WO2017026010A1 - 太陽光発電量予測装置および太陽光発電量予測方法 - Google Patents

太陽光発電量予測装置および太陽光発電量予測方法 Download PDF

Info

Publication number
WO2017026010A1
WO2017026010A1 PCT/JP2015/072548 JP2015072548W WO2017026010A1 WO 2017026010 A1 WO2017026010 A1 WO 2017026010A1 JP 2015072548 W JP2015072548 W JP 2015072548W WO 2017026010 A1 WO2017026010 A1 WO 2017026010A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
time zone
amount
prediction
generation amount
Prior art date
Application number
PCT/JP2015/072548
Other languages
English (en)
French (fr)
Inventor
隆司 新井
坂上 聡子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017534038A priority Critical patent/JP6584510B2/ja
Priority to US15/741,016 priority patent/US10963602B2/en
Priority to CN201580082170.1A priority patent/CN107912067B/zh
Priority to EP15900965.3A priority patent/EP3333999A1/en
Priority to PCT/JP2015/072548 priority patent/WO2017026010A1/ja
Publication of WO2017026010A1 publication Critical patent/WO2017026010A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a solar power generation amount prediction apparatus and a solar power generation amount prediction method for predicting the power generation amount of a solar power generation system.
  • the photovoltaic power generation system is a power generation facility that can be installed relatively easily even at home, and has attracted attention as a facility that can contribute to CO 2 reduction and energy saving.
  • the electricity created by the photovoltaic power generation system is not only consumed in real time at the place where it is generated, but also sold to the distribution system, or stored as electricity or heat in the energy storage facility. It can be used at the timing.
  • hot water can be stored in a heat pump water heater at night when the unit price of electricity is low, and a solar power generation system can be combined with a nighttime power utilization facility to prepare for hot water demand in the morning and evening.
  • the amount of hot water stored at night can be increased because the amount of hot water stored can be increased or the temperature can be increased by using the electricity generated by the solar power generation system in the daytime or the surplus power obtained by removing self-consumption from the generated electricity. You can reduce it or reduce the chasing before evening demand. In such a case, it is necessary to accurately predict the amount of power generated in the daytime in order to plan to store heat without excess or deficiency for hot water supply demand.
  • the amount of solar radiation in a specific time zone of a specific area where a panel of a photovoltaic power generation system is installed is predicted, and the rated output, conversion efficiency, and conversion efficiency of the module for each temperature are coefficients.
  • the power generation amount is predicted by multiplying the amount of solar radiation (for example, Non-Patent Document 1).
  • the amount of solar radiation irradiated to the panel is predicted, and the power generation efficiency of the panel, the panel area, and the like are used as coefficients.
  • There is a method for predicting the amount of power generation by multiplying the amount of solar radiation for example, Patent Document 1).
  • a power generation amount prediction formula is derived based on the weather phenomenon observed in the past in the area where the photovoltaic power generation system is installed and the actual power generation amount measured in the past, and the weather forecast for the prediction target date or prediction target time zone.
  • a method of predicting the power generation amount by inputting the power generation amount of the photovoltaic power generation system measured before the prediction execution time of the prediction target date into the power generation amount prediction formula (for example, Patent Document 2).
  • the power generation amount prediction method as in Patent Document 2 the power generation amount is predicted based on the past weather phenomenon and the measured power generation amount result, so that it is not necessary to input detailed panel information.
  • the weather phenomenon and the power generation amount are rarely observed at the same position, and if there is a local weather change at the weather phenomenon observation point or the power generation measurement point, the relationship between the weather phenomenon and the power generation amount is unique. It becomes. If prediction is performed based on such a unique relationship, the prediction accuracy may be reduced.
  • the amount of power generation changes with a phenomenon that changes gradually, such as a seasonal change, if prediction is made with reference to only the previous past, the response to the change is delayed.
  • the present invention has been made to solve the above-described problems, and makes it possible to derive a power generation amount prediction formula without detailed information on panels and panel installation positions of a photovoltaic power generation system. It is an object.
  • the photovoltaic power generation amount prediction device includes a power generation result acquisition unit that acquires a power generation result in each time zone in each day of the solar power generation system, and each time in each day of the installation location of the solar power generation system.
  • An outdoor solar radiation amount calculation unit for calculating the solar radiation amount of the solar zone
  • a weather information acquisition unit for acquiring the weather results of each time zone in each day of the region including the installation location of the solar power generation system
  • the solar power generation system The search range setting part that sets the search range during the period when the actual power generation amount of the current period is acquired, and the same time zone as the prediction target time zone for each day of the search range, the similar time for each type of weather performance in that time zone Solar power generation system based on the amount of outdoor solar radiation in the forecast time zone in the type of meteorological results based on the similar day extraction unit that classifies into the belt and the amount of power generation in the similar time zone of the type of weather results and the amount of solar radiation outside the atmosphere
  • Predicted It comprises a prediction expression deriv
  • a power generation amount prediction formula for calculating the power generation amount can be derived.
  • FIG. 3 is a diagram illustrating an example of a power generation amount record accumulated in a power generation amount storage unit in the first embodiment.
  • 6 is a diagram illustrating an example of a weather record accumulated in a weather record storage unit in Embodiment 1.
  • FIG. 3 is a flowchart illustrating an example of similar day extraction processing according to the first embodiment.
  • 6 is a diagram illustrating an example of a search range set by a search range setting unit according to Embodiment 1.
  • FIG. 4 is a conceptual diagram of a power generation amount prediction formula derived by a prediction formula deriving unit according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a power generation amount record accumulated in a power generation amount storage unit in the first embodiment.
  • 6 is a diagram illustrating an example of a weather record accumulated in a weather record storage unit in Embodiment 1.
  • FIG. 3 is a flowchart illustrating an example of similar day extraction processing according to the first embodiment.
  • 6 is
  • FIG. 11 is a diagram showing an example of group ID-solar power generation system ID association in the second embodiment.
  • 10 is a diagram illustrating an example of a prediction formula stored in a prediction formula storage unit according to Embodiment 2.
  • FIG. 10 is a diagram illustrating an example of a prediction formula stored in a prediction formula storage unit according to Embodiment 3.
  • FIG. 10 is a diagram illustrating an example of a posterior estimated power generation amount accumulated in a posterior estimation storage unit in the third embodiment. It is a figure which shows an example of the electric power generation amount data which integrated the electric power generation amount results accumulated in the electric power generation amount results memory
  • FIG. 1 is a block diagram illustrating a configuration example of a photovoltaic power generation amount prediction apparatus according to Embodiment 1 of the present invention.
  • the solar power generation amount prediction device 1 is connected to a power amount measurement device 3 that measures the amount of power generated by the solar power generation system 2 and a weather information source 9.
  • the weather information source 9 is, for example, a weather information providing server of the Japan Meteorological Agency. Further, the photovoltaic power generation amount prediction device 1 is given position information 6 of a place where the photovoltaic power generation system 2 is installed.
  • the photovoltaic power generation amount prediction device 1 includes a power generation result receiving unit 4, a power generation result storing unit 5, an outside solar radiation amount calculating unit 7, an outside solar radiation amount storing unit 8, a weather information receiving unit 10, and a weather result storing unit 11. , A search range setting unit 12, a similar date extraction unit 13, a prediction formula derivation unit 14, and a predicted power generation amount calculation unit 15.
  • the photovoltaic power generation amount prediction device 1 may be abbreviated as the prediction device 1.
  • the solar power generation amount prediction device 1 receives the actual power generation amount for each time zone generated by the solar power generation system 2 from the power amount measurement device 3.
  • the prediction device 1 receives, from the weather information source 9, a weather forecast for each future time zone and a weather result for each past time zone in an area including the installation location of the photovoltaic power generation system 2.
  • the weather information source 9 may be a private weather information providing service or a device for inputting weather data by a weather forecaster in addition to the weather information providing server of the Japan Meteorological Agency.
  • the position information 6 is, for example, the latitude and longitude determined from the address where the solar power generation system 2 is installed. The position information 6 may be set in the prediction device 1 in advance.
  • the prediction device 1 calculates the weather from the amount of solar radiation outside the atmosphere calculated from the position information 6, the actual power generation amount for each time zone of the solar power generation system 2, and the weather results for each time zone. For each type of performance, a power generation amount prediction formula for each time zone of the photovoltaic power generation system 2 is derived.
  • the power generation amount prediction formula is a formula for calculating the predicted power generation amount of the solar power generation system 2 from the solar radiation amount outside the atmosphere. Then, input the amount of solar radiation outside the atmosphere in the prediction target time zone into the power generation amount prediction formula corresponding to the same type of weather results as the type of weather forecast in the prediction target time zone, and calculate the predicted power generation amount in that time zone .
  • the operation of the photovoltaic power generation amount prediction device 1 will be described in detail.
  • the power generation amount reception unit 4 generates power generation in each time zone on each day of the solar power generation system 2 from the power amount measuring device 3 such as a smart meter that measures the power generation amount of the solar power generation system 2 for each predetermined time zone. Receive volume results.
  • the power generation amount result storage unit 5 stores the power generation amount results of each time zone on each day received by the power generation amount result reception unit 4.
  • the outdoor solar radiation amount calculation unit 7 calculates the outdoor solar radiation amount in each time zone on each day of the installation location of the solar power generation system 2.
  • the atmospheric solar radiation amount storage unit 8 accumulates the outdoor solar radiation amount for each time zone calculated on each day.
  • the location information 6 of the installation location of the solar power generation system 2 can be obtained as latitude and longitude from the address of the installation location.
  • the position information 6 can also be obtained from a GPS (Global Positioning System) terminal installed in the solar power generation system 2.
  • the position information 6 may be obtained from, for example, a point representing a municipality where the photovoltaic power generation system 2 is installed, for example, the location of those government buildings, even if it is not the exact longitude and latitude of the photovoltaic power generation system 2 It may be latitude and longitude.
  • the meteorological information receiving unit 10 includes a weather information source 9 that provides a weather forecast for each time zone on each day in the future including a place where the photovoltaic power generation system 2 is installed, and a weather record for each time zone on each past day. Receive from.
  • the meteorological record storage unit 11 accumulates the meteorological record of each time zone on each day received by the meteorological information receiving unit 10.
  • the search range setting unit 12 sets a past performance range to be referred to in order to derive a power generation amount prediction formula.
  • the similar day extraction unit 13 classifies the weather results for each time zone on each day accumulated in the weather result storage unit 11 for each type of weather result for each time zone.
  • the prediction formula deriving unit 14 is a relational expression between the amount of solar radiation outside the atmosphere and the actual amount of power generation for each type of weather results for each time zone from the weather results for each time zone on each day classified by the similar day extraction unit 13. Derive a formula for predicting power generation.
  • the predicted power generation amount calculation unit 15 obtains the weather forecast and the atmospheric solar radiation amount for each prediction target time zone of the prediction target date, and generates the power generation amount prediction corresponding to the same type of weather results as the weather forecast type of the prediction target time zone.
  • the predicted power generation amount is calculated by inputting the amount of solar radiation outside the atmosphere in the prediction target time zone.
  • the prediction device 1 outputs the predicted power generation amount to a device or a display device that plans and controls the operation of the facility based on the predicted power generation amount.
  • the power generation result storage unit 5, the atmospheric solar radiation amount storage unit 8, and the weather result storage unit 11 of the solar power generation amount prediction device 1 are configured by a storage device such as a semiconductor memory or a hard disk drive, for example.
  • the power generation amount receiving unit 4 and the weather information receiving unit 10 are connected to the meteorological information provider such as the Japan Meteorological Agency, or individually installed precipitation sensor or solar radiation sensor, etc. via the Internet, a dedicated line, or short-range wireless communication. Collect information for each time zone on each day by measuring data and making weather forecasts.
  • the power generation amount reception unit 4, the atmospheric solar radiation amount calculation unit 7, the weather information reception unit 10, the search range setting unit 12, the similar day extraction unit 13, the prediction formula derivation unit 14, and the predicted power generation amount calculation unit 15 are, for example, a system LSI
  • a processor such as a CPU (Central Processing Unit) included in (Large Scale Integration) or the like is executed as a function of the processor by executing a program stored in the storage device.
  • the prediction formula deriving unit 14 and the like are not limited to this, and for example, a plurality of processors may be implemented in cooperation. Note that, instead of the prediction formula deriving unit 14 or the like that operates according to the software program, the operation may be realized by a signal processing circuit that implements a hardware electric circuit.
  • the processing unit such as the prediction formula deriving unit 14 may not be realized by the same device.
  • the processing up to the prediction formula deriving unit 14 is realized by a server on the cloud, and the predicted power generation amount calculating unit 15 is the cloud. You may implement
  • FIG. 2 is a diagram illustrating an example of the power generation result stored in the power generation result storage unit in the first embodiment.
  • the actual power generation amount includes a date field 21, a time zone field 22, a photovoltaic power generation system ID field 23, and a power generation amount field 24.
  • the photovoltaic power generation system ID is a unique identification code such as a numerical value or a character string assigned to each photovoltaic power generation system 2 and may use a contract number with an electric power company.
  • the difference between the meter instruction value read from the integrated watt-hour meter at a constant cycle and the meter instruction value at the previous collection is stored as the power generation amount in the time period.
  • the means for measuring the actual power generation amount may be a power amount sensor or the like as long as the device can measure and calculate the power amount at a constant cycle.
  • the fixed period is 15 minutes, 30 minutes, 1 hour, or the like, but here, it will be described as 30 minutes. This fixed period is the unit of prediction.
  • Time zone of 0 minutes and 30 minutes as the time zone separator, over 00:00 to 00:30 minutes, “0000” time zone, over 00:30 to 01:00, “0030” time zone Is represented by a 4-digit number for the start time.
  • the meter indication value at 7:00 on July 1, 2015 is “1000 Wh”, and it is 7:30 on July 1, 2015.
  • the time zone is 4 times the end time, such as “0030” time zone exceeding 00:00 and 00:30 minutes, and “0100” time zone exceeding 00:30 to 01:00. It may be represented by the number of digits. Further, if the collection timing is deviated to be, for example, 31 minutes, it is proportionally distributed with the actual power generation amount collected at the preceding and subsequent timings, and corrected to the actual power generation amount of 30 minutes, that is, a specified period. . Further, for example, if there is a solar power generation system 2 that can measure the power generation amount only in a one-hour cycle, 1 ⁇ 2 of the measured power generation amount may be set as the actual power generation amount for 30 minutes each.
  • the atmospheric solar radiation amount calculation unit 7 acquires the position (latitude, longitude) where the solar power generation system 2 is installed, and calculates the outdoor solar radiation amount.
  • the outdoor solar radiation amount calculation unit 7 may calculate the outdoor solar radiation amount in the referenced time zone each time the prediction formula deriving unit 14 refers. In that case, the extraneous solar radiation amount storage unit 8 may be omitted.
  • Japan it is known that the amount of solar radiation Q outside the atmosphere can be calculated by the equation (1) using the month, day, time, latitude (north latitude) ⁇ 0 , longitude (east longitude) ⁇ 0 . .
  • DN is the number of days elapsed from January 1 to the target date for calculating the amount of solar radiation outside the atmosphere
  • the target time is Japan Standard Time (JST) HH hour MM minutes.
  • JST Japan Standard Time
  • is the solar declination of the prediction target day
  • r is the geocentric solar distance
  • Eq is the time difference
  • h is the hour angle of the sun when HH is MM minutes.
  • FIG. 3 is a diagram illustrating an example of a weather record accumulated in the weather record storage unit according to the first embodiment.
  • the weather performance includes a date field 31, a time zone field 32, a region ID field 33, and a weather field 34.
  • the area ID is a unique identification code such as a numerical value or a character string assigned to each weather observation point, and is associated with the photovoltaic power generation system ID by an area ID-solar power generation system ID correspondence table (not shown).
  • a plurality of photovoltaic power generation system IDs may be associated with one area ID.
  • the meteorological field 34 stores meteorological results received from a meteorological information source 9 such as the Japan Meteorological Agency.
  • the types of weather are the types of weather such as “sunny”, “cloudy”, “rain”, and “snow”.
