WO2017022807A1 - Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device - Google Patents

Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device Download PDF

Info

Publication number
WO2017022807A1
WO2017022807A1 PCT/JP2016/072848 JP2016072848W WO2017022807A1 WO 2017022807 A1 WO2017022807 A1 WO 2017022807A1 JP 2016072848 W JP2016072848 W JP 2016072848W WO 2017022807 A1 WO2017022807 A1 WO 2017022807A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
group
resin
wiring board
Prior art date
Application number
PCT/JP2016/072848
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 高森
雅史 石井
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015187489A external-priority patent/JP6438370B2/en
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to KR1020187006355A priority Critical patent/KR102066362B1/en
Priority to CN201680038794.8A priority patent/CN107710890A/en
Publication of WO2017022807A1 publication Critical patent/WO2017022807A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a method for producing a printed wiring board, a surface-treated copper foil, a laminate, a printed wiring board, a semiconductor package, and an electronic device.
  • the following can be cited as an example of the semi-additive method using the surface profile of the latter copper foil. That is, first, the entire surface of the copper foil laminated on the resin base material is etched, the etching base material surface to which the copper foil surface profile is transferred is drilled with a laser or the like, and an electroless copper plating layer for conducting the drilled portion is formed. The electroless copper plating surface is coated with a dry film, the dry film of the circuit forming part is removed by UV exposure and development, and the electroless copper plating surface not coated with the dry film is electroplated with copper. Then, the electroless copper plating layer is etched (flash etching, quick etching) with an etching solution containing sulfuric acid and hydrogen peroxide solution, and a fine circuit is formed (Patent Document 1 and Patent Document 2). ).
  • the copper foil surface profile can be transferred to the surface of the resin substrate without damaging the copper foil surface, and the copper foil can be removed at a good cost. There is still room for consideration.
  • the inventor has provided a release layer on the copper foil, and enables physical peeling of the resin base material when the copper foil is bonded to the resin base material.
  • the copper foil can be removed at a good cost without impairing the profile of the copper foil surface transferred to the surface of the resin base material.
  • the present invention completed on the basis of the above knowledge, in one aspect, a step of bonding a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface, and the resin base material And removing the surface-treated copper foil to obtain a resin base material having the surface profile of the copper foil transferred to the release surface, and to the release surface side of the resin base material to which the surface profile has been transferred. And a process for forming a plating pattern.
  • a step of obtaining a resin base material in which the surface profile of the copper foil is transferred to the release surface by removing the foil, and a step of providing a build-up layer on the release surface side of the resin base material to which the surface profile is transferred Is a method for manufacturing a printed wiring board comprising:
  • the method for producing a printed wiring board of the present invention has a strength of 500 g / cm when the untreated surfaces of the resin constituting the buildup layer and the resin base material are bonded together and pulled apart. 2 or less.
  • the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
  • the aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.) Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
  • the release layer uses a compound having two or less mercapto groups in the molecule.
  • the copper foil has a convex portion on the surface of the release layer, and the convex portion is formed by using an electron microscope.
  • the surface of the copper foil is photographed on the release layer side surface with the stage placed 45 ° tilted from the horizontal plane, and the height from the constricted portion of the convex portion to the tip of the convex portion measured based on the obtained photograph is taken.
  • the thickness is a
  • the maximum width at the widest portion of the convex portion is b
  • the minimum width of the constricted portion of the convex portion is c
  • a group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer between the copper foil and the release layer.
  • a group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer between the copper foil and the release layer.
  • One or more layers selected from are provided.
  • the surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer, A resin layer is provided.
  • a resin layer is provided on the surface of the surface-treated copper foil on the release layer side.
  • the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  • the surface-treated copper foil has a thickness of 9 to 70 ⁇ m.
  • Still another aspect of the present invention is a surface-treated copper foil having a copper foil and a release layer provided on the surface of the copper foil, wherein the copper foil is convex on the release layer side surface.
  • the projecting part has a portion, and the electron microscope is used to photograph the release layer side surface of the copper foil in a state where the stage on which the copper foil is placed is inclined 45 ° from the horizontal plane.
  • the copper foil does not have roughened particles on the release layer side surface.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
  • the aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.) Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
  • the release layer uses a compound having two or less mercapto groups in the molecule.
  • the surface-treated copper foil of the present invention is selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer between the copper foil and the release layer. Provide one or more layers.
  • the surface-treated copper foil of the present invention has a resin layer on the surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. Is provided.
  • a resin layer is provided on the surface of the release layer side.
  • the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  • the surface-treated copper foil of the present invention has a thickness of 9 to 70 ⁇ m.
  • FIG. 1 Another aspect of the present invention is a laminate including the surface-treated copper foil of the present invention and a resin base material provided on the release layer side of the surface-treated copper foil.
  • the resin base material is a prepreg or contains a thermosetting resin.
  • the present invention is a printed wiring board provided with the surface-treated copper foil of the present invention.
  • the present invention is a printed wiring board manufactured using the surface-treated copper foil of the present invention.
  • the present invention is a semiconductor package provided with the printed wiring board of the present invention.
  • the present invention is an electronic device including the printed wiring board of the present invention or the semiconductor package of the present invention.
  • a printed wiring board manufacturing method and a surface-treated copper foil capable of removing a copper foil at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of a resin substrate.
  • Sample No. 58 is a microscopic observation photograph of the surface of the release layer side of the surface-treated copper foil according to 58.
  • Sample No. 5 is a microscopic observation photograph of the release layer side surface of the surface-treated copper foil according to 55. It is a schematic diagram of the sample (copper foil) and stage for showing the evaluation method of the convex part of the mold release layer side surface of surface treatment copper foil.
  • a step of bonding a resin base material from the release layer side, and from the resin base material Removing the surface-treated copper foil to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface; and a plating pattern on the release surface side of the resin base material to which the surface profile is transferred Forming a step.
  • the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material.
  • a desired circuit can be formed using the plating pattern to produce a printed wiring board.
  • the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material.
  • a desired printed circuit is formed using the print pattern to produce a printed wiring board. it can.
  • the manufacturing method of the printed wiring board of the present invention is, in still another aspect, a step of bonding a resin base material from the release layer side to the surface-treated copper foil provided with a release layer on the surface; Removing the surface-treated copper foil from the resin base material to obtain a resin base material having the copper foil surface profile transferred to the release surface; and removing the resin base material to which the surface profile has been transferred Providing a buildup layer on the surface side.
  • a release layer is provided on the copper foil, and the physical peeling of the resin base material when the copper foil is bonded to the resin base material becomes possible, and the copper foil is removed from the resin base material.
  • the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material.
  • the resin constituting the build-up layer provided on the surface of the resin base material is bonded to each other without any treatment of the resin and the resin base material (the resin constituting the build-up layer and the resin base material).
  • the strength (pull strength) when pulled and peeled off may be 500 g / cm 2 or less.
  • the resin constituting the build-up layer provided on the surface of the resin base material has a strength (pull strength) of 500 g / pull when the resin and the resin base material are bonded to each other without any treatment and then pulled and peeled off.
  • the value is as low as cm 2 or less, when the profile of the copper foil surface is transferred to the resin substrate, the adhesion between the resin constituting the build-up layer and the resin substrate is improved, and the pull strength is increased.
  • the “build-up layer” refers to a layer having a conductive layer, a wiring pattern or a circuit, and an insulator such as a resin.
  • the shape of the insulator such as the resin may be a layer.
  • the above-described conductive layer, wiring pattern, or circuit and an insulator such as resin may be provided in any order or position.
  • the build-up layer can be produced by providing a conductive layer, a wiring pattern or a circuit, and an insulator such as a resin on the release surface side of the resin base material on which the surface profile of the copper foil is transferred to the release surface.
  • the build-up layer may have a plurality of layers, or may have a plurality of conductive layers, wiring patterns or circuits, and an insulator (layer) such as a resin.
  • the plurality of conductive layers, wiring patterns, or circuits may be electrically insulated by an insulator such as resin.
  • through holes and / or blind vias are formed in an insulating material such as a resin through a plurality of electrically conductive layers, wiring patterns, or circuits by laser and / or drilling, the through holes and / or blind vias are formed.
  • electrical connection may be made by forming conductive plating such as copper plating.
  • the surface-treated copper foil having a release layer provided on the surface is bonded to both surfaces of the resin base material from the release layer side, and then the surface-treated copper foil is removed to form both surfaces of the resin base material.
  • a printed wiring board may be manufactured by transferring the surface profile of the surface-treated copper foil and providing a circuit, a wiring pattern, or a build-up layer on both surfaces of the resin substrate.
  • the resins, resin layers, and resin base materials described in the present specification can be used.
  • Known resins, resin layers, resin base materials, insulators, A prepreg, a base material in which a glass cloth is impregnated with a resin, or the like can be used.
  • the insulator such as a resin may include an inorganic substance and / or an organic substance.
  • insulators, such as resin which comprises a buildup layer may be formed with the material which has low dielectric constants, such as LCP (liquid crystal polymer) or polytetrafluoroethylene.
  • thermosetting resin such as an epoxy resin is used as a resin substrate, and it is bonded to the resin substrate so that it has excellent high-frequency characteristics and heat.
  • the printed wiring board which can prevent the shape deformation at the time of adding can be provided.
  • the surface-treated copper foil used in the method for producing a printed wiring board of the present application described above is preferably used. That is, the surface-treated copper foil is a surface-treated copper foil having a copper foil and a release layer provided on the surface of the copper foil, and the copper foil is convex on the release layer side surface.
  • the cross-sectional schematic diagram of the copper foil which has the convex part which specified "a", "b", and "c" in FIG. 1 is shown. As shown in FIG.
  • the convex portion is obtained by taking a picture of the surface of the release layer side of the copper foil in a state where the stage on which the copper foil is placed is inclined 45 ° from the horizontal plane, as shown in FIG.
  • the height from the constricted portion of the convex portion to the tip of the convex portion measured based on the photograph (hereinafter, for example, FIG. 8 described later) is a
  • the maximum width at the widest portion of the convex portion is b
  • the minimum width of the constricted portion is c, it is preferable that both the following expressions are satisfied.
  • the above-mentioned measurable convex portion means a convex portion where the constricted portion can be observed.
  • the convex part where the constricted part is observable is a convex part capable of observing the ridge line (illustrated in FIG. 8) of the convex part.
  • the “necked portion” is a portion where the width of the convex portion on the surface of the copper foil becomes narrow after the width is once increased from the tip of the convex portion when observed in the direction approaching the copper foil.
  • “Width of convex part” is the width of the photo divided by the contour or ridge line of the convex part when a line crossing the convex part is drawn parallel to the horizontal frame of the photograph on the photograph obtained with a scanning electron microscope. This is the length of a straight line that crosses the convex part drawn parallel to the frame.
  • Height a from the constricted part of the convex part to the leading end of the convex part refers to the line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part from the leading end of the convex part
  • the distance (a ′) to the intersection of a line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part and the perpendicular line drawn from the tip of the convex part And the square root of 2.
  • the “tip of the convex portion” means a portion that is estimated to be the highest of the convex portion determined based on the shadow of the photographed unevenness when the photograph is observed (see FIG. 7).
  • the “maximum width b in the widest part” is a convex part of a straight line that intersects the convex part parallel to the horizontal frame of the photograph between the tip of the convex part and the constricted part when the convex part has a constricted part. The longest length delimited by the outline.
  • the convex portion of the copper foil may be a convex portion in the surface irregularities generated during the electrolytic treatment during the formation of the copper foil, or a convex portion due to the roughened particles generated by the roughening treatment. Also good.
  • a copper foil (FIG. 2) having rough particles (nodules) is bonded to the resin substrate from the surface of the rough particles (FIG. 3), and then copper By removing the foil, the profile of the copper foil surface is transferred to the surface of the resin substrate, and a plating pattern or the like is formed on the transfer surface (FIG. 4).
  • a gap is generated in the transfer profile to the resin base material surface after removing the copper foil, and depending on the size of the gap, the plating solution used when forming the plating pattern may be It may not be possible to enter.
  • a gap remains between the resin base material surface and the plating pattern to be formed. If such voids remain, a reliability test (for example, a heat test at 250 ° C. ⁇ 10 ° C. ⁇ 1 hour when a printed wiring board or the like is formed by forming a circuit using a plating pattern is used. ) Due to expansion in the vicinity of the gap, causing problems such as circuit peeling or substrate swelling.
  • the copper foil has a convex portion on the surface of the release layer, and the convex portion is cut in a direction perpendicular to the height direction.
  • the cross section it has a constricted part while proceeding from the copper foil surface to the widest part of the cross section, the height of the convex part is a, and the widest in the cross section when cut in the direction perpendicular to the height direction.
  • the release layer has a function of making the resin substrate peelable when the resin substrate is bonded to the copper foil from the release layer side.
  • the release layer may be provided on both sides of the copper foil.
  • the bonding may be performed by pressure bonding.
  • the copper foil (also referred to as raw foil) is formed of an electrolytic copper foil, and the thickness of the copper foil is not particularly limited, and can be, for example, 5 to 105 ⁇ m. Further, since the peeling from the resin base material is easy, the thickness of the surface-treated copper foil is preferably 9 to 70 ⁇ m, more preferably 12 to 35 ⁇ m, and further preferably 18 to 35 ⁇ m. Is more preferable.
  • an electrolytic copper foil can be produced on the following electrolysis conditions.
  • Electrolytic conditions for electrolytic green foil Cu: 30 to 190 g / L H 2 SO 4 : 100 to 400 g / L Chloride ion (Cl ⁇ ): 10 to 200 ppm by mass
  • Electrolyte temperature 25-80 ° C
  • Electrolysis time 10 to 300 seconds (adjusted according to the thickness of copper to be deposited and current density)
  • Current density 50 to 150 A / dm 2
  • Electrolyte linear velocity 1.5-5m / sec
  • the value of above-mentioned a and b can be enlarged by making copper concentration of electrolyte solution high.
  • the value of a and b mentioned above can be made small by making the copper concentration of electrolyte solution low. Further, by increasing the temperature of the electrolytic solution, the values of a and b described above can be increased. Moreover, the value of a, b, c mentioned above can be made small by making the temperature of electrolyte solution low. Further, by increasing the chloride ion concentration, the values of a and b described above can be increased. Note that, by increasing the chloride ion concentration, there is a tendency that the value of a is larger than the value of b. Further, by reducing the chloride ion concentration, the values of a and b described above can be reduced.
  • removing the copper foil from the resin base material means removing the copper foil from the resin base material by chemical treatment such as etching, or physically peeling the resin base material from the copper foil by peeling or the like. It means to do.
  • the resin substrate is removed after being bonded to the surface-treated copper foil of the present invention as described above, the resin substrate and the surface-treated copper foil are separated by a release layer. At this time, a part of the release layer, roughened particles of copper foil described later, a heat-resistant layer, a rust preventive layer, a chromate treatment layer, a silane coupling treatment layer, etc. may remain on the release surface of the resin substrate. Preferably, no residue is present.
  • the surface-treated copper foil according to the present invention preferably has a peel strength of 200 gf / cm or less when the resin substrate is peeled off when the resin substrate is bonded to the copper foil from the release layer side. If controlled in this way, physical peeling of the resin base material becomes easy, and the profile of the copper foil surface is transferred to the resin base material better.
  • the peel strength is more preferably 150 gf / cm or less, even more preferably 100 gf / cm or less, even more preferably 50 gf / cm or less, typically 1 to 200 gf / cm, and more Typically 1 to 150 gf / cm.
  • Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.
  • the silane compound must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and copper foil to fall too much.
  • the silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom.
  • the alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
  • the silane compound has three alkoxy groups and the hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one).
  • both R 3 and R 4 are alkoxy groups.
  • Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl.
  • cycloalkyl group examples include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms.
  • An alkyl group is mentioned.
  • the aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms.
  • an alkyl group eg, tolyl group,
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl.
  • propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
  • the silane compound in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used.
  • the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
  • the concentration of the silane compound in the aqueous solution of the silane compound can be 0.01 to 10.0% by volume, and typically 0.1 to 5.0% by volume.
  • the pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the release layer is composed of a compound having two or more mercapto groups in the molecule, and the resin base material and copper are interposed via the release layer. Adhesion with the foil can also be appropriately reduced to adjust the peel strength. However, when a compound having three or more mercapto groups in the molecule or a salt thereof is bonded between the resin substrate and the copper foil, it is not suitable for the purpose of reducing the peel strength.
  • Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from these can be used.
  • Thiol has one mercapto group in the molecule and is represented by, for example, R-SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
  • the thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • the thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
  • Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiocarboxylic acid can also be used in the form of a salt.
  • a compound having two dithiocarboxylic acid groups can also be used.
  • the thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • thiosulfonic acid can be used in the form of a salt.
  • Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons.
  • Dithiosulfonic acid can also be used in the form of a salt.
  • examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • heterocyclic group suitable as R examples include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
  • Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
  • a compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
  • the peel strength can be adjusted by adjusting the concentration.
  • the concentration of the compound having 2 or less mercapto groups in the molecule in the aqueous solution can be 0.01 to 10.0% by weight, typically 0.1 to 5.0%. % By weight.
  • the pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the release layer is formed from an aluminate compound, titanate compound, zirconate compound, or a hydrolysis product thereof having a structure represented by the following formula, or a condensation product of the hydrolysis product (hereinafter simply referred to as metal alkoxide and May be used alone or in combination.
  • metal alkoxide a condensation product of the hydrolysis product
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group.
  • M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
  • the metal alkoxide must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and copper foil to fall too much.
  • the metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the resin substrate and the copper foil tends to be too low.
  • the alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
  • the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldieth
  • titanate compounds examples include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso
  • zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltrie
  • the metal alkoxide in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water.
  • the addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
  • the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
  • the pH of the aqueous solution of the metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • a known release material such as a silicon-based release agent or a resin coating having a release property, can be used for the release layer.
  • the surface-treated copper foil according to the present invention is selected from the group consisting of a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer between the copper foil and the release layer. More than one seed layer may be provided.
  • the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • Specific examples of the chromate treatment layer include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
  • a roughening process layer can be formed by the following processes, for example.
  • the values of a and b described above can be increased by increasing the copper concentration in the plating solution used for the roughening treatment. Further, by reducing the copper concentration in the plating solution used for the roughening treatment, the values of a and b described above can be reduced. Further, by increasing the concentration of a metal other than copper in the plating solution used for the roughening treatment, the values of a and b described above can be reduced. Further, by increasing the temperature of the plating solution, the values of a and b described above can be increased. Moreover, the value of a, b, c mentioned above can be made small by lowering the temperature of the plating solution.
  • Spherical roughening Spherical rough particles are formed using a copper roughening plating bath described below, which is made of Cu, H 2 SO 4 and As.
  • Liquid composition 1 CuSO 4 ⁇ 5H 2 O 78 ⁇ 196g / L Cu 20-50g / L H 2 SO 4 50-200 g / L Arsenic 0.7-3.0g / L (Electroplating temperature 1) 30 ⁇ 76 °C (Current condition 1) Current density 35 to 105 A / dm 2 (above the limiting current density of the bath) (Plating time 1) 1 to 240 seconds Subsequently, plating is performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent the rough particles from falling off and to improve the peel strength.
  • the covering plating conditions are described below.
  • Liquid composition 2 CuSO 4 ⁇ 5H 2 O 88-352g / L Cu 22-90g / L H 2 SO 4 50-200 g / L (Electroplating temperature 2) 25-80 ° C (Current condition 2) Current density: 15 to 32 A / dm 2 (below the limit current density of the bath) (Plating time 1) 1 to 240 seconds
  • Liquid composition 1 CuSO 4 .5H 2 O 29.5 to 118 g / L Cu 7.5-30g / L H 2 SO 4 50-200 g / L Na 2 WO 4 ⁇ 2H 2 O 2.7 to 10.8 mg / L Sodium dodecyl sulfate addition amount 5-20ppm (Electroplating temperature 1) 20 ⁇ 70 °C (Current condition 1) Current density 34 to 74 A / dm 2 (Plating time 1) 1 to 180 seconds Subsequently, normal plating is performed under the following conditions.
  • Liquid composition 2 CuSO 4 ⁇ 5H 2 O 88-352g / L Cu 40-90g / L H 2 SO 4 50-200 g / L (Electroplating temperature 2) 30 ⁇ 65 °C (Current condition 2) Current density 21 to 45 A / dm 2 (Plating time 2) 1 to 180 seconds
  • Liquid composition 1 Cu 10-20g / L Co 1-10g / L Ni 1 ⁇ 10g / L pH 1-4 (Electroplating temperature 1) 30-50 ° C (Current condition 1) Current density 25 to 45 A / dm 2 (Plating time 1) 1-60 seconds ⁇ Liquid composition 2 Co 1-30g / L Ni 1-30g / L pH 1.0-3.5 (Electroplating temperature 2) 30 ⁇ 80 °C (Current condition 2) Current density 3-10A / dm 2 (Plating time 2) 1-60 seconds
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness of a resin base material and copper foil can be improved more.
  • a resin layer may be provided on the surface of the surface-treated copper foil according to the present invention.
  • the resin layer is usually provided on the release layer.
  • the resin layer on the surface of the surface-treated copper foil may be an adhesive resin, that is, an adhesive, a primer, or an insulating resin layer in a semi-cured state (B stage state) for adhesion.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer on the surface of the surface-treated copper foil is preferably a resin layer that exhibits an appropriate peel strength (for example, 2 gf / cm to 200 gf / cm) when in contact with the release layer.
  • a resin that follows the unevenness of the surface of the copper foil and hardly causes voids or bubbles that may cause swelling For example, when the resin layer is provided on the copper foil surface, a resin having a low viscosity such as a resin viscosity of 10,000 mPa ⁇ s (25 ° C.) or less, more preferably a resin viscosity of 5000 mPa ⁇ s (25 ° C.) or less is used. It is preferable to provide a resin layer.
  • the resin layer is a copper foil. Since it follows the surface, it is effective because it is possible to make it difficult for voids and bubbles to occur between the surface-treated copper foil and the insulating substrate.
  • the resin layer on the surface of the surface-treated copper foil may contain a thermosetting resin or may be a thermoplastic resin.
  • the resin layer on the surface of the surface-treated copper foil may contain a thermoplastic resin.
  • the resin layer on the surface of the surface-treated copper foil may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material and the like.
  • the resin layer on the surface of the surface-treated copper foil is, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 088453, JP-A-11-5828, JP-A-11-140281, Patent No.
  • a laminate can be produced by providing a resin substrate on the release layer side of the surface-treated copper foil according to the present invention.
  • the resin base material is a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin, a glass cloth / paper composite base epoxy resin, a glass cloth / glass non-woven composite base epoxy resin, and You may form with glass cloth base-material epoxy resin.
  • the resin substrate may be a prepreg or may contain a thermosetting resin.
  • a printed wiring board can be produced by forming a circuit on the surface-treated copper foil of the laminate.
  • a printed circuit board can be produced by mounting electronic components on a printed wiring board.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted in this manner.
  • an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted.
  • An electronic device may be manufactured using a substrate.
  • the “printed circuit board” includes a circuit forming substrate for a semiconductor package.
  • a semiconductor package can be manufactured by mounting electronic components on a circuit forming substrate for a semiconductor package. Further, an electronic device may be manufactured using the semiconductor package.
  • FIG. 6 shows a schematic example of the semi-additive method using a copper foil profile.
  • a surface profile of copper foil is used. Specifically, first, the surface-treated copper foil of the present invention is laminated on the resin base material from the release layer side to produce a laminate. Next, the copper foil (surface-treated copper foil) of the laminate is removed by etching or peeled off. Next, after the surface of the resin base material to which the copper foil surface profile has been transferred is washed with dilute sulfuric acid or the like, electroless copper plating is performed.
  • the semi-additive method refers to a method in which a thin electroless plating is performed on a resin substrate or copper foil, a pattern is formed, and then a conductor pattern is formed using electroplating and etching. Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing the surface-treated copper foil and the resin base material according to the present invention, Laminating a resin base material from the release layer side on the surface-treated copper foil, After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off, Providing a through hole or / and a blind via on the release surface of the resin base material produced by peeling off the surface-treated copper foil, Performing a desmear process on the region including the through hole or / and the blind via, Cleaning the resin substrate surface with dilute sulfuric acid for the resin substrate and the region including the through hole or / and the blind via
  • a step of preparing the surface-treated copper foil and the resin base material according to the present invention Laminating a resin base material from the release layer side on the surface-treated copper foil, After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off, For the peeled surface of the resin base material generated by peeling off the surface-treated copper foil, the step of washing the resin base material surface with dilute sulfuric acid or the like and providing an electroless plating layer (for example, electroless copper plating layer) Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed; Removing the plating
  • a circuit is formed on the release surface of the resin base material after the surface-treated copper foil is peeled off, and a printed circuit formation substrate and a circuit formation substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
  • a step of preparing the surface-treated copper foil and the resin base material according to the present invention Laminating a resin base material from the release layer side on the surface-treated copper foil, After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off, The step of washing the resin substrate surface with dilute sulfuric acid or the like for the peel surface of the resin substrate produced by peeling off the surface-treated copper foil, Providing a plating resist on the cleaned resin substrate surface; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electroless plating layer (for example, an electroless copper plating layer or a thick electroless plating layer) in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; including.
  • an electroless plating layer for example, an electroless copper plating layer or a thick electroless plating layer
  • the electroless plating layer can be easily provided by cleaning the surface of the resin base material.
  • a part or all of the release layer is removed from the surface of the resin base material by the cleaning.
  • cleaning by a known cleaning method (type of liquid to be used, temperature, liquid application method, etc.) can be used. Further, it is preferable to use a cleaning method capable of removing a part or all of the release layer of the present invention.
  • a circuit is formed on the release surface of the resin base material after the surface-treated copper foil is peeled off, and a printed circuit forming substrate and a circuit forming substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
  • the surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). If Si is detected, it can be inferred that a silane compound is present on the surface of the copper foil or the surface-treated copper foil.
  • the peel strength (peel strength) between the surface-treated copper foil and the resin substrate is 200 gf / cm or less, the silane compound that can be used for the release layer according to the present invention is used. Can be estimated.
  • the surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis).
  • S is detected, and when the peel strength (peel strength) between the surface-treated copper foil and the resin substrate is 200 gf / cm or less, the surface of the copper foil or surface-treated copper foil is subjected to the invention according to the present invention. It can be inferred that there are compounds having two or less mercapto groups in the molecule that can be used for the release layer.
  • the surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis).
  • XPS X-ray photoelectron spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analysis
  • the electrolytic raw foil of the thickness of Table 1 was produced on the following electrolysis conditions. (Electrolytic solution composition) Cu 120g / L H 2 SO 4 100 g / L Chloride ion (Cl -) 70 ppm Electrolyte temperature 60 °C Current density 70A / dm 2 Electrolyte linear velocity 2m / sec
  • Roughening Spherical roughening
  • Spherical roughened particles were formed using a copper roughening plating bath described below consisting of Cu, H 2 SO 4 and As.
  • ⁇ Liquid composition 1 CuSO 4 ⁇ 5H 2 O 78 ⁇ 118g / L Cu 20-30g / L H 2 SO 4 12g / L Arsenic 1.0-3.0g / L (Electroplating temperature 1) 25-33 ° C (Current condition 1) Current density 78 A / dm 2 (above the limiting current density of the bath) (Plating time 1) 1 to 45 seconds
  • plating was performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent falling off of the roughened particles and to improve the peel strength.
  • Liquid composition 2 CuSO 4 ⁇ 5H 2 O 156g / L Cu 40g / L H 2 SO 4 120 g / L (Electroplating temperature 2) 30-40 ° C (Current condition 2) Current density 38 A / dm 2 (Plating time 2) 1 to 45 seconds
  • Liquid composition 1 Cu 8-18g / L Co 1-10g / L Ni 1 ⁇ 10g / L pH 1-4 (Electroplating temperature 1) 30-40 ° C (Current condition 1) Current density 30 A / dm 2 (Plating time 1) 1-30 seconds ⁇ Liquid composition 2 Co 1-30g / L Ni 1-30g / L pH 1.0-3.5 (Electroplating temperature 2) 20 ⁇ 70 °C (Current condition 2) Current density 1 to 4 A / dm 2 (Plating time 2) 1 to 25 seconds
  • release layer Sample No. As shown in Table 1, any of the following release layers A to E was formed for 1 to 16, 19 to 34, 37 to 52, and 55 to 60.
  • Release layer A An aqueous solution of a silane compound (n-propyltrimethoxysilane: 4 wt%) is applied to the treated surface of the copper foil using a spray coater, and then the copper foil surface is dried in air at 100 ° C. for 5 minutes to separate it. A mold layer A was formed. The stirring time from when the silane compound was dissolved in water to before coating was 30 hours, the alcohol concentration in the aqueous solution was 0 vol%, and the pH of the aqueous solution was 3.8 to 4.2.
  • NMP N-methyl-2-pyrrolidone
  • toluene 20 g 8 g (60 mmol), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g, and toluene 20 g were added, heated at 180 ° C. for 1 hour, cooled to near room temperature, and then 3, 4, 3 ′, 4′- 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 82.12 g of 2,2-bis ⁇ 4- (4-aminophenoxy) phenyl ⁇ propane (200 mmol), 200 g of NMP, and 40 g of toluene were added, mixed at room temperature for 1 hour, and then heated at 180 ° C.
  • NMP N-methyl-2-pyrrolidone
  • the block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%.
  • bis (4-maleimidophenyl) methane BMI-H, Kay-Isei
  • Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution 35: 65
  • a resin solution was prepared by dissolving and mixing at 60 ° C. for 20 minutes.
  • the resin solution was applied to the release layer forming surface of Example 12, and after a drying treatment at 120 ° C. for 3 minutes and at 160 ° C. for 3 minutes in the nitrogen atmosphere, a heat treatment was finally performed at 300 ° C. for 2 minutes.
  • the copper foil provided with the resin layer was produced.
  • the thickness of the resin layer was 2 ⁇ m.
  • the observation magnification of the scanning electron microscope was 30,000 to 1,000,000 times.
  • the stage on which the sample was placed was tilted in a direction perpendicular to the direction of the vertical frame of the photograph and along a rotation axis parallel to the direction of the horizontal frame of the photograph.
  • the values of “a”, “b”, and “c” are measured for each convex portion, and “a”, “b”, and “c” of 100 or more convex portions are measured.
  • the values of the arithmetic average values were “a”, “b”, and “c”, respectively.
  • the above-mentioned measurable convex portion means a convex portion where the constricted portion can be observed.
  • the convex part where the constricted part is observable is a convex part capable of observing the ridge line (illustrated in FIG. 8) of the convex part.
  • the “necked portion” is a portion where the width of the convex portion on the surface of the copper foil becomes narrow after the width once widens from the tip of the convex portion when observed in the direction approaching the copper foil.
  • “Width of convex part” is the width of the photo divided by the contour or ridge line of the convex part when a line crossing the convex part is drawn parallel to the horizontal frame of the photograph on the photograph obtained with a scanning electron microscope. This is the length of a straight line that crosses the convex part drawn parallel to the frame.
  • Height a from the constricted part of the convex part to the leading end of the convex part refers to the line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part from the leading end of the convex part
  • the distance (a ′) to the intersection of a line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part and the perpendicular line drawn from the tip of the convex part And the square root of 2.
  • the “tip of the convex portion” means a portion that is estimated to be the highest of the convex portion determined based on the shadow of the photographed unevenness when the photograph is observed (see FIG. 7).
  • the “maximum width b in the widest part” is a convex part of a straight line that intersects the convex part parallel to the horizontal frame of the photograph between the tip of the convex part and the constricted part when the convex part has a constricted part. The longest length delimited by the outline.
  • ⁇ Evaluation of peelability of surface-treated copper foil Measure the normal peel strength when peeling the resin base material from the copper foil with the tensile tester Autograph 100 according to IPC-TM-650 for the laminate. The peelability of the surface-treated copper foil was evaluated based on the above criteria. ⁇ : The range was 2 to 200 gf / cm. X: Less than 2 gf / cm or more than 200 gf / cm.
  • a resin layer composed of a liquid crystal polymer (assuming a resin constituting the build-up layer) was laminated on the release surface of the resin substrate after peeling (Example 3).
  • a reliability test (heating test at 250 ° C. ⁇ 10 ° C. ⁇ 1 hour).
  • the size of the evaluation sample was 250 mm ⁇ 250 mm, and three samples were measured for each sample number. The case where circuit peeling and substrate swelling did not occur was evaluated as “ ⁇ ”. Slight circuit peeling or substrate swelling occurred (3 or less in one sample), but those that could be used as a product when the locations to be used were selected were evaluated as “ ⁇ ”.
  • a large number of circuit peeling or substrate swelling occurred (more than 3 in one sample), and those that could not be used as a product were evaluated as “x”.
  • Tables 1 to 4 show the test conditions and evaluation results.
  • ⁇ Strength when the resin constituting the buildup layer and the untreated surfaces of the resin base material are bonded to each other, and then the resin and the resin base material are pulled and peeled.
  • a liquid crystal polymer (Vecstar manufactured by Kuraray Co., Ltd .: CT-F thickness: 50 ⁇ m) assumed as a resin constituting the build-up layer has a size of 1 cm square, a lamination temperature of 295 ⁇ 5 ° C., a lamination pressure of 1 MPa, Lamination time: Laminated in 30 minutes. And the 1 cm square metal plate with a wire was joined to the laminated
  • the wire is made of metal and is joined to the central portion of the 1 cm square metal plate by welding or soldering. Then, using a tensile tester Autograph 100, the maximum load when the resin (liquid crystal polymer) constituting the buildup layer was pulled and peeled from the resin base materials 1 to 3 was measured by pulling the wire. The measurement was performed at arbitrary three locations, and the arithmetic average value at the three locations was defined as the maximum load A (g). The wire pulling speed was 50 mm / min. The direction in which the wire is pulled was a direction perpendicular to the surface of the metal plate.
  • a (g / cm 2 ) was defined as the strength when the resin constituting the build-up layer and the untreated surfaces of the resin base materials 1 to 3 were bonded together and pulled and peeled off.
  • the strength when the resin (liquid crystal polymer) constituting the build-up layer and the untreated surfaces of the resin substrates 1 to 3 are bonded to each other and pulled apart in any of the resin substrates 1 to 3 was 500 g / cm 2 or less.
  • the copper foil sample was peeled off from the resin base material, and the uneven profile on the copper foil surface was transferred. A resin substrate was obtained.
  • the resin (liquid crystal polymer) which comprises a buildup layer is laminated
  • the strength at the time of peeling off the constituent resin was measured.
  • the experimental example with an evaluation of " ⁇ " has a strength of 1000 g when the resin base material and the resin constituting the buildup layer are pulled and peeled.
  • the strength when the resin base material and the resin constituting the buildup layer are pulled and peeled is 800 g / cm 2 or more, and the evaluation is “ ⁇ ”.
  • the strength when the resin substrate and the resin constituting the buildup layer were pulled and peeled was 600 g / cm 2 or less.
  • Example No. 1 provided with a predetermined release layer was provided. 1-16, no. 19-34, no. In 37 to 52 and 55 to 60, the peel strength was suppressed, and the fracture mode of the resin was only the interface. As described above, when the copper foil was removed after being bonded to the resin base material, the copper foil was successfully removed without impairing the profile of the copper foil surface transferred to the surface of the resin base material. On the other hand, no release layer was provided or the compound used to form the release layer was inappropriate. 17-18, no. 35-36, no. In Nos. 53 to 54, a release layer could not be formed, the peel strength was high, and the resin fracture mode was either aggregation or a mixture of aggregation and an interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a printed wiring board production method and a surface-treated copper foil allowing for the removal of copper foil at a good cost without losing the profile of the copper foil surface transferred onto the surface of a resin substrate, in a step for removing the copper foil from the resin substrate by providing a release layer to the copper foil and making the physical peeling of the resin substrate possible when the copper foil has been bonded to the resin substrate. The printed wiring board production method comprises: a step for bonding the resin substrate to the surface-treated copper foil provided with the release layer on the surface thereof, such bonding performed from the release layer side; a step for removing the surface-treated copper foil from the resin substrate to obtain the resin substrate to which the surface profile of the copper foil has been transferred to a peeling surface of the resin substrate; and a step for forming a plating pattern on the peeling surface side of the resin substrate to which the surface profile has been transferred.

