作製できる。その結果、磁気記録媒体の生産ラインを防爆仕様にする必要がない。
 ここで、イオン液体を含有する潤滑剤は、通常、イオン液体が0.05質量%又は0.1質量%程度の濃度で使用される。そのため、前記イオン液体のフッ素系溶媒に対する溶解性としては、0.05質量%以上が必要であり、0.1質量%以上が好ましい。また、使用状況によっては、それ以上の溶解性が要求されることもある。更には、潤滑剤の使用状況、保存状況の変化等を加味すると、0.1質量%以上〔CF(CHF)CFCF100質量部に対してイオン液体が0.1質量部以上〕の溶解性が要求され、好ましくは、0.3質量%以上の溶解性が要求される。
 なお、溶媒への溶解性については一般的な手法としてソルビリティパラメータを用いた解釈があり、経験的に溶解パラメーターが近い物質は混ざりやすい傾向を持つ。しかしながら、もともと元来のソルビリティパラメータ値による溶解度の推定自体に適用限界があるため、これらの経験値は参考程度にしかならない場合も多い。つまりこの手法は正則溶液理論をベースにしており、溶媒-溶質間に作用する力は分子間力のみとモデル化されていて、液体分子を凝集させる相互作用が分子間力のみであると考えられている。しかし実際の溶液が正則溶液であることは稀であり、溶媒-溶質分子間には水素結合など分子間力以外の力も作用し、2つの成分が混合するか相分離するかはそれらの成分の混合エンタルピーと混合エントロピーの差で熱力学的に決定されるからである。イオン液体の場合には分子中にイオンを含むこともあり、その溶媒への溶解性について予想することはかなり難しい。
 前記pKaは、10以下の強酸であり、6.0以下が好ましい。
 前記pKaの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記pKaは、-5.0以上が好ましい。
 ここで、本明細書におけるpKaは、酸解離定数であって、アセトニトリル中における酸解離定数である。
<<共役塩基>>
 前記共役塩基としては、元となる酸のアセトニトリル中でのpKaが10以下であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(V)で表される共役塩基、下記一般式(W)で表される共役塩基、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、下記一般式(Z)で表される共役塩基などが挙げられる。これらの中でも、前記イオン液体のフッ素系溶媒に対する溶解性を高くできる点で、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、及び下記一般式(Z)で表される共役塩基が好ましく、下記一般式(X)で表される共役塩基、及び下記一般式(Y)で表される共役塩基がより好ましい。
Figure JPOXMLDOC01-appb-C000014
 ただし、前記一般式(X)中、lは、1以上12以下の整数を表し、1以上6以下の整数が好ましく、3以上6以下の整数がより好ましい。
 ただし、前記一般式(Y)中、nは、1以上12以下の整数を表し、1以上6以下の整数が好ましい。
 ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
 前記共役塩基の元となる酸(HA)としては、ビス((パーフルオロアルキル)スルホニル)イミド〔(C2l+1SONH〕(pKa=0~0.3)、パーフルオロシクロプロパンスルホイミド(pKa=-0.8)、パーフルオロアルキルスルホン酸(C2m+1SOH)(pKa=0.7)、トリス(パーフルオロアルカンスルホニル)メチド化合物〔(CFSOCH〕(pKa=-3.7)、トリシアノメタン(pKa=5.1)、無機酸〔硝酸(pKa=9.4)、硫酸(pKa=8.7)等〕、テトラフルオロホウ酸(pKa=1.8)、ヘキサフルオロ燐酸などのスーパー酸に位置づけられるブレンステッド酸が好ましい。これらのpKaは、例えば、J. Org. Chem. Vol.76, No2, p.394に紹介されている。
<<共役酸>>
 前記共役酸は、炭素数が6以上の直鎖状の炭化水素基を含む基を有する。
 前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。
 前記炭素数が6以上の直鎖状の炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
 前記炭素数が6以上の直鎖状の炭化水素基を含む基としては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
 ただし、炭素数が多すぎるとフッ素系溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と、フッ素系溶媒への溶解性とを考慮して決定されることが好ましい。
 前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。もちろん一部にも分岐を有する炭化水素基であってもよい。
 前記炭化水素基としては、例えば、下記一般式(I)で表される基、下記一般式(II)で表される基などが挙げられる。なお、前記一般式(II)で表される基は、前記部分フッ素化炭化水素基に相当する。
  -(CH-CH   一般式(I)
  -(CH-(CF-CF   一般式(II)
 前記一般式(I)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上24以下の整数がより好ましく、9以上19以下の整数が特に好ましい。
 前記一般式(II)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、5以上10以下の整数が好ましい。
 前記共役酸としては、下記一般式(A)で表される共役酸、下記一般式(B)で表される共役酸、下記一般式(C)で表される共役酸、下記一般式(E)で表される共役酸、及び下記一般式(F)で表される共役酸が、フッ素系溶媒への溶解性に優れる点で好ましい。通常、炭化水素構造が多いとフッ素系溶媒に対する溶解性が低いのが常識であるところ、下記一般式の共役酸は、予想に反してフッ素系溶媒への溶解性に優れる。
Figure JPOXMLDOC01-appb-C000015
 ただし、前記一般式(A)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(E)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
 ただし、前記一般式(F)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
 前記一般式(A)、前記一般式(B)、前記一般式(C)、前記一般式(D)、及び前記一般式(F)の前記Rにおける前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。
 前記Rにおける前記炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
 前記Rとしては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
 ただし、炭素数が多すぎるとフッ素系溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と、フッ素系溶媒への溶解性とを考慮して決定されることが好ましい。
 前記Rにおける前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。
 前記Rとしては、例えば、下記一般式(III)で表される基などが挙げられる。
  -(CH-CH   一般式(III)
 前記一般式(III)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上19以下の整数がより好ましい。
 前記一般式(E)の前記R及びRにおける前記炭化水素基としては、特に制限はなく、目的に応じて適宜選択することができるが、炭素数1~20の炭化水素基が好ましい。
 前記一般式(E)の前記Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基である。前記一般式(E)が係る基を有することにより、フッ素系溶媒への溶解性が改善される。
 前記Rとしては、以下の一般式(IV)で表される基が好ましい。
  -(CH-(CF-CF   一般式(IV)
 前記一般式(IV)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、7以上10以下の整数が好ましい。フッ素化炭素の炭素数も長すぎると溶媒への溶解性が低下するので、分子中のその他の構成要素によってその長さは決められる。
<<イオン液体の好適例>>
 前記イオン液体としては、下記一般式(1)で表されるイオン液体、下記一般式(2)表されるイオン液体、下記一般式(3)で表されるイオン液体、下記一般式(4)で表されるイオン液体、下記一般式(5)で表されるイオン液体、及び下記一般式(6)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000016
 ただし、前記一般式(1)中、Aは、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(2)中、Aは、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(3)中、Aは、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
 ただし、前記一般式(4)中、Aは、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
 ただし、前記一般式(5)中、Aは、共役塩基を表し、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
 ただし、前記一般式(6)中、Aは、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
 前記一般式(1)で表されるイオン液体としては、下記一般式(1-1)で表されるイオン液体、及び下記一般式(1-2)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000017
 ただし、前記一般式(1-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、lは、1以上12以下の整数を表す。
 前記一般式(2)で表されるイオン液体としては、下記一般式(2-1)で表されるイオン液体、下記一般式(2-2)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000018
 ただし、前記一般式(2-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、lは、1以上12以下の整数を表す。
 ただし、前記一般式(2-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上12以下の整数を表す。
 前記一般式(4)で表されるイオン液体としては、下記一般式(4-1)で表されるイオン液体、及び下記一般式(4-2)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000019
 ただし、前記一般式(4-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、lは、1以上12以下の整数を表す。
 ただし、前記一般式(4-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、nは、1以上12以下の整数を表す。
 前記一般式(5)で表されるイオン液体としては、下記一般式(5-1)で表されるイオン液体、及び下記一般式(5-2)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000020
 ただし、前記一般式(5-1)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表し、nは、1以上12以下の整数を表す。
 ただし、前記一般式(5-2)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表し、lは、1以上12以下の整数を表す。
 前記一般式(6)で表されるイオン液体としては、下記一般式(6-1)で表されるイオン液体が好ましい。
Figure JPOXMLDOC01-appb-C000021
 ただし、前記一般式(6-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表し、lは、1以上12以下の整数を表す。
 前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
 前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
 前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
 前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
 前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
 前記イオン液体の一般式の共役塩基におけるlの好ましい範囲は、対応する前記共役塩基の一般式のlの好ましい範囲と同じである。
 前記イオン液体の一般式の共役塩基におけるnの好ましい範囲は、対応する前記共役塩基の一般式のnの好ましい範囲と同じである。
 前記イオン液体の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下の実施例に記載の方法を参考にすることで、種々の前記イオン液体を合成することができる。
 本実施の形態における潤滑剤は、前述のイオン液体を単独で使用してもよいが、従来公知の潤滑剤と組み合わせて用いてもよい。例えば、長鎖カルボン酸、長鎖カルボン酸エステル、パーフルオロアルキルカルボン酸エステル、カルボン酸パーフルオロアルキルエステル、パーフルオロアルキルカルボン酸パーフルオロアルキルエステル、パーフルオロポリエーテル誘導体などと組み合わせて使用することが可能である。
 また、厳しい条件で潤滑効果を持続させるために、質量比30:70~70:30程度の配合比で極圧剤を併用してもよい。前記極圧剤は、境界潤滑領域において部分的に金属接触が生じたときに、これに伴う摩擦熱によって金属面と反応し、反応生成物皮膜を形成することにより、摩擦・摩耗防止作用を行うものである。前記極圧剤としては、例えば、リン系極圧剤、イオウ系極圧剤、ハロゲン系極圧剤、有機金属系極圧剤、複合型極圧剤などのいずれも使用できる。
 また、必要に応じて防錆剤を併用してもよい。前記防錆剤としては、通常この種の磁気記録媒体の防錆剤として使用可能であるものであればよく、例えば、フェノール類、ナフトール類、キノン類、窒素原子を含む複素環化合物、酸素原子を含む複素環化合物、硫黄原子を含む複素環化合物などが挙げられる。また、前記防錆剤は、潤滑剤として混合して用いてもよいが、非磁性支持体上に磁性層を形成し、その上部に防錆剤層を塗布した後、潤滑剤層を塗布するというように、2層以上に分けて被着してもよい。
 また、前記潤滑剤の溶媒としては、例えば、イソプロピルアルコール(IPA)、エタノール等のアルコール系溶媒などから単独又は組み合わせて使用することができる。例えば、ノルマルヘキサンのような炭化水素系溶剤やフッ素系溶媒を混合しても使用することができる。
 前記溶媒としては、フッ素系溶媒が好ましい。前記フッ素系溶媒としては、例えば、ハイドロフルオロエーテル〔例えば、COCH、COCH、COC、CCF(OCH)C、CF(CHF)CFCF〕などが挙げられるが、それにIPAやエタノールあるいはメタノール等のアルコールを混合して用いても良い。
 前記フッ素系溶媒は、市販品であってもよい。前記市販品としては、例えば、3M社製のNovecTM 7000、7100、7200、7300、71IPA、三井・デュポン フロロケミカル株式会社製のVertrel XF、X-P10などが挙げられる。