  • information such as precipitation and sunshine hours is provided from the meteorological information source 9, for example, if the snow depth is 1 mm or more and the difference in snow depth from the previous time zone is 1 mm or more, it is “snow”, and the precipitation is 1 mm. If it is above, it is converted into a weather type using a conversion rule such as “rainy”, and if it is not rain, and if the sunshine time is 70% or more of the time zone, it is converted into a weather type and stored.
  • the weather type is not a character string such as “Sunny”, but is a nominal scale such as “0” when clear, “1” when cloudy, and a numerical value or interval scale such as the ratio of sunshine hours to the time zone. May be.
  • the photovoltaic power generation amount prediction device 1 performs the subsequent processing for each photovoltaic power generation system ID.
  • the search range setting unit 12 sets a range for searching for the weather results for each time zone to be referred to in order to derive the power generation amount prediction formula.
  • the similar day extraction unit 13 calculates the weather performance of each time zone on each day accumulated in the weather performance storage unit 11 for each weather performance type for the weather of the area ID corresponding to the photovoltaic power generation system ID to be predicted. Classify by time zone.
  • FIG. 4 is a flowchart illustrating an example of similar date extraction processing according to the first embodiment. Steps S401 to S412 are loop processing for extracting similar days for each time zone T.
  • Steps S402 to S411 are loop processing for extracting a similar time zone for each type of weather performance (weather) for each time zone T (0 to 47).
  • the initial value (-M day, + N day) of the search days is acquired and set to the search days of the time zone T and the weather type (weather) W. It is assumed that a value of 0 or more is set in advance as the initial value of the search days.
  • a date in the range of -M day and + N day from the month and day of the prediction target date is calculated.
  • the initial value M is set so as to include the latest day when the actual power generation amount of the target solar power generation system 2 is acquired.
  • FIG. 5 is a diagram illustrating an example of a search range set by the search range setting unit in the first embodiment.
  • the predicted execution date is, for example, June 30, 2015. Assume that power generation results up to the predicted execution time on the predicted execution date are obtained.
  • the search range is set from 15 days before the prediction target date to 15 days after the prediction target date, that is, from June 16 to July 16.
  • step S405 the weather results within the search range are extracted before the prediction target date.
  • the period in which weather results and power generation results are collected before July 1, 2015 that is, June 16, 2012 to July 16, 2012, June 16, 2013.
  • the search range of the day to July 16, 2013, June 16, 2014 to July 16, 2014, June 16, 2015 to June 30, 2015 For each type, the same type of weather performance day is extracted. Let U be the array of achievements extracted here. As the season changes, the time and time of the shadow of a tall building may change. If the forecast target date-only the M day is set as the range of past results without including the past year, the power generation forecast formula will be based on the results of the day when the shadow of a high building is earlier or later than the forecast date.
  • step S406 in FIG. 4 it is determined whether or not the number of elements U
  • step S406 If the number of elements U
  • the similar day extraction unit 13 repeats steps S403 to S410 for each type of weather results (weather), and obtains a similar day array for each type of weather W for the time period T. Then, the time zone T is changed from 0 to 47, and steps S402 to S411 are repeated to obtain a similar date array (T, W) for all time zones of the prediction target day.
  • the prediction formula deriving unit 14 in FIG. 1 is configured to calculate the solar radiation amount and the power generation result for each type of weather performance for each time zone with respect to the similar date array (T, W) extracted by the similar date extraction unit 13. Regression analysis is performed, and a relational expression between the amount of solar radiation outside the atmosphere and the actual power generation amount for each type of weather results is derived as a power generation amount prediction formula.
  • FIG. 6 is a conceptual diagram of the power generation amount prediction formula derived by the prediction formula deriving unit in the first embodiment. For example, if four clear weather records in the 1000 (10:00 to 10:30) time period are extracted, as shown in FIG. 6, the atmospheric solar radiation amount Q is an explanatory variable, and the power generation amount result P is an objective variable.
  • the objective variable may be an index such as the power generation amount per unit rating obtained by dividing the power generation amount by the rated output of the photovoltaic power generation system 2 instead of the actual power generation amount.
  • the smaller the difference in the number of days from the prediction target date, the closer the prediction target date to the month and day, or the closer the weather conditions such as temperature, the greater the weight, and the regression formula P using the weighted least squares method AQ + b may be obtained.
  • the weighted least-squares method in which the weight is increased as the difference in the number of days from the forecast target day is smaller, the effect of the performance before the high building is built on the forecast is reduced. This makes it possible to predict the amount of power generation corresponding to time-series changes.
  • a power generation amount prediction formula is derived without using a regression analysis of the amount of actual power generation P and the amount of solar radiation Q outside the atmosphere. be able to.
  • P aQ + b
  • the value obtained by dividing the average of the power generation amount results P on the similar day by the average of the atmospheric solar radiation amount Q on the similar day can be set as the coefficient a
  • the intercept b 0.
  • you may calculate by the method of setting intercept b 0 by making the average of the value which divided
  • the predicted power generation amount calculation unit 15 obtains the atmospheric solar radiation amount Q in the prediction target time zone and the weather forecast in the prediction target time zone from the atmospheric solar radiation amount storage unit 8 and the weather information reception unit 10, respectively.
  • the prediction formula deriving unit 14 obtains a prediction formula for the amount of electric power of the photovoltaic power generation system 2 to be predicted corresponding to the same type of weather forecast as the type of the weather forecast for the belt. And the solar radiation amount Q outside the atmosphere is inputted into the power generation amount prediction formula, and the power generation amount prediction result P is calculated.
  • the processing timing of each component will be described. Since the amount of solar radiation outside the atmosphere is determined by the latitude, longitude, month, day, and time, the amount of solar radiation calculation outside the atmosphere 7 is the time when the solar power generation system 2 is introduced, The amount can be calculated.
  • the process of the power generation result receiving unit 4 is performed at regular intervals such as 0 minutes or 30 minutes per hour.
  • the meteorological information receiving unit 10 is implemented at a timing when the meteorological information source 9 such as the Japan Meteorological Agency distributes the meteorological information. Of the weather information, the weather results may be acquired for one day.
  • the processing of the search range setting unit 12, the similar date extraction unit 13, and the prediction formula derivation unit 14 predicts the power generation amount of the next day once a day, for example, at 23:00.
  • the predicted power generation amount calculation unit 15 is carried out once a day, similar to the search range setting unit 12 to the prediction formula deriving unit 14, or at the timing when the weather information receiving unit 10 receives the weather forecast.
  • weather results and weather forecasts are not limited to the four types of “fine”, “cloudy”, “rain”, and “snow”. Further, for example, “cloudy when cloudy”, “cloudy when cloudy”, “cloudy when rain”, etc. may be added and classified, or cloudy and precipitation may be classified.
  • time periods of the weather results, weather forecasts, power generation results, and atmospheric solar radiation amounts may not be constant as long as they correspond to each other.
  • the power generation amount can be obtained without detailed information on the panel and panel installation position.
  • a prediction formula can be derived.
  • zone is input into the electric power generation amount prediction formula corresponding to the same weather performance type as the weather forecast type in the forecast time zone by inputting the amount of solar radiation outside the atmosphere in the forecast time zone.
  • the amount of power generation can be predicted.
  • the prediction device 1 can be realized by a server on the network to calculate the predicted power generation amount of a plurality of solar power generation systems 2 connected to the network.
  • the prediction device 1 can be realized by a terminal installed for each solar power generation system 2 and the predicted power generation amount of the solar power generation system 2 can be calculated.
  • the prediction device 1 may be configured by one server, or the functions may be distributed to a plurality of servers. Furthermore, one function may be load-balanced by a plurality of servers.
  • the prediction device 1 is realized by one server or one terminal, they are all photovoltaic power generation amount prediction devices.
  • FIG. 7 is a block diagram illustrating an example of sharing the photovoltaic power generation amount prediction apparatus according to Embodiment 1 between a server and a terminal.
  • the prediction device 1 includes a server 41 and a terminal 45.
  • a plurality of terminals 45 may be connected to one server 41.
  • the server 41 performs the process until the power generation amount prediction formula is derived, and the terminal 45 obtains the power generation amount prediction formula of the solar power generation system 2 to which the terminal is connected from the server 41 and calculates the predicted power generation amount.
  • the terminal 45 is, for example, a HEMS (Home Energy Management System) terminal that manages energy in the home in the case of a household solar power generation system.
  • HEMS Home Energy Management System
  • the server 41 has a configuration in which a weather forecast transmission unit 42, a prediction formula transmission unit 43, and an outside solar radiation amount transmission unit 44 are added except for the predicted power generation amount calculation unit 15 from the photovoltaic power generation amount prediction device 1 of FIG.
  • the terminal 45 includes a predicted power generation amount calculation unit 15, a weather forecast reception unit 46, a prediction formula reception unit 47, an outdoor solar radiation amount reception unit 48, and a power generation amount result communication unit 49.
  • the predicted power generation amount calculation unit 15 of the terminal 45 is the same as the predicted power generation amount calculation unit 15 of the prediction device 1 of FIG.
  • the power generation result communication unit 49 receives the power generation result from the power measurement device 3 and transmits it to the power generation result reception unit 4 of the server 41.
  • the processing up to the prediction formula deriving unit 14 of the server 41 is the same as that of the prediction device 1 of FIG.
  • the server 41 transmits the weather forecast received by the weather information receiving unit 10 to the weather forecast receiving unit 46 of the terminal 45.
  • the prediction formula transmission unit 43 transmits the power generation amount prediction formula derived by the prediction formula deriving unit 14 for the photovoltaic power generation system 2 to the prediction formula receiving unit 47.
  • the atmospheric solar radiation amount transmitting unit 44 transmits the outdoor atmospheric solar radiation amount in the prediction target time zone to the outdoor solar radiation amount receiving unit 48.
  • the weather forecast receiving unit 46 of the terminal 45 receives the weather forecast from the weather forecast transmitting unit 42, the prediction equation receiving unit 47 receives the power generation amount prediction equation from the prediction equation transmitting unit 43, and the outdoor solar radiation amount receiving unit 48
  • the outdoor solar radiation amount is received from the outdoor solar radiation amount transmitting unit 44.
  • the predicted power generation amount calculation unit 15 inputs the amount of solar radiation outside the atmosphere in the prediction target time zone to the power generation amount prediction formula corresponding to the same weather performance type as the weather forecast type in the prediction target time zone, and calculates the predicted power generation amount. calculate.
  • the function sharing between the server 41 and the terminal 45 is not limited to the example of FIG.
  • the power generation amount storage unit 5 may be in the server 41, the terminal 45, or both.
  • the weather forecast receiving unit 46 may acquire the weather forecast directly from the weather information source 9.
  • the server 41 is a photovoltaic power generation amount prediction device.
  • the server 41 may be composed of a plurality of servers arranged in a distributed manner on the network.
  • FIG. 8 is a block diagram illustrating a different example in which the photovoltaic power generation amount prediction apparatus according to the first embodiment is shared by the server and the terminal.
  • the prediction device 1 includes a server 51 and a terminal 53. Also here, a plurality of terminals 53 may be connected to one server 51.
  • the server 51 performs the process until the similar date is extracted, and the terminal 53 derives the power generation amount prediction formula of the solar power generation system 2 to which the terminal is connected, and calculates the predicted power generation amount.
  • the server 51 includes, instead of the server 41 of FIG. 7, the power generation result receiving unit 4, the power generation result storing unit 5, the prediction formula deriving unit 14, and the prediction formula transmission unit 43, and instead includes a similar date transmission unit 52.
  • the weather forecast transmission unit 42 and the atmospheric solar radiation amount transmission unit 44 are the same as those in FIG.
  • the terminal 53 includes a power generation result receiving unit 4 and a power generation result storing unit 5 instead of the power generation result communication unit 49 from the terminal 45 of FIG. 54 and the prediction formula deriving unit 14.
  • the weather forecast receiving unit 46, the outdoor solar radiation amount receiving unit 48, and the predicted power generation amount calculating unit 15 are the same as those in FIG.
  • the power generation result receiving unit 4 and the power generation result storing unit 5 are the same as those in FIG.
  • the server 51 transmits the similar date array extracted by the similar date extracting unit 13 from the similar date transmitting unit 52 to the similar date receiving unit 54 of the terminal 53.
  • the terminal 53 receives the weather forecast, the similar date array, and the amount of solar radiation from the atmosphere from the server 51.
  • the prediction formula deriving unit 14 performs a regression analysis of the solar radiation amount and the power generation result for each type of weather performance for each time zone on the similar day array received by the similar date reception unit 54, and for each time zone.
  • a relational expression between the amount of solar radiation and the amount of power generation for each type of weather results is derived as a power generation amount prediction formula.
  • the predicted power generation amount calculation unit 15 inputs the amount of solar radiation outside the atmosphere in the prediction target time zone to the power generation amount prediction formula corresponding to the same weather performance type as the weather forecast type in the prediction target time zone, and calculates the predicted power generation amount. calculate.
  • the terminal 53 may include the outdoor solar radiation amount storage unit 8. Furthermore, the terminal 53 may be provided with the atmospheric solar radiation amount calculation unit 7. Further, the weather forecast receiving unit 46 may directly acquire the weather forecast from the weather information source 9. In the prediction device 1 of FIG. 8, the terminal 53 is a photovoltaic power generation amount prediction device.
  • the weather forecast receiving unit 46 is a weather forecast acquiring unit
  • the outdoor solar radiation amount receiving unit 48 is an outdoor solar radiation amount acquiring unit
  • the similar day receiving unit 54 is a similar day acquiring unit.
  • the power generation amount prediction formula is derived for each type of weather performance for each time zone, but only the power generation amount prediction formula for the same weather performance as the weather forecast for the prediction target day is derived for each time zone. May be. By doing in this way, the calculation amount of a power generation amount prediction formula can be reduced.
  • FIG. FIG. 9 is a block diagram showing a configuration example of the photovoltaic power generation amount prediction apparatus according to Embodiment 2 of the present invention. Components given the same numbers as those in FIG. 1 are the same as those in the first embodiment.
  • the solar power generation prediction device 1 according to the second embodiment includes a group storage unit 71 and a prediction formula storage unit 73 in addition to the configuration of the first embodiment.
  • the prediction formula deriving unit 72 derives a power generation amount prediction formula for one photovoltaic power generation system 2 representing the group for each group.
  • the predicted power generation amount calculation unit 74 calculates the predicted power generation amount for a solar power generation system 2 other than the representative using a representative power generation amount prediction formula of the group to which the solar power generation system 2 belongs.
  • the photovoltaic power generation systems 2 that are close to each other in geographical distance and those that have similar trends in the amount of power generation are grouped together.
  • the trend of power generation results is close, for example, that the number of local maximums of power generation results and the time zone of local maximums are the same in one day, and the ratio between the maximum and minimum values is within the determined range. It is.
  • groups with similar trends in power generation results throughout the year are grouped.
  • FIG. 10 is a diagram showing an example of group ID-solar power generation system ID association in the second embodiment.
  • the group ID is a code for identifying the group.
  • the relationship between the group ID and the photovoltaic power generation system ID is 1: n (n ⁇ 1).
  • a region ID for each weather observation point may be provided.
  • the region ID is associated with the group ID by a region ID-group ID correspondence table (not shown).
  • a plurality of group IDs may be associated with one area ID. If the trend changes due to an increase in the number of solar power generation systems 2, the group classification may be changed, and the group to which the solar power generation system 2 belongs may be changed to another group.
  • the prediction formula deriving unit 72 uses the determined photovoltaic power generation system 2 representing each group as a representative system, extracts the power generation result of the representative system from the power generation result storage unit 5, and derives a prediction formula.
  • the prediction formula deriving unit 72 stores the derived prediction formula in the prediction formula storage unit 73 in association with the group ID.
  • the representative system for example, the solar power generation system 2 that minimizes the sum of the geographical distances with other solar power generation systems 2 in the group is selected.
  • FIG. 11 is a diagram illustrating an example of a prediction formula stored in the prediction formula storage unit according to the second embodiment.
  • the prediction formula derivation unit 72 derives a prediction formula for each type of date, time zone, group ID, and weather record, and outputs regression coefficients a and b.
  • the prediction formula deriving unit 72 sets the date, time zone, group ID, weather performance type, and regression coefficients a and b, which are elements for specifying the power generation amount prediction formula, to the date field 91 and the time zone field 92, respectively. , Group ID field 93, weather field 94, regression coefficient (slope a) field 95, and regression coefficient (intercept b) field 96.