Description

プリント配線板の製造方法、表面処理銅箔、積層体、プリント配線板、半導体パッケージ及び電子機器Printed wiring board manufacturing method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
 本発明は、プリント配線板の製造方法、表面処理銅箔、積層体、プリント配線板、半導体パッケージ及び電子機器に関する。 The present invention relates to a method for producing a printed wiring board, a surface-treated copper foil, a laminate, a printed wiring board, a semiconductor package, and an electronic device.
 プリント配線基板及び半導体パッケージ基板の回路形成工法はサブトラクティブ工法が主流であるが、近年の更なる微細配線化により、M-SAP(Modified Semi-Additive Process)や、銅箔の表面プロファイルを使ったセミアディティブ工法といった新たな工法が台頭している。 Subtractive methods are the mainstream for circuit formation methods for printed wiring boards and semiconductor package substrates. However, with the recent finer wiring, M-SAP (Modified Semi-Additive Process) and copper foil surface profiles were used. New methods such as the semi-additive method are emerging.
 これらの新たな回路形成工法のうち、後者の銅箔の表面プロファイルを使ったセミアディティブ工法の一例として、次が挙げられる。すなわち、まず、樹脂基材に積層した銅箔を全面エッチングし、銅箔表面プロファイルが転写したエッチング基材面をレーザー等で穴開けし、穴開け部を導通させるための無電解銅メッキ層を施し、無電解銅メッキ表面をドライフィルムで被覆し、UV露光及び現像によって回路形成部のドライフィルムを除去し、ドライフィルムに被覆されていない無電解銅メッキ面に電気銅メッキを施し、ドライフィルムを剥離し、最後に硫酸、過酸化水素水を含有するエッチング液等によって無電解銅メッキ層をエッチング(フラッシュエッチング、クイックエッチング)することにより微細な回路を形成する(特許文献1、特許文献2)。 Among these new circuit formation methods, the following can be cited as an example of the semi-additive method using the surface profile of the latter copper foil. That is, first, the entire surface of the copper foil laminated on the resin base material is etched, the etching base material surface to which the copper foil surface profile is transferred is drilled with a laser or the like, and an electroless copper plating layer for conducting the drilled portion is formed. The electroless copper plating surface is coated with a dry film, the dry film of the circuit forming part is removed by UV exposure and development, and the electroless copper plating surface not coated with the dry film is electroplated with copper. Then, the electroless copper plating layer is etched (flash etching, quick etching) with an etching solution containing sulfuric acid and hydrogen peroxide solution, and a fine circuit is formed (Patent Document 1 and Patent Document 2). ).
特開2006-196863号公報JP 2006-196863 A 特開2007-242975号公報JP 2007-242975 A
 しかしながら、従来の銅箔表面のプロファイルを用いたセミアディティブ工法では、銅箔表面のプロファイルを損なうこと無く良好に樹脂基材の表面に転写すること、及び、良好なコストで当該銅箔を除去することについて、いまだ検討の余地がある。 However, in the conventional semi-additive method using the copper foil surface profile, the copper foil surface profile can be transferred to the surface of the resin substrate without damaging the copper foil surface, and the copper foil can be removed at a good cost. There is still room for consideration.
 本発明者は鋭意検討の結果、銅箔に離型層を設けて、当該銅箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離を可能にすることで、銅箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好なコストで銅箔を除去することが可能となることを見出した。 As a result of intensive studies, the inventor has provided a release layer on the copper foil, and enables physical peeling of the resin base material when the copper foil is bonded to the resin base material. In the process of removing from the resin base material, it was found that the copper foil can be removed at a good cost without impairing the profile of the copper foil surface transferred to the surface of the resin base material.
 以上の知見を基礎として完成された本発明は一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にメッキパターンを形成する工程とを備えたプリント配線板の製造方法である。 The present invention completed on the basis of the above knowledge, in one aspect, a step of bonding a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface, and the resin base material And removing the surface-treated copper foil to obtain a resin base material having the surface profile of the copper foil transferred to the release surface, and to the release surface side of the resin base material to which the surface profile has been transferred. And a process for forming a plating pattern.
 本発明は別の一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側に印刷パターンを形成する工程とを備えたプリント配線板の製造方法である。 In another aspect of the present invention, a step of bonding a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface, and from the resin base material, the surface-treated copper foil Removing the substrate, obtaining a resin base material on which the surface profile of the copper foil is transferred to the release surface, and forming a print pattern on the release surface side of the resin base material on which the surface profile is transferred. It is a manufacturing method of the printed wiring board provided with.
 本発明は更に別の一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程とを備えたプリント配線板の製造方法である。 According to another aspect of the present invention, a step of bonding a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface; A step of obtaining a resin base material in which the surface profile of the copper foil is transferred to the release surface by removing the foil, and a step of providing a build-up layer on the release surface side of the resin base material to which the surface profile is transferred Is a method for manufacturing a printed wiring board comprising:
 本発明のプリント配線板の製造方法は一実施形態において、前記ビルドアップ層を構成する樹脂及び前記樹脂基材の未処理表面同士を貼り合わせて、引っ張って剥離させたときの強度が500g/cm2以下である。 In one embodiment, the method for producing a printed wiring board of the present invention has a strength of 500 g / cm when the untreated surfaces of the resin constituting the buildup layer and the resin base material are bonded together and pulled apart. 2 or less.
 本発明のプリント配線板の製造方法は別の一実施形態において、前記ビルドアップ層を構成する樹脂が、液晶ポリマーまたはポリテトラフルオロエチレンを含む。 In another embodiment of the method for producing a printed wiring board of the present invention, the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記離型層が、次式:
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the method for producing a printed wiring board of the present invention, the release layer has the following formula:
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
The aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記離型層が、次式:
Figure JPOXMLDOC01-appb-C000006
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the method for producing a printed wiring board of the present invention, the release layer has the following formula:
Figure JPOXMLDOC01-appb-C000006
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる。 In yet another embodiment of the method for producing a printed wiring board of the present invention, the release layer uses a compound having two or less mercapto groups in the molecule.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記銅箔は、前記離型層側表面に凸部を有し、前記凸部は、電子顕微鏡を用いて、前記銅箔を載せるステージを水平面から45°傾けた状態で前記銅箔の離型層側表面の写真撮影を行い、得られた写真に基づいて測定された凸部のくびれ部分から凸部の先端までの高さをa、凸部の最広部における最大幅をb、凸部のくびれ部の最小幅をcとしたとき、下記式をいずれも満たす。
 a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nm
 a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nm
In yet another embodiment of the method for producing a printed wiring board of the present invention, the copper foil has a convex portion on the surface of the release layer, and the convex portion is formed by using an electron microscope. The surface of the copper foil is photographed on the release layer side surface with the stage placed 45 ° tilted from the horizontal plane, and the height from the constricted portion of the convex portion to the tip of the convex portion measured based on the obtained photograph is taken. When the thickness is a, the maximum width at the widest portion of the convex portion is b, and the minimum width of the constricted portion of the convex portion is c, both of the following expressions are satisfied.
When a / b ≦ 1, (bc) /b≦0.2 and b ≧ 10 nm
When a / b> 1, (bc) /b≦0.03 and b ≧ 10 nm
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記銅箔と前記離型層との間に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層を設ける。 In still another embodiment of the method for producing a printed wiring board of the present invention, a group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer between the copper foil and the release layer. One or more layers selected from are provided.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層を設ける。 In yet another embodiment of the method for producing a printed wiring board of the present invention, the surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer, A resin layer is provided.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記表面処理銅箔の離型層側表面に、樹脂層を設ける。 In another embodiment of the method for producing a printed wiring board of the present invention, a resin layer is provided on the surface of the surface-treated copper foil on the release layer side.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である。 In another embodiment of the method for producing a printed wiring board of the present invention, the resin layer is an adhesive resin, a primer, or a semi-cured resin.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記表面処理銅箔の厚みが9~70μmである。 In still another embodiment of the method for producing a printed wiring board of the present invention, the surface-treated copper foil has a thickness of 9 to 70 μm.
 本発明は更に別の一側面において、銅箔と、前記銅箔の表面に設けられた離型層とを有する表面処理銅箔であって、前記銅箔は、前記離型層側表面に凸部を有し、前記凸部は、電子顕微鏡を用いて、前記銅箔を載せるステージを水平面から45°傾けた状態で前記銅箔の離型層側表面の写真撮影を行い、得られた写真に基づいて測定された凸部のくびれ部分から凸部の先端までの高さをa、凸部の最広部における最大幅をb、凸部のくびれ部の最小幅をcとしたとき、下記式をいずれも満たす表面処理銅箔である。
 a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nm
 a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nm
Still another aspect of the present invention is a surface-treated copper foil having a copper foil and a release layer provided on the surface of the copper foil, wherein the copper foil is convex on the release layer side surface. The projecting part has a portion, and the electron microscope is used to photograph the release layer side surface of the copper foil in a state where the stage on which the copper foil is placed is inclined 45 ° from the horizontal plane. When the height from the constricted part of the convex part to the tip of the convex part measured based on the above is a, the maximum width at the widest part of the convex part is b, and the minimum width of the constricted part of the convex part is c, This is a surface-treated copper foil that satisfies all the equations.
When a / b ≦ 1, (bc) /b≦0.2 and b ≧ 10 nm
When a / b> 1, (bc) /b≦0.03 and b ≧ 10 nm
 本発明の表面処理銅箔は一実施形態において、前記銅箔は、前記離型層側表面に、粗化粒子を有さない。 In one embodiment of the surface-treated copper foil of the present invention, the copper foil does not have roughened particles on the release layer side surface.
 本発明の表面処理銅箔は別の一実施形態において、前記離型層が、次式:
Figure JPOXMLDOC01-appb-C000007
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the surface-treated copper foil of the present invention, the release layer has the following formula:
Figure JPOXMLDOC01-appb-C000007
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
The aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
 本発明の表面処理銅箔は更に別の一実施形態において、前記離型層が、次式:
Figure JPOXMLDOC01-appb-C000008
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the surface-treated copper foil of the present invention, the release layer has the following formula:
Figure JPOXMLDOC01-appb-C000008
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
 本発明の表面処理銅箔は更に別の一実施形態において、前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる。 In yet another embodiment of the surface-treated copper foil of the present invention, the release layer uses a compound having two or less mercapto groups in the molecule.
 本発明の表面処理銅箔は更に別の一実施形態において、前記銅箔と前記離型層との間に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層を設ける。 In another embodiment, the surface-treated copper foil of the present invention is selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer between the copper foil and the release layer. Provide one or more layers.
 本発明の表面処理銅箔は更に別の一実施形態において、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層を設ける。 In yet another embodiment, the surface-treated copper foil of the present invention has a resin layer on the surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. Is provided.
 本発明の表面処理銅箔は更に別の一実施形態において、前記離型層側表面に、樹脂層を設ける。 In another embodiment of the surface-treated copper foil of the present invention, a resin layer is provided on the surface of the release layer side.
 本発明の表面処理銅箔は更に別の一実施形態において、前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である。 In yet another embodiment of the surface-treated copper foil of the present invention, the resin layer is an adhesive resin, a primer, or a semi-cured resin.
 本発明の表面処理銅箔は更に別の一実施形態において、厚みが9~70μmである。 In yet another embodiment, the surface-treated copper foil of the present invention has a thickness of 9 to 70 μm.
 本発明は更に別の一側面において、本発明の表面処理銅箔と、前記表面処理銅箔の離型層側に設けられた樹脂基材とを備えた積層体である。 Further another aspect of the present invention is a laminate including the surface-treated copper foil of the present invention and a resin base material provided on the release layer side of the surface-treated copper foil.
 本発明の積層体は一実施形態において、前記樹脂基材が、プリプレグである、又は、熱硬化性樹脂を含む。 In one embodiment of the laminate of the present invention, the resin base material is a prepreg or contains a thermosetting resin.
 本発明は更に別の一側面において、本発明の表面処理銅箔を備えたプリント配線板である。 In still another aspect, the present invention is a printed wiring board provided with the surface-treated copper foil of the present invention.
 本発明は更に別の一側面において、本発明の表面処理銅箔を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the surface-treated copper foil of the present invention.
 本発明は更に別の一側面において、本発明のプリント配線板を備えた半導体パッケージである。 In still another aspect, the present invention is a semiconductor package provided with the printed wiring board of the present invention.
 本発明は更に別の一側面において、本発明のプリント配線板又は本発明の半導体パッケージを備えた電子機器である。 In yet another aspect, the present invention is an electronic device including the printed wiring board of the present invention or the semiconductor package of the present invention.
 銅箔に離型層を設けて、当該銅箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離を可能にすることで、銅箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好なコストで銅箔を除去することが可能なプリント配線板の製造方法及び表面処理銅箔を提供する。 In the step of removing the copper foil from the resin base material by providing a release layer on the copper foil and enabling physical peeling of the resin base material when the copper foil is bonded to the resin base material, Provided are a printed wiring board manufacturing method and a surface-treated copper foil capable of removing a copper foil at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of a resin substrate.
凸部(くびれ部がない場合とある場合)を有する銅箔の断面模式図である。It is a cross-sectional schematic diagram of the copper foil which has a convex part (the case where there is a case where there is no constriction part). 粗化粒子(ノジュール)を有する銅箔の断面模式図である。It is a cross-sectional schematic diagram of the copper foil which has a roughening particle | grain (nodule). 図2の銅箔を粗化粒子側表面から樹脂基材に貼り合わせた状態の断面模式図である。It is a cross-sectional schematic diagram of the state which bonded the copper foil of FIG. 2 to the resin base material from the roughening particle side surface. 図3において銅箔を除去した後の樹脂基材表面にメッキパターンを形成した状態の断面模式図である。It is a cross-sectional schematic diagram of the state which formed the plating pattern in the resin base material surface after removing copper foil in FIG. 本発明で形成される樹脂基材上にメッキパターンを形成した状態の断面模式図である。It is a cross-sectional schematic diagram of the state which formed the plating pattern on the resin base material formed by this invention. 銅箔のプロファイルを使用したセミアディティブ工法の概略例を示す。A schematic example of a semi-additive construction method using a copper foil profile is shown. サンプルのNo.58に係る表面処理銅箔の離型層側表面の顕微鏡観察写真である。Sample No. 58 is a microscopic observation photograph of the surface of the release layer side of the surface-treated copper foil according to 58. サンプルのNo.55に係る表面処理銅箔の離型層側表面の顕微鏡観察写真である。Sample No. 5 is a microscopic observation photograph of the release layer side surface of the surface-treated copper foil according to 55. 表面処理銅箔の離型層側表面の凸部の評価方法を示すためのサンプル(銅箔)及びステージの模式図である。It is a schematic diagram of the sample (copper foil) and stage for showing the evaluation method of the convex part of the mold release layer side surface of surface treatment copper foil.
(プリント配線板の製造方法)
 本発明のプリント配線板の製造方法は一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にメッキパターンを形成する工程とを備える。このような構成により、銅箔に離型層を設けて、当該銅箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離が可能となり、銅箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好なコストで銅箔を除去することが可能となる。当該製造方法では、メッキパターンを形成した後、当該メッキパターンを利用して所望の回路を形成してプリント配線板を作製することができる。
(Printed wiring board manufacturing method)
In one aspect of the method for producing a printed wiring board of the present invention, on the surface-treated copper foil provided with a release layer on the surface, a step of bonding a resin base material from the release layer side, and from the resin base material, Removing the surface-treated copper foil to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface; and a plating pattern on the release surface side of the resin base material to which the surface profile is transferred Forming a step. With such a configuration, a release layer is provided on the copper foil, and the physical peeling of the resin base material when the copper foil is bonded to the resin base material becomes possible, and the copper foil is removed from the resin base material. In the process, the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material. In the manufacturing method, after forming a plating pattern, a desired circuit can be formed using the plating pattern to produce a printed wiring board.
 また、本発明のプリント配線板の製造方法は別の一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側に印刷パターンを形成する工程とを備える。このような構成により、銅箔に離型層を設けて、当該銅箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離が可能となり、銅箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好なコストで銅箔を除去することが可能となる。当該製造方法では、例えばインクの中に導電ペースト等を含んだインクジェットを用いて印刷パターンを形成した後、当該印刷パターンを利用して所望の印刷回路を形成してプリント配線板を作製することができる。 In another aspect of the method for producing a printed wiring board of the present invention, a step of bonding a resin base material from the release layer side to a surface-treated copper foil having a release layer provided on the surface; and the resin Removing the surface-treated copper foil from the base material to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface; and the release surface of the resin base material to which the surface profile is transferred Forming a printed pattern on the side. With such a configuration, a release layer is provided on the copper foil, and the physical peeling of the resin base material when the copper foil is bonded to the resin base material becomes possible, and the copper foil is removed from the resin base material. In the process, the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material. In the manufacturing method, for example, after forming a print pattern using an ink jet containing conductive paste or the like in ink, a desired printed circuit is formed using the print pattern to produce a printed wiring board. it can.
 さらに、本発明のプリント配線板の製造方法は更に別の一側面において、表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程とを備える。このような構成により、銅箔に離型層を設けて、当該銅箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離が可能となり、銅箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好なコストで銅箔を除去することが可能となる。ここで、樹脂基材の表面に設けるビルドアップ層を構成する樹脂は、当該樹脂及び樹脂基材をそれぞれ何ら処理せずに互いに貼り合わせて(前記ビルドアップ層を構成する樹脂及び前記樹脂基材の未処理表面同士を貼り合わせて)、引っ張って剥離させたときの強度(プル強度)が500g/cm2以下であってもよい。樹脂基材の表面に設けるビルドアップ層を構成する樹脂は、当該樹脂及び樹脂基材をそれぞれ何ら処理せずに互いに貼り合わせた後、引っ張って剥離させたときの強度(プル強度)が500g/cm2以下と低い値であっても、樹脂基材に銅箔表面のプロファイルを転写した場合には、ビルドアップ層を構成する樹脂と、樹脂基材との密着性が向上し、プル強度が例えば800g/cm2以上、より好ましくは1000g/cm2以上となる。 Furthermore, the manufacturing method of the printed wiring board of the present invention is, in still another aspect, a step of bonding a resin base material from the release layer side to the surface-treated copper foil provided with a release layer on the surface; Removing the surface-treated copper foil from the resin base material to obtain a resin base material having the copper foil surface profile transferred to the release surface; and removing the resin base material to which the surface profile has been transferred Providing a buildup layer on the surface side. With such a configuration, a release layer is provided on the copper foil, and the physical peeling of the resin base material when the copper foil is bonded to the resin base material becomes possible, and the copper foil is removed from the resin base material. In the process, the copper foil can be removed at a good cost without impairing the profile of the surface of the copper foil transferred to the surface of the resin base material. Here, the resin constituting the build-up layer provided on the surface of the resin base material is bonded to each other without any treatment of the resin and the resin base material (the resin constituting the build-up layer and the resin base material). The strength (pull strength) when pulled and peeled off may be 500 g / cm 2 or less. The resin constituting the build-up layer provided on the surface of the resin base material has a strength (pull strength) of 500 g / pull when the resin and the resin base material are bonded to each other without any treatment and then pulled and peeled off. Even if the value is as low as cm 2 or less, when the profile of the copper foil surface is transferred to the resin substrate, the adhesion between the resin constituting the build-up layer and the resin substrate is improved, and the pull strength is increased. For example, 800 g / cm 2 or more, more preferably 1000 g / cm 2 or more.
 ここで、「ビルドアップ層」とは、導電層、配線パターンまたは回路と、樹脂等の絶縁体とを有する層のことをいう。当該樹脂等の絶縁体の形状は層状であってもよい。また、前述の導電層、配線パターンまたは回路と樹脂等の絶縁体とはどのような順序や位置に設けても良い。
 ビルドアップ層は、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材の剥離面側に導電層、配線パターンまたは回路と樹脂等の絶縁体とを設けることで作製することができる。導電層、配線パターンまたは回路の形成方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法、パートリーアディティブ法等公知の方法を用いることができる。
 ビルドアップ層は、複数の層を有してもよく、複数の導電層、配線パターンまたは回路と樹脂等の絶縁体(層)を有してもよい。
 複数の導電層、配線パターンまたは回路は樹脂等の絶縁体により電気的に絶縁されていてもよい。電気的に絶縁されている複数の導電層、配線パターンまたは回路を、樹脂等の絶縁体にレーザーおよび/またはドリルによりスルーホール及び/またはブラインドビアを形成した後、当該スルーホール及び/またはブラインドビアに銅めっき等の導通めっきを形成することで、電気的に接続してもよい。
 なお、樹脂基材の両面に、表面に離型層が設けられた表面処理銅箔を、前記離型層側から貼り合わせ、その後、表面処理銅箔を除去して、樹脂基材の両面に表面処理銅箔の表面プロファイルを転写し、当該樹脂基材の両面に回路、配線パターンまたはビルドアップ層を設けることで、プリント配線板を製造しても良い。
Here, the “build-up layer” refers to a layer having a conductive layer, a wiring pattern or a circuit, and an insulator such as a resin. The shape of the insulator such as the resin may be a layer. Further, the above-described conductive layer, wiring pattern, or circuit and an insulator such as resin may be provided in any order or position.
The build-up layer can be produced by providing a conductive layer, a wiring pattern or a circuit, and an insulator such as a resin on the release surface side of the resin base material on which the surface profile of the copper foil is transferred to the release surface. As a method for forming the conductive layer, the wiring pattern, or the circuit, a known method such as a semi-additive method, a full additive method, a subtractive method, or a partial additive method can be used.
The build-up layer may have a plurality of layers, or may have a plurality of conductive layers, wiring patterns or circuits, and an insulator (layer) such as a resin.
The plurality of conductive layers, wiring patterns, or circuits may be electrically insulated by an insulator such as resin. After through holes and / or blind vias are formed in an insulating material such as a resin through a plurality of electrically conductive layers, wiring patterns, or circuits by laser and / or drilling, the through holes and / or blind vias are formed. Alternatively, electrical connection may be made by forming conductive plating such as copper plating.
