WO2017024541A1 - 同步通信方法及终端 - Google Patents

同步通信方法及终端 Download PDF

Info

Publication number
WO2017024541A1
WO2017024541A1 PCT/CN2015/086727 CN2015086727W WO2017024541A1 WO 2017024541 A1 WO2017024541 A1 WO 2017024541A1 CN 2015086727 W CN2015086727 W CN 2015086727W WO 2017024541 A1 WO2017024541 A1 WO 2017024541A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
synchronization
information
direct link
gnss
Prior art date
Application number
PCT/CN2015/086727
Other languages
English (en)
French (fr)
Inventor
李明超
朱杰作
张俊
韩广林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/086727 priority Critical patent/WO2017024541A1/zh
Priority to CN202010914275.1A priority patent/CN112512113B/zh
Priority to EP15900739.2A priority patent/EP3306991B1/en
Priority to EP21154702.1A priority patent/EP3883307B1/en
Priority to JP2018500732A priority patent/JP6548346B2/ja
Priority to CN201580039695.7A priority patent/CN106576315B/zh
Publication of WO2017024541A1 publication Critical patent/WO2017024541A1/zh
Priority to US15/870,277 priority patent/US10721697B2/en
Priority to US16/910,939 priority patent/US11606766B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a synchronous communication method and a terminal.
  • V2V vehicle-to-vehicle communication
  • V2I vehicle-to-road infrastructure
  • the vehicle can broadcast its own speed, direction of travel, specific position, and whether or not the emergency brake is broadcasted to the surrounding vehicle through V2V communication.
  • the driver can better perceive the line of sight.
  • the traffic situation so that the dangerous situation is pre-judged in advance and then avoided.
  • the roadside infrastructure can also provide various types of service information and data network access for vehicles, and functions such as non-stop charging and in-vehicle entertainment greatly improve traffic intelligence.
  • Chemical The network used for V2V/V2I communication is also called the car network.
  • LTE Long Term Evolution
  • D2D Device to Device
  • 3GPP Third Generation Partnership Project
  • a terminal can retrieve a cell on the D2D transmission carrier frequency of interest, it is considered to be in the network coverage, otherwise it will be considered to be outside the network coverage.
  • the synchronization is through the synchronization signal of the base station. acquired.
  • the access priorities of different synchronization sources are differentiated as follows: the synchronization source located in the network coverage takes precedence over the network. Override the sync source.
  • the embodiment of the invention provides a synchronous communication method, which can avoid resource allocation misalignment and communication abnormality caused by out-synchronization, and improve transmission performance.
  • the first aspect of the embodiments of the present invention provides a synchronous communication method, including:
  • the first terminal acquires first configuration information, where the first configuration information includes a first parameter
  • the first terminal sends direct link synchronization information at the synchronization information sending time
  • the direct link synchronization information carries indication information
  • the direct link synchronization information is used to enable the second terminal to
  • the first terminal is synchronized
  • the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses a GNSS clock.
  • the direct link synchronization information includes a direct link synchronization signal SLSS.
  • the SLSS includes a primary direct link synchronization signal PSSS and an auxiliary direct link synchronization signal SSSS, the PSSS and / or the SSSS comprises a dedicated sequence, the dedicated sequence being the indication information.
  • the SLSS includes a primary direct link synchronization signal PSSS and a secondary direct link synchronization signal SSSS;
  • the PSSS includes a first dedicated sequence, the first dedicated sequence is the indication information, and the SSSS includes a first a second dedicated sequence, the second dedicated sequence including target indication information, the target indication information being used to indicate to the second terminal a priority of the first terminal in a synchronization source using the GNSS clock.
  • the target information includes a type of GNSS technology used by the first terminal, or a synchronization precision of a used GNSS clock. , or priority identifier.
  • the direct link information includes a direct link master information MIB-SL, and the MIB-SL includes the indication information.
  • the synchronization source using the GNSS clock has a higher priority than the synchronization source not using the GNSS clock;
  • the priority of the synchronization source using the GNSS clock is higher than the priority of the synchronization source not using the GNSS clock outside the network coverage;
  • the priority of the synchronization source using the GNSS clock is higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage and the priority of the cell in the network coverage;
  • the synchronization source using the GNSS clock has a higher priority than the synchronization source that does not use the GNSS clock outside the network coverage and is smaller than the priority of the cell in the network coverage.
  • the corresponding transmission time slot in the D2D communication system is Frame number and/or subframe number.
  • the direct link synchronization information further includes an MIB-SL.
  • the MIB-SL includes the transmission slot information such that the second terminal is aligned with the first terminal slot.
  • the first terminal is according to a Global Navigation Satellite System (GNSS)
  • GNSS Global Navigation Satellite System
  • the clock determines that the current time includes before the corresponding transmission time slot in the device-to-device D2D communication system:
  • the first terminal acquires second configuration information
  • Determining, by the first terminal, the corresponding transmission time slot in the device-to-device D2D communication system according to the clock of the global navigation satellite system GNSS includes:
  • the first terminal determines, according to the clock of the GNSS and the second configuration information, a corresponding transmission time slot in the D2D communication system at the current time.
  • the acquiring, by the first terminal, the second configuration information includes:
  • the first terminal acquires the second configuration information by using a pre-configuration manner
  • the first terminal When the first terminal is in the network coverage, the first terminal receives the system broadcast information sent by the base station to obtain the second configuration information;
  • the first terminal When the first terminal is in the network coverage, the first terminal receives the radio resource control RRC signaling sent by the base station to obtain the second configuration information;
  • the first terminal acquires the second configuration information according to a preset protocol.
  • the second configuration information includes a second parameter
  • Determining, by the first terminal, the corresponding transmission time slot in the D2D communication system according to the clock of the GNSS and the second configuration information including:
  • the first terminal calculates the transmission time slot according to the preset calculation rule according to the current time and the second parameter.
  • the second parameter includes an initial reference time
  • the calculating, by the first terminal, the transmission time slot according to the preset time according to the current time and the second parameter includes:
  • the first terminal calculates a difference between the current time and the initial reference time
  • the first terminal calculates a frame number and a subframe number corresponding to the current time in the D2D communication system according to the preset calculation rule and the difference value.
  • the first terminal calculates the frame number DFN t by the following formula:
  • the K 1 is a length of a frame period
  • the T duration is the difference
  • the a is a first scale parameter
  • the first scale parameter is used to set a time unit and a frame of the difference Long unit alignment.
  • the first terminal calculates the subframe number suframe t by the following formula:
  • the K 2 is a length of one subframe period
  • the b is a second scale parameter
  • the second scale parameter is used to align a time unit of the difference with a subframe length unit, where the T duration For the difference.
  • a second aspect of the embodiments of the present invention provides a synchronous communication method, including:
  • the second terminal acquires the direct link synchronization information sent by the first terminal, where the direct link synchronization information carries the indication information;
  • the second terminal determines, according to the indication information, that the first terminal is a synchronization source that uses a GNSS clock, and synchronizes with the first terminal according to the direct link synchronization information.
  • the direct link synchronization information includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal SSSS;
  • Determining, by the second terminal, the synchronization source that uses the GNSS clock by the first terminal according to the indication information includes:
  • the second terminal parses the PSSS and/or the SSSS to obtain a dedicated sequence, where the dedicated sequence is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the second terminal determines, according to the dedicated sequence, that the first terminal is a synchronization source that uses a GNSS clock.
  • the direct link includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal SSSS;
  • Determining, by the second terminal, that the first terminal is using a GNSS clock according to the indication information Synchronization sources include:
  • the second terminal parses the PSSS to obtain a first dedicated sequence, where the first dedicated sequence is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the synchronizing with the first terminal according to the direct link synchronization information by the second terminal includes:
  • the second terminal parses the SSSS to obtain the second dedicated sequence, the second dedicated sequence includes target indication information, and the target indication information is used to indicate the first terminal.
  • the second terminal is synchronized with the first terminal having the highest synchronization source priority among the plurality of first terminals.
  • the target information includes a type of GNSS technology used by the first terminal, or a synchronization of a used GNSS clock. Precision, or priority identification.
  • the direct link synchronization information includes direct link main information MIB-SL;
  • Determining, by the second terminal, the synchronization source that uses the GNSS clock by the first terminal according to the indication information includes:
  • the second terminal parses the MIB-SL to obtain the indication information, where the indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the second terminal determines, according to the indication information, that the first terminal is a synchronization source that uses a GNSS clock.
  • the direct link synchronization information further includes an MIB-SL, where the MIB-SL includes the first terminal according to The current time slot determined by the GNSS clock in the D2D system;
  • Synchronizing with the first terminal according to the direct link synchronization information sent by the first terminal by the second terminal includes:
  • the second terminal is aligned with the transmission time slot of the first terminal.
  • the transmission time slot is a subframe number and/or a frame number.
  • the synchronization source using the GNSS clock has a higher priority than the non-use GNSS clock. Priority of the synchronization source;
  • the priority of the synchronization source using the GNSS clock is higher than the priority of the synchronization source not using the GNSS clock outside the network coverage;
  • the priority of the synchronization source using the GNSS clock is higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage and the priority of the cell in the network coverage;
  • the synchronization source using the GNSS clock has a higher priority than the synchronization source that does not use the GNSS clock outside the network coverage and is smaller than the priority of the cell in the network coverage.
  • a third aspect of the embodiments of the present invention provides a terminal, including:
  • An acquiring module configured to acquire first configuration information, where the first configuration information includes a first parameter
  • a determining module configured to determine, according to a clock of the Global Navigation Satellite System (GNSS) GNSS, a corresponding transmission time slot in a device-to-device D2D communication system at a current time;
  • GNSS Global Navigation Satellite System
  • a determining module configured to determine, according to the transmission time slot determined by the determining module and the first parameter acquired by the acquiring module, whether the current time is a synchronization information sending time
  • a sending module configured to: when the determining module determines that the current time is a synchronization information sending time, send the direct link synchronization information at the synchronization information sending time, where the direct link synchronization information carries indication information,
  • the direct link synchronization information is used to synchronize the second terminal with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses a GNSS clock.
  • the obtaining module is further configured to acquire second configuration information.
  • the determining module is further configured to determine, according to a clock of the GNSS and the second configuration information acquired by the acquiring module, a corresponding transmission time slot in the D2D communication system.
  • the obtaining module is further configured to acquire the second configuration information by using a pre-configuration manner
  • the acquiring module is further configured to: when the first terminal is in a network coverage, receive the system broadcast information sent by the base station to obtain the second configuration information;
  • the acquiring module is further configured to: when the first terminal is in the network coverage, receive the RRC signaling sent by the base station to obtain the second configuration information;
  • the acquiring module is further configured to acquire the second configuration information according to a preset protocol.
  • the second configuration information includes a second parameter
  • the determining module is further configured to determine a current time according to a clock of the GNSS;
  • the determining module is further configured to calculate the transmission time slot according to the preset calculation rule according to the current time and the second parameter.
  • the second parameter includes an initial reference time
  • the determining module is further configured to calculate a difference between the current time and the initial reference time
  • the determining module is further configured to calculate, according to the preset calculation rule and the difference, a frame number and a subframe number corresponding to the current time in the D2D communication system.
  • a fourth aspect of the embodiments of the present invention provides another terminal, including:
  • An obtaining module configured to acquire direct link synchronization information sent by the first terminal, where the direct link synchronization information carries indication information;
  • a determining module configured to determine, according to the indication information acquired by the acquiring module, that the first terminal is a synchronization source that uses a GNSS clock;
  • a synchronization module configured to synchronize with the first terminal according to the direct link synchronization information.
  • the direct link synchronization information includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and a secondary Assist sync signal SSSS;
  • the determining module is further configured to parse the PSSS and/or the SSSS to obtain a dedicated sequence, where the dedicated sequence is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the determining module is further configured to determine, according to the dedicated sequence, that the first terminal is a synchronization source that uses a GNSS clock.
  • the direct link includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal SSSS;
  • the determining module is further configured to parse the PSSS to obtain a first dedicated sequence, where the first dedicated sequence is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the determining module is further configured to determine, according to the first dedicated sequence, that the first terminal is a synchronization source that uses a GNSS clock;
  • the synchronization module is further configured to: when there are multiple first terminals, parse the SSSS to obtain the second dedicated sequence, where the second dedicated sequence includes target indication information, where the target indication information is used to indicate the The priority of the first terminal in the synchronization source using the GNSS clock;
  • the synchronization module is further configured to determine a synchronization source priority of each first terminal according to the second dedicated sequence
  • the synchronization module is further configured to synchronize with the first terminal with the highest synchronization source priority among the plurality of first terminals.
  • the direct link synchronization information includes direct link main information MIB-SL;
  • the determining module is further configured to parse the MIB-SL to obtain the indication information, where the indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock;
  • the determining module is further configured to determine, according to the indication information, that the first terminal is a synchronization source that uses a GNSS clock.
  • the direct link synchronization information further includes an MIB-SL, where the MIB-SL includes the first terminal according to The current time slot determined by the GNSS clock in the D2D system;
  • the synchronization module is further configured to obtain a slot boundary of the first terminal according to the SLSS;
  • the synchronization module is further configured to be aligned with a time slot boundary of the first terminal
  • the synchronization module is further configured to determine, according to the MIB-SL, a corresponding transmission time slot in the device-to-device D2D system that is determined by the first terminal according to the GNSS clock;
  • the synchronization module is further configured to be aligned with the transmission time slot of the first terminal.
  • a fifth aspect of the present invention provides a terminal, including: a radio frequency module, a processor, and a memory;
  • the processor is configured to perform the following processes:
  • the radio frequency module is used to perform the following processes:
  • first configuration information where the first configuration information includes a first parameter
  • the processor determines that the current time is the synchronization information transmission time, sending the direct link synchronization information at the synchronization information transmission time, the direct link synchronization information carrying indication information, the direct link
  • the synchronization information is used to synchronize the second terminal with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses a GNSS clock.
  • the radio frequency module is further configured to perform the following process:
  • the processor specifically performs the following process:
  • radio frequency module specifically performs the following processes:
  • the RRC signaling sent by the receiving base station acquires the second Configuration information
  • the second configuration information includes a second parameter
  • the processor specifically performs the following processes:
  • the second parameter includes an initial reference time
  • the processor specifically performs the following processes:
  • a sixth aspect of the embodiments of the present invention provides a terminal, including a radio frequency module, a processor, and a memory;
  • the radio frequency module performs the following processes:
  • the processor performs the following process:
  • the direct link synchronization information includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal.
  • SSSS direct link synchronization signal
  • the processor specifically performs the following processes:
  • Parsing the PSSS and/or the SSSS to obtain a dedicated sequence the dedicated sequence is used to indicate that the first terminal is a synchronization source using a GNSS clock;
  • the first terminal is a synchronization source using a GNSS clock.
  • the direct link includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal.
  • SLSS direct link synchronization signal
  • PSSS primary synchronization signal
  • auxiliary synchronization signal No. SSSS
  • the processor specifically performs the following processes:
  • the SSSS is parsed to obtain the second dedicated sequence, and the second dedicated sequence includes target indication information, where the target indication information is used to indicate that the first terminal is using a GNSS clock.
  • the first terminals having the highest synchronization source priority among the plurality of first terminals are synchronized.
  • the direct link synchronization information includes direct link main information MIB-SL;
  • the processor specifically performs the following processes:
  • the direct link synchronization information further includes a current time determined by the MIB-SL first terminal according to the GNSS clock in the D2D system. Corresponding transmission time slot;
  • the processor is also configured to perform the following processes:
  • the first terminal may determine a corresponding transmission time slot in the D2D communication system according to a clock of a Global Navigation Satellite System (GNSS), and determine according to the transmission time slot and the first parameter. Whether the current time is the time of sending the synchronization information, If yes, the first terminal sends the direct link synchronization information at the time of the synchronization information transmission, and the direct link synchronization information carries the indication information, where the direct link synchronization information is used to synchronize the second terminal with the first terminal.
  • the indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock.
  • the clock of the GNSS has uniform timing and high precision, the transmission time slots determined by the clocks of different terminals through the GNSS are consistent, and the transmission time is also consistent, so the second terminal accessing the synchronization source can also achieve synchronization. Therefore, resource allocation misalignment and communication abnormality caused by out-synchronization are avoided, and the transmission performance is improved.
  • FIG. 1 is a schematic diagram of an embodiment of a synchronous communication method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a synchronous communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a synchronous communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a terminal in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a terminal in an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WIMAX Worldwide Interoperability for Microwave Access
  • the first terminal or the second terminal includes but is not limited to a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), and a mobile phone (Mobile).
  • UE User Equipment
  • MS Mobile Station
  • MS Mobile Terminal
  • Mobile phone Mobile
  • Telephone, handset, portable equipment, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular" phone), a computer with wireless communication capabilities, etc., the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular" phone), a computer with wireless communication capabilities, etc.
  • the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved Node B (eNB) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved Node B
  • the embodiment of the invention is not limited.
  • the embodiment of the invention provides a synchronous communication method and a terminal, which can avoid resource allocation misalignment and communication abnormality caused by out-synchronization, and improve transmission performance.
  • an embodiment of the synchronous communication in the embodiment of the present invention includes:
  • the first terminal acquires first configuration information.
  • the first terminal acquires the first configuration information, where the first configuration information includes a first parameter, where the first parameter is used to determine whether a specific time is a synchronization information transmission time, and the first terminal may adopt a pre-configured manner.
  • the second configuration information may be obtained according to a preset protocol.
  • the first terminal may obtain the first configuration information by using other methods, which is not limited herein.