  • the power generation amount prediction formula may be represented by a regression line with the actual power generation amount as an objective variable. If there is a difference in the ratings of the photovoltaic power generation systems 2 that belong to the group, power generation per unit rating is calculated by dividing the actual power generation amount by the rated output of the representative photovoltaic power generation system 2 instead of the objective variable. It is better to use an index like quantity.
  • the predicted power generation amount calculation unit 74 obtains the atmospheric solar radiation amount Q in the prediction target time zone and the weather forecast in the prediction target time zone from the atmospheric solar radiation amount storage unit 8 and the weather information reception unit 10, respectively.
  • the group ID to which the solar power generation system 2 belongs is acquired from a group ID-solar power generation system ID correspondence table (not shown).
  • the regression coefficients a and b of the group ID corresponding to the same type of weather forecast as the type of weather forecast in the prediction target time zone are acquired from the prediction formula storage unit 73, and the amount of solar radiation outside the atmosphere in the prediction target time zone is obtained.
  • the predicted power generation amount P is calculated by inputting into the power generation amount prediction formula.
  • the power generation amount prediction formula is represented by the above-described formula (2).
  • the prediction formula derivation process can be greatly reduced.
  • the prediction device 1 is also a solar power generation amount prediction device. Also in the second embodiment, as shown in FIG. 7, the photovoltaic power generation amount prediction device 1 is shared between a server that performs prediction equation derivation and a terminal that receives the power generation amount prediction formula and calculates the predicted power generation amount. Can be adopted. In that case, the server is a photovoltaic power generation amount prediction device. In that case, the server can also serve as one terminal.
  • FIG. FIG. 12 is a block diagram illustrating a configuration example of the photovoltaic power generation amount prediction apparatus according to Embodiment 3 of the present invention. Components given the same numbers as those in FIG. 1 are the same as those in the first embodiment.
  • the photovoltaic power generation amount prediction apparatus 1 according to the third embodiment includes a prediction formula storage unit 102, a posterior estimation storage unit 104, and a posterior estimation evaluation unit 105 in addition to the configuration of the first embodiment.
  • the predicted power generation amount calculation unit 103 in addition to the predicted power generation amount calculation, the posterior estimation obtained by inputting the amount of solar radiation outside the atmosphere into the power generation amount prediction formula corresponding to the type of weather performance in the past time zone.
  • the power generation amount is calculated and stored in the posterior estimation storage unit 104.
  • the prediction formula deriving unit 101 determines the difference between the a posteriori estimated power generation amount calculated by the power generation amount prediction formula derived for the day before the prediction target date and the actual power generation amount in that time period for one solar power generation system 2. If it is within the range, the power generation amount prediction formula derived for the previous day is used as the power generation amount prediction formula for the prediction target day.
  • the power generation amount of the solar power generation system 2 is centrally managed by a cloud system or the like and the power generation amount is predicted, if the number of the solar power generation systems 2 increases, the solar power generation systems 2 are frequently generated.
  • amount prediction is performed, the number of processes increases, and there is a problem that the number of servers increases and costs increase. Such a problem can be solved by reducing the frequency with which the processing from the search range setting unit 12 to the prediction formula deriving unit 101 is performed.
  • the prediction formula deriving unit 101 performs regression analysis on the similar date array (T, W) extracted by the similar date extracting unit 13, and the amount of solar radiation and the amount of power generation for each type of weather performance for each time zone. A relational expression of actual results is derived as a power generation amount prediction formula.
  • FIG. 13 is a diagram illustrating an example of prediction formulas stored in the prediction formula storage unit 102.
  • the prediction formula deriving unit 101 derives a prediction formula for each date, time zone, photovoltaic power generation system ID, and weather, and outputs the regression coefficients a and b.
  • the field 112, the weather field 113, the regression coefficient (slope a) field 114, and the regression coefficient (intercept b) field 115 are stored.
  • the predicted power generation amount calculation unit 103 calculates the posterior estimated power generation amount and stores it in the posterior estimation storage unit 104 separately from calculating the predicted power generation amount by the same method as in the first embodiment.
  • the post-estimated power generation amount is a predicted power generation amount obtained by inputting the amount of solar radiation in the air during the time zone into a power generation amount prediction formula for the time zone corresponding to the type of weather performance in a past time zone. This is a post-estimated power generation amount because it is a value calculated by a power generation amount prediction formula corresponding to the type of the weather performance after the weather performance is confirmed.
  • the weather forecast when the predicted power generation amount is calculated may be different from the actual weather result, and the difference between the predicted power generation amount and the power generation result calculated in advance includes a difference between the weather forecast and the weather result.
  • the a posteriori estimated power generation amount is a value calculated by a power generation amount prediction formula corresponding to the type of weather results, and thus represents an error in the power generation amount prediction formula.
  • FIG. 14 is a diagram illustrating an example of the post-estimated power generation amount accumulated in the post-estimation storage unit in the third embodiment.
  • the posterior estimated power generation amount is calculated for each date, time zone, and solar power generation system ID.
  • the predicted power generation amount calculation unit 103 sets the date and time, the time zone, the solar power generation system ID and the calculated posterior estimated power generation amount, respectively, the date field 121, the time zone field 122, and the sunlight in the posterior estimation storage unit 104.
  • the power generation system ID field 123 and the post-estimated power generation amount field 124 are stored.
  • the a posteriori estimated power generation amount stored in the posterior estimation storage unit 104 and the power generation amount result managed in the power generation amount result storage unit 5 may be integrated and stored in one storage unit as power generation amount data.
  • FIG. 15 is a diagram illustrating an example of power generation amount data obtained by integrating the power generation amount results accumulated in the power generation amount result storage unit and the posterior estimation power generation amount accumulated in the posterior estimation storage unit according to the third embodiment.
  • the a posteriori estimated power generation amount and the power generation amount result are stored in association with the set of date, time zone, and solar power generation system ID.
  • the posterior estimation and evaluation unit 105 acquires records in which the values of the respective date field, time zone field, and photovoltaic system ID field match from the posterior estimation storage unit 104 and the power generation result storage unit 5 to generate power
  • the value of the power generation amount field 24 of FIG. 2 that is the actual amount of power and the value of the post-estimation power generation amount field 124 of FIG.
  • the search range setting unit 12 to the prediction formula deriving unit 101 are processed for the time zone or the photovoltaic power generation system 2 to predict the power generation amount in the prediction target time zone. Derive an expression.
  • the predetermined condition is when the error between the actual power generation amount and the post-estimated power generation amount exceeds the predetermined allowable range, when the error exceeds the allowable range compared to the error of the previous day, or , When it is larger than a certain error than the other solar power generation system 2 on the same day.
  • the error is the difference between the actual power generation amount and the subsequent estimated power generation amount, the absolute value of the difference between the actual power generation amount and the subsequent estimated power generation amount, the value obtained by dividing the difference between the actual power generation amount and the subsequent estimated power generation amount by the actual power generation amount, Alternatively, a value obtained by dividing the difference between the actual power generation amount and the predicted power generation amount by the rated output of the solar power generation system 2 or the like.
  • the post-mortem evaluation and evaluation unit 105 calculates and evaluates an error in a time zone in which the actual power generation amount immediately before the prediction execution time is obtained in the same time zone as the prediction target time zone.
  • the posterior estimation evaluation unit 105 calculates an error for the same time zone in the same time zone as the prediction target time zone nearest to the prediction target date and the same type of weather forecast and the same weather type in the prediction target time zone. May be evaluated.
  • the search range setting unit 12 When the error between the actual power generation amount and the subsequent estimated power generation amount does not satisfy the predetermined condition, that is, when the error between the actual power generation amount and the subsequent estimated power generation amount is within a predetermined allowable range, the search range setting unit 12 The similar date extraction unit 13 is not processed. In that case, the prediction formula deriving unit 101 uses the power generation amount prediction formula in the time zone in which the error is evaluated, which is stored in the prediction formula storage unit 102, as the power generation amount prediction formula in the prediction target time zone.
  • the processing frequency of the search range setting unit 12 and the similar day extraction unit 13 with a large calculation amount is reduced, and the prediction formula is derived. Since the processing content of the unit 101 can be simplified, the processing load of the mounting system and the number of servers can be reduced, and the cost can be reduced.
  • the prediction device 1 is also a solar power generation amount prediction device. Also in the third embodiment, a configuration in which the photovoltaic power generation amount prediction device 1 is shared between a server that performs calculation up to prediction formula derivation and a terminal that receives the power generation amount prediction formula and calculates the predicted power generation amount as illustrated in FIG. 7. Can be adopted.
  • the server includes, for example, a prediction formula storage unit 102, a posterior estimation storage unit 104, a posterior estimation evaluation unit 105, and a posterior estimated power generation amount calculation unit that calculates a posterior estimation power generation amount in addition to the configuration of FIG.
  • the server is a photovoltaic power generation amount prediction device.
  • the server can also serve as one terminal.
  • the post-estimated power generation amount may be calculated and stored at the terminal, and the result of the post-estimation evaluation may be notified to the server.
  • the solar power generation amount prediction apparatus 1 is a server that performs processing until a similar date is extracted, a terminal that receives the similar date, derives a prediction formula, and calculates a predicted power generation amount. It can also be set as the structure shared by.
  • the terminal includes a prediction formula storage unit, a posterior estimation storage unit, and a posterior estimation evaluation unit in addition to the configuration of FIG. In that case, the terminal instructs the server whether to extract similar dates.
  • the terminal is a photovoltaic power generation amount prediction device.
  • Embodiment 3 can also be applied to Embodiment 2.
  • the error is evaluated for the representative system by comparing the actual power generation amount and the post-estimated power generation amount.
  • the error that compares the actual power generation amount of the representative system and the post-estimated power generation amount is compared with the error that compares the actual power generation amount other than the representative system and the post-estimated power generation amount.
  • it is good also as a structure which reexamines the method of selecting a representative system, or a group. As a result, a representative system or group configuration that matches the actual situation can be obtained.
  • FIG. FIG. 16 is a block diagram showing a configuration example of the photovoltaic power generation amount prediction apparatus according to Embodiment 4 of the present invention. Components having the same numbers as those in FIG. 1 or FIG. 9 are the same as those in the first embodiment or the second embodiment, respectively.
  • the photovoltaic power generation systems 2 are classified into groups as in the second embodiment, and the power generation amount prediction formula derived for the representative system is applied to the entire group.
  • an error using the power generation amount prediction formula of the representative system is evaluated for the solar power generation system 2 other than the representative system, and the predicted power generation amount is corrected.
  • a plurality of photovoltaic power generation systems 2 are grouped together to form a group, a power generation amount prediction formula is created based on the relationship between the amount of solar radiation in the atmosphere of the representative system of the group and the actual power generation amount, and other solar power generations in the same group
  • the predicted power generation amount is calculated by applying the power generation amount prediction formula of the representative system to the system 2
  • the geographical difference between the representative system and the target solar power generation system 2 or the topographical characteristics of the target solar power generation system 2 are calculated. Characteristics may not be reflected in the prediction. For example, when the longitude difference between the representative system and the photovoltaic power generation system 2 to be predicted is large and the representative system is located in the east, the representative system has a faster sunrise and sunset times.
  • the predicted power generation that always starts power generation earlier than the actual power generation and ends power generation earlier for the photovoltaic power generation system 2 to be predicted Will output the quantity.
  • the panels of the photovoltaic power generation system 2 are partly in the time zone. There may be shadows and power generation may decrease. In such a case, if the predicted power generation amount is calculated using the regression coefficient of the power generation amount prediction formula of the representative system, a decrease in the power generation amount cannot always be predicted.
  • the photovoltaic power generation amount prediction apparatus 1 includes a posterior estimation storage unit 151 and a prediction result correction unit 152 in addition to the configuration of the second embodiment.
  • the predicted power generation amount calculation unit 150 calculates the posterior estimated power generation amount and stores it in the posterior estimation storage unit 151, similarly to the predicted power generation amount calculation unit 103 of the third embodiment.
  • the a posteriori estimated power generation amount is calculated by the power generation amount prediction formula of the representative system, it is referred to as a group post-estimated power generation amount.
  • the group post-estimated power generation amount accumulated in the post-estimation storage unit 151 is the same as the post-estimation power generation amount of FIG. 14 or FIG.
  • the prediction result correction unit 152 obtains records in which the values of the respective date field, time zone field, and photovoltaic system ID field match from the posterior estimation storage unit 151 and the power generation result storage unit 5. Then, the value of the power generation amount field 24 that is the actual power generation amount and the value of the post-estimation power generation amount field 124 that is the post-estimated power generation amount are compared, and the difference between them is calculated as an individual error.
  • the individual error is, for example, the difference between the actual power generation amount and the post-estimated power generation amount, the ratio between the actual power generation amount and the post-estimated power generation amount, and the power generation start time of the actual power generation amount and the post-estimated power generation amount within one day (estimated as sunrise) Or the time difference of power generation end time (sunset and guess).
  • the prediction result correction unit 152 outputs a value obtained by adding an individual error to the predicted power generation amount in the prediction target time zone calculated by the predicted power generation amount calculation unit 150 as the corrected predicted power generation amount.
  • the prediction result correction unit 152 is the same time zone as the prediction target time zone nearest to the prediction target date, and for the same time zone in which the type of weather forecast and the type of weather performance in the prediction target time zone are the same.
  • An individual error is calculated and output as a corrected predicted power generation amount by adding the individual error to the predicted power generation amount in the prediction target time zone.
  • the configuration as described above reflects the geographical difference and topographical difference between the representative system and the photovoltaic power generation system 2 to be predicted.
  • the amount of power generation can be predicted.
  • the prediction device 1 of the fourth embodiment is also a solar power generation amount prediction device.
  • the photovoltaic power generation amount prediction apparatus 1 is shared between a server that performs prediction equation derivation and a terminal that receives the power generation amount prediction formula and calculates the predicted power generation amount.
  • the terminal includes a posterior estimation storage unit 151 and a prediction result correction unit 152 in addition to the configuration of FIG. 7, and includes a predicted power generation amount calculation unit 150 instead of the predicted power generation amount calculation unit 15.
  • the server is a photovoltaic power generation amount prediction device.
  • the server can also serve as one terminal.
  • Embodiment 3 can also be applied to Embodiment 4.
  • the error is evaluated for the representative system by comparing the actual power generation amount and the post-estimated power generation amount.
  • 1 solar power generation amount prediction device 2 solar power generation system, 3 electric energy measurement device, 4 power generation result receiving unit, 5 power generation result storage unit, 6 location information, 7 outdoor solar radiation calculation unit, 8 outdoor solar radiation Amount storage unit, 9 meteorological information source, 10 meteorological information receiving unit, 11 meteorological result storage unit, 12 search range setting unit, 13 similar day extraction unit, 14 prediction formula derivation unit, 15 predicted generation amount calculation unit, 21 date Field, 22 time zone field, 23 solar power generation system ID field, 24 power generation amount field, 31 year / month / day field, 32 time zone field, 33 area ID field, 34 weather field, 41 server, 42 weather forecast transmission section, 43 Prediction formula transmitter, 44 Outdoor solar radiation transmitter, 45 terminal, 46 Weather forecast receiver, 47 Forecast receiver 48 outdoor solar radiation receiving unit, 49 power generation result communication unit, 51 server, 52 similar date transmission unit, 53 terminal, 54 similar day reception unit, 71 power generation result storage unit, 72 prediction formula derivation unit, 73 prediction formula storage Part, 74 predicted power generation calculation part, 91 date field, 92 time zone field,