In addition, the surface-treated copper foil having a release layer provided on the surface is bonded to both surfaces of the resin base material from the release layer side, and then the surface-treated copper foil is removed to form both surfaces of the resin base material. A printed wiring board may be manufactured by transferring the surface profile of the surface-treated copper foil and providing a circuit, a wiring pattern, or a build-up layer on both surfaces of the resin substrate.
 このようなビルドアップ層を構成する樹脂等の絶縁体は、本明細書に記載の樹脂、樹脂層、樹脂基材を用いることができ、公知の樹脂、樹脂層、樹脂基材、絶縁体、プリプレグ、ガラス布に樹脂を含浸させた基材等を用いることができる。樹脂等の絶縁体は無機物および/又は有機物を含んでもよい。また、ビルドアップ層を構成する樹脂等の絶縁体は、LCP(液晶ポリマー)またはポリテトラフルオロエチレン等の低比誘電率を有する材料で形成されていてもよい。近年、高周波製品の拡大に伴い、LCP(液晶ポリマー)またはポリテトラフルオロエチレン(テフロン:登録商標)といった低比誘電率を有する材料をプリント基板の構造へ取り込む動きが活発化している。その際、これらの材料が熱可塑性であることからホットプレス加工時に形状変化が避けられず、LCP(液晶ポリマー)またはポリテトラフルオロエチレン単体での基板構成では生産歩留まりが向上しないという基本的な量産上の課題を抱えている。上述の本願の製造方法では、このような問題に対しても、樹脂基板としてエポキシ樹脂のような熱硬化性樹脂を用い、これと貼り合せることで、高周波特性に優れていて、且つ、熱を加えた際の形状変形を防ぐことができるプリント配線板を提供することができる。 As an insulator such as a resin constituting such a build-up layer, the resins, resin layers, and resin base materials described in the present specification can be used. Known resins, resin layers, resin base materials, insulators, A prepreg, a base material in which a glass cloth is impregnated with a resin, or the like can be used. The insulator such as a resin may include an inorganic substance and / or an organic substance. Moreover, insulators, such as resin which comprises a buildup layer, may be formed with the material which has low dielectric constants, such as LCP (liquid crystal polymer) or polytetrafluoroethylene. In recent years, with the expansion of high-frequency products, a movement to incorporate a material having a low dielectric constant such as LCP (liquid crystal polymer) or polytetrafluoroethylene (Teflon: registered trademark) into the structure of a printed circuit board has been activated. At that time, since these materials are thermoplastic, shape change is unavoidable during hot press processing, and the basic mass production that the production yield is not improved by the substrate configuration with LCP (liquid crystal polymer) or polytetrafluoroethylene alone. I have the above challenges. In the manufacturing method of the present application described above, even for such a problem, a thermosetting resin such as an epoxy resin is used as a resin substrate, and it is bonded to the resin substrate so that it has excellent high-frequency characteristics and heat. The printed wiring board which can prevent the shape deformation at the time of adding can be provided.
(表面処理銅箔)
 上述の本願のプリント配線板の製造方法において用いられる表面処理銅箔としては、以下の表面処理銅箔を用いるのが好ましい。すなわち、当該表面処理銅箔は、銅箔と、前記銅箔の表面に設けられた離型層とを有する表面処理銅箔であって、前記銅箔は、前記離型層側表面に凸部を有する。ここで、図1に、「a」、「b」及び「c」を明示した凸部を有する銅箔の断面模式図を示す。前記凸部は、電子顕微鏡を用いて、図9に示すように、前記銅箔を載せるステージを水平面から45°傾けた状態で前記銅箔の離型層側表面の写真撮影を行い、得られた写真(以下、例えば、後述の図8)に基づいて測定された凸部のくびれ部分から凸部の先端までの高さをa、凸部の最広部における最大幅をb、凸部のくびれ部の最小幅をcとしたとき、下記式をいずれも満たすのが好ましい。
 a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nm
 a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nm
(Surface treated copper foil)
As the surface-treated copper foil used in the method for producing a printed wiring board of the present application described above, the following surface-treated copper foil is preferably used. That is, the surface-treated copper foil is a surface-treated copper foil having a copper foil and a release layer provided on the surface of the copper foil, and the copper foil is convex on the release layer side surface. Have Here, the cross-sectional schematic diagram of the copper foil which has the convex part which specified "a", "b", and "c" in FIG. 1 is shown. As shown in FIG. 9, the convex portion is obtained by taking a picture of the surface of the release layer side of the copper foil in a state where the stage on which the copper foil is placed is inclined 45 ° from the horizontal plane, as shown in FIG. The height from the constricted portion of the convex portion to the tip of the convex portion measured based on the photograph (hereinafter, for example, FIG. 8 described later) is a, the maximum width at the widest portion of the convex portion is b, When the minimum width of the constricted portion is c, it is preferable that both the following expressions are satisfied.
When a / b ≦ 1, (bc) /b≦0.2 and b ≧ 10 nm
When a / b> 1, (bc) /b≦0.03 and b ≧ 10 nm
 なお、粗化処理粒子を銅箔の表面に形成した場合には、凸部の「a」、「b」、「c」は測定可能な凸部を選択して測定する。ここで、前述の測定可能な凸部とは、くびれ部が観察可能な凸部のことを意味する。くびれ部が観察可能な凸部とは凸部の稜線(図8に例示)を観察することができる凸部のことである。
 また、「くびれ部」は、銅箔表面の凸部について、銅箔に近づく方向に観察した場合に、凸部先端から、幅が一度広くなった後に、幅が狭くなる部分とする。
 「凸部の幅」は、走査型電子顕微鏡で得られた写真上に写真の横枠と平行に凸部を横切る線を引いた場合に、凸部の輪郭または稜線によって区切られる当該写真の横枠と平行に引いた凸部を横切る直線の長さのことを言う。ここで、稜線が凸部に3本以上存在する場合には、最も手前の2つの稜線を選択する。
 「くびれ部の最小幅c」は、くびれ部における凸部の幅の最小値とする。例えば、図8では、凸部の稜線の平らな部分(線分)を示す。くびれ部がない場合には、c=bとする。
 「凸部のくびれ部分から凸部の先端までの高さa」は、くびれ部の最小幅cを測定する際に引いた写真の横枠と平行に凸部を横切る線へ凸部の先端から垂線を引いた場合の、くびれ部の最小幅cを測定する際に引いた写真の横枠と平行な凸部を横切る線と当該凸部先端から引いた垂線との交点までの距離(a’)と、2の平方根との積の値とする。
 「凸部の先端」は、写真を観察した際に、撮影された凹凸の陰影等に基づいて判断される凸部の最も高いと推定される部分を意味する(図7参照)。
 「最広部における最大幅b」は、凸部にくびれ部が存在する場合には、凸部先端からくびれ部までの間における、写真の横枠と平行な凸部を横切る直線の、凸部の輪郭で区切られる最も長い長さとする。
In addition, when the roughening process particle | grains are formed in the surface of copper foil, "a", "b", and "c" of a convex part select and measure a measurable convex part. Here, the above-mentioned measurable convex portion means a convex portion where the constricted portion can be observed. The convex part where the constricted part is observable is a convex part capable of observing the ridge line (illustrated in FIG. 8) of the convex part.
Further, the “necked portion” is a portion where the width of the convex portion on the surface of the copper foil becomes narrow after the width is once increased from the tip of the convex portion when observed in the direction approaching the copper foil.
“Width of convex part” is the width of the photo divided by the contour or ridge line of the convex part when a line crossing the convex part is drawn parallel to the horizontal frame of the photograph on the photograph obtained with a scanning electron microscope. This is the length of a straight line that crosses the convex part drawn parallel to the frame. Here, when there are three or more ridge lines on the convex portion, the two closest ridge lines are selected.
The “minimum width c of the constricted portion” is a minimum value of the width of the convex portion in the constricted portion. For example, in FIG. 8, the flat part (line segment) of the ridgeline of a convex part is shown. If there is no constriction, c = b.
"Height a from the constricted part of the convex part to the leading end of the convex part" refers to the line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part from the leading end of the convex part When a perpendicular line is drawn, the distance (a ′) to the intersection of a line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part and the perpendicular line drawn from the tip of the convex part ) And the square root of 2.
The “tip of the convex portion” means a portion that is estimated to be the highest of the convex portion determined based on the shadow of the photographed unevenness when the photograph is observed (see FIG. 7).
The “maximum width b in the widest part” is a convex part of a straight line that intersects the convex part parallel to the horizontal frame of the photograph between the tip of the convex part and the constricted part when the convex part has a constricted part. The longest length delimited by the outline.
 前記銅箔の凸部は、銅箔形成の際の電解処理の際に生じた表面凹凸における凸部であってもよく、粗化処理が施されて生じた粗化粒子による凸部であってもよい。 The convex portion of the copper foil may be a convex portion in the surface irregularities generated during the electrolytic treatment during the formation of the copper foil, or a convex portion due to the roughened particles generated by the roughening treatment. Also good.
 従来の銅箔の表面プロファイルを使った工法では、例えば、粗化粒子(ノジュール)を有する銅箔(図2)を粗化粒子側表面から樹脂基材に貼り合わせ(図3)、続いて銅箔を除去することで、銅箔表面のプロファイルを樹脂基材表面に転写し、当該転写表面上にメッキパターン等を形成している(図4)。 In the conventional method using the surface profile of copper foil, for example, a copper foil (FIG. 2) having rough particles (nodules) is bonded to the resin substrate from the surface of the rough particles (FIG. 3), and then copper By removing the foil, the profile of the copper foil surface is transferred to the surface of the resin substrate, and a plating pattern or the like is formed on the transfer surface (FIG. 4).
 ここで、銅箔表面にノジュールがある場合、その形状によっては銅箔除去後の樹脂基材表面への転写プロファイルにおいて空隙が生じ、当該空隙の大きさによってはメッキパターン形成時に使用するメッキ液が入り込めない場合がある。このとき、図4に示すように、樹脂基材表面と、形成されるメッキパターンとの間に空隙が残ったままとなる。このような空隙が残ったままであると、その後、メッキパターンを利用して回路を形成してプリント配線板等を作製した場合、信頼性試験(例えば、250℃±10℃×1時間の加熱試験)によって、当該空隙付近で膨張し、回路剥離または基板フクレが発生する等の問題が生じる。 Here, when there are nodules on the surface of the copper foil, depending on the shape, a gap is generated in the transfer profile to the resin base material surface after removing the copper foil, and depending on the size of the gap, the plating solution used when forming the plating pattern may be It may not be possible to enter. At this time, as shown in FIG. 4, a gap remains between the resin base material surface and the plating pattern to be formed. If such voids remain, a reliability test (for example, a heat test at 250 ° C. ± 10 ° C. × 1 hour when a printed wiring board or the like is formed by forming a circuit using a plating pattern is used. ) Due to expansion in the vicinity of the gap, causing problems such as circuit peeling or substrate swelling.
 このような問題に対し、上述の本発明の表面処理銅箔によれば、銅箔が離型層側表面に凸部を有し、凸部は高さ方向に垂直な方向に切断したときの断面において、銅箔表面から断面の最広部に進む間にくびれ部を有し、凸部の高さをaとし、且つ、高さ方向に垂直な方向に切断したときの断面において、最広部における最大幅をbとし、くびれ部の最小幅をcとしたとき、a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nmを満たし、また、a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nmを満たすため、樹脂基材表面と、形成されるメッキパターン(または印刷パターンまたはビルドアップ層)との間に空隙が生じず、或いは、生じたとしても、メッキパターンの形成時のメッキ液(印刷パターンの形成時であれば導電ペースト等を含むインク、ビルドアップ層の形成時であれば当該樹脂材料)が当該空隙を満たす。このため、その後、メッキパターン(または印刷パターンまたはビルドアップ層)を利用してプリント配線板等を作製した場合、信頼性試験(例えば、250℃±10℃×1時間の加熱試験)によっても、回路剥離または基板フクレが発生することを良好に抑制することができる(図5)。 For such a problem, according to the above-described surface-treated copper foil of the present invention, the copper foil has a convex portion on the surface of the release layer, and the convex portion is cut in a direction perpendicular to the height direction. In the cross section, it has a constricted part while proceeding from the copper foil surface to the widest part of the cross section, the height of the convex part is a, and the widest in the cross section when cut in the direction perpendicular to the height direction. Where b is the maximum width of the portion and c is the minimum width of the constricted portion, if a / b ≦ 1, then (bc) /b≦0.2 and b ≧ 10 nm are satisfied, and a In the case of / b> 1, in order to satisfy (bc) /b≦0.03 and b ≧ 10 nm, the resin substrate surface and the formed plating pattern (or print pattern or build-up layer) There is no gap between them, or even if they occur, the plating solution (print pattern shape) If when the ink containing a conductive paste or the like, the resin material as long as the formation of the build-up layer) satisfies the void. For this reason, after that, when a printed wiring board or the like is produced using a plating pattern (or a printing pattern or a build-up layer), a reliability test (for example, a heating test at 250 ° C. ± 10 ° C. × 1 hour) Generation | occurrence | production of a circuit peeling or a board | substrate swelling can be suppressed favorably (FIG. 5).
 上記式について、a/b≦1の場合、(b-c)/b≦0.15であるのがより好ましく、(b-c)/b≦0.10であるのが更により好ましい。また、a/b>1の場合、(b-c)/b≦0.25であるのがより好ましく、(b-c)/b≦0.20であるのが更により好ましい。また、銅箔は、離型層側表面に、粗化粒子を有さないことが好ましい。 In the above formula, when a / b ≦ 1, it is more preferable that (bc) /b≦0.15, and even more preferable that (bc) /b≦0.10. Further, when a / b> 1, it is more preferable that (bc) /b≦0.25, and even more preferable that (bc) /b≦0.20. Moreover, it is preferable that copper foil does not have a roughening particle | grain on the mold release layer side surface.
 離型層は、離型層側から銅箔へ樹脂基材を貼り合わせたときの樹脂基材を剥離可能にする機能を有する。なお、離型層は銅箔の両面に設けてもよい。また、貼り合わせは圧着して貼り合わせてもよい。
 銅箔(生箔ともいう)は、電解銅箔で形成されており、銅箔の厚みは特に限定されず、例えば、5~105μmとすることができる。また、樹脂基材からの引き剥がしが容易となることから、表面処理銅箔の厚みは9~70μmであるのが好ましく、12~35μmであるのがより好ましく、18~35μmであるのが更により好ましい。
The release layer has a function of making the resin substrate peelable when the resin substrate is bonded to the copper foil from the release layer side. Note that the release layer may be provided on both sides of the copper foil. Further, the bonding may be performed by pressure bonding.
The copper foil (also referred to as raw foil) is formed of an electrolytic copper foil, and the thickness of the copper foil is not particularly limited, and can be, for example, 5 to 105 μm. Further, since the peeling from the resin base material is easy, the thickness of the surface-treated copper foil is preferably 9 to 70 μm, more preferably 12 to 35 μm, and further preferably 18 to 35 μm. Is more preferable.
 銅箔(生箔)の製造方法としては、特に限定されないが、例えば下記の電解条件によって電解銅箔を作製することができる。
 電解生箔の電解条件:
  Cu:30~190g/L
  H2SO4:100~400g/L
  塩化物イオン(Cl-):10~200質量ppm
  電解液温度:25~80℃
  電解時間:10~300秒(析出させる銅厚、電流密度により調整)
  電流密度:50~150A/dm2
  電解液線速:1.5~5m/sec
 なお、電解液の銅濃度を高くすることで、前述のa、bの値を大きくすることができる。また、電解液の銅濃度を低くすることで、前述のa、bの値を小さくすることができる。また、電解液の温度を高くすることで、前述のa、bの値を大きくすることができる。また、電解液の温度を低くすることで、前述のa、b、cの値を小さくすることができる。また、塩化物イオン濃度を高くすることで、前述のa、bの値を大きくすることができる。なお、塩化物イオン濃度を高くすることで、bの値が大きくなる程度よりもaの値が大きくなる程度の方が大きいという傾向がある。また、塩化物イオン濃度を低くすることで、前述のa、bの値を小さくすることができる。なお、塩化物イオン濃度を低くすることで、bの値が小さくなる程度よりもaの値が小さくなる程度の方が大きいという傾向がある。メッキ時間を長くすることで、前述のa、b、cの値を大きくすることができる。メッキ時間を短くすることで、前述のa、b、cの値を小さくすることができる。
Although it does not specifically limit as a manufacturing method of copper foil (raw foil), For example, an electrolytic copper foil can be produced on the following electrolysis conditions.
Electrolytic conditions for electrolytic green foil:
Cu: 30 to 190 g / L
H 2 SO 4 : 100 to 400 g / L
Chloride ion (Cl ): 10 to 200 ppm by mass
Electrolyte temperature: 25-80 ° C
Electrolysis time: 10 to 300 seconds (adjusted according to the thickness of copper to be deposited and current density)
Current density: 50 to 150 A / dm 2
Electrolyte linear velocity: 1.5-5m / sec
In addition, the value of above-mentioned a and b can be enlarged by making copper concentration of electrolyte solution high. Moreover, the value of a and b mentioned above can be made small by making the copper concentration of electrolyte solution low. Further, by increasing the temperature of the electrolytic solution, the values of a and b described above can be increased. Moreover, the value of a, b, c mentioned above can be made small by making the temperature of electrolyte solution low. Further, by increasing the chloride ion concentration, the values of a and b described above can be increased. Note that, by increasing the chloride ion concentration, there is a tendency that the value of a is larger than the value of b. Further, by reducing the chloride ion concentration, the values of a and b described above can be reduced. In addition, by decreasing the chloride ion concentration, there is a tendency that the value of a is smaller than the value of b is smaller. By increasing the plating time, the values of a, b, and c described above can be increased. By shortening the plating time, the values of a, b, and c described above can be reduced.
 本発明において銅箔を樹脂基材から除去することは、エッチング等による化学的な処理によって樹脂基材から銅箔を除去する、または、引き剥がし等によって銅箔から樹脂基材を物理的に剥離することを意味する。樹脂基材を上述のように本発明の表面処理銅箔と貼り合わせた後に除去したとき、樹脂基材と表面処理銅箔とは離型層で離れる。このとき樹脂基材の剥離面に、剥離層、後述の銅箔の粗化粒子、耐熱層、防錆層、クロメート処理層、シランカップリング処理層等の一部が残留していてもよいが、残留物が存在しないことが好ましい。 In the present invention, removing the copper foil from the resin base material means removing the copper foil from the resin base material by chemical treatment such as etching, or physically peeling the resin base material from the copper foil by peeling or the like. It means to do. When the resin substrate is removed after being bonded to the surface-treated copper foil of the present invention as described above, the resin substrate and the surface-treated copper foil are separated by a release layer. At this time, a part of the release layer, roughened particles of copper foil described later, a heat-resistant layer, a rust preventive layer, a chromate treatment layer, a silane coupling treatment layer, etc. may remain on the release surface of the resin substrate. Preferably, no residue is present.
 本発明に係る表面処理銅箔は、離型層側から銅箔へ樹脂基材を貼り合わせたとき、樹脂基材を剥離する際の剥離強度が200gf/cm以下であるのが好ましい。このように制御されていれば、樹脂基材の物理的剥離が容易となり、銅箔表面のプロファイルがより良好に樹脂基材に転写される。当該剥離強度は、より好ましくは150gf/cm以下であり、更により好ましくは100gf/cm以下であり、更により好ましくは50gf/cm以下であり、典型的には1~200gf/cmであり、より典型的には1~150gf/cmである。 The surface-treated copper foil according to the present invention preferably has a peel strength of 200 gf / cm or less when the resin substrate is peeled off when the resin substrate is bonded to the copper foil from the release layer side. If controlled in this way, physical peeling of the resin base material becomes easy, and the profile of the copper foil surface is transferred to the resin base material better. The peel strength is more preferably 150 gf / cm or less, even more preferably 100 gf / cm or less, even more preferably 50 gf / cm or less, typically 1 to 200 gf / cm, and more Typically 1 to 150 gf / cm.
 次に、本発明で用いることができる離型層について説明する。
(1)シラン化合物
 次式に示す構造を有するシラン化合物、またはその加水分解生成物、または該加水分解生成物の縮合体(以下、単にシラン化合物と記述する)を単独でまたは複数混合して使用して離型層を形成することで、表面処理銅箔と樹脂基材とを貼り合わせた際に、適度に密着性が低下し、剥離強度を上述の範囲に調節できる。
Next, the release layer that can be used in the present invention will be described.
(1) Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination. Thus, by forming the release layer, when the surface-treated copper foil and the resin base material are bonded together, the adhesiveness is moderately lowered, and the peel strength can be adjusted to the above range.
 式:
Figure JPOXMLDOC01-appb-C000009
formula:
Figure JPOXMLDOC01-appb-C000009
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。) Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
 当該シラン化合物はアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、樹脂基材と銅箔の密着性が低下し過ぎる傾向がある。また、当該シラン化合物はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を少なくとも一つ有していることが必要である。当該炭化水素基が存在しない場合、樹脂基材と銅箔の密着性が上昇する傾向があるからである。なお、アルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。 The silane compound must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and copper foil to fall too much. The silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have at least one. This is because when the hydrocarbon group does not exist, the adhesion between the resin base material and the copper foil tends to increase. The alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
 樹脂基材と銅箔の剥離強度を上述した範囲に調節する上では、当該シラン化合物はアルコキシ基を三つ、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つ有していることが好ましい。これを上の式でいえば、R3及びR4の両方がアルコキシ基ということになる。 In adjusting the peel strength between the resin base material and the copper foil to the above-mentioned range, the silane compound has three alkoxy groups and the hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one). In terms of the above formula, both R 3 and R 4 are alkoxy groups.
 アルコキシ基としては、限定的ではないが、メトキシ基、エトキシ基、n-又はiso-プロポキシ基、n-、iso-又はtert-ブトキシ基、n-、iso-又はneo-ペントキシ基、n-ヘキソキシ基、シクロヘキシソキシ基、n-ヘプトキシ基、及びn-オクトキシ基等の直鎖状、分岐状、又は環状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシ基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl. A linear or branched alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as a group, n-octyl group and n-decyl group.
 シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Examples of the cycloalkyl group include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms. An alkyl group is mentioned.
 アリール基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられる。 The aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms. An aryl group is mentioned.
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいシラン化合物の例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、n-又はiso-プロピルトリメトキシシラン、n-、iso-又はtert-ブチルトリメトキシシラン、n-、iso-又はneo-ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン;アルキル置換フェニルトリメトキシシラン(例えば、p-(メチル)フェニルトリメトキシシラン)、メチルトリエトキシシラン、エチルトリエトキシシラン、n-又はiso-プロピルトリエトキシシラン、n-、iso-又はtert-ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、フェニルトリエトキシシラン、アルキル置換フェニルトリエトキシシラン(例えば、p-(メチル)フェニルトリエトキシシラン)、(3,3,3-トリフルオロプロピル)トリメトキシシラン、及びトリデカフルオロオクチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、トリメチルフルオロシラン、ジメチルジブロモシラン、ジフェニルジブロモシラン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、プロピルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシランが好ましい。 Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl. Trimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane; alkyl-substituted phenyltrimethoxysilane (eg, p- (methyl) phenyltrimethoxysilane), methyltriethoxysilane, ethyl Triethoxysilane, n- or iso-propyltriethoxysilane, n-, iso- or tert-butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, octyltriethoxy Silane, decyltriethoxysilane, phenyltriethoxysilane, alkyl-substituted phenyltriethoxysilane (eg, p- (methyl) phenyltriethoxysilane), (3,3,3-trifluoropropyl) trimethoxysilane, and trideca Fluorooctyltriethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, trimethylfluorosilane, dimethyldibromosilane, diphenyldibromosilane, their hydrolysis products, and condensates of these hydrolysis products Etc. Among these, propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
 離型層の形成工程において、シラン化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高いシラン化合物を使用するときに有効である。シラン化合物の水溶液は、撹拌することでアルコキシ基の加水分解が促進され、撹拌時間が長いと加水分解生成物の縮合が促進される。一般には、十分な撹拌時間を経て加水分解および縮合が進んだシラン化合物を用いた方が樹脂基材と銅箔の剥離強度は低下する傾向にある。従って、撹拌時間の調整によって剥離強度を調整可能である。限定的ではないが、シラン化合物を水に溶解させた後の撹拌時間としては例えば1~100時間とすることができ、典型的には1~30時間とすることができる。当然ながら、撹拌せずに用いる方法もある。 In the step of forming the release layer, the silane compound can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used. By stirring the aqueous solution of the silane compound, hydrolysis of the alkoxy group is promoted, and when the stirring time is long, condensation of the hydrolysis product is promoted. In general, the peel strength between the resin substrate and the copper foil tends to decrease when a silane compound that has undergone hydrolysis and condensation after a sufficient stirring time is used. Therefore, the peel strength can be adjusted by adjusting the stirring time. Although not limited, the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
 シラン化合物の水溶液中のシラン化合物の濃度は高い方が金属箔と板状キャリアの剥離強度は低下する傾向にあり、シラン化合物の濃度調整によって剥離強度を調整可能である。限定的ではないが、シラン化合物の水溶液中の濃度は0.01~10.0体積%とすることができ、典型的には0.1~5.0体積%とすることができる。 The higher the concentration of the silane compound in the aqueous solution of the silane compound, the lower the peel strength between the metal foil and the plate carrier, and the peel strength can be adjusted by adjusting the concentration of the silane compound. Although not limited, the concentration of the silane compound in the aqueous solution can be 0.01 to 10.0% by volume, and typically 0.1 to 5.0% by volume.
 シラン化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(2)分子内に2つ以下のメルカプト基を有する化合物
 離型層は、分子内に2つ以上のメルカプト基を有する化合物を用いて構成し、当該離型層を介して樹脂基材と銅箔とを貼り合わせることによっても、適度に密着性が低下し、剥離強度を調節できる。
 但し、分子内に3つ以上のメルカプト基を有する化合物またはその塩を樹脂基材と銅箔との間に介在させて貼り合わせた場合、剥離強度低減の目的には適さない。これは、分子内にメルカプト基が過剰に存在するとメルカプト基同士、またはメルカプト基と板状キャリア、またはメルカプト基と金属箔との化学反応によってスルフィド結合、ジスルフィド結合またはポリスルフィド結合が過剰に生成し、樹脂基材と銅箔の間に強固な3次元架橋構造が形成されることで剥離強度が上昇することがあると考えられるからである。このような事例は特開2000-196207号公報に開示されている。
