WO2017051905A1 - Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board - Google Patents

Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board Download PDF

Info

Publication number
WO2017051905A1
WO2017051905A1 PCT/JP2016/078117 JP2016078117W WO2017051905A1 WO 2017051905 A1 WO2017051905 A1 WO 2017051905A1 JP 2016078117 W JP2016078117 W JP 2016078117W WO 2017051905 A1 WO2017051905 A1 WO 2017051905A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
layer
group
resin
base material
Prior art date
Application number
PCT/JP2016/078117
Other languages
French (fr)
Japanese (ja)
Inventor
晃正 森山
雅史 石井
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201680049528.5A priority Critical patent/CN107921749A/en
Priority to KR1020187009978A priority patent/KR20180051600A/en
Publication of WO2017051905A1 publication Critical patent/WO2017051905A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a surface-treated metal foil, a laminate, a printed wiring board, a semiconductor package, an electronic device, and a method for manufacturing a printed wiring board.
  • the following is an example of the semi-additive method using the surface profile of the latter metal foil. That is, first, the entire surface of the metal foil laminated on the resin base material is etched, the etching base material surface on which the metal foil surface profile is transferred is drilled with a laser or the like, and an electroless copper plating layer for conducting the drilled portion is formed.
  • the electroless copper plating surface is coated with a dry film, the dry film of the circuit forming part is removed by UV exposure and development, and the electroless copper plating surface not coated with the dry film is electroplated with copper.
  • the electroless copper plating layer is etched (flash etching, quick etching) with an etching solution containing sulfuric acid and hydrogen peroxide solution, and a fine circuit is formed (Patent Document 1 and Patent Document 2). ).
  • the metal foil surface profile can be transferred to the surface of the resin base material without deteriorating, and the metal foil can be removed at a good cost. There is still room for consideration.
  • the present inventors have provided a surface treatment layer such as a release layer on the surface of the metal foil so that the metal foil has a predetermined water-repellent surface.
  • a surface treatment layer such as a release layer on the surface of the metal foil so that the metal foil has a predetermined water-repellent surface.
  • a metal foil having a predetermined water-repellent surface is bonded to the resin base material and cured, and then the metal foil is removed to transfer the profile to the resin base material surface. It has been found that the layers can be laminated with good adhesion.
  • a surface-treated metal foil having a surface-treated layer on at least one surface, and a water contact angle on the surface of the surface-treated layer is 90 degrees or more. It is a surface-treated metal foil.
  • the kurtosis Rku defined by JIS B 0601 on the surface of the surface treatment layer is 2.0 to 4.0.
  • the surface treatment layer includes the release layer, and the release layer is formed by attaching the resin base material to the metal foil from the release layer side.
  • the resin base material is made peelable.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
  • the aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
  • the release layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.) Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
  • the release layer uses a compound having two or less mercapto groups in the molecule.
  • a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer are provided between the metal foil and the release layer.
  • One or more layers selected from the group consisting of are provided.
  • the surface-treated metal foil of the present invention comprises at least one layer selected from the group consisting of the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer.
  • a resin layer is provided on the surface.
  • a resin layer is provided on the surface of the release layer side.
  • the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  • the surface-treated metal foil of the present invention has a thickness of 5 to 210 ⁇ m.
  • the metal foil is a copper foil.
  • FIG. 1 Another aspect of the present invention is a laminate including the surface-treated metal foil of the present invention and a resin base material provided on the release layer side of the surface-treated metal foil.
  • the resin base material is a prepreg or contains a thermosetting resin.
  • the present invention is a printed wiring board provided with the surface-treated metal foil of the present invention.
  • the present invention is a semiconductor package provided with the printed wiring board of the present invention.
  • the present invention is an electronic device including the printed wiring board of the present invention or the semiconductor package of the present invention.
  • the surface-treated metal foil of the present invention is bonded to a resin base material from the surface-treated layer side, and the surface-treated metal foil is etched from the resin base material.
  • the circuit formed on the release surface side of the resin base material to which the surface profile is transferred is a plating pattern or a printing pattern.
  • the surface-treated metal foil of the present invention is bonded to a resin base material from the surface-treated layer side, and the surface-treated metal foil is etched from the resin base material.
  • the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
  • the metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin substrate.
  • a buildup layer can be provided in the resin base material with favorable adhesiveness.
  • the surface-treated metal foil of the present invention is a surface-treated metal foil having a surface-treated layer on at least one surface, that is, one surface or both surfaces, and a water contact angle on the surface of the surface-treated layer is 90 degrees. That's it.
  • the surface-treated metal foil of the present invention includes a release layer, and the release layer has a resin base material bonded to the metal foil from the release layer side. The resin substrate is made peelable.
  • a surface treatment layer such as a release layer on the surface of the metal foil, the metal foil has a water-repellent surface with a water contact angle of 90 degrees or more. As a result, the metal foil is attached to the resin substrate.
  • the surface-treated metal foil has a water-repellent surface with a water contact angle of 90 degrees or more, the metal after peeling the metal foil while maintaining good peelability after bonding the metal foil and the resin base material It becomes possible to provide the resin base material surface to which the uneven profile on the foil surface is transferred and a buildup layer such as a circuit or a resin with good adhesion.
  • the water contact angle of the water repellent surface of the metal foil is preferably 90 degrees or more, and more preferably 110 degrees or more.
  • the water contact angle of the water repellent surface of the surface-treated metal foil is preferably 120 degrees or less from the viewpoint that the metal foil does not peel naturally and the peelability falls within an appropriate range.
  • the uneven shape on the surface-treated metal foil surface is also important as a factor that affects the peel strength.
  • the kurtosis Rku on the surface of the metal foil on which the release layer is provided is in the range of 2.0 to 4.0, good release properties of the metal foil and build-up of circuits and resins provided after the metal foil is peeled off It is possible to achieve both good adhesion of the layers.
  • “surface”, “surface of metal foil” and “surface of metal foil” are a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the metal foil.
  • a surface treatment layer such as a release layer is provided, it means the surface after the surface treatment layer is provided (the surface of the outermost layer).
  • the release layer may be provided on both sides of the metal foil. Further, the bonding may be performed by pressure bonding. Moreover, you may provide a release layer on both surfaces of metal foil.
  • the metal foil (also referred to as raw foil) is not particularly limited, but copper foil, aluminum foil, nickel foil, copper alloy foil, nickel alloy foil, aluminum alloy foil, stainless steel foil, iron foil, iron alloy foil, etc. may be used. it can.
  • the thickness of the metal foil (raw foil) is not particularly limited, and can be, for example, 5 to 105 ⁇ m. In addition, the thickness of the metal foil is preferably 9 to 70 ⁇ m, more preferably 12 to 35 ⁇ m, and even more preferably 18 to 35 ⁇ m, since it can be easily peeled off from the resin base material. .
  • a copper foil will be described as an example of a metal foil (raw foil). Although it does not specifically limit as a manufacturing method of copper foil (raw foil), for example, an electrolytic copper foil can be produced on the following electrolysis conditions.
  • Electrolytic conditions for electrolytic green foil Cu: 30 to 190 g / L H 2 SO 4 : 100 to 400 g / L Chloride ion (Cl ⁇ ): 60 to 200 ppm by mass Nika: 1-10ppm
  • Electrolyte temperature 25-80 ° C
  • Electrolysis time 10 to 300 seconds (adjusted according to the thickness of copper to be deposited and current density)
  • Current density 50 to 150 A / dm 2
  • Electrolyte linear velocity 1.5-5m / sec
  • removing the metal foil from the resin base material means removing the metal foil from the resin base material by chemical treatment such as etching, or physically peeling the resin base material from the metal foil by peeling or the like. It means to do.
  • the resin substrate is removed after being bonded to the surface-treated metal foil of the present invention as described above, the resin substrate and the surface-treated metal foil are separated by a release layer.
  • a part of the release layer, roughened particles of the metal foil described later, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, a silane coupling treatment layer, etc. may remain on the release surface of the resin base material.
  • no residue is present.
  • the surface-treated metal foil according to the present invention preferably has a peel strength of 200 gf / cm or less when the resin substrate is peeled off when the resin substrate is bonded to the metal foil from the release layer side. If controlled in this way, physical peeling of the resin base material becomes easy, and the profile on the surface of the metal foil is transferred to the resin base material better.
  • the peel strength is more preferably 150 gf / cm or less, even more preferably 100 gf / cm or less, even more preferably 50 gf / cm or less, typically 1 to 200 gf / cm, and more Typically 1 to 150 gf / cm.
  • Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.
  • the silane compound must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and metal foil to fall too much.
  • the silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom.
  • the alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
  • the silane compound has three alkoxy groups and the above hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one).
  • both R 3 and R 4 are alkoxy groups.
  • Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl.
  • cycloalkyl group examples include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms.
  • An alkyl group is mentioned.
  • the aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms.
  • an alkyl group eg, tolyl group,
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl.
  • propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
  • the silane compound in the step of forming the release layer, can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used.
  • the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
  • water repellency can be improved more conventionally than by making the density
  • the concentration of the silane compound in the aqueous solution of the silane compound can be 8 to 15% by volume. When the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees), and when it exceeds 15% by volume, poor dissolution of the silane compound occurs.
  • the first drying is performed only for the purpose of drying the aqueous solution of the silane compound.
  • the second drying has the effect of improving water repellency by terminating all condensation reactions for hydroxyl groups in the silane compound that have not undergone the condensation reaction and eliminating the remaining OH groups (hydroxyl groups).
  • the first drying can be performed at 80 to 120 ° C. ⁇ 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. ⁇ 30 seconds to 5 minutes.
  • the alcohol concentration in the solution is preferably 20 to 80% by volume in order to uniformly dissolve the silane compound that is hardly soluble in water. If the alcohol concentration in the solution is less than 20% by volume, the silane compound may not dissolve, and if it exceeds 80% by volume, the hydrolysis reaction will be incomplete. Residual, water repellency is lowered, and the contact angle of water may be reduced.
  • the pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the release layer is constituted by using a compound having two or more mercapto groups in the molecule, and the resin base material and the metal via the release layer. Adhesion with the foil can also be appropriately reduced to adjust the peel strength. However, when a compound having three or more mercapto groups in the molecule or a salt thereof is bonded between the resin substrate and the metal foil, it is not suitable for the purpose of reducing the peel strength.
  • Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from these can be used.
  • Thiol has one mercapto group in the molecule and is represented by, for example, R-SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
  • the thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • the thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
  • Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiocarboxylic acid can also be used in the form of a salt.
  • a compound having two dithiocarboxylic acid groups can also be used.
  • the thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • thiosulfonic acid can be used in the form of a salt.
  • Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons.
  • Dithiosulfonic acid can also be used in the form of a salt.
  • examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • heterocyclic group suitable as R examples include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
  • Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
  • a compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
  • the peel strength can be adjusted by adjusting the concentration.
  • water repellency can be improved more conventionally than by making the density
  • the concentration of the compound having two or less mercapto groups in the molecule in the aqueous solution can be 8 to 15% by volume. When the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees).
  • the concentration is more than 15% by volume, two or less in the molecule.
  • a compound having a mercapto group is poorly dissolved and the metal foil is laminated with a resin substrate, there is a possibility that swelling due to an unreacted compound may occur.
  • the first drying is performed only for the purpose of drying an aqueous solution of a compound having two or less mercapto groups in the molecule.
  • the second drying has the effect of improving water repellency by adjusting the arrangement of compounds having two or less mercapto groups in the molecule coordinated on the surface of the metal foil.
  • the first drying can be performed at 80 to 120 ° C. ⁇ 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. ⁇ 30 seconds to 5 minutes.
  • the alcohol concentration in the solution is a compound having 2 or less mercapto groups in the molecule which is hardly soluble in water. Is preferably 20 to 80% by volume in order to dissolve uniformly.
  • the alcohol concentration in the solution is less than 20% by volume, a compound having two or less mercapto groups in the molecule may not dissolve, and when it exceeds 80% by volume, it is densely coordinated on the surface of the metal foil. There is a possibility that the arrangement of compounds having two or less mercapto groups in the molecule is disturbed, the water repellency is lowered, and the contact angle of water is reduced.
  • the pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the release layer is formed from an aluminate compound, titanate compound, zirconate compound, or a hydrolysis product thereof having a structure represented by the following formula, or a condensation product of the hydrolysis product (hereinafter simply referred to as metal alkoxide and May be used alone or in combination.
  • metal alkoxide a condensation product of the hydrolysis product
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group.
  • M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
  • the metal alkoxide must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and metal foil to fall too much.
  • the metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the resin base material and the metal foil tends to be too low.
  • the alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
  • the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldieth
  • titanate compounds examples include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso
  • zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltrie
  • the metal alkoxide in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water.
  • the addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
  • the concentration of the metal alkoxide in the aqueous solution can be 8 to 15% by volume. If the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees), and if it exceeds 15% by volume, poor dissolution of the metal alkoxide occurs. When the metal foil is laminated with the resin substrate, there is a possibility that swelling due to the unreacted compound occurs.
  • the first drying is performed only for the purpose of drying the aqueous solution of the metal alkoxide.
  • the second drying has the effect of improving the water repellency by terminating all condensation reactions for the hydroxyl groups in the metal alkoxide that have not undergone the condensation reaction and eliminating the remaining OH groups (hydroxyl groups).
  • the first drying can be performed at 80 to 120 ° C. ⁇ 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. ⁇ 30 seconds to 5 minutes.
  • the alcohol concentration in the solution is preferably 20 to 80% by volume in order to uniformly dissolve the metal alkoxide that is hardly soluble in water. If the alcohol concentration in the solution is less than 20% by volume, the metal alkoxide may not dissolve, and if it exceeds 80% by volume, the hydrolysis reaction will be incomplete, so that the metal alkoxide is not hydrolyzed as it is. Residual, water repellency is lowered, and the contact angle of water may be reduced.
  • the pH of the aqueous solution of the metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • a known release material such as a silicon-based release agent or a resin coating having a release property, can be used for the release layer.
  • the surface-treated metal foil according to the present invention is selected from the group consisting of a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer between the metal foil and the release layer. More than one seed layer may be provided.
  • the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • Specific examples of the chromate treatment layer include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
  • a roughening process layer can be formed by the following processes, for example.
  • Spherical roughening Spherical rough particles are formed using a copper roughening plating bath described below, which is made of Cu, H 2 SO 4 and As.
  • ⁇ Liquid composition 1 CuSO 4 ⁇ 5H 2 O 78 ⁇ 196g / L Cu 20-50g / L H 2 SO 4 50-200 g / L Arsenic 0.7-3.0g / L (Electroplating temperature 1) 30 ⁇ 76 °C (Current condition 1) Current density 35 to 105 A / dm 2 (above the limiting current density of the bath) (Plating time 1) 1 to 240 seconds Subsequently, plating is performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent the rough particles from falling off and to improve the peel strength.
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the resin base material and the metal foil can be further improved.
  • a resin layer may be provided on the surface of the surface-treated metal foil according to the present invention.
  • the resin layer is usually provided on the release layer.
  • the resin layer on the surface of the surface-treated metal foil may be an adhesive resin, that is, an adhesive, may be a primer, or may be a semi-cured (B-stage) insulating resin layer for adhesion. Good.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer on the surface of the surface-treated metal foil is preferably a resin layer that exhibits an appropriate peel strength (for example, 2 gf / cm to 200 gf / cm) when in contact with the release layer.
  • a resin that follows the unevenness of the surface of the metal foil and hardly causes voids or bubbles that may cause blistering For example, when the resin layer is provided on the surface of the metal foil, a resin having a low viscosity such as a resin viscosity of 10,000 mPa ⁇ s (25 ° C.) or less, more preferably a resin viscosity of 5000 mPa ⁇ s (25 ° C.) or less is used. It is preferable to provide a resin layer.
  • the resin layer is the metal foil. Since it follows the surface, it is effective because it is possible to make it difficult for voids and bubbles to occur between the surface-treated metal foil and the insulating substrate.
  • the resin layer on the surface of the surface-treated metal foil may contain a thermosetting resin or a thermoplastic resin. Further, the resin layer on the surface of the surface-treated metal foil may contain a thermoplastic resin.
  • the resin layer on the surface of the surface-treated metal foil may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like.
  • the resin layer on the surface of the surface-treated metal foil is, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No.
  • a laminate can be produced by providing a resin substrate on the release layer side of the surface-treated metal foil according to the present invention.
  • the resin base material is a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin, a glass cloth / paper composite base epoxy resin, a glass cloth / glass non-woven composite base epoxy resin, and You may form with glass cloth base-material epoxy resin.
  • the resin substrate may be a prepreg or may contain a thermosetting resin.
  • a printed wiring board can be produced by forming a circuit on the surface-treated metal foil of the laminate.
  • a printed circuit board can be produced by mounting electronic components on a printed wiring board.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted in this manner.
  • an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted.
  • An electronic device may be manufactured using a substrate.
  • the “printed circuit board” includes a circuit forming substrate for a semiconductor package.
  • a semiconductor package can be manufactured by mounting electronic components on a circuit forming substrate for a semiconductor package. Further, an electronic device may be manufactured using the semiconductor package.
  • the method for producing a printed wiring board of the present invention includes a step of bonding a resin base material from the release layer side to the surface-treated metal foil of the present invention, and the surface-treated metal foil from the resin base material.
  • a release layer is provided on the metal foil, and the resin substrate can be physically peeled when the metal foil is bonded to the resin substrate, and the metal foil is removed from the resin substrate.
  • the metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin base material.
  • the circuit may be formed by a plating pattern. In this case, after forming a plating pattern, a desired circuit can be formed using the plating pattern to produce a printed wiring board. Further, the circuit may be formed with a printed pattern. In this case, for example, after a print pattern is formed using an ink jet containing conductive paste or the like in the ink, a desired printed circuit is formed using the print pattern, and a printed wiring board can be manufactured.
  • a step of bonding a resin base material from the release layer side to the surface-treated metal foil of the present invention, and from the resin base material By peeling off the surface-treated metal foil without etching, a step of obtaining a resin base material in which the surface profile of the metal foil is transferred to the release surface, and the side of the release surface of the resin base material in which the surface profile is transferred Providing a build-up layer.
  • a release layer is provided on the metal foil, and the resin substrate can be physically peeled when the metal foil is bonded to the resin substrate, and the metal foil is removed from the resin substrate.
  • the metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin base material. Further, even if the resin component of the resin base material and the resin component of the buildup layer are different depending on the predetermined surface shape transferred to the resin base material, it is possible to bond them with good adhesion. .
  • the resin constituting the build-up layer provided on the surface of the resin base material is bonded to each other without any treatment of the resin and the resin base material (the resin constituting the build-up layer and the resin base material).
  • the strength (pull strength) when pulled and peeled off may be 500 g / cm 2 or less.
  • the “build-up layer” refers to a layer having a conductive layer, a wiring pattern or a circuit, and a resin.
  • the resin may be layered. Further, the conductive layer, the wiring pattern, or the circuit and the resin may be provided in any manner.
  • the build-up layer can be produced by providing a conductive layer, a wiring pattern or a circuit and a resin on the release surface side of the resin base material on which the surface profile of the metal foil is transferred to the release surface.
  • a method for forming the conductive layer, the wiring pattern, or the circuit a known method such as a semi-additive method, a full additive method, a subtractive method, or a partial additive method can be used.
  • the build-up layer may have a plurality of layers, or may have a plurality of conductive layers, wiring patterns or circuits and a resin (layer).
  • the plurality of conductive layers, wiring patterns, or circuits may be electrically insulated with resin.
  • the surface-treated metal foil having a release layer provided on the surface is bonded to both surfaces of the resin base material from the release layer side, and then the surface-treated metal foil is removed to form both surfaces of the resin base material.
  • a printed wiring board may be manufactured by transferring the surface profile of the surface-treated metal foil and providing a circuit, a wiring pattern, or a build-up layer on both surfaces of the resin substrate.
  • the resins, resin layers, and resin base materials described in the present specification can be used.
  • a base material or the like impregnated with a resin can be used.
  • the resin may contain an inorganic substance and / or an organic substance.
  • the resin constituting the build-up layer may be formed of a material having a low relative dielectric constant such as LCP (liquid crystal polymer) or polytetrafluoroethylene.
  • thermosetting resin such as an epoxy resin is used as a resin substrate, and it is bonded to this to provide excellent high frequency characteristics. Therefore, it is possible to provide a printed wiring board that can prevent deformation of the shape at the time of adding.
  • FIG. 1 shows a schematic example of a semi-additive method using a profile of a metal foil (for example, a copper foil).
  • a surface profile of a metal foil is used. Specifically, first, the surface-treated metal foil of the present invention is laminated on the resin base material from the release layer side to produce a laminate. Next, the metal foil of the laminate is removed by etching or peeled off. Next, after the surface of the resin base material to which the metal foil surface profile has been transferred is washed with dilute sulfuric acid or the like, electroless copper plating is performed.
  • the semi-additive method refers to a method in which a thin electroless plating is performed on a resin substrate or metal foil, a pattern is formed, and then a conductor pattern is formed using electroplating and etching. Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a surface-treated metal foil and a resin base material according to the present invention, Laminating a resin base material from the release layer side on the surface-treated metal foil, After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off, Providing a through hole or / and a blind via on the release surface of the resin base material generated by peeling off the surface-treated metal foil; Performing a desmear process on the region including the through hole or / and the blind via, Cleaning the resin substrate surface with dilute sulfuric acid for the resin substrate and the region including the through hole or / and
  • a step of preparing the surface-treated metal foil and the resin base material according to the present invention Laminating a resin base material from the release layer side on the surface-treated metal foil, After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off, A step of washing the surface of the resin base material generated by peeling off the surface-treated metal foil, washing the surface of the resin base material with dilute sulfuric acid, and providing an electroless plating layer (for example, an electroless copper plating layer); Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist;
  • an electrolytic plating layer for example, an electrolytic copper plating layer
  • a circuit is formed on the release surface of the resin base material after the surface-treated metal foil is peeled off, and a printed circuit formation substrate and a circuit formation substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
  • a step of preparing the surface-treated metal foil and the resin base material according to the present invention Laminating a resin base material from the release layer side on the surface-treated metal foil, After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off, The step of washing the resin substrate surface with dilute sulfuric acid or the like for the release surface of the resin substrate produced by peeling off the surface-treated metal foil, Providing a plating resist on the cleaned resin substrate surface; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electroless plating layer (for example, an electroless copper plating layer or a thick electroless plating layer) in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; including.
  • an electroless plating layer for example, an electroless copper plating layer or a thick electroless plating layer
  • the electroless plating layer can be easily provided by cleaning the surface of the resin base material.
  • a part or all of the release layer is removed from the surface of the resin base material by the cleaning.
  • cleaning by a known cleaning method (type of liquid to be used, temperature, liquid application method, etc.) can be used. Further, it is preferable to use a cleaning method capable of removing a part or all of the release layer of the present invention.
  • a circuit is formed on the release surface of the resin base material after the surface-treated metal foil is peeled off, and a printed circuit forming substrate and a circuit forming substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
  • the surface of the surface-treated metal foil was measured with a scanning electron microscope or the like equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), and Si was If detected, it can be inferred that a silane compound is present on the surface of the surface-treated metal foil. Further, when the peel strength (peel strength) between the surface-treated metal foil and the resin substrate is 200 gf / cm or less, it can be estimated that the silane compound that can be used for the release layer of the present invention is used. .
  • the surface of the surface-treated metal foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), and S is
  • XPS X-ray photoelectron spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analysis
  • the surface of the surface-treated metal foil is measured with a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), Al,
  • XPS X-ray photoelectron spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analysis
  • Al aluminum
  • Roughening Spherical roughening
  • Spherical roughened particles were formed using a copper roughening plating bath described below consisting of Cu, H 2 SO 4 and As.
  • ⁇ Liquid composition 1 CuSO 4 ⁇ 5H 2 O 78 ⁇ 118g / L Cu 20-30g / L H 2 SO 4 12g / L Arsenic 1.0-3.0g / L (Electroplating temperature 1) 25-33 ° C (Current condition 1) Current density 78 A / dm 2 (above the limiting current density of the bath) (Plating time 1) 1 to 45 seconds
  • plating was performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent falling off of the roughened particles and to improve the peel strength.
  • release layer A A water-methanol mixed solution containing a silane compound (n-propyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer A.
  • the stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  • [Release layer B] A water-methanol mixed solution containing a silane compound (n-hexyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer B.
  • the stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  • [Release layer C] A water-methanol mixed solution containing a silane compound (n-decyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer C. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  • a silane compound n-decyltrimethoxysilane
  • [Release layer D] A water-methanol mixed solution containing a silane compound (dimethyldimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then 1 in 100 ° C. air. After the copper foil surface was dried for 1 minute, a heat treatment was performed in air at 150 ° C. for 1 minute to form a release layer B. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  • a silane compound dimethyldimethoxysilane
  • [Release layer E] A water-methanol mixed solution containing a silane compound (trifluoropropyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer B. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  • a silane compound trifluoropropyltrimethoxysilane
  • [Release layer F] Sodium 1-dodecanethiolsulfonate is used as a compound having two or less mercapto groups in the molecule, and a water-methanol mixed solution of sodium 1-dodecanethiolsulfonate (sodium 1-dodecanethiolsulfonate: 8 vol%) is used. After applying to the treated surface of the metal foil (copper foil) using a spray coater, the copper foil surface was dried in air at 100 ° C. for 1 minute and then heat-treated in air at 150 ° C. for 1 minute. A release layer F was formed. The methanol concentration in the solution was 40 vol% by volume, and the pH of the solution was 5-9.
  • Triisopropoxyaluminum which is an aluminate compound, is used as the metal alkoxide, and a water-methanol mixed solution of triisopropoxyaluminum (triisopropoxyaluminum concentration: 8 vol%) is treated with a spray coater on the metal foil (copper foil). After coating on the surface, the surface of the copper foil was dried in air at 100 ° C. for 1 minute, and then heat-treated in air at 150 ° C. for 1 minute to form a release layer G. The stirring time from when the aluminate compound was dissolved in water to before coating was 2 hours, the alcohol concentration in the solution was 40 vol% by volume, and the pH of the solution was 5-9.
  • Example 1 Resin layer formation treatment
  • a resin layer was further formed under the following conditions.
  • Resin synthesis example To a 2-liter three-necked flask equipped with a stainless steel vertical stirring bar, a trap with a nitrogen inlet tube and a stopcock, and a reflux condenser with a ball condenser, 117.68 g (400 mmol) of 4′-biphenyltetracarboxylic dianhydride, 87.7 g (300 mmol) of 1,3-bis (3-aminophenoxy) benzene, 4.0 g (40 mmol) of ⁇ -valerolactone, 4.
  • NMP N-methyl-2-pyrrolidone
  • toluene 20 g 8 g (60 mmol), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g, and toluene 20 g were added, heated at 180 ° C. for 1 hour, cooled to near room temperature, and then 3, 4, 3 ′, 4′- 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 82.12 g of 2,2-bis ⁇ 4- (4-aminophenoxy) phenyl ⁇ propane (200 mmol), 200 g of NMP, and 40 g of toluene were added, mixed at room temperature for 1 hour, and then heated at 180 ° C.
  • NMP N-methyl-2-pyrrolidone
  • the block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%.
  • bis (4-maleimidophenyl) methane BMI-H, Kay-Isei
  • Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution 35: 65
  • a resin solution was prepared by dissolving and mixing at 60 ° C. for 20 minutes.
  • the resin solution is coated on the release layer forming surface, dried in a nitrogen atmosphere at 120 ° C. for 3 minutes, and at 160 ° C. for 3 minutes, and finally heat-treated at 300 ° C. for 2 minutes to obtain a resin layer.
  • the copper foil provided with was produced.
  • the thickness of the resin layer was 2 ⁇ m.
  • Kurtosis (Rku) Kurtosis (Rku) on the surface of the metal foil was measured in a JIS B 0601 2001 compliant mode using a laser microscope OLS4100 manufactured by Olympus Corporation. The measurement length was 258 ⁇ m. The temperature during measurement was 23 to 25 ° C.
  • a resin layer composed of a liquid crystal polymer (assuming a resin constituting the build-up layer) was laminated on the release surface of the resin substrate after peeling (Example 3).
  • a reliability test (heating test at 250 ° C. ⁇ 10 ° C. ⁇ 1 hour).
  • the size of the evaluation sample was 250 mm ⁇ 250 mm, and three samples were measured for each sample number. The case where circuit peeling and substrate swelling did not occur was evaluated as “ ⁇ ”. Slight circuit peeling or substrate swelling occurred (3 or less in one sample), but those that could be used as a product when the locations to be used were selected were evaluated as “ ⁇ ”.
  • a large number of circuit peeling or substrate swelling occurred (more than 3 in one sample), and those that could not be used as a product were evaluated as “x”.
  • Table 1 shows the test conditions and evaluation results.
  • the water contact angle on the surface of the surface treatment layer is 90 degrees or more, and the peelability when physically peeling the metal foil from the resin base material is good. The occurrence of swelling was successfully suppressed.
  • the water contact angle on the surface of the surface treatment layer side is less than 90 degrees, the peelability when physically peeling the metal foil from the resin base material is poor, and circuit peeling and generation of substrate swelling are caused. It was not possible to suppress well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a metal foil such that a release layer is provided to the metal foil to allow the metal foil to be physically peeled from a resin substrate once the metal foil has been affixed to the resin substrate, thereby making it possible to: remove the metal foil in a cost-efficient manner in a step for removing the metal foil from the resin substrate, without any damage to the profile of the surface of the metal foil transferred to the surface of the resin substrate; and cause resins having different resin components to be affixed together with high adhesiveness. A surface-treated metal foil having a surface-treated layer on at least one surface, wherein the water contact angle of the surface-treated-layer-side surface is 90° or greater.