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Educational Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

発電量実績受信部(4)は、太陽光発電システム(2)の各日における各時間帯の発電量実績を取得する。大気外日射量算出部(7)は、設置場所の各日における各時間帯の大気外日射量を算出する。気象情報受信部(10)は、各日における各時間帯の気象実績と予測対象時間帯の気象予報を取得する。類似日抽出部(13)は、発電量実績が取得されている検索範囲の各日の予測対象時間帯と同じ時間帯を、気象実績の種類ごとの類似時間帯に分類する。予測式導出部(14)は、気象実績の種類の類似時間帯の発電量実績および大気外日射量に基づいて、気象実績の種類における予測対象時間帯の大気外日射量から予測発電量を算出する発電量予測式を導出する。

Description

太陽光発電量予測装置および太陽光発電量予測方法
 この発明は、太陽光発電システムの発電量を予測する、太陽光発電量予測装置および太陽光発電量予測方法に関する。
 太陽光発電システムは、家庭でも比較的容易に設置することのできる発電設備であり、CO削減や省エネルギーに貢献できる設備として注目されている。また、太陽光発電システムにより創られた電気は、発電した場所でリアルタイムに電力として消費されるだけでなく、配電系統に売ったり、蓄エネ設備に電気や熱として蓄えておき、発電とは別のタイミングで利用したりすることができる。例えば、電気料金単価の安い夜間にヒートポンプ給湯機に温水を蓄え、朝と夕方の給湯需要に備える夜間電力利用設備に太陽光発電システムを組み合わせることができる。例えば、太陽光発電システムが昼間に発電する電気、あるいは発電した電気から自家消費を除いた余剰電力を用いて貯湯量を増やしたり温度を上げたりすることができるので、夜間に蓄える温水の量を減らしたり、夕方の需要の前の追い焚きを減らしたりすることができる。このような場合、給湯需要に対して、過不足なく蓄熱するように計画するために、昼間の発電量を精度よく予測する必要がある。
 太陽光発電システムで発電した余剰電力は、配電系統に売電することができる(逆潮流)。しかし、太陽光発電システムは発電量や発電時間の制御ができないため、太陽光発電システムが大量に配電系統に接続されると、配電電圧の管理が困難となるため、電力会社では太陽光発電システムの出力抑制が検討されている。このような場合にも、出力抑制の発令や抑制量を決定するために、太陽光発電システムの発電量や余剰量を精度よく予測する必要がある。
 従来の発電量予測方法では、太陽光発電システムのパネルが設置されている特定区域の特定時間帯における日射量を予測し、当該パネルの定格出力、変換効率、温度ごとのモジュールの変換効率を係数として、前記日射量と掛け合わせることにより、発電量を予測している(例えば、非特許文献1)。
 また、太陽光発電システムのパネルの方位角、傾斜角、定格などのパネル情報を用いて、当該パネルに照射される日射量を予測し、当該パネルの発電効率、パネル面積などを係数として、前記日射量と掛け合わせることにより、発電量を予測する方法がある(例えば、特許文献1)。
 さらに、太陽光発電システムの設置地域において過去に観測された天気現象と、過去に計測された発電量実績とを基に発電量予測式を導出し、予測対象日または予測対象時間帯の気象予報と、予測対象日の予測実施時刻前に計測された当該太陽光発電システムの発電量とを、前記発電量予測式に入力して、発電量を予測する方法がある(例えば、特許文献2)。
特開2011-163973号公報 特開2006-33908号公報
石橋直人、飯坂達也、勝野徹:「太陽光発電の発電量予測技術」、富士電機技報、Vol.86、No.3(2013)
 特許文献1および非特許文献1のような発電量予測方法においては、太陽光発電システムのパネルの効率、設置される方位角および傾斜角などの情報が必要である。家庭用向け太陽光発電システムでは、太陽光発電システムの所有者がパネル情報を把握していない場合が多く、それらの情報を入手することは困難である。
 特許文献2のような発電量予測方法においては、過去の天気現象と計測された発電量実績に基づいて発電量を予測するので、詳細なパネル情報を入力する必要がない。しかしながら、天気現象と発電量が同じ位置で観測されることはほとんどなく、天気現象の観測地点あるいは発電量の計測地点で局所的な気象変化があった場合、天気現象と発電量の関係が特異となる。このような特異な関係に基づいて予測を行うと、予測精度が低下する恐れがある。また、季節変化のように徐々に変化する現象に伴って発電量が変化する場合、直前の過去のみを参照して予測を行うと、変化に対する反応が遅くなる。
 この発明は、上記のような問題点を解決するためになされたものであり、太陽光発電システムのパネルやパネル設置位置に関する詳細な情報がなくても、発電量予測式を導出可能にすることを目的としている。
 この発明に係る太陽光発電量予測装置は、太陽光発電システムの各日における各時間帯の発電量実績を取得する発電量実績取得部と、太陽光発電システムの設置場所の各日における各時間帯の大気外日射量を算出する大気外日射量算出部と、太陽光発電システムの設置場所を含む地域の各日における各時間帯の気象実績を取得する気象情報取得部と、太陽光発電システムの発電量実績が取得されている期間に検索範囲を設定する検索範囲設定部と、検索範囲の各日の予測対象時間帯と同じ時間帯を、当該時間帯の気象実績の種類ごとの類似時間帯に分類する類似日抽出部と、気象実績の種類の類似時間帯の発電量実績および大気外日射量に基づいて、気象実績の種類における予測対象時間帯の大気外日射量から太陽光発電システムの予測発電量を算出する発電量予測式を導出する予測式導出部と、を備える。
 本発明によれば、太陽光発電システムのおおよその設置位置情報と、過去の気象実績と発電量実績があれば、パネルやパネル設置位置に関する詳細な情報がなくても、大気外日射量から予測発電量を算出する発電量予測式を導出することができる。
本発明の実施の形態1に係る太陽光発電量予測装置の構成例を示すブロック図である。 実施の形態1における発電量実績記憶部に蓄積される発電量実績の一例を示す図である。 実施の形態1における気象実績記憶部に蓄積される気象実績の一例を示す図である。 実施の形態1における類似日抽出の処理の一例を示すフローチャートである。 実施の形態1における検索範囲設定部で設定される検索範囲の一例を示す図である。 実施の形態1における予測式導出部で導出される発電量予測式の概念図である。 実施の形態1に係る太陽光発電量予測装置をサーバと端末で分担する例を示すブロック図である。 実施の形態1に係る太陽光発電量予測装置をサーバと端末で分担する異なる例を示すブロック図である。 本発明の実施の形態2に係る太陽光発電量予測装置の構成例を示すブロック図である。 実施の形態2におけるグループID-太陽光発電システムID対応づけの一例を示す図である。 実施の形態2における予測式記憶部に記憶される予測式の一例を示す図である。 本発明の実施の形態3に係る太陽光発電量予測装置の構成例を示すブロック図である。 実施の形態3における予測式記憶部に記憶される予測式の一例を示す図である。 実施の形態3における事後推定記憶部に蓄積される事後推定発電量の一例を示す図である。 実施の形態3における発電量実績記憶部に蓄積される発電量実績と事後推定記憶部に蓄積される事後推定発電量を統合した発電量データの一例を示す図である。 本発明の実施の形態4に係る太陽光発電量予測装置の構成例を示すブロック図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る太陽光発電量予測装置の構成例を示すブロック図である。太陽光発電量予測装置1は、太陽光発電システム2が発電する電力量を計測する電力量計測装置3と、気象情報源9に接続する。気象情報源9は、例えば、気象庁の気象情報提供サーバである。また、太陽光発電量予測装置1は、太陽光発電システム2の設置される場所の位置情報6が与えられる。太陽光発電量予測装置1は、発電量実績受信部4、発電量実績記憶部5、大気外日射量算出部7、大気外日射量記憶部8、気象情報受信部10、気象実績記憶部11、検索範囲設定部12、類似日抽出部13、予測式導出部14、および、予測発電量算出部15を備えている。以下、太陽光発電量予測装置1を、予測装置1と略すことがある。
 太陽光発電量予測装置1は、電力量計測装置3から太陽光発電システム2が発電した時間帯ごとの発電量実績を受信する。予測装置1は、気象情報源9から、太陽光発電システム2の設置場所を含む地域の、将来の時間帯ごとの気象予報と、過去の時間帯ごとの気象実績を受信する。気象情報源9は、気象庁の気象情報提供サーバ以外に、民間の気象情報提供サービス、または、気象予報士が気象データを入力する装置であってもよい。位置情報6は、例えば太陽光発電システム2が設置された住所から求めた緯度および経度である。位置情報6は、予測装置1にあらかじめ設定されていてもよい。
 予測装置1は、位置情報6から算出した太陽光発電システム2の設置場所の大気外日射量と、太陽光発電システム2の時間帯ごとの発電量実績と、時間帯ごとの気象実績から、気象実績の種類ごとに、太陽光発電システム2の時間帯ごとの発電量予測式を導出する。発電量予測式は、大気外日射量から太陽光発電システム2の予測発電量を算出するための式である。そして、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に、予測対象時間帯の大気外日射量を入力して、その時間帯の予測発電量を算出する。以下、太陽光発電量予測装置1の作用を詳細に説明する。
 発電量実績受信部4は、太陽光発電システム2の発電量を所定の時間帯ごとに計測するスマートメーターなどの電力量計測装置3から、太陽光発電システム2の各日における各時間帯の発電量実績を受信する。発電量実績記憶部5は発電量実績受信部4が受信した各日における各時間帯の発電量実績を蓄積する。大気外日射量算出部7は、太陽光発電システム2の位置情報6に基づいて、太陽光発電システム2の設置場所の各日における各時間帯の大気外日射量を算出する。大気外日射量記憶部8は算出された各日における各時間帯の大気外日射量を蓄積する。太陽光発電システム2の設置場所の位置情報6は、設置場所の住所から緯度および経度として求めることができる。位置情報6は、太陽光発電システム2に設置されたGPS(全地球測位システム:Global Positioning System)端末から得ることもできる。あるいは、位置情報6は、太陽光発電システム2の正確な経緯度でなくても、例えば、太陽光発電システム2が設置される市区町村を代表する地点、例えばそれらの庁舎の所在地から求めた緯度および経度でもよい。気象情報受信部10は、太陽光発電システム2の設置場所を含む地域の、将来の各日における各時間帯の気象予報と、過去の各日における各時間帯の気象実績を、気象情報源9から受信する。気象実績記憶部11は気象情報受信部10が受信した各日における各時間帯の気象実績を蓄積する。
 検索範囲設定部12は、発電量予測式を導出するために参照する過去実績の範囲を設定する。類似日抽出部13は、気象実績記憶部11に蓄積された各日における各時間帯の気象実績を各時間帯について気象実績の種類ごとに分類する。予測式導出部14は、類似日抽出部13で分類された各日における各時間帯の気象実績から、時間帯ごと気象実績の種類ごとの、大気外日射量と発電量実績の関係式である発電量予測式を導出する。
 予測発電量算出部15は、予測対象日の予測対象時間帯ごとの気象予報と大気外日射量を取得し、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に予測対象時間帯の大気外日射量を入力することにより、予測発電量を算出する。予測装置1は、予測発電量に基づいて設備の運転を計画、制御する装置または表示装置などに、予測発電量を出力する。
 このような構成にすることにより、太陽光発電システム2のおおよその設置位置情報と、過去の各日における各時間帯の気象実績と発電量実績があれば、パネルやパネル設置位置に関する詳細な情報がなくても、気象実績の種類ごとの発電量予測式を導出することができる。予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に、予測対象時間帯の大気外日射量を入力することにより、当該時間帯における太陽光発電システム2の予測発電量を算出することができる。
 太陽光発電量予測装置1の発電量実績記憶部5と大気外日射量記憶部8と気象実績記憶部11は、例えば、半導体メモリまたはハードディスクドライブなどの記憶装置から構成される。発電量実績受信部4と気象情報受信部10は、インターネットや専用回線、短距離の無線通信などにより、気象庁などの気象情報提供者、あるいは個別に設置した降水量センサまたは日射量センサなどから気象データを計測し、気象予報を行うなどして、各日における各時間帯の各情報を収集する。発電量実績受信部4、大気外日射量算出部7、気象情報受信部10、検索範囲設定部12、類似日抽出部13、予測式導出部14および予測発電量算出部15は、例えばシステムLSI(Large Scale Integration)などに含まれるCPU(Central Processing Unit)などのプロセッサが、記憶装置に記憶されたプログラムを実行することにより、当該プロセッサの機能として実現される。予測式導出部14などは、これに限ったものではなく、例えば、複数のプロセッサが連携して実現されてもよい。なお、ソフトウェアプログラムに従って動作する予測式導出部14などに代えて、当該動作をハードウェアの電気回路で実現する信号処理回路により実現してもよい。このことは、発電量実績受信部4、大気外日射量算出部7、気象情報受信部10、検索範囲設定部12、類似日抽出部13および予測発電量算出部15についても同様である。また、予測式導出部14などの処理部は同一の装置で実現されなくてもよく、例えば、予測式導出部14までの処理をクラウド上のサーバで実現し、予測発電量算出部15はクラウドに接続された端末で実現してもよい。
 図2は、実施の形態1における発電量実績記憶部に蓄積される発電量実績の一例を示す図である。発電量実績は、年月日フィールド21、時間帯フィールド22、太陽光発電システムIDフィールド23および発電量フィールド24を含む。太陽光発電システムIDは、太陽光発電システム2ごとに付けられた数値や文字列などの固有の識別符号であり、電力会社との契約番号などを利用してもよい。発電量実績は、積算電力量計から一定の周期で読み取られたメーター指示値と、前回収集時のメーター指示値との差分を、当該時間帯の発電量として蓄積する。発電量実績を計測する手段は、一定の周期で電力量を計測、算出できる装置であれば、電力量センサなどでもよい。ここで、一定の周期とは、15分、30分、1時間などであるが、ここでは、30分として説明する。この一定の周期が予測の単位となる。
 毎時0分、30分を時間帯の区切りとして、00:00を超え00:30分までを「0000」時間帯、00:30を超え01:00までを「0030」時間帯のように時間帯をその開始時分の4桁の数で表す。例えば、太陽光発電システムIDが「0001」の太陽光発電システム2について、2015年7月1日の7時00分のメーター指示値が「1000Wh」、2015年7月1日の7時30分のメーター指示値が「1100Wh」であった場合、0700時間帯の発電量は、1100-1000=100Whとなる。したがって、この場合は年月日フィールド21には「20150701」、時間帯フィールド22には「0700」、太陽光発電システムIDフィールド23には「0001」、発電量フィールド24には「100」がそれぞれ格納される。
 なお、時間帯は、00:00を超え00:30分までを「0030」時間帯、00:30を超え01:00までを「0100」時間帯のように時間帯をその終了時分の4桁の数で表してもよい。また、収集タイミングがずれて、例えば31分になることがあれば、前後のタイミングで収集された発電量実績との比例配分を行なって、30分、すなわち規定の周期の発電量実績に補正する。また、例えば、1時間周期でしか発電量を計測できない太陽光発電システム2があれば、計測された発電量の1/2ずつを各30分の発電量実績としてもよい。
 大気外日射量算出部7は、太陽光発電システム2が設置されている位置(緯度、経度)を取得して、大気外日射量を算出する。大気外日射量算出部7は、予測式導出部14が参照する都度、参照された時間帯の大気外日射量を計算してもよい。その場合は、大気外日射量記憶部8はなくてよい。日本国内の場合、大気外日射量Qは、月、日、時刻、緯度(北緯)φ、経度(東経)λを用いて、(1)式により算出することができることが知られている。ここで、DNは1月1日から大気外日射量を算出する対象日までの経過日数であり、対象時間は日本標準時(JST)HH時MM分である。また、δは予測対象日の太陽赤緯、rは地心太陽距離、Eqは均時差、hはHH時MM分のときの太陽の時角である。
 φ[rad]=φ[度]×π/180
 λ[rad]=λ[度]×π/180