(2) Compound having two or less mercapto groups in the molecule The release layer is composed of a compound having two or more mercapto groups in the molecule, and the resin base material and copper are interposed via the release layer. Adhesion with the foil can also be appropriately reduced to adjust the peel strength.
However, when a compound having three or more mercapto groups in the molecule or a salt thereof is bonded between the resin substrate and the copper foil, it is not suitable for the purpose of reducing the peel strength. This is because when there is an excessive amount of mercapto groups in the molecule, an excessive amount of sulfide bonds, disulfide bonds or polysulfide bonds are generated by the chemical reaction between the mercapto groups, or between the mercapto group and the plate carrier, or the mercapto group and the metal foil, This is because it is considered that the peel strength may be increased by forming a strong three-dimensional crosslinked structure between the resin base material and the copper foil. Such a case is disclosed in Japanese Patent Laid-Open No. 2000-196207.
 この分子内に2つ以下のメルカプト基を有する化合物としては、チオール、ジチオール、チオカルボン酸またはその塩、ジチオカルボン酸またはその塩、チオスルホン酸またはその塩、およびジチオスルホン酸またはその塩が挙げられ、これらの中から選択される少なくとも一種を用いることができる。 Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from these can be used.
 チオールは、分子内に一つのメルカプト基を有するものであり、例えばR-SHで表される。ここで、Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。 Thiol has one mercapto group in the molecule and is represented by, for example, R-SH. Here, R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
 ジチオールは、分子内に二つのメルカプト基を有するものであり、例えばR(SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのメルカプト基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素または窒素に結合してもよい。 Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
 チオカルボン酸は、有機カルボン酸の水酸基がメルカプト基に置換されたものであり、例えばR-CO-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオカルボン酸は、塩の形態でも使用することが可能である。なお、チオカルボン酸基を、二つ有する化合物も使用可能である。 The thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. The thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
 ジチオカルボン酸は、有機カルボン酸のカルボキシ基中の2つの酸素原子が硫黄原子に置換されたものであり、例えばR-(CS)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、ジチオカルボン酸は、塩の形態でも使用することが可能である。なお、ジチオカルボン酸基を、二つ有する化合物も使用可能である。 Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Dithiocarboxylic acid can also be used in the form of a salt. A compound having two dithiocarboxylic acid groups can also be used.
 チオスルホン酸は、有機スルホン酸の水酸基がメルカプト基に置換されたものであり、例えばR(SO2)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオスルホン酸は、塩の形態でも使用することが可能である。 The thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Further, thiosulfonic acid can be used in the form of a salt.
 ジチオスルホン酸は、有機ジスルホン酸の二つの水酸基がそれぞれメルカプト基に置換されたものであり、例えばR-((SO2)-SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのチオスルホン酸基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素に結合してもよい。また、ジチオスルホン酸は、塩の形態でも使用することが可能である。 Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons. Dithiosulfonic acid can also be used in the form of a salt.
 ここで、Rとして好適な脂肪族系炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Here, examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、Rとして好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 In addition, examples of suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、Rとして好適な複素環基としては、イミダゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾールが挙げられ、水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Also, examples of the heterocyclic group suitable as R include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
 分子内に2つ以下のメルカプト基を有する化合物の好ましい例としては、3-メルカプト-1,2プロパンジオール、2-メルカプトエタノール、1,2-エタンジチオール、6-メルカプト-1-ヘキサノール、1-オクタンチオール、1-ドデカンチオール、10-ヒドロキシ-1-ドデカンチオール、10-カルボキシ-1-ドデカンチオール、10-アミノ-1-ドデカンチオール、1-ドデカンチオールスルホン酸ナトリウム、チオフェノール、チオ安息香酸、4-アミノ-チオフェノール、p-トルエンチオール、2,4-ジメチルベンゼンチオール、3-メルカプト-1,2,4トリアゾール、2-メルカプト-ベンゾチアゾールが挙げられる。これらの中でも水溶性と廃棄物処理上の観点から、3-メルカプト-1,2プロパンジオールが好ましい。 Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
 離型層の形成工程において、分子内に2つ以下のメルカプト基を有する化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い分子内に2つ以下のメルカプト基を有する化合物を使用するときに有効である。 In the release layer forming step, a compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は高い方が樹脂基材と銅箔の剥離強度は低下する傾向にあり、分子内に2つ以下のメルカプト基を有する化合物の濃度調整によって剥離強度を調整可能である。限定的ではないが、分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は0.01~10.0重量%とすることができ、典型的には0.1~5.0重量%とすることができる。 The higher the concentration of the compound having two or less mercapto groups in the molecule in the aqueous solution, the lower the peel strength between the resin substrate and the copper foil, and the compound having two or less mercapto groups in the molecule. The peel strength can be adjusted by adjusting the concentration. Although not limited, the concentration of the compound having 2 or less mercapto groups in the molecule in the aqueous solution can be 0.01 to 10.0% by weight, typically 0.1 to 5.0%. % By weight.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(3)金属アルコキシド
 離型層を、次式に示す構造を有するアルミネート化合物、チタネート化合物、ジルコネート化合物、またはその加水分解生成物、または該加水分解生成物の縮合体(以下、単に金属アルコキシドと記述する)を単独でまたは複数混合して構成してもよい。当該離型層を介して樹脂基材と銅箔を貼り合わせることで、適度に密着性が低下し、剥離強度を調節できる。
(3) Metal alkoxide The release layer is formed from an aluminate compound, titanate compound, zirconate compound, or a hydrolysis product thereof having a structure represented by the following formula, or a condensation product of the hydrolysis product (hereinafter simply referred to as metal alkoxide and May be used alone or in combination. By adhering the resin base material and the copper foil through the release layer, the adhesion is moderately lowered and the peel strength can be adjusted.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。 In the formula, R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group. M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
 当該金属アルコキシドはアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、樹脂基材と銅箔の密着性が低下し過ぎる傾向がある。また、当該金属アルコキシドはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を0~2個有していることが必要である。当該炭化水素基を3つ以上有する場合、樹脂基材と銅箔の密着性が低下し過ぎる傾向があるからである。なお、アルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。樹脂基材と銅箔の剥離強度を上述した範囲に調節する上では、当該金属アルコキシドはアルコキシ基を二つ以上、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つか二つ有していることが好ましい。 The metal alkoxide must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and copper foil to fall too much. The metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the resin substrate and the copper foil tends to be too low. The alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom. In adjusting the peel strength between the resin base material and the copper foil to the above-mentioned range, the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、R2として好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 Further, examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group. In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいアルミネート化合物の例としては、トリメトキシアルミニウム、メチルジメトキシアルミニウム、エチルジメトキシアルミニウム、n-又はiso-プロピルジメトキシアルミニウム、n-、iso-又はtert-ブチルジメトキシアルミニウム、n-、iso-又はneo-ペンチルジメトキシアルミニウム、ヘキシルジメトキシアルミニウム、オクチルジメトキシアルミニウム、デシルジメトキシアルミニウム、フェニルジメトキシアルミニウム;アルキル置換フェニルジメトキシアルミニウム(例えば、p-(メチル)フェニルジメトキシアルミニウム)、ジメチルメトキシアルミニウム、トリエトキシアルミニウム、メチルジエトキシアルミニウム、エチルジエトキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジエトキシアルミニウム、ペンチルジエトキシアルミニウム、ヘキシルジエトキシアルミニウム、オクチルジエトキシアルミニウム、デシルジエトキシアルミニウム、フェニルジエトキシアルミニウム、アルキル置換フェニルジエトキシアルミニウム(例えば、p-(メチル)フェニルジエトキシアルミニウム)、ジメチルエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、エチルジイソプロポキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジイソプロポキシアルミニウム、ペンチルジイソプロポキシアルミニウム、ヘキシルジイソプロポキシアルミニウム、オクチルジイソプロポキシアルミニウム、デシルジイソプロポキシアルミニウム、フェニルジイソプロポキシアルミニウム、アルキル置換フェニルジイソプロポキシアルミニウム(例えば、p-(メチル)フェニルジイソプロポキシアルミニウム)、ジメチルイソプロポキシアルミニウム、(3,3,3-トリフルオロプロピル)ジメトキシアルミニウム、及びトリデカフルオロオクチルジエトキシアルミニウム、メチルジクロロアルミニウム、ジメチルクロロアルミニウム、ジメチルクロロアルミニウム、フェニルジクロロアルミニウム、ジメチルフルオロアルミニウム、ジメチルブロモアルミニウム、ジフェニルブロモアルミニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、が好ましい。 Examples of preferred aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldiethoxyaluminum, pentyldiethoxyaluminum, hexyldiethoxyaluminum, octyldiethoxyaluminum, decyldiethoxyaluminum, phenyldiethoxyaluminum, alkyl-substituted phenyldiethoxyaluminum (eg p -(Methyl) phenyldiethoxyaluminum), dimethylethoxyaluminum, triisopropoxyaluminum, methyldiisopropoxyaluminum, ethyldiisopropoxyaluminum, n- or iso-propyldiethoxyaluminum, n-, iso- or tert-butyl Diisopropoxy aluminum, pentyl diisopropoxy aluminum, hexyl diisopropoxy aluminum, octyl dii Propoxyaluminum, decyldiisopropoxyaluminum, phenyldiisopropoxyaluminum, alkyl-substituted phenyldiisopropoxyaluminum (eg, p- (methyl) phenyldiisopropoxyaluminum), dimethylisopropoxyaluminum, (3,3,3-tri Fluoropropyl) dimethoxyaluminum and tridecafluorooctyldiethoxyaluminum, methyldichloroaluminum, dimethylchloroaluminum, dimethylchloroaluminum, phenyldichloroaluminum, dimethylfluoroaluminum, dimethylbromoaluminum, diphenylbromoaluminum, their hydrolysis products, And condensates of these hydrolysis products. Among these, from the viewpoint of availability, trimethoxyaluminum, triethoxyaluminum, and triisopropoxyaluminum are preferable.
 好ましいチタネート化合物の例としては、テトラメトキシチタン、メチルトリメトキシチタン、エチルトリメトキシチタン、n-又はiso-プロピルトリメトキシチタン、n-、iso-又はtert-ブチルトリメトキシチタン、n-、iso-又はneo-ペンチルトリメトキシチタン、ヘキシルトリメトキシチタン、オクチルトリメトキシチタン、デシルトリメトキシチタン、フェニルトリメトキシチタン;アルキル置換フェニルトリメトキシチタン(例えば、p-(メチル)フェニルトリメトキシチタン)、ジメチルジメトキシチタン、テトラエトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリエトキシチタン、ペンチルトリエトキシチタン、ヘキシルトリエトキシチタン、オクチルトリエトキシチタン、デシルトリエトキシチタン、フェニルトリエトキシチタン、アルキル置換フェニルトリエトキシチタン(例えば、p-(メチル)フェニルトリエトキシチタン)、ジメチルジエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン、エチルトリイソプロポキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリイソプロポキシチタン、ペンチルトリイソプロポキシチタン、ヘキシルトリイソプロポキシチタン、オクチルトリイソプロポキシチタン、デシルトリイソプロポキシチタン、フェニルトリイソプロポキシチタン、アルキル置換フェニルトリイソプロポキシチタン(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシチタン、(3,3,3-トリフルオロプロピル)トリメトキシチタン、及びトリデカフルオロオクチルトリエトキシチタン、メチルトリクロロチタン、ジメチルジクロロチタン、トリメチルクロロチタン、フェニルトリクロロチタン、ジメチルジフルオロチタン、ジメチルジブロモチタン、ジフェニルジブロモチタン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、が好ましい。 Examples of preferred titanate compounds include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso- or tert-butyl triethoxy titanium, Nitrotriethoxytitanium, hexyltriethoxytitanium, octyltriethoxytitanium, decyltriethoxytitanium, phenyltriethoxytitanium, alkyl-substituted phenyltriethoxytitanium (eg p- (methyl) phenyltriethoxytitanium), dimethyldiethoxytitanium , Tetraisopropoxytitanium, methyltriisopropoxytitanium, ethyltriisopropoxytitanium, n- or iso-propyltriethoxytitanium, n-, iso- or tert-butyltriisopropoxytitanium, pentyltriisopropoxytitanium, hexyltri Isopropoxytitanium, octyltriisopropoxytitanium, decyltriisopropoxytitanium, phenyltriisopropoxytitanium, alkyl-substituted phenyltriisopropoxytitanium ( For example, p- (methyl) phenyltriisopropoxytitanium), dimethyldiisopropoxytitanium, (3,3,3-trifluoropropyl) trimethoxytitanium, and tridecafluorooctyltriethoxytitanium, methyltrichlorotitanium, dimethyldichloro Examples include titanium, trimethylchlorotitanium, phenyltrichlorotitanium, dimethyldifluorotitanium, dimethyldibromotitanium, diphenyldibromotitanium, hydrolysis products thereof, and condensates of these hydrolysis products. Among these, tetramethoxy titanium, tetraethoxy titanium, and tetraisopropoxy titanium are preferable from the viewpoint of availability.
 好ましいジルコネート化合物の例としては、テトラメトキシジルコニウム、メチルトリメトキシジルコニウム、エチルトリメトキシジルコニウム、n-又はiso-プロピルトリメトキシジルコニウム、n-、iso-又はtert-ブチルトリメトキシジルコニウム、n-、iso-又はneo-ペンチルトリメトキシジルコニウム、ヘキシルトリメトキシジルコニウム、オクチルトリメトキシジルコニウム、デシルトリメトキシジルコニウム、フェニルトリメトキシジルコニウム;アルキル置換フェニルトリメトキシジルコニウム(例えば、p-(メチル)フェニルトリメトキシジルコニウム)、ジメチルジメトキシジルコニウム、テトラエトキシジルコニウム、メチルトリエトキシジルコニウム、エチルトリエトキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリエトキシジルコニウム、ペンチルトリエトキシジルコニウム、ヘキシルトリエトキシジルコニウム、オクチルトリエトキシジルコニウム、デシルトリエトキシジルコニウム、フェニルトリエトキシジルコニウム、アルキル置換フェニルトリエトキシジルコニウム(例えば、p-(メチル)フェニルトリエトキシジルコニウム)、ジメチルジエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム、エチルトリイソプロポキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリイソプロポキシジルコニウム、ペンチルトリイソプロポキシジルコニウム、ヘキシルトリイソプロポキシジルコニウム、オクチルトリイソプロポキシジルコニウム、デシルトリイソプロポキシジルコニウム、フェニルトリイソプロポキシジルコニウム、アルキル置換フェニルトリイソプロポキシジルコニウム(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシジルコニウム、(3,3,3-トリフルオロプロピル)トリメトキシジルコニウム、及びトリデカフルオロオクチルトリエトキシジルコニウム、メチルトリクロロジルコニウム、ジメチルジクロロジルコニウム、トリメチルクロロジルコニウム、フェニルトリクロロジルコニウム、ジメチルジフルオロジルコニウム、ジメチルジブロモジルコニウム、ジフェニルジブロモジルコニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、が好ましい。 Examples of preferred zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltriethoxyzirconium, -Or iso-propyltriethoxyzirconium, n-, iso- or tert-butyltriethoxyzirconium, pentyltriethoxyzirconium, hexyltriethoxyzirconium, octyltriethoxyzirconium, decyltriethoxyzirconium, phenyltriethoxyzirconium, alkyl-substituted phenyl Triethoxyzirconium (eg, p- (methyl) phenyltriethoxyzirconium), dimethyldiethoxyzirconium, tetraisopropoxyzirconium, methyltriisopropoxyzirconium, ethyltriisopropoxyzirconium, n- or iso-propyltriethoxyzirconium, n -, Iso- or tert-butyltriisopropoxyzirconium, pentyltriisopropoxy Luconium, hexyltriisopropoxyzirconium, octyltriisopropoxyzirconium, decyltriisopropoxyzirconium, phenyltriisopropoxyzirconium, alkyl-substituted phenyltriisopropoxyzirconium (eg, p- (methyl) phenyltriisopropoxytitanium), dimethyldi Isopropoxyzirconium, (3,3,3-trifluoropropyl) trimethoxyzirconium, and tridecafluorooctyltriethoxyzirconium, methyltrichlorozirconium, dimethyldichlorozirconium, trimethylchlorozirconium, phenyltrichlorozirconium, dimethyldifluorozirconium, dimethyldibromo Zirconium, diphenyldibromozirconium and their hydrolysis Products, and condensates of these hydrolysis products. Among these, tetramethoxyzirconium, tetraethoxyzirconium, and tetraisopropoxyzirconium are preferable from the viewpoint of availability.
 離型層の形成工程において、金属アルコキシドは水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い金属アルコキシドを使用するときに有効である。 In the step of forming the release layer, the metal alkoxide can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
 金属アルコキシドの水溶液中の濃度は高い方が樹脂基材と銅箔の剥離強度は低下する傾向にあり、金属アルコキシド濃度調整によって剥離強度を調整可能である。限定的ではないが、金属アルコキシドの水溶液中の濃度は0.001~1.0mol/Lとすることができ、典型的には0.005~0.2mol/Lとすることができる。 The higher the concentration of the metal alkoxide in the aqueous solution, the lower the peel strength between the resin substrate and the copper foil, and the peel strength can be adjusted by adjusting the metal alkoxide concentration. Although not limited, the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
 金属アルコキシドの水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。
(4)その他
 シリコン系の離型剤、離型性を有する樹脂被膜等、公知の離型性を有する物質を離型層に用いることができる。
The pH of the aqueous solution of the metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(4) Others A known release material, such as a silicon-based release agent or a resin coating having a release property, can be used for the release layer.
 本発明に係る表面処理銅箔は、銅箔と離型層との間に、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層が設けられていてもよい。ここでクロメート処理層とは無水クロム酸、クロム酸、二クロム酸、クロム酸塩または二クロム酸塩を含む液で処理された層のことをいう。クロメート処理層はコバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素およびチタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでもよい。クロメート処理層の具体例としては、無水クロム酸または二クロム酸カリウム水溶液で処理したクロメート処理層や、無水クロム酸または二クロム酸カリウムおよび亜鉛を含む処理液で処理したクロメート処理層等が挙げられる。 The surface-treated copper foil according to the present invention is selected from the group consisting of a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer between the copper foil and the release layer. More than one seed layer may be provided. Here, the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate. Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included). Specific examples of the chromate treatment layer include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
 粗化処理層は例えば以下の処理により形成することができる。なお、粗化処理に用いるメッキ液中の銅濃度を高くすることで、前述のa、bの値を大きくすることができる。また、粗化処理に用いるメッキ液中の銅濃度を低くすることで、前述のa、bの値を小さくすることができる。また、粗化処理に用いるメッキ液中の銅以外の金属の濃度を高くすることで、前述のa、bの値を小さくすることができる。また、メッキ液の温度を高くすることで、前述のa、bの値を大きくすることができる。また、メッキ液の温度を低くすることで、前述のa、b、cの値を小さくすることができる。メッキ時間を長くすることで、前述のa、b、cの値を大きくすることができる。メッキ時間を短くすることで、前述のa、b、cの値を小さくすることができる。
  〔球状粗化〕
 Cu、H2SO4、Asから成る、以下に記す銅粗化めっき浴を用いて球状粗化粒子を形成する。
・液組成1
   CuSO4・5H2O 78~196g/L
   Cu 20~50g/L
   H2SO4 50~200g/L
   砒素 0.7~3.0g/L
(電気メッキ温度1) 30~76℃
(電流条件1) 電流密度 35~105A/dm2 (浴の限界電流密度以上)
(メッキ時間1)1~240秒
 続いて、粗化粒子の脱落防止とピール強度向上のため、硫酸・硫酸銅からなる銅電解浴で被せメッキを行う。被せメッキ条件を以下に記す。
・液組成2
   CuSO4・5H2O 88~352g/L
   Cu 22~90g/L
   H2SO4 50~200g/L
(電気メッキ温度2) 25~80℃
(電流条件2) 電流密度:15~32A/dm2 (浴の限界電流密度未満)
(メッキ時間1)1~240秒
A roughening process layer can be formed by the following processes, for example. Note that the values of a and b described above can be increased by increasing the copper concentration in the plating solution used for the roughening treatment. Further, by reducing the copper concentration in the plating solution used for the roughening treatment, the values of a and b described above can be reduced. Further, by increasing the concentration of a metal other than copper in the plating solution used for the roughening treatment, the values of a and b described above can be reduced. Further, by increasing the temperature of the plating solution, the values of a and b described above can be increased. Moreover, the value of a, b, c mentioned above can be made small by lowering the temperature of the plating solution. By increasing the plating time, the values of a, b, and c described above can be increased. By shortening the plating time, the values of a, b, and c described above can be reduced.
(Spherical roughening)
Spherical rough particles are formed using a copper roughening plating bath described below, which is made of Cu, H 2 SO 4 and As.
・ Liquid composition 1
CuSO 4 · 5H 2 O 78 ~ 196g / L
Cu 20-50g / L
H 2 SO 4 50-200 g / L
Arsenic 0.7-3.0g / L
(Electroplating temperature 1) 30 ~ 76 ℃
(Current condition 1) Current density 35 to 105 A / dm 2 (above the limiting current density of the bath)
(Plating time 1) 1 to 240 seconds Subsequently, plating is performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent the rough particles from falling off and to improve the peel strength. The covering plating conditions are described below.
・ Liquid composition 2
CuSO 4 · 5H 2 O 88-352g / L
Cu 22-90g / L
H 2 SO 4 50-200 g / L
(Electroplating temperature 2) 25-80 ° C
(Current condition 2) Current density: 15 to 32 A / dm 2 (below the limit current density of the bath)
(Plating time 1) 1 to 240 seconds
  〔微細粗化(Type1)〕
  まず、以下の条件にて粗化処理を行う。粗化(処理)粒子形成時の電流密度と限界電流密度との比である対限界電流密度比(=粗化(処理)粒子形成時の電流密度/限界電流密度)は2.10~2.90とした。
・液組成1
   CuSO4・5H2O 29.5~118g/L
   Cu 7.5~30g/L
   H2SO4 50~200g/L
   Na2WO4・2H2O 2.7~10.8mg/L
   ドデシル硫酸ナトリウム添加量 5~20ppm
(電気メッキ温度1) 20~70℃
(電流条件1) 電流密度 34~74A/dm2
(メッキ時間1)1~180秒
  続いて、下記に示す条件で正常めっきを行う。
・液組成2
   CuSO4・5H2O 88~352g/L
   Cu 40~90g/L
   H2SO4 50~200g/L
(電気メッキ温度2) 30~65℃
(電流条件2) 電流密度 21~45A/dm2
(メッキ時間2)1~180秒
[Fine roughening (Type 1)]
First, roughening is performed under the following conditions. The ratio of the current density at the time of roughening (processing) particle formation to the limiting current density to the limiting current density ratio (= current density at the time of roughening (processing) particle formation / limit current density) is 2.10-2. 90.
・ Liquid composition 1
CuSO 4 .5H 2 O 29.5 to 118 g / L
Cu 7.5-30g / L
H 2 SO 4 50-200 g / L
Na 2 WO 4 · 2H 2 O 2.7 to 10.8 mg / L
Sodium dodecyl sulfate addition amount 5-20ppm
(Electroplating temperature 1) 20 ~ 70 ℃
(Current condition 1) Current density 34 to 74 A / dm 2
(Plating time 1) 1 to 180 seconds Subsequently, normal plating is performed under the following conditions.
・ Liquid composition 2
CuSO 4 · 5H 2 O 88-352g / L
Cu 40-90g / L
H 2 SO 4 50-200 g / L
(Electroplating temperature 2) 30 ~ 65 ℃
(Current condition 2) Current density 21 to 45 A / dm 2
(Plating time 2) 1 to 180 seconds
  〔微細粗化(Type2)〕
 まず、Cu-Co-Ni三元系合金層を以下の液組成1及び電気めっき条件1で形成し、その後、当該三元系合金層上にコバルト-ニッケル合金めっきを以下の液組成2及び電気めっき条件2で形成する。
・液組成1
   Cu 10~20g/L
   Co 1~10g/L
   Ni 1~10g/L
   pH 1~4
(電気メッキ温度1) 30~50℃
(電流条件1) 電流密度 25~45A/dm2
(メッキ時間1)1~60秒
・液組成2
   Co 1~30g/L
   Ni 1~30g/L
   pH 1.0~3.5
(電気メッキ温度2)30~80℃
(電流条件2) 電流密度 3~10A/dm2
(メッキ時間2)1~60秒
[Fine roughening (Type 2)]
First, a Cu—Co—Ni ternary alloy layer is formed under the following liquid composition 1 and electroplating condition 1, and then a cobalt-nickel alloy plating is applied onto the ternary alloy layer with the following liquid composition 2 and electric plating. It is formed under plating condition 2.
・ Liquid composition 1
Cu 10-20g / L
Co 1-10g / L
Ni 1 ~ 10g / L
pH 1-4
(Electroplating temperature 1) 30-50 ° C
(Current condition 1) Current density 25 to 45 A / dm 2
(Plating time 1) 1-60 seconds ・ Liquid composition 2
Co 1-30g / L
Ni 1-30g / L
pH 1.0-3.5
(Electroplating temperature 2) 30 ~ 80 ℃
(Current condition 2) Current density 3-10A / dm 2
(Plating time 2) 1-60 seconds
 また、耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。 Moreover, a well-known heat resistant layer and a rust preventive layer can be used as a heat resistant layer and a rust preventive layer. For example, the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum A layer containing one or more elements selected from nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements Further, it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like. The heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. An oxide, nitride, or silicide containing one or more elements selected from the above may be included. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer. The nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities. The total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 . The ratio of the nickel adhesion amount and the zinc adhesion amount of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer (= nickel adhesion amount / zinc adhesion amount) is 1.5 to 10. It is preferable. Further, the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
 例えば耐熱層および/または防錆層は、付着量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケルまたはニッケル合金層と、付着量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよく、前記ニッケル合金層はニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層および/または防錆層は、ニッケルまたはニッケル合金とスズとの合計付着量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層および/または防錆層は、[ニッケルまたはニッケル合金中のニッケル付着量]/[スズ付着量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。 For example, the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2. A tin layer of ˜80 mg / m 2 , preferably 5 mg / m 2 ˜40 mg / m 2 may be sequentially laminated. The nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these. The heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable. In addition, the heat-resistant layer and / or the rust-preventing layer preferably has [amount of nickel deposited in nickel or nickel alloy] / [amount of tin deposited] = 0.25 to 10, preferably 0.33 to 3. More preferred.
 なお、シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。 In addition, you may use a well-known silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent. Good. Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane or the like may be used.
 前記シランカップリング処理層は、エポキシ系シラン、アミノ系シラン、メタクリロキシ系シラン、メルカプト系シランなどのシランカップリング剤などを使用して形成してもよい。なお、このようなシランカップリング剤は、2種以上混合して使用してもよい。中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いて形成したものであることが好ましい。 The silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like. In addition, you may use 2 or more types of such silane coupling agents in mixture. Especially, it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