Description

表面処理金属箔、積層体、プリント配線板、半導体パッケージ、電子機器及びプリント配線板の製造方法Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic device, and printed wiring board manufacturing method
 本発明は、表面処理金属箔、積層体、プリント配線板、半導体パッケージ、電子機器及びプリント配線板の製造方法に関する。 The present invention relates to a surface-treated metal foil, a laminate, a printed wiring board, a semiconductor package, an electronic device, and a method for manufacturing a printed wiring board.
 プリント配線基板及び半導体パッケージ基板の回路形成工法はサブトラクティブ工法が主流であるが、近年の更なる微細配線化により、M-SAP(Modified Semi-Additive Process)や、金属箔の表面プロファイルを使ったセミアディティブ工法といった新たな工法が台頭している。 Subtractive methods are the mainstream for circuit formation methods for printed wiring boards and semiconductor package substrates. However, due to further finer wiring in recent years, M-SAP (Modified Semi-Additive Process) and metal foil surface profiles were used. New methods such as the semi-additive method are emerging.
 これらの新たな回路形成工法のうち、後者の金属箔の表面プロファイルを使ったセミアディティブ工法の一例として、次が挙げられる。すなわち、まず、樹脂基材に積層した金属箔を全面エッチングし、金属箔表面プロファイルが転写したエッチング基材面をレーザー等で穴開けし、穴開け部を導通させるための無電解銅メッキ層を施し、無電解銅メッキ表面をドライフィルムで被覆し、UV露光及び現像によって回路形成部のドライフィルムを除去し、ドライフィルムに被覆されていない無電解銅メッキ面に電気銅メッキを施し、ドライフィルムを剥離し、最後に硫酸、過酸化水素水を含有するエッチング液等によって無電解銅メッキ層をエッチング(フラッシュエッチング、クイックエッチング)することにより微細な回路を形成する(特許文献1、特許文献2)。 Among these new circuit formation methods, the following is an example of the semi-additive method using the surface profile of the latter metal foil. That is, first, the entire surface of the metal foil laminated on the resin base material is etched, the etching base material surface on which the metal foil surface profile is transferred is drilled with a laser or the like, and an electroless copper plating layer for conducting the drilled portion is formed. The electroless copper plating surface is coated with a dry film, the dry film of the circuit forming part is removed by UV exposure and development, and the electroless copper plating surface not coated with the dry film is electroplated with copper. Then, the electroless copper plating layer is etched (flash etching, quick etching) with an etching solution containing sulfuric acid and hydrogen peroxide solution, and a fine circuit is formed (Patent Document 1 and Patent Document 2). ).
特開2006-196863号公報JP 2006-196863 A 特開2007-242975号公報JP 2007-242975 A
 しかしながら、従来の金属箔表面のプロファイルを用いたセミアディティブ工法では、金属箔表面のプロファイルを損なうこと無く良好に樹脂基材の表面に転写すること、及び、良好なコストで当該金属箔を除去することについて、いまだ検討の余地がある。 However, in the conventional semi-additive method using the metal foil surface profile, the metal foil surface profile can be transferred to the surface of the resin base material without deteriorating, and the metal foil can be removed at a good cost. There is still room for consideration.
 また、近年、樹脂に回路や樹脂等のビルドアップ層を積層して積層体を製造する技術が研究・開発されている。この際、回路や樹脂等のビルドアップ層と樹脂との間に十分な密着性が得られない場合があり、片側の樹脂に凹凸を持たせて投錨効果による密着性向上を図る必要がある。硬化した樹脂表面に凹凸を付ける方法は物理的な加工、化学的な加工等があるが、樹脂の物理的性質や化学的性質によりこれらが適さない場合がある。そこで、樹脂に回路や樹脂等のビルドアップ層を良好な密着性で設ける技術についても、更なる開発が望まれている。 In recent years, techniques for manufacturing a laminate by laminating a build-up layer such as a circuit or resin on a resin have been researched and developed. In this case, sufficient adhesion may not be obtained between the build-up layer such as a circuit or resin and the resin, and it is necessary to provide unevenness on the resin on one side to improve the adhesion due to the anchoring effect. Although there are physical processing, chemical processing, and the like as a method for forming irregularities on the cured resin surface, these may not be suitable depending on the physical properties and chemical properties of the resin. Then, further development is desired also about the technique which provides buildup layers, such as a circuit and resin, with favorable adhesiveness in resin.
 本発明者らは鋭意検討の結果、離型層等の表面処理層を金属箔表面に設けることにより金属箔を所定の撥水表面を有するようにすることで、当該金属箔を樹脂基材に貼り合わせたときに、樹脂基材からの金属箔の物理的な剥離を可能にした。そして、前述のように樹脂基材からの金属箔の物理的な剥離を可能とすることで、金属箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した金属箔表面のプロファイルを損なうこと無く、良好なコストで金属箔を除去することが可能となることを見出した。さらに、所定の撥水表面を有する金属箔を樹脂基材と貼り合わせて硬化させ、その後、金属箔を除去することで樹脂基材表面にプロファイルを転写させ、これによって、樹脂基材とビルドアップ層とを良好な密着性で積層することが可能となることを見出した。 As a result of intensive studies, the present inventors have provided a surface treatment layer such as a release layer on the surface of the metal foil so that the metal foil has a predetermined water-repellent surface. When pasted together, physical peeling of the metal foil from the resin substrate was made possible. And, as described above, by enabling physical peeling of the metal foil from the resin base material, the profile of the surface of the metal foil transferred to the surface of the resin base material in the step of removing the metal foil from the resin base material It has been found that the metal foil can be removed at a favorable cost without impairing the thickness. Furthermore, a metal foil having a predetermined water-repellent surface is bonded to the resin base material and cured, and then the metal foil is removed to transfer the profile to the resin base material surface. It has been found that the layers can be laminated with good adhesion.
 以上の知見を基礎として完成された本発明は一側面において、少なくとも一方の表面に表面処理層を有する表面処理金属箔であって、前記表面処理層側表面の水接触角が90度以上である表面処理金属箔である。 The present invention completed on the basis of the above knowledge is, in one aspect, a surface-treated metal foil having a surface-treated layer on at least one surface, and a water contact angle on the surface of the surface-treated layer is 90 degrees or more. It is a surface-treated metal foil.
 本発明の金属箔は一実施形態において、前記表面処理層側表面のJIS B 0601で定義されるクルトシスRkuが2.0~4.0である。 In one embodiment of the metal foil of the present invention, the kurtosis Rku defined by JIS B 0601 on the surface of the surface treatment layer is 2.0 to 4.0.
 本発明の金属箔は別の一実施形態において、前記表面処理層が前記離型層を備え、前記離型層は前記離型層側から前記金属箔へ樹脂基材を貼り合わせたときの前記樹脂基材を剥離可能にする。 In another embodiment of the metal foil of the present invention, the surface treatment layer includes the release layer, and the release layer is formed by attaching the resin base material to the metal foil from the release layer side. The resin base material is made peelable.
 本発明の表面処理金属箔は更に別の一実施形態において、前記離型層が、次式:
Figure JPOXMLDOC01-appb-C000003
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the surface-treated metal foil of the present invention, the release layer has the following formula:
Figure JPOXMLDOC01-appb-C000003
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
The aluminate compound, the titanate compound, the zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products are used singly or in combination.
 本発明の表面処理金属箔は更に別の一実施形態において、前記離型層が、次式:
Figure JPOXMLDOC01-appb-C000004
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる。
In another embodiment of the surface-treated metal foil of the present invention, the release layer has the following formula:
Figure JPOXMLDOC01-appb-C000004
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
Or a hydrolyzate thereof, or a condensate of the hydrolyzate, alone or in combination.
 本発明の表面処理金属箔は更に別の一実施形態において、前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる。 In another embodiment of the surface-treated metal foil of the present invention, the release layer uses a compound having two or less mercapto groups in the molecule.
 本発明の表面処理金属箔は更に別の一実施形態において、前記金属箔と前記離型層との間に、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層が設けられている。 In still another embodiment of the surface-treated metal foil of the present invention, a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer are provided between the metal foil and the release layer. One or more layers selected from the group consisting of are provided.
 本発明の表面処理金属箔は更に別の一実施形態において、前記粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層が設けられている。 In still another embodiment, the surface-treated metal foil of the present invention comprises at least one layer selected from the group consisting of the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer. A resin layer is provided on the surface.
 本発明の表面処理金属箔は更に別の一実施形態において、前記離型層側表面に、樹脂層が設けられている。 In yet another embodiment of the surface-treated metal foil of the present invention, a resin layer is provided on the surface of the release layer side.
 本発明の表面処理金属箔は更に別の一実施形態において、前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である。 In yet another embodiment of the surface-treated metal foil of the present invention, the resin layer is an adhesive resin, a primer, or a semi-cured resin.
 本発明の表面処理金属箔は更に別の一実施形態において、厚みが5~210μmである。 In still another embodiment, the surface-treated metal foil of the present invention has a thickness of 5 to 210 μm.
 本発明の表面処理金属箔は更に別の一実施形態において、前記金属箔が銅箔である。 In another embodiment of the surface-treated metal foil of the present invention, the metal foil is a copper foil.
 本発明は更に別の一側面において、本発明の表面処理金属箔と、前記表面処理金属箔の離型層側に設けられた樹脂基材とを備えた積層体である。 Further another aspect of the present invention is a laminate including the surface-treated metal foil of the present invention and a resin base material provided on the release layer side of the surface-treated metal foil.
 本発明の積層体は一実施形態において前記樹脂基材が、プリプレグである、又は、熱硬化性樹脂を含む。 In one embodiment of the laminate of the present invention, the resin base material is a prepreg or contains a thermosetting resin.
 本発明は更に別の一側面において、本発明の表面処理金属箔を備えたプリント配線板である。 In still another aspect, the present invention is a printed wiring board provided with the surface-treated metal foil of the present invention.
 本発明は更に別の一側面において、本発明のプリント配線板を備えた半導体パッケージである。 In still another aspect, the present invention is a semiconductor package provided with the printed wiring board of the present invention.
 本発明は更に別の一側面において、本発明のプリント配線板又は本発明の半導体パッケージを備えた電子機器である。 In yet another aspect, the present invention is an electronic device including the printed wiring board of the present invention or the semiconductor package of the present invention.
 本発明は更に別の一側面において、本発明の表面処理金属箔に、前記表面処理層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側に回路を形成する工程とを備えたプリント配線板の製造方法である。 In yet another aspect of the present invention, the surface-treated metal foil of the present invention is bonded to a resin base material from the surface-treated layer side, and the surface-treated metal foil is etched from the resin base material. A step of obtaining a resin base material having the surface profile of the metal foil transferred to the release surface by peeling, and a step of forming a circuit on the side of the release surface of the resin base material to which the surface profile has been transferred. A method for manufacturing a printed wiring board.
 本発明のプリント配線板の製造方法は一実施形態において、前記表面プロファイルが転写された樹脂基材の前記剥離面側に形成する回路が、メッキパターン又は印刷パターンである。 In one embodiment of the method for producing a printed wiring board of the present invention, the circuit formed on the release surface side of the resin base material to which the surface profile is transferred is a plating pattern or a printing pattern.
 本発明は更に別の一側面において、本発明の表面処理金属箔に、前記表面処理層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程とを備えたプリント配線板の製造方法である。 In yet another aspect of the present invention, the surface-treated metal foil of the present invention is bonded to a resin base material from the surface-treated layer side, and the surface-treated metal foil is etched from the resin base material. A step of obtaining a resin base material having a surface profile of the metal foil transferred to a release surface by peeling, and a step of providing a build-up layer on the side of the release surface of the resin base material to which the surface profile has been transferred. It is a manufacturing method of the provided printed wiring board.
 本発明のプリント配線板の製造方法は更に別の一実施形態において、前記ビルドアップ層を構成する樹脂が、液晶ポリマーまたはポリテトラフルオロエチレンを含む。 In yet another embodiment of the method for producing a printed wiring board of the present invention, the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
 金属箔に離型層を設けて、当該金属箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離を可能にすることで、金属箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した金属箔表面のプロファイルを損なうこと無く、良好なコストで金属箔を除去することができる。また、樹脂基材にビルドアップ層を良好な密着性で設けることができる。 In the step of removing the metal foil from the resin substrate by providing a release layer on the metal foil and enabling physical peeling of the resin substrate when the metal foil is bonded to the resin substrate, The metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin substrate. Moreover, a buildup layer can be provided in the resin base material with favorable adhesiveness.
銅箔のプロファイルを使用したセミアディティブ工法の概略例を示す。A schematic example of a semi-additive construction method using a copper foil profile is shown.
(表面処理金属箔)
 本発明の表面処理金属箔は、少なくとも一方の表面、すなわち、一方の表面または両方の表面に表面処理層を有する表面処理金属箔であって、前記表面処理層側表面の水接触角が90度以上である。また、本発明の表面処理金属箔は、一実施形態において、前記表面処理層が離型層を備え、前記離型層は前記離型層側から前記金属箔へ樹脂基材を貼り合わせたときの前記樹脂基材を剥離可能にする。このように、離型層等の表面処理層を金属箔表面に設けることにより金属箔は水接触角が90度以上である撥水表面を有し、この結果当該金属箔を樹脂基材に貼り合わせたときに、樹脂基材からの金属箔の物理的な剥離が可能となる。そして、樹脂基材からの金属箔の物理的な剥離を可能とすることで、金属箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した金属箔表面のプロファイルを損なうこと無く、良好なコストで金属箔を除去することが可能となる。さらに、水接触角が90度以上である撥水表面を有する金属箔を樹脂基材と貼り合わせて硬化させ、その後、金属箔を除去することで樹脂基材表面にプロファイルを転写させ、これによって、樹脂基材に回路や樹脂等のビルドアップ層等を良好な密着性で積層することが可能となる。
(Surface-treated metal foil)
The surface-treated metal foil of the present invention is a surface-treated metal foil having a surface-treated layer on at least one surface, that is, one surface or both surfaces, and a water contact angle on the surface of the surface-treated layer is 90 degrees. That's it. Further, in one embodiment, the surface-treated metal foil of the present invention includes a release layer, and the release layer has a resin base material bonded to the metal foil from the release layer side. The resin substrate is made peelable. Thus, by providing a surface treatment layer such as a release layer on the surface of the metal foil, the metal foil has a water-repellent surface with a water contact angle of 90 degrees or more. As a result, the metal foil is attached to the resin substrate. When combined, physical peeling of the metal foil from the resin substrate becomes possible. And by enabling physical peeling of the metal foil from the resin base material, in the step of removing the metal foil from the resin base material, the profile of the metal foil surface transferred to the surface of the resin base material is not impaired. It becomes possible to remove the metal foil at a good cost. Further, a metal foil having a water repellent surface with a water contact angle of 90 degrees or more is bonded to the resin base material and cured, and then the metal foil is removed to transfer the profile to the resin base material surface. It becomes possible to laminate a build-up layer such as a circuit or a resin with good adhesion on the resin base material.
 表面処理金属箔が、水接触角が90度以上である撥水表面を有するため、金属箔と樹脂基材を貼り合わせた後の剥離性を良好に保ちつつ、金属箔を剥離した後の金属箔表面の凹凸プロファイルが転写した樹脂基材表面と回路や樹脂等のビルドアップ層とを良好な密着性で設けることが可能となる。 Since the surface-treated metal foil has a water-repellent surface with a water contact angle of 90 degrees or more, the metal after peeling the metal foil while maintaining good peelability after bonding the metal foil and the resin base material It becomes possible to provide the resin base material surface to which the uneven profile on the foil surface is transferred and a buildup layer such as a circuit or a resin with good adhesion.
 表面処理金属箔の撥水表面の水接触角が90度未満であると、金属箔を樹脂に貼り合わせた時の剥離強度が高くなりすぎるという問題が生じる。金属箔の撥水表面の水接触角は、90度以上であるのが好ましく、110度以上であるのがより好ましい。また、表面処理金属箔の撥水表面の水接触角は、120度以下であると金属箔が自然に剥離することなく、剥離性が適度な範囲になるという点で好ましい。 When the water contact angle of the water repellent surface of the surface-treated metal foil is less than 90 degrees, there arises a problem that the peel strength when the metal foil is bonded to the resin becomes too high. The water contact angle of the water repellent surface of the metal foil is preferably 90 degrees or more, and more preferably 110 degrees or more. In addition, the water contact angle of the water repellent surface of the surface-treated metal foil is preferably 120 degrees or less from the viewpoint that the metal foil does not peel naturally and the peelability falls within an appropriate range.
 また、表面処理金属箔表面の凹凸形状も剥離強度を左右する因子として重要である。離型層が設けられる金属箔表面のクルトシスRkuが2.0~4.0の範囲であると金属箔の良好な離型性と、金属箔を剥離した後に設けた回路や樹脂等のビルドアップ層の良好な密着性を両立することができる。
 なお、本明細書において「表面」、「金属箔の表面」および「金属箔表面」とは、金属箔表面に粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層、離型層等の表面処理層が設けられている場合には、当該表面処理層を設けた後の表面(最外層の表面)のことをいう。
The uneven shape on the surface-treated metal foil surface is also important as a factor that affects the peel strength. When the kurtosis Rku on the surface of the metal foil on which the release layer is provided is in the range of 2.0 to 4.0, good release properties of the metal foil and build-up of circuits and resins provided after the metal foil is peeled off It is possible to achieve both good adhesion of the layers.
In this specification, “surface”, “surface of metal foil” and “surface of metal foil” are a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the metal foil. When a surface treatment layer such as a release layer is provided, it means the surface after the surface treatment layer is provided (the surface of the outermost layer).
 なお、離型層は金属箔の両面に設けてもよい。また、貼り合わせは圧着して貼り合わせてもよい。また、離型層は金属箔の両面に設けてもよい。 The release layer may be provided on both sides of the metal foil. Further, the bonding may be performed by pressure bonding. Moreover, you may provide a release layer on both surfaces of metal foil.
 金属箔(生箔ともいう)は、特に限定されないが、銅箔、アルミ箔、ニッケル箔、銅合金箔、ニッケル合金箔、アルミ合金箔、ステンレス箔、鉄箔、鉄合金箔等を用いることができる。
 金属箔(生箔)の厚みは特に限定されず、例えば、5~105μmとすることができる。また、樹脂基材からの引き剥がしが容易となることから、金属箔の厚みは9~70μmであるのが好ましく、12~35μmであるのがより好ましく、18~35μmであるのが更により好ましい。
The metal foil (also referred to as raw foil) is not particularly limited, but copper foil, aluminum foil, nickel foil, copper alloy foil, nickel alloy foil, aluminum alloy foil, stainless steel foil, iron foil, iron alloy foil, etc. may be used. it can.
The thickness of the metal foil (raw foil) is not particularly limited, and can be, for example, 5 to 105 μm. In addition, the thickness of the metal foil is preferably 9 to 70 μm, more preferably 12 to 35 μm, and even more preferably 18 to 35 μm, since it can be easily peeled off from the resin base material. .
 以下、金属箔(生箔)の例として銅箔について説明する。銅箔(生箔)の製造方法としては、特に限定されないが、例えば下記の電解条件によって電解銅箔を作製することができる。
 電解生箔の電解条件:
  Cu:30~190g/L
  H2SO4:100~400g/L
  塩化物イオン(Cl-):60~200質量ppm
  にかわ:1~10ppm
  電解液温度:25~80℃
  電解時間:10~300秒(析出させる銅厚、電流密度により調整)
  電流密度:50~150A/dm2
  電解液線速:1.5~5m/sec
Hereinafter, a copper foil will be described as an example of a metal foil (raw foil). Although it does not specifically limit as a manufacturing method of copper foil (raw foil), For example, an electrolytic copper foil can be produced on the following electrolysis conditions.
Electrolytic conditions for electrolytic green foil:
Cu: 30 to 190 g / L
H 2 SO 4 : 100 to 400 g / L
Chloride ion (Cl ): 60 to 200 ppm by mass
Nika: 1-10ppm
Electrolyte temperature: 25-80 ° C
Electrolysis time: 10 to 300 seconds (adjusted according to the thickness of copper to be deposited and current density)
Current density: 50 to 150 A / dm 2
Electrolyte linear velocity: 1.5-5m / sec
 本発明において金属箔を樹脂基材から除去することは、エッチング等による化学的な処理によって樹脂基材から金属箔を除去する、または、引き剥がし等によって金属箔から樹脂基材を物理的に剥離することを意味する。樹脂基材を上述のように本発明の表面処理金属箔と貼り合わせた後に除去したとき、樹脂基材と表面処理金属箔とは離型層で離れる。このとき樹脂基材の剥離面に、剥離層、後述の金属箔の粗化粒子、耐熱層、防錆層、クロメート処理層、シランカップリング処理層等の一部が残留していてもよいが、残留物が存在しないことが好ましい。 In the present invention, removing the metal foil from the resin base material means removing the metal foil from the resin base material by chemical treatment such as etching, or physically peeling the resin base material from the metal foil by peeling or the like. It means to do. When the resin substrate is removed after being bonded to the surface-treated metal foil of the present invention as described above, the resin substrate and the surface-treated metal foil are separated by a release layer. At this time, a part of the release layer, roughened particles of the metal foil described later, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, a silane coupling treatment layer, etc. may remain on the release surface of the resin base material. Preferably, no residue is present.