 φ=2π(DN[日]-1)/365[日]
 δ[度]=0.006918-0.399912cos(φ)+0.070257sin(φ)-0.006758cos(2φ
   +0.000907sin(2φ)-0.002697cos(3φ)+0.001480sin(3φ
 r[天文単位]=1/{1.000110+0.034221cos(φ)+0.001280sin(φ
      +0.000719cos(2φ)+0.000077sin(2φ)}0.5
 Eq[時間]=0.000075+0.001868cos(φ)-0.032077sin(φ
    -0.014615cos(2φ)-0.040849sin(2φ
 JST[時間]=HH[時]+MM[分]/60
 h[時間]=(JST-12)π/12+(λ-135π/180)+Eq
 α[時間]=arcsin{sin(φ)sin(δ)+cos(φ)cos(δ)cos(h)}
 Q[W/m]=1367[W/m]×(1/r)×sin(α)      (1)
 図3は、実施の形態1における気象実績記憶部に蓄積される気象実績の一例を示す図である。気象実績は、年月日フィールド31、時間帯フィールド32、地域IDフィールド33および気象フィールド34を含む。地域IDは、気象の観測地点ごとに付けられた数値や文字列などの固有の識別符号であり、図示しない地域ID-太陽光発電システムID対応表により、太陽光発電システムIDと関連付けられる。1つの地域IDに対して、複数の太陽光発電システムIDが関連付けられることがある。気象フィールド34には、気象庁などの気象情報源9から受信した気象実績が格納される。気象の種類は、例えば「晴」「曇」「雨」「雪」などの天気の種類である。気象情報源9から降水量、日照時間などの情報が提供される場合は、例えば、積雪深が1mm以上で前の時間帯との積雪深の差が1mm以上なら「雪」、降水量が1mm以上なら「雨」、雨でなく、日照時間が時間帯の7割以上あれば「晴」などの変換ルールを用いて、気象の種類に変換して格納する。気象の種類は「晴」などの文字列でなく、晴のときは「0」、曇のときは「1」、などの名義尺度、時間帯に対する日照時間の割合などの数値または間隔尺度であってもよい。降水量が1時間単位で計測されている場合は、1/2ずつを各時間帯あたりの降水量とするなどの方法で、時間帯ごとの降水量に変換する。例えば、7時から8時の降水量が20mmと観測された場合、0700時間帯の降水量を20÷2=10mm、0730時間帯の降水量を20-10=10mmとする。
 太陽光発電量予測装置1は、以降の処理を太陽光発電システムIDごとに実施する。検索範囲設定部12は、発電量予測式を導出するために参照する時間帯ごとの気象実績を検索する範囲を設定する。類似日抽出部13は、予測対象の太陽光発電システムIDに対応する地域IDの気象について、気象実績記憶部11に蓄積された各日における各時間帯の気象実績を気象実績の種類ごとの類似時間帯に分類する。図4は、実施の形態1における類似日抽出の処理の一例を示すフローチャートである。ステップS401~ステップS412は時間帯Tごとに、類似日を抽出するループ処理である。時間帯を30分ごととして、予測対象日1日のすべての時間帯について類似日を抽出する場合、時間帯の数は48である。ステップS402~ステップS411は、時間帯T(0~47)それぞれについて、気象実績の種類(天気)ごとに類似時間帯を抽出するループ処理である。ステップS403では、検索日数の初期値(-M日、+N日)を取得して、時間帯T、気象の種類(天気)Wの検索日数に設定する。検索日数の初期値にはあらかじめ0以上の値が設定されているものとする。ステップS404では、予測対象日の月日から-M日、+N日の範囲の月日を算出する。実際には、対象の太陽光発電システム2の発電量実績が取得されている最新の日が含まれるように初期値Mを設定する。
 図5は、実施の形態1における検索範囲設定部で設定される検索範囲の一例を示す図である。図5は、2012年から気象実績および発電量実績が蓄積されている場合で、M=15、N=15として、2015年7月1日の発電量を予測する例を示している。予測実行日は、例えば、2015年6月30日である。予測実行日の予測実行時刻までの発電量実績が得られていると仮定する。この場合、図4のステップS404では、予測対象日の15日前から予測対象日の15日後、すなわち6月16日から7月16日が検索範囲として設定される。
 ステップS405では、予測対象日より前で、検索範囲内の気象実績を抽出する。図5の例では、2015年7月1日より前で、気象実績と発電量実績が収集されている期間、すなわち、2012年6月16日~2012年7月16日、2013年6月16日~2013年7月16日、2014年6月16日~2014年7月16日、2015年6月16日~2015年6月30日の検索範囲で、時間帯Tごとに、気象実績の種類ごとに同じ種類の気象実績の日が抽出される。ここで抽出された実績の配列をUとする。季節変化に伴って、高い建物の影になる時刻、時間が変化することがある。過去年を含まずに予測対象日-M日のみを過去実績の範囲として設定すると、高い建物の影になる時間が予測対象日よりも早い、または遅い日の実績を基に発電量予測式を作成することになるので、影になって発電量が低下する時間帯に時差が生じる。これに対して、検索日数に月日の範囲を設定し、過去年の予測対象日と同日の前後の範囲を含めた検索範囲で類似日を取得することにより、影になる時間が早い日と遅い日の両方を含む実績を基に発電量予測式を作成することができる。その結果、発電量が低下する時間帯が相殺されて、このような季節変化などの周期的な変化に対応した適切な予測が可能になる。なお、検索範囲は上記のとおり決定したが、発電実績が取得されている期間を予め設定する構成としてもよい。
 図4のステップS406では、Uの要素数|U|が所定数より多いかどうかを判定し、所定数より少なければ(ステップS406;Y)、MまたはNの少なくとも一方に1を加える(ステップS407)。例えば、11月に関西で雪が積もるなど、特異な気象が観測された場合に、類似日抽出部13で類似日が抽出されない、あるいは類似日が非常に少ないと、予測式導出部14で作成する発電量予測式の信頼度が低下するという問題がある。MやNの初期値を大きくしておけば、このような問題は発生しにくいが、値が大きすぎると、例えば真夏の予測に、春の実績を使って予測を行うようになるため、この場合も、発電量予測式の信頼度が低下する。したがって、そのような問題を解決するために、少しずつMまたはNの値を大きくし、検索範囲を広くしていく処理を行う。Uの要素数|U|が所定数以上になれば(ステップS406;N)、Uの各要素U(V)を該当する類似日配列(T,W)に追加し、類似日配列を作成する(ステップS408~ステップS410)。
 類似日抽出部13は、気象実績の種類(天気)ごとに、ステップS403~ステップS410を繰り返し、時間帯Tについて気象の種類Wごとの類似日配列を得る。そして、時間帯Tを0から47まで変えてステップS402~ステップS411を繰り返し、予測対象日1日すべての時間帯について、類似日配列(T,W)を得る。
 図1の予測式導出部14は、類似日抽出部13で抽出された類似日配列(T,W)に対して、時間帯ごとに気象実績の種類ごとの大気外日射量と発電量実績の回帰分析を行なって、時間帯ごとに気象実績の種類ごとの大気外日射量と発電量実績の関係式を発電量予測式として導出する。図6は、実施の形態1における予測式導出部で導出される発電量予測式の概念図である。例えば、1000(10:00~10:30)時間帯の晴の実績が4件抽出されたとすると、図6のように、大気外日射量Qを説明変数、発電量実績Pを目的変数とした最小二乗法による回帰分析により、回帰式P=aQ+bを求める。図6は切片b=0とした線形回帰の例を示しているが、bが0でなくてもよいし、線形回帰でなく、ロジスティック回帰などでもよい。目的変数は発電量実績の代わりに、発電量を太陽光発電システム2の定格出力で除算した、単位定格あたりの発電量のような指標でもよい。
 回帰分析については、予測対象日との日数差が小さいほど、あるいは予測対象日と月日が近いほど、あるいは気温などの気象状況が近いほど重みを大きくして、重み付け最小二乗法により回帰式P=aQ+bを求めるようにしてもよい。例えば、実績の蓄積期間が長くなると、蓄積期間の途中で高い建物が建って、急に日当たりが悪くなることがある。そのような場合に、予測対象日との日数差が小さいほど重みを大きくした重み付け最小二乗法を用いて回帰分析を行うことで、高い建物が建つ前の実績が予測に与える影響を小さくすることができ、時系列的な変化に対応した発電量予測が可能になる。
 また、月日の近い日の同じ時間帯の大気外日射量の差は非常に小さいので、発電量実績Pと大気外日射量Qの回帰分析によらなくても、発電量予測式を導出することができる。例えば、上述のP=aQ+bで、類似日の発電量実績Pの平均を当該類似日の大気外日射量Qの平均で除した値を係数aとして、切片b=0とすることができる。あるいは、各類似日の発電量実績Pを当該類似日の大気外日射量Qで除した値の平均を係数aとして、切片b=0とするなどの方法で算出してもよい。
 予測発電量算出部15は、予測対象時間帯の大気外日射量Qと、予測対象時間帯の気象予報を、それぞれ大気外日射量記憶部8、気象情報受信部10から取得し、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する予測対象の太陽光発電システム2の電力量予測式を予測式導出部14から取得する。そして、大気外日射量Qを発電量予測式に入力して発電量予測結果Pを算出する。発電量予測式が次の(2)式のように表される場合、予測発電量算出部15は、予測式導出部14から回帰係数a、bを取得すればよい。
 P=aQ+b      (2)
 各構成要素の処理のタイミングについて説明する。大気外日射量は、緯度、経度、月日および時刻によって決定されるので、大気外日射量算出部7は、太陽光発電システム2が導入された時点で、年間の各時間帯の大気外日射量を算出することができる。発電量実績受信部4の処理は、毎時0分、30分などのように一定の周期で実施する。気象情報受信部10は、気象庁などの気象情報源9が気象情報を配信するタイミングで実施する。気象情報のうち、気象実績については、1日分をまとめて取得してもよい。検索範囲設定部12、類似日抽出部13および予測式導出部14の処理は、1日1回、例えば、23時に翌日の発電量を予測する。予測発電量算出部15は、検索範囲設定部12~予測式導出部14と同様に1日1回、あるいは気象情報受信部10が気象予報を受信したタイミングで実施する。
 なお、気象実績と気象予報それぞれの種類は、「晴」、「曇」、「雨」、「雪」の4種類には限られない。さらに細かく、例えば、「晴時々曇」、「曇時々晴」、「曇時々雨」などを追加して分類してもよいし、雲量および降水量で分類してもよい。また、気象実績、気象予報、発電量実績、および大気外日射量の時間帯は、それぞれが対応して同じであれば、一定周期でなくても構わない。
 このような構成にすることにより、太陽光発電システム2のおおよその設置位置情報と、過去の気象実績と発電量実績があれば、パネルやパネル設置位置に関する詳細な情報がなくても、発電量予測式を導出することができる。そして、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に、予測対象時間帯の大気外日射量を入力することにより、当該時間帯における太陽光発電システム2の発電量を予測することができる。
 図1の太陽光発電量予測装置1を、ネットワーク上のサーバで実現して、ネットワークに接続される複数の太陽光発電システム2の予測発電量を算出する構成とすることができる。あるいは、予測装置1を、太陽光発電システム2ごとに設置される端末で実現して、その太陽光発電システム2の予測発電量を算出する構成とすることもできる。ネットワーク上のサーバで実現する場合、1つのサーバで予測装置1を構成してもよいし、複数のサーバに機能を分散して構成してもよい。さらに、1つの機能を複数のサーバで負荷分散してもよい。予測装置1が、1つのサーバまたは1つの端末で実現される場合、それらはいずれも太陽光発電量予測装置でもある。
 太陽光発電量予測装置1の機能を、サーバと端末で分担する構成とすることができる。図7は、実施の形態1に係る太陽光発電量予測装置をサーバと端末で分担する例を示すブロック図である。図7の例では、予測装置1は、サーバ41と端末45で構成される。1つのサーバ41に対して、複数の端末45が接続される場合がある。サーバ41は、発電量予測式を導出するまでを行い、端末45は、その端末が接続される太陽光発電システム2の発電量予測式をサーバ41から取得して、予測発電量を算出する。端末45は、例えば、家庭用太陽光発電システムの場合の、家庭内のエネルギーを管理するHEMS(Home Energy Management System)端末である。
 サーバ41は、図1の太陽光発電量予測装置1から予測発電量算出部15を除き、気象予報送信部42、予測式送信部43、大気外日射量送信部44を追加した構成である。端末45は、予測発電量算出部15、気象予報受信部46、予測式受信部47、大気外日射量受信部48および発電量実績通信部49を備える。端末45の予測発電量算出部15は、図1の予測装置1の予測発電量算出部15と同じである。
 発電量実績通信部49は、電力量計測装置3から発電量実績を受信して、サーバ41の発電量実績受信部4に送信する。サーバ41の予測式導出部14までの処理は、図1の予測装置1と同じである。サーバ41は、気象情報受信部10で受信した気象予報を端末45の気象予報受信部46に送信する。予測式送信部43は、太陽光発電システム2について予測式導出部14で導出した発電量予測式を、予測式受信部47に送信する。大気外日射量送信部44は、予測対象時間帯の大気外日射量を大気外日射量受信部48に送信する。
 端末45の気象予報受信部46は、気象予報送信部42から気象予報を受信し、予測式受信部47は発電量予測式を予測式送信部43から受信し、大気外日射量受信部48は、大気外日射量を大気外日射量送信部44から受信する。予測発電量算出部15は、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に、予測対象時間帯の大気外日射量を入力して、予測発電量を算出する。
 サーバ41と端末45それぞれの機能分担は、図7の例に限られない。例えば、発電量実績記憶部5は、サーバ41にあっても、端末45にあっても、両方にあってもよい。気象予報受信部46は、気象予報を気象情報源9から直接取得してもよい。図7の予測装置1では、サーバ41は太陽光発電量予測装置である。サーバ41は、ネットワークに分散されて配置される複数のサーバから構成されてもよい。
 図8は、実施の形態1に係る太陽光発電量予測装置をサーバと端末で分担する異なる例を示すブロック図である。図8の例では、予測装置1は、サーバ51と端末53で構成される。ここでも、1つのサーバ51に対して、複数の端末53が接続される場合がある。サーバ51は、類似日を抽出するまでを行い、端末53は、その端末が接続される太陽光発電システム2の発電量予測式を導出して、予測発電量を算出する。
 サーバ51は、図7のサーバ41から、発電量実績受信部4、発電量実績記憶部5、予測式導出部14および予測式送信部43を除き、代わりに、類似日送信部52を備える。気象予報送信部42および大気外日射量送信部44は、図7の場合と同じである。
 端末53は、図7の端末45から、発電量実績通信部49の代わりに、発電量実績受信部4と発電量実績記憶部5を備え、予測式受信部47に代えて、類似日受信部54および予測式導出部14を備える。気象予報受信部46、大気外日射量受信部48および予測発電量算出部15は、図7の場合と同じである。発電量実績受信部4および発電量実績記憶部5は、図1の場合と同じである。
 サーバ51は、類似日抽出部13で抽出した類似日配列を、類似日送信部52から端末53の類似日受信部54に送信する。端末53は、気象予報、類似日配列および大気外日射量をサーバ51から受信する。予測式導出部14は、類似日受信部54で受信した類似日配列に対して、時間帯ごとに気象実績の種類ごとの大気外日射量と発電量実績の回帰分析を行なって、時間帯ごとに気象実績の種類ごとの大気外日射量と発電量実績の関係式を発電量予測式として導出する。予測発電量算出部15は、予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する発電量予測式に、予測対象時間帯の大気外日射量を入力して、予測発電量を算出する。
 サーバ51と端末53それぞれの機能分担は、図8の例に限られない。例えば、端末53が、大気外日射量記憶部8を備えてもよい。さらに、大気外日射量算出部7を端末53が備えてもよい。また、気象予報受信部46は、気象予報を気象情報源9から直接取得してもよい。図8の予測装置1では、端末53は太陽光発電量予測装置である。気象予報受信部46は、気象予報取得部であり、大気外日射量受信部48は、大気外日射量取得部であり、類似日受信部54は、類似日取得部である。

 なお、上記実施の形態1では、時間帯ごとに気象実績の種類ごとに発電量予測式を導出するとしたが、時間帯ごとに予測対象日の気象予報と同じ気象実績の発電量予測式のみ導出してもよい。このようにすることで、発電量予測式の計算量を減らすことができる。
 実施の形態2.
 図9は、本発明の実施の形態2に係る太陽光発電量予測装置の構成例を示すブロック図である。図1と同じ番号を付した構成要素は実施の形態1と同じである。実施の形態2に係る太陽光発電予測装置1は、実施の形態1の構成に加えて、グループ記憶部71および予測式記憶部73を備える。予測式導出部72は、グループごとに、グループを代表する1つの太陽光発電システム2について発電量予測式を導出する。予測発電量算出部74は、代表以外の太陽光発電システム2に対しては、それが属するグループの代表の発電量予測式を用いて予測発電量を算出する。
 複数の太陽光発電システム2の発電量をクラウドシステムなどで集中的に管理し、発電量を予測する場合、太陽光発電システム2の数が増加すると、各太陽光発電システム2に対して、頻繁に発電量予測を行うと処理数が多くなり、サーバ台数が増加してコストがかかるという問題がある。複数の太陽光発電システム2に対して発電量予測式を共通化することによって、このような問題を解決できる。
 実施の形態2の予測装置1では、例えば、太陽光発電システム2の地理的な距離が近いものどうし、発電量実績の傾向が近いものどうしをグループにまとめて、太陽光発電システム2をグループに分類する。発電量実績の傾向が近いとは、例えば、1日のうちで発電量実績の極大値の数と極大値の時間帯が同じで、最大値と最小値の比が決められた範囲に収まることである。また、年間を通じて発電量実績の傾向が近いものをグループとする。
 図10は、実施の形態2におけるグループID-太陽光発電システムID対応づけの一例を示す図である。グループIDは、グループを識別する符号である。グループIDと太陽光発電システムIDの関係は、1:n(n≧1)である。グループIDに加えて、気象の観測地点ごとの地域IDを設けてもよい。地域IDは、図示しない地域ID-グループID対応表により、グループIDと関連付けられる。1つの地域IDに対して、複数のグループIDが関連付けられることがある。太陽光発電システム2が増えるなどして、傾向が変わった場合はグループ分類を変更して、太陽光発電システム2が属するグループが他のグループに変わってもよい。
 予測式導出部72は、各グループを代表する決められた太陽光発電システム2を代表システムとして、当該代表システムの発電量実績を発電量実績記憶部5から抽出して、予測式を導出する。予測式導出部72は、導出した予測式をグループIDに対応づけて予測式記憶部73に格納する。代表システムには、例えば、グループ内の他の太陽光発電システム2との地理的距離の和が最小となる太陽光発電システム2を選定する。図11は、実施の形態2における予測式記憶部に記憶される予測式の一例を示す図である。予測式導出部72は年月日、時間帯、グループIDおよび気象実績の種類ごとに、予測式の導出を行なって、回帰係数a、bを出力する。予測式導出部72は、発電量予測式を特定する要素である年月日、時間帯、グループID、気象実績の種類および回帰係数a、bを、それぞれ年月日フィールド91、時間帯フィールド92、グループIDフィールド93、気象フィールド94、回帰係数(傾きa)フィールド95、回帰係数(切片b)フィールド96に格納する。
 グループに属する太陽光発電システム2の定格がほぼ同じである場合は、発電量予測式は、発電量実績を目的変数とする回帰線で表してよい。グループに属する太陽光発電システム2の定格に差がある場合は、目的変数を発電量実績の代わりに、発電量実績を代表の太陽光発電システム2の定格出力で除算した、単位定格あたりの発電量のような指標とするのがよい。
 予測発電量算出部74は、予測対象時間帯の大気外日射量Qと、予測対象時間帯の気象予報を、それぞれ大気外日射量記憶部8、気象情報受信部10から取得し、予測対象の太陽光発電システム2の属するグループIDを、図示しないグループID-太陽光発電システムID対応表により取得する。そして、予測式記憶部73から予測対象時間帯の気象予報の種類と同じ気象実績の種類に対応する当該グループIDの回帰係数a、bを取得して、予測対象時間帯の大気外日射量を発電量予測式に入力して予測発電量Pを算出する。発電量予測式は、前述の(2)式で表される。
 実施の形態2の太陽光発電予測装置によれば、太陽光発電システム2のグループごとに1セットの発電量予測式しか導出しないので、予測式導出の処理を大幅に低減できる。
 実施の形態2の太陽光発電量予測装置1を1つのサーバで実現する場合、予測装置1は太陽光発電量予測装置でもある。実施の形態2においても、太陽光発電量予測装置1を図7のように、予測式導出までを行うサーバと、発電量予測式を受信して予測発電量を算出する端末とで分担する構成を採用することができる。その場合、サーバは、太陽光発電量予測装置である。その場合さらに、サーバが1つの端末を兼ねることもできる。
 実施の形態3.
 図12は、本発明の実施の形態3に係る太陽光発電量予測装置の構成例を示すブロック図である。図1と同じ番号を付した構成要素は実施の形態1と同じである。実施の形態3の太陽光発電量予測装置1は、実施の形態1の構成に加えて、予測式記憶部102、事後推定記憶部104および事後推定評価部105を備える。予測発電量算出部103は、予測発電量算出に加えて、過去の時間帯の気象実績の種類に対応する発電量予測式に、その時間帯の大気外日射量を入力して得た事後推定発電量を算出し、事後推定記憶部104に蓄積する。予測式導出部101は、1つの太陽光発電システム2について、予測対象日より前の日について導出した発電量予測式で算出した事後推定発電量とその時間帯の発電量実績の差が定められた範囲の場合は、その前の日について導出した発電量予測式を予測対象日の発電量予測式に流用する。
 太陽光発電システム2の発電量をクラウドシステムなどで集中的に管理し、発電量を予測する場合、太陽光発電システム2の数が増加すると、各太陽光発電システム2に対して、頻繁に発電量予測を行うと処理数が多くなり、サーバ台数が増加してコストがかかるという問題がある。検索範囲設定部12から予測式導出部101までの処理を実施する頻度を下げたりすることによって、このような問題を解決できる。
 予測式導出部101は、類似日抽出部13で抽出された類似日配列(T,W)に対して回帰分析を行なって、時間帯ごとに気象実績の種類ごとの大気外日射量と発電量実績の関係式を発電量予測式として導出する。図13は予測式記憶部102に蓄積される予測式の一例を示す図である。予測式導出部101は年月日、時間帯、太陽光発電システムID、気象ごとに、予測式の導出を行なって、回帰係数a、bを出力するので、それぞれ年月日フィールド111、時間帯フィールド112、気象フィールド113、回帰係数(傾きa)フィールド114、回帰係数(切片b)フィールド115に格納する。
 予測発電量算出部103は、実施の形態1と同様の方法で予測発電量を算出するのとは別に、事後推定発電量を算出して、事後推定記憶部104に蓄積する。事後推定発電量とは、過去のある時間帯の気象実績の種類に対応するその時間帯の発電量予測式に、その時間帯の大気外日射量を入力して得た予測発電量である。気象実績が確定した後に、その気象実績の種類に対応する発電量予測式で算出した値なので、事後推定発電量という。予測発電量を算出したときの気象予報と実際の気象実績とは異なる場合があり、事前に算出した予測発電量と発電量実績との差には、気象予報と気象実績の違いが含まれる。事後推定発電量は、気象実績の種類に応じた発電量予測式で算出した値なので、発電量予測式の誤差を表す。
 図14は、実施の形態3における事後推定記憶部に蓄積される事後推定発電量の一例を示す図である。事後推定発電量は、年月日、時間帯、太陽光発電システムIDごとに算出される。予測発電量算出部103は、年月日、時間帯、太陽光発電システムIDと算出した事後推定発電量を、それぞれ、事後推定記憶部104の年月日フィールド121、時間帯フィールド122、太陽光発電システムIDフィールド123、事後推定発電量フィールド124に格納する。事後推定記憶部104で記憶される事後推定発電量と、発電量実績記憶部5で管理される発電量実績を統合して、発電量データとして1つの記憶部に格納してもよい。図15は、実施の形態3における発電量実績記憶部に蓄積される発電量実績と事後推定記憶部に蓄積される事後推定発電量を統合した発電量データの一例を示す図である。図15では、年月日、時間帯および太陽光発電システムIDの組に、事後推定発電量と発電量実績を対応付けて格納している。
 事後推定評価部105は、事後推定記憶部104と発電量実績記憶部5から、それぞれの年月日フィールド、時間帯フィールド、太陽光発電システムIDフィールドの値が一致するレコードを取得して、発電量実績である図2の発電量フィールド24と事後推定発電量である図14の事後推定発電量フィールド124の値を比較する。それらの値の関係が所定の条件を満たすとき、当該時間帯あるいは当該太陽光発電システム2に関して、検索範囲設定部12~予測式導出部101の処理を行なって、予測対象時間帯の発電量予測式を導出する。
 所定の条件とは、発電量実績と事後推定発電量の誤差があらかじめ決められた許容される範囲を超えるとき、誤差がその前の日の誤差と比較して許容される範囲を超えるとき、あるいは、同じ日の他の太陽光発電システム2の誤差よりも一定以上大きいとき、などである。ここで誤差とは、発電量実績と事後推定発電量の差、発電量実績と事後推定発電量の差の絶対値、発電量実績と事後推定発電量の差を発電量実績で除した値、あるいは発電量実績と予測発電量の差を太陽光発電システム2の定格出力で除した値などである。
 事後推定評価部105は、予測対象時間帯と同じ時間帯で、予測実行時刻の直前の発電量実績が得られている時間帯について、誤差を算出して評価する。事後推定評価部105は、予測対象日の直近の予測対象時間帯と同じ時間帯で、予測対象時間帯の気象予報の種類と気象実績の種類が同じである同種時間帯について、誤差を算出して評価してもよい。
 発電量実績と事後推定発電量の誤差が所定の条件を満たさないとき、すなわち発電量実績と事後推定発電量の誤差があらかじめ決められた許容される範囲内である場合は、検索範囲設定部12と類似日抽出部13の処理を行わない。その場合、予測式導出部101は予測式記憶部102に記憶されている、誤差を評価した時間帯の発電量予測式をそのまま用いて、予測対象時間帯の発電量予測式とする。
 実施の形態3の太陽光発電量予測装置1では、以上説明したような構成にすることにより、計算量の多い検索範囲設定部12と類似日抽出部13の処理頻度を低減し、予測式導出部101の処理内容を簡易化することができるので、実装システムの処理負荷やサーバ台数を軽減し、コストを低減できる。
 実施の形態3の太陽光発電量予測装置1を1つのサーバで実現する場合、予測装置1は太陽光発電量予測装置でもある。実施の形態3においても、太陽光発電量予測装置1を図7のように、予測式導出までを行うサーバと、発電量予測式を受信して予測発電量を算出する端末とで分担する構成を採用することができる。サーバは、例えば、図7の構成に加えて、予測式記憶部102、事後推定記憶部104、事後推定評価部105、および、事後推定発電量を算出する事後推定発電量算出部を備える。その場合、サーバは、太陽光発電量予測装置である。サーバはさらに、1つの端末を兼ねることもできる。事後推定発電量を端末で算出して記憶し、事後推定評価を行った結果をサーバに通知する構成にしてもよい。
 実施の形態3の太陽光発電量予測装置1を図8のように、類似日を抽出するまでを行うサーバと、類似日を受信して予測式を導出して予測発電量を算出する端末とで分担する構成とすることもできる。端末は、例えば、図8の構成に加えて、予測式記憶部、事後推定記憶部および事後推定評価部を備える。その場合、類似日を抽出するかどうかを、端末がサーバに指示する。この場合、端末は、太陽光発電量予測装置である。
 実施の形態3を実施の形態2に適用することもできる。その場合、代表システムについて、発電量実績と事後推定発電量を比較して、誤差を評価する。さらに、代表システムの発電量実績と事後推定発電量を比較した誤差と、代表システム以外の発電量実績と事後推定発電量を比較した誤差を比較して、代表システム以外の誤差が所定の範囲を超える場合は、代表システムの選び方またはグループの構成を見直す構成としてもよい。これによって、実態に即した代表システム、またはグループ構成を得ることができる。
 実施の形態4.
 図16は、本発明の実施の形態4に係る太陽光発電量予測装置の構成例を示すブロック図である。図1または図9と同じ番号を付した構成要素は、それぞれ実施の形態1または実施の形態2と同じである。実施の形態4では、実施の形態2と同じように太陽光発電システム2をグループに分類して、代表システムについて導出した発電量予測式をグループ全体に適用する。実施の形態4では、代表システム以外の太陽光発電システム2に代表システムの発電量予測式を用いる誤差を評価し、予測発電量を補正する。
 複数の太陽光発電システム2をまとめてグループを形成し、グループの代表システムの大気外日射量と発電量実績の関係に基づいて発電量予測式を作成し、同じグループ内の他の太陽光発電システム2に代表システムの発電量予測式を適用して予測発電量を算出すると、代表システムと予測対象の太陽光発電システム2の地理的な差や、予測対象の太陽光発電システム2の地形的な特徴が予測に反映されないことがある。例えば、代表システムと予測対象の太陽光発電システム2の経度差が大きく、代表システムの方が東に位置する場合、代表システムの方が日の出、日の入りの時刻が早い。そのため、代表システムの発電量予測式の回帰係数を用いて予測を行うと、予測対象の太陽光発電システム2については、常に実際よりも早く発電を開始し、早く発電を終了するような予測発電量を出力することになる。あるいは、代表システムでは周辺に高い木や建物がないが、予測対象の太陽光発電システム2の周辺には高い木または建物が存在する場合、一部の時間帯で太陽光発電システム2のパネルに影ができて発電量が低下することがある。このような場合、代表システムの発電量予測式の回帰係数を用いて予測発電量を算出すると、発電量の低下を常に予測できない。
 実施の形態4の太陽光発電量予測装置1は、実施の形態2の構成に加えて、事後推定記憶部151および予測結果補正部152を備える。予測発電量算出部150は、実施の形態3の予測発電量算出部103と同様に、事後推定発電量を算出して、事後推定記憶部151に蓄積する。ただし、実施の形態4では、代表システムの発電量予測式で事後推定発電量を算出するので、グループ事後推定発電量という。事後推定記憶部151に蓄積されるグループ事後推定発電量は、図14または図15の事後推定発電量と同様である。
 予測結果補正部152は、まず、事後推定記憶部151と発電量実績記憶部5から、それぞれの年月日フィールド、時間帯フィールド、太陽光発電システムIDフィールドの値が一致するレコードを取得して、発電量実績である発電量フィールド24と事後推定発電量である事後推定発電量フィールド124の値を比較し、それらのずれを個体誤差として算出する。個体誤差は、例えば、発電量実績と事後推定発電量の差、発電量実績と事後推定発電量の比、1日のうちで発電量実績と事後推定発電量の発電開始時刻(日の出と推測)あるいは発電終了時刻(日の入りと推測)の時間的な差などである。そして、予測結果補正部152は、予測発電量算出部150が算出した予測対象時間帯の予測発電量に個体誤差を加味した値を補正予測発電量として出力する。
 より詳しくは、予測結果補正部152は、予測対象日の直近の予測対象時間帯と同じ時間帯で、予測対象時間帯の気象予報の種類と気象実績の種類が同じである同種時間帯について、個体誤差を算出し、予測対象時間帯の予測発電量にその個体誤差を加味して補正予測発電量として出力する。
 実施の形態4の太陽光発電量予測装置1では、以上説明したような構成にすることにより、代表システムと予測対象の太陽光発電システム2との地理的な差や地形的な差を反映した発電量予測を行うことができる。
 実施の形態4の太陽光発電量予測装置1を1つのサーバで実現する場合、予測装置1は太陽光発電量予測装置でもある。実施の形態4においても、太陽光発電量予測装置1を図7のように、予測式導出までを行うサーバと、発電量予測式を受信して予測発電量を算出する端末とで分担する構成を採用することができる。端末は、例えば、図7の構成に加えて、事後推定記憶部151および予測結果補正部152を備え、予測発電量算出部15に代えて、予測発電量算出部150を備える。その場合、サーバは、太陽光発電量予測装置である。その場合さらに、サーバが1つの端末を兼ねることもできる。
 実施の形態3を実施の形態4に適用することもできる。その場合、代表システムについて、発電量実績と事後推定発電量を比較して、誤差を評価する。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態および変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 1 太陽光発電量予測装置、2 太陽光発電システム、3 電力量計測装置、4 発電量実績受信部、5 発電量実績記憶部、6 位置情報、7 大気外日射量算出部、8 大気外日射量記憶部、9 気象情報源、10 気象情報受信部、11 気象実績記憶部、12 検索範囲設定部、13 類似日抽出部、14 予測式導出部、15 予測発電量算出部、21 年月日フィールド、22 時間帯フィールド、23 太陽光発電システムIDフィールド、24 発電量フィールド、31 年月日フィールド、32 時間帯フィールド、33 地域IDフィールド、34 気象フィールド、41 サーバ、42 気象予報送信部、43 予測式送信部、44 大気外日射量送信部、45 端末、46 気象予報受信部、47 予測式受信部、48 大気外日射量受信部、49 発電量実績通信部、51 サーバ、52 類似日送信部、53 端末、54 類似日受信部、71 発電量実績記憶部、72 予測式導出部、73 予測式記憶部、74 予測発電量算出部、91 年月日フィールド、92 時間帯フィールド、93 グループIDフィールド、94 気象フィールド、95 回帰係数(傾きa)フィールド、96 回帰係数(切片b)フィールド、101 予測式導出部、102 予測式記憶部、103 予測発電量算出部、104 事後推定記憶部、105 事後推定評価部、111 年月日フィールド、112 時間帯フィールド、113 気象フィールド、114 回帰係数(傾きa)フィールド、115 回帰係数(切片b)フィールド、121 年月日フィールド、122 時間帯フィールド、123 太陽光発電システムIDフィールド、124 事後推定発電量フィールド、150 予測発電量算出部、151 事後推定記憶部、152 予測結果補正部。

Claims (13)

  1.  太陽光発電システムの各日における各時間帯の発電量実績を取得する発電量実績取得部と、
     前記太陽光発電システムの設置場所の各日における各時間帯の大気外日射量を算出する大気外日射量算出部と、
     前記太陽光発電システムの設置場所を含む地域の各日における各時間帯の気象実績を取得する気象情報取得部と、
     前記太陽光発電システムの発電量実績が取得されている期間に検索範囲を設定する検索範囲設定部と、
     前記検索範囲の各日の予測対象時間帯と同じ時間帯を、当該時間帯の気象実績の種類ごとの類似時間帯に分類する類似日抽出部と、
     前記気象実績の種類の前記類似時間帯の前記発電量実績および前記大気外日射量に基づいて、前記気象実績の種類における前記予測対象時間帯の大気外日射量から前記太陽光発電システムの予測発電量を算出する発電量予測式を導出する予測式導出部と、
     を備える太陽光発電量予測装置。
  2.  前記検索範囲設定部は、予測対象日の過去年の前記予測対象日の同日より第一の検索日数前から当該同日より第二の検索日数後まで、および、前記予測対象日より前記第一の検索日数前から予測実行日までを、前記検索範囲として設定する、請求項1に記載の太陽光発電量予測装置。
  3.  前記検索範囲設定部は、前記気象実績の種類ごとに、前記類似時間帯の数が定めた範囲になるように、前記第一の検索日数と前記第二の検索日数を増減させる、請求項2に記載の太陽光発電量予測装置。
  4.  前記予測式導出部は、予測対象日との日数差、前記予測対象日と月日の差および前記予測対象日の気温予報との気温差のうち、少なくとも1つの値に応じた重みを設定して、重み付け最小二乗法により、前記類似時間帯の前記大気外日射量と前記発電量実績の回帰分析を行って、前記発電量予測式を導出する請求項1から3のいずれか1項に記載の太陽光発電量予測装置。
  5.  前記気象情報取得部は、予測対象日の前記予測対象時間帯の気象予報を取得し、
     前記予測対象時間帯の気象予報の種類と同じ前記気象実績の種類の発電量予測式に、前記予測対象時間帯の大気外日射量を入力して、前記予測対象時間帯の予測発電量を算出する予測発電量算出部
     を備える請求項1から4のいずれか1項に記載の太陽光発電量予測装置。
  6.  1以上の前記太陽光発電システムを含むグループの識別符号と、該グループに含まれる前記太陽光発電システムの識別符号とを対応づけて記憶する、グループ記憶部を備え、
     前記予測式導出部は、前記グループごとに、当該グループに含まれる決められた1つの前記太陽光発電システムを代表システムとして、該代表システムについて前記発電量予測式を導出し、
     前記予測発電量算出部は、前記太陽光発電システムが属するグループの前記代表システムについて導出された前記発電量予測式に前記予測対象時間帯の大気外日射量を入力して、該太陽光発電システムの前記予測対象時間帯の予測発電量を算出する、
     請求項5に記載の太陽光発電量予測装置。
  7.  前記予測対象日の直近の前記予測対象時間帯と同じ時間帯で、前記予測対象時間帯の気象予報の種類と同じ気象実績の種類の同種時間帯の、前記太陽光発電システムが属するグループの前記代表システムの当該気象実績の種類の前記発電量予測式に、当該同種時間帯の大気外日射量を入力して得たグループ事後推定発電量と、当該同種時間帯の当該太陽光発電システムの前記発電量実績とのずれを、当該太陽光発電システムの個体誤差として算出し、当該太陽光発電システムについて前記予測発電量算出部が算出した予測発電量に、前記個体誤差を加味した値を補正予測発電量として出力する予測結果補正部をさらに備える、請求項6に記載の太陽光発電量予測装置。
  8.  前記気象情報取得部は、予測対象日の前記予測対象時間帯の気象予報を取得し、
     予測実行日の直近の前記予測対象時間帯と同じ時間帯で、前記予測対象時間帯の気象予報の種類と同じ気象実績の種類の同種時間帯の、当該気象実績の種類の前記発電量予測式に、当該同種時間帯の大気外日射量を入力して得た事後推定発電量と、前記同種時間帯の前記発電量実績とを比較し、比較結果を出力する事後推定評価部を備え、
     前記予測式導出部は、前記事後推定発電量が前記同種時間帯の前記発電量実績から定めた範囲内の場合に、前記予測対象時間帯の気象予報の種類の前記同種時間帯の発電量予測式を、前記予測対象時間帯の発電量予測式として導出する、
     請求項1から7のいずれか1項に記載の太陽光発電量予測装置。
  9.  前記気象情報取得部は、予測対象日の前記予測対象時間帯の気象予報を取得し、
     前記予測対象日の直近の前記予測対象時間帯と同じ時間帯で、前記予測対象時間帯の気象予報の種類と同じ気象実績の種類の時間帯の、当該気象予報の種類の前記発電量予測式に、当該時間帯の大気外日射量を入力して得た事後推定発電量と、その時間帯の前記発電量実績とを比較し、比較結果を出力する事後推定評価部を備え、
     前記予測式導出部は、前記事後推定発電量がその時間帯の前記発電量実績から定めた範囲を超える場合に、前記類似時間帯の前記発電量実績および前記大気外日射量に基づいて、前記発電量予測式を導出する、請求項1から8のいずれか1項に記載の太陽光発電量予測装置。
  10.  太陽光発電システムの各日における各時間帯の発電量実績を取得する発電量実績取得部と、
     前記太陽光発電システムの設置場所の各日における各時間帯の大気外日射量を取得する大気外日射量取得部と、
     前記太陽光発電システムの設置場所を含む地域の予測対象日の予測対象時間帯の気象予報を取得する気象予報取得部と、
     前記太陽光発電システムの発電量実績が取得されている期間に設定された検索範囲の、各日の前記予測対象時間帯と同じ時間帯を、当該時間帯の気象実績の種類ごとに分類した類似時間帯を取得する類似日取得部と、
     前記気象実績の種類の前記類似時間帯の前記発電量実績および前記大気外日射量に基づいて、前記気象実績の種類における前記予測対象時間帯の大気外日射量から前記太陽光発電システムの予測発電量を算出する発電量予測式を導出する予測式導出部と、
     を備える太陽光発電量予測装置。
  11.  前記予測対象時間帯の気象予報の種類と同じ前記気象実績の種類の発電量予測式に、前記予測対象時間帯の大気外日射量を入力して、前記予測対象時間帯の予測発電量を算出する予測発電量算出部を備える、請求項10に記載の太陽光発電量予測装置。
  12.  予測対象日の予測対象時間帯の気象予報を取得する気象情報取得部と、
     前記予測対象時間帯の気象予報の種類と同じ気象実績の種類の発電量予測式に、前記予測対象時間帯の大気外日射量を入力して、前記予測対象時間帯の予測発電量を算出する予測発電量算出部と
     を備える太陽光発電量予測装置。
  13.  太陽光発電システムの各日における各時間帯の発電量を予測する太陽光発電量予測装置が行う太陽光発電量予測方法であって、
     太陽光発電システムの各日における各時間帯の発電量実績を取得する発電量実績取得ステップと、
     前記太陽光発電システムの設置場所の各日における各時間帯の大気外日射量を算出する大気外日射量算出ステップと、
     前記太陽光発電システムの設置場所を含む地域の各日における各時間帯の気象実績、および、予測対象日の予測対象時間帯の気象予報を取得する気象情報取得ステップと、
     前記太陽光発電システムの発電量実績が取得されている期間に検索範囲を設定する検索範囲設定ステップと、
     前記検索範囲の各日の前記予測対象時間帯と同じ時間帯を、当該時間帯の気象実績の種類ごとの類似時間帯に分類する類似日抽出ステップと、
     前記気象実績の種類の前記類似時間帯の前記発電量実績および前記大気外日射量に基づいて、前記気象実績の種類における前記予測対象時間帯の大気外日射量から前記太陽光発電システムの予測発電量を算出する発電量予測式を導出する予測式導出ステップと、
     前記予測対象時間帯の気象予報の種類と同じ前記気象実績の種類の発電量予測式に、前記予測対象時間帯の大気外日射量を入力して、前記予測対象時間帯の予測発電量を算出する予測発電量算出ステップと、
     を備える太陽光発電量予測方法。
PCT/JP2015/072548 2015-08-07 2015-08-07 太陽光発電量予測装置および太陽光発電量予測方法 WO2017026010A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017534038A JP6584510B2 (ja) 2015-08-07 2015-08-07 太陽光発電量予測装置および太陽光発電量予測方法
US15/741,016 US10963602B2 (en) 2015-08-07 2015-08-07 Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
CN201580082170.1A CN107912067B (zh) 2015-08-07 2015-08-07 太阳能发电量预测装置以及太阳能发电量预测方法
EP15900965.3A EP3333999A1 (en) 2015-08-07 2015-08-07 Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation
PCT/JP2015/072548 WO2017026010A1 (ja) 2015-08-07 2015-08-07 太陽光発電量予測装置および太陽光発電量予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072548 WO2017026010A1 (ja) 2015-08-07 2015-08-07 太陽光発電量予測装置および太陽光発電量予測方法