 ここで言うアミノ系シランカップリング剤とは、N‐(2‐アミノエチル)‐3‐アミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、N‐(3‐アクリルオキシ‐2‐ヒドロキシプロピル)‐3‐アミノプロピルトリエトキシシラン、4‐アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリス(2‐エチルヘキソキシ)シラン、6‐(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3‐(1‐アミノプロポキシ)‐3,3‐ジメチル‐1‐プロペニルトリメトキシシラン、3‐アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3‐アミノプロピルトリエトキシシラン、3‐アミノプロピルトリメトキシシラン、ω‐アミノウンデシルトリメトキシシラン、3‐(2‐N‐ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、(N,N‐ジエチル‐3‐アミノプロピル)トリメトキシシラン、(N,N‐ジメチル‐3‐アミノプロピル)トリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシランからなる群から選択されるものであってもよい。 The amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trimethoxysilane, -(2-aminoethyl-3-aminopropyl) tris (2-ethylhexoxy) silane, 6- (aminohexylaminopropyl) trimethoxysilane, aminophenyltrimethoxysilane, 3- (1-aminopropoxy) -3,3 -Dimethyl-1-propenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ω-aminoundecyltrimethoxysilane, 3- ( 2-N-benzylaminoethylaminopropyl) trimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, (N, N-diethyl-3-aminopropyl) trimethoxysilane, (N, N -Dimethyl-3-aminopropyl) Trimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane may be selected from the group consisting of Good.
 シランカップリング処理層は、ケイ素原子換算で、0.05mg/m2~200mg/m2、好ましくは0.15mg/m2~20mg/m2、好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが望ましい。前述の範囲の場合、樹脂基材と銅箔との密着性をより向上させることができる。 The silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness of a resin base material and copper foil can be improved more.
 また、銅箔、粗化粒子層、耐熱層、防錆層、シランカップリング処理層、クロメート処理層または離型層の表面に、国際公開番号WO2008/053878、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、国際公開番号WO2006/134868、特許第5046927号、国際公開番号WO2007/105635、特許第5180815号、特開2013-19056号に記載の表面処理を行うことができる。 Further, on the surface of the copper foil, the roughened particle layer, the heat-resistant layer, the rust-preventing layer, the silane coupling treatment layer, the chromate treatment layer or the release layer, an international publication number WO2008 / 053878, JP2008-1111169, Patent No. Surface treatment described in No. 5024930, International Publication No. WO2006 / 028207, Patent No. 4828427, International Publication No. WO2006 / 134868, Patent No. 5046927, International Publication No. WO2007 / 105635, Patent No. 5180815, JP2013-19056A It can be performed.
 本発明に係る表面処理銅箔の表面には樹脂層が設けられていてもよい。樹脂層は、通常、離型層上に設けられる。 A resin layer may be provided on the surface of the surface-treated copper foil according to the present invention. The resin layer is usually provided on the release layer.
 前記表面処理銅箔の表面の樹脂層は接着用樹脂、すなわち接着剤であってもよく、プライマーであってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。前記表面処理銅箔の表面の樹脂層は離型層と接触した際に適度な剥離強度(例えば2gf/cm~200gf/cm)を発現する樹脂層であることが好ましい。また、銅箔の表面の凹凸に追従し、フクレの原因となり得る空隙や気泡の混入が生じにくい樹脂を用いることが好ましい。例えば、銅箔表面に当該樹脂層を設ける際に、樹脂の粘度が10000mPa・s(25℃)以下、より好ましくは、樹脂の粘度が5000mPa・s(25℃)以下等の粘度の低い樹脂を用いて樹脂層を設けることが好ましい。表面処理銅箔に積層する絶縁基板と表面処理銅箔との間に前述の樹脂層を設けることにより、銅箔の表面の凹凸に追従しにくい絶縁基板を用いた場合でも、樹脂層が銅箔表面に追従するため、表面処理銅箔と絶縁基板との間で、空隙や気泡が生じにくくすることが可能となるため有効である。 The resin layer on the surface of the surface-treated copper foil may be an adhesive resin, that is, an adhesive, a primer, or an insulating resin layer in a semi-cured state (B stage state) for adhesion. Good. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that. The resin layer on the surface of the surface-treated copper foil is preferably a resin layer that exhibits an appropriate peel strength (for example, 2 gf / cm to 200 gf / cm) when in contact with the release layer. Further, it is preferable to use a resin that follows the unevenness of the surface of the copper foil and hardly causes voids or bubbles that may cause swelling. For example, when the resin layer is provided on the copper foil surface, a resin having a low viscosity such as a resin viscosity of 10,000 mPa · s (25 ° C.) or less, more preferably a resin viscosity of 5000 mPa · s (25 ° C.) or less is used. It is preferable to provide a resin layer. Even if an insulating substrate that does not easily follow the unevenness of the surface of the copper foil is used by providing the aforementioned resin layer between the insulating substrate laminated on the surface-treated copper foil and the surface-treated copper foil, the resin layer is a copper foil. Since it follows the surface, it is effective because it is possible to make it difficult for voids and bubbles to occur between the surface-treated copper foil and the insulating substrate.
 また前記表面処理銅箔の表面の樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記表面処理銅箔の表面の樹脂層は熱可塑性樹脂を含んでもよい。前記表面処理銅箔の表面の樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記表面処理銅箔の表面の樹脂層は例えば国際公開番号WO2008/004399、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225号、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。 The resin layer on the surface of the surface-treated copper foil may contain a thermosetting resin or may be a thermoplastic resin. The resin layer on the surface of the surface-treated copper foil may contain a thermoplastic resin. The resin layer on the surface of the surface-treated copper foil may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material and the like. The resin layer on the surface of the surface-treated copper foil is, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 088453, JP-A-11-5828, JP-A-11-140281, Patent No. 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Laid-Open No. 2002-179444, Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-304068, Patent No. 3992225, JP 2003-249739, JP 4136509, JP 2004-82687, JP 4025177, JP 2004-349654, JP 4286060, JP 2005-262506, JP 457. No. 070, JP-A-2005-53218, Patent No. 3949676, Patent No. 4178415, International Publication Numbers WO2004 / 005588, JP-A-2006-257153, JP-A-2007-326923, JP-A-2008-111169, Patent No. No. 5024930, International Publication No. WO2006 / 028207, Japanese Patent No. 4828427, Japanese Unexamined Patent Publication No. 2009-67029, International Publication No. WO2006 / 134868, Japanese Patent No. 5046927, Japanese Unexamined Patent Publication No. 2009-173017, International Publication No. WO2007 / 105635, Patent No. No. 5180815, International Publication Number WO2008 / 114858, International Publication Number WO2009 / 008471, JP2011-14727, International Publication Number WO2009 / 001850, International Publication Number WO2009 / 45179, substances described in International Publication No. WO2011 / 068157, JP-A-2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc. ) And / or a resin layer forming method and a forming apparatus.
(積層体、半導体パッケージ、電子機器)
 本発明に係る表面処理銅箔の離型層側に樹脂基材を設けて積層体を作製することができる。当該積層体は、樹脂基材を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等で形成してもよい。樹脂基材は、プリプレグであってもよく、熱硬化性樹脂を含んでもよい。また、当該積層体の表面処理銅箔に回路を形成することでプリント配線板を作製することができる。更に、プリント配線板に電子部品類を搭載することで、プリント回路板を作製することができる。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板及びプリント回路板及びプリント基板も含まれることとする。また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。また、上記「プリント回路板」には、半導体パッケージ用回路形成基板も含まれることとする。さらに半導体パッケージ用回路形成基板に電子部品類を搭載して半導体パッケージを作製することができる。さらに当該半導体パッケージを用いて電子機器を作製してもよい。
(Laminated body, semiconductor package, electronic equipment)
A laminate can be produced by providing a resin substrate on the release layer side of the surface-treated copper foil according to the present invention. In the laminate, the resin base material is a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin, a glass cloth / paper composite base epoxy resin, a glass cloth / glass non-woven composite base epoxy resin, and You may form with glass cloth base-material epoxy resin. The resin substrate may be a prepreg or may contain a thermosetting resin. Moreover, a printed wiring board can be produced by forming a circuit on the surface-treated copper foil of the laminate. Furthermore, a printed circuit board can be produced by mounting electronic components on a printed wiring board. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted in this manner. In addition, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted. An electronic device may be manufactured using a substrate. The “printed circuit board” includes a circuit forming substrate for a semiconductor package. Furthermore, a semiconductor package can be manufactured by mounting electronic components on a circuit forming substrate for a semiconductor package. Further, an electronic device may be manufactured using the semiconductor package.
 本発明の銅箔を用いてセミアディティブ法によって微細回路を形成することができる。図6に銅箔のプロファイルを使用したセミアディティブ法の概略例を示す。当該セミアディティブ法では、銅箔の表面プロファイルを用いている。具体的には、まず、樹脂基材に本発明の表面処理銅箔を離型層側から積層させて積層体を作製する。次に、積層体の銅箔(表面処理銅箔)をエッチングで除去する、または、引き剥がす。次に、銅箔表面プロファイルが転写した樹脂基材の表面を希硫酸等で洗浄後、無電解銅メッキを施す。そして、樹脂基材の回路を形成しない部分をドライフィルム等で被覆し、ドライフィルムに被覆されていない無電解銅メッキ層の表面に電気(電解)銅メッキを施す。その後、ドライフィルムを除去した後に、回路を形成しない部分に形成された無電解銅メッキ層を除去することにより微細な回路を形成する。本発明で形成される微細回路は、本発明の銅箔表面プロファイルが転写された樹脂基材の剥離面と密着しているため、その密着力(ピール強度)が良好となっている。
 また、セミアディティブ法の別の一実施形態は以下の通りである。
A fine circuit can be formed by the semi-additive method using the copper foil of the present invention. FIG. 6 shows a schematic example of the semi-additive method using a copper foil profile. In the semi-additive method, a surface profile of copper foil is used. Specifically, first, the surface-treated copper foil of the present invention is laminated on the resin base material from the release layer side to produce a laminate. Next, the copper foil (surface-treated copper foil) of the laminate is removed by etching or peeled off. Next, after the surface of the resin base material to which the copper foil surface profile has been transferred is washed with dilute sulfuric acid or the like, electroless copper plating is performed. Then, a portion of the resin base material that does not form a circuit is covered with a dry film or the like, and electroless (electrolytic) copper plating is applied to the surface of the electroless copper plating layer that is not covered with the dry film. Then, after removing the dry film, a fine circuit is formed by removing the electroless copper plating layer formed in the portion where the circuit is not formed. Since the fine circuit formed in the present invention is in close contact with the peeled surface of the resin base material to which the copper foil surface profile of the present invention has been transferred, its adhesion (peel strength) is good.
Another embodiment of the semi-additive method is as follows.
 セミアディティブ法とは、樹脂基材又は銅箔上に薄い無電解メッキを行い、パターンを形成後、電気メッキ及びエッチングを用いて導体パターンを形成する方法を指す。従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係る表面処理銅箔と樹脂基材とを準備する工程、
 前記表面処理銅箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理銅箔と樹脂基材とを積層した後に、前記表面処理銅箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理銅箔を引き剥がして生じた樹脂基材の剥離面にスルーホールまたは/およびブラインドビアを設ける工程、
 前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
 前記樹脂基材および前記スルーホールまたは/およびブラインドビアを含む領域について希硫酸等で樹脂基材表面を洗浄し、無電解メッキ層(例えば無電解銅メッキ層)を設ける工程、
 前記無電解メッキ層の上にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、電解メッキ層(例えば電解銅メッキ層)を設ける工程、
 前記メッキレジストを除去する工程、
 前記回路が形成される領域以外の領域にある無電解メッキ層をフラッシュエッチングなどにより除去する工程、
を含む。
The semi-additive method refers to a method in which a thin electroless plating is performed on a resin substrate or copper foil, a pattern is formed, and then a conductor pattern is formed using electroplating and etching. Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing the surface-treated copper foil and the resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated copper foil,
After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off,
Providing a through hole or / and a blind via on the release surface of the resin base material produced by peeling off the surface-treated copper foil,
Performing a desmear process on the region including the through hole or / and the blind via,
Cleaning the resin substrate surface with dilute sulfuric acid for the resin substrate and the region including the through hole or / and the blind via, and providing an electroless plating layer (for example, an electroless copper plating layer);
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係る表面処理銅箔と樹脂基材とを準備する工程、
 前記表面処理銅箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理銅箔と樹脂基材とを積層した後に、前記表面処理銅箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理銅箔を引き剥がして生じた樹脂基材の剥離面について、希硫酸等で樹脂基材表面を洗浄し、無電解メッキ層(例えば無電解銅メッキ層)を設ける工程、
 前記無電解メッキ層の上にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、電解メッキ層(例えば電解銅メッキ層)を設ける工程、
 前記メッキレジストを除去する工程、
 前記回路が形成される領域以外の領域にある無電解メッキ層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing the surface-treated copper foil and the resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated copper foil,
After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off,
For the peeled surface of the resin base material generated by peeling off the surface-treated copper foil, the step of washing the resin base material surface with dilute sulfuric acid or the like and providing an electroless plating layer (for example, electroless copper plating layer)
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 このようにして、表面処理銅箔を剥離した後の樹脂基材の剥離面に回路を形成し、プリント回路形成基板、半導体パッケージ用回路形成基板を作製することができる。さらに当該回路形成基板を用いて、プリント配線板、半導体パッケージを作製することができる。さらに当該プリント配線板、半導体パッケージを用いて電子機器を作製することができる。 In this manner, a circuit is formed on the release surface of the resin base material after the surface-treated copper foil is peeled off, and a printed circuit formation substrate and a circuit formation substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
 一方で、フルアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係る表面処理銅箔と樹脂基材とを準備する工程、
 前記表面処理銅箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理銅箔と樹脂基材とを積層した後に、前記表面処理銅箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理銅箔を引き剥がして生じた樹脂基材の剥離面について、希硫酸等で樹脂基材表面を洗浄する工程、
 前記洗浄した樹脂基材表面にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、無電解メッキ層(例えば無電解銅メッキ層、厚付けの無電解メッキ層でもよい)を設ける工程、
 前記メッキレジストを除去する工程、
を含む。
 なお、セミアディティブ法およびフルアディティブ法において、前記樹脂基材表面を洗浄することにより、無電解メッキ層を設けやすくなるという効果がある場合がある。特に、離型層が樹脂基材表面に残存している場合には、当該洗浄により離型層が樹脂基材表面から一部または全部が除去されるため、前記樹脂基材表面の洗浄により、より無電解メッキ層を設けやすくなるという効果がある場合がある。当該洗浄には公知の洗浄方法(使用する液の種類、温度、液の塗布方法等)による洗浄を用いることができる。また、本発明の離型層の一部または全部を除去することができる洗浄方法を用いることが好ましい。
On the other hand, in another embodiment of the method for producing a printed wiring board according to the present invention using the full additive method, a step of preparing the surface-treated copper foil and the resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated copper foil,
After laminating the surface-treated copper foil and the resin base material, the step of removing the surface-treated copper foil by etching or peeling off,
The step of washing the resin substrate surface with dilute sulfuric acid or the like for the peel surface of the resin substrate produced by peeling off the surface-treated copper foil,
Providing a plating resist on the cleaned resin substrate surface;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electroless plating layer (for example, an electroless copper plating layer or a thick electroless plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
including.
In the semi-additive method and the full additive method, there may be an effect that the electroless plating layer can be easily provided by cleaning the surface of the resin base material. In particular, when the release layer remains on the surface of the resin base material, a part or all of the release layer is removed from the surface of the resin base material by the cleaning. There may be an effect that it becomes easier to provide an electroless plating layer. For the cleaning, cleaning by a known cleaning method (type of liquid to be used, temperature, liquid application method, etc.) can be used. Further, it is preferable to use a cleaning method capable of removing a part or all of the release layer of the present invention.
 このようにして、フルアディティブ工法により、表面処理銅箔を剥離した後の樹脂基材の剥離面に回路を形成し、プリント回路形成基板、半導体パッケージ用回路形成基板を作製することができる。さらに当該回路形成基板を用いて、プリント配線板、半導体パッケージを作製することができる。さらに当該プリント配線板、半導体パッケージを用いて電子機器を作製することができる。 Thus, by a full additive method, a circuit is formed on the release surface of the resin base material after the surface-treated copper foil is peeled off, and a printed circuit forming substrate and a circuit forming substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
 なお、銅箔または表面処理銅箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Siが検出されれば、銅箔または表面処理銅箔の表面にシラン化合物が存在すると推察することができる。また、表面処理銅箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、本願に係る発明の離型層に用いることができる上記シラン化合物が使用されていると推定できる。 The surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). If Si is detected, it can be inferred that a silane compound is present on the surface of the copper foil or the surface-treated copper foil. When the peel strength (peel strength) between the surface-treated copper foil and the resin substrate is 200 gf / cm or less, the silane compound that can be used for the release layer according to the present invention is used. Can be estimated.
 また、銅箔または表面処理銅箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Sが検出されると共に、表面処理銅箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、銅箔または表面処理銅箔の表面に、本願に係る発明の離型層に用いることができる上記分子内に2つ以下のメルカプト基を有する化合物が存在すると推察することができる。 Moreover, the surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). , S is detected, and when the peel strength (peel strength) between the surface-treated copper foil and the resin substrate is 200 gf / cm or less, the surface of the copper foil or surface-treated copper foil is subjected to the invention according to the present invention. It can be inferred that there are compounds having two or less mercapto groups in the molecule that can be used for the release layer.
 また、銅箔または表面処理銅箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Al、Ti、Zrが検出されると共に、表面処理銅箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、銅箔または表面処理銅箔の表面に、本願に係る発明の離型層に用いることができる上記金属アルコキシドが存在すると推察することができる。 Moreover, the surface of the copper foil or the surface-treated copper foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis). , Al, Ti, Zr are detected, and when the peel strength (peel strength) between the surface-treated copper foil and the resin substrate is 200 gf / cm or less, the surface of the copper foil or surface-treated copper foil It can be inferred that the metal alkoxide that can be used in the release layer of the invention according to the present invention exists.
 以下に本発明の実施例および比較例として実験例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Experimental examples are shown below as examples and comparative examples of the present invention, but these examples are provided for better understanding of the present invention and its advantages, and are intended to limit the invention. is not.
 ・生箔(表面処理前の銅箔)の製造
 以下の電解条件にて、表1に記載の厚みの電解生箔を作製した。
 (電解液組成)
  Cu 120g/L
  H2SO4 100g/L
  塩化物イオン(Cl-) 70ppm
  電解液温度 60℃
  電流密度 70A/dm2
  電解液線速 2m/sec
-Manufacture of raw foil (copper foil before surface treatment) The electrolytic raw foil of the thickness of Table 1 was produced on the following electrolysis conditions.
(Electrolytic solution composition)
Cu 120g / L
H 2 SO 4 100 g / L
Chloride ion (Cl -) 70 ppm
Electrolyte temperature 60 ℃
Current density 70A / dm 2
Electrolyte linear velocity 2m / sec
 ・表面処理
 次に、表面処理として、生箔のM面(マット面)に、以下に示す各条件にて、粗化処理、バリヤー処理(耐熱処理)、防錆処理、シランカップリング処理、樹脂層形成処理のいずれかを、或いは、各処理を組み合わせて行った。続いて、以下に示す条件にて銅箔の当該処理側表面に離型層を形成した。なお、特に言及が無い場合は、各処理はこの記載順にて行った。また、表1において、各処理の欄に「無し」と記載されているものは、これらの処理を実施しなかったことを示す。
・ Surface treatment Next, as a surface treatment, roughening treatment, barrier treatment (heat-resistant treatment), rust prevention treatment, silane coupling treatment, resin on the M surface (matte surface) of the raw foil under the following conditions Any one of the layer forming processes or a combination of the processes was performed. Subsequently, a release layer was formed on the treated side surface of the copper foil under the following conditions. In addition, when there was no mention in particular, each process was performed in this description order. In Table 1, “None” in each processing column indicates that these processing were not performed.
 (1)粗化処理
  〔球状粗化〕
 Cu、H2SO4、Asから成る、以下に記す銅粗化めっき浴を用いて球状粗化粒子を形成した。
・液組成1
   CuSO4・5H2O 78~118g/L
   Cu 20~30g/L
   H2SO4 12g/L
   砒素 1.0~3.0g/L
(電気メッキ温度1) 25~33℃
(電流条件1) 電流密度 78A/dm2 (浴の限界電流密度以上)
(メッキ時間1)1~45秒
 続いて、粗化粒子の脱落防止とピール強度向上のため、硫酸・硫酸銅からなる銅電解浴で被せメッキを行った。被せメッキ条件を以下に記す。
・液組成2
   CuSO4・5H2O 156g/L
   Cu 40g/L
   H2SO4 120g/L
(電気メッキ温度2) 40℃
(電流条件2) 電流密度:20A/dm2 (浴の限界電流密度未満)
(メッキ時間2)1~60秒
(1) Roughening [Spherical roughening]
Spherical roughened particles were formed using a copper roughening plating bath described below consisting of Cu, H 2 SO 4 and As.
・ Liquid composition 1
CuSO 4 · 5H 2 O 78 ~ 118g / L
Cu 20-30g / L
H 2 SO 4 12g / L
Arsenic 1.0-3.0g / L
(Electroplating temperature 1) 25-33 ° C
(Current condition 1) Current density 78 A / dm 2 (above the limiting current density of the bath)
(Plating time 1) 1 to 45 seconds Subsequently, plating was performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent falling off of the roughened particles and to improve the peel strength. The covering plating conditions are described below.
・ Liquid composition 2
CuSO 4 · 5H 2 O 156g / L
Cu 40g / L
H 2 SO 4 120 g / L
(Electroplating temperature 2) 40 ° C
(Current condition 2) Current density: 20 A / dm 2 (less than the limit current density of the bath)
(Plating time 2) 1-60 seconds
  〔微細粗化(Type1)〕
 まず、以下の条件にて粗化処理を行った。粗化粒子形成時の対限界電流密度比は2.70とした。
・液組成1
   CuSO4・5H2O 19.6~58.9g/L
   Cu 5~15g/L
   H2SO4 120g/L
   Na2WO4・2H2O 6.0~10.4mg/L
   ドデシル硫酸ナトリウム添加量 10ppm
(電気メッキ温度1) 20~35℃
(電流条件1) 電流密度 57A/dm2
(メッキ時間1)1~25秒
 続いて、下記に示す条件で正常めっきを行った。
・液組成2
   CuSO4・5H2O 156g/L
   Cu 40g/L
   H2SO4 120g/L
(電気メッキ温度2) 30~40℃
(電流条件2) 電流密度 38A/dm2
(メッキ時間2)1~45秒
[Fine roughening (Type 1)]
First, roughening treatment was performed under the following conditions. The ratio of the limiting current density during the formation of roughened particles was 2.70.
・ Liquid composition 1
CuSO 4 .5H 2 O 19.6-58.9 g / L
Cu 5-15g / L
H 2 SO 4 120 g / L
Na 2 WO 4 · 2H 2 O 6.0 to 10.4 mg / L
Sodium dodecyl sulfate addition amount 10ppm
(Electroplating temperature 1) 20 ~ 35 ℃
(Current condition 1) Current density 57A / dm 2
(Plating time 1) 1 to 25 seconds Subsequently, normal plating was performed under the following conditions.
・ Liquid composition 2
CuSO 4 · 5H 2 O 156g / L
Cu 40g / L
H 2 SO 4 120 g / L
(Electroplating temperature 2) 30-40 ° C
(Current condition 2) Current density 38 A / dm 2
(Plating time 2) 1 to 45 seconds
  〔微細粗化(Type2)〕
 まず、Cu-Co-Ni三元系合金層を以下の液組成1及び電気めっき条件1で形成した後、当該三元系合金層上にコバルトめっきを以下の液組成2及び電気めっき条件2で形成した。
・液組成1
   Cu 8~18g/L
   Co 1~10g/L
   Ni 1~10g/L
   pH 1~4
(電気メッキ温度1) 30~40℃
(電流条件1) 電流密度 30A/dm2
(メッキ時間1)1~30秒
・液組成2
   Co 1~30g/L
   Ni 1~30g/L
   pH 1.0~3.5
(電気メッキ温度2)20~70℃
(電流条件2) 電流密度 1~4A/dm2
(メッキ時間2)1~25秒
[Fine roughening (Type 2)]
First, after forming a Cu—Co—Ni ternary alloy layer with the following liquid composition 1 and electroplating condition 1, cobalt plating is applied on the ternary alloy layer with the following liquid composition 2 and electroplating condition 2. Formed.
・ Liquid composition 1
Cu 8-18g / L
Co 1-10g / L
Ni 1 ~ 10g / L
pH 1-4
(Electroplating temperature 1) 30-40 ° C
(Current condition 1) Current density 30 A / dm 2
(Plating time 1) 1-30 seconds ・ Liquid composition 2
Co 1-30g / L
Ni 1-30g / L
pH 1.0-3.5
(Electroplating temperature 2) 20 ~ 70 ℃
(Current condition 2) Current density 1 to 4 A / dm 2
(Plating time 2) 1 to 25 seconds
 (2)バリヤー処理(耐熱処理)
 サンプルNo.9、11、12、27、29、30、45、47、48について、バリヤー(耐熱)処理を下記の条件で行い、真鍮メッキ層を形成した。
(液組成)
   Cu 70g/L
   Zn 5g/L
   NaOH 70g/L
   NaCN 20g/L
(電気メッキ条件)
   温度 70℃
   電流密度 8A/dm2(多段処理)
(2) Barrier treatment (heat-resistant treatment)