<2.磁気記録媒体>
 次に、前述の潤滑剤を用いた磁気記録媒体について説明する。本発明の一実施形態として示す磁気記録媒体は、非磁性支持体上に少なくとも磁性層を有してなり、前記磁性層に前述の潤滑剤を保有してなるものである。
 本実施の形態における潤滑剤は、磁性層が非磁性支持体表面に蒸着やスパッタリング等の手法により形成された、所謂、金属薄膜型の磁気記録媒体に適用することが可能である。また、非磁性支持体と磁性層との間に下地層を介した構成の磁気記録媒体にも適用することもできる。このような磁気記録媒体としては、磁気ディスク、磁気テープなどを挙げることができる
 図4は、ハードディスクの一例を示す断面図である。このハードディスクは、基板11と、下地層12と、磁性層13と、カーボン保護層14と、潤滑剤層15とが順次積層された構造を有する。
 また、図5は、磁気テープの一例を示す断面図である。この磁気テープは、バックコート層25と、基板21と、磁性層22と、カーボン保護層23と、潤滑剤層24とが順次積層された構造を有する。
 図4に示す磁気ディスクにおいて、非磁性支持体は、基板11、下地層12が該当し、図5に示す磁気テープにおいて、非磁性支持体は、基板21が該当する。非磁性支持体として、Al合金板やガラス板等の剛性を有する基板を使用した場合、基板表面にアルマイト処理等の酸化皮膜やNi-P皮膜等を形成して、その表面を硬くしてもよい。
 磁性層13、22は、メッキ、スパッタリング、真空蒸着、プラズマCVD等の手法により、連続膜として形成される。磁性層13、22としては、Fe、Co、Ni等の金属や、Co-Ni系合金、Co-Pt系合金、Co-Ni-Pt系合金、Fe-Co系合金、Fe-Ni系合金、Fe-Co-Ni系合金、Fe-Ni-B系合金、Fe-Co-B系合金、Fe-Co-Ni-B系合金等からなる面内磁化記録金属磁性膜や、Co-Cr系合金薄膜、Co-O系薄膜等の垂直磁化記録金属磁性薄膜が例示される。
 特に、面内磁化記録金属磁性薄膜を形成する場合、予め非磁性支持体上にBi、Sb、Pb、Sn、Ga、In、Ge、Si、Tl等の非磁性材料を、下地層12として形成しておき、金属磁性材料を垂直方向から蒸着あるいはスパッタし、磁性金属薄膜中にこれら非磁性材料を拡散せしめ、配向性を解消して面内等方性を確保するとともに、抗磁力を向上するようにしてもよい。
 また、磁性層13、22の表面に、カーボン膜、ダイヤモンド状カーボン膜、酸化クロム膜、SiO膜等の硬質な保護層14、23を形成してもよい。
 このような金属薄膜型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、図4及び図5に示すように、磁性層13、22の表面や、保護層14、23の表面にトップコートする方法が挙げられる。潤滑剤の塗布量としては、0.1mg/m~100mg/mであることが好ましく、0.5mg/m~30mg/mであることがより好ましく、0.5mg/m~20mg/mであることが特に好ましい。
 また、図5に示すように、金属薄膜型の磁気テープは、磁性層22である金属磁性薄膜の他に、バックコート層25が必要に応じて形成されていてもよい。
 バックコート層25は、樹脂結合剤に導電性を付与するためのカーボン系微粉末や表面粗度をコントロールするための無機顔料を添加し塗布形成されるものである。本実施の形態においては、前述の潤滑剤を、バックコート層25に内添又はトップコートにより含有させてもよい。また、前述の潤滑剤を、磁性層22とバックコート層25のいずれにも内添、トップコートにより含有させてもよい。
 また、他の実施の形態として、磁性塗料を非磁性支持体表面に塗布することにより磁性塗膜が磁性層として形成される、所謂、塗布型の磁気記録媒体にも潤滑剤の適用が可能である。塗布型の磁気記録媒体において、非磁性支持体や磁性塗膜を構成する磁性粉末、樹脂結合剤などは、従来公知のものがいずれも使用可能である。
 例えば、前記非磁性支持体としては、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、ポリイミド類、ポリアミド類、ポリカーボネート等に代表されるような高分子材料により形成される高分子支持体や、アルミニウム合金、チタン合金等からなる金属基板、アルミナガラス等からなるセラミックス基板、ガラス基板などが例示される。また、その形状も何ら限定されるものではなく、テープ状、シート状、ドラム状等、如何なる形態であってもよい。さらに、この非磁性支持体には、その表面性をコントロールするために、微細な凹凸が形成されるような表面処理が施されたものであってもよい。
 前記磁性粉末としては、γ-Fe、コバルト被着γ-Fe等の強磁性酸化鉄系粒子、強磁性二酸化クロム系粒子、Fe、Co、Ni等の金属や、これらを含んだ合金からなる強磁性金属系粒子、六角板状の六方晶系フェライト微粒子等が例示される。
 前記樹脂結合剤としては、塩化ビニル、酢酸ビニル、ビニルアルコール、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、ブタジエン、アクリロニトリル等の重合体、あるいはこれら二種以上を組み合わせた共重合体、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂等が例示される。これら結合剤には、磁性粉末の分散性を改善するために、カルボン酸基やカルボキシル基、リン酸基等の親水性極性基が導入されてもよい。
 前記磁性塗膜には、前記の磁性粉末、樹脂結合剤の他、添加剤として分散剤、研磨剤、帯電防止剤、防錆剤等が加えられてもよい。
 このような塗布型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、前記非磁性支持体上に形成される前記磁性塗膜を構成する前記磁性層中に内添する方法、前記磁性層の表面にトップコートする方法、若しくはこれら両者の併用等がある。また、前記潤滑剤を前記磁性塗膜中に内添する場合には、前記樹脂結合剤100質量部に対して0.2質量部~20質量部の範囲で添加される。
 また、前記潤滑剤を前記磁性層の表面にトップコートする場合には、その塗布量は0.1mg/m~100mg/mであることが好ましく、0.5mg/m~20mg/mであることがより好ましい。なお、前記潤滑剤をトップコートする場合の被着方法としては、イオン液体を溶媒に溶解し、得られた溶液を塗布若しくは噴霧するか、又はこの溶液中に磁気記録媒体を浸漬すればよい。
 本実施の形態における潤滑剤を適用した磁気記録媒体は、潤滑作用により、優れた走行性、耐摩耗性、耐久性等を発揮し、さらに、熱的安定性を向上させることができる。
<3.実施例>
 以下、本発明の具体的な実施例について説明する。本実施例では、イオン液体を合成し、イオン液体を含有する潤滑剤を作製した。そして、まずはフッ素系溶媒であるバートレル〔CF(CHF)CFCF〕への溶解性について調べた。その潤滑剤溶液を用いて磁気ディスク及び磁気テープの表面に塗布して、それぞれディスク耐久性及びテープ耐久性について評価した。磁気ディスクの製造、ディスク耐久性試験、磁気テープの製造、及びテープ耐久性試験は、次のように行った。なお、本発明は、これらの実施例に限定されるものではない。
<磁気ディスクの製造>
 例えば、国際公開第2005/068589号公報に従って、ガラス基板上に磁性薄膜を形成し、図4に示すような磁気ディスクを作製した。具体的には、アルミシリケートガラスからなる外径65mm、内径20mm、ディスク厚0.635mmの化学強化ガラスディスクを準備し、その表面をRmaxが4.8nm、Raが0.43nmになるように研磨した。ガラス基板を純水及び純度99.9%以上のイソプロピルアルコール(IPA)中で、それぞれ5分間超音波洗浄を行い、IPA飽和蒸気内に1.5分間放置後、乾燥させ、これを基板11とした。
 この基板11上に、DCマグネトロンスパッタリング法によりシード層としてNiAl合金(Ni:50モル%、Al:50モル%)薄膜を30nm、下地層12としてCrMo合金(Cr:80モル%、Mo:20モル%)薄膜を8nm、磁性層13としてCoCrPtB合金(Co:62モル%、Cr:20モル%、Pt:12モル%、B:6モル%)薄膜を15nmとなるように順次形成した。
 次に、プラズマCVD法によりアモルファスのダイヤモンドライクカーボンからなるカーボン保護層14を5nm製膜し、そのディスクサンプルを洗浄器内に純度99.9%以上のイソプロピルアルコール(IPA)中で10分間超音波洗浄を行い、ディスク表面上の不純物を取り除いた後に乾燥させた。その後、25℃50%相対湿度(RH)の環境においてディスク表面にイオン液体のn-ヘキサンとエタノールの混合溶媒を用いてディップコート法により塗布することで、潤滑剤層15を約1nm形成した。
<熱安定性測定>
 TG/DTA測定では、セイコーインスツルメント社製EXSTAR6000を使用し、200ml/minの流量で空気中を導入しながら、10℃/minの昇温速度で30℃-600℃の温度範囲で測定を行った。
<ディスク耐久性試験>
 市販のひずみゲージ式ディスク摩擦・摩耗試験機を用いて、ハードディスクを14.7Ncmの締め付けトルクで回転スピンドルに装着後、ヘッドスライダーのハードディスクに対して内周側のエアベアリング面の中心が、ハードディスクの中心より17.5mmになるようにヘッドスライダーをハードディスク上に取り付けCSS耐久試験を行った。本測定に用いたヘッドは、IBM3370タイプのインライン型ヘッドであり、スライダーの材質はAl-TiC、ヘッド荷重は63.7mNである。本試験は、クリーン清浄度100、25℃60%RHの環境下で、CSS(Contact、Start、Stop)毎に摩擦力の最大値をモニターした。摩擦係数が1.0を超えた回数をCSS耐久試験の結果とした。CSS耐久試験の結果において、50,000回を超える場合には「>50,000」と表示した。また、耐熱性を調べるために、200℃の温度で3分間加熱試験を行った後のCSS耐久性試験を同様に行った。
<磁気テープの製造>
 図5に示すような断面構造の磁気テープを作製した。先ず、5μm厚の東レ製ミクトロン(芳香族ポリアミド)フィルムからなる基板21に、斜め蒸着法によりCoを被着させ、膜厚100nmの強磁性金属薄膜からなる磁性層22を形成した。次に、この強磁性金属薄膜表面にプラズマCVD法により10nmのダイヤモンドライクカーボンからなるカーボン保護層23を形成させた後、6ミリ幅に裁断した。このカーボン保護層23上にIPAに溶解したイオン液体を、膜厚が1nm程度となるように塗布して潤滑剤層24を形成し、サンプルテープを作製した。
<テープ耐久性試験>
 各サンプルテープについて、温度-5℃環境下、温度40℃30%RH環境下のスチル耐久性、並びに、温度-5℃環境下、温度40℃90%RH環境下の摩擦係数及びシャトル耐久性について測定を行った。スチル耐久性は、ポーズ状態での出力が-3dB低下するまでの減衰時間を評価した。シャトル耐久性は、1回につき2分間の繰り返しシャトル走行を行い、出力が3dB低下するまでのシャトル回数で評価した。また、耐熱性を調べるために、100℃の温度で10分間加熱試験を行った後の耐久性試験も同様に行った。
 本実施の形態におけるイオン液体は、共役塩基と、共役酸とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下である。更には、カチオン部分に炭素数6以上の炭化水素基を含む基を持つことが好ましい。そのようなイオン液体の熱安定性、及び前記イオン液体を用いた磁気記録媒体の耐久性についての影響を調べた。更に、フッ素系溶媒への溶解性について調べた。
(実施例1A)
<ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000022
 6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(6-オクタデシルDBU)は、Matsumuraらの非特許文献〔N. Matsumura, H. Nishiguchi, M. Okada, and S. Yoneda, J. Heterocyclic Chem. pp.885-887, Vol/23. Issue 3 (1986)〕に従って、合成した。
 得られた6-オクタデシルDBU2.47gのエタノール溶液にビス(ノナフルオロブタンスルホニル)イミドの30%水溶液11.84gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。90℃で真空乾燥を3日間行い、無色の液体ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンを5.55g得た。収率92.2%
 ここで、本明細書においてのFTIRの測定は、日本分光社製FT/IR-460を使用し、KBrプレート法あるいはKBr錠剤法を用いて透過法で測定を行った。そのときの分解能は4cm-1である。
 H-NMR及び13C-NMRスペクトルは、Varian MercuryPlus300核磁気共鳴装置(バリアン社製)で測定した。H-NMRの化学シフトは、内部標準(0ppmにおけるTMSあるいは重水素化溶媒ピーク)との比較としてppmで表した。分裂パターンは、一重項をs、二重項をd、三重項をt、多重項をm、ブロードピークをbrとして示した。
 生成物のFTIR吸収とその帰属を以下に示す。
 1042cm-1にSNSの逆対称伸縮振動、1091cm-1にSOの対称伸縮振動、1164cm-1にCFの対称伸縮振動、1360cm-1にSO結合の逆対称伸縮振動、1633cm-1にC=Nの伸縮振動、2848cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動が見られた。
 また、CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.853(t,3H,J=6.6Hz), 1.150-1.470(m,32H), 1.490-1.750(m,6H), 1.750-1.890(m,2H), 1.960-2.120(2H,m), 2.700-2.800(1H,m), 3.400-3.480(m,2H), 3.507(t,J=6.0Hz,2H), 3.550-3.650(m,2H),7.690(brs,1H)
 13C-NMR(CDCl,δppm);14.085, 19.199, 22.663, 25.502, 26.143, 27.105, 28.234, 28.982, 29.226, 29.349, 29.394, 29.501, 29.593, 29.639, 29.684, 31.913, 38.659, 43.375, 49.664, 53.953, 168.258
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例2A)
<ビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000023
 7.13gのDBUとオクタデシルブロミド17.28gとをフラスコに加え、250℃のホットプレート上で3時間加熱した。常温に戻すと結晶化した。この結晶を酢酸エチルから再結晶を行い、無色の結晶8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド19.06gを得た。収率83.8%。
 得られた化合物のCDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.826(t,3H,J=6.9Hz), 1.180-1.310(m,30H), 1.530-1.640(m,2H), 1.710-1.810(m,6H), 2.100-2.170(m,2H), 2.850-2.910(2H,m), 3.452-3.505(m,2H), 3.613(t,J=7.5Hz,2H), 3.650-3.750(m,4H)
 13C-NMR(CDCl,δppm);13.918, 20.114, 22.465, 22.984, 25.930, 26.357, 28.234, 28.570, 28.982, 29.135, 29.242, 29.303, 29.394, 29.440, 29.486, 31.699, 47.252, 49.328, 54.182, 55.387, 166.259