  • the first terminal determines, according to a clock of the GNSS, a corresponding transmission time slot in the D2D communication system at the current time;
  • the first terminal When the first terminal needs to perform D2D communication with other terminals as a synchronization source, the first terminal determines a corresponding transmission time slot in the D2D communication system according to the clock of the GNSS.
  • GNSS includes all satellite navigation systems, including global, regional and enhanced, such as the US Global Positioning System (GPS), Russia's Glonass satellite navigation system. , Galileo satellite positioning system in Europe, Beidou satellite navigation system in China, and related augmentation systems, such as the Wide Area Augmentation System (WAAS) in the United States, the European Geostationary Overlay System in Europe, and Japan The Multi-Functional Satellite Augmentation System (MSAS), etc., also covers other satellite navigation systems that are under construction and will be built in the future.
  • GPS Global Positioning System
  • GAS Global Positioning System
  • MSAS Multi-Functional Satellite Augmentation System
  • the first terminal determines whether the current time is the synchronization information transmission time according to the transmission time slot and the first parameter, and if yes, executing step 104;
  • step 104 After the first terminal determines that the current time is in the corresponding transmission time slot in the D2D communication system, it is determined whether the current time is the synchronization information transmission time according to the transmission time slot and the first parameter, and if yes, step 104 is performed.
  • the first terminal sends direct link synchronization information at the time of sending the synchronization information.
  • the first terminal determines that the current time is the synchronization information transmission time
  • the first terminal sends the direct link synchronization information at the synchronization information transmission time
  • the direct link synchronization information carries the indication information, where the direct link synchronization information is used.
  • the second terminal is synchronized with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses the GNSS clock.
  • the first terminal may determine, according to the clock of the GNSS, the corresponding transmission time slot in the D2D communication system, and determine whether the current time is the synchronization information transmission time according to the transmission time slot and the first parameter, and if so, The first terminal sends the direct link synchronization information at the time of sending the synchronization information, and the direct link synchronization information carries the indication information, where the direct link synchronization information is used to make the first
  • the second terminal is synchronized with the first terminal, and the indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock.
  • the clock of the GNSS has uniform timing and high precision, the transmission time slots determined by the clocks of different terminals through the GNSS are consistent, and the transmission time is also consistent, so the second terminal accessing the synchronization source can also achieve synchronization. Therefore, resource allocation misalignment and communication abnormality caused by out-synchronization are avoided, and the transmission performance is improved.
  • FIG. 2 another embodiment of the synchronous communication method in the embodiment of the present invention includes:
  • the first terminal acquires first configuration information.
  • the first terminal acquires the first configuration information, where the first configuration information includes a first parameter, where the first parameter is used to determine whether a specific time is a synchronization information transmission time, and the first terminal may adopt a pre-configured manner.
  • the first configuration information may be obtained according to a preset protocol, and when the first terminal is in network coverage, receiving system broadcast information sent by the base station, or RRC signaling, and then performing broadcast information or RRC signaling.
  • the first configuration information is obtained by the first terminal, and the first terminal may obtain the first configuration information by using other methods, which is not limited herein.
  • the first configuration information may further include a determination rule for determining whether a certain time is a synchronization information transmission time, and may also include other information, which is not limited herein.
  • the first terminal acquires second configuration information.
  • the first terminal obtains the second configuration information, and the first terminal may obtain the second configuration information in a pre-configured manner, and may obtain the second configuration information according to the preset protocol, and may be in the network coverage of the first terminal. And receiving the system broadcast information sent by the base station, or the RRC signaling, and acquiring the second configuration information from the broadcast information or the RRC signaling, where the first terminal may obtain the second configuration information by using other methods, which is not limited herein. .
  • the second configuration information may include a calculation rule or a second parameter for calculating the current time slot, and may further include other information, which is not limited herein.
  • the first terminal determines, according to the clock of the GNSS and the second configuration information, a corresponding transmission time slot in the D2D communication system at the current time;
  • the first terminal After the first terminal acquires the second configuration information, when the first terminal needs to perform D2D communication with other terminals as the synchronization source, the first terminal determines, according to the GNSS clock and the second configuration information, the corresponding transmission in the D2D communication system at the current time. Time slot.
  • the transmission time slot may be a frame number, may be a subframe number, or may be a frame number and a subframe number, and may be other information, which is not limited herein.
  • the second configuration information includes the second parameter, and the first terminal determines, according to the manner, the corresponding transmission time slot in the D2D communication system at the current time:
  • the first terminal determines the current time according to the clock of the GNSS, and then calculates the transmission time slot according to the preset calculation rule according to the current time and the second parameter.
  • the manner in which the first terminal calculates the transmission time slot is different according to the second parameter.
  • the second terminal includes the initial reference time as an example.
  • the first terminal can follow the preset according to the following manner.
  • the calculation rule calculates the transmission time slot:
  • the first terminal calculates a difference between the current time and the initial reference time, and calculates a corresponding frame number and a subframe number of the current time in the D2D communication system according to the difference.
  • the first terminal may calculate the frame number DFN t according to the difference according to the formula (1), and calculate the subframe number suframe t by using the formula (2):
  • K 1 is the length of one frame period
  • T duration is the difference
  • a is the first scale parameter
  • the first scale parameter is used to align the time unit of the difference with the frame length unit
  • K 2 is a subframe period.
  • the length, b is a second scale parameter, and the second scale parameter is used to align the time unit of the difference with the subframe length unit.
  • the second configuration information may also include a calculation rule for calculating a transmission time slot, and may also include other information, which is not limited herein.
  • the first terminal may calculate the transmission time slot according to the calculation rule included in the second configuration information according to the current time and the second parameter.
  • the first terminal may also calculate the transmission time slot according to other manners, which is not limited herein.
  • the first terminal determines whether the current time is the synchronization information transmission time according to the transmission time slot and the first parameter information, if yes, step 205 is performed, and if not, step 206 is performed;
  • the first terminal After the first terminal determines that the current time is in the corresponding transmission time slot in the D2D communication system, it is determined whether the current time is the synchronization information transmission time according to the transmission time slot and the first parameter, and if yes, step 204 is performed. Specifically, the first terminal may determine, according to the first parameter, whether the transmission time slot satisfies a preset condition according to the determining rule, and when the transmission time slot satisfies the preset condition, the first terminal determines that the current time is the same The time at which the step information is sent. Further, when the first parameter includes an offset and the transmission time slot is a frame number and a subframe number, the first terminal determines whether the frame number and the subframe number satisfy the following formula:
  • suframe t is the subframe number
  • DFN t is the frame number
  • c is the number of subframes included in one frame
  • K 3 is the synchronous transmission period
  • syncOffsetIndicato is the offset.
  • the first terminal determines that the frame number and the subframe satisfy the formula (3), the first terminal determines that the transmission time slot satisfies the preset condition, and determines that the current time is the synchronization information transmission time.
  • the first terminal may further determine whether the current time is the synchronization information transmission time according to other manners, which is not limited herein.
  • the first terminal sends direct link synchronization information at the time of sending the synchronization information.
  • the first terminal determines that the current time is the synchronization information transmission time
  • the first terminal sends the direct link synchronization information at the synchronization information transmission time
  • the direct link synchronization information carries the indication information, where the direct link synchronization information is used.
  • the second terminal is synchronized with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses the GNSS clock.
  • the direct link synchronization information includes a Sidelink Synchronisation Signal (SLSS), and the SLSS includes a Primary Sidelink Synchronisation Signal (PSSS) and a Secondary Synchronisation Signal (SSSS).
  • the indication information may be a dedicated sequence, the dedicated sequence may be included in the PSSS, the dedicated sequence may be included in the SSSS, the partial sequence of the dedicated sequence is included in the PSSS, the partial sequence is included in the SSSS, and the partial sequence in the PSSS and the SSSS Together, this dedicated sequence is constructed.
  • the direct link synchronization information may carry the target indication information in addition to the indication information, where the target indication information is used to indicate to the second terminal the priority of the first terminal in the synchronization source using the GNSS clock, where the indication
  • the information may be a first dedicated sequence, included in the PSSS, and the target indication information may be a second dedicated sequence, included in the SSSS.
  • the second terminal After the second terminal determines, according to the indication information, that the first terminal is the synchronization source that uses the GNSS clock, the second terminal can further determine the priority of the first terminal in the synchronization source using the GNSS clock according to the second dedicated sequence.
  • the type of the GNSS technology used by the first terminal, or the accuracy of the GNSS clock used, or the priority identifier may be included, and other information may be included, which is not limited herein.
  • the direct link synchronization information may further include direct link master information (MasterInformationBlock-SL, MIB-SL), and the MIB-SL includes transmission slot information, so that the second terminal can be based on the transmission slot.
  • the information determines a transmission time slot, and the time slot is aligned with the first terminal according to the transmission time slot.
  • the direct link synchronization information includes the MIB-SL and the SLSS, and the indication information is included in the MIB-SL.
  • the MIB-SL may further include transmission time slot information, so that the second terminal can be configured according to The transmission slot information determines an input slot, and the slot is aligned with the first terminal according to the transmission slot.
  • the first terminal performs other processes.
  • the first terminal determines that the current time is the synchronization information transmission time
  • the first terminal performs other processes. For example, the first terminal may perform the above steps 203 to 205 at the next time.
  • the priority of the synchronization source is preset by the base station.
  • the priority of the synchronization source using the GNSS clock may be higher than the GNSS clock not used outside the network coverage.
  • the priority of the synchronization source and the synchronization source in the network coverage may also be higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage, or may be higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage.
  • the priority of the synchronization source in the network coverage is lower than the priority of the synchronization source in the network coverage.
  • the synchronization source in the network coverage may be a base station or a terminal type synchronization source that does not use a GNSS clock, which is not limited herein.
  • step 202 and step 201 is not limited in the embodiment of the present invention.
  • Step 202 is before step 203, but may be before step 201 or step 202, which is not limited herein.
  • the first terminal may determine, according to the clock of the GNSS, a corresponding transmission time slot in the D2D communication system, and determine, according to the transmission time slot and the first configuration information, whether the current time is a synchronization information transmission time, and if And the first terminal sends the direct link synchronization information at the time of sending the synchronization information, where the direct link synchronization information carries the indication information, where the direct link synchronization information is used to synchronize the second terminal with the first terminal, where The indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock.
  • the clock of the GNSS has uniform timing and high precision, the transmission time slots determined by the clocks of different terminals through the GNSS are consistent, and the transmission time is also consistent, so the second terminal accessing the synchronization source can also achieve synchronization. To avoid resources caused by out of sync Dividing misalignment and communication anomalies improves transmission performance.
  • the indication information may be carried in the direct link synchronization information in multiple manners, and the terminal may determine the corresponding transmission time slot in the D2D communication system according to the GNSS clock in multiple manners, thereby improving the transmission time slot of the D2D communication system.
  • the flexibility of the program may be carried in the direct link synchronization information in multiple manners, and the terminal may determine the corresponding transmission time slot in the D2D communication system according to the GNSS clock in multiple manners, thereby improving the transmission time slot of the D2D communication system.
  • the synchronous communication method in the embodiment of the present invention is described above from the perspective of the first terminal.
  • the synchronous communication method in the embodiment of the present invention is described from the perspective of the second terminal. Referring to FIG. 3, the embodiment of the present invention synchronizes.
  • Another embodiment of the communication method includes:
  • the second terminal acquires direct link synchronization information sent by the first terminal.
  • the first terminal determines, according to the clock of the GNSS, the corresponding transmission time slot in the D2D communication system, determines the current time as the synchronization information transmission time according to the transmission time slot and the first configuration information, and sends the direct link at the synchronization information transmission time.
  • Synchronization information the direct link synchronization information carries indication information.
  • the second terminal needs to synchronize with the synchronization source around the first terminal, and the second terminal searches for the direct link synchronization information sent by the first terminal, and acquires the direct link synchronization information sent by the first terminal.
  • the direct link synchronization information carries indication information.
  • the second terminal determines, according to the indication information, that the first terminal is a synchronization source that uses the GNSS clock, and synchronizes with the first terminal according to the direct link synchronization information.
  • the second terminal After acquiring the direct link synchronization information sent by the first terminal, the second terminal determines, according to the indication information carried in the direct link synchronization information, that the first terminal is a synchronization source that uses the GNSS clock, and according to the direct link synchronization information and the first A terminal synchronizes.
  • the first terminal may determine, according to the clock of the global navigation satellite system (GNSS), a corresponding transmission time slot in the D2D communication system, and determine, according to the transmission time slot and the first configuration information, that the current time is the synchronization information transmission time.
  • GNSS global navigation satellite system
  • the road synchronization information is synchronized with the first terminal.
  • the clock of the GNSS has uniform timing and high precision, the transmission slots determined by different terminals through the GNSS clock are consistent, and the transmission time is also consistent, so all second terminals accessing the synchronization source can achieve synchronization. Therefore, resource allocation misalignment and communication abnormality caused by out-synchronization are avoided, and the transmission performance is improved.
  • the direct link synchronization information includes SLSS, SLSS.
  • the second terminal determines that the first terminal is a synchronization source using the GNSS clock by the following method:
  • the second terminal parses the PSSS to obtain a dedicated sequence, the dedicated sequence is used to indicate that the first terminal is a synchronization source using the GNSS clock, and the second terminal determines, according to the dedicated sequence, that the first terminal is a synchronization source that uses the GNSS clock.
  • the second terminal parses the SSSS to obtain a dedicated sequence, where the dedicated sequence is used to indicate that the first terminal is a synchronization source that uses the GNSS clock, and the second terminal determines, according to the dedicated sequence, that the first terminal is a synchronization source that uses the GNSS clock.
  • the second terminal parses the PSSS to obtain the first partial sequence, and parses the SSSS to obtain the second partial sequence.
  • the second terminal forms the first partial sequence and the second partial sequence into a dedicated sequence, where the dedicated sequence is used to indicate that the first terminal is using the GNSS clock.
  • a synchronization source the second terminal determines, according to the dedicated sequence, that the first terminal is a synchronization source that uses the GNSS clock.
  • the direct link synchronization information may further include: an MIB-SL, where the MIB-SL includes transmission time slot information, where the transmission time slot information is used to indicate that the current time determined by the first terminal according to the GNSS is in the D2D system.
  • the transmission time slot may be a subframe number, may be a frame number, or may be a frame number and a subframe number;
  • the second terminal may synchronize with the first terminal according to the direct link synchronization information sent by the first terminal by using the following manner:
  • the second terminal acquires the slot boundary of the first terminal according to the SLSS, the second terminal is aligned with the slot boundary of the first terminal, and the second terminal determines, according to the MIB-SL, the corresponding transmission slot in the D2D system at the current moment, and the second terminal Align with the transmission slot of the first terminal.
  • the priority of the synchronization source using the GNSS clock may be higher than the synchronization source that does not use the GNSS clock outside the network coverage and the priority of the synchronization source in the network coverage, or may be only higher than the network.
  • the priority of the synchronization source that does not use the GNSS clock outside the coverage may be higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage but lower than the priority of the synchronization source within the network coverage, where the synchronization source within the network coverage It may be a base station or a terminal type synchronization source that does not use a GNSS clock, which is not limited herein.
  • the second terminal may determine, by using multiple manners, that the first terminal is a synchronization source that uses the GNSS clock.
  • the embodiment of the present invention provides a specific manner in which the second terminal synchronizes with the first terminal according to the direct link synchronization information sent by the first terminal, thereby improving the achievability of the solution.
  • the direct link synchronization information includes the SLSS
  • the SLSS includes the PSSS and the SSSS
  • the second terminal determines that the first terminal uses the synchronization source of the GNSS clock in the following manner:
  • the second terminal parses the PSSS to obtain a first dedicated sequence, where the first dedicated sequence is used to indicate that the first terminal is a synchronization source using the GNSS clock, and the first terminal determines, according to the first dedicated sequence, that the first terminal is a synchronization source that uses the GNSS clock.
  • the second terminal synchronizes with the first terminal according to the direct link synchronization information by using the following manner:
  • the second terminal parses the SSSS to obtain a second dedicated sequence, and the second dedicated sequence includes target indication information, where the target indication information is used to indicate the priority of the first terminal in the synchronization source using the GNSS clock;
  • the second terminal synchronizes with the first terminal having the highest synchronization source priority among the plurality of first terminals.
  • the target indication information may include the type of the GNSS technology used by the first terminal, or the synchronization precision of the GNSS clock used by the first terminal, or the priority identifier of the first terminal.
  • the second terminal determines the synchronization source priority of the first terminal according to the type of the GNSS and the preset priority rule.
  • the preset priority rule is that the priority of using the China Beidou satellite navigation system is greater than that of using the US GPS.
  • the second terminal simultaneously searches for two first terminals, and the second dedicated sequence of one first terminal indicates that the type of GNSS technology used by the first terminal is China Beidou, and the second of the other first terminal
  • the dedicated sequence indicates that the type of GNSS technology used by the first terminal is US GPS, and then the second terminal selects the type of the first terminal of China Beidou for synchronization.
  • the second terminal determines the synchronization source priority of the first terminal according to the type of the GNSS and the preset priority rule.
  • the preset priority rule is that the synchronization priority is higher, the higher the synchronization source priority is, then the second The terminal simultaneously searches for two first terminals, and the second dedicated sequence of one first terminal indicates that the synchronization precision of the first terminal is 0.2, and the second dedicated sequence of the other first terminal indicates the first The synchronization accuracy of the terminal is 0.1, and then the second terminal selects the first terminal with the synchronization precision of 0.1 to synchronize.