Sample No. For 9, 11, 12, 27, 29, 30, 45, 47, and 48, a barrier (heat resistant) treatment was performed under the following conditions to form a brass plating layer.
(Liquid composition)
Cu 70g / L
Zn 5g / L
NaOH 70g / L
NaCN 20g / L
(Electroplating conditions)
Temperature 70 ° C
Current density 8A / dm 2 (multistage processing)
 (3)防錆処理
 サンプルNo.10~12、28~30、46~48について、防錆処理(亜鉛クロメート処理)を下記の条件で行い、防錆処理層を形成した。
(液組成)
   CrO3 2.5g/L
   Zn 0.7g/L
   Na2SO4 10g/L
   pH 4.8
(亜鉛クロメート条件)
   温度 54℃
   電流密度 0.7As/dm2
(3) Rust prevention treatment Sample No. For 10 to 12, 28 to 30, and 46 to 48, a rust prevention treatment (zinc chromate treatment) was performed under the following conditions to form a rust prevention treatment layer.
(Liquid composition)
CrO 3 2.5g / L
Zn 0.7g / L
Na 2 SO 4 10 g / L
pH 4.8
(Zinc chromate condition)
Temperature 54 ° C
Current density 0.7 As / dm 2
 (4)シランカップリング処理
 サンプルNo.11~12について、シランカップリング材塗布処理を下記の条件で行い、シランカップリング層を形成した。
(液組成)
   テトラエトキシシラン含有量 0.4%
   pH 7.5
   塗布方法 溶液の噴霧
(4) Silane coupling treatment Sample No. For Nos. 11 to 12, a silane coupling material coating treatment was performed under the following conditions to form a silane coupling layer.
(Liquid composition)
Tetraethoxysilane content 0.4%
pH 7.5
Application method Spraying solution
 (5)離型層の形成
 サンプルNo.1~16、19~34、37~52、55~60について、表1に示すように下記の離型層A~Eのいずれかを形成した。
  〔離型層A〕
 銅箔の処理表面に、シラン化合物(n-プロピルトリメトキシシラン:4wt%)の水溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で5分間銅箔表面を乾燥させて離型層Aを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、水溶液中のアルコール濃度は0vol%、水溶液のpHは3.8~4.2とした。
(5) Formation of release layer Sample No. As shown in Table 1, any of the following release layers A to E was formed for 1 to 16, 19 to 34, 37 to 52, and 55 to 60.
[Release layer A]
An aqueous solution of a silane compound (n-propyltrimethoxysilane: 4 wt%) is applied to the treated surface of the copper foil using a spray coater, and then the copper foil surface is dried in air at 100 ° C. for 5 minutes to separate it. A mold layer A was formed. The stirring time from when the silane compound was dissolved in water to before coating was 30 hours, the alcohol concentration in the aqueous solution was 0 vol%, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層B〕
 分子内に2つ以下のメルカプト基を有する化合物として1-ドデカンチオールスルホン酸ナトリウムを用い、1-ドデカンチオールスルホン酸ナトリウムの水溶液(1-ドデカンチオールスルホン酸ナトリウム濃度:3wt%)を、スプレーコーターを用いて銅箔の処理面に塗布してから、100℃の空気中で5分間乾燥させて離型層Bを作製した。水溶液のpHは5~9とした。
[Release layer B]
Sodium 1-dodecanethiolsulfonate is used as a compound having two or less mercapto groups in the molecule, and an aqueous solution of sodium 1-dodecanethiolsulfonate (sodium 1-dodecanethiolsulfonate: 3 wt%) is applied to a spray coater. Using it, it apply | coated to the processing surface of copper foil, Then, it was made to dry in 100 degreeC air for 5 minutes, and the release layer B was produced. The pH of the aqueous solution was 5-9.
  〔離型層C〕
 金属アルコキシドとしてアルミネート化合物であるトリイソプロポキシアルミニウムを用い、トリイソプロポキシアルミニウムの水溶液(トリイソプロポキシアルミニウム濃度:0.04mol/L)を、スプレーコーターを用いて銅箔の処理面に塗布してから、100℃の空気中で5分間乾燥させて離型層Cを作製した。アルミネート化合物を水中に溶解させてから塗布する前までの撹拌時間は2時間、水溶液中のアルコール濃度は0vol%、水溶液のpHは5~9とした。
[Release layer C]
Using triisopropoxyaluminum, which is an aluminate compound, as the metal alkoxide, an aqueous solution of triisopropoxyaluminum (triisopropoxyaluminum concentration: 0.04 mol / L) was applied to the treated surface of the copper foil using a spray coater. Then, the release layer C was produced by drying in air at 100 ° C. for 5 minutes. The stirring time from when the aluminate compound was dissolved in water to before coating was 2 hours, the alcohol concentration in the aqueous solution was 0 vol%, and the pH of the aqueous solution was 5-9.
  〔離型層D〕
 金属アルコキシドとしてチタネート化合物であるn-デシル-トリイソプロポキシチタンを用い、n-デシル-トリイソプロポキシチタンの水溶液(n-デシル-トリイソプロポキシチタン濃度:0.01mol/L)を、スプレーコーターを用いて銅箔の処理面に塗布してから、100℃の空気中で5分間乾燥させて離型層Dを作製した。チタネート化合物を水中に溶解させてから塗布する前までの撹拌時間は24時間、水溶液中のアルコール濃度はメタノールを20vol%とし、水溶液のpHは5~9とした。
[Release layer D]
Using titanate compound n-decyl-triisopropoxytitanium as metal alkoxide, an aqueous solution of n-decyl-triisopropoxytitanium (n-decyl-triisopropoxytitanium concentration: 0.01 mol / L) After using it and apply | coating to the process surface of copper foil, it was made to dry for 5 minutes in 100 degreeC air, and the release layer D was produced. The stirring time from dissolving the titanate compound in water to before coating was 24 hours, the alcohol concentration in the aqueous solution was 20 vol% methanol, and the pH of the aqueous solution was 5-9.
  〔離型層E〕
 金属アルコキシドとしてジルコネート化合物であるn-プロピル-トリn-ブトキシジルコニウムを用い、n-プロピル-トリn-ブトキシジルコニウムの水溶液(n-プロピル-トリn-ブトキシジルコニウム濃度:0.04mol/L)を、スプレーコーターを用いて銅箔の処理面に塗布してから、100℃の空気中で5分間乾燥させて離型層Eを作製した。チタネート化合物を水中に溶解させてから塗布する前までの撹拌時間は12時間、水溶液中のアルコール濃度は0vol%とし、水溶液のpHは5~9とした。
[Release layer E]
Using a zirconate compound n-propyl-tri-n-butoxyzirconium as a metal alkoxide, an aqueous solution of n-propyl-tri-n-butoxyzirconium (concentration of n-propyl-tri-n-butoxyzirconium: 0.04 mol / L) After apply | coating to the processing surface of copper foil using a spray coater, it was made to dry in 100 degreeC air for 5 minutes, and the release layer E was produced. The stirring time from dissolving the titanate compound in water to before coating was 12 hours, the alcohol concentration in the aqueous solution was 0 vol%, and the pH of the aqueous solution was 5-9.
 (6)樹脂層形成処理
 サンプルNo.12、30、48については、バリヤー処理、防錆処理、シランカップリング材塗布、離型層形成の後、更に下記の条件で樹脂層の形成を行った。
(樹脂合成例)
 ステンレス製の碇型攪拌棒、窒素導入管とストップコックのついたトラップ上に、玉付冷却管を取り付けた還流冷却器を取り付けた2リットルの三つ口フラスコに、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物117.68g(400mmol)、1,3-ビス(3-アミノフェノキシ)ベンゼン87.7g(300mmol)、γ-バレロラクトン4.0g(40mmol)、ピリジン4.8g(60mmol)、N-メチル-2-ピロリドン(以下NMPと記す)300g、トルエン20gを加え、180℃で1時間加熱した後室温付近まで冷却した後、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物29.42g(100mmol)、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン82.12g(200mmol)、NMP200g、トルエン40gを加え、室温で1時間混合後、180℃で3時間加熱して、固形分38%のブロック共重合ポリイミドを得た。このブロック共重合ポリイミドは、下記に示す一般式(1):一般式(2)=3:2であり、数平均分子量:70000、重量平均分子量:150000であった。
(6) Resin layer forming treatment Sample No. For 12, 30, and 48, after barrier treatment, rust prevention treatment, silane coupling material application, and release layer formation, a resin layer was further formed under the following conditions.
(Resin synthesis example)
To a 2-liter three-necked flask equipped with a stainless steel vertical stirring bar, a trap with a nitrogen inlet tube and a stopcock, and a reflux condenser with a ball condenser, 117.68 g (400 mmol) of 4′-biphenyltetracarboxylic dianhydride, 87.7 g (300 mmol) of 1,3-bis (3-aminophenoxy) benzene, 4.0 g (40 mmol) of γ-valerolactone, 4. 8 g (60 mmol), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g, and toluene 20 g were added, heated at 180 ° C. for 1 hour, cooled to near room temperature, and then 3, 4, 3 ′, 4′- 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 82.12 g of 2,2-bis {4- (4-aminophenoxy) phenyl} propane (200 mmol), 200 g of NMP, and 40 g of toluene were added, mixed at room temperature for 1 hour, and then heated at 180 ° C. for 3 hours to obtain a block copolymerized polyimide having a solid content of 38%. The block copolymerized polyimide had the following general formula (1): general formula (2) = 3: 2, number average molecular weight: 70000, and weight average molecular weight: 150,000.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 合成例で得られたブロック共重合ポリイミド溶液をNMPで更に希釈し、固形分10%のブロック共重合ポリイミド溶液とした。このブロック共重合ポリイミド溶液にビス(4-マレイミドフェニル)メタン(BMI-H、ケイ・アイ化成)を固形分重量比率35、ブロック共重合ポリイミドの固形分重量比率65として(即ち、樹脂溶液に含まれるビス(4-マレイミドフェニル)メタン固形分重量:樹脂溶液に含まれるブロック共重合ポリイミド固形分重量=35:65)60℃、20分間溶解混合して樹脂溶液とした。その後、実施例12の離型層形成面に前記樹脂溶液を塗工し、窒素雰囲気下で、120℃で3分間、160℃で3分間乾燥処理後、最後に300℃で2分間加熱処理を行い、樹脂層を備える銅箔を作製した。なお、樹脂層の厚みは2μmとした。 The block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%. In this block copolymerized polyimide solution, bis (4-maleimidophenyl) methane (BMI-H, Kay-Isei) is contained in a solid content weight ratio of 35 and a solid content weight ratio of block copolymer polyimide of 65 (that is, included in the resin solution). Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution = 35: 65) A resin solution was prepared by dissolving and mixing at 60 ° C. for 20 minutes. Thereafter, the resin solution was applied to the release layer forming surface of Example 12, and after a drying treatment at 120 ° C. for 3 minutes and at 160 ° C. for 3 minutes in the nitrogen atmosphere, a heat treatment was finally performed at 300 ° C. for 2 minutes. The copper foil provided with the resin layer was produced. The thickness of the resin layer was 2 μm.
 (7)各種評価
 ・表面処理銅箔の離型層側表面の凸部の評価
 日本電子社製走査型電子顕微鏡を用いて、図9に示すように、表面処理銅箔のサンプルを載せるステージを水平面から45°傾けた状態で表面処理銅箔の離型層側表面の写真撮影を行い、得られた写真(以下、例えば、後述の図8)に基づいて表面処理銅箔の離型層側表面の凸部について図1に示す「凸部のくびれ部分から凸部の先端までの高さa」、「最広部における最大幅b」、「くびれ部の最小幅c」をそれぞれ評価した。なお、走査型電子顕微鏡の観察倍率は3万倍~100万倍とした。また、サンプルを載せるステージの傾けは写真の縦枠の方向と直角の方向で、かつ、写真の横枠の方向と平行方向の回転軸に沿って行った。
 評価は、図1に示すように、各凸部について「a」、「b」、「c」の値を測定し、100個以上の凸部の「a」、「b」、「c」の算術平均値の値を、それぞれ「a」、「b」、「c」の値とした。なお、粗化処理粒子を銅箔の表面に形成した場合には、凸部の「a」、「b」、「c」は測定可能な凸部を選択して測定した。ここで、前述の測定可能な凸部とは、くびれ部が観察可能な凸部のことを意味する。くびれ部が観察可能な凸部とは凸部の稜線(図8に例示)を観察することができる凸部のことである。
 ここで、「くびれ部」は、銅箔表面の凸部について、銅箔に近づく方向に観察した場合に、凸部先端から、幅が一度広くなった後に、幅が狭くなる部分とする。
 「凸部の幅」は、走査型電子顕微鏡で得られた写真上に写真の横枠と平行に凸部を横切る線を引いた場合に、凸部の輪郭または稜線によって区切られる当該写真の横枠と平行に引いた凸部を横切る直線の長さのことを言う。ここで、稜線が凸部に3本以上存在する場合には、最も手前の2つの稜線を選択する。
 「くびれ部の最小幅c」は、くびれ部における凸部の幅の最小値とする。くびれ部がない場合には、c=bとした。
 「凸部のくびれ部分から凸部の先端までの高さa」は、くびれ部の最小幅cを測定する際に引いた写真の横枠と平行に凸部を横切る線へ凸部の先端から垂線を引いた場合の、くびれ部の最小幅cを測定する際に引いた写真の横枠と平行な凸部を横切る線と当該凸部先端から引いた垂線との交点までの距離(a’)と、2の平方根との積の値とした。
 「凸部の先端」は、写真を観察した際に、撮影された凹凸の陰影等に基づいて判断される凸部の最も高いと推定される部分を意味する(図7参照)。
 「最広部における最大幅b」は、凸部にくびれ部が存在する場合には、凸部先端からくびれ部までの間における、写真の横枠と平行な凸部を横切る直線の、凸部の輪郭で区切られる最も長い長さとした。
(7) Various evaluations ・ Evaluation of convex part on surface of release layer of surface-treated copper foil Using a scanning electron microscope manufactured by JEOL Ltd., as shown in FIG. The surface of the surface-treated copper foil was photographed on the surface of the release layer side of the surface-treated copper foil inclined at 45 ° from the horizontal plane, and the surface-treated copper foil was released on the side of the release layer based on the obtained photograph (for example, FIG. 8 described later). With respect to the convex portions on the surface, “height a from the constricted portion of the convex portion to the tip of the convex portion”, “maximum width b at the widest portion”, and “minimum width c of the constricted portion” shown in FIG. The observation magnification of the scanning electron microscope was 30,000 to 1,000,000 times. The stage on which the sample was placed was tilted in a direction perpendicular to the direction of the vertical frame of the photograph and along a rotation axis parallel to the direction of the horizontal frame of the photograph.
In the evaluation, as shown in FIG. 1, the values of “a”, “b”, and “c” are measured for each convex portion, and “a”, “b”, and “c” of 100 or more convex portions are measured. The values of the arithmetic average values were “a”, “b”, and “c”, respectively. In addition, when the roughening process particle | grains were formed on the surface of copper foil, "a", "b", and "c" of the convex part selected and measured the convex part which can be measured. Here, the above-mentioned measurable convex portion means a convex portion where the constricted portion can be observed. The convex part where the constricted part is observable is a convex part capable of observing the ridge line (illustrated in FIG. 8) of the convex part.
Here, the “necked portion” is a portion where the width of the convex portion on the surface of the copper foil becomes narrow after the width once widens from the tip of the convex portion when observed in the direction approaching the copper foil.
“Width of convex part” is the width of the photo divided by the contour or ridge line of the convex part when a line crossing the convex part is drawn parallel to the horizontal frame of the photograph on the photograph obtained with a scanning electron microscope. This is the length of a straight line that crosses the convex part drawn parallel to the frame. Here, when there are three or more ridge lines on the convex portion, the two closest ridge lines are selected.
The “minimum width c of the constricted portion” is a minimum value of the width of the convex portion in the constricted portion. When there is no constricted part, c = b.
"Height a from the constricted part of the convex part to the leading end of the convex part" refers to the line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part from the leading end of the convex part When a perpendicular line is drawn, the distance (a ′) to the intersection of a line crossing the convex part parallel to the horizontal frame of the photograph drawn when measuring the minimum width c of the constricted part and the perpendicular line drawn from the tip of the convex part ) And the square root of 2.
The “tip of the convex portion” means a portion that is estimated to be the highest of the convex portion determined based on the shadow of the photographed unevenness when the photograph is observed (see FIG. 7).
The “maximum width b in the widest part” is a convex part of a straight line that intersects the convex part parallel to the horizontal frame of the photograph between the tip of the convex part and the constricted part when the convex part has a constricted part. The longest length delimited by the outline.
 ・積層体の製造
 各表面処理銅箔の処理側表面に以下の樹脂基材1~3のいずれかを貼り合わせた。
 基材1:三菱ガス化学(株)製 GHPL-830 MBT
 基材2:日立化成工業(株)製 679-FG
 基材3:住友ベークライト(株)製 EI-6785TS-F
 積層プレスの温度、圧力、時間は、各基材メーカーの推奨条件を用いた。
-Manufacture of Laminate Any of the following resin base materials 1 to 3 was bonded to the treated side surface of each surface-treated copper foil.
Base material 1: GHPL-830 MBT manufactured by Mitsubishi Gas Chemical Co., Ltd.
Base material 2: 679-FG manufactured by Hitachi Chemical Co., Ltd.
Base material 3: EI-6785TS-F manufactured by Sumitomo Bakelite Co., Ltd.
The recommended conditions of each substrate manufacturer were used for the temperature, pressure, and time of the lamination press.
 ・表面処理銅箔の剥離性の評価
 積層体に対し、IPC-TM-650に準拠し、引張り試験機オートグラフ100で銅箔から樹脂基材を剥離する際の常態ピール強度を測定し、以下の基準で表面処理銅箔の剥離性を評価した。
 ○:2~200gf/cmの範囲であった。
 ×:2gf/cm未満または200gf/cm超であった。
・ Evaluation of peelability of surface-treated copper foil Measure the normal peel strength when peeling the resin base material from the copper foil with the tensile tester Autograph 100 according to IPC-TM-650 for the laminate. The peelability of the surface-treated copper foil was evaluated based on the above criteria.
○: The range was 2 to 200 gf / cm.
X: Less than 2 gf / cm or more than 200 gf / cm.
 ・樹脂の破壊モードの評価
 上記剥離後の樹脂基材の剥離面を電子顕微鏡で観察し、樹脂の破壊モード(凝集、界面、凝集と界面との混在)について観察した。樹脂の破壊モードについて、「界面」は、樹銅箔と樹脂との界面で剥離したことを示し、「凝集」は、剥離強度が強すぎて樹脂が破壊していることを示し、「混在」は、上記「界面」と「凝集」とが混在していることを示す。
-Evaluation of resin fracture mode The peeled surface of the resin base material after the peeling was observed with an electron microscope, and the resin fracture mode (aggregation, interface, coexistence of aggregation and interface) was observed. Regarding the resin failure mode, “interface” indicates that the resin was peeled at the interface between the copper foil and the resin, and “aggregation” indicates that the peel strength was too strong and the resin was broken. Indicates that the “interface” and “aggregation” are mixed.
 ・回路剥離、基板フクレの評価
 上記剥離後の樹脂基材1~3の剥離面に、メッキ液[液組成、Cu:50g/L、H2SO4:50g/L、Cl:60ppm)を用いて銅メッキパターン(ライン/スペース=50μm/50μm)を形成した(例1)。また、上記剥離後の樹脂基材の剥離面に、導電ペーストを含有するインクを用いてインクジェットにより印刷パターン(ライン/スペース=50μm/50μm)を形成した(例2)。また、上記剥離後の樹脂基材の剥離面に、液晶ポリマーで構成された樹脂層(ビルドアップ層を構成する樹脂を想定した)をラミネートした(例3)。
 次に、それぞれ信頼性試験(250℃±10℃×1時間の加熱試験)によって、回路剥離または基板フクレが発生するか否かを確認した。なお、評価サンプルの大きさは250mm×250mmとし、サンプル番号ごとに3サンプルについて測定した。
 回路剥離および基板フクレが発生しなかったものを「◎」と評価した。回路剥離または基板フクレがわずかに発生したが(1サンプル中3か所以下)、使用する箇所を選別すれば製品として使用することができるものを「〇」と評価した。また、回路剥離または基板フクレが多数発生(1サンプル中3か所超)し、製品として使用することができないものを「×」と評価した。
 各試験条件及び評価結果を表1~4に示す。
・ Evaluation of circuit peeling and substrate swelling Using plating solution [liquid composition, Cu: 50 g / L, H 2 SO 4 : 50 g / L, Cl: 60 ppm] on the peeling surface of the resin base materials 1 to 3 after the above peeling. A copper plating pattern (line / space = 50 μm / 50 μm) was formed (Example 1). Further, a printing pattern (line / space = 50 μm / 50 μm) was formed on the release surface of the resin base material after peeling by ink jet using ink containing a conductive paste (Example 2). In addition, a resin layer composed of a liquid crystal polymer (assuming a resin constituting the build-up layer) was laminated on the release surface of the resin substrate after peeling (Example 3).
Next, whether or not circuit peeling or substrate swelling occurred was confirmed by a reliability test (heating test at 250 ° C. ± 10 ° C. × 1 hour). The size of the evaluation sample was 250 mm × 250 mm, and three samples were measured for each sample number.
The case where circuit peeling and substrate swelling did not occur was evaluated as “◎”. Slight circuit peeling or substrate swelling occurred (3 or less in one sample), but those that could be used as a product when the locations to be used were selected were evaluated as “◯”. In addition, a large number of circuit peeling or substrate swelling occurred (more than 3 in one sample), and those that could not be used as a product were evaluated as “x”.
Tables 1 to 4 show the test conditions and evaluation results.
 ・ビルドアップ層を構成する樹脂及び樹脂基材の未処理表面同士を貼り合わせた後、当該樹脂と樹脂基材とを引っ張って剥離させたときの強度
 樹脂基材1~3の未処理表面に対し、ビルドアップ層を構成する樹脂として想定している液晶ポリマー(株式会社クラレ製 Vecstar 品番:CT-F 厚み50μm)を、大きさ1cm角とし、積層温度295±5℃、積層圧力:1MPa、積層時間:30分で積層した。そして、積層した液晶ポリマーに対し、ワイヤー付き1cm角金属板を、接着剤を用いて接合した。なお、ワイヤーは金属製であり1cm角金属板の中央部に対して溶接またははんだ付けにより接合されている。そして引張り試験機オートグラフ100を用いて、ワイヤーを引っ張ることで、樹脂基材1~3からビルドアップ層を構成する樹脂(液晶ポリマー)を引っ張って剥離する際の最大荷重を測定した。任意の3か所について、当該測定を行い、3か所の算術平均値を最大荷重A(g)とした。なお、ワイヤーの引張速度は50mm/minとした。また、ワイヤーを引っ張る方向は、金属板の表面に垂直な方向とした。そして、A(g/cm2)をビルドアップ層を構成する樹脂及び樹脂基材1~3の未処理表面同士を貼り合わせて、引っ張って剥離させたときの強度とした。測定した結果、樹脂基材1~3のいずれにおいてもビルドアップ層を構成する樹脂(液晶ポリマー)及び樹脂基材1~3の未処理表面同士を貼り合わせて、引っ張って剥離させたときの強度は500g/cm2以下となった。また、表1に記載の各銅箔サンプルを、表1に記載の樹脂基材1~3に積層した後に、樹脂基材から当該銅箔サンプル剥離して、銅箔表面の凹凸プロフィールが転写した樹脂基材を得た。そして、当該銅箔表面の凹凸プロフィールが転写した樹脂基材の表面に対して、上述と同様にビルドアップ層を構成する樹脂(液晶ポリマー)を積層し、その後、樹脂基材とビルドアップ層を構成する樹脂とを引っ張って剥離させた際の強度を測定した。その結果、前述の「・回路剥離、基板フクレの評価」において、評価が「◎」の実験例は、樹脂基材とビルドアップ層を構成する樹脂とを引っ張って剥離させた際の強度が1000g/cm2以上となり、評価が「○」の実験例は、樹脂基材とビルドアップ層を構成する樹脂とを引っ張って剥離させた際の強度が800g/cm2以上となり、評価が「×」の実験例は、樹脂基材とビルドアップ層を構成する樹脂とを引っ張って剥離させた際の強度が600g/cm2以下となった。
・ Strength when the resin constituting the buildup layer and the untreated surfaces of the resin base material are bonded to each other, and then the resin and the resin base material are pulled and peeled. On the untreated surfaces of the resin base materials 1 to 3 On the other hand, a liquid crystal polymer (Vecstar manufactured by Kuraray Co., Ltd .: CT-F thickness: 50 μm) assumed as a resin constituting the build-up layer has a size of 1 cm square, a lamination temperature of 295 ± 5 ° C., a lamination pressure of 1 MPa, Lamination time: Laminated in 30 minutes. And the 1 cm square metal plate with a wire was joined to the laminated | stacked liquid crystal polymer using the adhesive agent. The wire is made of metal and is joined to the central portion of the 1 cm square metal plate by welding or soldering. Then, using a tensile tester Autograph 100, the maximum load when the resin (liquid crystal polymer) constituting the buildup layer was pulled and peeled from the resin base materials 1 to 3 was measured by pulling the wire. The measurement was performed at arbitrary three locations, and the arithmetic average value at the three locations was defined as the maximum load A (g). The wire pulling speed was 50 mm / min. The direction in which the wire is pulled was a direction perpendicular to the surface of the metal plate. Then, A (g / cm 2 ) was defined as the strength when the resin constituting the build-up layer and the untreated surfaces of the resin base materials 1 to 3 were bonded together and pulled and peeled off. As a result of the measurement, the strength when the resin (liquid crystal polymer) constituting the build-up layer and the untreated surfaces of the resin substrates 1 to 3 are bonded to each other and pulled apart in any of the resin substrates 1 to 3 Was 500 g / cm 2 or less. Moreover, after laminating each copper foil sample shown in Table 1 on the resin base materials 1 to 3 shown in Table 1, the copper foil sample was peeled off from the resin base material, and the uneven profile on the copper foil surface was transferred. A resin substrate was obtained. And the resin (liquid crystal polymer) which comprises a buildup layer is laminated | stacked on the surface of the resin base material which the uneven | corrugated profile of the said copper foil surface transcribe | transferred similarly to the above, Then, a resin base material and a buildup layer are attached. The strength at the time of peeling off the constituent resin was measured. As a result, in the above-mentioned ". Evaluation of circuit peeling and substrate swelling", the experimental example with an evaluation of "◎" has a strength of 1000 g when the resin base material and the resin constituting the buildup layer are pulled and peeled. / Cm 2 or more, and in the experimental example with an evaluation of “◯”, the strength when the resin base material and the resin constituting the buildup layer are pulled and peeled is 800 g / cm 2 or more, and the evaluation is “×”. In the experimental example, the strength when the resin substrate and the resin constituting the buildup layer were pulled and peeled was 600 g / cm 2 or less.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1~4に示すように、所定の離型層を設けた例No.1~16、No.19~34、No.37~52、55~60は、ピール強度が抑制され、樹脂の破壊モードが界面のみであった。このように、樹脂基材と貼り合わせた後に、銅箔を除去したとき、樹脂基材の表面に転写した銅箔表面のプロファイルを損なうこと無く、良好に銅箔を除去することができた。
 一方、離型層を設けておらず、或いは、離型層を形成しようとして用いた化合物が不適切であった例No.17~18、No.35~36、No.53~54は、離型層が形成できず、ピール強度が大きく、樹脂の破壊モードが凝集と、凝集と界面との混在のいずれかであった。このように、樹脂基材と貼り合わせた後に、銅箔を除去したとき、樹脂基材の表面に転写した銅箔表面のプロファイルが損なわれ、良好に銅箔を除去することができなかった。
 図7に、サンプルのNo.58に係る表面処理銅箔の離型層側表面の顕微鏡観察写真を示す。
 図8に、サンプルのNo.55に係る表面処理銅箔の離型層側表面の顕微鏡観察写真を示す。
As shown in Tables 1 to 4, Example No. 1 provided with a predetermined release layer was provided. 1-16, no. 19-34, no. In 37 to 52 and 55 to 60, the peel strength was suppressed, and the fracture mode of the resin was only the interface. As described above, when the copper foil was removed after being bonded to the resin base material, the copper foil was successfully removed without impairing the profile of the copper foil surface transferred to the surface of the resin base material.
On the other hand, no release layer was provided or the compound used to form the release layer was inappropriate. 17-18, no. 35-36, no. In Nos. 53 to 54, a release layer could not be formed, the peel strength was high, and the resin fracture mode was either aggregation or a mixture of aggregation and an interface. Thus, after bonding with the resin base material, when removing copper foil, the profile of the copper foil surface transcribe | transferred to the surface of the resin base material was impaired, and copper foil was not able to be removed favorably.
In FIG. The microscope observation photograph of the mold release layer side surface of the surface treatment copper foil which concerns on 58 is shown.
In FIG. The microscope observation photograph of the mold release layer side surface of the surface treatment copper foil which concerns on No.55 is shown.

Claims (30)

  1.  表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、
     前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、
     前記表面プロファイルが転写された樹脂基材の前記剥離面側にメッキパターンを形成する工程と、
    を備えたプリント配線板の製造方法。
    A step of attaching a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface;
    Removing the surface-treated copper foil from the resin base material to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface;
    Forming a plating pattern on the release surface side of the resin substrate to which the surface profile is transferred;
    A method of manufacturing a printed wiring board comprising:
  2.  表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、
     前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、
     前記表面プロファイルが転写された樹脂基材の前記剥離面側に印刷パターンを形成する工程と、
    を備えたプリント配線板の製造方法。
    A step of attaching a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface;
    Removing the surface-treated copper foil from the resin base material to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface;
    Forming a print pattern on the release surface side of the resin substrate to which the surface profile is transferred;
    A method of manufacturing a printed wiring board comprising:
  3.  表面に離型層が設けられた表面処理銅箔に、前記離型層側から樹脂基材を貼り合わせる工程と、
     前記樹脂基材から、前記表面処理銅箔を除去することで、剥離面に前記銅箔の表面プロファイルが転写された樹脂基材を得る工程と、
     前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程と、
    を備えたプリント配線板の製造方法。
    A step of attaching a resin base material from the release layer side to a surface-treated copper foil provided with a release layer on the surface;
    Removing the surface-treated copper foil from the resin base material to obtain a resin base material in which the surface profile of the copper foil is transferred to the release surface;
    Providing a build-up layer on the release surface side of the resin substrate to which the surface profile has been transferred;
    A method of manufacturing a printed wiring board comprising:
  4.  前記ビルドアップ層を構成する樹脂及び前記樹脂基材の未処理表面同士を貼り合わせて、引っ張って剥離させたときの強度が500g/cm2以下である請求項3に記載のプリント配線板の製造方法。 The printed wiring board manufacturing method according to claim 3, wherein the strength of the resin constituting the buildup layer and the untreated surfaces of the resin base material is bonded to each other and pulled and peeled off is 500 g / cm 2 or less. Method.
  5.  前記ビルドアップ層を構成する樹脂が、液晶ポリマーまたはポリテトラフルオロエチレンを含む請求項3又は4に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 3 or 4, wherein the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
  6.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項1~5のいずれか一項に記載のプリント配線板の製造方法。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
    An aluminate compound, a titanate compound, a zirconate compound, a hydrolysis product thereof, or a condensate of the hydrolysis product shown in any one of 1 to 5 above is used. Manufacturing method of printed wiring board.
  7.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項1~5のいずれか一項に記載のプリント配線板の製造方法。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
    The method for producing a printed wiring board according to any one of Claims 1 to 5, wherein the silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product are used singly or in combination.
  8.  前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる請求項1~5のいずれか一項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 1 to 5, wherein the release layer comprises a compound having two or less mercapto groups in the molecule.
  9.  前記銅箔は、前記離型層側表面に凸部を有し、前記凸部は、電子顕微鏡を用いて、前記銅箔を載せるステージを水平面から45°傾けた状態で前記銅箔の離型層側表面の写真撮影を行い、得られた写真に基づいて測定された凸部のくびれ部分から凸部の先端までの高さをa、凸部の最広部における最大幅をb、凸部のくびれ部の最小幅をcとしたとき、下記式をいずれも満たす請求項1~8のいずれか一項に記載のプリント配線板の製造方法。
     a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nm
     a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nm
    The copper foil has a convex portion on the surface of the release layer, and the convex portion is released from the copper foil in a state where a stage on which the copper foil is placed is inclined 45 ° from a horizontal plane using an electron microscope. The height from the constricted part of the convex part to the tip of the convex part measured based on the obtained photograph is taken as a, the maximum width at the widest part of the convex part is b, the convex part The method for producing a printed wiring board according to any one of claims 1 to 8, wherein all of the following formulas are satisfied, where c is a minimum width of the constricted portion.
    When a / b ≦ 1, (bc) /b≦0.2 and b ≧ 10 nm
    When a / b> 1, (bc) /b≦0.03 and b ≧ 10 nm
  10.  前記銅箔と前記離型層との間に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層を設けた請求項1~9のいずれか一項に記載のプリント配線板の製造方法。 10. One or more layers selected from the group consisting of a heat resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer are provided between the copper foil and the release layer. A method for producing a printed wiring board according to claim 1.
  11.  前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層を設けた請求項10に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 10, wherein a resin layer is provided on a surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer.
  12.  前記表面処理銅箔の離型層側表面に、樹脂層を設けた請求項1~11のいずれか一項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 1 to 11, wherein a resin layer is provided on a surface of the release layer side of the surface-treated copper foil.
  13.  前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である請求項11又は12に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 11 or 12, wherein the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  14.  前記表面処理銅箔の厚みが9~70μmである請求項1~13のいずれか一項に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to any one of claims 1 to 13, wherein the thickness of the surface-treated copper foil is 9 to 70 µm.
  15.  銅箔と、前記銅箔の表面に設けられた離型層とを有する表面処理銅箔であって、
     前記銅箔は、前記離型層側表面に凸部を有し、前記凸部は、電子顕微鏡を用いて、前記銅箔を載せるステージを水平面から45°傾けた状態で前記銅箔の離型層側表面の写真撮影を行い、得られた写真に基づいて測定された凸部のくびれ部分から凸部の先端までの高さをa、凸部の最広部における最大幅をb、凸部のくびれ部の最小幅をcとしたとき、下記式をいずれも満たす表面処理銅箔。
     a/b≦1の場合、(b-c)/b≦0.2、且つ、b≧10nm
     a/b>1の場合、(b-c)/b≦0.03、且つ、b≧10nm
    A surface-treated copper foil having a copper foil and a release layer provided on the surface of the copper foil,
    The copper foil has a convex portion on the surface of the release layer, and the convex portion is released from the copper foil in a state where a stage on which the copper foil is placed is inclined 45 ° from a horizontal plane using an electron microscope. The height from the constricted part of the convex part to the tip of the convex part measured based on the obtained photograph is taken as a, the maximum width at the widest part of the convex part is b, the convex part The surface-treated copper foil which satisfy | fills all the following formula when the minimum width | variety of a constriction part is set to c.
    When a / b ≦ 1, (bc) /b≦0.2 and b ≧ 10 nm
    When a / b> 1, (bc) /b≦0.03 and b ≧ 10 nm
  16.  前記銅箔は、前記離型層側表面に、粗化粒子を有さない請求項15に記載の表面処理銅箔。 The surface-treated copper foil according to claim 15, wherein the copper foil does not have roughened particles on the surface of the release layer.
  17.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項15または16に記載の表面処理銅箔。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000003
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
    The surface-treated copper foil according to claim 15 or 16, wherein the aluminate compound, titanate compound, zirconate compound, hydrolysis products thereof, and condensates of the hydrolysis products are used singly or in combination.
  18.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項15または16に記載の表面処理銅箔。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000004
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
    The surface-treated copper foil according to claim 15 or 16, wherein the silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product are used singly or in combination.
  19.  前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる請求項15または16に記載の表面処理銅箔。 The surface-treated copper foil according to claim 15 or 16, wherein the release layer comprises a compound having 2 or less mercapto groups in the molecule.
  20.  前記銅箔と前記離型層との間に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層を設けた請求項15~19のいずれか一項に記載の表面処理銅箔。 Any one or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer are provided between the copper foil and the release layer. The surface-treated copper foil as described in one.
  21.  前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層を設けた請求項20に記載の表面処理銅箔。 21. The surface-treated copper foil according to claim 20, wherein a resin layer is provided on the surface of one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer.
  22.  前記離型層側表面に、樹脂層を設けた請求項15~21のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 15 to 21, wherein a resin layer is provided on the surface of the release layer side.
  23.  前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である請求項21又は22に記載の表面処理銅箔。 The surface-treated copper foil according to claim 21 or 22, wherein the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  24.  厚みが9~70μmである請求項15~23のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 15 to 23, having a thickness of 9 to 70 µm.
  25.  請求項15~24のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の離型層側に設けられた樹脂基材とを備えた積層体。 A laminate comprising the surface-treated copper foil according to any one of claims 15 to 24 and a resin base material provided on the release layer side of the surface-treated copper foil.
  26.  前記樹脂基材が、プリプレグである、又は、熱硬化性樹脂を含む請求項25に記載の積層体。 The laminate according to claim 25, wherein the resin base material is a prepreg or contains a thermosetting resin.
  27.  請求項15~24のいずれか一項に記載の表面処理銅箔を備えたプリント配線板。 A printed wiring board comprising the surface-treated copper foil according to any one of claims 15 to 24.
  28.  請求項15~24のいずれか一項に記載の表面処理銅箔を用いて製造したプリント配線板。 A printed wiring board manufactured using the surface-treated copper foil according to any one of claims 15 to 24.
  29.  請求項27または28に記載のプリント配線板を備えた半導体パッケージ。 A semiconductor package comprising the printed wiring board according to claim 27 or 28.
  30.  請求項27または28に記載のプリント配線板又は請求項29に記載の半導体パッケージを備えた電子機器。 An electronic device comprising the printed wiring board according to claim 27 or 28 or the semiconductor package according to claim 29.
PCT/JP2016/072848 2015-08-03 2016-08-03 Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device WO2017022807A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187006355A KR102066362B1 (en) 2015-08-03 2016-08-03 Manufacturing method of printed wiring board, surface-treated copper foil, laminated body, printed wiring board, semiconductor package, and electronic device
CN201680038794.8A CN107710890A (en) 2015-08-03 2016-08-03 Manufacture method, surface treatment copper foil, laminate, printing distributing board, semiconductor packages and the e-machine of printing distributing board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-153753 2015-08-03
JP2015153753 2015-08-03
JP2015-187489 2015-09-24
JP2015187489A JP6438370B2 (en) 2015-08-03 2015-09-24 Printed wiring board manufacturing method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device

Publications (1)

Publication Number Publication Date
WO2017022807A1 true WO2017022807A1 (en) 2017-02-09

Family

ID=57943161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072848 WO2017022807A1 (en) 2015-08-03 2016-08-03 Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device

Country Status (1)

Country Link
WO (1) WO2017022807A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647755A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Production of copper clad laminated sheet
WO2005104638A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Wiring board and method for producing the same
JP2013243345A (en) * 2012-03-27 2013-12-05 General Electric Co <Ge> Ultrathin buried die module and method of manufacturing the same
WO2013183607A1 (en) * 2012-06-04 2013-12-12 Jx日鉱日石金属株式会社 Carrier-attached metal foil
WO2014024878A1 (en) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 Metal foil with carrier
WO2015012327A1 (en) * 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP2015090980A (en) * 2013-11-04 2015-05-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite metal film, and method of circuit pattern formation of printed circuit board using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647755A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Production of copper clad laminated sheet
WO2005104638A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Wiring board and method for producing the same
JP2013243345A (en) * 2012-03-27 2013-12-05 General Electric Co <Ge> Ultrathin buried die module and method of manufacturing the same
WO2013183607A1 (en) * 2012-06-04 2013-12-12 Jx日鉱日石金属株式会社 Carrier-attached metal foil
WO2014024878A1 (en) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 Metal foil with carrier
WO2015012327A1 (en) * 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP2015090980A (en) * 2013-11-04 2015-05-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite metal film, and method of circuit pattern formation of printed circuit board using the same

Similar Documents

Publication Publication Date Title
JP6204430B2 (en) Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
JP5826322B2 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, circuit forming substrate for semiconductor package, semiconductor package, and printed wiring board manufacturing method
WO2017051898A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
WO2018207786A1 (en) Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
TW201811557A (en) Copper foil with release layer, laminated material, method for producing printed wiring board, and method for producing electronic apparatus
JP6438370B2 (en) Printed wiring board manufacturing method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
TWI660658B (en) Method for manufacturing release foil-attached metal foil, metal foil, laminate, printed wiring board, semiconductor package, electronic device, and printed wiring board
JP2018121085A (en) Method for manufacturing printed wiring board
WO2017051905A1 (en) Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board
WO2017051897A1 (en) Metal foil, metal foil with mold release layer, laminate, printed wiring board, semiconductor package, electronic device and method for producing printed wiring board
WO2017022807A1 (en) Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
JP6588290B2 (en) Metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device, laminate manufacturing method, and printed wiring board manufacturing method
JP6031624B2 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board manufacturing method, semiconductor package manufacturing method, and electronic device manufacturing method
JP5897755B2 (en) Surface-treated copper foil, copper clad laminate, printed wiring board, electronic device, semiconductor package, printed wiring board manufacturing method, electronic device manufacturing method, semiconductor package manufacturing method, resin substrate manufacturing method, copper foil surface Method of transferring profile to resin substrate
JP2018171902A (en) Copper foil with release layer, laminate, method for producing printed wiring board and method for producing electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006355

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16833086

Country of ref document: EP

Kind code of ref document: A1