Publications (1)

Publication Number Publication Date
WO2017026010A1 true WO2017026010A1 (ja) 2017-02-16

Family

ID=57983516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072548 WO2017026010A1 (ja) 2015-08-07 2015-08-07 太陽光発電量予測装置および太陽光発電量予測方法

Country Status (5)

Country Link
US (1) US10963602B2 (ja)
EP (1) EP3333999A1 (ja)
JP (1) JP6584510B2 (ja)
CN (1) CN107912067B (ja)
WO (1) WO2017026010A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021438A1 (ja) * 2017-07-27 2019-01-31 三菱電機株式会社 太陽光発電量予測装置、太陽光発電量予測システム、予測方法及びプログラム
JP2020149475A (ja) * 2019-03-14 2020-09-17 株式会社東芝 予測装置、予測方法及びコンピュータプログラム
JP2020190352A (ja) * 2019-05-21 2020-11-26 三菱電機株式会社 制御装置、制御システム、給湯機制御方法およびプログラム
CN112100911A (zh) * 2020-09-08 2020-12-18 淮阴工学院 一种基于深度bisltm的太阳辐射预测方法
CN112765894A (zh) * 2020-11-25 2021-05-07 北方工业大学 一种基于k-lstm的铝电解槽状态预测方法
JP2021087321A (ja) * 2019-11-29 2021-06-03 中国電力株式会社 太陽光発電量予測装置、太陽光発電量予測装置の制御方法及びプログラム
JP2021531725A (ja) * 2018-07-19 2021-11-18 サクラメント ミュニシパル ユーティリティ ディストリクト 太陽光発電を推定および予測するための技法
JP2022008764A (ja) * 2020-03-23 2022-01-14 春禾科技股▲分▼有限公司 太陽光発電所の日射量推定方法
CN117709020A (zh) * 2023-12-19 2024-03-15 上海电力大学 计及前后排遮挡的光伏组件斜面总辐射推算方法
JP7563006B2 (ja) 2020-07-01 2024-10-08 株式会社Ihi 電力管理システム、電力管理方法、及びプログラム
JP7565178B2 (ja) 2020-09-01 2024-10-10 四国計測工業株式会社 電力管理装置および複数の発電設備の発電量予測管理方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170337644A1 (en) * 2016-05-23 2017-11-23 General Electric Company Data driven invocation of realtime wind market forecasting analytics
KR102610440B1 (ko) * 2016-08-08 2023-12-06 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양광 모듈, 및 이를 구비하는 태양광 시스템
US10936035B2 (en) * 2017-02-13 2021-03-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method for estimating the time-varying energy balance of a collection of energy sinks, harvesters, and storage devices
KR102093796B1 (ko) * 2018-07-26 2020-03-26 (주)에코브레인 태양광 발전단지 기상예측 상세기술과 단지환경을 반영한 발전량 산정방법, 그 방법을 이용한 실시간 태양광 발전량 예측시스템
KR102578223B1 (ko) * 2018-09-14 2023-09-13 오씨아이 주식회사 태양광 발전량 예측 장치
CN109884896B (zh) * 2019-03-12 2022-02-11 河海大学常州校区 一种基于相似日辐照预测的光伏跟踪系统优化跟踪方法
FR3095067A1 (fr) 2019-04-11 2020-10-16 Total Solar Procédé d'évaluation de la production d’énergie photovoltaïque et unité d’évaluation et de gestion mettant en œuvre le procédé
CN110443424B (zh) * 2019-08-07 2021-02-26 珠海格力电器股份有限公司 故障期的统计电量增值的估测方法及装置
CN113131621A (zh) * 2020-01-14 2021-07-16 北京小米移动软件有限公司 无线充电方法及装置、终端设备、充电系统、存储介质
CN111860961A (zh) * 2020-06-22 2020-10-30 国网甘肃省电力公司电力科学研究院 一种用于分析天气对光伏出力影响的相似日选择方法
CN112200377A (zh) * 2020-10-16 2021-01-08 国能日新科技股份有限公司 基于sarimax模型的光伏中长期发电量预报方法及装置
CN112561189A (zh) * 2020-12-23 2021-03-26 宁夏中科嘉业新能源研究院(有限公司) 一种适用于光伏电站发电量预测方法
CN113409149A (zh) * 2021-05-10 2021-09-17 国网浙江省电力有限公司杭州供电公司 一种基于发电量预测的光伏电站投融资决策方法及装置
CN113570126B (zh) * 2021-07-15 2024-07-23 远景智能国际私人投资有限公司 光伏发电站的发电功率预测方法、装置及系统
TWI804942B (zh) * 2021-08-02 2023-06-11 崑山科技大學 雙軸追日太陽能系統的發電預測模型建立方法
CN115423200B (zh) * 2022-09-16 2023-12-29 南通沃太新能源有限公司 离线状态下补全太阳辐照进行光伏功率预测的方法
CN116596162B (zh) * 2023-07-05 2023-10-20 浙江正泰新能源开发有限公司 一种光伏发电量测算方法、装置、设备及存储介质
CN117996757B (zh) * 2024-04-07 2024-06-11 南京中核能源工程有限公司 一种基于分散式风电的配电网调度方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2013084736A (ja) * 2011-10-07 2013-05-09 Chugoku Electric Power Co Inc:The 太陽光発電出力推定装置及び太陽光発電出力推定方法
JP2013099143A (ja) * 2011-11-01 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 予測モデル構築装置、方法、及びプログラム、並びに発電量予測装置、及び方法
JP2013232147A (ja) * 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The 発電電力推定装置、発電電力推定方法、及び発電電力推定プログラム
JP2014217092A (ja) * 2013-04-22 2014-11-17 清水建設株式会社 発電電力予測装置、発電電力予測方法及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095495B2 (ja) * 2008-05-20 2012-12-12 日本電信電話株式会社 電力システムおよびその制御方法
JP5571970B2 (ja) 2010-02-10 2014-08-13 大阪瓦斯株式会社 日射量推定装置、太陽光発電量推定装置及びシステム
JP2012151992A (ja) * 2011-01-19 2012-08-09 Hitachi Ltd 電力需要調整装置,電力調整ネットワークシステム及び電力調整方法
US8682585B1 (en) * 2011-07-25 2014-03-25 Clean Power Research, L.L.C. Computer-implemented system and method for inferring operational specifications of a photovoltaic power generation system
JP5439450B2 (ja) 2011-09-13 2014-03-12 株式会社東芝 発電予測装置およびその方法
JP5492848B2 (ja) * 2011-09-20 2014-05-14 株式会社日立製作所 電力需要予測システムおよび方法
JP5743881B2 (ja) * 2011-12-28 2015-07-01 株式会社東芝 電力管理システム、電力管理方法、需要家端末及び電力管理装置
JP2013192350A (ja) * 2012-03-13 2013-09-26 Canon Inc 機器制御装置及び機器制御方法
JP5308560B1 (ja) * 2012-06-13 2013-10-09 株式会社電力システムズ・インスティテュート 太陽光発電における発電量予測方法及び装置
CN103345227B (zh) * 2013-07-02 2015-09-09 东南大学 一种微电网监测与能量管理装置及方法
CN104021427A (zh) * 2014-06-10 2014-09-03 上海电力学院 一种基于因子分析的并网光伏电站日发电量预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2013084736A (ja) * 2011-10-07 2013-05-09 Chugoku Electric Power Co Inc:The 太陽光発電出力推定装置及び太陽光発電出力推定方法
JP2013099143A (ja) * 2011-11-01 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 予測モデル構築装置、方法、及びプログラム、並びに発電量予測装置、及び方法
JP2013232147A (ja) * 2012-05-01 2013-11-14 Tokyo Electric Power Co Inc:The 発電電力推定装置、発電電力推定方法、及び発電電力推定プログラム
JP2014217092A (ja) * 2013-04-22 2014-11-17 清水建設株式会社 発電電力予測装置、発電電力予測方法及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROFUMI IROKAWA ET AL.: "Forecasting Power Generation for a Photovoltaic System in an Energy Network", IEICE TECHNICAL REPORT, 17 July 2008 (2008-07-17), pages 125 - 130, XP009503990 *
See also references of EP3333999A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019021438A1 (ja) * 2017-07-27 2020-04-02 三菱電機株式会社 太陽光発電量予測装置、太陽光発電量予測システム、予測方法及びプログラム
WO2019021438A1 (ja) * 2017-07-27 2019-01-31 三菱電機株式会社 太陽光発電量予測装置、太陽光発電量予測システム、予測方法及びプログラム
JP7407815B2 (ja) 2018-07-19 2024-01-04 サクラメント ミュニシパル ユーティリティ ディストリクト 太陽光発電を推定および予測するための技法
JP2021531725A (ja) * 2018-07-19 2021-11-18 サクラメント ミュニシパル ユーティリティ ディストリクト 太陽光発電を推定および予測するための技法
JP2020149475A (ja) * 2019-03-14 2020-09-17 株式会社東芝 予測装置、予測方法及びコンピュータプログラム
JP7210338B2 (ja) 2019-03-14 2023-01-23 株式会社東芝 予測装置、予測方法及びコンピュータプログラム
JP2020190352A (ja) * 2019-05-21 2020-11-26 三菱電機株式会社 制御装置、制御システム、給湯機制御方法およびプログラム
JP7523858B2 (ja) 2019-05-21 2024-07-29 三菱電機株式会社 制御装置、制御システム、給湯機制御方法およびプログラム
JP7400411B2 (ja) 2019-11-29 2023-12-19 中国電力株式会社 太陽光発電量予測装置、太陽光発電量予測装置の制御方法及びプログラム
JP2021087321A (ja) * 2019-11-29 2021-06-03 中国電力株式会社 太陽光発電量予測装置、太陽光発電量予測装置の制御方法及びプログラム
JP2022008764A (ja) * 2020-03-23 2022-01-14 春禾科技股▲分▼有限公司 太陽光発電所の日射量推定方法
JP7563006B2 (ja) 2020-07-01 2024-10-08 株式会社Ihi 電力管理システム、電力管理方法、及びプログラム
JP7565178B2 (ja) 2020-09-01 2024-10-10 四国計測工業株式会社 電力管理装置および複数の発電設備の発電量予測管理方法
CN112100911A (zh) * 2020-09-08 2020-12-18 淮阴工学院 一种基于深度bisltm的太阳辐射预测方法
CN112765894B (zh) * 2020-11-25 2023-05-05 北方工业大学 一种基于k-lstm的铝电解槽状态预测方法
CN112765894A (zh) * 2020-11-25 2021-05-07 北方工业大学 一种基于k-lstm的铝电解槽状态预测方法
CN117709020A (zh) * 2023-12-19 2024-03-15 上海电力大学 计及前后排遮挡的光伏组件斜面总辐射推算方法

Also Published As

Publication number Publication date
CN107912067B (zh) 2023-05-23
JP6584510B2 (ja) 2019-10-02
US20180196896A1 (en) 2018-07-12
EP3333999A4 (en) 2018-06-13
US10963602B2 (en) 2021-03-30
CN107912067A (zh) 2018-04-13
JPWO2017026010A1 (ja) 2018-01-18
EP3333999A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6584510B2 (ja) 太陽光発電量予測装置および太陽光発電量予測方法
Zhang et al. A solar time based analog ensemble method for regional solar power forecasting
Tahir et al. Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review
US10482197B2 (en) Solar irradiance modeling augmented with atmospheric water vapor data
JP3984604B2 (ja) 太陽光発電システムの発電量予測方法、装置、およびプログラム
US8972221B2 (en) Estimating solar irradiance components from plane of array irradiance and global horizontal irradiance
JP6785971B2 (ja) 太陽光発電量予測装置、太陽光発電量予測システム、予測方法及びプログラム
JP5308560B1 (ja) 太陽光発電における発電量予測方法及び装置
WO2017155421A1 (en) Method and system for forecasting the power output of a group of photovoltaic power plants and managing the integration of said power output into a power grid
JP6193008B2 (ja) 予測システム、予測装置および予測方法
JP5466596B2 (ja) 太陽光発電設備の発電出力推定方法
Al-Jumaily et al. Estimation of clear sky hourly global solar radiation in Iraq
WO2014188427A1 (en) System for continuous computation of renewable energy power production
Mansouri Kouhestani et al. A comprehensive assessment of solar and wind energy potential at the University of Lethbridge campus, a medium-sized western Canadian university
Simankov et al. Review of models for estimating and predicting the amount of energy produced by solar energy systems
WO2016146788A1 (en) System and method for predicting solar power generation
Rughoo et al. Predicting the performance of a photovoltaic system in the island nation, Mauritius
Ganz et al. Day-ahead probabilistic load forecasting for individual electricity consumption–Assessment of point-and interval-based methods
WO2017007713A1 (en) Solar irradiance modeling augmented with atmospheric water vapor data
Syafaruddin et al. Optimal energy utilization of photovoltaic systems using the non-binary genetic algorithm
Tam Predicting and accommodating the variability of solar energy
Paasch Power Electronic System for Multi-MW PV Sites
Alliss et al. Introducing the renewable energy network optimization tool (ReNOT): Part I
Quintairos et al. Analysis of potential distribution and size of photovoltaic systems on rural rooftops
Ciocia et al. Photovoltaic Power Prediction from Medium-Range Weather Forecasts: a Real Case Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015900965

Country of ref document: EP