  • the second terminal determines the synchronization source priority of the first terminal according to the type of the GNSS and the preset priority rule.
  • the preset priority rule is that the priority of using the China Beidou satellite navigation system is greater than the priority of using the US GPS.
  • the synchronization source with higher synchronization accuracy has higher priority.
  • the second terminal searches for three first terminals at the same time, and the second dedicated sequence of the first first terminal indicates that the type of the GNSS technology used by the first terminal is US GPS, the synchronization precision is 0.1, the second The second dedicated sequence of a terminal indicates that the type of the GNSS technology used by the first terminal is China Beidou, and the synchronization precision is 0.2, and the second dedicated sequence of the third first terminal indicates that the type of the GNSS technology used by the first terminal is China Beidou, the synchronization accuracy is 0.1, then the second terminal selects the third first terminal for synchronization.
  • the second terminal determines the synchronization source priority of the first terminal according to the priority identifier, when the first terminal searches for two first terminals at the same time, and the second dedicated sequence of the first terminal indicates that the priority of the first terminal is 1.
  • the second dedicated sequence of the other first terminal indicates that the priority of the first terminal is 2, and the second terminal selects the first terminal with the priority of 2 to synchronize.
  • the priority of the synchronization source using the GNSS clock may be higher than the synchronization source that does not use the GNSS clock outside the network coverage and the priority of the synchronization source in the network coverage, or may be only higher than the network.
  • the priority of the synchronization source that does not use the GNSS clock outside the coverage may be higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage but lower than the priority of the synchronization source within the network coverage, where the synchronization source within the network coverage It may be a base station or a terminal type synchronization source that does not use a GNSS clock, which is not limited herein.
  • the second terminal may determine the priority of each first terminal according to the second dedicated sequence in the first terminal, and select the first terminal with the highest priority to synchronize. Increased flexibility of the program.
  • the direct link synchronization information includes the MIB-SL
  • the second terminal determines that the first terminal uses the synchronization source of the GNSS clock by using the following manner:
  • the second terminal parses the MIB-SL to obtain indication information, where the indication information is used to indicate that the first terminal is Using the synchronization source of the GNSS clock, the second terminal determines, according to the indication information, that the first terminal is a synchronization source that uses the GNSS clock.
  • the MIB-SL may further include a transmission time slot, where the transmission time slot information is used to indicate that the first terminal determines a corresponding transmission time slot in the D2D system according to the current time determined by the GNSS, and the transmission time slot may be a subframe number, and may It is a frame number, and can also be a frame number and a subframe number.
  • the first terminal may implement time slot alignment with the second terminal according to the transmission time slot.
  • the priority of the synchronization source using the GNSS clock may be higher than the synchronization source that does not use the GNSS clock outside the network coverage and the priority of the synchronization source in the network coverage, or may be only higher than the network.
  • the priority of the synchronization source that does not use the GNSS clock outside the coverage may be higher than the priority of the synchronization source that does not use the GNSS clock outside the network coverage but lower than the priority of the synchronization source within the network coverage, where the synchronization source within the network coverage It may be a base station or a terminal type synchronization source that does not use a GNSS clock, which is not limited herein.
  • the second terminal can obtain the indication information through the MIB-SL, which improves the flexibility of the solution.
  • the vehicle A is a vehicle that uses the China Beidou positioning system and is capable of communication between the vehicle and the vehicle.
  • the vehicle A acquires the pre-configured first configuration information and the second configuration information, the second configuration.
  • the information includes the initial reference time (second parameter) T ref is 00:00:00 on January 1, 2015.
  • suframe t is the subframe number
  • DFN t is the frame number
  • c is the number of subframes included in one frame
  • K 3 is the synchronous transmission period
  • syncOffsetIndicato is the offset.
  • the vehicle A calculates the frame number DFN t and the subframe number suframe t according to the following preset formula:
  • the vehicle A After calculating the frame number and the subframe number, the vehicle A determines whether the current time is the synchronization information transmission time according to the determination rule in the second configuration information:
  • the direct link synchronization information is sent on the 1st 00:02:00, and the direct link synchronization information includes the SLSS and the MIB-SL, wherein the SLSS includes the PSSS and the SSSS, and the PSSS carries a dedicated sequence, and the dedicated sequence is used to indicate other devices.
  • the vehicle B is in the vicinity of the vehicle A, and the vehicle B also needs to perform D2D communication.
  • the vehicle B first searches for the surrounding synchronization source and searches for a plurality of synchronization sources, wherein two of the signal quality requirements are satisfied, respectively, the vehicle A and the vehicle.
  • C detecting the direct link synchronization information of the transmission of the vehicle B and the vehicle C according to the vehicle B, that is, the SLSS and the MIB-SL.
  • the vehicle B parses the PSSS in the SLSS of the vehicle A to obtain a dedicated sequence for indicating that the other device vehicle A is a synchronization source using the GNSS clock.
  • the vehicle B parses the PSSS and the MIB-SL in the SLSS of the vehicle C to know that the vehicle C is a synchronization source outside the network coverage, and does not acquire information indicating that the vehicle C is a synchronization source using the GNSS clock, and determines that the vehicle C is outside the network coverage.
  • the sync source of the GNSS clock is not used.
  • the synchronization source using the GNSS clock has a priority greater than the synchronization source outside the network coverage without using the GNSS clock, so the vehicle B selects to synchronize with the vehicle A. Specifically, the vehicle B acquires the vehicle according to the SLSS.
  • the slot boundary of A is aligned with the slot boundary, and the frame number of the vehicle A is determined to be 736 according to the MIB-SL, and the subframe number is 10, which is aligned with the frame number and the subframe number, thereby completing the vehicle B with the vehicle A synchronization.
  • an embodiment of the terminal in the embodiment of the present invention includes:
  • the obtaining module 401 is configured to obtain first configuration information, where the first configuration information includes a first parameter;
  • the determining module 402 is configured to determine, according to a clock of the GNSS, a corresponding transmission time slot in the D2D communication system at the current time;
  • the determining module 403 is configured to determine, according to the transmission time slot and the first parameter, whether the current time is a synchronization information sending time;
  • the sending module 404 is configured to: when the determining module 403 determines that the current time is the synchronization information sending time, send the direct link synchronization information at the synchronization information sending time, and the direct link synchronization information carries the indication information, the direct link
  • the synchronization information is used to synchronize the second terminal with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses a GNSS clock.
  • the determining module 402 may determine, according to the clock of the GNSS, a corresponding transmission time slot in the D2D communication system, and the determining module 403 determines, according to the transmission time slot and the first parameter, whether the current time is the synchronization information sending time. If yes, the sending module 404 sends the direct link synchronization information at the time of sending the synchronization information, where the direct link synchronization information carries the indication information, where the direct link synchronization information is used to synchronize the second terminal with the first terminal.
  • the indication information is used to indicate that the first terminal is a synchronization source that uses a GNSS clock.
  • the clock of the GNSS has uniform timing and high precision, the transmission time slots determined by the clocks of different terminals through the GNSS are consistent, and the transmission time is also consistent, so the second terminal accessing the synchronization source can also achieve synchronization. Therefore, resource allocation misalignment and communication abnormality caused by out-synchronization are avoided, and the transmission performance is improved.
  • the obtaining module 401 is further configured to acquire second configuration information.
  • the determining module 402 is further configured to determine, according to the clock of the GNSS and the second configuration information acquired by the obtaining module 401, a corresponding transmission time slot in the D2D communication system.
  • the second configuration information may include the second parameter
  • the determining module 402 is further configured to determine a current moment according to a clock of the GNSS, according to the current moment. And the second parameter calculates the transmission time slot according to the preset rule;
  • the second parameter may include an initial reference time
  • the determining module 402 is further configured to calculate a difference between the current time and the initial reference time, and calculate a corresponding frame number and a subframe number of the current time in the D2D communication system according to the preset calculation rule and the difference.
  • the determining module 402 determines a specific manner of transmitting a time slot, and improves the achievability of the solution.
  • the obtaining module 401 can obtain the second configuration information in a pre-configured manner
  • the RRC signaling sent by the receiving base station acquires the second configuration information
  • the obtaining module 401 can obtain the second configuration information in multiple manners, thereby improving the flexibility of the solution.
  • Another terminal in the embodiment of the present invention includes:
  • the obtaining module 501 is configured to obtain the direct link synchronization information sent by the first terminal, and the direct link synchronization information carries the indication information;
  • a determining module 502 configured to determine, according to the indication information, that the first terminal is a synchronization source that uses a GNSS clock;
  • the synchronization module 503 is configured to synchronize with the first terminal according to the direct link synchronization information.
  • the first terminal may determine, according to the clock of the global navigation satellite system (GNSS), a corresponding transmission time slot in the D2D communication system, and determine, according to the transmission time slot and the first configuration information, that the current time is the synchronization information transmission time.
  • the direct link synchronization information is sent at the time of the synchronization information transmission, and the direct link synchronization information carries the indication information.
  • the determining module 602 of the second terminal determines, according to the indication information, that the first terminal is a synchronization source using the GNSS clock, and synchronizes.
  • the module 603 synchronizes with the first terminal according to the direct link synchronization information.
  • the clock of GNSS has uniform timing and high precision, the transmission time slots determined by different terminals through the GNSS clock are consistent, and the transmission time is also one. Therefore, all the second terminals accessing the synchronization source can achieve synchronization, thereby avoiding resource division misalignment and communication abnormality caused by out-synchronization, thereby improving transmission performance.
  • the direct link synchronization information includes a direct link synchronization signal SLSS, and the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal SSSS;
  • the determining module 502 is further configured to parse the PSSS or the SSSS to obtain a dedicated sequence, where the dedicated sequence is used to indicate that the first terminal is a synchronization source that uses the GNSS clock;
  • the determining module 502 is further configured to determine, according to the dedicated sequence, that the first terminal is a synchronization source that uses a GNSS clock;
  • the direct link synchronization information further includes an MIB-SL, where the MIB-SL includes a corresponding transmission time slot in the D2D system determined by the first terminal according to the GNSS clock.
  • the synchronization module 503 is further configured to obtain a slot boundary of the first terminal according to the SLSS, and align with the slot boundary;
  • the synchronization module 503 is further configured to determine, according to the MIB-SL, that the first terminal determines, according to the MIB-SL, a corresponding transmission time slot in the D2D system that is determined by the first terminal according to the GNSS clock, and is aligned with the transmission time slot.
  • the embodiment of the present invention provides a specific mode in which the determining module 502 determines that the first terminal is a synchronization source using the GNSS clock and the synchronization module 503 synchronizes with the first terminal according to the direct link synchronization information, thereby improving the achievability of the solution. .
  • the direct link includes a direct link synchronization signal SLSS
  • the SLSS includes a primary synchronization signal PSSS and an auxiliary synchronization signal SSSS;
  • the determining module 502 is further configured to parse the PSSS to obtain a first dedicated sequence, where the first dedicated sequence is used to indicate that the first terminal is a synchronization source that uses the GNSS clock;
  • the determining module 502 is further configured to determine, according to the first dedicated sequence, that the first terminal is a synchronization source that uses the GNSS clock;
  • the synchronization module 503 is further configured to: when there are multiple first terminals, parse the SSSS to obtain a second dedicated sequence, where the second dedicated sequence includes target indication information, where the target indication information is used to indicate that the first terminal is in a synchronization source that uses the GNSS clock. priority;
  • the synchronization module 503 is further configured to determine a synchronization source priority of each first terminal according to the second dedicated sequence;
  • the synchronization module 503 is further configured to synchronize with the first terminal with the highest synchronization source priority among the plurality of first terminals.
  • the synchronization module 503 can select the first terminal with the highest priority to synchronize, which improves the flexibility of the solution.
  • the direct link synchronization information includes the MIB-SL in the embodiment of the present invention, based on the embodiment corresponding to FIG. 5;
  • the determining module 502 is further configured to parse the MIB-SL to obtain indication information, where the indication information is used to indicate that the first terminal is a synchronization source that uses the GNSS clock;
  • the determining module 502 is further configured to determine, according to the indication information, that the first terminal is a synchronization source that uses a GNSS clock.
  • the embodiment of the present invention provides another specific manner for the determining module 502 to determine that the first terminal is a synchronization source that uses the GNSS clock, which improves the flexibility of the solution.
  • the first terminal and the second terminal in the embodiment of the present invention are described above from the perspective of module functionalization.
  • the first terminal and the second terminal in the embodiment of the present invention are described from the perspective of a hardware entity, and the first terminal and the first terminal
  • the second terminal may include any mobile device, a tablet computer, a vehicle-mounted computer, and the like.
  • the following is a description of the mobile phone as an example.
  • another embodiment of the terminal in the embodiment of the present invention includes:
  • a radio frequency (RF) circuit 610 a memory 620, an input unit 630, a display unit 640, a sensor 650, an audio circuit 660, a wireless fidelity (WiFi) module 670, a processor 680, and a power supply 690.
  • RF radio frequency
  • the RF circuit 610 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 680 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuit 610 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 610 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to the Global System of Mobile (Global System of Mobile communication, GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (WCDMA) Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the memory 620 can be used to store software programs and modules, and the processor 680 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 620 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 630 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 630 may include a touch panel 631 and other input devices 632.
  • the touch panel 631 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 631 or near the touch panel 631. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 631 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 680 is provided and can receive commands from the processor 680 and execute them.
  • the touch panel 631 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 630 may also include other input devices 632.
  • other input devices 632 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 640 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 640 can include a display panel 641.
  • a liquid crystal display (LCD) or an organic light emitting diode (Organic Light-Emitting) can be used.
  • the display panel 641 is configured in the form of a Diode, OLED, or the like.
  • the touch panel 631 can cover the display panel 641. When the touch panel 631 detects a touch operation on or near it, the touch panel 631 transmits to the processor 680 to determine the type of the touch event, and then the processor 680 according to the touch event. The type provides a corresponding visual output on display panel 641.
  • the touch panel 631 and the display panel 641 are two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 631 may be integrated with the display panel 641. Realize the input and output functions of the phone.
  • the handset can also include at least one type of sensor 650, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 641 according to the brightness of the ambient light, and the proximity sensor may close the display panel 641 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • Audio circuit 660, speaker 661, and microphone 662 provide an audio interface between the user and the handset.
  • the audio circuit 660 can transmit the converted electrical data of the received audio data to the speaker 661 for conversion to the sound signal output by the speaker 661; on the other hand, the microphone 662 converts the collected sound signal into an electrical signal by the audio circuit 660. After receiving, it is converted into audio data, and then processed by the audio data output processor 680, sent to the other mobile phone via the RF circuit 610, or outputted to the memory 620 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 670, which provides users with wireless broadband Internet access.
  • FIG. 6 shows the WiFi module 670, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 680 is the control center of the handset, and connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 620, and invoking data stored in the memory 620, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 680 can include one or more processing units; preferably, processing
  • the processor 680 can integrate an application processor and a modem processor, wherein the application processor primarily processes an operating system, a user interface, an application, etc., and the modem processor primarily processes wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 680.
  • the handset also includes a power source 690 (such as a battery) that supplies power to the various components.
  • a power source 690 such as a battery
  • the power source can be logically coupled to the processor 680 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 680 included in the first terminal performs the following process:
  • the RF circuit 610 performs the following processes:
  • first configuration information where the first configuration information includes a first parameter
  • the direct link synchronization information is sent to the first terminal at the synchronization information transmission time, and the direct link synchronization information carries the indication information, and the direct link synchronization information is used to enable
  • the second terminal is synchronized with the first terminal, and the indication information is used to indicate to the second terminal that the first terminal is a synchronization source that uses a GNSS clock.
  • the RF circuit 610 is further configured to perform the following process:
  • processor 680 specifically performs the following process:
  • the RF circuit 610 specifically performs the following process:
  • the RRC signaling sent by the receiving base station acquires the second configuration. information
  • the second configuration information includes the second parameter
  • the processor 680 specifically performs the following process:
  • the transmission time slot is calculated according to the preset calculation rule according to the current time and the second parameter.
  • the second parameter includes an initial reference time
  • the processor 680 specifically performs the following process:
  • the RF circuit 610 included in the second terminal performs the following process:
  • the processor 680 performs the following processes:
  • the direct link synchronization information includes an SLSS
  • the SLSS includes a PSSS and an SSSS.
  • the processor 680 specifically performs the following processes:
  • Parsing the PSSS and/or the SSSS to obtain a dedicated sequence the dedicated sequence is used to indicate that the first terminal is a synchronization source using the GNSS clock;
  • the first terminal is determined to be a synchronization source using the GNSS clock according to the dedicated sequence.
  • the direct link synchronization information further includes an MIB-SL;
  • the processor 680 specifically performs the following processes:
  • the direct link synchronization information includes an SLSS
  • the SLSS includes a PSSS and an SSSS.
  • the processor 680 specifically performs the following processes:
  • the second dedicated sequence includes target indication information, and the target indication information is used to indicate the priority of the first terminal in the synchronization source using the GNSS clock;
  • the first terminals with the highest synchronization source priority are synchronized in the plurality of first terminals.
  • the direct link synchronization information includes an MIB-SL
  • the processor 680 specifically performs the following processes:
  • the indication information is used to indicate that the first terminal is a synchronization source that uses the GNSS clock;
  • the first terminal is determined to be a synchronization source using the GNSS clock according to the indication information.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. in.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种同步通信方法,该方法包括:第一终端获取第一配置信息,第一配置信息包括第一参数;第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙;第一终端根据传输时隙及第一参数判断当前时刻是否为同步信息发送时刻;若是,则第一终端在同步信息发送时刻发送直连链路同步信息,直连链路同步信息携带指示信息,直连链路同步信息用于使第二终端与第一终端同步,指示信息用于向第二终端指示第一终端为使用GNSS时钟的同步源。