 本発明に係る表面処理金属箔は、離型層側から金属箔へ樹脂基材を貼り合わせたとき、樹脂基材を剥離する際の剥離強度が200gf/cm以下であるのが好ましい。このように制御されていれば、樹脂基材の物理的剥離が容易となり、金属箔表面のプロファイルがより良好に樹脂基材に転写される。当該剥離強度は、より好ましくは150gf/cm以下であり、更により好ましくは100gf/cm以下であり、更により好ましくは50gf/cm以下であり、典型的には1~200gf/cmであり、より典型的には1~150gf/cmである。 The surface-treated metal foil according to the present invention preferably has a peel strength of 200 gf / cm or less when the resin substrate is peeled off when the resin substrate is bonded to the metal foil from the release layer side. If controlled in this way, physical peeling of the resin base material becomes easy, and the profile on the surface of the metal foil is transferred to the resin base material better. The peel strength is more preferably 150 gf / cm or less, even more preferably 100 gf / cm or less, even more preferably 50 gf / cm or less, typically 1 to 200 gf / cm, and more Typically 1 to 150 gf / cm.
 次に、本発明で用いることができる離型層について説明する。
(1)シラン化合物
 次式に示す構造を有するシラン化合物、またはその加水分解生成物、または該加水分解生成物の縮合体(以下、単にシラン化合物と記述する)を単独でまたは複数混合して使用して離型層を形成することで、表面処理金属箔と樹脂基材とを貼り合わせた際に、適度に密着性が低下し、剥離強度を上述の範囲に調節できる。
Next, the release layer that can be used in the present invention will be described.
(1) Silane compound A silane compound having a structure represented by the following formula, a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a silane compound) is used alone or in combination. By forming the release layer in this manner, when the surface-treated metal foil and the resin base material are bonded together, the adhesion is moderately lowered, and the peel strength can be adjusted to the above range.
 式:
Figure JPOXMLDOC01-appb-C000005
formula:
Figure JPOXMLDOC01-appb-C000005
(式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。) Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
 当該シラン化合物はアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、樹脂基材と金属箔の密着性が低下し過ぎる傾向がある。また、当該シラン化合物はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を少なくとも一つ有していることが必要である。当該炭化水素基が存在しない場合、樹脂基材と金属箔の密着性が上昇する傾向があるからである。なお、アルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。 The silane compound must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and metal foil to fall too much. The silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have at least one. This is because when the hydrocarbon group does not exist, the adhesion between the resin base material and the metal foil tends to increase. The alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom.
 樹脂基材と金属箔の剥離強度を上述した範囲に調節する上では、当該シラン化合物はアルコキシ基を三つ、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つ有していることが好ましい。これを上の式でいえば、R3及びR4の両方がアルコキシ基ということになる。 In adjusting the peel strength between the resin substrate and the metal foil to the above-mentioned range, the silane compound has three alkoxy groups and the above hydrocarbon group (a hydrocarbon group in which one or more hydrogen atoms are substituted with a halogen atom). It is preferable to have one). In terms of the above formula, both R 3 and R 4 are alkoxy groups.
 アルコキシ基としては、限定的ではないが、メトキシ基、エトキシ基、n-又はiso-プロポキシ基、n-、iso-又はtert-ブトキシ基、n-、iso-又はneo-ペントキシ基、n-ヘキソキシ基、シクロヘキシソキシ基、n-ヘプトキシ基、及びn-オクトキシ基等の直鎖状、分岐状、又は環状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシ基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl. A linear or branched alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as a group, n-octyl group and n-decyl group.
 シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Examples of the cycloalkyl group include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms. An alkyl group is mentioned.
 アリール基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられる。 The aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms. An aryl group is mentioned.
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいシラン化合物の例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、n-又はiso-プロピルトリメトキシシラン、n-、iso-又はtert-ブチルトリメトキシシラン、n-、iso-又はneo-ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン;アルキル置換フェニルトリメトキシシラン(例えば、p-(メチル)フェニルトリメトキシシラン)、メチルトリエトキシシラン、エチルトリエトキシシラン、n-又はiso-プロピルトリエトキシシラン、n-、iso-又はtert-ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、フェニルトリエトキシシラン、アルキル置換フェニルトリエトキシシラン(例えば、p-(メチル)フェニルトリエトキシシラン)、(3,3,3-トリフルオロプロピル)トリメトキシシラン、及びトリデカフルオロオクチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、トリメチルフルオロシラン、ジメチルジブロモシラン、ジフェニルジブロモシラン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、プロピルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシランが好ましい。 Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl. Trimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane; alkyl-substituted phenyltrimethoxysilane (eg, p- (methyl) phenyltrimethoxysilane), methyltriethoxysilane, ethyl Triethoxysilane, n- or iso-propyltriethoxysilane, n-, iso- or tert-butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, octyltriethoxy Silane, decyltriethoxysilane, phenyltriethoxysilane, alkyl-substituted phenyltriethoxysilane (eg, p- (methyl) phenyltriethoxysilane), (3,3,3-trifluoropropyl) trimethoxysilane, and trideca Fluorooctyltriethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, trimethylfluorosilane, dimethyldibromosilane, diphenyldibromosilane, their hydrolysis products, and condensates of these hydrolysis products Etc. Among these, propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
 離型層の形成工程において、シラン化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高いシラン化合物を使用するときに有効である。シラン化合物の水溶液は、撹拌することでアルコキシ基の加水分解が促進され、撹拌時間が長いと加水分解生成物の縮合が促進される。一般には、十分な撹拌時間を経て加水分解および縮合が進んだシラン化合物を用いた方が樹脂基材と金属箔の剥離強度は低下する傾向にある。従って、撹拌時間の調整によって剥離強度を調整可能である。限定的ではないが、シラン化合物を水に溶解させた後の撹拌時間としては例えば1~100時間とすることができ、典型的には1~30時間とすることができる。当然ながら、撹拌せずに用いる方法もある。 In the step of forming the release layer, the silane compound can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic silane compound is used. By stirring the aqueous solution of the silane compound, hydrolysis of the alkoxy group is promoted, and when the stirring time is long, condensation of the hydrolysis product is promoted. In general, the peel strength between the resin substrate and the metal foil tends to decrease when a silane compound that has undergone hydrolysis and condensation after a sufficient stirring time has been used. Therefore, the peel strength can be adjusted by adjusting the stirring time. Although not limited, the stirring time after the silane compound is dissolved in water can be, for example, 1 to 100 hours, and typically 1 to 30 hours. Of course, there is a method of using without stirring.
 シラン化合物の水溶液中のシラン化合物の濃度は高い方が金属箔と板状キャリアの剥離強度は低下する傾向にあり、シラン化合物の濃度調整によって剥離強度を調整可能である。
 また、シラン化合物の水溶液中のシラン化合物の濃度を高くすることで、従来よりもより撥水性を向上させることができる。シラン化合物の水溶液中のシラン化合物の濃度は、8~15体積%とすることができる。当該濃度が8体積%未満であると、撥水性不足が生じ(具体的には水接触角が90度未満となる場合があり)、15体積%超の場合は、シラン化合物の溶解不良が生じ、当該金属箔を樹脂基板と積層させたとき、未反応シラン化合物起因のフクレが発生するおそれがある。
 また、金属箔の処理表面に、シラン化合物を塗布してから、2回の乾燥工程を実施することが好ましい。1回目の乾燥は、シラン化合物の水溶液を乾かすだけの目的で行う。2回目の乾燥は、縮合反応しきっていないシラン化合物内の水酸基について、縮合反応を全部終わらせて、残存しているOH基(水酸基)を無くすことで、撥水性を向上させる効果がある。1回目の乾燥は、80~120℃×10秒~2分間で行うことができ、2回目の乾燥は、120~200℃×30秒~5分間で行うことができる。
 また、シラン化合物の水-アルコ-ル混合溶液を用いる場合、当該溶液中のアルコール濃度は、水に溶けにくいシラン化合物を均一に溶解させるため、20~80体積%が好ましい。当該溶液中のアルコール濃度が20体積%未満であると、シラン化合物が溶けなくなる場合があり、80体積%超の場合、加水分解反応が不完全となるため、シラン化合物が加水分解されずにそのまま残存し、撥水性が低下し、水の接触角が小さくなるおそれがある。
The higher the concentration of the silane compound in the aqueous solution of the silane compound, the lower the peel strength between the metal foil and the plate carrier, and the peel strength can be adjusted by adjusting the concentration of the silane compound.
Moreover, water repellency can be improved more conventionally than by making the density | concentration of the silane compound in the aqueous solution of a silane compound high. The concentration of the silane compound in the aqueous solution of the silane compound can be 8 to 15% by volume. When the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees), and when it exceeds 15% by volume, poor dissolution of the silane compound occurs. When the metal foil is laminated with the resin substrate, there is a risk that swelling due to the unreacted silane compound occurs.
Moreover, it is preferable to implement the drying process twice after applying the silane compound to the treated surface of the metal foil. The first drying is performed only for the purpose of drying the aqueous solution of the silane compound. The second drying has the effect of improving water repellency by terminating all condensation reactions for hydroxyl groups in the silane compound that have not undergone the condensation reaction and eliminating the remaining OH groups (hydroxyl groups). The first drying can be performed at 80 to 120 ° C. × 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. × 30 seconds to 5 minutes.
When a water-alcohol mixed solution of silane compound is used, the alcohol concentration in the solution is preferably 20 to 80% by volume in order to uniformly dissolve the silane compound that is hardly soluble in water. If the alcohol concentration in the solution is less than 20% by volume, the silane compound may not dissolve, and if it exceeds 80% by volume, the hydrolysis reaction will be incomplete. Residual, water repellency is lowered, and the contact angle of water may be reduced.
 シラン化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the silane compound is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(2)分子内に2つ以下のメルカプト基を有する化合物
 離型層は、分子内に2つ以上のメルカプト基を有する化合物を用いて構成し、当該離型層を介して樹脂基材と金属箔とを貼り合わせることによっても、適度に密着性が低下し、剥離強度を調節できる。
 但し、分子内に3つ以上のメルカプト基を有する化合物またはその塩を樹脂基材と金属箔との間に介在させて貼り合わせた場合、剥離強度低減の目的には適さない。これは、分子内にメルカプト基が過剰に存在するとメルカプト基同士、またはメルカプト基と板状キャリア、またはメルカプト基と金属箔との化学反応によってスルフィド結合、ジスルフィド結合またはポリスルフィド結合が過剰に生成し、樹脂基材と金属箔の間に強固な3次元架橋構造が形成されることで剥離強度が上昇することがあると考えられるからである。このような事例は特開2000-196207号公報に開示されている。
(2) Compound having two or less mercapto groups in the molecule The release layer is constituted by using a compound having two or more mercapto groups in the molecule, and the resin base material and the metal via the release layer. Adhesion with the foil can also be appropriately reduced to adjust the peel strength.
However, when a compound having three or more mercapto groups in the molecule or a salt thereof is bonded between the resin substrate and the metal foil, it is not suitable for the purpose of reducing the peel strength. This is because when there is an excessive amount of mercapto groups in the molecule, an excessive amount of sulfide bonds, disulfide bonds or polysulfide bonds are generated by the chemical reaction between the mercapto groups, or between the mercapto group and the plate carrier, or the mercapto group and the metal foil, This is because it is considered that the peel strength may be increased by forming a strong three-dimensional crosslinked structure between the resin base material and the metal foil. Such a case is disclosed in Japanese Patent Laid-Open No. 2000-196207.
 この分子内に2つ以下のメルカプト基を有する化合物としては、チオール、ジチオール、チオカルボン酸またはその塩、ジチオカルボン酸またはその塩、チオスルホン酸またはその塩、およびジチオスルホン酸またはその塩が挙げられ、これらの中から選択される少なくとも一種を用いることができる。 Examples of the compound having two or less mercapto groups in the molecule include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof. At least one selected from these can be used.
 チオールは、分子内に一つのメルカプト基を有するものであり、例えばR-SHで表される。ここで、Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。 Thiol has one mercapto group in the molecule and is represented by, for example, R-SH. Here, R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
 ジチオールは、分子内に二つのメルカプト基を有するものであり、例えばR(SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのメルカプト基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素または窒素に結合してもよい。 Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
 チオカルボン酸は、有機カルボン酸の水酸基がメルカプト基に置換されたものであり、例えばR-CO-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオカルボン酸は、塩の形態でも使用することが可能である。なお、チオカルボン酸基を、二つ有する化合物も使用可能である。 The thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. The thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
 ジチオカルボン酸は、有機カルボン酸のカルボキシ基中の2つの酸素原子が硫黄原子に置換されたものであり、例えばR-(CS)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、ジチオカルボン酸は、塩の形態でも使用することが可能である。なお、ジチオカルボン酸基を、二つ有する化合物も使用可能である。 Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Dithiocarboxylic acid can also be used in the form of a salt. A compound having two dithiocarboxylic acid groups can also be used.
 チオスルホン酸は、有機スルホン酸の水酸基がメルカプト基に置換されたものであり、例えばR(SO2)-SHで表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、チオスルホン酸は、塩の形態でも使用することが可能である。 The thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Further, thiosulfonic acid can be used in the form of a salt.
 ジチオスルホン酸は、有機ジスルホン酸の二つの水酸基がそれぞれメルカプト基に置換されたものであり、例えばR-((SO2)-SH)2で表される。Rは、水酸基またはアミノ基を含んでもよい、脂肪族系または芳香族系炭化水素基または複素環基を表す。また、二つのチオスルホン酸基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素に結合してもよい。また、ジチオスルホン酸は、塩の形態でも使用することが可能である。 Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons. Dithiosulfonic acid can also be used in the form of a salt.
 ここで、Rとして好適な脂肪族系炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Here, examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、Rとして好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 In addition, examples of suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、Rとして好適な複素環基としては、イミダゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾールが挙げられ、水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。 Also, examples of the heterocyclic group suitable as R include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
 分子内に2つ以下のメルカプト基を有する化合物の好ましい例としては、3-メルカプト-1,2プロパンジオール、2-メルカプトエタノール、1,2-エタンジチオール、6-メルカプト-1-ヘキサノール、1-オクタンチオール、1-ドデカンチオール、10-ヒドロキシ-1-ドデカンチオール、10-カルボキシ-1-ドデカンチオール、10-アミノ-1-ドデカンチオール、1-ドデカンチオールスルホン酸ナトリウム、チオフェノール、チオ安息香酸、4-アミノ-チオフェノール、p-トルエンチオール、2,4-ジメチルベンゼンチオール、3-メルカプト-1,2,4トリアゾール、2-メルカプト-ベンゾチアゾールが挙げられる。これらの中でも水溶性と廃棄物処理上の観点から、3-メルカプト-1,2プロパンジオールが好ましい。 Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
 離型層の形成工程において、分子内に2つ以下のメルカプト基を有する化合物は水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い分子内に2つ以下のメルカプト基を有する化合物を使用するときに有効である。 In the release layer forming step, a compound having two or less mercapto groups in the molecule can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a compound having two or less mercapto groups in a highly hydrophobic molecule is used.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は高い方が樹脂基材と金属箔の剥離強度は低下する傾向にあり、分子内に2つ以下のメルカプト基を有する化合物の濃度調整によって剥離強度を調整可能である。
 また、分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度を高くすることで、従来よりもより撥水性を向上させることができる。分子内に2つ以下のメルカプト基を有する化合物の水溶液中の濃度は、8~15体積%とすることができる。当該濃度が8体積%未満であると、撥水性不足が生じ(具体的には水接触角が90度未満となる場合があり)、15体積%超の場合は、分子内に2つ以下のメルカプト基を有する化合物の溶解不良が生じ、当該金属箔を樹脂基板と積層させたとき、未反応化合物起因のフクレが発生するおそれがある。
 また、金属箔の処理表面に、分子内に2つ以下のメルカプト基を有する化合物を塗布してから、2回の乾燥工程を実施することが好ましい。1回目の乾燥は、分子内に2つ以下のメルカプト基を有する化合物の水溶液を乾かすだけの目的で行う。2回目の乾燥は、金属箔表面に配位した分子内に2つ以下のメルカプト基を有する化合物の配列を調整することにより、撥水性を向上させる効果がある。1回目の乾燥は、80~120℃×10秒~2分間で行うことができ、2回目の乾燥は、120~200℃×30秒~5分間で行うことができる。
 また、分子内に2つ以下のメルカプト基を有する化合物の水-アルコ-ル混合溶液を用いる場合、当該溶液中のアルコール濃度は、水に溶けにくい分子内に2つ以下のメルカプト基を有する化合物を均一に溶解させるため、20~80体積%が好ましい。当該溶液中のアルコール濃度が20体積%未満であると、分子内に2つ以下のメルカプト基を有する化合物が溶けなくなる場合があり、80体積%超の場合、金属箔表面に緻密に配位した分子内に2つ以下のメルカプト基を有する化合物の配列が乱れ、撥水性が低下し、水の接触角が小さくなるおそれがある。
The higher the concentration of the compound having two or less mercapto groups in the molecule in the aqueous solution, the lower the peel strength between the resin substrate and the metal foil, and the compound having two or less mercapto groups in the molecule. The peel strength can be adjusted by adjusting the concentration.
Moreover, water repellency can be improved more conventionally than by making the density | concentration in the aqueous solution of the compound which has two or less mercapto groups in a molecule | numerator high. The concentration of the compound having two or less mercapto groups in the molecule in the aqueous solution can be 8 to 15% by volume. When the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees). When the concentration is more than 15% by volume, two or less in the molecule. When a compound having a mercapto group is poorly dissolved and the metal foil is laminated with a resin substrate, there is a possibility that swelling due to an unreacted compound may occur.
In addition, it is preferable to perform the drying process twice after applying a compound having two or less mercapto groups in the molecule to the treated surface of the metal foil. The first drying is performed only for the purpose of drying an aqueous solution of a compound having two or less mercapto groups in the molecule. The second drying has the effect of improving water repellency by adjusting the arrangement of compounds having two or less mercapto groups in the molecule coordinated on the surface of the metal foil. The first drying can be performed at 80 to 120 ° C. × 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. × 30 seconds to 5 minutes.
Further, when a water-alcohol mixed solution of a compound having 2 or less mercapto groups in the molecule is used, the alcohol concentration in the solution is a compound having 2 or less mercapto groups in the molecule which is hardly soluble in water. Is preferably 20 to 80% by volume in order to dissolve uniformly. When the alcohol concentration in the solution is less than 20% by volume, a compound having two or less mercapto groups in the molecule may not dissolve, and when it exceeds 80% by volume, it is densely coordinated on the surface of the metal foil. There is a possibility that the arrangement of compounds having two or less mercapto groups in the molecule is disturbed, the water repellency is lowered, and the contact angle of water is reduced.
 分子内に2つ以下のメルカプト基を有する化合物の水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of the compound having two or less mercapto groups in the molecule is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(3)金属アルコキシド
 離型層を、次式に示す構造を有するアルミネート化合物、チタネート化合物、ジルコネート化合物、またはその加水分解生成物、または該加水分解生成物の縮合体(以下、単に金属アルコキシドと記述する)を単独でまたは複数混合して構成してもよい。当該離型層を介して樹脂基材と金属箔を貼り合わせることで、適度に密着性が低下し、剥離強度を調節できる。
(3) Metal alkoxide The release layer is formed from an aluminate compound, titanate compound, zirconate compound, or a hydrolysis product thereof having a structure represented by the following formula, or a condensation product of the hydrolysis product (hereinafter simply referred to as metal alkoxide and May be used alone or in combination. By adhering the resin base material and the metal foil through the release layer, the adhesion is moderately lowered and the peel strength can be adjusted.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。 In the formula, R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0 or 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group. M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
 当該金属アルコキシドはアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、樹脂基材と金属箔の密着性が低下し過ぎる傾向がある。また、当該金属アルコキシドはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を0~2個有していることが必要である。当該炭化水素基を3つ以上有する場合、樹脂基材と金属箔の密着性が低下し過ぎる傾向があるからである。なお、アルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。樹脂基材と金属箔の剥離強度を上述した範囲に調節する上では、当該金属アルコキシドはアルコキシ基を二つ以上、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つか二つ有していることが好ましい。 The metal alkoxide must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of a resin base material and metal foil to fall too much. The metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the resin base material and the metal foil tends to be too low. The alkoxy group includes an alkoxy group in which one or more hydrogen atoms are substituted with a halogen atom. In adjusting the peel strength between the resin substrate and the metal foil within the above-mentioned range, the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (a hydrocarbon in which one or more hydrogen atoms are substituted with a halogen atom). It preferably has one or two groups).
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、R2として好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらかまたは両方を含んでいてもよい。これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 Further, examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group. In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいアルミネート化合物の例としては、トリメトキシアルミニウム、メチルジメトキシアルミニウム、エチルジメトキシアルミニウム、n-又はiso-プロピルジメトキシアルミニウム、n-、iso-又はtert-ブチルジメトキシアルミニウム、n-、iso-又はneo-ペンチルジメトキシアルミニウム、ヘキシルジメトキシアルミニウム、オクチルジメトキシアルミニウム、デシルジメトキシアルミニウム、フェニルジメトキシアルミニウム;アルキル置換フェニルジメトキシアルミニウム(例えば、p-(メチル)フェニルジメトキシアルミニウム)、ジメチルメトキシアルミニウム、トリエトキシアルミニウム、メチルジエトキシアルミニウム、エチルジエトキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジエトキシアルミニウム、ペンチルジエトキシアルミニウム、ヘキシルジエトキシアルミニウム、オクチルジエトキシアルミニウム、デシルジエトキシアルミニウム、フェニルジエトキシアルミニウム、アルキル置換フェニルジエトキシアルミニウム(例えば、p-(メチル)フェニルジエトキシアルミニウム)、ジメチルエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、エチルジイソプロポキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジイソプロポキシアルミニウム、ペンチルジイソプロポキシアルミニウム、ヘキシルジイソプロポキシアルミニウム、オクチルジイソプロポキシアルミニウム、デシルジイソプロポキシアルミニウム、フェニルジイソプロポキシアルミニウム、アルキル置換フェニルジイソプロポキシアルミニウム(例えば、p-(メチル)フェニルジイソプロポキシアルミニウム)、ジメチルイソプロポキシアルミニウム、(3,3,3-トリフルオロプロピル)ジメトキシアルミニウム、及びトリデカフルオロオクチルジエトキシアルミニウム、メチルジクロロアルミニウム、ジメチルクロロアルミニウム、ジメチルクロロアルミニウム、フェニルジクロロアルミニウム、ジメチルフルオロアルミニウム、ジメチルブロモアルミニウム、ジフェニルブロモアルミニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、が好ましい。 Examples of preferred aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldiethoxyaluminum, pentyldiethoxyaluminum, hexyldiethoxyaluminum, octyldiethoxyaluminum, decyldiethoxyaluminum, phenyldiethoxyaluminum, alkyl-substituted phenyldiethoxyaluminum (eg p -(Methyl) phenyldiethoxyaluminum), dimethylethoxyaluminum, triisopropoxyaluminum, methyldiisopropoxyaluminum, ethyldiisopropoxyaluminum, n- or iso-propyldiethoxyaluminum, n-, iso- or tert-butyl Diisopropoxy aluminum, pentyl diisopropoxy aluminum, hexyl diisopropoxy aluminum, octyl dii Propoxyaluminum, decyldiisopropoxyaluminum, phenyldiisopropoxyaluminum, alkyl-substituted phenyldiisopropoxyaluminum (eg, p- (methyl) phenyldiisopropoxyaluminum), dimethylisopropoxyaluminum, (3,3,3-tri Fluoropropyl) dimethoxyaluminum and tridecafluorooctyldiethoxyaluminum, methyldichloroaluminum, dimethylchloroaluminum, dimethylchloroaluminum, phenyldichloroaluminum, dimethylfluoroaluminum, dimethylbromoaluminum, diphenylbromoaluminum, their hydrolysis products, And condensates of these hydrolysis products. Among these, from the viewpoint of availability, trimethoxyaluminum, triethoxyaluminum, and triisopropoxyaluminum are preferable.
 好ましいチタネート化合物の例としては、テトラメトキシチタン、メチルトリメトキシチタン、エチルトリメトキシチタン、n-又はiso-プロピルトリメトキシチタン、n-、iso-又はtert-ブチルトリメトキシチタン、n-、iso-又はneo-ペンチルトリメトキシチタン、ヘキシルトリメトキシチタン、オクチルトリメトキシチタン、デシルトリメトキシチタン、フェニルトリメトキシチタン;アルキル置換フェニルトリメトキシチタン(例えば、p-(メチル)フェニルトリメトキシチタン)、ジメチルジメトキシチタン、テトラエトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリエトキシチタン、ペンチルトリエトキシチタン、ヘキシルトリエトキシチタン、オクチルトリエトキシチタン、デシルトリエトキシチタン、フェニルトリエトキシチタン、アルキル置換フェニルトリエトキシチタン(例えば、p-(メチル)フェニルトリエトキシチタン)、ジメチルジエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン、エチルトリイソプロポキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリイソプロポキシチタン、ペンチルトリイソプロポキシチタン、ヘキシルトリイソプロポキシチタン、オクチルトリイソプロポキシチタン、デシルトリイソプロポキシチタン、フェニルトリイソプロポキシチタン、アルキル置換フェニルトリイソプロポキシチタン(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシチタン、(3,3,3-トリフルオロプロピル)トリメトキシチタン、及びトリデカフルオロオクチルトリエトキシチタン、メチルトリクロロチタン、ジメチルジクロロチタン、トリメチルクロロチタン、フェニルトリクロロチタン、ジメチルジフルオロチタン、ジメチルジブロモチタン、ジフェニルジブロモチタン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、が好ましい。 Examples of preferred titanate compounds include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso- or tert-butyl triethoxy titanium, Nitrotriethoxytitanium, hexyltriethoxytitanium, octyltriethoxytitanium, decyltriethoxytitanium, phenyltriethoxytitanium, alkyl-substituted phenyltriethoxytitanium (eg p- (methyl) phenyltriethoxytitanium), dimethyldiethoxytitanium , Tetraisopropoxytitanium, methyltriisopropoxytitanium, ethyltriisopropoxytitanium, n- or iso-propyltriethoxytitanium, n-, iso- or tert-butyltriisopropoxytitanium, pentyltriisopropoxytitanium, hexyltri Isopropoxytitanium, octyltriisopropoxytitanium, decyltriisopropoxytitanium, phenyltriisopropoxytitanium, alkyl-substituted phenyltriisopropoxytitanium ( For example, p- (methyl) phenyltriisopropoxytitanium), dimethyldiisopropoxytitanium, (3,3,3-trifluoropropyl) trimethoxytitanium, and tridecafluorooctyltriethoxytitanium, methyltrichlorotitanium, dimethyldichloro Examples include titanium, trimethylchlorotitanium, phenyltrichlorotitanium, dimethyldifluorotitanium, dimethyldibromotitanium, diphenyldibromotitanium, hydrolysis products thereof, and condensates of these hydrolysis products. Among these, tetramethoxy titanium, tetraethoxy titanium, and tetraisopropoxy titanium are preferable from the viewpoint of availability.
 好ましいジルコネート化合物の例としては、テトラメトキシジルコニウム、メチルトリメトキシジルコニウム、エチルトリメトキシジルコニウム、n-又はiso-プロピルトリメトキシジルコニウム、n-、iso-又はtert-ブチルトリメトキシジルコニウム、n-、iso-又はneo-ペンチルトリメトキシジルコニウム、ヘキシルトリメトキシジルコニウム、オクチルトリメトキシジルコニウム、デシルトリメトキシジルコニウム、フェニルトリメトキシジルコニウム;アルキル置換フェニルトリメトキシジルコニウム(例えば、p-(メチル)フェニルトリメトキシジルコニウム)、ジメチルジメトキシジルコニウム、テトラエトキシジルコニウム、メチルトリエトキシジルコニウム、エチルトリエトキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリエトキシジルコニウム、ペンチルトリエトキシジルコニウム、ヘキシルトリエトキシジルコニウム、オクチルトリエトキシジルコニウム、デシルトリエトキシジルコニウム、フェニルトリエトキシジルコニウム、アルキル置換フェニルトリエトキシジルコニウム(例えば、p-(メチル)フェニルトリエトキシジルコニウム)、ジメチルジエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム、エチルトリイソプロポキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリイソプロポキシジルコニウム、ペンチルトリイソプロポキシジルコニウム、ヘキシルトリイソプロポキシジルコニウム、オクチルトリイソプロポキシジルコニウム、デシルトリイソプロポキシジルコニウム、フェニルトリイソプロポキシジルコニウム、アルキル置換フェニルトリイソプロポキシジルコニウム(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシジルコニウム、(3,3,3-トリフルオロプロピル)トリメトキシジルコニウム、及びトリデカフルオロオクチルトリエトキシジルコニウム、メチルトリクロロジルコニウム、ジメチルジクロロジルコニウム、トリメチルクロロジルコニウム、フェニルトリクロロジルコニウム、ジメチルジフルオロジルコニウム、ジメチルジブロモジルコニウム、ジフェニルジブロモジルコニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、が好ましい。 Examples of preferred zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltriethoxyzirconium, -Or iso-propyltriethoxyzirconium, n-, iso- or tert-butyltriethoxyzirconium, pentyltriethoxyzirconium, hexyltriethoxyzirconium, octyltriethoxyzirconium, decyltriethoxyzirconium, phenyltriethoxyzirconium, alkyl-substituted phenyl Triethoxyzirconium (eg, p- (methyl) phenyltriethoxyzirconium), dimethyldiethoxyzirconium, tetraisopropoxyzirconium, methyltriisopropoxyzirconium, ethyltriisopropoxyzirconium, n- or iso-propyltriethoxyzirconium, n -, Iso- or tert-butyltriisopropoxyzirconium, pentyltriisopropoxy Luconium, hexyltriisopropoxyzirconium, octyltriisopropoxyzirconium, decyltriisopropoxyzirconium, phenyltriisopropoxyzirconium, alkyl-substituted phenyltriisopropoxyzirconium (eg, p- (methyl) phenyltriisopropoxytitanium), dimethyldi Isopropoxyzirconium, (3,3,3-trifluoropropyl) trimethoxyzirconium, and tridecafluorooctyltriethoxyzirconium, methyltrichlorozirconium, dimethyldichlorozirconium, trimethylchlorozirconium, phenyltrichlorozirconium, dimethyldifluorozirconium, dimethyldibromo Zirconium, diphenyldibromozirconium and their hydrolysis Products, and condensates of these hydrolysis products. Among these, tetramethoxyzirconium, tetraethoxyzirconium, and tetraisopropoxyzirconium are preferable from the viewpoint of availability.
 離型層の形成工程において、金属アルコキシドは水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い金属アルコキシドを使用するときに有効である。 In the step of forming the release layer, the metal alkoxide can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
 金属アルコキシドの水溶液中の濃度は高い方が樹脂基材と金属箔の剥離強度は低下する傾向にあり、金属アルコキシド濃度調整によって剥離強度を調整可能である。
 また、金属アルコキシドの水溶液中の濃度を高くすることで、従来よりもより撥水性を向上させることができる。金属アルコキシドの水溶液中の濃度は、8~15体積%とすることができる。当該濃度が8体積%未満であると、撥水性不足が生じ(具体的には水接触角が90度未満となる場合があり)、15体積%超の場合は、金属アルコキシドの溶解不良が生じ、当該金属箔を樹脂基板と積層させたとき、未反応化合物起因のフクレが発生するおそれがある。
 また、金属箔の処理表面に、金属アルコキシドを塗布してから、2回の乾燥工程を実施することが好ましい。1回目の乾燥は、金属アルコキシドの水溶液を乾かすだけの目的で行う。2回目の乾燥は、縮合反応しきっていない金属アルコキシド内の水酸基について、縮合反応を全部終わらせて、残存しているOH基(水酸基)を無くすことで、撥水性を向上させる効果がある。1回目の乾燥は、80~120℃×10秒~2分間で行うことができ、2回目の乾燥は、120~200℃×30秒~5分間で行うことができる。
 また、金属アルコキシドの水-アルコ-ル混合溶液を用いる場合、当該溶液中のアルコール濃度は、水に溶けにくい金属アルコキシドを均一に溶解させるため、20~80体積%が好ましい。当該溶液中のアルコール濃度が20体積%未満であると、金属アルコキシドが溶けなくなる場合があり、80体積%超の場合、加水分解反応が不完全となるため、金属アルコキシドが加水分解されずにそのまま残存し、撥水性が低下し、水の接触角が小さくなるおそれがある。
The higher the concentration of the metal alkoxide in the aqueous solution, the lower the peel strength between the resin base material and the metal foil, and the peel strength can be adjusted by adjusting the metal alkoxide concentration.
Further, by increasing the concentration of the metal alkoxide in the aqueous solution, the water repellency can be improved more than before. The concentration of the metal alkoxide in the aqueous solution can be 8 to 15% by volume. If the concentration is less than 8% by volume, water repellency is insufficient (specifically, the water contact angle may be less than 90 degrees), and if it exceeds 15% by volume, poor dissolution of the metal alkoxide occurs. When the metal foil is laminated with the resin substrate, there is a possibility that swelling due to the unreacted compound occurs.
Moreover, it is preferable to carry out the drying process twice after applying the metal alkoxide to the treated surface of the metal foil. The first drying is performed only for the purpose of drying the aqueous solution of the metal alkoxide. The second drying has the effect of improving the water repellency by terminating all condensation reactions for the hydroxyl groups in the metal alkoxide that have not undergone the condensation reaction and eliminating the remaining OH groups (hydroxyl groups). The first drying can be performed at 80 to 120 ° C. × 10 seconds to 2 minutes, and the second drying can be performed at 120 to 200 ° C. × 30 seconds to 5 minutes.
When a water-alcohol mixed solution of metal alkoxide is used, the alcohol concentration in the solution is preferably 20 to 80% by volume in order to uniformly dissolve the metal alkoxide that is hardly soluble in water. If the alcohol concentration in the solution is less than 20% by volume, the metal alkoxide may not dissolve, and if it exceeds 80% by volume, the hydrolysis reaction will be incomplete, so that the metal alkoxide is not hydrolyzed as it is. Residual, water repellency is lowered, and the contact angle of water may be reduced.
 金属アルコキシドの水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。
(4)その他
 シリコン系の離型剤、離型性を有する樹脂被膜等、公知の離型性を有する物質を離型層に用いることができる。
The pH of the aqueous solution of the metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(4) Others A known release material, such as a silicon-based release agent or a resin coating having a release property, can be used for the release layer.
 本発明に係る表面処理金属箔は、金属箔と離型層との間に、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層が設けられていてもよい。ここでクロメート処理層とは無水クロム酸、クロム酸、二クロム酸、クロム酸塩または二クロム酸塩を含む液で処理された層のことをいう。クロメート処理層はコバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素およびチタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでもよい。クロメート処理層の具体例としては、無水クロム酸または二クロム酸カリウム水溶液で処理したクロメート処理層や、無水クロム酸または二クロム酸カリウムおよび亜鉛を含む処理液で処理したクロメート処理層等が挙げられる。 The surface-treated metal foil according to the present invention is selected from the group consisting of a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer between the metal foil and the release layer. More than one seed layer may be provided. Here, the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate. Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included). Specific examples of the chromate treatment layer include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
 粗化処理層は例えば以下の処理により形成することができる。
  〔球状粗化〕
 Cu、H2SO4、Asから成る、以下に記す銅粗化めっき浴を用いて球状粗化粒子を形成する。
・液組成1
   CuSO4・5H2O 78~196g/L
   Cu 20~50g/L
   H2SO4 50~200g/L
   砒素 0.7~3.0g/L
(電気メッキ温度1) 30~76℃
(電流条件1) 電流密度 35~105A/dm2 (浴の限界電流密度以上)
(メッキ時間1)1~240秒
 続いて、粗化粒子の脱落防止とピール強度向上のため、硫酸・硫酸銅からなる銅電解浴で被せメッキを行う。被せメッキ条件を以下に記す。
・液組成2
   CuSO4・5H2O 88~352g/L
   Cu 22~90g/L
   H2SO4 50~200g/L
(電気メッキ温度2) 25~80℃
(電流条件2) 電流密度:15~32A/dm2 (浴の限界電流密度未満)
(メッキ時間1)1~240秒
A roughening process layer can be formed by the following processes, for example.
(Spherical roughening)
Spherical rough particles are formed using a copper roughening plating bath described below, which is made of Cu, H 2 SO 4 and As.
・ Liquid composition 1
CuSO 4 · 5H 2 O 78 ~ 196g / L
Cu 20-50g / L
H 2 SO 4 50-200 g / L
Arsenic 0.7-3.0g / L
(Electroplating temperature 1) 30 ~ 76 ℃
(Current condition 1) Current density 35 to 105 A / dm 2 (above the limiting current density of the bath)
(Plating time 1) 1 to 240 seconds Subsequently, plating is performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent the rough particles from falling off and to improve the peel strength. The covering plating conditions are described below.
・ Liquid composition 2
CuSO 4 · 5H 2 O 88-352g / L
Cu 22-90g / L
H 2 SO 4 50-200 g / L
(Electroplating temperature 2) 25-80 ° C
(Current condition 2) Current density: 15 to 32 A / dm 2 (below the limit current density of the bath)
(Plating time 1) 1 to 240 seconds
 また、耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。 Moreover, a well-known heat resistant layer and a rust preventive layer can be used as a heat resistant layer and a rust preventive layer. For example, the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum A layer containing one or more elements selected from nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements Further, it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like. The heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. An oxide, nitride, or silicide containing one or more elements selected from the above may be included. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer. The nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities. The total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 . The ratio of the nickel adhesion amount and the zinc adhesion amount of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer (= nickel adhesion amount / zinc adhesion amount) is 1.5 to 10. It is preferable. Further, the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
 例えば耐熱層および/または防錆層は、付着量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケルまたはニッケル合金層と、付着量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよく、前記ニッケル合金層はニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層および/または防錆層は、ニッケルまたはニッケル合金とスズとの合計付着量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層および/または防錆層は、[ニッケルまたはニッケル合金中のニッケル付着量]/[スズ付着量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。 For example, the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2. A tin layer of ˜80 mg / m 2 , preferably 5 mg / m 2 ˜40 mg / m 2 may be sequentially laminated. The nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these. The heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable. In addition, the heat-resistant layer and / or the rust-preventing layer preferably has [amount of nickel deposited in nickel or nickel alloy] / [amount of tin deposited] = 0.25 to 10, preferably 0.33 to 3. More preferred.
 なお、シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。 In addition, you may use a well-known silane coupling agent for the silane coupling agent used for a silane coupling process, for example, using an amino-type silane coupling agent or an epoxy-type silane coupling agent, a mercapto-type silane coupling agent. Good. Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane or the like may be used.
 前記シランカップリング処理層は、エポキシ系シラン、アミノ系シラン、メタクリロキシ系シラン、メルカプト系シランなどのシランカップリング剤などを使用して形成してもよい。なお、このようなシランカップリング剤は、2種以上混合して使用してもよい。中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いて形成したものであることが好ましい。 The silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like. In addition, you may use 2 or more types of such silane coupling agents in mixture. Especially, it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
 ここで言うアミノ系シランカップリング剤とは、N‐(2‐アミノエチル)‐3‐アミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、N‐(3‐アクリルオキシ‐2‐ヒドロキシプロピル)‐3‐アミノプロピルトリエトキシシラン、4‐アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリス(2‐エチルヘキソキシ)シラン、6‐(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3‐(1‐アミノプロポキシ)‐3,3‐ジメチル‐1‐プロペニルトリメトキシシラン、3‐アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3‐アミノプロピルトリエトキシシラン、3‐アミノプロピルトリメトキシシラン、ω‐アミノウンデシルトリメトキシシラン、3‐(2‐N‐ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、(N,N‐ジエチル‐3‐アミノプロピル)トリメトキシシラン、(N,N‐ジメチル‐3‐アミノプロピル)トリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシランからなる群から選択されるものであってもよい。 The amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trimethoxysilane, -(2-aminoethyl-3-aminopropyl) tris (2-ethylhexoxy) silane, 6- (aminohexylaminopropyl) trimethoxysilane, aminophenyltrimethoxysilane, 3- (1-aminopropoxy) -3,3 -Dimethyl-1-propenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ω-aminoundecyltrimethoxysilane, 3- ( 2-N-benzylaminoethylaminopropyl) trimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, (N, N-diethyl-3-aminopropyl) trimethoxysilane, (N, N -Dimethyl-3-aminopropyl) Trimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane may be selected from the group consisting of Good.
 シランカップリング処理層は、ケイ素原子換算で、0.05mg/m2~200mg/m2、好ましくは0.15mg/m2~20mg/m2、好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが望ましい。前述の範囲の場合、樹脂基材と金属箔との密着性をより向上させることができる。 The silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the resin base material and the metal foil can be further improved.
 また、金属箔、粗化粒子層、耐熱層、防錆層、シランカップリング処理層、クロメート処理層または離型層の表面に、国際公開番号WO2008/053878、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、国際公開番号WO2006/134868、特許第5046927号、国際公開番号WO2007/105635、特許第5180815号、特開2013-19056号に記載の表面処理を行うことができる。 Further, on the surface of the metal foil, the roughened particle layer, the heat-resistant layer, the rust-preventing layer, the silane coupling treatment layer, the chromate treatment layer or the release layer, International Publication Nos. Surface treatment described in No. 5024930, International Publication No. WO2006 / 028207, Patent No. 4828427, International Publication No. WO2006 / 134868, Patent No. 5046927, International Publication No. WO2007 / 105635, Patent No. 5180815, JP2013-19056A It can be performed.
 本発明に係る表面処理金属箔の表面には樹脂層が設けられていてもよい。樹脂層は、通常、離型層上に設けられる。 A resin layer may be provided on the surface of the surface-treated metal foil according to the present invention. The resin layer is usually provided on the release layer.
 前記表面処理金属箔の表面の樹脂層は接着用樹脂、すなわち接着剤であってもよく、プライマーであってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。前記表面処理金属箔の表面の樹脂層は離型層と接触した際に適度な剥離強度(例えば2gf/cm~200gf/cm)を発現する樹脂層であることが好ましい。また、金属箔の表面の凹凸に追従し、フクレの原因となり得る空隙や気泡の混入が生じにくい樹脂を用いることが好ましい。例えば、金属箔表面に当該樹脂層を設ける際に、樹脂の粘度が10000mPa・s(25℃)以下、より好ましくは、樹脂の粘度が5000mPa・s(25℃)以下等の粘度の低い樹脂を用いて樹脂層を設けることが好ましい。表面処理金属箔に積層する絶縁基板と表面処理金属箔との間に前述の樹脂層を設けることにより、金属箔の表面の凹凸に追従しにくい絶縁基板を用いた場合でも、樹脂層が金属箔表面に追従するため、表面処理金属箔と絶縁基板との間で、空隙や気泡が生じにくくすることが可能となるため有効である。 The resin layer on the surface of the surface-treated metal foil may be an adhesive resin, that is, an adhesive, may be a primer, or may be a semi-cured (B-stage) insulating resin layer for adhesion. Good. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that. The resin layer on the surface of the surface-treated metal foil is preferably a resin layer that exhibits an appropriate peel strength (for example, 2 gf / cm to 200 gf / cm) when in contact with the release layer. Further, it is preferable to use a resin that follows the unevenness of the surface of the metal foil and hardly causes voids or bubbles that may cause blistering. For example, when the resin layer is provided on the surface of the metal foil, a resin having a low viscosity such as a resin viscosity of 10,000 mPa · s (25 ° C.) or less, more preferably a resin viscosity of 5000 mPa · s (25 ° C.) or less is used. It is preferable to provide a resin layer. Even if an insulating substrate that does not easily follow the irregularities on the surface of the metal foil is used by providing the aforementioned resin layer between the insulating substrate laminated on the surface-treated metal foil and the surface-treated metal foil, the resin layer is the metal foil. Since it follows the surface, it is effective because it is possible to make it difficult for voids and bubbles to occur between the surface-treated metal foil and the insulating substrate.
 また前記表面処理金属箔の表面の樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記表面処理金属箔の表面の樹脂層は熱可塑性樹脂を含んでもよい。前記表面処理金属箔の表面の樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記表面処理金属箔の表面の樹脂層は例えば国際公開番号WO2008/004399、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225号、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。 Also, the resin layer on the surface of the surface-treated metal foil may contain a thermosetting resin or a thermoplastic resin. Further, the resin layer on the surface of the surface-treated metal foil may contain a thermoplastic resin. The resin layer on the surface of the surface-treated metal foil may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like. The resin layer on the surface of the surface-treated metal foil is, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 088453, JP-A-11-5828, JP-A-11-140281, Patent No. 3184485, International Publication No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Laid-Open No. 2002-179444, Japanese Patent Laid-Open No. 2002-359444, Japanese Patent Laid-Open No. 2003-304068, Patent No. 3992225, JP 2003-249739, JP 4136509, JP 2004-82687, JP 4025177, JP 2004-349654, JP 4286060, JP 2005-262506, JP 45. 0070, JP 2005-53218, JP 3949676, JP 4178415, International Publication Nos. WO 2004/005588, JP 2006-257153, JP 2007-326923, JP 2008-111169, Patent No. No. 5024930, International Publication No. WO2006 / 028207, Japanese Patent No. 4828427, Japanese Unexamined Patent Publication No. 2009-67029, International Publication No. WO2006 / 134868, Japanese Patent No. 5046927, Japanese Unexamined Patent Publication No. 2009-173017, International Publication No. WO2007 / 105635, Patent No. No. 5180815, International Publication Number WO2008 / 114858, International Publication Number WO2009 / 008471, JP2011-14727, International Publication Number WO2009 / 001850, International Publication Number WO2009 145179, International Publication No. WO2011 / 068157, JP2013-19056A (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeleton materials, etc. ) And / or a resin layer forming method and a forming apparatus.
(積層体、半導体パッケージ、電子機器)
 本発明に係る表面処理金属箔の離型層側に樹脂基材を設けて積層体を作製することができる。当該積層体は、樹脂基材を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等で形成してもよい。樹脂基材は、プリプレグであってもよく、熱硬化性樹脂を含んでもよい。また、当該積層体の表面処理金属箔に回路を形成することでプリント配線板を作製することができる。更に、プリント配線板に電子部品類を搭載することで、プリント回路板を作製することができる。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板及びプリント回路板及びプリント基板も含まれることとする。また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。また、上記「プリント回路板」には、半導体パッケージ用回路形成基板も含まれることとする。さらに半導体パッケージ用回路形成基板に電子部品類を搭載して半導体パッケージを作製することができる。さらに当該半導体パッケージを用いて電子機器を作製してもよい。
(Laminated body, semiconductor package, electronic equipment)
A laminate can be produced by providing a resin substrate on the release layer side of the surface-treated metal foil according to the present invention. In the laminate, the resin base material is a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin, a glass cloth / paper composite base epoxy resin, a glass cloth / glass non-woven composite base epoxy resin, and You may form with glass cloth base-material epoxy resin. The resin substrate may be a prepreg or may contain a thermosetting resin. Moreover, a printed wiring board can be produced by forming a circuit on the surface-treated metal foil of the laminate. Furthermore, a printed circuit board can be produced by mounting electronic components on a printed wiring board. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted in this manner. In addition, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a print on which the electronic components are mounted. An electronic device may be manufactured using a substrate. The “printed circuit board” includes a circuit forming substrate for a semiconductor package. Furthermore, a semiconductor package can be manufactured by mounting electronic components on a circuit forming substrate for a semiconductor package. Further, an electronic device may be manufactured using the semiconductor package.
(プリント配線板の製造方法)
 本発明のプリント配線板の製造方法は一側面において、本発明の表面処理金属箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側に回路を形成する工程とを備える。このような構成により、金属箔に離型層を設けて、当該金属箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離が可能となり、金属箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した金属箔表面のプロファイルを損なうこと無く、良好なコストで金属箔を除去することが可能となる。当該製造方法では、回路をメッキパターンで形成してもよい。この場合、メッキパターンを形成した後、当該メッキパターンを利用して所望の回路を形成してプリント配線板を作製することができる。また、回路を印刷パターンで形成してもよい。この場合、例えばインクの中に導電ペースト等を含んだインクジェットを用いて印刷パターンを形成した後、当該印刷パターンを利用して所望の印刷回路を形成してプリント配線板を作製することができる。
(Printed wiring board manufacturing method)
In one aspect, the method for producing a printed wiring board of the present invention includes a step of bonding a resin base material from the release layer side to the surface-treated metal foil of the present invention, and the surface-treated metal foil from the resin base material. The step of obtaining a resin base material having the surface profile of the metal foil transferred to the release surface by peeling without etching, and forming a circuit on the side of the release surface of the resin base material to which the surface profile has been transferred A process. With such a configuration, a release layer is provided on the metal foil, and the resin substrate can be physically peeled when the metal foil is bonded to the resin substrate, and the metal foil is removed from the resin substrate. In the process, the metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin base material. In the manufacturing method, the circuit may be formed by a plating pattern. In this case, after forming a plating pattern, a desired circuit can be formed using the plating pattern to produce a printed wiring board. Further, the circuit may be formed with a printed pattern. In this case, for example, after a print pattern is formed using an ink jet containing conductive paste or the like in the ink, a desired printed circuit is formed using the print pattern, and a printed wiring board can be manufactured.
 さらに、本発明のプリント配線板の製造方法は更に別の一側面において、本発明の表面処理金属箔に、前記離型層側から樹脂基材を貼り合わせる工程と、前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程とを備える。このような構成により、金属箔に離型層を設けて、当該金属箔を樹脂基材に貼り合わせたときの樹脂基材の物理的な剥離が可能となり、金属箔を樹脂基材から除去する工程において、樹脂基材の表面に転写した金属箔表面のプロファイルを損なうこと無く、良好なコストで金属箔を除去することが可能となる。また、樹脂基材に転写された所定の表面形状によって、樹脂基材の樹脂成分と、ビルドアップ層の樹脂成分とが異なっていても、両者を良好な密着性で貼り合わせることが可能となる。 Furthermore, in another aspect of the method for producing a printed wiring board of the present invention, a step of bonding a resin base material from the release layer side to the surface-treated metal foil of the present invention, and from the resin base material, By peeling off the surface-treated metal foil without etching, a step of obtaining a resin base material in which the surface profile of the metal foil is transferred to the release surface, and the side of the release surface of the resin base material in which the surface profile is transferred Providing a build-up layer. With such a configuration, a release layer is provided on the metal foil, and the resin substrate can be physically peeled when the metal foil is bonded to the resin substrate, and the metal foil is removed from the resin substrate. In the process, the metal foil can be removed at a good cost without impairing the profile of the surface of the metal foil transferred to the surface of the resin base material. Further, even if the resin component of the resin base material and the resin component of the buildup layer are different depending on the predetermined surface shape transferred to the resin base material, it is possible to bond them with good adhesion. .
 ここで、樹脂基材の表面に設けるビルドアップ層を構成する樹脂は、当該樹脂及び樹脂基材をそれぞれ何ら処理せずに互いに貼り合わせて(前記ビルドアップ層を構成する樹脂及び前記樹脂基材の未処理表面同士を貼り合わせて)、引っ張って剥離させたときの強度(プル強度)が500g/cm2以下であってもよい。 Here, the resin constituting the build-up layer provided on the surface of the resin base material is bonded to each other without any treatment of the resin and the resin base material (the resin constituting the build-up layer and the resin base material). The strength (pull strength) when pulled and peeled off may be 500 g / cm 2 or less.
 ここで、「ビルドアップ層」とは、導電層、配線パターンまたは回路と、樹脂とを有する層のことをいう。当該樹脂の形状は層状であってもよい。また、前述の導電層、配線パターンまたは回路と樹脂とはどのように設けても良い。
 ビルドアップ層は、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材の剥離面側に導電層、配線パターンまたは回路と樹脂とを設けることで作製することができる。導電層、配線パターンまたは回路の形成方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法、パートリーアディティブ法等公知の方法を用いることができる。
 ビルドアップ層は、複数の層を有してもよく、複数の導電層、配線パターンまたは回路と樹脂(層)有してもよい。
 複数の導電層、配線パターンまたは回路は樹脂により電気的に絶縁されていてもよい。電気的に絶縁されている複数の導電層、配線パターンまたは回路を、樹脂にレーザーおよび/またはドリルによりスルーホール及び/またはブラインドビアを形成した後、当該スルーホール及び/またはブラインドビアに銅めっき等の導通めっきを形成することで、電気的に接続してもよい。
 なお、樹脂基材の両面に、表面に離型層が設けられた表面処理金属箔を、前記離型層側から貼り合わせ、その後、表面処理金属箔を除去して、樹脂基材の両面に表面処理金属箔の表面プロファイルを転写し、当該樹脂基材の両面に回路、配線パターンまたはビルドアップ層を設けることで、プリント配線板を製造しても良い。
Here, the “build-up layer” refers to a layer having a conductive layer, a wiring pattern or a circuit, and a resin. The resin may be layered. Further, the conductive layer, the wiring pattern, or the circuit and the resin may be provided in any manner.
The build-up layer can be produced by providing a conductive layer, a wiring pattern or a circuit and a resin on the release surface side of the resin base material on which the surface profile of the metal foil is transferred to the release surface. As a method for forming the conductive layer, the wiring pattern, or the circuit, a known method such as a semi-additive method, a full additive method, a subtractive method, or a partial additive method can be used.
The build-up layer may have a plurality of layers, or may have a plurality of conductive layers, wiring patterns or circuits and a resin (layer).
The plurality of conductive layers, wiring patterns, or circuits may be electrically insulated with resin. After through holes and / or blind vias are formed in a resin by laser and / or drilling on a plurality of electrically conductive layers, wiring patterns or circuits, copper plating or the like is applied to the through holes and / or blind vias. Electrical connection may be made by forming a conductive plating.
In addition, the surface-treated metal foil having a release layer provided on the surface is bonded to both surfaces of the resin base material from the release layer side, and then the surface-treated metal foil is removed to form both surfaces of the resin base material. A printed wiring board may be manufactured by transferring the surface profile of the surface-treated metal foil and providing a circuit, a wiring pattern, or a build-up layer on both surfaces of the resin substrate.
 このようなビルドアップ層を構成する樹脂は、本明細書に記載の樹脂、樹脂層、樹脂基材を用いることができ、公知の樹脂、樹脂層、樹脂基材、絶縁体、プリプレグ、ガラス布に樹脂を含浸させた基材等を用いることができる。樹脂は無機物および/又は有機物を含んでもよい。また、ビルドアップ層を構成する樹脂は、LCP(液晶ポリマー)またはポリテトラフルオロエチレン等の低比誘電率を有する材料で形成されていてもよい。近年、高周波製品の拡大に伴い、LCP(液晶ポリマー)またはポリテトラフルオロエチレン(テフロン:登録商標)といった低比誘電率を有する材料をプリント基板の構造へ取り込む動きが活発化している。その際、これらの材料が熱可塑性であることからホットプレス加工時に形状変化が避けられず、LCP(液晶ポリマー)またはポリテトラフルオロエチレン単体での基板構成では生産歩留まりが向上しないという基本的な量産上の課題を抱えている。上述の本発明の製造方法では、このような問題に対しても、樹脂基板としてエポキシ樹脂のような熱硬化性樹脂を用い、これと貼り合せることで、高周波特性に優れていて、且つ、熱を加えた際の形状変形を防ぐことができるプリント配線板を提供することができる。 As the resin constituting such a build-up layer, the resins, resin layers, and resin base materials described in the present specification can be used. Known resins, resin layers, resin base materials, insulators, prepregs, glass cloths A base material or the like impregnated with a resin can be used. The resin may contain an inorganic substance and / or an organic substance. The resin constituting the build-up layer may be formed of a material having a low relative dielectric constant such as LCP (liquid crystal polymer) or polytetrafluoroethylene. In recent years, with the expansion of high-frequency products, a movement to incorporate a material having a low dielectric constant such as LCP (liquid crystal polymer) or polytetrafluoroethylene (Teflon: registered trademark) into the structure of a printed circuit board has been activated. At that time, since these materials are thermoplastic, shape change is unavoidable during hot press processing, and the basic mass production that the production yield is not improved by the substrate configuration with LCP (liquid crystal polymer) or polytetrafluoroethylene alone. I have the above challenges. In the manufacturing method of the present invention described above, for such a problem, a thermosetting resin such as an epoxy resin is used as a resin substrate, and it is bonded to this to provide excellent high frequency characteristics. Therefore, it is possible to provide a printed wiring board that can prevent deformation of the shape at the time of adding.
 本発明の金属箔を用いてセミアディティブ法によって微細回路を形成することができる。図1に金属箔(例として銅箔)のプロファイルを使用したセミアディティブ法の概略例を示す。当該セミアディティブ法では、金属箔の表面プロファイルを用いている。具体的には、まず、樹脂基材に本発明の表面処理金属箔を離型層側から積層させて積層体を作製する。次に、積層体の金属箔をエッチングで除去する、または、引き剥がす。次に、金属箔表面プロファイルが転写した樹脂基材の表面を希硫酸等で洗浄後、無電解銅メッキを施す。そして、樹脂基材の回路を形成しない部分をドライフィルム等で被覆し、ドライフィルムに被覆されていない無電解銅メッキ層の表面に電気(電解)銅メッキを施す。その後、ドライフィルムを除去した後に、回路を形成しない部分に形成された無電解銅メッキ層を除去することにより微細な回路を形成する。本発明で形成される微細回路は、本発明の金属箔表面プロファイルが転写された樹脂基材の剥離面と密着しているため、その密着力(ピール強度)が良好となっている。
 また、セミアディティブ法の別の一実施形態は以下の通りである。
A fine circuit can be formed by a semi-additive method using the metal foil of the present invention. FIG. 1 shows a schematic example of a semi-additive method using a profile of a metal foil (for example, a copper foil). In the semi-additive method, a surface profile of a metal foil is used. Specifically, first, the surface-treated metal foil of the present invention is laminated on the resin base material from the release layer side to produce a laminate. Next, the metal foil of the laminate is removed by etching or peeled off. Next, after the surface of the resin base material to which the metal foil surface profile has been transferred is washed with dilute sulfuric acid or the like, electroless copper plating is performed. Then, a portion of the resin base material that does not form a circuit is covered with a dry film or the like, and electroless (electrolytic) copper plating is applied to the surface of the electroless copper plating layer that is not covered with the dry film. Then, after removing the dry film, a fine circuit is formed by removing the electroless copper plating layer formed in the portion where the circuit is not formed. Since the fine circuit formed in the present invention is in close contact with the release surface of the resin base material to which the metal foil surface profile of the present invention has been transferred, its adhesion (peel strength) is good.
Another embodiment of the semi-additive method is as follows.
 セミアディティブ法とは、樹脂基材又は金属箔上に薄い無電解メッキを行い、パターンを形成後、電気メッキ及びエッチングを用いて導体パターンを形成する方法を指す。従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係る表面処理金属箔と樹脂基材とを準備する工程、
 前記表面処理金属箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理金属箔と樹脂基材とを積層した後に、前記表面処理金属箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理金属箔を引き剥がして生じた樹脂基材の剥離面にスルーホールまたは/およびブラインドビアを設ける工程、
 前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
 前記樹脂基材および前記スルーホールまたは/およびブラインドビアを含む領域について希硫酸等で樹脂基材表面を洗浄し、無電解メッキ層(例えば無電解銅メッキ層)を設ける工程、
 前記無電解メッキ層の上にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、電解メッキ層(例えば電解銅メッキ層)を設ける工程、
 前記メッキレジストを除去する工程、
 前記回路が形成される領域以外の領域にある無電解メッキ層をフラッシュエッチングなどにより除去する工程、
を含む。
The semi-additive method refers to a method in which a thin electroless plating is performed on a resin substrate or metal foil, a pattern is formed, and then a conductor pattern is formed using electroplating and etching. Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a surface-treated metal foil and a resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated metal foil,
After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off,
Providing a through hole or / and a blind via on the release surface of the resin base material generated by peeling off the surface-treated metal foil;
Performing a desmear process on the region including the through hole or / and the blind via,
Cleaning the resin substrate surface with dilute sulfuric acid for the resin substrate and the region including the through hole or / and the blind via, and providing an electroless plating layer (for example, an electroless copper plating layer);
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係る表面処理金属箔と樹脂基材とを準備する工程、
 前記表面処理金属箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理金属箔と樹脂基材とを積層した後に、前記表面処理金属箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理金属箔を引き剥がして生じた樹脂基材の剥離面について、希硫酸等で樹脂基材表面を洗浄し、無電解メッキ層(例えば無電解銅メッキ層)を設ける工程、
 前記無電解メッキ層の上にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、電解メッキ層(例えば電解銅メッキ層)を設ける工程、
 前記メッキレジストを除去する工程、
 前記回路が形成される領域以外の領域にある無電解メッキ層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing the surface-treated metal foil and the resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated metal foil,
After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off,
A step of washing the surface of the resin base material generated by peeling off the surface-treated metal foil, washing the surface of the resin base material with dilute sulfuric acid, and providing an electroless plating layer (for example, an electroless copper plating layer);
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer (for example, an electrolytic copper plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 このようにして、表面処理金属箔を剥離した後の樹脂基材の剥離面に回路を形成し、プリント回路形成基板、半導体パッケージ用回路形成基板を作製することができる。さらに当該回路形成基板を用いて、プリント配線板、半導体パッケージを作製することができる。さらに当該プリント配線板、半導体パッケージを用いて電子機器を作製することができる。 In this way, a circuit is formed on the release surface of the resin base material after the surface-treated metal foil is peeled off, and a printed circuit formation substrate and a circuit formation substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
 一方で、フルアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係る表面処理金属箔と樹脂基材とを準備する工程、
 前記表面処理金属箔に、離型層側から樹脂基材を積層する工程、
 前記表面処理金属箔と樹脂基材とを積層した後に、前記表面処理金属箔をエッチングで除去、または、引き剥がす工程、
 前記表面処理金属箔を引き剥がして生じた樹脂基材の剥離面について、希硫酸等で樹脂基材表面を洗浄する工程、
 前記洗浄した樹脂基材表面にメッキレジストを設ける工程、
 前記メッキレジストに対して露光し、その後、回路が形成される領域のメッキレジストを除去する工程、
 前記メッキレジストが除去された前記回路が形成される領域に、無電解メッキ層(例えば無電解銅メッキ層、厚付けの無電解メッキ層でもよい)を設ける工程、
 前記メッキレジストを除去する工程、
を含む。
 なお、セミアディティブ法およびフルアディティブ法において、前記樹脂基材表面を洗浄することにより、無電解メッキ層を設けやすくなるという効果がある場合がある。特に、離型層が樹脂基材表面に残存している場合には、当該洗浄により離型層が樹脂基材表面から一部または全部が除去されるため、前記樹脂基材表面の洗浄により、より無電解メッキ層を設けやすくなるという効果がある場合がある。当該洗浄には公知の洗浄方法(使用する液の種類、温度、液の塗布方法等)による洗浄を用いることができる。また、本発明の離型層の一部または全部を除去することができる洗浄方法を用いることが好ましい。
On the other hand, in another embodiment of the method for producing a printed wiring board according to the present invention using the full additive method, a step of preparing the surface-treated metal foil and the resin base material according to the present invention,
Laminating a resin base material from the release layer side on the surface-treated metal foil,
After laminating the surface-treated metal foil and the resin base material, the step of removing the surface-treated metal foil by etching or peeling off,
The step of washing the resin substrate surface with dilute sulfuric acid or the like for the release surface of the resin substrate produced by peeling off the surface-treated metal foil,
Providing a plating resist on the cleaned resin substrate surface;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electroless plating layer (for example, an electroless copper plating layer or a thick electroless plating layer) in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
including.
In the semi-additive method and the full additive method, there may be an effect that the electroless plating layer can be easily provided by cleaning the surface of the resin base material. In particular, when the release layer remains on the surface of the resin base material, a part or all of the release layer is removed from the surface of the resin base material by the cleaning. There may be an effect that it becomes easier to provide an electroless plating layer. For the cleaning, cleaning by a known cleaning method (type of liquid to be used, temperature, liquid application method, etc.) can be used. Further, it is preferable to use a cleaning method capable of removing a part or all of the release layer of the present invention.
 このようにして、フルアディティブ工法により、表面処理金属箔を剥離した後の樹脂基材の剥離面に回路を形成し、プリント回路形成基板、半導体パッケージ用回路形成基板を作製することができる。さらに当該回路形成基板を用いて、プリント配線板、半導体パッケージを作製することができる。さらに当該プリント配線板、半導体パッケージを用いて電子機器を作製することができる。 Thus, by a full additive method, a circuit is formed on the release surface of the resin base material after the surface-treated metal foil is peeled off, and a printed circuit forming substrate and a circuit forming substrate for a semiconductor package can be manufactured. Furthermore, a printed wiring board and a semiconductor package can be manufactured using the circuit formation substrate. Furthermore, an electronic device can be manufactured using the printed wiring board and the semiconductor package.
 なお、表面処理金属箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Siが検出されれば、表面処理金属箔の表面にシラン化合物が存在すると推察することができる。また、表面処理金属箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、本発明の離型層に用いることができる上記シラン化合物が使用されていると推定できる。 The surface of the surface-treated metal foil was measured with a scanning electron microscope or the like equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), and Si was If detected, it can be inferred that a silane compound is present on the surface of the surface-treated metal foil. Further, when the peel strength (peel strength) between the surface-treated metal foil and the resin substrate is 200 gf / cm or less, it can be estimated that the silane compound that can be used for the release layer of the present invention is used. .
 また、表面処理金属箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Sが検出されると共に、表面処理金属箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、表面処理金属箔の表面に、本願に係る発明の離型層に用いることができる上記分子内に2つ以下のメルカプト基を有する化合物が存在すると推察することができる。 Further, the surface of the surface-treated metal foil is measured with an apparatus such as a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), and S is When it is detected and the peel strength (peel strength) between the surface-treated metal foil and the resin substrate is 200 gf / cm or less, it is used on the surface of the surface-treated metal foil for the release layer of the present invention. It can be inferred that there are compounds having two or less mercapto groups in the molecule.
 また、表面処理金属箔の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Al、Ti、Zrが検出されると共に、表面処理金属箔と樹脂基板とのピール強度(剥離強度)が200gf/cm以下で有る場合には、表面処理金属箔の表面に、本願に係る発明の離型層に用いることができる上記金属アルコキシドが存在すると推察することができる。 Further, the surface of the surface-treated metal foil is measured with a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), Al, When Ti and Zr are detected and the peel strength (peeling strength) between the surface-treated metal foil and the resin substrate is 200 gf / cm or less, the release of the invention according to the present application is applied to the surface of the surface-treated metal foil. It can be inferred that there is a metal alkoxide that can be used in the layer.
 以下に本発明の実施例および比較例として実験例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Experimental examples are shown below as examples and comparative examples of the present invention, but these examples are provided for better understanding of the present invention and its advantages, and are intended to limit the invention. is not.
 ・生箔(表面処理前の金属箔(銅箔))の製造
 以下の電解条件にて、表1に記載の厚みの電解生箔を作製した。
 (電解液組成)
  Cu 120g/L
  H2SO4 100g/L
  塩化物イオン(Cl-) 70ppm
  魚にかわ 6ppm
  電解液温度 60℃
  電流密度 70A/dm2
  電解液線速 2m/sec
-Production of raw foil (metal foil (copper foil) before surface treatment) An electrolytic raw foil having the thickness shown in Table 1 was produced under the following electrolysis conditions.
(Electrolytic solution composition)
Cu 120g / L
H 2 SO 4 100 g / L
Chloride ion (Cl -) 70 ppm
Fish glue 6ppm
Electrolyte temperature 60 ℃
Current density 70A / dm 2
Electrolyte linear velocity 2m / sec
 ・表面処理
 次に、表面処理として、生箔のM面(マット面)に、以下に示す各条件にて、粗化処理、バリヤー処理(耐熱処理)、防錆処理、シランカップリング処理、樹脂層形成処理のいずれかを、或いは、各処理を組み合わせて行った。続いて、以下に示す条件にて銅箔の当該処理側表面に離型層を形成した。なお、特に言及が無い場合は、各処理はこの記載順にて行った。また、表1において、各処理の欄に「無し」と記載されているものは、これらの処理を実施しなかったことを示す。
・ Surface treatment Next, as a surface treatment, roughening treatment, barrier treatment (heat-resistant treatment), rust prevention treatment, silane coupling treatment, resin on the M surface (matte surface) of the raw foil under the following conditions Any one of the layer forming processes or a combination of the processes was performed. Subsequently, a release layer was formed on the treated side surface of the copper foil under the following conditions. In addition, when there was no mention in particular, each process was performed in this description order. In Table 1, “None” in each processing column indicates that these processing were not performed.
 (1)粗化処理
  〔球状粗化〕
 Cu、H2SO4、Asから成る、以下に記す銅粗化めっき浴を用いて球状粗化粒子を形成した。
・液組成1
   CuSO4・5H2O 78~118g/L
   Cu 20~30g/L
   H2SO4 12g/L
   砒素 1.0~3.0g/L
(電気メッキ温度1) 25~33℃
(電流条件1) 電流密度 78A/dm2 (浴の限界電流密度以上)
(メッキ時間1)1~45秒
 続いて、粗化粒子の脱落防止とピール強度向上のため、硫酸・硫酸銅からなる銅電解浴で被せメッキを行った。被せメッキ条件を以下に記す。
・液組成2
   CuSO4・5H2O 156g/L
   Cu 40g/L
   H2SO4 120g/L
(電気メッキ温度2) 40℃
(電流条件2) 電流密度:20A/dm2 (浴の限界電流密度未満)
(メッキ時間2)1~60秒
(1) Roughening [Spherical roughening]
Spherical roughened particles were formed using a copper roughening plating bath described below consisting of Cu, H 2 SO 4 and As.
・ Liquid composition 1
CuSO 4 · 5H 2 O 78 ~ 118g / L
Cu 20-30g / L
H 2 SO 4 12g / L
Arsenic 1.0-3.0g / L
(Electroplating temperature 1) 25-33 ° C
(Current condition 1) Current density 78 A / dm 2 (above the limiting current density of the bath)
(Plating time 1) 1 to 45 seconds Subsequently, plating was performed in a copper electrolytic bath made of sulfuric acid and copper sulfate in order to prevent falling off of the roughened particles and to improve the peel strength. The covering plating conditions are described below.
・ Liquid composition 2
CuSO 4 · 5H 2 O 156g / L
Cu 40g / L
H 2 SO 4 120 g / L
(Electroplating temperature 2) 40 ° C
(Current condition 2) Current density: 20 A / dm 2 (less than the limit current density of the bath)
(Plating time 2) 1-60 seconds
 (2)バリヤー処理(耐熱処理)
(液組成)
   Ni 13g/L
   Zn 5g/L
   pH 2
(電気メッキ条件)
   温度 40℃
   電流密度 8A/dm2
(2) Barrier treatment (heat-resistant treatment)
(Liquid composition)
Ni 13g / L
Zn 5g / L
pH 2
(Electroplating conditions)
Temperature 40 ℃
Current density 8A / dm 2
 (3)防錆処理
(液組成)
   CrO3 2.5g/L
   Zn 0.7g/L
   Na2SO4 10g/L
   pH 4.8
(亜鉛クロメート条件)
   温度 54℃
   電流密度 0.7As/dm2
(3) Rust prevention treatment (liquid composition)
CrO 3 2.5g / L
Zn 0.7g / L
Na 2 SO 4 10 g / L
pH 4.8
(Zinc chromate condition)
Temperature 54 ° C
Current density 0.7 As / dm 2
 (4)シランカップリング処理
(液組成)
   テトラエトキシシラン含有量 0.4%
   pH 7.5
   塗布方法 溶液の噴霧
(4) Silane coupling treatment (liquid composition)
Tetraethoxysilane content 0.4%
pH 7.5
Application method Spraying solution
 (5)離型層の形成
  〔離型層A〕
 金属箔(銅箔)の処理表面に、シラン化合物(n-プロピルトリメトキシシラン)を体積比で8vol%含有する水-メタノール混合溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Aを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、溶液中のメタノール濃度は体積比で40vol%、水溶液のpHは3.8~4.2とした。
(5) Formation of release layer [Release layer A]
A water-methanol mixed solution containing a silane compound (n-propyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer A. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層B〕
 金属箔(銅箔)の処理表面に、シラン化合物(n-ヘキシルトリメトキシシラン)を体積比で8vol%含有する水-メタノール混合溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Bを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、溶液中のメタノール濃度は体積比で40vol%、水溶液のpHは3.8~4.2とした。
[Release layer B]
A water-methanol mixed solution containing a silane compound (n-hexyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer B. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層C〕
 金属箔(銅箔)の処理表面に、シラン化合物(n-デシルトリメトキシシラン)を体積比で8vol%含有する水-メタノール混合溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Cを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、溶液中のメタノール濃度は体積比で40vol%、水溶液のpHは3.8~4.2とした。
[Release layer C]
A water-methanol mixed solution containing a silane compound (n-decyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer C. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層D〕
 金属箔(銅箔)の処理表面に、シラン化合物(ジメチルジメトキシシラン)を体積比で8vol%含有する水-メタノール混合溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Bを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、溶液中のメタノール濃度は体積比で40vol%、水溶液のpHは3.8~4.2とした。
[Release layer D]
A water-methanol mixed solution containing a silane compound (dimethyldimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then 1 in 100 ° C. air. After the copper foil surface was dried for 1 minute, a heat treatment was performed in air at 150 ° C. for 1 minute to form a release layer B. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層E〕
  金属箔(銅箔)の処理表面に、シラン化合物(トリフルオロプロピルトリメトキシシラン)を体積比で8vol%含有する水-メタノール混合溶液を、スプレーコーターを用いて塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Bを形成した。シラン化合物を水中に溶解させてから塗布する前までの撹拌時間は30時間、溶液中のメタノール濃度は体積比で40vol%、水溶液のpHは3.8~4.2とした。
[Release layer E]
A water-methanol mixed solution containing a silane compound (trifluoropropyltrimethoxysilane) in a volume ratio of 8 vol% is applied to the treated surface of the metal foil (copper foil) using a spray coater, and then air at 100 ° C. Then, the surface of the copper foil was dried for 1 minute, followed by heat treatment in air at 150 ° C. for 1 minute to form a release layer B. The stirring time from dissolving the silane compound in water to before coating was 30 hours, the methanol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 3.8 to 4.2.
  〔離型層F〕
 分子内に2つ以下のメルカプト基を有する化合物として1-ドデカンチオールスルホン酸ナトリウムを用い、1-ドデカンチオールスルホン酸ナトリウムの水-メタノール混合溶液(1-ドデカンチオールスルホン酸ナトリウム濃度:8vol%)を、スプレーコーターを用いて金属箔(銅箔)の処理面に塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Fを形成した。溶液中のメタノール濃度は体積比で40vol%、溶液のpHは5~9とした。
[Release layer F]
Sodium 1-dodecanethiolsulfonate is used as a compound having two or less mercapto groups in the molecule, and a water-methanol mixed solution of sodium 1-dodecanethiolsulfonate (sodium 1-dodecanethiolsulfonate: 8 vol%) is used. After applying to the treated surface of the metal foil (copper foil) using a spray coater, the copper foil surface was dried in air at 100 ° C. for 1 minute and then heat-treated in air at 150 ° C. for 1 minute. A release layer F was formed. The methanol concentration in the solution was 40 vol% by volume, and the pH of the solution was 5-9.
 〔離型層G〕
 金属アルコキシドとしてアルミネート化合物であるトリイソプロポキシアルミニウムを用い、トリイソプロポキシアルミニウムの水-メタノール混合溶液(トリイソプロポキシアルミニウム濃度:8vol%)を、スプレーコーターを用いて金属箔(銅箔)の処理面に塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Gを形成した。アルミネート化合物を水中に溶解させてから塗布する前までの撹拌時間は2時間、溶液中のアルコール濃度は体積比で40vol%、溶液のpHは5~9とした。
[Release layer G]
Triisopropoxyaluminum, which is an aluminate compound, is used as the metal alkoxide, and a water-methanol mixed solution of triisopropoxyaluminum (triisopropoxyaluminum concentration: 8 vol%) is treated with a spray coater on the metal foil (copper foil). After coating on the surface, the surface of the copper foil was dried in air at 100 ° C. for 1 minute, and then heat-treated in air at 150 ° C. for 1 minute to form a release layer G. The stirring time from when the aluminate compound was dissolved in water to before coating was 2 hours, the alcohol concentration in the solution was 40 vol% by volume, and the pH of the solution was 5-9.
  〔離型層H〕
 金属アルコキシドとしてチタネート化合物であるn-デシル-トリイソプロポキシチタンを用い、n-デシル-トリイソプロポキシチタンの水-メタノール混合溶液(n-デシル-トリイソプロポキシチタン濃度:8vol%)を、スプレーコーターを用いて金属箔(銅箔)の処理面に塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Hを形成した。チタネート化合物を水中に溶解させてから塗布する前までの撹拌時間は24時間、溶液中のアルコール濃度は体積比で40vol%、水溶液のpHは5~9とした。
[Release layer H]
Using a titanate compound n-decyl-triisopropoxytitanium as a metal alkoxide, a water-methanol mixed solution of n-decyl-triisopropoxytitanium (n-decyl-triisopropoxytitanium concentration: 8 vol%) is spray coated. Is applied to the treated surface of the metal foil (copper foil) using, and then the copper foil surface is dried in air at 100 ° C. for 1 minute, and then heat-treated in air at 150 ° C. for 1 minute to release the release layer. H was formed. The stirring time from dissolving the titanate compound in water to before coating was 24 hours, the alcohol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 5-9.
 〔離型層I〕
 金属アルコキシドとしてジルコネート化合物であるn-プロピル-トリn-ブトキシジルコニウムを用い、n-プロピル-トリn-ブトキシジルコニウムの水-メタノール混合溶液(n-プロピル-トリn-ブトキシジルコニウム濃度:8vol%)を、スプレーコーターを用いて金属箔(銅箔)の処理面に塗布してから、100℃の空気中で1分間銅箔表面を乾燥させた後に150℃の空気中で1分間加熱処理を行って離型層Iを形成した。チタネート化合物を水中に溶解させてから塗布する前までの撹拌時間は12時間、溶液中のアルコール濃度は体積比で40vol%、水溶液のpHは5~9とした。
[Release layer I]
Using a zirconate compound n-propyl-tri-n-butoxyzirconium as a metal alkoxide, a water-methanol mixed solution of n-propyl-tri-n-butoxyzirconium (n-propyl-tri-n-butoxyzirconium concentration: 8 vol%) After applying to the treated surface of the metal foil (copper foil) using a spray coater, the copper foil surface was dried in air at 100 ° C. for 1 minute and then heat-treated in air at 150 ° C. for 1 minute. A release layer I was formed. The stirring time from dissolving the titanate compound in water to before coating was 12 hours, the alcohol concentration in the solution was 40 vol% by volume, and the pH of the aqueous solution was 5-9.
 (6)樹脂層形成処理
 実施例1については、離型層形成の後、更に下記の条件で樹脂層の形成を行った。
(樹脂合成例)
 ステンレス製の碇型攪拌棒、窒素導入管とストップコックのついたトラップ上に、玉付冷却管を取り付けた還流冷却器を取り付けた2リットルの三つ口フラスコに、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物117.68g(400mmol)、1,3-ビス(3-アミノフェノキシ)ベンゼン87.7g(300mmol)、γ-バレロラクトン4.0g(40mmol)、ピリジン4.8g(60mmol)、N-メチル-2-ピロリドン(以下NMPと記す)300g、トルエン20gを加え、180℃で1時間加熱した後室温付近まで冷却した後、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物29.42g(100mmol)、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン82.12g(200mmol)、NMP200g、トルエン40gを加え、室温で1時間混合後、180℃で3時間加熱して、固形分38%のブロック共重合ポリイミドを得た。このブロック共重合ポリイミドは、下記に示す一般式(1):一般式(2)=3:2であり、数平均分子量:70000、重量平均分子量:150000であった。
(6) Resin layer formation treatment In Example 1, after the release layer was formed, a resin layer was further formed under the following conditions.
(Resin synthesis example)
To a 2-liter three-necked flask equipped with a stainless steel vertical stirring bar, a trap with a nitrogen inlet tube and a stopcock, and a reflux condenser with a ball condenser, 117.68 g (400 mmol) of 4′-biphenyltetracarboxylic dianhydride, 87.7 g (300 mmol) of 1,3-bis (3-aminophenoxy) benzene, 4.0 g (40 mmol) of γ-valerolactone, 4. 8 g (60 mmol), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g, and toluene 20 g were added, heated at 180 ° C. for 1 hour, cooled to near room temperature, and then 3, 4, 3 ′, 4′- 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 82.12 g of 2,2-bis {4- (4-aminophenoxy) phenyl} propane (200 mmol), 200 g of NMP, and 40 g of toluene were added, mixed at room temperature for 1 hour, and then heated at 180 ° C. for 3 hours to obtain a block copolymerized polyimide having a solid content of 38%. The block copolymerized polyimide had the following general formula (1): general formula (2) = 3: 2, number average molecular weight: 70000, and weight average molecular weight: 150,000.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 合成例で得られたブロック共重合ポリイミド溶液をNMPで更に希釈し、固形分10%のブロック共重合ポリイミド溶液とした。このブロック共重合ポリイミド溶液にビス(4-マレイミドフェニル)メタン(BMI-H、ケイ・アイ化成)を固形分重量比率35、ブロック共重合ポリイミドの固形分重量比率65として(即ち、樹脂溶液に含まれるビス(4-マレイミドフェニル)メタン固形分重量:樹脂溶液に含まれるブロック共重合ポリイミド固形分重量=35:65)60℃、20分間溶解混合して樹脂溶液とした。その後、離型層形成面に前記樹脂溶液を塗工し、窒素雰囲気下で、120℃で3分間、160℃で3分間乾燥処理後、最後に300℃で2分間加熱処理を行い、樹脂層を備える銅箔を作製した。なお、樹脂層の厚みは2μmとした。 The block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%. In this block copolymerized polyimide solution, bis (4-maleimidophenyl) methane (BMI-H, Kay-Isei) is contained in a solid content weight ratio of 35 and a solid content weight ratio of block copolymer polyimide of 65 (that is, included in the resin solution). Bis (4-maleimidophenyl) methane solid content weight: block copolymerized polyimide solid content weight contained in resin solution = 35: 65) A resin solution was prepared by dissolving and mixing at 60 ° C. for 20 minutes. Thereafter, the resin solution is coated on the release layer forming surface, dried in a nitrogen atmosphere at 120 ° C. for 3 minutes, and at 160 ° C. for 3 minutes, and finally heat-treated at 300 ° C. for 2 minutes to obtain a resin layer. The copper foil provided with was produced. The thickness of the resin layer was 2 μm.
 (7)各種評価
 ・水接触角の評価
 金属箔表面の水接触角は、協和界面科学株式会社製 FACE CA-Dによって測定した。測定に使用した水はpH6~8、温度25℃のイオン交換水である。接触各位の測定は金属箔表面に液滴を垂らした後、1分間以内に行った。
(7) Various evaluations-Evaluation of water contact angle The water contact angle of the metal foil surface was measured by FACE CA-D manufactured by Kyowa Interface Science Co., Ltd. The water used for the measurement is ion-exchanged water having a pH of 6 to 8 and a temperature of 25 ° C. The measurement of each contact was performed within 1 minute after the droplet was dropped on the surface of the metal foil.
 ・クルトシス(Rku)の測定
 金属箔表面のクルトシス(Rku)は、オリンパス株式会社製のレーザー顕微鏡OLS4100を用いてJIS B 0601 2001準拠モードによって測定した。測定長さは258μmとした。また、測定時の温度は23~25℃とした。
-Measurement of Kurtosis (Rku) Kurtosis (Rku) on the surface of the metal foil was measured in a JIS B 0601 2001 compliant mode using a laser microscope OLS4100 manufactured by Olympus Corporation. The measurement length was 258 μm. The temperature during measurement was 23 to 25 ° C.
 ・積層体の製造
 各表面処理金属箔の離型層側表面に以下の樹脂基材1~3のいずれかを貼り合わせた。
 基材1:三菱ガス化学(株)製 GHPL-830 MBT
 基材2:日立化成工業(株)製 679-FG
 基材3:住友ベークライト(株)製 EI-6785TS-F
 積層プレスの温度、圧力、時間は、各基材メーカーの推奨条件を用いた。
-Production of Laminate Any of the following resin substrates 1 to 3 was bonded to the surface of the release layer side of each surface-treated metal foil.
Base material 1: GHPL-830 MBT manufactured by Mitsubishi Gas Chemical Co., Ltd.
Base material 2: 679-FG manufactured by Hitachi Chemical Co., Ltd.
Base material 3: EI-6785TS-F manufactured by Sumitomo Bakelite Co., Ltd.
The recommended conditions of each substrate manufacturer were used for the temperature, pressure, and time of the lamination press.
 ・表面処理金属箔の剥離性の評価
 積層体に対し、IPC-TM-650に準拠し、引張り試験機オートグラフ100で銅箔から樹脂基材を剥離する際の常態ピール強度を測定し、以下の基準で表面処理金属箔の剥離性を評価した。
 A:2gf/cm未満であった。
 B:2~200gf/cmの範囲であった。
 C:200gf/cm超であった。
・ Evaluation of peelability of surface-treated metal foil Measure the normal peel strength when peeling the resin base material from the copper foil with the tensile tester Autograph 100 according to IPC-TM-650 for the laminate. The peelability of the surface-treated metal foil was evaluated based on the above criteria.
A: It was less than 2 gf / cm.
B: The range was 2 to 200 gf / cm.
C: It was over 200 gf / cm.
 ・樹脂の破壊モードの評価
 上記剥離後の樹脂基材の剥離面を電子顕微鏡で観察し、樹脂の破壊モード(凝集、界面、凝集と界面との混在)について観察した。樹脂の破壊モードについて、「界面」は、樹銅箔と樹脂との界面で剥離したことを示し、「凝集」は、剥離強度が強すぎて樹脂が破壊していることを示し、「混在」は、上記「界面」と「凝集」とが混在していることを示す。
-Evaluation of resin fracture mode The peeled surface of the resin base material after the peeling was observed with an electron microscope, and the resin fracture mode (aggregation, interface, coexistence of aggregation and interface) was observed. Regarding the resin failure mode, “interface” indicates that the resin was peeled at the interface between the copper foil and the resin, and “aggregation” indicates that the peel strength was too strong and the resin was broken. Indicates that the “interface” and “aggregation” are mixed.
 ・回路剥離、基板フクレの評価
 上記剥離後の樹脂基材1~3の剥離面に、メッキ液[液組成、Cu:50g/L、H2SO4:50g/L、Cl:60ppm)を用いて銅メッキパターン(ライン/スペース=50μm/50μm)を形成した(例1)。また、上記剥離後の樹脂基材の剥離面に、導電ペーストを含有するインクを用いてインクジェットにより印刷パターン(ライン/スペース=50μm/50μm)を形成した(例2)。また、上記剥離後の樹脂基材の剥離面に、液晶ポリマーで構成された樹脂層(ビルドアップ層を構成する樹脂を想定した)をラミネートした(例3)。
 次に、それぞれ信頼性試験(250℃±10℃×1時間の加熱試験)によって、回路剥離または基板フクレが発生するか否かを確認した。なお、評価サンプルの大きさは250mm×250mmとし、サンプル番号ごとに3サンプルについて測定した。
 回路剥離および基板フクレが発生しなかったものを「◎」と評価した。回路剥離または基板フクレがわずかに発生したが(1サンプル中3か所以下)、使用する箇所を選別すれば製品として使用することができるものを「〇」と評価した。また、回路剥離または基板フクレが多数発生(1サンプル中3か所超)し、製品として使用することができないものを「×」と評価した。
 各試験条件及び評価結果を表1に示す。
・ Evaluation of circuit peeling and substrate swelling Using plating solution [liquid composition, Cu: 50 g / L, H 2 SO 4 : 50 g / L, Cl: 60 ppm] on the peeling surface of the resin base materials 1 to 3 after the above peeling. A copper plating pattern (line / space = 50 μm / 50 μm) was formed (Example 1). Further, a printing pattern (line / space = 50 μm / 50 μm) was formed on the release surface of the resin base material after peeling by ink jet using ink containing a conductive paste (Example 2). In addition, a resin layer composed of a liquid crystal polymer (assuming a resin constituting the build-up layer) was laminated on the release surface of the resin substrate after peeling (Example 3).
Next, whether or not circuit peeling or substrate swelling occurred was confirmed by a reliability test (heating test at 250 ° C. ± 10 ° C. × 1 hour). The size of the evaluation sample was 250 mm × 250 mm, and three samples were measured for each sample number.
The case where circuit peeling and substrate swelling did not occur was evaluated as “◎”. Slight circuit peeling or substrate swelling occurred (3 or less in one sample), but those that could be used as a product when the locations to be used were selected were evaluated as “◯”. In addition, a large number of circuit peeling or substrate swelling occurred (more than 3 in one sample), and those that could not be used as a product were evaluated as “x”.
Table 1 shows the test conditions and evaluation results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~13は、いずれも表面処理層側表面の水接触角が90度以上であり、金属箔を樹脂基材から物理的に剥離する際の剥離性が良好であり、回路剥離、基板フクレの発生を良好に抑制することができた。
 比較例1は、表面処理層側表面の水接触角が90度未満であり、金属箔を樹脂基材から物理的に剥離する際の剥離性が不良であり、回路剥離、基板フクレの発生を良好に抑制することができなかった。
In each of Examples 1 to 13, the water contact angle on the surface of the surface treatment layer is 90 degrees or more, and the peelability when physically peeling the metal foil from the resin base material is good. The occurrence of swelling was successfully suppressed.
In Comparative Example 1, the water contact angle on the surface of the surface treatment layer side is less than 90 degrees, the peelability when physically peeling the metal foil from the resin base material is poor, and circuit peeling and generation of substrate swelling are caused. It was not possible to suppress well.

Claims (21)

  1.  少なくとも一方の表面に表面処理層を有する表面処理金属箔であって、
     前記表面処理層側表面の水接触角が90度以上である表面処理金属箔。
    A surface-treated metal foil having a surface treatment layer on at least one surface,
    The surface treatment metal foil whose water contact angle of the said surface treatment layer side surface is 90 degree | times or more.
  2.  前記表面処理層側表面のJIS B 0601で定義されるクルトシスRkuが2.0~4.0である請求項1に記載の表面処理金属箔。 The surface-treated metal foil according to claim 1, wherein the kurtosis Rku defined by JIS B 0601 on the surface of the surface treatment layer side is 2.0 to 4.0.
  3.  前記表面処理層が離型層を備え、前記離型層は前記離型層側から前記金属箔へ樹脂基材を貼り合わせたときの前記樹脂基材を剥離可能にする請求項1又は2に記載の表面処理金属箔。 The surface treatment layer includes a release layer, and the release layer enables the resin base material to be peeled when the resin base material is bonded to the metal foil from the release layer side. The surface-treated metal foil described.
  4.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうちいずれか一つ、nは0または1または2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項3に記載の表面処理金属箔。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, (At least one of R 1 is an alkoxy group, where m + n is a valence of M, that is, 3 for Al and 4 for Ti and Zr.)
    The surface-treated metal foil according to claim 3, wherein the aluminate compound, titanate compound, zirconate compound, hydrolysis products thereof, and condensates of the hydrolysis products are used singly or in combination.
  5.  前記離型層が、次式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1はアルコキシ基またはハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、またはアルコキシ基、またはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる請求項3に記載の表面処理金属箔。
    The release layer has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
    The surface-treated metal foil according to claim 3, wherein the silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product are used singly or in combination.
  6.  前記離型層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる請求項3に記載の表面処理金属箔。 The surface-treated metal foil according to claim 3, wherein the release layer comprises a compound having two or less mercapto groups in the molecule.
  7.  前記金属箔と前記離型層との間に、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層を設けた請求項3に記載の表面処理金属箔。 One or more layers selected from the group consisting of a roughening treatment layer, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer are provided between the metal foil and the release layer. 3. The surface-treated metal foil according to 3.
  8.  前記粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された一種以上の層の表面に、樹脂層を設けた請求項7に記載の表面処理金属箔。 The surface treatment according to claim 7, wherein a resin layer is provided on the surface of one or more layers selected from the group consisting of the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer. Metal foil.
  9.  前記離型層側表面に、樹脂層を設けた請求項3~8のいずれか一項に記載の表面処理金属箔。 The surface-treated metal foil according to any one of claims 3 to 8, wherein a resin layer is provided on the surface of the release layer side.
  10.  前記樹脂層が、接着用樹脂、プライマー又は半硬化状態の樹脂である請求項8又は9に記載の表面処理金属箔。 The surface-treated metal foil according to claim 8 or 9, wherein the resin layer is an adhesive resin, a primer, or a semi-cured resin.
  11.  厚みが5~210μmである請求項1~10のいずれか一項に記載の表面処理金属箔。 The surface-treated metal foil according to any one of claims 1 to 10, wherein the thickness is 5 to 210 µm.
  12.  前記金属箔が銅箔である請求項1~11のいずれか一項に記載の表面処理金属箔。 The surface-treated metal foil according to any one of claims 1 to 11, wherein the metal foil is a copper foil.
  13.  請求項1~12のいずれか一項に記載の表面処理金属箔と、前記表面処理金属箔の離型層側に設けられた樹脂基材とを備えた積層体。 A laminate comprising the surface-treated metal foil according to any one of claims 1 to 12 and a resin base material provided on a release layer side of the surface-treated metal foil.
  14.  前記樹脂基材が、プリプレグである、又は、熱硬化性樹脂を含む請求項13に記載の積層体。 The laminate according to claim 13, wherein the resin base material is a prepreg or contains a thermosetting resin.
  15.  請求項1~12のいずれか一項に記載の表面処理金属箔を備えたプリント配線板。 A printed wiring board comprising the surface-treated metal foil according to any one of claims 1 to 12.
  16.  請求項15に記載のプリント配線板を備えた半導体パッケージ。 A semiconductor package comprising the printed wiring board according to claim 15.
  17.  請求項15に記載のプリント配線板又は請求項16に記載の半導体パッケージを備えた電子機器。 An electronic device comprising the printed wiring board according to claim 15 or the semiconductor package according to claim 16.
  18.  請求項1~12のいずれか一項に記載の表面処理金属箔に、前記表面処理層側から樹脂基材を貼り合わせる工程と、
     前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、
     前記表面プロファイルが転写された樹脂基材の前記剥離面側に回路を形成する工程と、
    を備えたプリント配線板の製造方法。
    Bonding the resin base material from the surface-treated layer side to the surface-treated metal foil according to any one of claims 1 to 12,
    From the resin base material, by removing the surface-treated metal foil without etching, obtaining a resin base material in which the surface profile of the metal foil is transferred to the release surface;
    Forming a circuit on the release surface side of the resin substrate to which the surface profile is transferred;
    A method of manufacturing a printed wiring board comprising:
  19.  前記表面プロファイルが転写された樹脂基材の前記剥離面側に形成する回路が、メッキパターン又は印刷パターンである請求項18に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 18, wherein the circuit formed on the release surface side of the resin base material to which the surface profile is transferred is a plating pattern or a printing pattern.
  20.  請求項1~12のいずれか一項に記載の表面処理金属箔に、前記表面処理層側から樹脂基材を貼り合わせる工程と、
     前記樹脂基材から、前記表面処理金属箔をエッチングすることなく引き剥がすことで、剥離面に前記金属箔の表面プロファイルが転写された樹脂基材を得る工程と、
     前記表面プロファイルが転写された樹脂基材の前記剥離面側にビルドアップ層を設ける工程と、
    を備えたプリント配線板の製造方法。
    Bonding the resin base material from the surface-treated layer side to the surface-treated metal foil according to any one of claims 1 to 12,
    From the resin base material, by removing the surface-treated metal foil without etching, obtaining a resin base material in which the surface profile of the metal foil is transferred to the release surface;
    Providing a build-up layer on the release surface side of the resin substrate to which the surface profile has been transferred;
    A method of manufacturing a printed wiring board comprising:
  21.  前記ビルドアップ層を構成する樹脂が、液晶ポリマーまたはポリテトラフルオロエチレンを含む請求項20に記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 20, wherein the resin constituting the build-up layer contains a liquid crystal polymer or polytetrafluoroethylene.
PCT/JP2016/078117 2015-09-25 2016-09-23 Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board WO2017051905A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680049528.5A CN107921749A (en) 2015-09-25 2016-09-23 Surface-treated metal paper tinsel, laminate, printing distributing board, semiconductor packages, the manufacture method of e-machine and printing distributing board
KR1020187009978A KR20180051600A (en) 2015-09-25 2016-09-23 Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic device and manufacturing method of printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187537 2015-09-25
JP2015187537A JP6498091B2 (en) 2015-09-25 2015-09-25 Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic equipment

Publications (1)

Publication Number Publication Date
WO2017051905A1 true WO2017051905A1 (en) 2017-03-30

Family

ID=58386090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078117 WO2017051905A1 (en) 2015-09-25 2016-09-23 Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board

Country Status (5)

Country Link
JP (1) JP6498091B2 (en)
KR (1) KR20180051600A (en)
CN (1) CN107921749A (en)
TW (1) TWI618814B (en)
WO (1) WO2017051905A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
WO2023188206A1 (en) * 2022-03-30 2023-10-05 東洋インキScホールディングス株式会社 Metal sheet bonding agent, method for manufacturing reinforcement member for printed wiring board, and wiring board and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144177A (en) * 1988-11-26 1990-06-01 Nisshin Steel Co Ltd Formation of organic thin film on metallic plate
JPH08246163A (en) * 1995-01-11 1996-09-24 Kao Corp Method for imparting liquid pepellency to metallic surface
JP2008104936A (en) * 2006-10-25 2008-05-08 National Institute Of Advanced Industrial & Technology Water superrepellent aluminum foil and method of manufacturing the same
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor
JP2014060407A (en) * 2012-01-17 2014-04-03 Panasonic Corp Wiring board and manufacturing method of the same
JP2015042779A (en) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114355B2 (en) * 2008-10-08 2013-01-09 株式会社Snt Water- and oil-repellent coated articles and their manufacture
JP4790003B2 (en) * 2008-12-26 2011-10-12 株式会社カーメイト Coating film forming method and coating liquid
KR101687462B1 (en) * 2012-02-24 2016-12-16 제이에프이 스틸 가부시키가이샤 Metal material, and surface treatment method and device
WO2013183606A1 (en) * 2012-06-04 2013-12-12 Jx日鉱日石金属株式会社 Carrier-attached metal foil
JP6243840B2 (en) * 2012-06-04 2017-12-06 Jx金属株式会社 Manufacturing method of multilayer printed wiring board
JP2014014752A (en) * 2012-07-06 2014-01-30 Toyota Motor Corp Method for forming water and oil repellent film and water and oil repellent film formed by the same
CN104661810A (en) * 2012-09-24 2015-05-27 Jx日矿日石金属株式会社 Metallic foil having carrier, layered product comprising resin sheet-shaped carrier and metallic foil, and uses for same
EP2942380B1 (en) * 2013-01-07 2018-01-31 Mitsubishi Electric Corporation Coating composition, method for producing same, and coated article
JP6266965B2 (en) * 2013-12-04 2018-01-24 Jx金属株式会社 Multilayer printed wiring board manufacturing method and base substrate
JP6327840B2 (en) * 2013-12-04 2018-05-23 Jx金属株式会社 Resin composition comprising a thermosetting resin and a release agent
JP6306865B2 (en) * 2013-12-05 2018-04-04 Jx金属株式会社 Laminate with resin substrates in close contact with each other in a peelable manner
CN106102935A (en) * 2014-03-18 2016-11-09 3M创新有限公司 Treated goods and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144177A (en) * 1988-11-26 1990-06-01 Nisshin Steel Co Ltd Formation of organic thin film on metallic plate
JPH08246163A (en) * 1995-01-11 1996-09-24 Kao Corp Method for imparting liquid pepellency to metallic surface
JP2008104936A (en) * 2006-10-25 2008-05-08 National Institute Of Advanced Industrial & Technology Water superrepellent aluminum foil and method of manufacturing the same
JP2012169598A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Printed wiring board and manufacturing method therefor
JP2014060407A (en) * 2012-01-17 2014-04-03 Panasonic Corp Wiring board and manufacturing method of the same
JP2015042779A (en) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
TW201718937A (en) 2017-06-01
TWI618814B (en) 2018-03-21
JP6498091B2 (en) 2019-04-10
CN107921749A (en) 2018-04-17
KR20180051600A (en) 2018-05-16
JP2017061080A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6204430B2 (en) Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
JP5826322B2 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, circuit forming substrate for semiconductor package, semiconductor package, and printed wiring board manufacturing method
WO2017051898A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
TW201811557A (en) Copper foil with release layer, laminated material, method for producing printed wiring board, and method for producing electronic apparatus
TWI660658B (en) Method for manufacturing release foil-attached metal foil, metal foil, laminate, printed wiring board, semiconductor package, electronic device, and printed wiring board
JPWO2014054812A1 (en) Metal foil with carrier
JP6438370B2 (en) Printed wiring board manufacturing method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
WO2017051905A1 (en) Surface-treated metal foil, laminated body, printed wiring board, semiconductor package, electronic device, and method for producing printed wiring board
JP2018121085A (en) Method for manufacturing printed wiring board
WO2017051897A1 (en) Metal foil, metal foil with mold release layer, laminate, printed wiring board, semiconductor package, electronic device and method for producing printed wiring board
JP6588290B2 (en) Metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device, laminate manufacturing method, and printed wiring board manufacturing method
WO2017022807A1 (en) Printed wiring board production method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
JP6031624B2 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board manufacturing method, semiconductor package manufacturing method, and electronic device manufacturing method
JP5897755B2 (en) Surface-treated copper foil, copper clad laminate, printed wiring board, electronic device, semiconductor package, printed wiring board manufacturing method, electronic device manufacturing method, semiconductor package manufacturing method, resin substrate manufacturing method, copper foil surface Method of transferring profile to resin substrate
TW201838817A (en) Copper foil with mold release layer, laminated body, manufacturing method of printed circuit board, and manufacturing method of electronic machine can suppress the erosion of the embedded circuit when the embedded circuit is exposed by etching
JP2018171902A (en) Copper foil with release layer, laminate, method for producing printed wiring board and method for producing electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009978

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16848693

Country of ref document: EP

Kind code of ref document: A1