 これらのスペクトルから、生成物が8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミドであることが同定された。
 8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド2.52gを水を加熱して溶解させ、ビス(ノナフルオロブタンスルホニル)イミドリチウム塩3.07gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体ビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム4.83gを得た。収率94.4%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSNSの逆対称伸縮振動、1163cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1469cm-1にCHの変角振動、1626cm-1にC=Nの対称伸縮振動,2852cm-1にCHの対称伸縮振動、2922cm-1にCHの逆対称伸縮振動が見られた。
 また、CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.854(t,3H,J=6.6Hz), 1.170-1.320(m,30H), 1.520-1.610(m,2H), 1.650-1.810(m,6H), 2.030-2.130(m,2H), 2.750-2.800(2H,m), 3.380-3.440(m,2H), 3.450-3.540(m,4H), 3.580-3.630(m,2H)
 13C-NMR(CDCl,δppm);14.055, 19.855, 22.663, 22.953, 25.838, 26.433, 28.204, 28.433, 28.254, 29.059, 29.333, 29.394, 29.455, 29.562, 29.623, 29.669, 31.898, 46.977, 48.992, 54.121, 55.189, 166.381
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロメタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例3A)
<ノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 ノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000024
 実施例2Aと同様にして合成した8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド3.11gを温水に溶解させ、ノナフルオロブタンスルホン酸カリウム塩2.17gの水溶液を加えた。常温で1時間撹拌後、1時間加熱還流させた。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体ノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム4.33gを得た。収率95.9%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1132cm-1にSOの対称伸縮振動、1230cm-1にCFの対称伸縮振動、1259cm-1にSO結合の逆対称伸縮振動、1468cm-1にCHの変角振動、2854cm-1にCHの対称伸縮振動、2924cm-1にCHの逆対称伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.850(t,3H,J=6.6Hz), 1.170-1.320(m,30H), 1.520-1.620(m,2H), 1.670-1.820(m,6H), 2.040-2.140(m,2H), 2.790-2.850(2H,m), 3.417-3.470(m,2H), 3.490-3.600(m,4H), 3.620-3.670(m,2H)
 13C-NMR(CDCl,δppm);14.040, 19.992, 22.618, 23.045, 25.899, 26.464, 28.341, 28.494, 28.555, 29.089, 29.288, 29.379, 29.440, 29.532, 29.593, 29.639, 31.852, 46.993, 49.038, 54.105, 55.220, 166.488
 これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、ノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
(実施例4A)
<ビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000025
 ブロモオクタデカン52.4gと水酸化カリウム8.75gとをアセトニトリル中に加え、ピロリジン11.09gを添加した。その後加熱還流を24時間行った。結晶を濾過後、有機層の溶媒を除去後にヘキサンと酢酸エチルの混合溶媒を用いてシリカゲルカラムクロマトグラフィーを行い精製して、オクタデシルピロリジン44.05gを得た。ガスクロマトグラフィーによる純度は99.0%以上であった。
 オクタデシルピロリジン5.04gとブロモブタン2.15gとをアセトニトリル中に加え69時間加熱還流させて反応させた。反応終了後冷却して析出した結晶を濾過して、50℃で真空乾燥をさせ、N-ブチル-N-オクタデシルピロリジニウムブロミドの無色結晶5.85gを得た。収率81.0%。
 N-ブチル-N-オクタデシルピロリジニウムブロミド2.15gを温水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.88gのエタノール/水の混合溶液を加え、常温で1時間攪拌後に加熱還流を1時間行った。析出した反応物をジクロルメタンに溶解後、水で硝酸銀試験が陰性になるまで十分に洗浄し、有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去後、100℃で5時間真空乾燥させ、4.05gの淡黄色のワックス状物ビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムを得た。収率90.3%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSNSの逆対称伸縮振動、1134cm-1、1165cm-1、1196cm-1、1232cm-1にCFの対称伸縮振動、1352cm-1にSOの逆対称伸縮振動、1469cm-1にCHの変角振動、2852cm-1にCHの対称伸縮振動、2922cm-1にCHの逆対称伸縮振動が見られた。
 また、重メタノール中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(δppm);0.890(t,3H,J=6.9Hz), 1.004(t,3H,J=6.9Hz), 1.220-1.470(m,32H), 1.625-1.770(m,4H), 2.000-2.140(m,4H), 3.221-3.288(m,4H), 3.489-3.536(m,4H)
 13C-NMR(δppm);13.880, 14.444, 20.733, 22.824, 23.740, 24.213, 26.212, 27.418, 30.181, 30.486, 30.532, 30.608, 30.776, 33.081, 60.783, 60.997, 63.973
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例5A)
<ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000026
 実施例4Aと同様に合成したオクタデシルピロリジン2.69gをエタノールに溶解させ、ビス(ノナフルオロブタンスルホニル)イミドの30%水溶液を16.15g加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄後、溶媒を除去した。n-ヘキサンとエタノールの混合溶媒から再結晶を行い6.82gのビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムの無色の結晶を得た。収率90.6%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1076cm-1にSNSの逆対称伸縮振動、1151cm-1、1213cm-1、1232cm-1にCFの対称伸縮振動、1354cm-1にSOの逆対称伸縮振動、1469cm-1にCHの変角振動、2852cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3182cm-1にNH伸縮振動が見られた。
 また、重DMSO中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(δppm);0.855(t,3H,J=6.6Hz), 1.140-1.330(m,30H), 1.650-1.780(m,2H), 2.050-2.200(m,4H), 2.810-2.960(m,2H), 3.000-3.110(m,2H), 3.710-3.810(m,2H), 7.750(brs,1H)
 13C-NMR(δppm);14.070, 22.663, 22.770, 25.731, 26.357, 28.921, 29.242, 29.349, 29.425, 29.532, 29.684, 31.913, 54.914, 56.532
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例6A)
<ノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウムの合成>
 ノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000027
 実施例4Aと同様に合成したオクタデシルピロリジン2.91gをエタノールに溶解させ、ノナフルオロブタンスルホン酸2.70g加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄後、溶媒を除去した。n-ヘキサンとエタノールの混合溶媒から再結晶を行い6.82gのノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウム5.12gの無色の結晶を得た。収率91.3%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1134cm-1にSOの対称伸縮振動、1232cm-1にCFの対称伸縮振動、1352cm-1にSOの逆対称伸縮振動、1468cm-1にCHの変角振動、2850cm-1にCHの対称伸縮振動、2918cm-1にCHの逆対称伸縮振動、3076cm-1にNH伸縮振動が見られた。
 また、重DMSO中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(δppm);0.842(t,3H,J=6.6Hz), 1.170-1.360(m,30H), 1.520-1.630(m,2H), 1.760-1.910(m,2H), 1.910-2.040(m,2H), 2.870-3.020(m,2H), 3.000-3.120(m,2H), 3.410-3.570(m,2H), 9.234(brs,1H)
 13C-NMR(δppm);14.089, 22.254, 22.697, 25.399, 26.085, 28.650, 28.879, 28.985, 29.107, 29.214, 31.473, 53.406, 54.154
 これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウムであることが同定された。
 なお、ノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
(実施例7A)
<トリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 トリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000028
 実施例2Aで合成した8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド3.29gを水を加熱して溶解させ、トリフルオロメタンスルホン酸カリウム塩1.36gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体トリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム3.74gを得た。収率99.5%。これをn-ヘキサンとジクロルメタンの混合溶媒から再結晶を行った。
 生成物のFTIR吸収とその帰属を以下に示す。
 1030cm-1にSO結合の対称伸縮振動、1146cm-1にSO結合の逆対称伸縮振動、1261cm-1にCFの対称伸縮振動、1448cm-1にCHの変角振動、1624cm-1にC=Nの対称伸縮振動,2848cm-1にCHの対称伸縮振動、2916cm-1にCHの逆対称伸縮振動が見られた。
 得られた化合物のCDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.843(t,J=6.6Hz,3H), 1.160-1.320(m,30H), 1.520-1.640(m,2H), 1.670-1.820(m,6H), 2.095(quint,J=6.0Hz,2H),2.790-2.850(m,2H), 3.416-3.470(m,2H), 3.490-3.600(m,4H), 3.610-3.680(m,2H)
 13C-NMR(CDCl,δppm);14.065, 20.048, 22.627, 23.070, 25.955, 26.474, 28.427, 28.519, 28.580, 29.114, 29.297, 29.389, 29.450, 29.542, 29.603, 29.648, 31.862, 47.048, 49.094, 54.146, 55.290, 166.513
 これらのスペクトルから、生成物がトリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、トリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸(トリフルオロメタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
(実施例8A)
<ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000029
 1-オクタデシルイミダゾールは、3gのイミダゾールを100mLのアセトニトリルに溶解させ、オクタデシルブロミド14.9gと水酸化カリウム2.51gとを加えて撹拌しながら加熱して4時間還流させて得た。溶媒を除去後、ジクロルメタンで抽出し、カラムクロマトグラフィーで精製した。ガスクロマトグラフィーでの分析したところ98.5%以上の純度であった。
 1-オクタデシルイミダゾール3.95gと1’H,1’H,2’H,2’Hヘプタデカフルオロデシルヨーダイド7.29gを90℃で65時間反応させた。これに酢酸エチルを加えて析出した結晶を濾過して乾燥後、9.67gの薄黄色の結晶を得た。これを酢酸エチルから再結晶を行い、8.67gの無色の結晶を得た。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.841(t,3H,J=6.6Hz), 1.125-1.350(m,30H), 1.865-1.970(m,2H), 2.854-3.019(m,2H), 4.242-4.312(2H,m), 4.855-4.898(m,2H), 7.325-7.337(m,1H), 7.608-7.620(m,1H),10.196(s,1H)
 13C-NMR(CDCl,δppm);14.040, 22.633, 26.174, 28.891, 29.303, 29.440, 29.547, 29.608, 29.639, 29.959, 30.310, 31.608, 31.867, 42.689, 49.954, 50.641, 121.858, 122.942, 137.213
 これらのスペクトルから、生成物が1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムヨージドであることが同定された。
 次に、1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムヨージド3.29gを水に溶解させ、カリウムビス(ノナフルオロブタンスルホニル)イミド2.51gを水とエタノールの混合溶媒に溶解させたものを加えた。加熱還流を2h行い、冷却後溶媒を除去し、ジクロルメタンで抽出を行った。有機層を純水でAgNO試験が陰性になるまで洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去して3.69gの無色の結晶を得た。n-ヘキサンとエタノールの混合溶媒から再結晶を行い3.15g無色の結晶を得た。収率64%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1074cm-1にSO結合の対称伸縮振動、1149cm-1に及び1198cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1469cm-1にCHの変角振動、1564cm-1にC=Nの対称伸縮振動,2850cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3099cm-1及び3158cm-1にイミダゾール環のCHの伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.854(t,3H,J=6.6Hz), 1.150-1.350(m,30H), 1.760-1.900(m,2H), 2.644-2.805(m,2H), 4.136-4.185(m,2H), 4.562-4.606(m,2H), 7.252-7.263(m,1H), 7.454-7.465(m,1H),8.946(s,1H)
 13C-NMR(CDCl,δppm);14.024, 22.648, 26.006, 28.830, 29.247, 29.333, 29.440, 29.547, 29.669, 30.020, 31.913, 42.300, 50.457, 122.209, 123.003, 136.312
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムにおける共役基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例9A)
<ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの合成>
 ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000030
 メチルイミダゾール1.88gと1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシルヨージド12.41gをフラスコに加え80℃で2h、密閉状態でマグネチックスターラーで攪拌させながら反応させた。冷却後酢酸エチルで洗浄して、固形物を濾過した。これを酢酸エチルとエタノールの混合溶媒から再結晶を行い、6.23gの無色結晶を得た。収率44%。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);2.976(tt/J=7.2Hz,18.6Hz,2H), 3.955(s,3H), 4.643(t/J=7.2Hz,2H), 7.618-7.630(m,1H), 7.766-7.772(m,1H),9.095(s,1H)
 13C-NMR(CDCl,δppm);32.119(t/J=21Hz), 36.790, 43.032, 123.926, 125.315, 138.716
 これらのスペクトルから、生成物が1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムヨージドであることが同定された。
 1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムヨージド2.06gを純水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.07gを純水とエタノールの混合溶媒に溶解させたものを加えた。常温で1h反応後、加熱還流を1h行った。析出物を濾過後水で十分に洗浄を行った。乾燥後n-ヘキサンとエタノールの混合溶媒から再結晶を行い、2.41gの無色の結晶を得た。収率67%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSO結合の対称伸縮振動、1147cm-1に及び1176cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1577cm-1にC=Nの対称伸縮振動,3097cm-1及び3157cm-1にイミダゾール環のCH伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);2.836-3.020(m,2H), 3.934(s,3H), 4.613(t/J=7.2Hz,2H), 7.597-7.604(m,1H), 7.736-7.742(m,1H),9.095(s,1H)
 13C-NMR(CDCl,δppm);32.073(t/J=21Hz), 36.576, 42.941, 123.865, 125.254, 138.020
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(実施例10A)
<ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの合成>
 ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000031
 実施例9Aで合成した1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムヨージド2.06gを純水に溶解させ、ノナフルオロブタンスルホン酸カリウム1.10gを純水に溶解させたものを加えた。常温で1h反応後、加熱還流を1h行った。析出物を濾過後水で十分に洗浄を行った。乾燥後n-ヘキサンとエタノールの混合溶媒から再結晶を行い、2.20gの無色の結晶を得た。収率85%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1047cm-1にSO結合の対称伸縮振動、1147cm-1に及び1194cm-1にCFの対称伸縮振動、1254cm-1にSO結合の逆対称伸縮振動、1572cm-1にC=Nの対称伸縮振動,3093cm-1及び3159cm-1にイミダゾール環のCH伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);2.886-3.020(m,2H), 3.938(s,3H), 4.619(t/J=7.2Hz,2H), 7.603-7.609(m,1H), 7.740-7.747(m,1H),9.098(s,1H)
 13C-NMR(CDCl,δppm);32.027(t/J=21Hz), 36.576, 42.941, 123.850, 125.239, 138.060
 これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムであることが同定された。
 なお、ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
(実施例11A)
<1,3-ビス[ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルイミダゾリウム)]プロパンの合成>
 1,3-ビス[ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルイミダゾリウム)]プロパンの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000032
 1-オクタデシルイミダゾール11.51gと1,3-ジブロモプロパンを攪拌しながら80℃で1h反応させた後に反応温度を100℃に上げて更に3h反応を行った。反応物に酢酸エチルを加えて析出した沈殿を濾過した。真空乾燥後にn-ヘキサンとエタノール混合溶媒から再結晶を行い13.37gの無色の結晶を得た。収率89%。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.820(t/J=6.6Hz,6H)1.100-1.350(m,60H)1.800-1.920(m,4H), 2.852(quint/J=7.2Hz,2H), 4.191(t/J=7.2Hz,4H), 4.692(t/J=7.2Hz,4H), 7.201-7.213(m,2H), 8.209-8.221(m,2H),10.181(s,2H)
 13C-NMR(CDCl,δppm);14.022, 22.584, 26.217, 28.857, 29.254, 29.407, 29.498, 29.560, 29.605, 30.033, 30.811, 31.811, 46.700, 50.241, 121.291, 123.901, 136.447
 これらのスペクトルから、生成物が1,3-ビス[1-オクタデシルイミダゾリウムブロミド]プロパンであることが同定された。
 1,3-ビス[1-オクタデシルイミダゾリウムブロミド]プロパン2.49gを純水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドリチウム3.70gの水溶液を加え、常温で1h反応後、1h加熱還流させた。冷却後にジクロルメタンで抽出後、純水でAgNO試験が陰性になるまで洗浄した。溶媒を除去した後にn-ヘキサンとエタノールの混合溶媒から再結晶を行い、4.80gの無色結晶を得た。収率85%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSNS結合の逆対称振動、1167cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1468cm-1にCHの変角振動、1566cm-1にC=Nの対称伸縮振動,2850cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3120cm-1及び3155cm-1にイミダゾール環のCH]伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.854(t/J=6.9Hz,6H), 1.150-1.350(m,60H), 1.780-1.900(m,4H), 2.481-2.587(m,2H), 4.098(t/J=6.9Hz,4H), 4.359(t/J=7.2Hz,4H), 7.189-7.200(m,2H), 7.600-7.610(m,2H),8.333(s,2H)
 13C-NMR(CDCl,δppm);14.085, 22.679, 26.143, 28.799, 29.257, 29.349, 29.455, 29.547, 29.654, 29.684, 29.883, 31.470, 31.913, 46.413, 50.412, 122.057, 123.308, 135.458
 これらのスペクトルから、生成物が1,3-ビス[ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルイミダゾリウム)]プロパンであることが同定された。
 なお、1,3-ビス[ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルイミダゾリウム)]プロパンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
(比較例1A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミドに変えた、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000033
 実施例1Aで合成した6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン2.18gのエタノール溶液にヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド3.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。90℃で真空乾燥を3日間行い、無色の液体ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンを4.86g得た。収率93.8%
 生成物のFTIR吸収とその帰属を以下に示す。
 1042cm-1にSNSの逆対称伸縮振動、1091cm-1にSOの対称伸縮振動、1164cm-1にCFの対称伸縮振動、1360cm-1にSO結合の逆対称伸縮振動、1633cm-1にC=Nの伸縮振動、2848cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3387cm-1にNH伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.869(t,3H,J=6.6Hz), 1.170-1.340(m,32H), 1.441-1.555(m,2H), 1.600-1.750(m,4H), 1.772-1.832(m,2H), 1.941-2.101(m,2H), 2.670-2.780(m,1H), 3.413(t,2H,J=6.6Hz), 3.508(t,2H,J=6.6Hz), 3.550-3.652(m,2H)
 13C-NMR(CDCl,δppm);14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364, 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922
 これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。
(比較例2A)
<ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからヘプタデカフルオロオクタンスルホン酸に変えた、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000034
 実施例1Aで合成した6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン4.04gのエタノール溶液にヘプタデカフルオロオクタンスルホン酸5.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。n-ヘキサンとエタノールの混合溶媒から再結晶を行い、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムを7.86g得た。収率86.9%
 生成物のFTIR吸収とその帰属を以下に示す。
 1055cm-1にSOの対称伸縮振動、1252cm-1にCFの対称伸縮振動、1368cm-1にSO結合の逆対称伸縮振動、1467cm-1にCHの変角振動、1643cm-1にC=Nの伸縮振動、2851cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3296cm-1にNH伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.843(t,3H,J=6.6Hz), 1.205-1.287(m,32H), 1.544-1.800(m,8H), 1.975-2.033(m,2H), 2.792-2.816(m,1H), 3.440-3.559(m,6H), 8.713(brs,1H)