Description

同步通信方法及终端 技术领域
本发明涉及通信领域,尤其涉及同步通信方法及终端。
背景技术
随着社会的不断发展,汽车的普及程度也越来越高,驾驶出行在给人们的出行带来便利的同时,也给人类社会带来一定负面影响,车辆数量迅速增加引起了城市交通拥堵、交通事故频发、环境质量变差等一系列问题。据统计,2013年中国发生交通事故近20万起,造成5.8人万死亡,直接经济损失达到10.4亿元,从人身安全、交通出行效率、环境保护以及经济效应等多方面来看,都需要一套完善的智能交通系统(Intelligent Transportation System,ITS)。而当前,ITS也理所当然的成为了全球关注热点。
目前,车辆可以通过车辆与车辆之间通信(Vehicle to Vehicle,V2V)或者车辆与路边基础设施通信(Vehicle to Infrastructure,V2I)来及时获取路况信息或接收信息服务。具体来说,车辆通过V2V通信,可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车量,通过获取该类信息驾驶员可以更好的感知视距外的交通状况,从而对危险状况提前作出预判进而作出避让。而对于V2I通信,除了上述安全信息的交互外,路边基础设施还可以为车辆提供各类服务信息和数据网络的接入,不停车收费、车内娱乐等功能都极大的提高了交通智能化。V2V/V2I通信所使用的网络又称为车联网。
长期演进(Long Term Evolution,LTE)是目前主流的无线通信技术,其中设备到设备(Device to Device,D2D)技术在第三代合作伙伴计划(third Generation Partnership Project,3GPP)LTE R12中被作为重要特性且进行了标准化工作,其支持用户终端之间进行直连通信。考虑到V2V/V2I通信场景也属于终端直连通信,因此可以通过D2D技术来传输V2V/V2I业务。
在现有LTE R12 D2D通信技术中,如果一个终端在感兴趣的D2D传输载频上能够检索到小区,则认为是处于网络覆盖范围内,否则将认为其处于网络覆盖范围外。对于处于网络覆盖范围内的终端,其同步是通过基站的同步信号 获得的。而对于处于网络覆盖范围外的终端,在进行D2D通信前需要搜索周围的同步源。如果周围可以检测到满足信号质量要求的同步源,则跟该同步源进行同步,否则,自身作为同步源决定同步信号发送时刻并在相应时刻发送同步信号。对于一个接收终端,如果搜索到多个同步源,在多个同步源满足信号质量需求的前提下,不同同步源的接入优先级有如下区分:位于网络覆盖范围内的同步源优先于位于网络覆盖外的同步源。
现有技术中,当处于覆盖范围外的终端作为同步源发送同步信号时,不同的同步源之间很有可能是不同步的,而两个同步源的不同步,会导致两个同步源覆盖下的接收终端也不同步,这就会影响到两个接收终端之间的通信,可能会出现无法彼此通信或漏听的问题,严重影响通信性能。
发明内容
本发明实施例提供了同步通信方法,可以避免由于不同步导致的资源划分错位及通信异常,提升了传输性能。
有鉴于此,本发明实施例的第一方面提供了一种同步通信方法,包括:
第一终端获取第一配置信息,所述第一配置信息包括第一参数;
所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙;
所述第一终端根据所述传输时隙及所述第一参数判断所述当前时刻是否为同步信息发送时刻;
若是,则所述第一终端在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
结合本发明第一方面,本发明第一方面的第一实施方式中,所述直连链路同步信息包括直连链路同步信号SLSS。
结合本发明第一方面的第一实施方式,本发明第一方面的第二实施方式中,所述SLSS包括主直连链路同步信号PSSS及辅助直连链路同步信号SSSS,所述PSSS和/或所述SSSS包含专用序列,所述专用序列为所述指示信息。
结合本发明第一方面的第一实施方式,本发明第一方面的第三实施方式 中,所述SLSS包括主直连链路同步信号PSSS及辅助直连链路同步信号SSSS;所述PSSS包含第一专用序列,所述第一专用序列为所述指示信息,所述SSSS包含第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于向第二终端指示所述第一终端在使用GNSS时钟的同步源中的优先级。
结合本发明第一方面的三实施方式,本发明第一方面的第四实施方式中,所述目标信息包括所述第一终端所使用的GNSS技术的种类,或所使用的GNSS时钟的同步精度,或优先级标识。
结合本发明第一方面,本发明第一方面的第五实施方式中,所述直连链路信息包括直连链路主信息MIB-SL,所述MIB-SL包含所述指示信息。
结合本发明第一方面,本发明第一方面的第六实施方式中,所述使用GNSS时钟的同步源的优先级高于不使用GNSS时钟的同步源的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级以及网络覆盖内小区的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级且小于网络覆盖内小区的优先级。
结合本发明第一方面及本发明第一方面的第一至第六实施方式中的任一方式,本发明第一方面的第七实施方式中,所述D2D通信系统中对应的传输时隙为帧号和/或子帧号。
结合本发明第一方面的第一实施方式至第四实施方式中的任一方式,本发明实施例第一方面的第八实施方式中,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包含所述传输时隙信息,以使得所述第二终端与所述第一终端时隙对齐。
结合本发明第一方面及本发明第一方面的第一至第六实施方式中的任一方式,本发明第一方面的第九实施方式中,所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙之前包括:
所述第一终端获取第二配置信息;
所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙包括:
所述第一终端根据GNSS的时钟及所述第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
结合本发明第一方面的第九实施方式,本发明第一方面的第十实施方式中,所述第一终端获取第二配置信息包括:
所述第一终端通过预配置方式获取所述第二配置信息;
或,
当所述第一终端处于网络覆盖内时,所述第一终端接收基站发送的系统广播信息获取所述第二配置信息;
或,
当所述第一终端处于网络覆盖内时,所述第一终端接收基站发送的无线资源控制RRC信令获取所述第二配置信息;
或,
所述第一终端根据预置协议获取所述第二配置信息。
结合本发明第一方面的第九实施方式,本发明第一方面的第十一实施方式中,所述第二配置信息包括第二参数;
所述第一终端根据GNSS的时钟及所述第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙包括:
所述第一终端根据所述GNSS的时钟确定当前时刻;
所述第一终端根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
结合本发明第一方面的第十一实施方式,本发明第一方面的第十二方式中,所述第二参数包括初始参照时刻;
所述第一终端根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙包括:
所述第一终端计算所述当前时刻及所述初始参照时刻的差值;
所述第一终端根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
结合本发明第一方面的第十二实施方式,本发明第一方面的第十三方式中,所述第一终端通过如下公式计算所述帧号DFNt
DFNt=(a*Tduration)mod K1
其中,所述K1为一个帧周期的长度,所述Tduration为所述差值,所述a为第一尺度参数,所述第一尺度参数用于将所述差值的时间单位与帧长单位对齐。
结合本发明第一方面的第十二或十三实施方式,本发明第一方面的第十四方式中,所述第一终端通过如下公式计算所述子帧号suframet
suframet=(b*Tduration)mod K2
其中,所述K2为一个子帧周期的长度,所述b为第二尺度参数,所述第二尺度参数用于将所述差值的时间单位与子帧长单位对齐,所述Tduration为所述差值。
本发明实施例第二方面提供一种同步通信方法,包括:
第二终端获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源,并根据所述直连链路同步信息与所述第一终端同步。
结合本发明第二方面,本发明第二方面的第一实施方式中,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源包括:
所述第二终端解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
所述第二终端根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第二方面,本发明第二方面的第二实施方式中,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的 同步源包括:
所述第二终端解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
所述第二终端根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
所述第二终端根据所述直连链路同步信息与所述第一终端同步包括:
当存在多个第一终端时,所述第二终端解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
所述第二终端根据所述第二专用序列确定各个第一终端的同步源优先级;
所述第二终端与所述多个第一终端中同步源优先级最高的第一终端同步。
结合本发明第二方面的第二实施方式,本发明第二方面的第三实施方式中,所述目标信息包括所述第一终端所使用的GNSS技术的种类,或所使用的GNSS时钟的同步精度,或优先级标识。
结合本发明第二方面,本发明第二方面的第四实施方式中,所述直连链路同步信息包括直连链路主信息MIB-SL;
所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源包括:
所述第二终端解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第二方面的第一实施方式,本发明第二方面的第五实施方式中,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包括所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
所述第二终端根据所述第一终端发送的直连链路同步信息与所述第一终端同步包括:
所述第二终端根据所述SLSS获得所述第一终端的时隙边界;
所述第二终端与所述第一终端的时隙边界对齐;
所述第二终端根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在设备到设备D2D系统中对应的传输时隙;
所述第二终端与所述第一终端的所述传输时隙对齐。
结合本发明第二方面的第五实施方式,本发明第二方面的第六实施方式中,所述传输时隙为子帧号和/或帧号。
结合本发明第二方面、本发明第二方面的第一至第六实施方式,本发明第二方面的第七实施方式中,所述使用GNSS时钟的同步源的优先级高于不使用GNSS时钟的同步源的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级以及网络覆盖内小区的优先级;
或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级且小于网络覆盖内小区的优先级。
本发明实施例第三方面提供一种终端,包括:
获取模块,用于获取第一配置信息,所述第一配置信息包括第一参数;
确定模块,用于根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙;
判断模块,用于根据所述确定模块确定的所述传输时隙及所述获取模块获取的所述第一参数判断所述当前时刻是否为同步信息发送时刻;
发送模块,用于当所述判断模块确定所述当前时刻为同步信息发送时刻时,在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
结合本发明第一方面,本发明第一方面的第一实施方式中,
所述获取模块,还用于获取第二配置信息;
所述确定模块,还用于根据GNSS的时钟及所述获取模块获取的第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
结合本发明第三方面的第一实施方式,本发明第三方面的第二实施方式中,
所述获取模块,还用于通过预配置方式获取所述第二配置信息;
或,
所述获取模块,还用于当所述第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取所述第二配置信息;
或,
所述获取模块,还用于当所述第一终端处于网络覆盖内时,接收基站发送的RRC信令获取所述第二配置信息;
或,
所述获取模块,还用于根据预置协议获取所述第二配置信息。
结合本发明第三方面的第一实施方式或第二实施方式,本发明第三方面的第三实施方式中,所述第二配置信息包括第二参数;
所述确定模块,还用于根据所述GNSS的时钟确定当前时刻;
所述确定模块,还用于根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
结合本发明第三方面的第三实施方式,本发明第三方面的第四实施方式中,所述第二参数包括初始参照时刻;
所述确定模块,还用于计算所述当前时刻及所述初始参照时刻的差值;
所述确定模块,还用于根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
本发明实施例第四方面提供另一种终端,包括:
获取模块,用于获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
确定模块,用于根据所述获取模块获取的指示信息确定所述第一终端为使用GNSS时钟的同步源;
同步模块,用于根据所述直连链路同步信息与所述第一终端同步。
结合本发明第四方面,本发明第四方面的第一实施方式中,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅 助同步信号SSSS;
所述确定模块,还用于解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
所述确定模块,还用于根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第四方面,本发明第四方面的第一实施方式中,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
所述确定模块,还用于解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
所述确定模块,还用于根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
所述同步模块,还用于当存在多个第一终端时,解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
所述同步模块,还用于根据所述第二专用序列确定各个第一终端的同步源优先级;
所述同步模块,还用于与所述多个第一终端中同步源优先级最高的第一终端同步。
结合本发明第四方面,本发明第四方面的第三实施方式中,所述直连链路同步信息包括直连链路主信息MIB-SL;
所述确定模块,还用于解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
所述确定模块,还用于根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第四方面的第一实施方式,本发明第四方面的第四实施方式中,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包括所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
所述同步模块,还用于根据所述SLSS获得所述第一终端的时隙边界;
所述同步模块,还用于与所述第一终端的时隙边界对齐;
所述同步模块,还用于根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在设备到设备D2D系统中对应的传输时隙;
所述同步模块,还用于与所述第一终端的所述传输时隙对齐。
本发明第五方面提供一种终端,包括:射频模块、处理器及存储器;
所述处理器用于执行以下流程:
根据GNSS的时钟确定当前时刻在D2D系统中对应的传输时隙;
根据传输时隙及所述第一参数判断当前时刻是否为同步信息发送时刻;
所述射频模块用于执行以下流程:
获取第一配置信息,所述第一配置信息包括第一参数;
当所述处理器确定所述当前时刻为同步信息发送时刻时,在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
结合本发明第五方面,本发明第五方面的第一实施方式中,所述射频模块还用于执行以下流程:
获取第二配置信息;
根据所述GNSS的时钟及第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
结合本发明第五方面的第一实施方式,本发明第五方面的第二实施方式中,所述处理器具体执行以下流程:
通过预配置的方式获取第二配置信息;
或,
根据预置协议获取第二配置信息;
或所述射频模块具体执行以下流程:
当第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取所述第二配置信息;
或,
当第一终端处于网络覆盖内时,接收基站发送的RRC信令获取所述第二 配置信息;
结合本发明第五方面的第一或第二实施方式,本发明第五方面的第三实施方式中,所述第二配置信息包括第二参数;
所述处理器具体执行以下流程:
根据所述GNSS的时钟确定当前时刻;
根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
结合本发明第五方面的第三实施方式,本发明实施例的第四实施方式中,所述第二参数包括初始参照时刻;
所述处理器具体执行以下流程:
计算所述当前时刻及所述初始参照时刻的差值;
根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
本发明实施例第六方面提供一种终端,包括射频模块、处理器及存储器;
所述射频模块执行以下流程:
获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
所述处理器执行如下流程:
获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
根据所述直连链路同步信息与所述第一终端同步。
结合本发明实施例第六方面,本发明第六方面的第一实施方式中,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
所述处理器具体执行以下流程:
解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第六方面,本发明第六方面的第二实施方式中,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信 号SSSS;
所述处理器具体执行以下流程:
解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
当存在多个第一终端时,解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
根据所述第二专用序列确定各个第一终端的同步源优先级;
所述多个第一终端中同步源优先级最高的第一终端同步。
结合本发明第六方面,本发明第六方面的第三实施方式中,所述直连链路同步信息包括直连链路主信息MIB-SL;
所述处理器具体执行以下流程:
解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
结合本发明第六方面的第一实施方式,本发明第六方面的第四实施方式中,所述直连链路同步信息还包括MIB-SL第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
所述处理器还用于执行以下流程:
根据所述SLSS获得所述第一终端的时隙边界;
与所述第一终端的时隙边界对齐;
根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
与所述第一终端的所述传输时隙对齐。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,第一终端可以根据全球导航卫星系统(Global Navigation Satellite System,GNSS)的时钟确定当前时刻在D2D通信系统中对应的传输时隙,并根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻, 若是,则第一终端在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与第一终端同步,该指示信息用于指示该第一终端为使用GNSS时钟的同步源。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一致的,所以接入该类同步源的第二终端也能够实现同步,从而避免了由于不同步导致的资源划分错位及通信异常,提升了传输性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中同步通信方法的一个实施例示意图;
图2是本发明实施例中同步通信方法的另一实施例示意图;
图3是本发明实施例中同步通信方法的另一实施例示意图;
图4是本发明实施例中终端的一个实施例示意图;
图5是本发明实施例中终端的另一实施例示意图;
图6是本发明实施例中终端的另一实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必 限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WIMAX)通信系统等。
应理解,在本发明实施例中,第一终端或第二终端包括但不限于用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本发明实施例中,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB),本发明实施例并不限定。
本发明实施例提供了同步通信方法及终端,可以避免由于不同步导致的资源划分错位及通信异常,提升传输性能。
下面先从第一终端的角度对本发明实施例中的同步通信进行描述,请参阅图1,本发明实施例中同步通信的一个实施例包括:
101、第一终端获取第一配置信息;
第一终端获取第一配置信息,第一配置信息包括第一参数,该第一参数用于判断某一具体时刻是否为同步信息发送时刻,需要说明的是,第一终端可以通过预配置的方式获取该第一配置信息,可以根据预置协议获取该第二配置信 息,可以在第一终端处于网络覆盖时,接收基站发送的系统广播信息,或无线资源控制(Radio Resource Control,RRC)信令,再从广播信息或RRC信令中获取该第一配置信息,第一终端还可以通过其他方式获取第一配置信息,具体此处不作限定。
102、第一终端根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙;
当第一终端需要作为同步源与其他终端进行D2D通信时,第一终端根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙。
需要说明的是GNSS包括泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的全球定位系统(Global Positioning System,GPS)、俄罗斯的格洛纳斯(Glonass)卫星导航系统、欧洲的伽利略(Galileo)卫星定位系统、中国的北斗卫星导航系统,以及相关的增强系统,如美国的广域增强系统(Wide Area Augmentation System,WAAS)、欧洲的欧洲静地导航重叠系统和日本的多功能运输卫星增强系统(Multi-Functional Satellite Augmentation System,MSAS)等,还涵盖在建和以后要建设的其他卫星导航系统。
103、第一终端根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻,若是,则执行步骤104;
第一终端确定当前时刻在D2D通信系统中对应的传输时隙之后,根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻,若是,则执行步骤104。
104、第一终端在同步信息发送时刻发直连链路同步信息。
当第一终端确定当前时刻为同步信息发送时刻时,第一终端在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与第一终端同步,该指示信息用于向第二终端指示第一终端为使用GNSS时钟的同步源。
本发明实施例中,第一终端可以根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,并根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻,若是,则第一终端在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第 二终端与第一终端同步,该指示信息用于指示该第一终端为使用GNSS时钟的同步源。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一致的,所以接入该类同步源的第二终端也能够实现同步,从而避免了由于不同步导致的资源划分错位及通信异常,提升了传输性能。
为了便于理解,下面对本发明实施例中第一终端侧的同步通信方法进行详细描述,请参阅图2,本发明实施例中同步通信方法的另一实施例包括:
201、第一终端获取第一配置信息;
第一终端获取第一配置信息,第一配置信息包含第一参数,该第一参数用于判断某一具体时刻是否为同步信息发送时刻,需要说明的是,第一终端可以通过预配置的方式获取该第一配置信息,可以根据预置协议获取该第一配置信息,可以在第一终端处于网络覆盖时,接收基站发送的系统广播信息,或RRC信令,再从广播信息或RRC信令中获取该第一配置信息,第一终端还可以通过其他方式获取第一配置信息,具体此处不作限定。
还需要说明的是,第一配置信息还可以包括判断某一时刻是否为同步信息发送时刻的判断规则,还可以包含其他信息,具体此处不作限定。
202、第一终端获取第二配置信息;
第一终端获取第二配置信息,需要说明的是,第一终端可以通过预配置的方式获取该第二配置信息,可以根据预置协议获取该第二配置信息,可以在第一终端处于网络覆盖时,接收基站发送的系统广播信息,或RRC信令,再从广播信息或RRC信令中获取该第二配置信息,第一终端还可以通过其他方式获取第二配置信息,具体此处不作限定。
还需要说明的是,第二配置信息可以包括计算当前时隙的计算规则或第二参数,还可以包括其他信息,具体此处不作限定。
203、第一终端根据GNSS的时钟及第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙;
第一终端获取第二配置信息之后,当第一终端需要作为同步源与其他终端进行D2D通信时,第一终端根据GNSS的时钟及该第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
需要说明的是,传输时隙可以是帧号,可以是子帧号,也可以是帧号及子帧号,还可以是其他信息,具体此处不作限定。
第二配置信息包括第二参数,则第一终端通过如下方式确定当前时刻在D2D通信系统中对应的传输时隙:
第一终端根据GNSS的时钟确定当前时刻,再根据当前时刻及第二参数按照预置计算规则计算传输时隙。
根据第二参数的不同,第一终端计算传输时隙的方式也不同,下面以第二参数包含初始参照时刻为例,第二参数包含初始参照时刻时,第一终端可以通过如下方式按照预置计算规则计算传输时隙:
第一终端计算当前时刻与初始参照时刻的差值,根据差值计算当前时刻在D2D通信系统中对应的帧号及子帧号。
具体地,第一终端根据差值可以通过公式(1)计算帧号DFNt,通过公式(2)计算子帧号suframet
DFNt=(a*Tduration)mod K1   (1);
suframet=(b*Tduration)mod K2   (2);
其中,K1为一个帧周期的长度,Tduration为差值,a为第一尺度参数,第一尺度参数用于将差值的时间单位与帧长单位对齐,K2为一个子帧周期的长度,b为第二尺度参数,第二尺度参数用于将差值的时间单位与子帧长单位对齐。
需要说明的是,第二配置信息也可以包括计算出传输时隙的计算规则,还可以包括其他信息,具体此处不作限定。当第二配置信息包含计算规则时,第一终端可以根据当前时刻及第二参数根据第二配置信息包含的计算规则计算传输时隙。第一终端还可以根据其他方式计算传输时隙,具体此处不作限定。
204、第一终端根据该传输时隙及第一参数信息判断当前时刻是否为同步信息发送时刻,若是,则执行步骤205,若否,则执行步骤206;
第一终端确定当前时刻在D2D通信系统中对应的传输时隙之后,根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻,若是,则执行步骤204。具体地,第一终端可以根据第一参数根据判断规则判断该传输时隙是否满足预置条件,当该传输时隙满足预置条件时,第一终端确定当前时刻为同 步信息发送时刻。进一步地,当第一参数包括偏移量,传输时隙为帧号及子帧号时,第一终端判断帧号及子帧号是否满足如下公式:
(c*DFNt+subramet)mod K3=syncOffsetIndicator   (3);
其中,suframet为子帧号,DFNt为帧号,c为一个帧中包含的子帧数,K3为同步发送周期,syncOffsetIndicato为偏移量。
当第一终端确定帧号及子帧满足公式(3)时,第一终端确定传输时隙满足预置条件,确定当前时刻为同步信息发送时刻。
需要说明的是,第一终端还可以根据其他方式判断当前时刻是否为同步信息发送时刻,具体此处不作限定。
205、第一终端在同步信息发送时刻发直连链路同步信息;
当第一终端确定当前时刻为同步信息发送时刻时,第一终端在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与第一终端同步,该指示信息用于向第二终端指示第一终端为使用GNSS时钟的同步源。
可以理解的是,直连链路同步信息包括直连链路同步信号(Sidelink Synchronisation Signal,SLSS),SLSS包括主同步信号(Primary Sidelink Synchronisation Signal,PSSS)和辅助同步信号(Secondary Sidelink Synchronisation Signal,SSSS),指示信息可以是专用序列,专用序列可以包含在PSSS中,专用序列可以包含在SSSS中,专用序列的部分序列包含在PSSS中,部分序列包含在SSSS中,由PSSS和SSSS中的部分序列共同构成该专用序列。
直连链路同步信息除了可以携带指示信息外,还能携带目标指示信息,其中目标指示信息用于向第二终端指示所述第一终端在使用GNSS时钟的同步源中的优先级,其中指示信息可以是第一专用序列,包含在PSSS中,目标指示信息可以是第二专用序列,包含在SSSS中。这样第二终端根据指示信息确定第一终端为使用GNSS时钟的同步源后,还能根据第二专用序列进一步确定第一终端在使用GNSS时钟的同步源中的优先级需要说明的是,目标信息可以包括第一终端使用GNSS技术的种类,或使用的GNSS时钟的精度,或优先级标识,还可以包括其他信息,具体此处不作限定。
基于上述四种情况,直连链路同步信息还可以包括直连链路主信息(MasterInformationBlock-SL,MIB-SL),MIB-SL包含传输时隙信息,使得第二终端可以根据该传输时隙信息确定传输时隙,根据传输时隙与第一终端实现时隙对齐。
还有一种情况是直连链路同步信息包括MIB-SL及SLSS,并将指示信息包含在MIB-SL中,可选地,MIB-SL还可以包含传输时隙信息,使得第二终端可以根据该传输时隙信息确定输时隙,根据传输时隙与第一终端实现时隙对齐。
206、第一终端执行其他流程。
当第一终端确定当前时刻为同步信息发送时刻时,第一终端执行其他流程,例如,第一终端可以在下一时刻在返回执行上述步骤203至步骤205。
需要说明的是,本发明实施例中,同步源的优先级为基站预先设定好的,本发明实施例中,使用GNSS时钟的同步源的优先级可以高于网络覆盖外不使用GNSS时钟的同步源及网络覆盖内的同步源的优先级,也可以仅高于网络覆盖外不使用GNSS时钟的同步源的优先级,也可以高于网络覆盖外不使用GNSS时钟的同步源的优先级但低于网络覆盖内的同步源的优先级,其中网络覆盖内的同步源可以是基站,也可以是不使用GNSS时钟的终端类型同步源,具体此处不作限定。
还需要说明的是,本发明实施例中不限定步骤202与步骤201的先后顺序,步骤202在步骤203之前,但是可以在步骤201之前也可以在步骤202之后,具体此处不作限定。
本发明实施例中,第一终端可以根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,并根据该传输时隙及第一配置信息判断当前时刻是否为同步信息发送时刻,若是,则第一终端在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与第一终端同步,该指示信息用于指示该第一终端为使用GNSS时钟的同步源。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一致的,所以接入该类同步源的第二终端也能够实现同步,从而避免了由于不同步导致的资源 划分错位及通信异常,提升了传输性能。
其次,本发明实施例中指示信息可以通过多种方式携带在直连链路同步信息中,终端根据GNSS的时钟可以通过多种方式确定当前时刻在D2D通信系统中对应的传输时隙,提高了方案的灵活性。
上面从第一终端的角度对本发明实施例中的同步通信方法进行了描述,下面从第二终端的角度对本发明实施例中的同步通信方法进行描述,请参阅图3,本发明实施例中同步通信方法的另一实施例包括:
301、第二终端获取第一终端发送的直连链路同步信息;
第一终端根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,根据该传输时隙及第一配置信息确定当前时刻为同步信息发送时刻,在同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息。此时,第二终端在第一终端的周围,需要与同步源进行同步,第二终端搜索到第一终端发出的直连链路同步信息,获取第一终端发送的直连链路同步信息,该直连链路同步信息携带指示信息。
302、第二终端根据指示信息确定第一终端为使用GNSS时钟的同步源,并根据直连链路同步信息与第一终端同步。
第二终端获取第一终端发送的直连链路同步信息后,根据直连链路同步信息携带的指示信息确定第一终端为使用GNSS时钟的同步源,根据该直连链路同步信息与第一终端进行同步。
本发明实施例中,第一终端可以根据全球导航卫星系统GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,根据该传输时隙及第一配置信息确定当前时刻为同步信息发送时刻,在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,第二终端根据该指示信息确定第一终端为使用GNSS时钟的同步源,并根据直连链路同步信息与第一终端同步。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一致的,所以接入该类同步源的所有第二终端能够实现同步,从而避免了由于不同步导致的资源划分错位及通信异常,提升了传输性能。
请继续参阅图3,本发明实施例中,直连链路同步信息包括SLSS,SLSS 包括PSSS和SSSS,则第二终端确定第一终端为使用GNSS时钟的同步源可以通过如下方式:
一、第二终端解析PSSS得到专用序列,该专用序列用于指示第一终端为使用GNSS时钟的同步源,第二终端根据该专用序列确定第一终端为使用GNSS时钟的同步源。
二、第二终端解析SSSS得到专用序列,该专用序列用于指示第一终端为使用GNSS时钟的同步源,第二终端根据该专用序列确定第一终端为使用GNSS时钟的同步源。
三、第二终端解析PSSS得到第一部分序列,解析SSSS得到第二部分序列,第二终端将第一部分序列及第二部分序列组成专用序列,该专用序列用于指示第一终端为使用GNSS时钟的同步源,第二终端根据该专用序列确定第一终端为使用GNSS时钟的同步源。
可以理解的是,直连链路同步信息还可以包括:MIB-SL,该MIB-SL包含传输时隙信息,该传输时隙信息用于指示第一终端根据GNSS确定的当前时刻在D2D系统中对应的传输时隙,传输时隙可是子帧号、可以是帧号、还可以是帧号和子帧号;
第二终端根据第一终端发送的直连链路同步信息与第一终端同步可以通过如下方式:
第二终端根据SLSS获取第一终端的时隙边界,第二终端与第一终端的时隙边界对齐,第二终端根据MIB-SL确定当前时刻在D2D系统中对应的传输时隙,第二终端与第一终端的传输时隙对齐。
需要说明的是,本发明实施例中,使用GNSS时钟的同步源的优先级可以高于网络覆盖外不使用GNSS时钟的同步源及网络覆盖内的同步源的优先级,也可以仅高于网络覆盖外不使用GNSS时钟的同步源的优先级,也可以高于网络覆盖外不使用GNSS时钟的同步源的优先级但低于网络覆盖内的同步源的优先级,其中网络覆盖内的同步源可以是基站,也可以是不使用GNSS时钟的终端类型同步源,具体此处不作限定。当第二终端搜索到多个同步源时,在多个同步源满足信号质量的需求的前提下,第二终端优先接入优先级较高的同步源。
本发明实施例中,第二终端可以通过多种方式确定第一终端为使用GNSS时钟的同步源。
其次,本发明实施例提供了一种第二终端根据第一终端发送的直连链路同步信息与第一终端同步的具体方式,提高了方案的可实现性。
请继续参阅图3,本发明实施例中,直连链路同步信包括SLSS,SLSS包括PSSS和SSSS,第二终端确定第一终端为使用GNSS时钟的同步源可以通过如下方式:
第二终端解析PSSS得到第一专用序列,第一专用序列用于指示第一终端为使用GNSS时钟的同步源,第一终端根据第一专用序列确定第一终端为使用GNSS时钟的同步源。
此时,第二终端根据直连链路同步信息与第一终端同步可以通过如下方式:
当存在多个第一终端时,第二终端解析SSSS得到第二专用序列,第二专用序列包含目标指示信息,目标指示信息用于指示第一终端在使用GNSS时钟的同步源中的优先级;
第二终端根据每个终端的第二专用序列确定该第一终端的同步源优先级;
第二终端与多个第一终端中的同步源优先级最高的第一终端同步。
需要说明的是,目标指示信息可以包括第一终端所使用的GNSS技术的种类,或第一终端所述使用的GNSS时钟的同步精度,或第一终端的优先级标识。
具体地,第二终端根据GNSS的种类及预设的优先级规则确定第一终端的同步源优先级,比如说预设的优先级规则为使用中国北斗卫星导航系统的优先级大于使用美国GPS的优先级,那么当第二终端同时搜索到两个第一终端,且一个第一终端的第二专用序列指示该第一终端使用的GNSS技术的种类为中国北斗,另一个第一终端的第二专用序列指示该第一终端使用的GNSS技术的种类为美国GPS,那么第二终端选择种类为中国北斗的第一终端进行同步。
或者第二终端根据GNSS的种类及预设的优先级规则确定第一终端的同步源优先级,比如说预设的优先级规则为同步精度越高的同步源优先级越高,那么当第二终端同时搜索到两个第一终端,且一个第一终端的第二专用序列指示该第一终端的同步精度为0.2,另一个第一终端的第二专用序列指示该第一 终端的同步精度为0.1,那么第二终端选择同步精度为0.1的第一终端进行同步。
或者第二终端根据GNSS的种类和预设的优先级规则确定第一终端的同步源优先级,比如说预设的优先级规则为使用中国北斗卫星导航系统的优先级大于使用美国GPS的优先级,且在GNSS技术的种类相同的情况下,同步精度越高的同步源优先级越高。那么当第二终端同时搜索到三个第一终端,且第一个第一终端的第二专用序列指示该第一终端使用的GNSS技术的种类为美国GPS,同步精度为0.1,第二个第一终端的第二专用序列指示该第一终端使用的GNSS技术的种类为中国北斗,同步精度为0.2,第三个第一终端的第二专用序列指示该第一终端使用的GNSS技术的种类为中国北斗,同步精度为0.1,那么第二终端选择第三个第一终端进行同步。
或者第二终端根据优先级标识确定第一终端的同步源优先级,当第一终端同时搜索到两个第一终端,且一个第一终端的第二专用序列指示该第一终端的优先级为1,另一个第一终端的第二专用序列指示该第一终端的优先级为2,第二终端选择优先级为2的第一终端进行同步。