 13C-NMR(CDCl,δppm);14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425, 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029
 これらのスペクトルから、生成物がヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。
(比較例3A)
<トリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
 比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからトリス(トリフルオロメタンスルホニル)メチドに変えた、トリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000035
 実施例1Aと同様に合成した6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン4.0gをエタノールに溶解させ、65%濃硝酸(d=1.400)0.96gのエタノール希釈液を添加して硝酸塩を合成した。終点はリトマス紙で中性になるところをチェックした。トリス(トリフルオロメタンスルホニル)メチドカリウム塩4.45gのエタノール溶液を加えて、30分間攪拌し、その後に30分間加熱還流した。溶媒除去後ジエチルエーテルで抽出し、有機層を水で十分に洗浄後に無水硫酸ナトリウムで乾燥させて溶媒除去後、7.60gのトリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムを得た。収率94.0%。n-ヘキサンとエタノールの混合溶媒から再結晶を行った。
 生成物のFTIR吸収とその帰属を以下に示す。
 1117cm-1にSOの対称伸縮振動、1198cm-1にCFの対称伸縮振動、1381cm-1にSO結合の逆対称伸縮振動、1470cm-1にCHの変角振動、1632cm-1にC=Nの伸縮振動、2850cm-1にCHの対称伸縮振動、2918cm-1にCHの逆対称伸縮振動、3408cm-1にNH伸縮振動が見られた。
 CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.850(t,3H,J=6.6Hz), 1.174-1.335(m,32H), 1.485-1.557(m,2H), 1.590-1.740(m,4H), 1.774-1.842(m,2H), 1.994-2.057(m,2H), 2.640-2.740(m,1H), 3.360-3.430(m,2H), 3.450-3.690(m,4H), 7.160(brs,1H)
 13C-NMR(CDCl,δppm);14.070, 19.122, 22.648, 25.899, 27.044, 28.463, 29.013, 29.165, 29.333, 29.455, 29.578, 29.669, 31.882, 38.644, 43.238, 49.481, 53.968, 120.126(q、J=325Hz) , 168.197
 これらのスペクトルから、生成物がトリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
 なお、トリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔トリス(トリフルオロメタンスルホニル)メチド〕のアセトニトリル中でのpKaは、-3.7である。
(比較例4A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの合成>
 カチオン部に7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセン構造を有し、アニオン部にヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミドを有する、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000036
 まず、原料の7-n-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセン(オクタデシルTBD)の合成について示す。
 R.W.Alderらの方法〔非特許文献、 Roger W. Alder, Rodney W. Mowlam, David J. Vachon and Gray R. Weisman, “New Synthetic Routes to Macrocyclic Triamines,” J. Chem. Sos. Chem. Commun. pp.507-508 (1992)参照〕を参考にして合成した。
 即ち、水素化ナトリウム(55質量%ヘキサン)を、乾燥THFに溶解させた1,5,7-トリアザビシクロ[4.4.0]-5-デセン(TBD)8.72g中に10℃で加えて攪拌した。10℃に温度を保ったまま、臭素化オクタデカンを20分間かけて滴下した。その後、10℃で30分間撹拌し、続いて、常温で2時間撹拌した後に、1時間加熱還流した。常温に戻して過剰の水素化ナトリウムを加えて反応させた。溶媒を除去後、アミノ処理したシリカゲルでカラムクロマトグラフィーを行い、淡黄色の目的物を得た。
 得られた目的物である7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセン4.00gをエタノールに溶解させ、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド3.00gのエタノール溶液を添加した。30分間攪拌後30分間加熱還流を行った後に溶媒を除去し、ジクロルメタンに溶解させ水で十分に洗浄を行った後に無水硫酸ナトリウムで乾燥後、溶媒を除去して無色のヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウム4.60gを得た。収率92.0%。nヘキサンとエタノールの混合溶媒から再結晶を行った。
 生成物のFTIR吸収とその帰属を以下に示す。
 1042cm-1にSNSの逆対称伸縮振動、1092cm-1にSOの対称伸縮振動、1157cm-1にCFの対称伸縮振動、1361cm-1にSO結合の逆対称伸縮振動、1628cm-1にC=Nの伸縮振動、2849cm-1にCHの対称伸縮振動、2921cm-1にCHの逆対称伸縮振動、3412cm-1にNH伸縮振動が見られた。
 CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.847(t,3H,J=6.6Hz), 1.222-1.274(m,30H), 1.460-1.600(m,2H), 1.969-2.055(m,4H), 3.210(t,2H,J=10Hz), 3.310-3.409(m,8H), 5.931(brs,1H)
 13C-NMR(CDCl,δppm);14.055, 20.450, 20.740, 22.633, 26.494, 27.044, 29.226, 29.303, 29.425, 29.532, 29.608, 29.654, 31.867, 38.980, 46.428, 47.298, 47.786, 50.183, 150.385
 これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムであることが同定された。
 なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。
(比較例5A)
<ヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの合成>
 カチオン部に7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセン構造を有し、アニオン部にヘプタデカフルオロオクタンスルホン酸を有する、ヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000037
 比較例4Aで合成した7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセン3.91gをエタノールに溶解させ、ヘプタデカフルオロオクタンスルホン酸5.00gのエタノール溶液を添加した。30分間攪拌後30分間加熱還流を行った後に溶媒を除去し、ジクロルメタンと少量のエタノールに溶解させ水で十分に洗浄を行った後に無水硫酸ナトリウムで乾燥後、溶媒を除去して無色のヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウム8.50gを得た。収率95.4%。nヘキサンとエタノールの混合溶媒から再結晶を行った。
 生成物のFTIR吸収とその帰属を以下に示す。
 1151cm-1-1287cm-1にCFの対称伸縮振動、1373cm-1にSO結合の逆対称伸縮振動、1602cm-1にC=Nの伸縮振動、2851cm-1にCHの対称伸縮振動、2924cm-1にCHの逆対称伸縮振動、3289cm-1にNH伸縮振動が見られた。
 CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.841(t,3H,J=6.6Hz), 1.205-1.239(m,30H), 1.460-1.590(m,2H), 1.915-2.060(m,4H), 3.254-3.316(m,8H), 3.390-3.450(m,2H), 7.158(brs,1H)
 13C-NMR(CDCl,δppm);14.041, 20.619, 20.970, 22.649, 26.419, 27.091, 29.319, 29.350, 29.502, 29.670, 31.883, 38.767, 46.368, 47.314, 47.986, 50.230, 150.417
 これらのスペクトルから、生成物がヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムであることが同定された。
 なお、ヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。
(比較例6A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムの合成>
 実施例5Aあるいは実施例6Aとは異なり、カチオン部にN-オクタデシルピロリジニウム構造を有するイオン液体ではあるが、アニオン部をヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミドに変えた、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000038
 実施例4Aと同様に合成したオクタデシルピロリジン2.68gをエタノールに溶解させ、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド2.67gをエタノールに溶解させたものを加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄し無水硫酸マグネシウムで乾燥後溶媒を除去して無色の固体を4.96g得た。収率92.8%。n-ヘキサンとエタノールの混合溶媒から再結晶を行い4.10gのヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムの無色の結晶を得た。
 生成物のFTIR吸収とその帰属を以下に示す。
 1151cm-1にCFの対称伸縮振動、1354cm-1にSOの逆対称伸縮振動、1466cm-1にCHの変角振動、2850cm-1にCHの対称伸縮振動、2918cm-1にCHの逆対称伸縮振動、3192cm-1にNH伸縮振動が見られた。
 また、重DMSO中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(δppm);0.843(t,3H,J=6.6Hz), 1.150-1.360(m,30H), 1.500-1.630(m,2H), 1.760-2.060(m,4H), 2.860-3.140(m,4H), 3.400-3.580(m,2H), 9.239(brs,1H)
 13C-NMR(δppm);14.119, 22.270, 22.697, 25.399, 26.101, 28.650, 28.879, 28.985, 29.107, 29.214, 31.473, 53.406, 54.154
 これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムであることが同定された。
 なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。
(比較例7A)
<ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの合成>
 ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000039
 次に実施例8Aで合成した1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムヨージド3.87gを水に溶解させ、ノナフルオロブタンスルホン酸カリウム1.76gを水に溶解させたものを加えた。常温で1h攪拌後、加熱還流を1h行い、冷却後溶媒を除去し、ジクロルメタンで抽出を行った。有機層を純水でAgNO試験が陰性になるまで洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去し、n-ヘキサンとエタノールの混合溶媒から再結晶を行い4.20g無色の結晶を得た。収率91%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1147cm-1にSO結合の対称伸縮振動、1200cm-1にCFの対称伸縮振動、1456cm-1にCHの変角振動、1564cm-1にC=Nの対称伸縮振動,2850cm-1にCHの対称伸縮振動、2916cm-1にCHの逆対称伸縮振動、3113cm-1及び3150cm-1にイミダゾール環のCHの伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.849(t/J=6.9Hz,3H), 1.160-1.380(m,30H), 1.860-1.970(m,2H), 2.620-3.010(m,2H), 4.254(t/J=6.6Hz,2H), 4.845(t/J=6.6Hz,2H), 7.276(s,1H), 7.526(s,1H),10.184(s,1H)
 13C-NMR(CDCl,δppm);14.070, 22.648, 26.189, 28.906, 29.318, 29.455, 29.562, 29.623, 29.669, 29.990, 31.882, 32.691, 32.722, 42.719, 50.671, 121.706, 122.881, 137.503
 これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムであることが同定された。
 なお、ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムにおける役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
(比較例8A)
<ビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成>
 比較のために、モノカチオンイオン液体であるビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000040
 1-オクタデシルイミダゾール10.7gとブロモブタン6.03gとをアセトニトリル中に溶解させ、加熱還流を5時間行った。溶媒を除去後、n-ヘキサンとエタノールとの混合溶媒から再結晶を行い、1-ブチル-3-オクタデシルイミダゾリウムブロミドを得た。このブロミド1.27gをエタノールに溶解させ、そこへ、ビス(ノナフルオロブタンスルホニル)イミドカリウム1.81gのエタノール溶液を添加し、撹拌すると無色の沈殿が発生した。この溶液を1時間加熱還流させ、冷却後に沈殿を分離し、純水で十分に洗浄した。n-ヘキサンとエタノールとの混合溶媒から再結晶を行い、無色の結晶ビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウム2.06gを得た。収率75%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSOの対称伸縮振動、1137cm-1及び1168cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1469cm-1にCHの変角振動、1564cm-1にC=Nの伸縮振動、2850cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動、3097cm-1及び3157cm-1にイミダゾール環のCHの伸縮振動が見られた。
 また、重クロロホルム中でのプロトン(H)NMR及びカーボン(13C)NMRのピークとその帰属について、以下に示す。
 H-NMR(CDCl,δppm);0.837(t/J=6.6Hz,3H), 0.885(t/J=7.2Hz,3H), 1.140-1.300(m,32H), 1.760(quint/J=7.2Hz,4H), 4.112-4.173(m,4H), 7.776(s,1H), 7.781(s,1H), 9.175(s,1H)
 13C-NMR(CDCl,δppm);13.341, 14.043, 18.927, 22.239, 25.627, 28.466, 28.863, 28.970, 29.062, 29.184, 29.413, 31.443, 48.751, 49.026, 122.624, 136.101
 これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムであることが同定された。
 なお、ビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは0.0である。
(比較例9A)
<1,5-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ペンタンの合成>
 1,5-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ペンタンの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000041
 実施例8Aで合成した1-オクタデシルイミダゾール10.00gと1,5-ジブロモヘプタン3.58gとをイソプロパノールに溶解させた。得られた液を、スリーワンモーターと冷却器とを取り付けた三口フラスコに加えて3時間加熱還流させた。溶媒を除去後、酢酸エチルとエタノールとの混合溶媒から再結晶を行い、無色結晶の1,5-ビス(1-オクタデシルイミダゾリウムブロミド)ペンタン12.82gを得た。収率94%。
 1,5-ビス(1-オクタデシルイミダゾリウムブロミド)ペンタン1.93gを水に溶解させ、水と少量のエタノールに溶解させたビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.76gを加え、常温で2時間撹拌後、2時間加熱還流させた。反応終了後濾過し、濾液のAgNO試験が陰性になるまで水で十分に洗浄した。70℃で真空乾燥を10時間行い、1,5-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ペンタンのろう状化合物を4.00g得た。収率96.5%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSOの対称伸縮振動、1167cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1468cm-1にCHの変角振動、1566cm-1にC=Nの伸縮振動、2854cm-1にCHの対称伸縮振動、2924cm-1にCHの逆対称伸縮振動が見られた。
 また、重DMSO中でのプロトン(H)NMR及びカーボン(13C)NMRのピークとその帰属について、以下に示す。
 H-NMR(重DMSO,δppm);0.828(t,6H,J=6.9Hz), 1.130-1.340(m,62H), 1.710-1.880(m,8H), 4.106-4.169(m,8H), 7.750-7.761(m,2H), 7.772-7.782(m,2H), 9.141(s,2H)
 13C-NMR(重DMSO,δppm);13.967, 22.239, 25.689, 28.543, 28.772, 28.879, 29.016, 29.138, 29.214, 29.520, 31.458, 48.675, 49.041, 122.594, 122.639, 136.086
 これらのスペクトルから、生成物が1,5-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ペンタンであることが同定された。
 なお、1,5-ビス[1-オクタデシルイミダゾリウム-ビス(ノナフルオロブタンスルホニル)イミド]ペンタンにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。
(比較例10A)
<1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナンの合成>
 1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナンの合成は、以下のスキームにしたがって行った。
Figure JPOXMLDOC01-appb-C000042
 実施例8Aで合成した1-オクタデシルイミダゾール10.91gと1,9-ジブロモノナン4.88gとをイソプロパノールに溶解させた。得られた液を、スリーワンモーターと冷却器とを取り付けた三口フラスコに加えて3時間加熱還流させた。溶媒を除去後、n-ヘキサンとエタノールとの混合溶媒から再結晶を行い、無色結晶の1,9-ビス(1-オクタデシルイミダゾリウムブロミド)ノナン14.11gを得た。収率89%。
 1,9-ビス(1-オクタデシルイミダゾリウムブロミド)ノナン3.00gを水に溶解させビス(ノナフルオロブタンスルホニル)イミドリチウム塩4.04gの水溶液を加えた。常温で1時間撹拌後、2時間加熱還流させた。反応終了後、結晶を濾過した。濾液のAgNO試験が陰性になるまで水で十分に洗浄を行い、1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナン5.16gを得た。収率73.7%。
 生成物のFTIR吸収とその帰属を以下に示す。
 1072cm-1にSNS逆対称伸縮振動、1169cm-1にCFの対称伸縮振動、1352cm-1にSO結合の逆対称伸縮振動、1469cm-1にCHの変角振動、1564cm-1にC=Nの対称伸縮振動,2850cm-1にCHの対称伸縮振動、2920cm-1にCHの逆対称伸縮振動が見られた。
 また、CDCl中でのプロトン(H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
 H-NMR(CDCl,δppm);0.870(t/J=6.9Hz,6H), 1.180-1.370(m,70H), 1.780-1.920(m,8H), 4.151(quin/J=7.2Hz,8H), 7.244-7.257(m,2H), 7.398-7.410(m,2H), 8.816(s,2H)
 13C-NMR(CDCl,δppm);14.055, 22.663, 25.334, 26.082, 27.807, 27.929, 28.845, 29.288, 29.333, 29.455, 29.562, 29.669, 29.730, 30.127, 31.898, 50.015, 50.091, 121.980, 122.621, 135.366
 これらのスペクトルから、生成物が1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナンであることが同定された。
 なお、1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
 上記実施例及び比較例で合成したイオン液体を以下にまとめた。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(実施例1B~実施例11B、及び比較例1B~比較例10B)
<フッ素系溶媒への溶解性測定結果>
 各実施例、及び各比較例で合成したイオン液体に対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF(CHF)CFCF〕を用いて溶解性試験を行った。
 所定質量のバートレルXFに対してイオン液体を加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
 具体的には、バートレルXF(25℃)100質量部に対して、0.5質量部、0.1質量部それぞれのイオン液体を加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。
 なお、目視で確認し、透明である場合を溶解していると判断した。また、不透明である又は不溶分が見られる場合を溶解していない(不溶)と判断した。
 結果を表2-1~表2-2に示す。
〔評価基準〕
 ・0.5質量%以上:
   0.5質量部の添加で溶解している。
 ・0.1質量%以上0.5質量%未満:
   0.5質量部の添加では不溶であるが、0.1質量部の添加では溶解している。
 ・0.1質量%未満:
   0.5質量部、及び0.1質量部のいずれの添加でも不溶である。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 実施例1Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例2Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例3Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例4Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例5Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例6Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
 実施例7Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例8Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
 実施例9Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 実施例10Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
 実施例11Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
 比較例1A~比較例10Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%未満であった。
 これからわかるように、実施例で用いたイオン液体は、フッ素系溶媒であるバートレルXFに対して0.1質量%以上の溶解性を持ち、ハードディスク用途としての生産に用いるには十分である。
 また、同じ6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン骨格を持つ場合でも、実施例1Bのように、アニオンとしてビス(ノナフルオロブタンスルホニル)イミドを持つ場合には、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド(比較例1B)、ヘプタデカフルオロオクタンスルホン酸(比較例2B)、トリス(トリフルオロメタンスルホニル)メチド(比較例3B)の場合よりも溶解性に優れている。
 また、同じ6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン骨格を持つ場合でも、実施例7Bのように、アニオンとしてトリフルオロメタンスルホン酸を持つ場合には、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド(比較例1B)、ヘプタデカフルオロオクタンスルホン酸(比較例2B)の場合よりも溶解性に優れている。
 しかし、アニオン部の分子量に含まれるフッ素含有量は表3に示すように、それぞれ0.589、0.389、0.649、0.372であり、フッ素含有量が高いヘプタデカフルオロオクタンスルホン酸の場合に溶解性は低い。ただし、単なるフッ素含有量で溶解性を考察することは出来ない。その中でビス(ノナフルオロブタンスルホニル)イミド系のイオン液体はフッ素系溶媒への溶解性が改良されることがわかる。
Figure JPOXMLDOC01-appb-T000048
 また実施例8Bと比較例7Bとを比較すると、カチオン部のイミダゾールの構造は同じで、アニオン部がスルホン酸からスルホニルイミドに変わった場合に溶解性が改良した。実施例8Bと比較例8Bとを比較すると、1位がブチル基に対してフッ素化炭素を導入した分子設計にしたために溶解性が改良している。総じてではあるが、ビス(ノナフルオロブタンスルホニル)イミド系のイオン液体は対応するノナフルオロブタンスルホン酸に対してフッ素系溶媒への溶解性が改良することがわかる。
 また実施例9B及び10Bでは、実施例8Bのオクタデシル基をメチル基にすることにより、分子全体のフッ素含有量を増加させたために、その溶解性は改良して、スルホン酸塩でも溶解するようになった。
 実施例11B、比較例9B及び比較例10Bはジカチオンの比較であるが、その結合基の長さがそれぞれ3、5、9である。結果としては結合基の長さが短い場合に、フッ素系溶媒への溶解性が改良できることが分かった。
 本発明者らの検討結果から、イオン液体のフッ素系溶媒への溶解性に関して、以下の知見が得られた。
 同じオクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つイオン液体でもそのオクタデシル基が導入される位置によっても溶解性は異なってくることが分かった。つまり6位に導入されたものでは、アニオンとしてのビス(ノナフルオロブタンスルホニル)イミド構造のものだけが溶解するが、8位に導入されたものでは実施例2Bび実施例3Bからわかるように、ビス(ノナフルオロブタンスルホニル)イミド構造ばかりではなく、6位に導入されたものでは溶解しなかったパーフルオロスルホン酸構造のものも溶解するようになる(比較例2B)。つまり8位にオクタデシル基を導入することにより溶解性は改善されることが分かる。
 7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセンをカチオン構造として持つイオン液体の場合には、比較例4Aのヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミドや比較例5Aのヘプタデカフルオロオクタンスルホン酸では溶解しない。比較例3Aではトリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンは溶解しない。更に、ここでは紹介しなかった他の検討の結果も踏まえると、溶解性に関しては7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセンのカチオン構造が6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンよりも溶解性は高いことが推察される。
 オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つイオン液体でもそのアニオンの構造によっても溶解性は異なってくることが分かった。つまりアニオンとしてヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミドやヘプタデカフルオロオクタンスルホン酸の場合には溶解しないが、トリフルオロメタンスルホン酸の場合には溶解することを見出した。この場合にはアニオン部のフッ素含有量では溶解性は説明することができない。
 1-ヘプタデカフルオロデシルイミダゾール骨格では3位にメチル基を持つ構造のものはオクタデシル基を持つものよりも溶解性に優れ、ノナフルオロブタンスルホン酸塩でもバートレルXFに溶解する。この場合には長鎖炭化水素がメチル基に変わったことにより分子全体のフッ素含有量が増加したためにフッ素系溶媒への溶解性が改良したものと考えられる。
 ジカチオンの場合には更に結果はトリッキーであり、結合鎖の数が9及び5の場合には溶解性は0.1質量%未満であり、3の場合にのみ溶解性が改良した。ピロリジン骨格を持つN-ブチル-N-オクタデシルピロリジン骨格を持つイオン液体の場合にはフッ素系溶媒への溶解性は0.5質量%以上であるが、ジカチオンにした場合には0.1質量%未満と溶解性が悪化する。ところがイミダゾール骨格の場合にはブチル-オクタデシルイミダゾールのモノカチオンではフッ素系溶媒への溶解性は0.1質量%未満であるが、ジカチオンにすることにより溶解性は改良することを見出した。
 またここでは紹介しなかったが、長鎖のアルキル基を持つほとんどのイミダゾール系イオン液体はフッ素溶媒に溶解しない。しかしピロリジン系イオン液体の中には溶解するものが実施例4A、実施例5A及び実施例6Aであり、ピロリジン系が溶解しやすいことを見出した。
 そのため、カチオン部分及びアニオン部分のフッ素系溶媒への溶解性についてまとめると以下のような序列となる。
Figure JPOXMLDOC01-appb-C000049
 ここで、前記一般式(A-1)、前記一般式(A-2)、前記一般式(B)、前記一般式(C)及び前記一般式(D)中、R、及びRは、前述のとおりである。
 前記一般式(A-1)中、R21は、炭化水素基を表す。
 前記一般式(E)中、R、R、及びRは、それぞれ独立して、水素原子、及び長鎖の炭化水素基のいずれかを表す。ただし、R、R、及びRの少なくとも1つは、長鎖の炭化水素基である。
Figure JPOXMLDOC01-appb-C000050
 ここで、前記一般式(X)中、lは、前述のとおりである。
 前記一般式(Y)、及び前記一般式(Z)中、nは、前述のとおりである。
 そのため、イオン液体における酸と塩基との組み合わせとしては塩基では窒素にアルキル基を導入した、ピロリジン〔一般式(D)〕、オクタデシルジアザビシクロ[5.4.0]-7-ウンデセン〔一般式(B)、一般式(A-1)、一般式(A-2)〕、あるいは1,5,7-トリアザビシクロ[4.4.0]-5-デセン〔一般式(C)〕骨格を用いるのが良い。また酸としてはパーフルオロアルカンスルホニルイミド〔一般式(X)〕あるいはアルキル鎖が短いパーフルオロスルホン酸〔一般式(Y)〕を用いるのが良い。
s 
(実施例1C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの5%、10%、20%重量減少温度は、それぞれ352.9℃、378.2℃、396.7℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例11C)と比較すると100℃以上、またZ-TETRAOL(比較例12C)と比較しても50℃以上高いことが分かる。
(実施例2C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの5%、10%、20%重量減少温度は、それぞれ341.1℃、372.9℃、396.3℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、100℃以上熱安定性が改善されていることが分かる。
(実施例3C)
<熱安定性測定結果>
 ノナフルオロブタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの5%、10%、20%重量減少温度は、それぞれ346.9℃、373.1℃、396.8℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例11C)と比較すると150℃以上、またZ-TETRAOL(比較例12C)と比較しても100℃以上高いことが分かる。
(実施例4C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-N-ブチル-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ331.4℃、360.2℃、382.5℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、90℃以上熱安定性が改善されていることが分かる。
(実施例5C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ312.6℃、334.4℃、355.5℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、70℃以上熱安定性が改善されていることが分かる。
(実施例6C)
<熱安定性測定結果>
 ノナフルオロブタンスルホン酸-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ339.4℃、359.0℃、377.3℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、95℃以上熱安定性が改善されていることが分かる。
(実施例7C)
<熱安定性測定結果>
 トリフルオロメタンスルホン酸-8-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ319.2℃、346.6℃、389.0℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例11C)と比較すると140℃以上、またZ-TETRAOL(比較例12C)と比較しても80℃以上高いことが分かる。
(実施例8C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ335.8℃、358.5℃、377.7℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。
(実施例9C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ350.3℃、365.5℃、381.3℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例11C)と比較すると150℃以上、またZ-TETRAOL(比較例12C)と比較しても90℃以上高いことが分かる。
(実施例10C)
<熱安定性測定結果>
 ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-メチルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ373.8℃、389.3℃、401.7℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、それぞれ170℃、120℃以上熱安定性が改善されていることが分かる。
(実施例11C)
<熱安定性測定結果>
 1,3-ビス[ビス(ノナフルオロブタンスルホニル)イミド-N-オクタデシルイミダゾリウム)]プロパンの5%、10%、20%重量減少温度は、それぞれ352.3℃、381.9℃、401.4℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、それぞれ170℃、120℃以上熱安定性が改善されていることが分かる。
(比較例1C)
<熱安定性測定結果>
 ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ346.3℃、384.1℃、414.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例2C)
<熱安定性測定結果>
 ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ361.9℃、382.7℃、403.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例3C)
<熱安定性測定結果>
 トリス(トリフルオロメタンスルホニル)メチド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ354.9℃、385.0℃、404.3℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例4C)
<熱安定性測定結果>
 ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの5%、10%、20%重量減少温度は、それぞれ288.4℃、376.2℃、412.1℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例5C)
<熱安定性測定結果>
 ヘプタデカフルオロオクタンスルホン酸-7-オクタデシル-1,5,7-トリアザビシクロ[4.4.0]-5-デセニウムの5%、10%、20%重量減少温度は、それぞれ356.1℃、380.4℃、401.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例6C)
<熱安定性測定結果>
 ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ336.4℃、358.4℃、379.4℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例7C)
<熱安定性測定結果>
 ノナフルオロブタンスルホン酸-1-1’H,1’H,2’H,2’Hヘプタデカフルオロデシル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ257.5℃、267.6℃、278.4℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例8C)
<熱安定性測定結果>
 ビス(ノナフルオロブタンスルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ347.2℃、367.0℃、387.8℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(比較例9C)
<熱安定性測定結果>
 1,5-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ペンタンの5%、10%、20%重量減少温度は、それぞれ360.1℃、384.4℃、402.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性はそれぞれ170℃、120℃以上高い。
(比較例10C)
<熱安定性測定結果>
 1,9-ビス[ビス(ノナフルオロブタンスルホニル)イミド-1-オクタデシルイミダゾリウム]ノナンの5%、10%、20%重量減少温度は、それぞれ355.1℃、381.0℃、400.9℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例11C)やZ-TETRAOL(比較例12C)と比較しても、熱安定性はそれぞれ170℃、110℃以上高い。
(比較例11C)
<熱安定性測定結果>
 比較例11Cとして、末端に水酸基をもつ分子量約2000の市販品のパーフルオロポリエーテルZ-DOLの測定を行った結果、5%、10%、20%重量減少温度は、それぞれ165.0℃、197.0℃、226.0℃であり、重量減少は蒸発に起因している。
(比較例12C)
<熱安定性測定結果>
 市販品で磁気記録媒体用潤滑剤として一般的に使用されている、末端に水酸基を複数個持つ分子量約2000のパーフルオロポリエーテル(Z-TETRAOL)を、比較例12Cの潤滑剤として用いた。Z-TETRAOLの5%、10%、20%重量減少温度は、それぞれ240.0℃、261.0℃、282.0℃であり、Z-DOL同様に重量減少は蒸発に起因している。
 実施例1C~実施例11C、比較例1C~比較例12Cの結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000051
 このようにイオン液体系の潤滑剤は、比較例11C及び12Cの市販品のパーフルオロポリエーテルと比較して熱安定性に優れていることが分かる。
 熱安定性についてのイオン液体の中での比較であるが、オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つものについては、実施例1C~実施例3C、実施例7C及び比較例1C~比較例3Cから比較できる。この場合には10℃~50℃程度比較例のほうが重量減少温度は高い。しかし、オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つイオン液体は重量減少温度がかなり高く、20%の重量減少温度は400℃に近く、十分な熱安定性を持つものと考えられる。
 また、N-オクタデシルピロリジン構造を持つイオン液体については、実施例4C~実施例6C及び比較例6Cを比較して、熱安定性については、実施例と比較例とで大きな違いはない。しかし前述のようにイオン液体であるために、市販品のパーフルオロポリエーテル構造と比較して非常に高い熱安定性を示す。
 また、イミダゾール構造を持つイオン液体については、実施例8C~実施例11C及び比較例7C~比較例10Cを比較して、熱安定性については比較例7Cを除いて、実施例と比較例とで大きな違いはない。しかし前述のようにイオン液体であるために、市販品のパーフルオロポリエーテル構造と比較して非常に高い熱安定性を示す。
(実施例1D~実施例11D、及び比較例1D~比較例10D)
<ディスク耐久性試験>
 実施例1A~実施例11A、及び比較例1A~比較例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布して、磁気ディスクを作製した。表5-1、及び表-2に示すように、磁気ディスクのCSS測定は、50,000回を超え、加熱試験後のCSS測定も50,000回を超え、優れた耐久性を示した。
(比較例11D)
<ディスク耐久性試験>
 Z-DOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表5-2に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は12,000回であり、加熱試験により耐久性が悪化した。
(比較例12D)
<ディスク耐久性試験>
 Z-TETRAOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表5-2に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は36,000回であり、加熱試験により耐久性が悪化した。
 実施例1D~実施例11D、及び比較例1D~比較例12Dの結果を、表5-1及び表5-2にまとめた。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
(実施例1E~実施例11E、比較例1E~比較例12E)
 実施例1A~11Aのイオン液体、比較例1A~10Aのイオン液体、Z-DOL、及びZ-TETRAOLをそれぞれ含有する潤滑剤を用いて、前述の磁気テープを作製した。そして、以下の測定を行った。結果を表6-1、表6-2に示す。
 ・100回のシャトル走行後の磁気テープの摩擦係数
   温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
 ・スチル耐久試験
   温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
 ・シャトル耐久試験
   温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
 ・加熱試験後の100回のシャトル走行後の磁気テープの摩擦係数
   温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
 ・加熱試験後のスチル耐久試験
   温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
 ・加熱試験後のシャトル耐久試験
   温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
 実施例1E~11E、及び比較例1E~12Eの結果を、表6-1及び表6-2にまとめる。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
 表中、スチル耐久性の「>60」は、60分超であることを表す。
 表中、シャトル耐久性の「>200」は、200回超であることを表す。
 以下のことが確認できた。
 実施例1A~実施例11Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。
 比較例1A~比較例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤はイオン液体であるゆえに加熱試験後にも優れた磁気テープ耐久性を示した。
 Z-DOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
 Z-TETRAOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
 表6-1及び表6-2から、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、前記イオン液体のCF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であるイオン液体系潤滑剤を用いることにより、優れた耐熱性、並びに磁気テープ、及び磁気ディスクにおける耐久性を得られることが分かった。更には、耐熱性及び磁気記録媒体の耐久性に優れるばかりでなく、フッ素系溶媒にも溶解するので、特にハードディスクの応用を考えたときに製造プロセスの上でも問題はない。
 以上の説明からも明らかなように、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、前記イオン液体のCF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であるイオン液体系潤滑剤は、分解温度及び5%、10%、20%重量減少温度が高く熱安定性に優れる。また高温条件下においても従来のパーフルオロポリエーテルと比較しても優れた潤滑性を保つことができ、また、長期に亘って潤滑性を保つことができる。したがって、このイオン液体を含有する潤滑剤を用いた磁気記録媒体は、非常に優れた走行性、耐摩耗性、及び耐久性を得ることができる。またフッ素系溶媒にも溶解するので、特にハードディスクの応用を考えたときに製造プロセスの上でも問題はない。
 11 基板
 12 下地層
 13 磁性層
 14 カーボン保護層
 15 潤滑剤層
 21 基板
 22 磁性層
 23 カーボン保護層
 24 潤滑剤層
 25 バックコート層

Claims (7)

  1.  共役塩基と、共役酸とを有するイオン液体を含有し、
     前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
     前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
     前記イオン液体のCF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であることを特徴とする潤滑剤。
  2.  前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される請求項1に記載の潤滑剤。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(A)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
     ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
     ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
     ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
     ただし、前記一般式(E)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
     ただし、前記一般式(F)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
  3.  前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される請求項1から2のいずれかに記載の潤滑剤。
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
     ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
     ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
  4.  非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に請求項1から3のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体。
  5.  共役塩基と、共役酸とを有し、
     前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
     前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
     CF(CHF)CFCFに対する溶解性が、CF(CHF)CFCF100質量部に対して、0.1質量部以上であることを特徴とするイオン液体。
  6.  前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される請求項5に記載のイオン液体。
    Figure JPOXMLDOC01-appb-C000003
     ただし、前記一般式(A)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
     ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
     ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
     ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、Rは、水素原子、及び炭化水素基のいずれかを表す。
     ただし、前記一般式(E)中、Rは、炭化水素基を表し、Rは、水素原子、及び炭化水素基のいずれかを表し、Rは、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
     ただし、前記一般式(F)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
  7.  前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される請求項5から6のいずれかに記載のイオン液体。
    Figure JPOXMLDOC01-appb-C000004
     ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
     ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
     ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
PCT/JP2016/073919 2015-08-20 2016-08-16 イオン液体、潤滑剤及び磁気記録媒体 WO2017030122A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/753,231 US20180237713A1 (en) 2015-08-20 2016-08-16 Ionic Liquid, Lubricant, and Magnetic Recording Medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-162876 2015-08-20
JP2015162876 2015-08-20
JP2016024995 2016-02-12
JP2016-024995 2016-02-12
JP2016-057804 2016-03-23
JP2016057804A JP6780945B2 (ja) 2015-08-20 2016-03-23 イオン液体、潤滑剤及び磁気記録媒体

Publications (1)

Publication Number Publication Date
WO2017030122A1 true WO2017030122A1 (ja) 2017-02-23

Family

ID=58051874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073919 WO2017030122A1 (ja) 2015-08-20 2016-08-16 イオン液体、潤滑剤及び磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2017030122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL423327A1 (pl) * 2017-10-31 2019-05-06 Wojskowa Akad Tech Smektyczny materiał o wysokiej fotochemicznej stabilności i szerokim temperaturowym zakresie monowarstwowej fazy smektycznej A (SmA1) i urządzenie go wykorzystujące

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218676A (ja) * 2009-02-19 2010-09-30 Hoya Corp 磁気ディスクの製造方法
JP2010229401A (ja) * 2009-03-06 2010-10-14 Nippon Synthetic Chem Ind Co Ltd:The イオン液体組成物及びその用途
JP2012162693A (ja) * 2011-02-09 2012-08-30 Neos Co Ltd 含フッ素イオン液体型合成潤滑油
JP2013227517A (ja) * 2012-03-30 2013-11-07 Idemitsu Kosan Co Ltd 潤滑油基油および潤滑油組成物
JP2014065839A (ja) * 2012-09-26 2014-04-17 Idemitsu Kosan Co Ltd 潤滑油組成物
WO2014104342A1 (ja) * 2012-12-28 2014-07-03 デクセリアルズ株式会社 イオン液体、潤滑剤及び磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218676A (ja) * 2009-02-19 2010-09-30 Hoya Corp 磁気ディスクの製造方法
JP2010229401A (ja) * 2009-03-06 2010-10-14 Nippon Synthetic Chem Ind Co Ltd:The イオン液体組成物及びその用途
JP2012162693A (ja) * 2011-02-09 2012-08-30 Neos Co Ltd 含フッ素イオン液体型合成潤滑油
JP2013227517A (ja) * 2012-03-30 2013-11-07 Idemitsu Kosan Co Ltd 潤滑油基油および潤滑油組成物
JP2014065839A (ja) * 2012-09-26 2014-04-17 Idemitsu Kosan Co Ltd 潤滑油組成物
WO2014104342A1 (ja) * 2012-12-28 2014-07-03 デクセリアルズ株式会社 イオン液体、潤滑剤及び磁気記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL423327A1 (pl) * 2017-10-31 2019-05-06 Wojskowa Akad Tech Smektyczny materiał o wysokiej fotochemicznej stabilności i szerokim temperaturowym zakresie monowarstwowej fazy smektycznej A (SmA1) i urządzenie go wykorzystujące

Similar Documents

Publication Publication Date Title
JP6305844B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6294158B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6374708B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
US20200216773A1 (en) Ionic Liquid, Lubricant, and Magnetic Recording Medium
JP6305845B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6862254B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
WO2017141775A1 (ja) イオン液体、潤滑剤及び磁気記録媒体
WO2017030122A1 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6576656B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6663793B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6780965B2 (ja) 潤滑剤及び磁気記録媒体
JP6702778B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6780945B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
WO2017022788A1 (ja) イオン液体、潤滑剤及び磁気記録媒体
JP6702816B2 (ja) イオン液体、潤滑剤及び磁気記録媒体
WO2016121439A1 (ja) イオン液体、潤滑剤及び磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837111

Country of ref document: EP

Kind code of ref document: A1