需要说明的是,本发明实施例中,使用GNSS时钟的同步源的优先级可以高于网络覆盖外不使用GNSS时钟的同步源及网络覆盖内的同步源的优先级,也可以仅高于网络覆盖外不使用GNSS时钟的同步源的优先级,也可以高于网络覆盖外不使用GNSS时钟的同步源的优先级但低于网络覆盖内的同步源的优先级,其中网络覆盖内的同步源可以是基站,也可以是不使用GNSS时钟的终端类型同步源,具体此处不作限定。当第二终端搜索到多个同步源时,在多个同步源满足信号质量的需求的前提下,第二终端优先接入优先级较高的同步源。
本发明实施例中,当第一终端存在多个时,第二终端可以根据第一终端中的第二专用序列确定各个第一终端的优先级,并选择优先级最高的第一终端进行同步,提高了方案的灵活性。
请继续参阅图3,本发明实施例中,直连链路同步信包括MIB-SL,第二终端确定第一终端为使用GNSS时钟的同步源可以通过如下方式:
第二终端解析MIB-SL得到指示信息,该指示信息用于指示第一终端为使 用GNSS时钟的同步源,第二终端根据该指示信息确定第一终端为使用GNSS时钟的同步源。
可选地,MIB-SL还可以包括传输时隙,该传输时隙信息用于指示第一终端根据GNSS确定的当前时刻在D2D系统中对应的传输时隙,传输时隙可是子帧号、可以是帧号、还可以是帧号和子帧号。第一终端可以根据该传输时隙与第二终端实现时隙对齐。
需要说明的是,本发明实施例中,使用GNSS时钟的同步源的优先级可以高于网络覆盖外不使用GNSS时钟的同步源及网络覆盖内的同步源的优先级,也可以仅高于网络覆盖外不使用GNSS时钟的同步源的优先级,也可以高于网络覆盖外不使用GNSS时钟的同步源的优先级但低于网络覆盖内的同步源的优先级,其中网络覆盖内的同步源可以是基站,也可以是不使用GNSS时钟的终端类型同步源,具体此处不作限定。当第二终端搜索到多个同步源时,在多个同步源满足信号质量的需求的前提下,第二终端优先接入优先级较高的同步源。
本发明实施例中,第二终端可以通过MIB-SL得到指示信息,提高了方案的灵活性。
为了便于理解,下面以一实际应用场景对本发明实施例中的同步通信方法进行详细描述:
车辆A为使用中国北斗定位系统且能够进行车辆与车辆之间通信的车辆,当车辆A处于网络覆盖范围外时,车辆A获取预配置的第一配置信息及第二配置信息,该第二配置信息包含初始参照时刻(第二参数)Tref为2015年1月1日的00:00:00。该第一配置信息包含了判断当前时刻是否为同步信息发送时刻的判断规则和偏移量(第一参数),其中偏移量syncOffsetIndicato=0,判断规则为判断当前时隙对应的子帧号DFNt及子帧号suframet是否满足如下公式:
(c*DFNt+subramet)modK3=syncOffsetIndicator;
其中,suframet为子帧号,DFNt为帧号,c为一个帧中包含的子帧数,K3为同步发送周期,syncOffsetIndicato为偏移量。
车辆A需要进行D2D通信时,车辆A首先搜索附近的同步源,结果没有搜索到任何同步源,那么车辆A需要自身作为同步源发送同步信息。首先, 车辆A确定根据GNSS时钟确定当前时刻为2015年1月1日00:02:00。车辆A计算当前时刻与初始参照时刻的差值Tduration,由Tduration=T-Tfer得到Tduration为120秒。并且已知一个帧长为10毫秒,每个帧包含10个子帧(即子帧长为1毫秒),1024个帧为一个周期,同步信号每隔10个子帧发送一次,即一个帧的周期的长度K1=1024,一个子帧周期的长度K2=10,同步发送周期K3=10用于将差值的时间单位与帧长单位对齐的第一尺度参数a=100,一个帧中包含的子帧数c=10用于将差值的时间单位与子帧长单位对齐的第二尺度参数b=1000。
则车辆A根据如下预置公式计算帧号DFNt和子帧号suframet
DFNt=(a*Tduration)modK1=(100*120)mod1024=736;
suframet=(b*Tduration)modK2=(1000*120)mod10=10;
车辆A计算得到帧号及子帧号后,根据第二配置信息中的判断规则确定当前时刻是否为同步信息发送时刻:
(c*DFNt+subramet)modK3=(10*736+10)mod10=0=syncOffsetIndicator故车辆A确定当前时刻为同步信息发送时刻,车辆A在该同步信息发送时刻,即2015年1月1日00:02:00发送直连链路同步信息,该直连链路同步信息包括SLSS和MIB-SL,其中SLSS包括PSSS和SSSS,PSSS中携带专用序列,该专用序列用于指示其他设备车辆A为使用GNSS时钟的同步源,MIB-SL携带传输时隙信息,该传输时隙信息为DFNt=736,suframet=10。
此时,车辆B在车辆A附近,车辆B也需要进行D2D通信,车辆B首先搜索周围的同步源,搜索到多个同步源,其中满足信号质量需求的有两个,分别为车辆A和车辆C,根据车辆B检测车辆B及车辆C的发送的直连链路同步信息,即SLSS和MIB-SL。车辆B解析车辆A的SLSS中的PSSS得到专用序列,该专用序列用于指示其他设备车辆A为使用GNSS时钟的同步源。车辆B解析车辆C的SLSS中的PSSS和MIB-SL得知车辆C为网络覆盖外的同步源,并且没有获取到指示车辆C为使用GNSS时钟的同步源的信息,确定车辆C为网络覆盖外不使用GNSS时钟的同步源。根据预置的优先级规则,使用GNSS时钟的同步源的优先级大于网络覆盖外不使用GNSS时钟的同步源,故车辆B选择与车辆A进行同步,具体地,车辆B根据SLSS获取车辆 A的时隙边界,并且与该时隙边界对齐,根据MIB-SL确定车辆A的帧号为736,子帧号为10,与该帧号及子帧号对齐,由此车辆B完成与车辆A的同步。
上面介绍了本发明实施例中的同步通信方法,下面介绍本发明实施例中的终端,请参阅图4,本发明实施例中终端的一个实施例包括:
获取模块401,用于获取第一配置信息,第一配置信息包括第一参数;
确定模块402,用于根据统GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙;
判断模块403,用于根据该传输时隙及该第一参数判断当前时刻是否为同步信息发送时刻;
发送模块404,用于当判断模块403确定当前时刻为同步信息发送时刻时,在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与所述第一终端同步,该指示信息用于向所述第二终端指示该第一终端为使用GNSS时钟的同步源。
本发明实施例中,确定模块402可以根据GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,判断模块403根据该传输时隙及第一参数判断当前时刻是否为同步信息发送时刻,若是,则发送模块404在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,该直连链路同步信息用于使第二终端与第一终端同步,该指示信息用于指示该第一终端为使用GNSS时钟的同步源。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一致的,所以接入该类同步源的第二终端也能够实现同步,从而避免了由于不同步导致的资源划分错位及通信异常,提升了传输性能。
基于上述图4对应的实施例,在本发明实施例的另一实施例中,
获取模块401还用于获取第二配置信息;
确定模块402还用于根据GNSS的时钟及获取模块401获取的第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
可选地,本发明实施例中,第二配置信息可以包括第二参数;
确定模块402还可以用于根据GNSS的时钟确定当前时刻,根据当前时刻 及第二参数按照预置规则计算传输时隙;
可选地,本发明实施例中,第二参数可以包括初始参照时刻;
确定模块402还可以用于计算当前时刻及初始参照时刻的差值,根据预置计算规则及差值计算当前时刻在D2D通信系统中对应的帧号及子帧号。
本发明实施例中确定模块402确定传输时隙的具体方式,提高了方案的可实现性。
可选地,在本发明实施例的另一些实施例中,
获取模块401可以通过预配置方式获取第二配置信息;
或当第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取第二配置信息;
或当第一终端处于网络覆盖内时,接收基站发送的RRC信令获取第二配置信息;
或根据预置协议获取第二配置信息。
本发明实施例中,获取模块401可以通过多种方式获取第二配置信息,提高了方案的灵活性。
上面介绍了本发明实施例中的第一终端,下面介绍本发明实施例中的第二终端,请参阅图5,本发明实施例中的另一终端包括:
获取模块501,用于获取第一终端发送的直连链路同步信息,直连链路同步信息携带指示信息;
确定模块502,用于根据指示信息确定第一终端为使用GNSS时钟的同步源;
同步模块503,用于根据直连链路同步信息与第一终端同步。
本发明实施例中,第一终端可以根据全球导航卫星系统GNSS的时钟确定当前时刻在D2D通信系统中对应的传输时隙,根据该传输时隙及第一配置信息确定当前时刻为同步信息发送时刻,在该同步信息发送时刻发送直连链路同步信息,该直连链路同步信息携带指示信息,第二终端的确定模块602根据该指示信息确定第一终端为使用GNSS时钟的同步源,同步模块603根据直连链路同步信息与第一终端同步。因为GNSS的时钟具有统一授时且精度高,所以不同终端通过GNSS的时钟确定的传输时隙都是一致的,从而发送时刻也是一 致的,所以接入该类同步源的所有第二终端能够实现同步,从而避免了由于不同步导致的资源划分错位及通信异常,提升了传输性能。
基于图5对应的实施例,在本发明实施例中,直连链路同步信息包括直连链路同步信号SLSS,SLSS包括主同步信号PSSS及辅助同步信号SSSS;
确定模块502还用于解析PSSS或SSSS得到专用序列,该专用序列用于指示第一终端为使用GNSS时钟的同步源;
确定模块502还用于根据该专用序列确定第一终端为使用GNSS时钟的同步源;
可选地,本发明实施例中,直连链路同步信息还包括MIB-SL,MIB-SL包括第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙,
同步模块503还用于根据SLSS获得第一终端的时隙边界,与该时隙边界对齐;
同步模块503还用于根据MIB-SL确定第一终端根据MIB-SL确定第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙,与该传输时隙对齐。
本发明实施例提供了一种确定模块502确定第一终端为使用GNSS时钟的同步源以及同步模块503根据直连链路同步信息与第一终端进行同步的具体方式,提高了方案的可实现性。
基于图5对应的实施例,在本发明实施例中,直连链路包括直连链路同步信号SLSS,SLSS包括主同步信号PSSS及辅助同步信号SSSS;
确定模块502还用于解析PSSS得到第一专用序列,第一专用序列用于指示第一终端为使用GNSS时钟的同步源;
确定模块502还用于根据第一专用序列确定第一终端为使用GNSS时钟的同步源;
同步模块503还用于当存在多个第一终端时,解析SSSS得到第二专用序列,第二专用序列包含目标指示信息,目标指示信息用于指示第一终端在使用GNSS时钟的同步源中的优先级;
同步模块503还用于根据第二专用序列确定各个第一终端的同步源优先级;
同步模块503还用于与多个第一终端中同步源优先级最高的第一终端同步。
本发明实施例中,存在多个第一终端时,同步模块503可以选择优先级最高的第一终端进行同步,提高了方案的灵活性。
基于图5对应的实施例,在本发明实施例中,直连链路同步信息包括MIB-SL;
确定模块502还用于解析MIB-SL得到指示信息,指示信息用于指示第一终端为使用GNSS时钟的同步源;
确定模块502还用于根据该指示信息确定第一终端为使用GNSS时钟的同步源。
本发明实施例提供了另一种确定模块502确定第一终端为使用GNSS时钟的同步源的具体方式,提高了方案的灵活性。
上面从模块功能化的角度对本发明实施例中的第一终端及第二终端进行了描述,下面从硬件实体的角度对本发明实施例中的第一终端及第二终端进行描述,第一终端及第二终端可以包括手机、平板电脑、车载电脑等任意终端设备,下面以手机为例进行描述,请参阅图6,本发明实施例中终端的另一实施例包括:
射频(Radio Frequency,RF)电路610、存储器620、输入单元630、显示单元640、传感器650、音频电路660、无线保真(wireless fidelity,WiFi)模块670、处理器680、以及电源690等部件。本领域技术人员可以理解,图10中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图6对手机的各个构成部件进行具体的介绍:
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器680处理;另外,将设计上行的数据发送给基站。通常,RF电路610包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of  Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器620可用于存储软件程序以及模块,处理器680通过运行存储在存储器620的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元630可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元630可包括触控面板631以及其他输入设备632。触控面板631,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板631上或在触控面板631附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板631可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器680,并能接收处理器680发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板631。除了触控面板631,输入单元630还可以包括其他输入设备632。具体地,其他输入设备632可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元640可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元640可包括显示面板641,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting  Diode,OLED)等形式来配置显示面板641。进一步的,触控面板631可覆盖显示面板641,当触控面板631检测到在其上或附近的触摸操作后,传送给处理器680以确定触摸事件的类型,随后处理器680根据触摸事件的类型在显示面板641上提供相应的视觉输出。虽然在图6中,触控面板631与显示面板641是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板631与显示面板641集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器650,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板641的亮度,接近传感器可在手机移动到耳边时,关闭显示面板641和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路660、扬声器661,传声器662可提供用户与手机之间的音频接口。音频电路660可将接收到的音频数据转换后的电信号,传输到扬声器661,由扬声器661转换为声音信号输出;另一方面,传声器662将收集的声音信号转换为电信号,由音频电路660接收后转换为音频数据,再将音频数据输出处理器680处理后,经RF电路610以发送给比如另一手机,或者将音频数据输出至存储器620以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块670可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图6示出了WiFi模块670,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器680是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器620内的软件程序和/或模块,以及调用存储在存储器620内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器680可包括一个或多个处理单元;优选的,处理 器680可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器680中。
手机还包括给各个部件供电的电源690(比如电池),优选的,电源可以通过电源管理系统与处理器680逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,第一终端所包括的处理器680执行以下流程:
根据GNSS的时钟确定当前时刻在D2D系统中对应的传输时隙;
根据传输时隙及第一参数判断当前时刻是否为同步信息发送时刻;
RF电路610执行以下流程:
获取第一配置信息,所述第一配置信息包括第一参数;
当处理器680确定当前时刻为同步信息发送时刻时,在同步信息发送时刻向第一终端发送直连链路同步信息,直连链路同步信息携带指示信息,直连链路同步信息用于使第二终端与所述第一终端同步,指示信息用于向所述第二终端指示第一终端为使用GNSS时钟的同步源。
在本发实施例的另一实施例中,RF电路610还用于执行以下流程:
获取第二配置信息;
根据GNSS的时钟及第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
在本发明实施例的另一实施例中,处理器680具体执行以下流程:
通过预配置的方式获取第二配置信息;
或,
根据预置协议获取第二配置信息;
或RF电路610具体执行以下流程:
当第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取第二配置信息;
或,
当第一终端处于网络覆盖内时,接收基站发送的RRC信令获取第二配置 信息;
在本发明实施例的另一实施例中,第二配置信息包括第二参数,处理器680具体执行以下流程:
根据GNSS的时钟确定当前时刻;
根据所述当前时刻及第二参数按照预置计算规则计算传输时隙。
在本发明实施例的另一实施例中,第二参数包括初始参照时刻,处理器680具体执行以下流程:
计算当前时刻及初始参照时刻的差值;
根据所述预置计算规则及差值计算当前时刻在D2D通信系统中对应的帧号及子帧号。
在本发明实施例中,第二终端所包括的RF电路610执行以下流程:
获取第一终端发送的直连链路同步信息,直连链路同步信息携带指示信息;
处理器680执行以下流程:
获取第一终端发送的直连链路同步信息,直连链路同步信息携带指示信息;
根据直连链路同步信息与第一终端同步。
在本发明实施例的另一实施例中,直连链路同步信息包括SLSS,SLSS包括PSSS及SSSS;
处理器680具体执行以下流程:
解析PSSS和/或SSSS得到专用序列,专用序列用于指示第一终端为使用GNSS时钟的同步源;
根据专用序列确定第一终端为使用GNSS时钟的同步源。
在本发明实施例的另一实施例中,直连链路同步信息还包括MIB-SL;
处理器680具体执行以下流程:
根据所述SLSS获得第一终端的时隙边界;
与第一终端的时隙边界对齐;
根据MIB-SL确定当前时刻在设备到设备D2D系统中对应的传输时隙;
与所述第一终端的所述传输时隙对齐。
在本发明实施例的另一实施例中,直连链路同步信息包括SLSS,SLSS包括PSSS及SSSS;
处理器680具体执行以下流程:
解析PSSS得到第一专用序列,第一专用序列用于指示第一终端为使用GNSS时钟的同步源;
根据第一专用序列确定第一终端为使用GNSS时钟的同步源;
当存在多个第一终端时,解析SSSS得到第二专用序列,第二专用序列包含目标指示信息,目标指示信息用于指示第一终端在使用GNSS时钟的同步源中的优先级;
根据第二专用序列确定各个第一终端的同步源优先级;
多个第一终端中同步源优先级最高的第一终端同步。
在本发明实施例的另一实施例中,直连链路同步信息包括MIB-SL;
处理器680具体执行以下流程:
解析MIB-SL得到指示信息,指示信息用于指示第一终端为使用GNSS时钟的同步源;
根据指示信息确定第一终端为使用GNSS时钟的同步源。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的同步通信方法及终端进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (43)

  1. 一种同步通信方法,其特征在于,包括:
    第一终端获取第一配置信息,所述第一配置信息包括第一参数;
    所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙;
    所述第一终端根据所述传输时隙及所述第一参数判断所述当前时刻是否为同步信息发送时刻;
    若是,则所述第一终端在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
  2. 根据权利要求1所述的方法,其特征在于,所述直连链路同步信息包括直连链路同步信号SLSS。
  3. 根据权利要求2所述的方法,其特征在于,所述SLSS包括主直连链路同步信号PSSS及辅助直连链路同步信号SSSS,所述PSSS和/或所述SSSS包含专用序列,所述专用序列为所述指示信息。
  4. 根据权利要求2所述的方法,其特征在于,所述SLSS包括主直连链路同步信号PSSS及辅助直连链路同步信号SSSS;所述PSSS包含第一专用序列,所述第一专用序列为所述指示信息,所述SSSS包含第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于向第二终端指示所述第一终端在使用GNSS时钟的同步源中的优先级。
  5. 根据权利要求4所述的方法,其特征在于,所述目标信息包括所述第一终端所使用的GNSS技术的种类,或所使用的GNSS时钟的同步精度,或优先级标识。
  6. 根据权利要求1所述的方法,其特征在于,所述直连链路信息包括直连链路主信息MIB-SL,所述MIB-SL包含所述指示信息。
  7. 根据权利要求1所述的方法,其特征在于,所述使用GNSS时钟的同步源的优先级高于不使用GNSS时钟的同步源的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS 时钟的同步源的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级以及网络覆盖内小区的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级且小于网络覆盖内小区的优先级。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述D2D通信系统中对应的传输时隙为帧号和/或子帧号。
  9. 根据权利要求2至5中任一项所述的方法,其特征在于,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包含所述传输时隙信息,以使得所述第二终端与所述第一终端时隙对齐。
  10. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙之前包括:
    所述第一终端获取第二配置信息;
    所述第一终端根据全球导航卫星系统GNSS的时钟确定当前时刻在设备到设备D2D通信系统中对应的传输时隙包括:
    所述第一终端根据GNSS的时钟及所述第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
  11. 根据权利要求10所述的方法,其特征在于,所述第一终端获取第二配置信息包括:
    所述第一终端通过预配置方式获取所述第二配置信息;
    或,
    当所述第一终端处于网络覆盖内时,所述第一终端接收基站发送的系统广播信息获取所述第二配置信息;
    或,
    当所述第一终端处于网络覆盖内时,所述第一终端接收基站发送的无线资源控制RRC信令获取所述第二配置信息;
    或,
    所述第一终端根据预置协议获取所述第二配置信息。
  12. 根据权利要求10所述的方法,其特征在于,所述第二配置信息包括第二参数;
    所述第一终端根据GNSS的时钟及所述第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙包括:
    所述第一终端根据所述GNSS的时钟确定当前时刻;
    所述第一终端根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
  13. 根据权利要求12所述的方法,其特征在于,所述第二参数包括初始参照时刻;
    所述第一终端根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙包括:
    所述第一终端计算所述当前时刻及所述初始参照时刻的差值;
    所述第一终端根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一终端通过如下公式计算所述帧号DFNt
    DFNt=(a*Tduration)modK1
    其中,所述K1为一个帧周期的长度,所述Tduration为所述差值,所述a为第一尺度参数,所述第一尺度参数用于将所述差值的时间单位与帧长单位对齐。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一终端通过如下公式计算所述子帧号suframet
    suframet=(b*Tduration)modK2
    其中,所述K2为一个子帧周期的长度,所述b为第二尺度参数,所述第二尺度参数用于将所述差值的时间单位与子帧长单位对齐,所述Tduration为所述差值。
  16. 一种同步通信方法,其特征在于,包括:
    第二终端获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
    所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的 同步源,并根据所述直连链路同步信息与所述第一终端同步。
  17. 根据权利要求16所述的方法,其特征在于,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源包括:
    所述第二终端解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    所述第二终端根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
  18. 根据权利要求16所述的方法,其特征在于,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源包括:
    所述第二终端解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    所述第二终端根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
    所述第二终端根据所述直连链路同步信息与所述第一终端同步包括:
    当存在多个第一终端时,所述第二终端解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
    所述第二终端根据所述第二专用序列确定各个第一终端的同步源优先级;
    所述第二终端与所述多个第一终端中同步源优先级最高的第一终端同步。
  19. 根据权利要求18所述的方法,其特征在于,所述目标信息包括所述第一终端所使用的GNSS技术的种类,或所使用的GNSS时钟的同步精度,或优先级标识。
  20. 根据权利要求16所述的方法,其特征在于,所述直连链路同步信息包括直连链路主信息MIB-SL;
    所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源包括:
    所述第二终端解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
    所述第二终端根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
  21. 根据权利要求17所述的方法,其特征在于,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包括所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
    所述第二终端根据所述第一终端发送的直连链路同步信息与所述第一终端同步包括:
    所述第二终端根据所述SLSS获得所述第一终端的时隙边界;
    所述第二终端与所述第一终端的时隙边界对齐;
    所述第二终端根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在设备到设备D2D系统中对应的传输时隙;
    所述第二终端与所述第一终端的所述传输时隙对齐。
  22. 根据权利要求21所述的方法,其特征在于,所述传输时隙为子帧号和/或帧号。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述使用GNSS时钟的同步源的优先级高于不使用GNSS时钟的同步源的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级以及网络覆盖内小区的优先级;
    或,所述使用GNSS时钟的同步源的优先级高于网络覆盖外不使用GNSS时钟的同步源的优先级且小于网络覆盖内小区的优先级。
  24. 一种终端,其特征在于,包括:
    获取模块,用于获取第一配置信息,所述第一配置信息包括第一参数;
    确定模块,用于根据全球导航卫星系统GNSS的时钟确定当前时刻在设备 到设备D2D通信系统中对应的传输时隙;
    判断模块,用于根据所述确定模块确定的所述传输时隙及所述获取模块获取的所述第一参数判断所述当前时刻是否为同步信息发送时刻;
    发送模块,用于当所述判断模块确定所述当前时刻为同步信息发送时刻时,在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
  25. 根据权利要求24所述的终端,其特征在于,
    所述获取模块,还用于获取第二配置信息;
    所述确定模块,还用于根据GNSS的时钟及所述获取模块获取的第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
  26. 根据权利要求25所述的终端,其特征在于,
    所述获取模块,还用于通过预配置方式获取所述第二配置信息;
    或,
    所述获取模块,还用于当所述第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取所述第二配置信息;
    或,
    所述获取模块,还用于当所述第一终端处于网络覆盖内时,接收基站发送的RRC信令获取所述第二配置信息;
    或,
    所述获取模块,还用于根据预置协议获取所述第二配置信息。
  27. 根据权利要求25或26所述的终端,其特征在于,所述第二配置信息包括第二参数;
    所述确定模块,还用于根据所述GNSS的时钟确定当前时刻;
    所述确定模块,还用于根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
  28. 根据权利要求27所述的终端,其特征在于,所述第二参数包括初始参照时刻;
    所述确定模块:还用于计算所述当前时刻及所述初始参照时刻的差值;
    所述确定模块,还用于根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
  29. 一种终端,其特征在于,包括:
    获取模块,用于获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
    确定模块,用于根据所述获取模块获取的指示信息确定所述第一终端为使用GNSS时钟的同步源;
    同步模块,用于根据所述直连链路同步信息与所述第一终端同步。
  30. 根据权利要求29所述的终端,其特征在于,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述确定模块,还用于解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    所述确定模块,还用于根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
  31. 根据权利要求29所述的终端,其特征在于,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述确定模块,还用于解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    所述确定模块,还用于根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
    所述同步模块,还用于当存在多个第一终端时,解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
    所述同步模块,还用于根据所述第二专用序列确定各个第一终端的同步源优先级;
    所述同步模块,还用于与所述多个第一终端中同步源优先级最高的第一终端同步。
  32. 根据权利要求29所述的终端,其特征在于,所述直连链路同步信息包括直连链路主信息MIB-SL;
    所述确定模块,还用于解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
    所述确定模块,还用于根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
  33. 根据权利要求30所述的终端,其特征在于,所述直连链路同步信息还包括MIB-SL,所述MIB-SL包括所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
    所述同步模块,还用于根据所述SLSS获得所述第一终端的时隙边界;
    所述同步模块,还用于与所述第一终端的时隙边界对齐;
    所述同步模块,还用于根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在设备到设备D2D系统中对应的传输时隙;
    所述同步模块,还用于与所述第一终端的所述传输时隙对齐。
  34. 一种终端,其特征在于,包括:射频模块、处理器及存储器;
    所述处理器用于执行以下流程:
    根据GNSS的时钟确定当前时刻在D2D系统中对应的传输时隙;
    根据传输时隙及所述第一参数判断当前时刻是否为同步信息发送时刻;
    所述射频模块用于执行以下流程:
    获取第一配置信息,所述第一配置信息包括第一参数;
    当所述处理器确定所述当前时刻为同步信息发送时刻时,在所述同步信息发送时刻发送直连链路同步信息,所述直连链路同步信息携带指示信息,所述直连链路同步信息用于使第二终端与所述第一终端同步,所述指示信息用于向所述第二终端指示所述第一终端为使用GNSS时钟的同步源。
  35. 根据权利要求34所述的终端,其特征在于,所述射频模块还用于执行以下流程:
    获取第二配置信息;
    根据所述GNSS的时钟及第二配置信息确定当前时刻在D2D通信系统中对应的传输时隙。
  36. 根据权利要求35所述的终端,其特征在于,所述处理器具体执行以下流程:
    通过预配置的方式获取第二配置信息;
    或,
    根据预置协议获取第二配置信息;
    或所述射频模块具体执行以下流程:
    当第一终端处于网络覆盖内时,接收基站发送的系统广播信息获取所述第二配置信息;
    或,
    当第一终端处于网络覆盖内时,接收基站发送的RRC信令获取所述第二配置信息。
  37. 根据权利要求34或35所述的终端,其特征在于,所述第二配置信息包括第二参数;
    所述处理器具体执行以下流程:
    根据所述GNSS的时钟确定当前时刻;
    根据所述当前时刻及所述第二参数按照预置计算规则计算所述传输时隙。
  38. 根据权利要求37所述的终端,其特征在于,所述第二参数包括初始参照时刻;
    所述处理器具体执行以下流程:
    计算所述当前时刻及所述初始参照时刻的差值;
    根据所述预置计算规则及所述差值计算所述当前时刻在D2D通信系统中对应的帧号及子帧号。
  39. 一种终端,其特征在于,包括射频模块、处理器及存储器;
    所述射频模块执行以下流程:
    获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
    所述处理器执行如下流程:
    获取第一终端发送的直连链路同步信息,所述直连链路同步信息携带指示信息;
    根据所述直连链路同步信息与所述第一终端同步。
  40. 根据权利要求39所述的终端,其特征在于,所述直连链路同步信息包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述处理器具体执行以下流程:
    解析所述PSSS和/或所述SSSS得到专用序列,所述专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    根据所述专用序列确定所述第一终端为使用GNSS时钟的同步源。
  41. 根据权利要求39所述的终端,其特征在于,所述直连链路包括直连链路同步信号SLSS,所述SLSS包括主同步信号PSSS及辅助同步信号SSSS;
    所述处理器具体执行以下流程:
    解析所述PSSS得到第一专用序列,所述第一专用序列用于指示所述第一终端为使用GNSS时钟的同步源;
    根据所述第一专用序列确定所述第一终端为使用GNSS时钟的同步源;
    当存在多个第一终端时,解析所述SSSS得到所述第二专用序列,所述第二专用序列包含目标指示信息,所述目标指示信息用于指示所述第一终端在使用GNSS时钟的同步源中的优先级;
    根据所述第二专用序列确定各个第一终端的同步源优先级;
    所述多个第一终端中同步源优先级最高的第一终端同步。
  42. 根据权利要求39所述的终端,其特征在于,所述直连链路同步信息包括直连链路主信息MIB-SL;
    所述处理器具体执行以下流程:
    解析所述MIB-SL得到所述指示信息,所述指示信息用于指示所述第一终端为使用GNSS时钟的同步源;
    根据所述指示信息确定所述第一终端为使用GNSS时钟的同步源。
  43. 根据权利要求40所述的终端,其特征在于,所述直连链路同步信息还包括MIB-SL第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
    所述处理器还用于执行以下流程:
    根据所述SLSS获得所述第一终端的时隙边界;
    与所述第一终端的时隙边界对齐;
    根据所述MIB-SL确定所述第一终端根据GNSS时钟确定的当前时刻在D2D系统中对应的传输时隙;
    与所述第一终端的所述传输时隙对齐。
PCT/CN2015/086727 2015-08-12 2015-08-12 同步通信方法及终端 WO2017024541A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2015/086727 WO2017024541A1 (zh) 2015-08-12 2015-08-12 同步通信方法及终端
CN202010914275.1A CN112512113B (zh) 2015-08-12 2015-08-12 同步通信方法及终端
EP15900739.2A EP3306991B1 (en) 2015-08-12 2015-08-12 Synchronous communication method and terminal
EP21154702.1A EP3883307B1 (en) 2015-08-12 2015-08-12 Synchronous communication method and terminal
JP2018500732A JP6548346B2 (ja) 2015-08-12 2015-08-12 同期通信方法及び端末
CN201580039695.7A CN106576315B (zh) 2015-08-12 2015-08-12 同步通信方法及终端
US15/870,277 US10721697B2 (en) 2015-08-12 2018-01-12 Synchronous communication method and terminal
US16/910,939 US11606766B2 (en) 2015-08-12 2020-06-24 Synchronous communication method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086727 WO2017024541A1 (zh) 2015-08-12 2015-08-12 同步通信方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/870,277 Continuation US10721697B2 (en) 2015-08-12 2018-01-12 Synchronous communication method and terminal

Publications (1)

Publication Number Publication Date
WO2017024541A1 true WO2017024541A1 (zh) 2017-02-16

Family

ID=57984048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086727 WO2017024541A1 (zh) 2015-08-12 2015-08-12 同步通信方法及终端

Country Status (5)

Country Link
US (2) US10721697B2 (zh)
EP (2) EP3306991B1 (zh)
JP (1) JP6548346B2 (zh)
CN (2) CN106576315B (zh)
WO (1) WO2017024541A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294769A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 同步源信息的确定、指示方法及装置、存储介质、终端
WO2020143756A1 (en) * 2019-01-10 2020-07-16 Mediatek Singapore Pte. Ltd. Sidelink synchronization signal block (s-ssb) design
CN115623582A (zh) * 2022-12-20 2023-01-17 浙江吉利控股集团有限公司 一种低轨卫星星座时间同步方法、系统、装置及介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052687A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Systems, methods and devices for cellular synchronization references
CN106686521B (zh) * 2015-11-05 2021-05-18 索尼公司 用于车辆间通信的方法和设备
US10869288B2 (en) * 2016-03-30 2020-12-15 Lg Electronics Inc. Method for determining transmission timing in V2X UE
CN110278606B (zh) * 2016-08-11 2020-07-24 华为技术有限公司 传输数据的方法、装置和计算机可读存储介质
KR102637452B1 (ko) * 2018-08-17 2024-02-16 주식회사 아이티엘 Nr v2x 시스템을 위한 동기화 신호 송수신 방법 및 그 장치
EP3860253A4 (en) * 2018-09-27 2022-05-11 Ntt Docomo, Inc. USER DEVICE
CN111565447B (zh) * 2019-02-14 2022-09-09 大唐移动通信设备有限公司 一种同步广播信息的发送方法、接收方法及设备
CN111757458B (zh) * 2019-03-29 2022-04-12 华为技术有限公司 通信的方法和终端装置
WO2021030945A1 (en) * 2019-08-16 2021-02-25 Mediatek Singapore Pte. Ltd. Synchronization procedure design for v2x communication
CN113099466A (zh) * 2020-01-09 2021-07-09 大唐移动通信设备有限公司 一种时差检测方法和装置
CN115038159A (zh) * 2021-03-08 2022-09-09 华为技术有限公司 一种同步方法及通信装置
EP4380252A1 (en) * 2021-07-26 2024-06-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for time synchronization and user equipment
CN115967461A (zh) * 2021-10-12 2023-04-14 华为技术有限公司 时钟同步方法、设备及系统
CN113904993B (zh) * 2021-10-27 2023-06-27 西安微电子技术研究所 一种支持多优先级的时间触发以太网时钟同步控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015021345A2 (en) * 2013-08-09 2015-02-12 Alcatel-Lucent Usa Inc. Two-stage device-to-device (d2d) discovery procedures
WO2015063186A1 (en) * 2013-10-31 2015-05-07 Telefonaktiebolaget L M Ericsson (Publ) Method and device for d2d communication within a cellular radio network
WO2015116865A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Resource selection for device to device discovery or communication

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052461A2 (en) * 2000-01-14 2001-07-19 Addvalue Technologies Ltd. Communication apparatus
FR2870414B1 (fr) * 2004-05-17 2006-08-18 Alcatel Sa Determination par un terminal de communication du temps de propagation d'un signal de reference provenant d'un equipement de gestion de communications
US8243712B2 (en) * 2005-05-10 2012-08-14 Qualcomm Incorporated Base station synchronization using multi-communication mode user equipment
ES2376124T3 (es) * 2006-01-11 2012-03-09 Qualcomm Incorporated Selección de par�?metros en un sistema de comunicaciones de punto a punto.
US8565169B2 (en) 2010-01-12 2013-10-22 Qualcomm Incorporated Timing synchronization methods and apparatus
KR101855229B1 (ko) * 2011-10-27 2018-05-10 삼성전자주식회사 디바이스의 동기화 수행 방법 및 장치
US8787954B2 (en) * 2012-01-12 2014-07-22 Qualcomm Incorporated Method and apparatus for synchronizing a wireless network with an external timing source
KR101967169B1 (ko) * 2012-05-16 2019-04-09 삼성전자주식회사 디바이스간 네트워크에서 동기화 방법 및 장치
US9918181B2 (en) * 2012-06-26 2018-03-13 Lg Electronics Inc. Synchronization method and synchronization apparatus for D2D communication in wireless communication system
US9137763B2 (en) * 2012-11-16 2015-09-15 Qualcomm Incorporated Methods and apparatus for enabling distributed frequency synchronization
US9143291B2 (en) * 2012-12-27 2015-09-22 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9398062B2 (en) * 2013-03-29 2016-07-19 Intel IP Corporation Timing synchronization in discovery signals
WO2015010337A1 (zh) * 2013-07-26 2015-01-29 华为终端有限公司 同步信号的承载方法和用户设备
US10666315B2 (en) * 2013-08-22 2020-05-26 Fujitsu Limited Synchronization for terminal-to-terminal communication
US10064212B2 (en) * 2015-05-14 2018-08-28 Blackberry Limited Transmitting a scheduling request for a device-to-device transmission
KR102589108B1 (ko) * 2015-07-29 2023-10-16 콘비다 와이어리스, 엘엘씨 통신 디바이스들 및 방법들

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015021345A2 (en) * 2013-08-09 2015-02-12 Alcatel-Lucent Usa Inc. Two-stage device-to-device (d2d) discovery procedures
WO2015063186A1 (en) * 2013-10-31 2015-05-07 Telefonaktiebolaget L M Ericsson (Publ) Method and device for d2d communication within a cellular radio network
WO2015116865A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Resource selection for device to device discovery or communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP.: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 12", 3GPP TS 36.331 V12.6.0, 30 June 2015 (2015-06-30), pages 153 - 158 , 371 and 389, XP050986363 *
See also references of EP3306991A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143756A1 (en) * 2019-01-10 2020-07-16 Mediatek Singapore Pte. Ltd. Sidelink synchronization signal block (s-ssb) design
CN111684842A (zh) * 2019-01-10 2020-09-18 联发科技(新加坡)私人有限公司 侧链同步信号块设计
TWI747134B (zh) * 2019-01-10 2021-11-21 新加坡商聯發科技(新加坡)私人有限公司 側鏈通訊同步之方法及其裝置、電腦可讀介質
CN111294769A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 同步源信息的确定、指示方法及装置、存储介质、终端
CN111294769B (zh) * 2019-01-11 2022-08-09 北京紫光展锐通信技术有限公司 同步源信息的确定、指示方法及装置、存储介质、终端
CN115623582A (zh) * 2022-12-20 2023-01-17 浙江吉利控股集团有限公司 一种低轨卫星星座时间同步方法、系统、装置及介质

Also Published As

Publication number Publication date
US20180139714A1 (en) 2018-05-17
US11606766B2 (en) 2023-03-14
JP6548346B2 (ja) 2019-07-24
CN112512113A (zh) 2021-03-16
US10721697B2 (en) 2020-07-21
EP3306991B1 (en) 2021-03-17
EP3883307B1 (en) 2024-04-03
CN106576315A (zh) 2017-04-19
JP2018527786A (ja) 2018-09-20
EP3883307A1 (en) 2021-09-22
EP3306991A4 (en) 2018-07-11
CN106576315B (zh) 2020-09-18
US20200322911A1 (en) 2020-10-08
CN112512113B (zh) 2022-12-06
EP3306991A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2017024541A1 (zh) 同步通信方法及终端
US20210337583A1 (en) Data transmission method and corresponding terminal
EP4181587A1 (en) Wireless communication method and apparatus, device, and storage medium
CN113133076B (zh) 通信方法、相关设备及通信系统
WO2021027515A1 (zh) 测距方法及设备
KR20120088038A (ko) 휴대용 단말기의 블루투스 기기 검색 방법 및 장치
US20230134028A1 (en) METHOD AND APPARATUS OF POSITIONING BETWEEN UEs, COMMUNICATION DEVICE AND STORAGE MEDIUM
CN112236977B (zh) 参数配置方法、装置、通信设备和存储介质
WO2019001188A1 (zh) 一种数据处理方法、终端以及基站
WO2017049933A1 (zh) 一种直通呼叫通信方法及终端
US11589344B2 (en) Communications method and apparatus
US20230247580A1 (en) Position determination method, apparatus, communication device, and storage medium
CN111277351B (zh) 一种信息处理方法、终端设备和网络侧设备
CN114557065B (zh) 终端的定位方法、装置、通信设备及存储介质
EP3998838A1 (en) Method and apparatus for indicating timing advance, and communication device and storage medium
CN116349312A (zh) 信息处理方法以及装置、通信设备及存储介质
CN116420379A (zh) 一种切片信息的指示方法、终端设备及网络设备
CN112312529A (zh) 一种通信处理方法及终端设备
CN117083924A (zh) 信息传输方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015900739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018500732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE