WO2017022543A1 - Conductive substrate and conductive substrate manufacturing method - Google Patents

Conductive substrate and conductive substrate manufacturing method Download PDF

Info

Publication number
WO2017022543A1
WO2017022543A1 PCT/JP2016/071703 JP2016071703W WO2017022543A1 WO 2017022543 A1 WO2017022543 A1 WO 2017022543A1 JP 2016071703 W JP2016071703 W JP 2016071703W WO 2017022543 A1 WO2017022543 A1 WO 2017022543A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
conductive substrate
nitrogen
metal layer
Prior art date
Application number
PCT/JP2016/071703
Other languages
French (fr)
Japanese (ja)
Inventor
貴広 須田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2017532504A priority Critical patent/JP6428942B2/en
Priority to CN201680043312.8A priority patent/CN107850965B/en
Priority to KR1020187001675A priority patent/KR102587363B1/en
Publication of WO2017022543A1 publication Critical patent/WO2017022543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a conductive substrate and a method for manufacturing a conductive substrate.
  • the capacitive touch panel converts information on the position of an adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object adjacent to the panel surface. Since the conductive substrate used for the capacitive touch panel is installed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have low reflectance and be difficult to be visually recognized.
  • a material for the conductive layer used for the capacitive touch panel a material having low reflectivity and not easily visible is used, and wiring is formed on a transparent substrate or a transparent film.
  • Patent Document 1 discloses a capacitance-type digital touch panel including a plurality of transparent sheet electrodes in which a touch panel portion is printed on a PET film with an ITO film and a signal pattern and a GND pattern are printed.
  • Patent Document 2 discloses a film-like touch panel sensor that includes a striped copper wiring on each of the portions that need to be seen through on the front and back surfaces of the film, and has a black copper oxide film on the side where the copper wiring on the front and back sides is visually recognized. It is disclosed.
  • an object of one aspect of the present invention is to provide a conductive substrate with reduced reflectance.
  • An insulating substrate A metal layer formed on at least one surface of the insulating substrate; An organic material layer containing a nitrogen-based organic material formed on the metal layer; A blackening layer formed on the organic layer, The organic material layer provides a conductive substrate containing the nitrogen-based organic material in an amount of 0.2 ⁇ g / cm 2 or more.
  • a conductive substrate with reduced reflectance can be provided.
  • substrate which concerns on embodiment of this invention Sectional drawing of the electroconductive board
  • Sectional drawing in the AA 'line of FIG. Explanatory drawing of the relationship between the nitrogen-type organic substance content of the organic substance layer in an Example and a comparative example, and the reflectance of a conductive substrate.
  • the conductive substrate of the present embodiment includes an insulating base, a metal layer formed on at least one surface of the insulating base, an organic layer containing a nitrogen-based organic material formed on the metal layer, A blackening layer formed on the organic material layer.
  • an organic substance layer can contain 0.2 microgram / cm ⁇ 2 > or more of nitrogen type organic substances.
  • the conductive substrate in this embodiment is a pattern in which a substrate having a metal layer, an organic material layer, and a blackened layer on the surface of the insulating base before patterning the metal layer, and the metal layer is patterned.
  • a substrate that is, a wiring substrate.
  • the insulating substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
  • a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, or a polycarbonate resin can be preferably used.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEN polyethylene naphthalate
  • polyimide polyamide
  • polycarbonate and the like
  • the thickness of the insulating base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate.
  • the thickness of the insulating substrate can be, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the insulating substrate is preferably 20 ⁇ m or more and 120 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the insulating substrate is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the total light transmittance of the insulating base material is preferably higher.
  • the total light transmittance is preferably 30% or more, and more preferably 60% or more.
  • the visibility of the display can be sufficiently ensured when used for, for example, a touch panel.
  • the total light transmittance of the insulating substrate can be evaluated by the method specified in JIS K 7361-1.
  • the material which comprises a metal layer is not specifically limited, The material which has the electrical conductivity according to the application can be selected,
  • the material which comprises a metal layer is Cu, Ni, Mo, Ta, Ti, V, Cr , Fe, Mn, Co and W are preferably a copper alloy with at least one metal selected from the group consisting of copper, or a material containing copper.
  • the metal layer can be a copper layer made of copper.
  • the method for forming the metal layer on the insulating substrate is not particularly limited, but it is preferable not to place an adhesive between the insulating substrate and the metal layer in order not to reduce the light transmittance. That is, the metal layer is preferably formed directly on at least one surface of the insulating substrate. In addition, when arrange
  • the metal layer preferably has a metal thin film layer.
  • the metal layer may have a metal thin film layer and a metal plating layer.
  • a metal thin film layer can be formed on an insulating substrate by a dry plating method, and the metal thin film layer can be used as a metal layer.
  • a metal layer can be directly formed on an insulating substrate without using an adhesive.
  • the dry plating method will be described in detail later.
  • a sputtering method, a vapor deposition method, an ion plating method, or the like can be preferably used.
  • the metal thin film layer and the metal plating layer are formed by forming the metal plating layer by electroplating, which is a kind of wet plating method, using the metal thin film layer as a power feeding layer. It can also be a metal layer. Since the metal layer has the metal thin film layer and the metal plating layer, the metal layer can be directly formed on the insulating base material without using an adhesive.
  • the thickness of the metal layer is not particularly limited, and when the metal layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
  • the thickness of the metal layer is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the metal layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and 150 nm. More preferably, it is the above.
  • a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
  • the thickness of the metal thin film layer is not particularly limited. The following is preferable.
  • the metal layer can be used as a wiring by patterning it into a desired wiring pattern, for example. And since a metal layer can make an electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of an electroconductive board
  • substrate can be made small by providing a metal layer.
  • the organic layer can be formed on the surface of the metal layer facing the blackening layer described later. Therefore, when a conductive substrate is used, it can be disposed between the metal layer and the blackened layer.
  • the organic material layer can contain a nitrogen-based organic material.
  • the inventors of the present invention diligently studied a method for suppressing the reflectance of the conductive substrate. And it discovered that the reflectance of an electroconductive board
  • the nitrogen-based organic material used for the organic material layer is not particularly limited and can be arbitrarily selected from organic compounds containing nitrogen.
  • the nitrogen-based organic material used for the organic material layer preferably contains, for example, 1,2,3-benzotriazole or a derivative thereof. Specific examples of the nitrogen-based organic material used in the organic material layer include 1,2,3-benzotriazole, 5-methyl-1H benzotriazole, and the like.
  • the rust preventive agent for copper can be used preferably, for example, As a chemical
  • the content of the nitrogen-based organic substance in the organic layer is preferably 0.2 ⁇ g / cm 2 or more, and more preferably 0.3 ⁇ g / cm 2 or more. According to the study by the inventors of the present invention, the reflectance of the conductive substrate can be greatly suppressed by setting the content of the nitrogen-based organic matter in the organic layer to 0.2 ⁇ g / cm 2 or more. Because it can. In addition, when the content of nitrogenous organic matter in the organic matter layer increases, the a * value and b * value when the color of the blackened layer is converted to the CIE (L * a * b * ) color system can be lowered. This is because the wiring of the conductive substrate can be made inconspicuous.
  • the upper limit of the content of nitrogen-based organic matter in the organic matter layer is not particularly limited.
  • increase the concentration of the nitrogenous organic matter solution used when forming the organic matter layer increase the supply time of the nitrogenous organic matter solution, etc. It becomes. For this reason, if the content of the nitrogenous organic matter in the organic matter layer is excessively increased, the handleability of the nitrogenous organic matter solution is lowered or the time required for forming the organic matter layer is increased, resulting in a decrease in productivity. There is a fear.
  • the content of the nitrogen-based organic matter in the organic layer is preferably 10 ⁇ g / cm 2 or less, and the lower the content, the better the adhesion of the blackened layer, so that the content is 1 ⁇ g / cm 2 or less. More preferably, it is more preferably 0.5 ⁇ g / cm 2 or less.
  • the method for forming the organic material layer is not particularly limited.
  • the organic material layer can be formed by applying and drying a nitrogen-based organic material solution containing a nitrogen-based organic material on the metal layer.
  • the concentration of nitrogen-based organic matter in the nitrogen-based organic matter solution used when forming the organic matter layer is not particularly limited, taking into account the content of nitrogenous organic matter in the target organic matter layer, operability, etc. Can be arbitrarily selected.
  • the lower limit of the concentration of the nitrogenous organic substance in the nitrogenous organic substance solution is preferably 1 mL / L or more, and more preferably 2 mL / L or more.
  • an upper limit is 4 mL / L or less.
  • the temperature of the nitrogen-based organic solution when supplying the nitrogen-based organic solution to the surface of the metal layer is not particularly limited, and can be arbitrarily selected in consideration of the viscosity, operability, reactivity, etc. of the solution. .
  • it is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher.
  • the temperature is preferably set to 40 ° C. or lower.
  • the pH of the nitrogen-based organic material solution is not particularly limited and can be selected in consideration of the type of nitrogen-based organic material to be used and the reactivity of the solution.
  • the pH of the nitrogen-based organic material solution is 2 or more. It is preferable that the number is 3 or more.
  • the pH of the nitrogen-based organic matter solution is preferably 4 or less.
  • the length of the treatment time for supplying and reacting the nitrogen-based organic solution to the metal layer surface is not particularly limited, depending on the type of nitrogen-based organic solution used, the thickness of the organic layer to be formed, etc. Can be arbitrarily selected.
  • the treatment time is preferably 5 seconds or more, and more preferably 6 seconds or more. However, if the treatment time is too long, productivity may be lowered, and therefore it is preferably 10 seconds or less.
  • the blackening layer can be formed on the upper surface of the organic layer.
  • the material of the blackening layer is not particularly limited, and any material that can suppress the reflection of light on the surface of the metal layer can be suitably used.
  • the blackening layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Further, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the blackening layer can also include a metal alloy containing at least two metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. . Also in this case, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cu alloy can be used more preferably.
  • the method for forming the blackened layer is not particularly limited, and can be formed by any method, for example, by a dry method or a wet method.
  • the specific method is not particularly limited, but for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
  • a target containing a metal species constituting the blackened layer can be used as the target.
  • the blackened layer contains an alloy
  • a target may be used for each metal species contained in the blackened layer, and the alloy may be formed on the surface of the film-deposited body such as a substrate, and is included in the blackened layer in advance. It is also possible to use a target obtained by alloying a metal.
  • the blackened layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • these are added to the atmosphere when the blackened layer is formed, so that the blackened layer Can be added inside.
  • carbon monoxide gas and / or carbon dioxide gas is used
  • oxygen, oxygen gas is used
  • hydrogen, hydrogen gas and / or water is used.
  • nitrogen gas can be added to the atmosphere during sputtering.
  • One or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackening layer by adding these gases to the inert gas when forming the blackening layer.
  • Argon can be preferably used as the inert gas.
  • the blackened layer When the blackened layer is formed by a wet method, it can be formed by, for example, an electroplating method using a plating solution corresponding to the material of the blackened layer.
  • the blackened layer can be formed by either a dry method or a wet method.
  • the nitrogen-based organic matter contained in the organic layer is dissolved in the plating solution. Incorporation into the blackened layer may affect the color tone and other characteristics of the blackened layer. Therefore, it is preferable to form a film by a dry method.
  • the thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, and more preferably 25 nm or more. This is because when the thickness of the blackened layer is thin, reflection of light on the surface of the metal layer may not be sufficiently suppressed. Therefore, the thickness of the blackened layer is set to 15 nm or more as described above. This is because it is preferable to configure so that reflection of light on the surface of the layer can be particularly suppressed.
  • the upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the blackened layer is preferably 70 nm or less, and more preferably 50 nm or less.
  • the conductive substrate can be provided with any layer other than the above-mentioned insulating base material, metal layer, organic material layer, and blackening layer.
  • an adhesion layer can be provided.
  • the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be peeled off from the insulating substrate during the manufacturing process or use.
  • an adhesion layer can be disposed on the insulating substrate in order to improve the adhesion between the insulating substrate and the metal layer.
  • the adhesion layer between the insulating substrate and the metal layer By disposing the adhesion layer between the insulating substrate and the metal layer, the adhesion between the insulating substrate and the metal layer can be improved, and the metal layer can be prevented from peeling off from the insulating substrate.
  • the adhesion layer can function as a blackening layer. For this reason, it becomes possible to suppress the reflection of the light of the metal layer by the light from the lower surface side of the metal layer, that is, the insulating base material side.
  • the material constituting the adhesion layer is not particularly limited, the adhesion strength between the insulating base and the metal layer, the degree of suppression of light reflection on the surface of the required metal layer, and the conductive substrate. It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity and temperature) to be used.
  • the adhesion layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • the adhesion layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the adhesion layer can also include a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further include one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cu alloy can be used more preferably.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • a sputtering method it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, a reactive sputtering method can be more preferably used.
  • the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen in the atmosphere when forming the adhesion layer Can be added to the adhesion layer.
  • carbon monoxide gas and / or carbon dioxide gas when adding oxygen, oxygen gas, when adding hydrogen, hydrogen gas and / or water
  • nitrogen gas can be added to the atmosphere when dry plating is performed.
  • a gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas during dry plating.
  • an inert gas For example, argon can be used preferably.
  • the adhesion layer By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since an adhesion layer can contain a metal as a main component, for example, its adhesiveness with a metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange
  • the thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, for example, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
  • the thickness of the adhesion layer is preferably 3 nm or more as described above.
  • the upper limit value of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the adhesion layer is preferably 50 nm or less as described above, more preferably 35 nm or less, and further preferably 33 nm or less.
  • the conductive substrate of the present embodiment can have an insulating base, a metal layer, an organic layer, and a blackening layer. Further, a layer such as an adhesion layer can be optionally provided.
  • FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B show examples of cross-sectional views in the plane parallel to the stacking direction of the insulating substrate, metal layer, organic layer, and blackening layer of the conductive substrate of this embodiment. ing.
  • the conductive substrate of this embodiment has, for example, a structure in which a metal layer, an organic layer, and a blackening layer are laminated in that order from the insulating base side on at least one surface of the insulating base. Can do.
  • the metal layer 12, the organic material layer 13, and the blackening layer 14 are formed one by one on the one surface 11a side of the insulating base material 11. They can be stacked in that order.
  • substrate 10B shown to FIG. 1B metal layer 12A, 12B on the one surface 11a side of the insulating base material 11, and the other surface (other surface) 11b side, respectively,
  • the organic layers 13A and 13B and the blackening layers 14A and 14B can be stacked one by one in that order.
  • an adhesion layer may be provided.
  • a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are formed in that order from the insulating substrate side on at least one surface of the insulating substrate can be employed.
  • the adhesion layer 15, the metal layer 12, the organic layer 13, and the blackening layer 14 are formed on one surface 11a side of the insulating base material 11. Can be stacked in that order.
  • an adhesion layer, a metal layer, an organic material layer, and a blackening layer are laminated on both surfaces of the insulating substrate 11
  • 12B, organic layers 13A and 13B, and blackening layers 14A and 14B can be stacked in that order.
  • the insulating base material 11 is laminated on the upper and lower sides of the insulating base material 11 with the symmetrical surface.
  • positioned so that the layer which became symmetrical may be shown, it is not limited to the form which concerns.
  • the configuration on the one surface 11a side of the insulating substrate 11 is similar to the configuration of FIG. 1B, without providing the adhesion layer 15A, the metal layer 12A, the organic layer 13A, and the blackening layer 14A. It is good also as a form laminated
  • reflection of the light by a metal layer is suppressed by providing a metal layer, an organic substance layer, and a blackening layer on an insulating base material, and reflection of an electroconductive board
  • the rate can be suppressed.
  • the degree of reflectivity of the conductive substrate of the present embodiment is not particularly limited.
  • the reflectivity is lower. Is good.
  • the average reflectance of light having a wavelength of 400 nm to 700 nm is preferably 20% or less, more preferably 17% or less, and particularly preferably 15% or less.
  • the reflectance can be measured by irradiating the blackened layer of the conductive substrate with light.
  • the blackened layer 14 is irradiated with light.
  • the surface A of the blackened layer 14 can be irradiated with light and measured.
  • light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 14 of the conductive substrate, for example, at a wavelength of 1 nm as described above, and the average value of the measured values is used as the reflectance of the conductive substrate. be able to.
  • the conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel.
  • the conductive substrate can be configured to have mesh-like wiring.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer, the organic material layer, and the blackening layer of the conductive substrate of the present embodiment described so far.
  • a mesh-like wiring can be formed by two-layer wiring.
  • FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like.
  • the insulating substrate 11 and the metal layer Layers other than the wirings 31A and 31B formed by patterning are omitted.
  • a wiring 31B that can be seen through the insulating substrate 11 is also shown.
  • the conductive substrate 30 shown in FIG. 3 has an insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and wirings 31B parallel to the X-axis direction.
  • the wirings 31A and 31B are formed by etching a metal layer, and an organic material layer and a blackening layer (not shown) are formed on the upper surface and / or the lower surface of the wirings 31A and 31B.
  • the organic material layer and the blackened layer are etched in the same shape as the wirings 31A and 31B.
  • the arrangement of the insulating base 11 and the wirings 31A and 31B is not particularly limited.
  • a configuration example of the arrangement of the insulating base material 11 and the wiring is shown in FIGS. 4A and 4B.
  • 4A and 4B are cross-sectional views taken along line AA ′ of FIG.
  • wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively.
  • organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of 31B.
  • FIG. 4B a pair of insulating base materials 11 is used, wirings 31A and 31B are arranged on the upper and lower surfaces with one insulating base material 11 interposed therebetween, and one wiring 31B is insulated. May be disposed between the conductive substrates 11. Also in this case, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surfaces of the wirings 31A and 31B. As described above, an adhesion layer can be provided in addition to the metal layer, the organic material layer, and the blackening layer. Therefore, in either case of FIG. 4A or FIG.
  • an adhesion layer can be provided between the wiring 31 ⁇ / b> A and / or the wiring 31 ⁇ / b> B and the insulating substrate 11.
  • the adhesion layer is also etched in the same shape as the wirings 31A and 31B.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a metal layer 12A, 12B, an organic layer 13A, 13B, and a blackening layer on both sides of the insulating base 11 as shown in FIG. 1B. It can be formed from a conductive substrate provided with 14A and 14B.
  • the metal layer 12A, the organic layer 13A, and the blackening layer 14A on the one surface 11a side of the insulating base 11 are shown in FIG. 1B.
  • Etching is performed so that a plurality of linear patterns parallel to the Y-axis direction are arranged at predetermined intervals along the X-axis direction.
  • the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer.
  • the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
  • a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are spaced apart from each other on the metal layer 12B, the organic material layer 13B, and the blackening layer 14B on the other surface 11b side of the insulating substrate 11 by a predetermined interval. Etching is performed so as to be arranged along the Y-axis direction.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed.
  • the etching of both surfaces of the insulating substrate 11 can be performed simultaneously. That is, the etching of the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B may be performed simultaneously.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is the conductive substrate shown in FIG. 2B. It can be produced by etching in the same manner.
  • FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A.
  • the metal layer 12, the organic material layer 13, and the blackening layer 14 are respectively formed on the X axis. Etching is performed so that a plurality of linear patterns parallel to the direction are arranged along the Y-axis direction at predetermined intervals. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to.
  • the surface to be bonded when the two conductive substrates are bonded is not particularly limited.
  • the surface A in FIG. 1A in which the metal layer 12 or the like is laminated and the other surface 11b in FIG. 1A in which the metal layer 12 or the like is not laminated are bonded together so that the structure shown in FIG. 4B is obtained. You can also.
  • the other surfaces 11b in FIG. 1A where the metal layer 12 or the like of the insulating base material 11 is not laminated can be bonded together so that the cross section has the structure shown in FIG. 4A.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is shown in FIG. 1A. It can be manufactured by using the conductive substrate shown in FIG. 2A instead of the conductive substrate.
  • the width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIG. 3, FIG. 4A and FIG. 4B are not particularly limited. You can choose.
  • 4 ⁇ / b> A, and 4 ⁇ / b> B show examples in which a mesh-like wiring (wiring pattern) is formed by combining linear wirings, but the present invention is not limited to such a form.
  • the wiring that constitutes can be of any shape.
  • the shape of the wiring constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display.
  • a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
  • an organic material layer containing a certain amount or more of a nitrogen-based organic material on a metal layer formed on at least one surface of an insulating base material, and a blackening layer It has a laminated structure. For this reason, it can be set as the electroconductive board
  • the manufacturing method of the conductive substrate of this embodiment can have the following processes.
  • an organic substance layer so that nitrogen system organic substance may be contained 0.2 ⁇ g / cm 2 or more.
  • substrate can be suitably manufactured with the manufacturing method of the electroconductive board
  • the insulating base material used for the metal layer forming step can be prepared in advance.
  • a transparent base material such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used as described above.
  • the insulating base material can be cut into an arbitrary size in advance if necessary.
  • the metal layer preferably has a metal thin film layer as described above.
  • the metal layer can also have a metal thin film layer and a metal plating layer.
  • a metal layer formation process can have a process of forming a metal thin film layer, for example by a dry-type plating method.
  • the metal layer forming step includes a step of forming a metal thin film layer by a dry plating method, a step of forming a metal plating layer by an electroplating method which is a kind of wet plating method, using the metal thin film layer as a power feeding layer, You may have.
  • the dry plating method used in the step of forming the metal thin film layer is not particularly limited, and for example, an evaporation method, a sputtering method, an ion plating method, or the like can be used.
  • a vapor deposition method a vacuum vapor deposition method can be used preferably.
  • the dry plating method used in the step of forming the metal thin film layer it is more preferable to use the sputtering method because the film thickness is particularly easy to control.
  • the conditions in the step of forming the metal plating layer by the wet plating method that is, the conditions for the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted.
  • a metal plating layer can be formed by supplying a base material on which a metal thin film layer is formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base material.
  • an organic material layer containing a nitrogen-based organic material can be formed on the metal layer.
  • the reflectance of the conductive substrate can be suppressed by providing an organic layer between the metal layer and the blackened layer.
  • the method for forming the organic material layer is not particularly limited, and for example, it can be formed by applying and drying a nitrogen-based organic material solution on the metal layer.
  • the method for applying the solution containing the material constituting the organic layer on the metal layer is not particularly limited, and can be applied by any method.
  • applying a solution containing a material constituting the organic layer on the metal layer by applying a nitrogen-based organic solution by spraying or immersing an insulating base material in which the metal layer is formed in the nitrogen-based organic solution.
  • applying a solution containing a material constituting the organic layer on the metal layer by applying a nitrogen-based organic solution by spraying or immersing an insulating base material in which the metal layer is formed in the nitrogen-based organic solution.
  • the nitrogen-based organic material used for the organic material layer is not particularly limited and can be arbitrarily selected from organic compounds containing nitrogen.
  • the nitrogen-based organic material used for the organic material layer preferably contains, for example, 1,2,3-benzotriazole or a derivative thereof. Specific examples of the nitrogen-based organic material used in the organic material layer include 1,2,3-benzotriazole, 5-methyl-1H benzotriazole, and the like.
  • the rust preventive agent for copper can be used preferably, for example, As a chemical
  • the content of the nitrogen-based organic substance in the organic layer is preferably 0.2 ⁇ g / cm 2 or more, and more preferably 0.3 ⁇ g / cm 2 or more. According to the study by the inventors of the present invention, the reflectance of the conductive substrate can be greatly suppressed by setting the content of the nitrogen-based organic matter in the organic layer to 0.2 ⁇ g / cm 2 or more. Because it can. In addition, when the content of nitrogenous organic matter in the organic matter layer increases, the a * value and b * value when the color of the blackened layer is converted to the CIE (L * a * b * ) color system can be lowered. This is because the wiring of the conductive substrate can be made inconspicuous.
  • the upper limit of the content of nitrogen-based organic matter in the organic matter layer is not particularly limited.
  • increase the concentration of the nitrogenous organic matter solution used when forming the organic matter layer increase the supply time of the nitrogenous organic matter solution, etc. It becomes. For this reason, if the content of the nitrogenous organic matter in the organic matter layer is excessively increased, the handleability of the nitrogenous organic matter solution is lowered or the time required for forming the organic matter layer is increased, resulting in a decrease in productivity. There is a fear.
  • the content of the nitrogen-based organic compound in the organic layer is preferably, for example, 10 ⁇ g / cm 2 or less, and the lower the content, the better the adhesion of the blackened layer, so that it is 1 ⁇ g / cm 2 or less. More preferably, it is more preferably 0.5 ⁇ g / cm 2 or less.
  • the method for forming the blackened layer is not particularly limited, and can be formed by any method.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • the sputtering method is more preferable because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
  • the blackened layer can be formed by a wet method such as an electroplating method.
  • the nitrogen-based organic matter contained in the organic layer starts to dissolve in the plating solution and is taken into the blackened layer, affecting the color tone and other characteristics of the blackened layer. Since there is a fear, it is preferable to form a film by a dry method.
  • an optional step can be further performed in addition to the above-described steps.
  • an adhesion layer forming step of forming an adhesion layer on the surface of the insulating substrate on which the metal layer is formed can be performed.
  • the metal layer forming step can be carried out after the adhesion layer forming step, and in the metal layer forming step, the substrate having the adhesion layer formed on the insulating substrate in this step.
  • a metal thin film layer can be formed.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, the reactive sputtering method can be more preferably used.
  • the conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment can be used for various applications such as a touch panel. And when using for various uses, it is preferable that the metal layer, organic substance layer, and blackening layer which are contained in the electroconductive board
  • the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be patterned in accordance with, for example, a desired wiring pattern, and the metal layer, the organic material layer, and the blackening layer, and in some cases, further adhesion.
  • the layers are preferably patterned in the same shape.
  • the manufacturing method of the conductive substrate of the present embodiment can include a patterning step of patterning the metal layer, the organic material layer, and the blackening layer.
  • the patterning step can be a step of patterning the adhesion layer, the metal layer, the organic material layer, and the blackening layer.
  • the specific procedure of the patterning step is not particularly limited, and can be performed by an arbitrary procedure.
  • a desired pattern is formed on the surface A on the blackening layer 14.
  • a mask placement step of placing a mask having it can be performed.
  • an etching step of supplying an etching solution to the surface A on the blackened layer 14, that is, the side on which the mask is disposed can be performed.
  • the etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the material constituting the layer to be etched.
  • the etching solution can be changed for each layer, and the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be etched simultaneously with the same etching solution.
  • the conductive substrate 10B in which the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B are stacked on the one surface 11a and the other surface 11b of the insulating base 11 is also used.
  • a patterning process for patterning can be performed.
  • a mask placement step of placing a mask having a desired pattern on the surface A and the surface B on the blackening layers 14A and 14B can be performed.
  • an etching step of supplying an etching solution to the surface A and the surface B on the blackening layers 14A and 14B, that is, the surface side where the mask is disposed can be performed.
  • the pattern formed in the etching step is not particularly limited, and can be an arbitrary shape.
  • the metal layer 12, the organic material layer 13, and the blackened layer 14 include a plurality of straight lines or jagged lines (zigzag straight lines). A pattern can be formed.
  • a pattern can be formed by the metal layer 12A and the metal layer 12B so as to form a mesh-like wiring.
  • the organic material layer 13A and the blackening layer 14A may be patterned to have the same shape as the metal layer 12A, and the organic material layer 13B and the blackening layer 14B may be patterned to have the same shape as the metal layer 12B. preferable.
  • a lamination step of laminating two or more patterned conductive substrates may be performed.
  • laminating for example, by laminating so that the pattern of the metal layer of each conductive substrate intersects, a laminated conductive substrate provided with mesh-like wiring can be obtained.
  • the method of fixing two or more laminated conductive substrates is not particularly limited, but can be fixed by, for example, an adhesive.
  • the conductive substrate obtained by the above-described method for manufacturing a conductive substrate according to the present embodiment includes an organic layer containing a certain amount or more of a nitrogen-based organic substance on a metal layer formed on at least one surface of an insulating base. And a blackened layer. For this reason, it can be set as the electroconductive board
  • the measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
  • the reflectance measurement is performed by irradiating the surface A of the blackened layer 14 of the conductive substrate 10A shown in FIG. 2A with an incident angle of 5 ° and a light receiving angle of 5 ° in a wavelength range of 400 nm to 700 nm. Carried out.
  • the light irradiated to the conductive substrate is measured by changing the wavelength every 1 nm within a range of 400 nm to 700 nm, and the average of the measurement result is the reflectance (average reflectance) of the conductive substrate. did.
  • the organic substance layer was formed and a part of the substrate cut out and the extraction solution were placed in a screw bottle so that the substrate was immersed in the extraction solution, and then placed in an ultrasonic cleaner for 15 minutes.
  • the extract obtained by extracting nitrogenous organic matter in the organic matter layer into the extraction solution is analyzed by liquid chromatography using a liquid chromatograph mass spectrometer (LC-MS), and the nitrogenous organic matter in the extract is analyzed. The content was calculated.
  • LC-MS liquid chromatograph mass spectrometer
  • the liquid chromatograph mass spectrometer used was an apparatus with a liquid chromatograph section manufactured by Waters, Model: Aquity H-Class, and a mass spectrometer manufactured by AB XS, Inc., model: Q-STAR XL.
  • Example preparation conditions As examples and comparative examples, conductive substrates were produced under the conditions described below and evaluated by the above-described evaluation method.
  • Example 1 Adhesion layer forming process
  • An adhesion layer was formed on one surface of an insulating base made of polyethylene terephthalate resin (PET) having a length of 500 mm ⁇ width of 500 mm and a thickness of 50 ⁇ m. Note that the total light transmittance of the insulating base material made of polyethylene terephthalate resin used as the insulating base material was evaluated by the method prescribed in JIS K 7361-1, and found to be 97%.
  • a Ni—Cu alloy layer containing oxygen was formed as an adhesion layer using a sputtering apparatus equipped with a Ni-17 wt% Cu alloy target. The procedure for forming the adhesion layer will be described below.
  • the above-mentioned insulating base material which was previously heated to 60 ° C. to remove moisture, was placed in the chamber of the sputtering apparatus.
  • Metal layer forming process In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
  • a copper thin film layer was formed as a metal thin film layer on the adhesion layer using a substrate in which the adhesion layer was formed on the insulating substrate in the adhesion layer forming step.
  • the metal thin film layer is a sputtering apparatus as in the case of the adhesion layer except that a copper target is used and the inside of the chamber in which the substrate is set is evacuated and then an argon gas is supplied to form an argon atmosphere. Was formed.
  • the copper thin film layer which is a metal thin film layer, was formed to a thickness of 150 nm.
  • a copper plating layer was formed as the metal plating layer.
  • the copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.5 ⁇ m.
  • Organic layer formation process In the organic layer forming step, an organic layer was formed on the metal layer of the laminate in which the adhesion layer and the metal layer were formed on the insulating base material.
  • the above laminate was immersed in an OPC diffuser (Okuno Pharmaceutical Co., Ltd.) solution containing 1,2,3-benzotriazole as a nitrogen-based organic material for 7 seconds.
  • OPC diffuser Omni Pharmaceutical Co., Ltd.
  • the OPC diffuser solution used was adjusted in advance so that the concentration of 1,2,3-benzotriazole was 3 mL / L, the bath temperature was 30 ° C., and the pH was 3.
  • the solution adhering to the upper surface of the metal layer that is, the surface other than the surface opposite to the surface opposite to the adhesion layer of the metal layer was removed by washing with water, and dried to form an organic layer on the metal layer.
  • Blackening layer forming process In the blackened layer forming step, a Ni—Cu layer was formed as a blackened layer by sputtering on the organic layer formed in the organic layer forming step.
  • a Ni—Cu alloy layer was formed as a blackening layer by a sputtering apparatus equipped with a Ni-35 wt% Cu alloy target. The procedure for forming the blackened layer will be described below.
  • a laminated body in which an adhesion layer, a metal layer, and an organic layer were laminated on an insulating substrate was set in a chamber of a sputtering apparatus.
  • a blackening layer is formed on the upper surface of the metal layer, that is, the surface opposite to the surface facing the adhesion layer of the metal layer through the organic material layer, and the adhesion layer, the metal is formed on the insulating substrate.
  • a conductive substrate in which a layer, an organic material layer, and a blackening layer were laminated in that order was obtained.
  • Example 1 Similar to Example 1 except that when the organic layer is formed, the concentration of the OPC diffuser solution, the bath temperature, and the pH are changed to change the content of the nitrogen-based organic matter in the organic layer. Thus, a conductive substrate was produced.
  • Example 1 A conductive substrate was produced in the same manner as in Example 1 except that the pH of the OPC diffuser solution was set to 1 when the organic layer was formed. In addition, after the organic substance layer formation process, a part of board
  • FIG. 5 to FIG. 7 are graphs showing the relationship between the nitrogen-based organic substance content shown in Table 1 and the reflectances, a * and b * .
  • the ⁇ mark on the left side of the dotted line indicates Comparative Example 1, and the other points indicate the results of Examples 1 to 18.
  • an organic material layer containing a nitrogen-based organic material is provided between the metal layer and the blackening layer, and the content of the organic material layer is set to 0.2 ⁇ g / cm 2 or more. It was confirmed that the reflectance can be particularly suppressed.

Abstract

A conductive substrate is provided which comprises an insulating substrate, a metal layer formed on at least one surface of the insulating substrate, an organic layer formed on the metal layer and containing nitrogen-based organic material, and a blackened layer formed on the organic layer, wherein the aforementioned organic layer contains at least 0.2 μg/cm² of the nitrogen-based organic material.

Description

導電性基板、導電性基板の製造方法Conductive substrate, method for manufacturing conductive substrate
 本発明は、導電性基板、導電性基板の製造方法に関する。 The present invention relates to a conductive substrate and a method for manufacturing a conductive substrate.
 静電容量式タッチパネルは、パネル表面に近接する物体により引き起こされる静電容量の変化を検出することにより、パネル表面上での近接する物体の位置の情報を電気信号に変換する。静電容量式タッチパネルに用いられる導電性基板は、ディスプレイの表面に設置されるため、導電性基板の導電層の材料には反射率が低く、視認されにくいことが要求されている。 The capacitive touch panel converts information on the position of an adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object adjacent to the panel surface. Since the conductive substrate used for the capacitive touch panel is installed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have low reflectance and be difficult to be visually recognized.
 そこで、静電容量式タッチパネルに用いられる導電層の材料としては、反射率が低く、視認されにくい材料が用いられ、透明基板または透明なフィルム上に配線が形成されている。 Therefore, as a material for the conductive layer used for the capacitive touch panel, a material having low reflectivity and not easily visible is used, and wiring is formed on a transparent substrate or a transparent film.
 例えば、特許文献1には、タッチパネル部がPETフィルムにITO膜により、信号パターンとGNDパターンが印刷された複数の透明シート電極よりなる静電容量型デジタル式タッチパネルが開示されている。 For example, Patent Document 1 discloses a capacitance-type digital touch panel including a plurality of transparent sheet electrodes in which a touch panel portion is printed on a PET film with an ITO film and a signal pattern and a GND pattern are printed.
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高く信号の劣化を生じるため、ITOを用いた導電性基板は大型パネルには不向きという問題があった。 By the way, in recent years, a display having a touch panel has been enlarged, and in response to this, a conductive substrate for the touch panel is required to have a large area. However, since ITO has a high electric resistance value and causes signal deterioration, there is a problem that a conductive substrate using ITO is not suitable for a large panel.
 そこで、導電層の材料として、ITOにかえて銅等の金属を用いることが検討されている。ただし、金属は金属光沢を有しており、反射によりディスプレイの視認性が低下するという問題があるため、銅等の金属と共に、黒色の材料により構成される層を形成した導電性基板が検討されている。 Therefore, the use of metals such as copper in place of ITO as the material for the conductive layer is being studied. However, since the metal has a metallic luster and there is a problem that the visibility of the display decreases due to reflection, a conductive substrate in which a layer composed of a black material is formed together with a metal such as copper has been studied. ing.
 例えば特許文献2には、フィルム表面と裏面の透視が必要な部分のそれぞれに、ストライプ状銅配線を備え、表裏の銅配線の視認される側に黒色の酸化銅皮膜を有するフィルム状タッチパネルセンサーが開示されている。 For example, Patent Document 2 discloses a film-like touch panel sensor that includes a striped copper wiring on each of the portions that need to be seen through on the front and back surfaces of the film, and has a black copper oxide film on the side where the copper wiring on the front and back sides is visually recognized. It is disclosed.
日本国特開2004-213114号公報Japanese Unexamined Patent Publication No. 2004-213114 日本国特開2013-206315号公報Japanese Unexamined Patent Publication No. 2013-206315
 しかしながら、近年ではディスプレイの視認性をより高めるため、導電性基板の反射率を抑制することが求められている。そして、特許文献2に開示されたフィルム状タッチパネルセンサーのように銅配線に黒色の酸化銅皮膜を形成するのみでは、反射率の抑制の程度が十分ではなくなっていた。 However, in recent years, in order to further improve the visibility of the display, it is required to suppress the reflectance of the conductive substrate. Then, only by forming a black copper oxide film on the copper wiring as in the film-like touch panel sensor disclosed in Patent Document 2, the degree of suppression of the reflectance is not sufficient.
 上記従来技術の問題に鑑み、本発明の一側面では、反射率を抑制した導電性基板を提供することを目的とする。 In view of the above-described problems of the prior art, an object of one aspect of the present invention is to provide a conductive substrate with reduced reflectance.
 上記課題を解決するため本発明の一側面では、
 絶縁性基材と、
 前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
 前記金属層上に形成された窒素系有機物を含有する有機物層と、
 前記有機物層上に形成された黒化層と、を有しており、
 前記有機物層は、前記窒素系有機物を0.2μg/cm以上含有する導電性基板を提供する。
In order to solve the above problems, in one aspect of the present invention,
An insulating substrate;
A metal layer formed on at least one surface of the insulating substrate;
An organic material layer containing a nitrogen-based organic material formed on the metal layer;
A blackening layer formed on the organic layer,
The organic material layer provides a conductive substrate containing the nitrogen-based organic material in an amount of 0.2 μg / cm 2 or more.
 本発明の一側面によれば、反射率を抑制した導電性基板を提供することができる。 According to one aspect of the present invention, a conductive substrate with reduced reflectance can be provided.
本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the electroconductive board | substrate provided with the mesh-shaped wiring which concerns on embodiment of this invention. 図3のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. 図3のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. 実施例、比較例における有機物層の窒素系有機物含有量と、導電性基板の反射率との関係の説明図。Explanatory drawing of the relationship between the nitrogen-type organic substance content of the organic substance layer in an Example and a comparative example, and the reflectance of a conductive substrate. 実施例、比較例における有機物層の窒素系有機物含有量と、黒化層のa値との関係の説明図。Explanatory drawing of the relationship between nitrogen-type organic substance content of the organic substance layer in an Example and a comparative example, and a * value of a blackening layer. 実施例、比較例における有機物層の窒素系有機物含有量と、黒化層のb値との関係の説明図。Explanatory drawing of the relationship between the nitrogen-type organic substance content of the organic substance layer in an Example and a comparative example, and b * value of a blackening layer.
 以下、本発明の導電性基板、及び導電性基板の製造方法の一実施形態について説明する。
(導電性基板)
 本実施形態の導電性基板は、絶縁性基材と、絶縁性基材の少なくとも一方の面上に形成された金属層と、金属層上に形成された窒素系有機物を含有する有機物層と、有機物層上に形成された黒化層と、を有することができる。そして、有機物層は、窒素系有機物を0.2μg/cm以上含有することができる。
Hereinafter, an embodiment of a conductive substrate and a method for manufacturing the conductive substrate of the present invention will be described.
(Conductive substrate)
The conductive substrate of the present embodiment includes an insulating base, a metal layer formed on at least one surface of the insulating base, an organic layer containing a nitrogen-based organic material formed on the metal layer, A blackening layer formed on the organic material layer. And an organic substance layer can contain 0.2 microgram / cm < 2 > or more of nitrogen type organic substances.
 なお、本実施形態における導電性基板とは、金属層等をパターニングする前の、絶縁性基材の表面に金属層、有機物層、及び黒化層を有する基板と、金属層等をパターン化した基板、すなわち、配線基板と、を含む。 Note that the conductive substrate in this embodiment is a pattern in which a substrate having a metal layer, an organic material layer, and a blackened layer on the surface of the insulating base before patterning the metal layer, and the metal layer is patterned. A substrate, that is, a wiring substrate.
 ここでまず、導電性基板に含まれる各部材について以下に説明する。 Here, first, each member included in the conductive substrate will be described below.
 絶縁性基材としては特に限定されるものではなく、可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。 The insulating substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
 可視光を透過する樹脂基板の材料としては例えば、ポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂等の樹脂を好ましく用いることができる。特に、可視光を透過する樹脂基板の材料として、PET(ポリエチレンテレフタレート)、COP(シクロオレフィンポリマー)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリアミド、ポリカーボネート等をより好ましく用いることができる。 As a material for the resin substrate that transmits visible light, for example, a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, or a polycarbonate resin can be preferably used. In particular, PET (polyethylene terephthalate), COP (cycloolefin polymer), PEN (polyethylene naphthalate), polyimide, polyamide, polycarbonate, and the like can be more preferably used as the material for the resin substrate that transmits visible light.
 絶縁性基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や静電容量、光の透過率等に応じて任意に選択することができる。絶縁性基材の厚さとしては例えば10μm以上200μm以下とすることができる。特にタッチパネルの用途に用いる場合、絶縁性基材の厚さは20μm以上120μm以下とすることが好ましく、20μm以上100μm以下とすることがより好ましい。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、絶縁性基材の厚さは20μm以上50μm以下であることが好ましい。 The thickness of the insulating base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate. The thickness of the insulating substrate can be, for example, 10 μm or more and 200 μm or less. In particular, when used for touch panel applications, the thickness of the insulating substrate is preferably 20 μm or more and 120 μm or less, and more preferably 20 μm or more and 100 μm or less. In the case of use for touch panel applications, for example, particularly in applications where it is required to reduce the thickness of the entire display, the thickness of the insulating substrate is preferably 20 μm or more and 50 μm or less.
 絶縁性基材の全光線透過率は高い方が好ましく、例えば全光線透過率は30%以上であることが好ましく、60%以上であることがより好ましい。絶縁性基材の全光線透過率が上記範囲であることにより、例えばタッチパネルの用途に用いた場合にディスプレイの視認性を十分に確保することができる。 The total light transmittance of the insulating base material is preferably higher. For example, the total light transmittance is preferably 30% or more, and more preferably 60% or more. When the total light transmittance of the insulating substrate is in the above range, the visibility of the display can be sufficiently ensured when used for, for example, a touch panel.
 なお絶縁性基材の全光線透過率はJIS K 7361-1に規定される方法により評価することができる。 The total light transmittance of the insulating substrate can be evaluated by the method specified in JIS K 7361-1.
 次に、金属層について説明する。 Next, the metal layer will be described.
 金属層を構成する材料は特に限定されず用途にあった電気伝導率を有する材料を選択できるが、例えば、金属層を構成する材料は、Cuと、Ni,Mo,Ta,Ti,V,Cr,Fe,Mn,Co,Wから選ばれる少なくとも1種の以上の金属との銅合金、または銅を含む材料であることが好ましい。また、金属層は銅から構成される銅層とすることもできる。 Although the material which comprises a metal layer is not specifically limited, The material which has the electrical conductivity according to the application can be selected, For example, the material which comprises a metal layer is Cu, Ni, Mo, Ta, Ti, V, Cr , Fe, Mn, Co and W are preferably a copper alloy with at least one metal selected from the group consisting of copper, or a material containing copper. The metal layer can be a copper layer made of copper.
 絶縁性基材上に金属層を形成する方法は特に限定されないが、光の透過率を低減させないため、絶縁性基材と金属層との間に接着剤を配置しないことが好ましい。すなわち金属層は、絶縁性基材の少なくとも一方の面上に直接形成されていることが好ましい。なお、後述のように絶縁性基材と金属層との間に密着層を配置する場合には、金属層は密着層の上面に直接形成されていることが好ましい。 The method for forming the metal layer on the insulating substrate is not particularly limited, but it is preferable not to place an adhesive between the insulating substrate and the metal layer in order not to reduce the light transmittance. That is, the metal layer is preferably formed directly on at least one surface of the insulating substrate. In addition, when arrange | positioning an adhesion layer between an insulating base material and a metal layer as mentioned later, it is preferable that the metal layer is directly formed on the upper surface of the adhesion layer.
 絶縁性基材の上面に金属層を直接形成するため、金属層は金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有していてもよい。 In order to directly form the metal layer on the upper surface of the insulating substrate, the metal layer preferably has a metal thin film layer. Moreover, the metal layer may have a metal thin film layer and a metal plating layer.
 例えば絶縁性基材上に、乾式めっき法により金属薄膜層を形成し該金属薄膜層を金属層とすることができる。これにより、絶縁性基材上に接着剤を介さずに直接金属層を形成できる。なお、乾式めっき法としては後で詳述するが、例えばスパッタリング法や蒸着法、イオンプレーティング法等を好ましく用いることができる。 For example, a metal thin film layer can be formed on an insulating substrate by a dry plating method, and the metal thin film layer can be used as a metal layer. Thereby, a metal layer can be directly formed on an insulating substrate without using an adhesive. The dry plating method will be described in detail later. For example, a sputtering method, a vapor deposition method, an ion plating method, or the like can be preferably used.
 また、金属層の膜厚を厚くする場合には、金属薄膜層を給電層として湿式めっき法の一種である電気めっき法により金属めっき層を形成することにより、金属薄膜層と金属めっき層とを有する金属層とすることもできる。金属層が金属薄膜層と金属めっき層とを有することにより、この場合も絶縁性基材上に接着剤を介さずに直接金属層を形成できる。 In addition, when increasing the thickness of the metal layer, the metal thin film layer and the metal plating layer are formed by forming the metal plating layer by electroplating, which is a kind of wet plating method, using the metal thin film layer as a power feeding layer. It can also be a metal layer. Since the metal layer has the metal thin film layer and the metal plating layer, the metal layer can be directly formed on the insulating base material without using an adhesive.
 金属層の厚さは特に限定されるものではなく、金属層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。 The thickness of the metal layer is not particularly limited, and when the metal layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
 ただし、金属層が厚くなると、配線パターンを形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ易くなり、細線が形成しにくくなる等の問題を生じる場合がある。このため、金属層の厚さは5μm以下であることが好ましく、3μm以下であることがより好ましい。 However, if the metal layer is thick, it takes time to perform etching to form a wiring pattern, so that side etching is likely to occur, and it may be difficult to form fine lines. For this reason, the thickness of the metal layer is preferably 5 μm or less, and more preferably 3 μm or less.
 また、特に導電性基板の抵抗値を低くし、十分に電流を供給できるようにする観点から、例えば金属層は厚さが50nm以上であることが好ましく、60nm以上であることがより好ましく、150nm以上であることがさらに好ましい。 In particular, from the viewpoint of reducing the resistance value of the conductive substrate and supplying a sufficient current, for example, the metal layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and 150 nm. More preferably, it is the above.
 なお、金属層が上述のように金属薄膜層と、金属めっき層を有する場合には、金属薄膜層の厚さと、金属めっき層の厚さとの合計が上記範囲であることが好ましい。 In addition, when a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
 金属層が金属薄膜層により構成される場合、または金属薄膜層と金属めっき層とを有する場合のいずれの場合でも、金属薄膜層の厚さは特に限定されるものではないが、例えば50nm以上500nm以下とすることが好ましい。 In any case where the metal layer is composed of a metal thin film layer or has a metal thin film layer and a metal plating layer, the thickness of the metal thin film layer is not particularly limited. The following is preferable.
 金属層は後述するように例えば所望の配線パターンにパターニングすることにより配線として用いることができる。そして、金属層は従来透明導電膜として用いられていたITOよりも電気抵抗値を低くすることができるから、金属層を設けることにより導電性基板の電気抵抗値を小さくできる。 As will be described later, the metal layer can be used as a wiring by patterning it into a desired wiring pattern, for example. And since a metal layer can make an electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of an electroconductive board | substrate can be made small by providing a metal layer.
 次に有機物層について説明する。 Next, the organic layer will be described.
 有機物層は金属層の後述する黒化層と対向する面に形成することができる。従って、導電性基板とした場合に、金属層と黒化層との間に配置することができる。有機物層は窒素系有機物を含有することができる。 The organic layer can be formed on the surface of the metal layer facing the blackening layer described later. Therefore, when a conductive substrate is used, it can be disposed between the metal layer and the blackened layer. The organic material layer can contain a nitrogen-based organic material.
 本発明の発明者らは、導電性基板の反射率を抑制する方法について鋭意検討を行った。そして、金属層と、黒化層との間に、窒素系有機物を含有する有機物層を配置することにより、導電性基板の反射率を抑制できることを見出し、本発明を完成させた。 The inventors of the present invention diligently studied a method for suppressing the reflectance of the conductive substrate. And it discovered that the reflectance of an electroconductive board | substrate could be suppressed by arrange | positioning the organic substance layer containing a nitrogen-type organic substance between a metal layer and a blackening layer, and completed this invention.
 有機物層に用いる窒素系有機物としては特に限定されるものではなく、窒素を含有する有機化合物から任意に選択して用いることができる。有機物層に用いる窒素系有機物は例えば、1,2,3-ベンゾトリアゾール、またはその誘導体を含むことが好ましい。有機物層に用いる窒素系有機物としては、具体的には例えば、1,2,3-ベンゾトリアゾールや、5-メチル-1Hベンゾトリアゾール等を挙げることができる。 The nitrogen-based organic material used for the organic material layer is not particularly limited and can be arbitrarily selected from organic compounds containing nitrogen. The nitrogen-based organic material used for the organic material layer preferably contains, for example, 1,2,3-benzotriazole or a derivative thereof. Specific examples of the nitrogen-based organic material used in the organic material layer include 1,2,3-benzotriazole, 5-methyl-1H benzotriazole, and the like.
 有機物層に用いる窒素系有機物を含有する薬剤としては、例えば銅用の防錆処理剤を好ましく用いることができ、市販されている薬品としては例えばOPCディフェンサー(商品名、奥野製薬工業株式会社)等を好ましく用いることができる。 As a chemical | medical agent containing the nitrogen type organic substance used for an organic substance layer, the rust preventive agent for copper can be used preferably, for example, As a chemical | medical agent marketed, for example, an OPC defenser (brand name, Okuno Pharmaceutical Co., Ltd.) Etc. can be preferably used.
 有機物層の窒素系有機物の含有量は0.2μg/cm以上であることが好ましく、0.3μg/cm以上であることがより好ましい。これは、本発明の発明者らの検討によれば、有機物層の窒素系有機物の含有量を0.2μg/cm以上とすることで、導電性基板の反射率を大幅に抑制することができるからである。また、有機物層の窒素系有機物の含有量が増加すると、黒化層の色をCIE(L)表色系に換算した際のa値、b値を下げることができ、特に導電性基板の配線を目立たなくすることができるため好ましいからである。 The content of the nitrogen-based organic substance in the organic layer is preferably 0.2 μg / cm 2 or more, and more preferably 0.3 μg / cm 2 or more. According to the study by the inventors of the present invention, the reflectance of the conductive substrate can be greatly suppressed by setting the content of the nitrogen-based organic matter in the organic layer to 0.2 μg / cm 2 or more. Because it can. In addition, when the content of nitrogenous organic matter in the organic matter layer increases, the a * value and b * value when the color of the blackened layer is converted to the CIE (L * a * b * ) color system can be lowered. This is because the wiring of the conductive substrate can be made inconspicuous.
 有機物層の窒素系有機物の含有量の上限値は特に限定されるものではない。ただし、有機物層の窒素系有機物の含有量を増加させるためには、有機物層を形成する際に用いる窒素系有機物溶液の濃度を高めたり、窒素系有機物溶液の供給時間を長くする等を行うこととなる。このため、有機物層の窒素系有機物の含有量を過度に多くしようとすると、窒素系有機物溶液の取扱い性が低下したり、有機物層を形成するために要する時間が長くなり、生産性が低下する恐れがある。そこで、有機物層の窒素系有機物の含有量は例えば10μg/cm以下とすることが好ましく、また、含有量が低い方が黒化層の密着性が良好なため、1μg/cm以下とすることがより好ましく、0.5μg/cm以下とすることがさらに好ましい。 The upper limit of the content of nitrogen-based organic matter in the organic matter layer is not particularly limited. However, in order to increase the content of nitrogenous organic matter in the organic matter layer, increase the concentration of the nitrogenous organic matter solution used when forming the organic matter layer, increase the supply time of the nitrogenous organic matter solution, etc. It becomes. For this reason, if the content of the nitrogenous organic matter in the organic matter layer is excessively increased, the handleability of the nitrogenous organic matter solution is lowered or the time required for forming the organic matter layer is increased, resulting in a decrease in productivity. There is a fear. Therefore, the content of the nitrogen-based organic matter in the organic layer is preferably 10 μg / cm 2 or less, and the lower the content, the better the adhesion of the blackened layer, so that the content is 1 μg / cm 2 or less. More preferably, it is more preferably 0.5 μg / cm 2 or less.
 有機物層を形成する方法は特に限定されないが、例えば金属層上に窒素系有機物を含有する窒素系有機物溶液を塗布、乾燥することで形成できる。有機物層を形成する際に用いる窒素系有機物溶液中の窒素系有機物の濃度は特に限定されるものではなく、目標とする有機物層中の窒素系有機物の含有量や、操作性等を考慮して任意に選択することができる。例えば窒素系有機物溶液中の窒素系有機物の濃度の下限値は、1mL/L以上であることが好ましく、2mL/L以上であることがより好ましい。また、上限値は、4mL/L以下であることが好ましい。 The method for forming the organic material layer is not particularly limited. For example, the organic material layer can be formed by applying and drying a nitrogen-based organic material solution containing a nitrogen-based organic material on the metal layer. The concentration of nitrogen-based organic matter in the nitrogen-based organic matter solution used when forming the organic matter layer is not particularly limited, taking into account the content of nitrogenous organic matter in the target organic matter layer, operability, etc. Can be arbitrarily selected. For example, the lower limit of the concentration of the nitrogenous organic substance in the nitrogenous organic substance solution is preferably 1 mL / L or more, and more preferably 2 mL / L or more. Moreover, it is preferable that an upper limit is 4 mL / L or less.
 金属層表面に窒素系有機物溶液を供給する際の窒素系有機物溶液の温度は特に限定されるものではなく、該溶液の粘度や操作性、反応性等を考慮して任意に選択することができる。例えば10℃以上であることが好ましく、20℃以上であることがより好ましい。ただし、温度が高くなると含まれる窒素系有機物が他の物質と反応する恐れがあることから、40℃以下とすることが好ましい。 The temperature of the nitrogen-based organic solution when supplying the nitrogen-based organic solution to the surface of the metal layer is not particularly limited, and can be arbitrarily selected in consideration of the viscosity, operability, reactivity, etc. of the solution. . For example, it is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. However, since the nitrogenous organic substance contained may react with other substances when the temperature increases, the temperature is preferably set to 40 ° C. or lower.
 窒素系有機物溶液のpHは特に限定されるものではなく、用いる窒素系有機物の種類や該溶液の反応性等を考慮して選択することができるが、例えば窒素系有機物溶液のpHは2以上であることが好ましく、3以上であることがより好ましい。ただし、pHが高くなると皮膜中の窒素系有機物の含有量が低下することから、窒素系有機物溶液のpHは4以下であることが好ましい。 The pH of the nitrogen-based organic material solution is not particularly limited and can be selected in consideration of the type of nitrogen-based organic material to be used and the reactivity of the solution. For example, the pH of the nitrogen-based organic material solution is 2 or more. It is preferable that the number is 3 or more. However, since the content of nitrogen-based organic matter in the film decreases as the pH increases, the pH of the nitrogen-based organic matter solution is preferably 4 or less.
 金属層表面に対して窒素系有機物溶液を供給し、反応させる処理時間の長さは特に限定されるものではなく、用いる窒素系有機物溶液の種類や、形成する有機物層の厚さ等に応じて任意に選択することができる。例えば処理時間は5秒以上であることが好ましく、6秒以上であることがより好ましい。ただし、処理時間を長くしすぎると、生産性が低下する恐れがあることから10秒以下であることが好ましい。 The length of the treatment time for supplying and reacting the nitrogen-based organic solution to the metal layer surface is not particularly limited, depending on the type of nitrogen-based organic solution used, the thickness of the organic layer to be formed, etc. Can be arbitrarily selected. For example, the treatment time is preferably 5 seconds or more, and more preferably 6 seconds or more. However, if the treatment time is too long, productivity may be lowered, and therefore it is preferably 10 seconds or less.
 次に黒化層について説明する。 Next, the blackened layer will be described.
 黒化層は、有機物層の上面に形成することができる。 The blackening layer can be formed on the upper surface of the organic layer.
 黒化層の材料は特に限定されるものではなく、金属層表面における光の反射を抑制できる材料であれば好適に用いることができる。 The material of the blackening layer is not particularly limited, and any material that can suppress the reflection of light on the surface of the metal layer can be suitably used.
 黒化層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、黒化層は、炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。 The blackening layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Further, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
 なお、黒化層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含むこともできる。この場合についても、黒化層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cu合金をより好ましく用いることができる。 The blackening layer can also include a metal alloy containing at least two metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. . Also in this case, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used. In addition, a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used. In particular, a Ni—Cu alloy can be used more preferably.
 黒化層の形成方法は特に限定されるものではなく、任意の方法により形成することができ、例えば乾式法、または湿式法により成膜することができる。 The method for forming the blackened layer is not particularly limited, and can be formed by any method, for example, by a dry method or a wet method.
 黒化層を乾式法により成膜する場合、その具体的な方法は特に限定されるものではないが、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。黒化層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 When the blackening layer is formed by a dry method, the specific method is not particularly limited, but for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used. When the blackening layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. Note that, as described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
 反応性スパッタリング法により黒化層を成膜する場合、ターゲットとしては、黒化層を構成する金属種を含むターゲットを用いることができる。黒化層が合金を含む場合には、黒化層に含まれる金属種毎にターゲットを用い、基材等の被成膜体の表面で合金を形成してもよく、予め黒化層に含まれる金属を合金化したターゲットを用いることもできる。 When forming the blackened layer by the reactive sputtering method, a target containing a metal species constituting the blackened layer can be used as the target. When the blackened layer contains an alloy, a target may be used for each metal species contained in the blackened layer, and the alloy may be formed on the surface of the film-deposited body such as a substrate, and is included in the blackened layer in advance. It is also possible to use a target obtained by alloying a metal.
 また、黒化層に炭素、酸素、水素、窒素から選ばれる1種以上の元素が含まれる場合、これらは黒化層を成膜する際の雰囲気中に添加しておくことにより、黒化層中に添加することができる。例えば、黒化層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、スパッタリングを行う際の雰囲気中に添加しておくことができる。黒化層を成膜する際の不活性ガス中にこれらのガスを添加することにより、炭素、酸素、水素、窒素から選ばれる1種以上の元素を黒化層中に添加することができる。なお、不活性ガスとしてはアルゴンを好ましく用いることができる。 Further, when the blackened layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, these are added to the atmosphere when the blackened layer is formed, so that the blackened layer Can be added inside. For example, when adding carbon to the blackening layer, carbon monoxide gas and / or carbon dioxide gas is used, when adding oxygen, oxygen gas is used, and when adding hydrogen, hydrogen gas and / or water is used. In the case of adding nitrogen, nitrogen gas can be added to the atmosphere during sputtering. One or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackening layer by adding these gases to the inert gas when forming the blackening layer. Argon can be preferably used as the inert gas.
 黒化層を湿式法により成膜する場合には、黒化層の材料に応じためっき液を用い、例えば電気めっき法により成膜することができる。 When the blackened layer is formed by a wet method, it can be formed by, for example, an electroplating method using a plating solution corresponding to the material of the blackened layer.
 上述の様に黒化層は、乾式法、湿式法のいずれの方法でも形成することができるが、黒化層を形成する際に、有機物層に含まれる窒素系有機物が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。 As described above, the blackened layer can be formed by either a dry method or a wet method. However, when forming the blackened layer, the nitrogen-based organic matter contained in the organic layer is dissolved in the plating solution. Incorporation into the blackened layer may affect the color tone and other characteristics of the blackened layer. Therefore, it is preferable to form a film by a dry method.
 黒化層の厚さは特に限定されるものではないが、例えば15nm以上であることが好ましく、25nm以上であることがより好ましい。これは、黒化層の厚さが薄い場合には、金属層表面における光の反射を十分に抑制できない場合があるため、上述のように黒化層の厚さを15nm以上とすることにより金属層表面における光の反射を特に抑制できるように構成することが好ましいためである。 The thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, and more preferably 25 nm or more. This is because when the thickness of the blackened layer is thin, reflection of light on the surface of the metal layer may not be sufficiently suppressed. Therefore, the thickness of the blackened layer is set to 15 nm or more as described above. This is because it is preferable to configure so that reflection of light on the surface of the layer can be particularly suppressed.
 黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、黒化層の厚さは70nm以下とすることが好ましく、50nm以下とすることがより好ましい。 The upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited. For this reason, the thickness of the blackened layer is preferably 70 nm or less, and more preferably 50 nm or less.
 また、導電性基板は上述の絶縁性基材、金属層、有機物層、黒化層以外に任意の層を設けることもできる。例えば密着層を設けることができる。 Also, the conductive substrate can be provided with any layer other than the above-mentioned insulating base material, metal layer, organic material layer, and blackening layer. For example, an adhesion layer can be provided.
 密着層の構成例について説明する。 A configuration example of the adhesion layer will be described.
 上述のように金属層は絶縁性基材上に形成することができるが、絶縁性基材上に金属層を直接形成した場合に、絶縁性基材と金属層との密着性は十分ではない場合がある。このため、絶縁性基材の上面に直接金属層を形成した場合、製造過程、または、使用時に絶縁性基材から金属層が剥離する場合がある。 As described above, the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be peeled off from the insulating substrate during the manufacturing process or use.
 そこで、本実施形態の導電性基板においては、絶縁性基材と金属層との密着性を高めるため、絶縁性基材上に密着層を配置することができる。 Therefore, in the conductive substrate of the present embodiment, an adhesion layer can be disposed on the insulating substrate in order to improve the adhesion between the insulating substrate and the metal layer.
 絶縁性基材と金属層との間に密着層を配置することにより、絶縁性基材と金属層との密着性を高め、絶縁性基材から金属層が剥離することを抑制できる。 By disposing the adhesion layer between the insulating substrate and the metal layer, the adhesion between the insulating substrate and the metal layer can be improved, and the metal layer can be prevented from peeling off from the insulating substrate.
 また、密着層は黒化層としても機能させることができる。このため、金属層の下面側、すなわち絶縁性基材側からの光による金属層の光の反射も抑制することが可能になる。 Also, the adhesion layer can function as a blackening layer. For this reason, it becomes possible to suppress the reflection of the light of the metal layer by the light from the lower surface side of the metal layer, that is, the insulating base material side.
 密着層を構成する材料は特に限定されるものではなく、絶縁性基材及び金属層との密着力や、要求される金属層表面での光の反射の抑制の程度、また、導電性基板を使用する環境(例えば湿度や、温度)に対する安定性の程度等に応じて任意に選択することができる。 The material constituting the adhesion layer is not particularly limited, the adhesion strength between the insulating base and the metal layer, the degree of suppression of light reflection on the surface of the required metal layer, and the conductive substrate. It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity and temperature) to be used.
 密着層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。 The adhesion layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. The adhesion layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
 なお、密着層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含むこともできる。この場合についても、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cu合金をより好ましく用いることができる。 The adhesion layer can also include a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further include one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used. In addition, a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used. In particular, a Ni—Cu alloy can be used more preferably.
 密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 The method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. Note that, as described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, a reactive sputtering method can be more preferably used.
 密着層が炭素、酸素、水素、窒素から選ばれる1種以上の元素を含む場合には、密着層を成膜する際の雰囲気中に炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスを添加しておくことにより、密着層中に添加することができる。例えば、密着層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、乾式めっきを行う際の雰囲気中に添加しておくことができる。 When the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen in the atmosphere when forming the adhesion layer Can be added to the adhesion layer. For example, when adding carbon to the adhesion layer, carbon monoxide gas and / or carbon dioxide gas, when adding oxygen, oxygen gas, when adding hydrogen, hydrogen gas and / or water, In the case of adding nitrogen, nitrogen gas can be added to the atmosphere when dry plating is performed.
 炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスは、不活性ガスに添加し、乾式めっきの際の雰囲気ガスとすることが好ましい。不活性ガスとしては特に限定されないが、例えばアルゴンを好ましく用いることができる。 A gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas during dry plating. Although it does not specifically limit as an inert gas, For example, argon can be used preferably.
 密着層を上述のように乾式めっき法により成膜することにより、絶縁性基材と密着層との密着性を高めることができる。そして、密着層は例えば金属を主成分として含むことができるため金属層との密着性も高い。このため、絶縁性基材と金属層との間に密着層を配置することにより、金属層の剥離を抑制することができる。 By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since an adhesion layer can contain a metal as a main component, for example, its adhesiveness with a metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange | positioning an adhesion layer between an insulating base material and a metal layer.
 密着層の厚さは特に限定されるものではないが、例えば3nm以上50nm以下とすることが好ましく、3nm以上35nm以下とすることがより好ましく、3nm以上33nm以下とすることがさらに好ましい。 The thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, for example, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
 密着層についても黒化層として機能させる場合、すなわち金属層における光の反射を抑制する場合、密着層の厚さを上述のように3nm以上とすることが好ましい。 When the adhesion layer also functions as a blackening layer, that is, when light reflection in the metal layer is suppressed, the thickness of the adhesion layer is preferably 3 nm or more as described above.
 密着層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、密着層の厚さは上述のように50nm以下とすることが好ましく、35nm以下とすることがより好ましく、33nm以下とすることがさらに好ましい。 The upper limit value of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited. For this reason, the thickness of the adhesion layer is preferably 50 nm or less as described above, more preferably 35 nm or less, and further preferably 33 nm or less.
 次に、導電性基板の構成例について説明する。 Next, a configuration example of the conductive substrate will be described.
 上述のように、本実施形態の導電性基板は絶縁性基材と、金属層と、有機物層と、黒化層と、を有することができる。また、任意に密着層等の層を設けることもできる。 As described above, the conductive substrate of the present embodiment can have an insulating base, a metal layer, an organic layer, and a blackening layer. Further, a layer such as an adhesion layer can be optionally provided.
 具体的な構成例について、図1A、図1B、図2A、図2Bを用いて以下に説明する。図1A、図1B、図2A、図2Bは、本実施形態の導電性基板の、絶縁性基材、金属層、有機物層、黒化層の積層方向と平行な面における断面図の例を示している。 Specific configuration examples will be described below with reference to FIGS. 1A, 1B, 2A, and 2B. FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B show examples of cross-sectional views in the plane parallel to the stacking direction of the insulating substrate, metal layer, organic layer, and blackening layer of the conductive substrate of this embodiment. ing.
 本実施形態の導電性基板は、例えば絶縁性基材の少なくとも一方の面上に、絶縁性基材側から金属層と、有機物層と、黒化層とがその順に積層された構造を有することができる。 The conductive substrate of this embodiment has, for example, a structure in which a metal layer, an organic layer, and a blackening layer are laminated in that order from the insulating base side on at least one surface of the insulating base. Can do.
 具体的には例えば、図1Aに示した導電性基板10Aのように、絶縁性基材11の一方の面11a側に金属層12と、有機物層13と、黒化層14と、を一層ずつその順に積層することができる。また、図1Bに示した導電性基板10Bのように、絶縁性基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bと、を一層ずつその順に積層することができる。 Specifically, for example, like the conductive substrate 10A shown in FIG. 1A, the metal layer 12, the organic material layer 13, and the blackening layer 14 are formed one by one on the one surface 11a side of the insulating base material 11. They can be stacked in that order. Moreover, like the electroconductive board | substrate 10B shown to FIG. 1B, metal layer 12A, 12B on the one surface 11a side of the insulating base material 11, and the other surface (other surface) 11b side, respectively, The organic layers 13A and 13B and the blackening layers 14A and 14B can be stacked one by one in that order.
 また、さらに任意の層として、例えば密着層を設けた構成とすることもできる。この場合例えば、絶縁性基材の少なくとも一方の面上に、絶縁性基材側から密着層と、金属層と、有機物層と、黒化層とがその順に形成された構造とすることができる。 Further, as an optional layer, for example, an adhesion layer may be provided. In this case, for example, a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are formed in that order from the insulating substrate side on at least one surface of the insulating substrate can be employed. .
 具体的には例えば図2Aに示した導電性基板20Aのように、絶縁性基材11の一方の面11a側に、密着層15と、金属層12と、有機物層13と、黒化層14と、をその順に積層することができる。 Specifically, for example, like the conductive substrate 20A shown in FIG. 2A, the adhesion layer 15, the metal layer 12, the organic layer 13, and the blackening layer 14 are formed on one surface 11a side of the insulating base material 11. Can be stacked in that order.
 この場合も絶縁性基材11の両面に密着層、金属層、有機物層、黒化層を積層した構成とすることもできる。具体的には図2Bに示した導電性基板20Bのように、絶縁性基材11の一方の面11a側と、他方の面11b側と、にそれぞれ密着層15A、15Bと、金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bとをその順に積層できる。 In this case as well, a structure in which an adhesion layer, a metal layer, an organic material layer, and a blackening layer are laminated on both surfaces of the insulating substrate 11 can be employed. Specifically, as in the conductive substrate 20B shown in FIG. 2B, the adhesion layers 15A and 15B and the metal layer 12A on the one surface 11a side and the other surface 11b side of the insulating base material 11, respectively. 12B, organic layers 13A and 13B, and blackening layers 14A and 14B can be stacked in that order.
 なお、図1B、図2Bにおいて、絶縁性基材の両面に金属層、有機物層、黒化層等を積層した場合において、絶縁性基材11を対称面として絶縁性基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図2Bにおいて、絶縁性基材11の一方の面11a側の構成を図1Bの構成と同様に、密着層15Aを設けずに金属層12Aと、有機物層13Aと、黒化層14Aとをその順に積層した形態とし、絶縁性基材11の上下に積層した層を非対称な構成としてもよい。 In FIG. 1B and FIG. 2B, when a metal layer, an organic material layer, a blackening layer, etc. are laminated on both surfaces of the insulating base material, the insulating base material 11 is laminated on the upper and lower sides of the insulating base material 11 with the symmetrical surface. Although the example which arrange | positioned so that the layer which became symmetrical may be shown, it is not limited to the form which concerns. For example, in FIG. 2B, the configuration on the one surface 11a side of the insulating substrate 11 is similar to the configuration of FIG. 1B, without providing the adhesion layer 15A, the metal layer 12A, the organic layer 13A, and the blackening layer 14A. It is good also as a form laminated | stacked in that order, and it is good also as an asymmetrical structure the layer laminated | stacked on the upper and lower sides of the insulating base material 11. FIG.
 ところで、本実施形態の導電性基板においては、絶縁性基材上に金属層と、有機物層と、黒化層とを設けることで、金属層による光の反射を抑制し、導電性基板の反射率を抑制することができる。 By the way, in the electroconductive board | substrate of this embodiment, reflection of the light by a metal layer is suppressed by providing a metal layer, an organic substance layer, and a blackening layer on an insulating base material, and reflection of an electroconductive board | substrate. The rate can be suppressed.
 本実施形態の導電性基板の反射率の程度については特に限定されるものではないが、例えばタッチパネル用の導電性基板として用いた場合のディスプレイの視認性を高めるためには、反射率は低い方が良い。例えば、波長400nm以上700nm以下の光の平均反射率が20%以下であることが好ましく、17%以下であることがより好ましく、15%以下であることが特に好ましい。 The degree of reflectivity of the conductive substrate of the present embodiment is not particularly limited. For example, in order to increase the visibility of a display when used as a conductive substrate for a touch panel, the reflectivity is lower. Is good. For example, the average reflectance of light having a wavelength of 400 nm to 700 nm is preferably 20% or less, more preferably 17% or less, and particularly preferably 15% or less.
 反射率の測定は、導電性基板の黒化層に光を照射するようにして測定を行うことができる。具体的には例えば図1Aのように絶縁性基材11の一方の面11a側に金属層12、有機物層13、黒化層14の順に積層した場合、黒化層14に光を照射するように黒化層14の表面Aに対して光を照射し、測定できる。測定に当たっては波長400nm以上700nm以下の光を例えば波長1nm間隔で上述のように導電性基板の黒化層14に対して照射し、測定した値の平均値を該導電性基板の反射率とすることができる。 The reflectance can be measured by irradiating the blackened layer of the conductive substrate with light. Specifically, for example, when the metal layer 12, the organic material layer 13, and the blackened layer 14 are laminated in this order on one surface 11a side of the insulating base material 11 as shown in FIG. 1A, the blackened layer 14 is irradiated with light. The surface A of the blackened layer 14 can be irradiated with light and measured. In the measurement, light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 14 of the conductive substrate, for example, at a wavelength of 1 nm as described above, and the average value of the measured values is used as the reflectance of the conductive substrate. be able to.
 本実施形態の導電性基板はタッチパネル用の導電性基板として好ましく用いることができる。この場合導電性基板はメッシュ状の配線を備えた構成とすることができる。 The conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel. In this case, the conductive substrate can be configured to have mesh-like wiring.
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の金属層、有機物層、及び黒化層をエッチングすることにより得ることができる。 The conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer, the organic material layer, and the blackening layer of the conductive substrate of the present embodiment described so far.
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図3に示す。図3はメッシュ状の配線を備えた導電性基板30を金属層等の積層方向の上面側から見た図を示しており、配線パターンが分かり易いように、絶縁性基材11、及び金属層をパターニングして形成した配線31A、31B以外の層は記載を省略している。また、絶縁性基材11を透過して見える配線31Bも示している。 For example, a mesh-like wiring can be formed by two-layer wiring. A specific configuration example is shown in FIG. FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like. In order to make the wiring pattern easy to understand, the insulating substrate 11 and the metal layer Layers other than the wirings 31A and 31B formed by patterning are omitted. In addition, a wiring 31B that can be seen through the insulating substrate 11 is also shown.
 図3に示した導電性基板30は、絶縁性基材11と、図中Y軸方向に平行な複数の配線31Aと、X軸方向に平行な配線31Bとを有している。なお、配線31A、31Bは金属層をエッチングして形成されており、該配線31A、31Bの上面および/または下面には図示しない有機物層、及び黒化層が形成されている。また、有機物層、及び黒化層は配線31A、31Bと同じ形状にエッチングされている。 The conductive substrate 30 shown in FIG. 3 has an insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and wirings 31B parallel to the X-axis direction. The wirings 31A and 31B are formed by etching a metal layer, and an organic material layer and a blackening layer (not shown) are formed on the upper surface and / or the lower surface of the wirings 31A and 31B. The organic material layer and the blackened layer are etched in the same shape as the wirings 31A and 31B.
 絶縁性基材11と配線31A、31Bとの配置は特に限定されない。絶縁性基材11と配線との配置の構成例を図4A、図4Bに示す。図4A、図4Bは図3のA-A´線での断面図に当たる。 The arrangement of the insulating base 11 and the wirings 31A and 31B is not particularly limited. A configuration example of the arrangement of the insulating base material 11 and the wiring is shown in FIGS. 4A and 4B. 4A and 4B are cross-sectional views taken along line AA ′ of FIG.
 まず、図4Aに示したように、絶縁性基材11の上下面にそれぞれ配線31A、31Bが配置されていてもよい。なお、図4Aでは配線31Aの上面、及び31Bの下面には、配線と同じ形状にエッチングされた有機物層32A、32B、黒化層33A、33Bが配置されている。 First, as shown in FIG. 4A, wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively. In FIG. 4A, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of 31B.
 また、図4Bに示したように、1組の絶縁性基材11を用い、一方の絶縁性基材11を挟んで上下面に配線31A、31Bを配置し、かつ、一方の配線31Bは絶縁性基材11間に配置されてもよい。この場合も、配線31A、31Bの上面には配線と同じ形状にエッチングされた有機物層32A、32B、黒化層33A、33Bが配置されている。なお、既述のように、金属層、有機物層、黒化層以外に密着層を設けることもできる。このため、図4A、図4Bいずれの場合でも、例えば配線31Aおよび/または配線31Bと絶縁性基材11との間に密着層を設けることもできる。密着層を設ける場合、密着層も配線31A、31Bと同じ形状にエッチングされていることが好ましい。 Further, as shown in FIG. 4B, a pair of insulating base materials 11 is used, wirings 31A and 31B are arranged on the upper and lower surfaces with one insulating base material 11 interposed therebetween, and one wiring 31B is insulated. May be disposed between the conductive substrates 11. Also in this case, organic layers 32A and 32B and blackening layers 33A and 33B etched in the same shape as the wiring are arranged on the upper surfaces of the wirings 31A and 31B. As described above, an adhesion layer can be provided in addition to the metal layer, the organic material layer, and the blackening layer. Therefore, in either case of FIG. 4A or FIG. 4B, for example, an adhesion layer can be provided between the wiring 31 </ b> A and / or the wiring 31 </ b> B and the insulating substrate 11. When the adhesion layer is provided, it is preferable that the adhesion layer is also etched in the same shape as the wirings 31A and 31B.
 図3及び図4Aに示したメッシュ状の配線を有する導電性基板は例えば、図1Bのように絶縁性基材11の両面に金属層12A、12Bと、有機物層13A、13Bと、黒化層14A、14Bを備えた導電性基板から形成することができる。 The conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a metal layer 12A, 12B, an organic layer 13A, 13B, and a blackening layer on both sides of the insulating base 11 as shown in FIG. 1B. It can be formed from a conductive substrate provided with 14A and 14B.
 図1Bの導電性基板を用いて形成した場合を例に説明すると、まず、絶縁性基材11の一方の面11a側の金属層12A、有機物層13A、及び黒化層14Aを、図1B中Y軸方向に平行な複数の線状のパターンがX軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。なお、図1B中のX軸方向は、各層の幅方向と平行な方向を意味している。また、図1B中のY軸方向とは、図1B中の紙面と垂直な方向を意味している。 The case where it is formed using the conductive substrate of FIG. 1B will be described as an example. First, the metal layer 12A, the organic layer 13A, and the blackening layer 14A on the one surface 11a side of the insulating base 11 are shown in FIG. 1B. Etching is performed so that a plurality of linear patterns parallel to the Y-axis direction are arranged at predetermined intervals along the X-axis direction. In addition, the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer. Further, the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
 そして、絶縁性基材11の他方の面11b側の金属層12B、有機物層13B、及び黒化層14Bを図1B中X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。 A plurality of linear patterns parallel to the X-axis direction in FIG. 1B are spaced apart from each other on the metal layer 12B, the organic material layer 13B, and the blackening layer 14B on the other surface 11b side of the insulating substrate 11 by a predetermined interval. Etching is performed so as to be arranged along the Y-axis direction.
 以上の操作により図3、図4Aに示したメッシュ状の配線を有する導電性基板を形成することができる。なお、絶縁性基材11の両面のエッチングは同時に行うこともできる。すなわち、金属層12A、12B、有機物層13A、13B、黒化層14A、14Bのエッチングは同時に行ってもよい。また、図4Aにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターニングされた密着層を有する導電性基板は、図2Bに示した導電性基板を用いて同様にエッチングを行うことで作製できる。 By the above operation, the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed. In addition, the etching of both surfaces of the insulating substrate 11 can be performed simultaneously. That is, the etching of the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B may be performed simultaneously. 4A, the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is the conductive substrate shown in FIG. 2B. It can be produced by etching in the same manner.
 図3に示したメッシュ状の配線を有する導電性基板は、図1Aまたは図2Aに示した導電性基板を2枚用いることにより形成することもできる。図1Aの導電性基板を2枚用いて形成した場合を例に説明すると、図1Aに示した導電性基板2枚についてそれぞれ、金属層12、有機物層13、及び黒化層14を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。例えば、金属層12等が積層された図1Aにおける表面Aと、金属層12等が積層されていない図1Aにおける他方の面11bとを貼り合せて、図4Bに示した構造となるようにすることもできる。 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A. A case where the two conductive substrates shown in FIG. 1A are used will be described as an example. For the two conductive substrates shown in FIG. 1A, the metal layer 12, the organic material layer 13, and the blackening layer 14 are respectively formed on the X axis. Etching is performed so that a plurality of linear patterns parallel to the direction are arranged along the Y-axis direction at predetermined intervals. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to. The surface to be bonded when the two conductive substrates are bonded is not particularly limited. For example, the surface A in FIG. 1A in which the metal layer 12 or the like is laminated and the other surface 11b in FIG. 1A in which the metal layer 12 or the like is not laminated are bonded together so that the structure shown in FIG. 4B is obtained. You can also.
 また、例えば絶縁性基材11の金属層12等が積層されていない図1Aにおける他方の面11b同士を貼り合せて断面が図4Aに示した構造となるようにすることもできる。 Further, for example, the other surfaces 11b in FIG. 1A where the metal layer 12 or the like of the insulating base material 11 is not laminated can be bonded together so that the cross section has the structure shown in FIG. 4A.
 なお、図4A、図4Bにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターニングされた密着層を有する導電性基板は、図1Aに示した導電性基板にかえて図2Aに示した導電性基板を用いることで作製できる。 4A and 4B, the conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the insulating base material 11 is shown in FIG. 1A. It can be manufactured by using the conductive substrate shown in FIG. 2A instead of the conductive substrate.
 図3、図4A、図4Bに示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。 The width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIG. 3, FIG. 4A and FIG. 4B are not particularly limited. You can choose.
 また、図3、図4A、図4Bにおいては、直線形状の配線を組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンを構成する配線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する配線の形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。 3, 4 </ b> A, and 4 </ b> B show examples in which a mesh-like wiring (wiring pattern) is formed by combining linear wirings, but the present invention is not limited to such a form. The wiring that constitutes can be of any shape. For example, the shape of the wiring constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display.
 このように2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。 Thus, a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
 以上の本実施形態の導電性基板によれば、絶縁性基材の少なくとも一方の面上に形成された金属層上に、窒素系有機物を一定量以上含む有機物層と、黒化層と、を積層した構造を有している。このため、金属層表面における光の反射を抑制し、反射率を抑制した導電性基板とすることができる。また、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。
(導電性基板の製造方法)
 次に本実施形態の導電性基板の製造方法の一構成例について説明する。
According to the conductive substrate of the present embodiment, an organic material layer containing a certain amount or more of a nitrogen-based organic material on a metal layer formed on at least one surface of an insulating base material, and a blackening layer, It has a laminated structure. For this reason, it can be set as the electroconductive board | substrate which suppressed reflection of the light in the metal layer surface and suppressed the reflectance. Moreover, the visibility of a display can be improved when used for applications such as a touch panel.
(Method for producing conductive substrate)
Next, a configuration example of the method for manufacturing the conductive substrate according to the present embodiment will be described.
 本実施形態の導電性基板の製造方法は、以下の工程を有することができる。 
 絶縁性基材の少なくとも一方の面上に金属層を形成する金属層形成工程。 
 金属層上に窒素系有機物を含有する有機物層を形成する有機物層形成工程。 
 有機物層上に黒化層を形成する黒化層形成工程。
The manufacturing method of the conductive substrate of this embodiment can have the following processes.
A metal layer forming step of forming a metal layer on at least one surface of the insulating substrate.
An organic material layer forming step of forming an organic material layer containing a nitrogen-based organic material on the metal layer.
A blackened layer forming step of forming a blackened layer on the organic material layer.
 そして、有機物層形成工程では、窒素系有機物を0.2μg/cm以上含有するように有機物層を形成することが好ましい。 And in an organic substance layer formation process, it is preferred to form an organic substance layer so that nitrogen system organic substance may be contained 0.2 μg / cm 2 or more.
 以下に本実施形態の導電性基板の製造方法について具体的に説明する。 Hereinafter, the manufacturing method of the conductive substrate of the present embodiment will be specifically described.
 なお、本実施形態の導電性基板の製造方法により上述の導電性基板を好適に製造することができる。このため、以下に説明する点以外については上述の導電性基板の場合と同様の構成とすることができるため説明を一部省略する。 In addition, the above-mentioned electroconductive board | substrate can be suitably manufactured with the manufacturing method of the electroconductive board | substrate of this embodiment. For this reason, since it can be set as the structure similar to the case of the above-mentioned electroconductive board | substrate except the point demonstrated below, description is abbreviate | omitted partially.
 金属層形成工程に供する絶縁性基材は予め準備しておくことができる。用いる絶縁性基材の種類は特に限定されるものではないが、既述のように可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。絶縁性基材は必要に応じて予め任意のサイズに切断等行っておくこともできる。 The insulating base material used for the metal layer forming step can be prepared in advance. Although the kind of insulating base material to be used is not particularly limited, a transparent base material such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used as described above. The insulating base material can be cut into an arbitrary size in advance if necessary.
 そして、金属層は既述のように、金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有することもできる。このため、金属層形成工程は、例えば乾式めっき法により金属薄膜層を形成する工程を有することができる。また、金属層形成工程は、乾式めっき法により金属薄膜層を形成する工程と、該金属薄膜層を給電層として、湿式めっき法の一種である電気めっき法により金属めっき層を形成する工程と、を有していてもよい。 The metal layer preferably has a metal thin film layer as described above. The metal layer can also have a metal thin film layer and a metal plating layer. For this reason, a metal layer formation process can have a process of forming a metal thin film layer, for example by a dry-type plating method. The metal layer forming step includes a step of forming a metal thin film layer by a dry plating method, a step of forming a metal plating layer by an electroplating method which is a kind of wet plating method, using the metal thin film layer as a power feeding layer, You may have.
 金属薄膜層を形成する工程で用いる乾式めっき法としては、特に限定されるものではなく、例えば、蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。なお、蒸着法としては真空蒸着法を好ましく用いることができる。金属薄膜層を形成する工程で用いる乾式めっき法としては、特に膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。 The dry plating method used in the step of forming the metal thin film layer is not particularly limited, and for example, an evaporation method, a sputtering method, an ion plating method, or the like can be used. In addition, as a vapor deposition method, a vacuum vapor deposition method can be used preferably. As the dry plating method used in the step of forming the metal thin film layer, it is more preferable to use the sputtering method because the film thickness is particularly easy to control.
 次に金属めっき層を形成する工程について説明する。湿式めっき法により金属めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、金属めっき液を入れためっき槽に金属薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、金属めっき層を形成できる。 Next, the process for forming the metal plating layer will be described. The conditions in the step of forming the metal plating layer by the wet plating method, that is, the conditions for the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted. For example, a metal plating layer can be formed by supplying a base material on which a metal thin film layer is formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base material.
 金属層に好適に用いることができる材料や、金属層の好適な厚さ等については既述のため、ここでは説明を省略する。 Since the materials that can be suitably used for the metal layer, the preferred thickness of the metal layer, and the like have already been described, the description thereof is omitted here.
 次に、有機物層形成工程について説明する。 Next, the organic layer forming process will be described.
 有機物層形成工程においては、金属層上に窒素系有機物を含有する有機物層を形成することができる。 In the organic material layer forming step, an organic material layer containing a nitrogen-based organic material can be formed on the metal layer.
 既述のように、金属層と黒化層との間に有機物層を設けることで、導電性基板の反射率を抑制することができる。 As described above, the reflectance of the conductive substrate can be suppressed by providing an organic layer between the metal layer and the blackened layer.
 有機物層の形成方法は特に限定されるものではないが、例えば窒素系有機物溶液を金属層上に塗布、乾燥することにより形成することができる。 The method for forming the organic material layer is not particularly limited, and for example, it can be formed by applying and drying a nitrogen-based organic material solution on the metal layer.
 金属層上に有機物層を構成する材料を含む溶液を塗布する方法としては特に限定されるものではなく、任意の方法により塗布することができる。例えば、窒素系有機物溶液をスプレー等により塗布したり、窒素系有機物溶液に金属層を形成した絶縁性基材を浸漬することにより金属層上に有機物層を構成する材料を含む溶液を塗布することができる。 The method for applying the solution containing the material constituting the organic layer on the metal layer is not particularly limited, and can be applied by any method. For example, applying a solution containing a material constituting the organic layer on the metal layer by applying a nitrogen-based organic solution by spraying or immersing an insulating base material in which the metal layer is formed in the nitrogen-based organic solution. Can do.
 有機物層に用いる窒素系有機物としては特に限定されるものではなく、窒素を含有する有機化合物から任意に選択して用いることができる。有機物層に用いる窒素系有機物は例えば、1,2,3-ベンゾトリアゾール、またはその誘導体を含むことが好ましい。有機物層に用いる窒素系有機物としては、具体的には例えば、1,2,3-ベンゾトリアゾールや、5-メチル-1Hベンゾトリアゾール等を挙げることができる。 The nitrogen-based organic material used for the organic material layer is not particularly limited and can be arbitrarily selected from organic compounds containing nitrogen. The nitrogen-based organic material used for the organic material layer preferably contains, for example, 1,2,3-benzotriazole or a derivative thereof. Specific examples of the nitrogen-based organic material used in the organic material layer include 1,2,3-benzotriazole, 5-methyl-1H benzotriazole, and the like.
 有機物層に用いる窒素系有機物を含有する薬剤としては、例えば銅用の防錆処理剤を好ましく用いることができ、市販されている薬品としては例えばOPCディフェンサー(商品名、奥野製薬工業株式会社)等を好ましく用いることができる。 As a chemical | medical agent containing the nitrogen type organic substance used for an organic substance layer, the rust preventive agent for copper can be used preferably, for example, As a chemical | medical agent marketed, for example, an OPC defenser (brand name, Okuno Pharmaceutical Co., Ltd.) Etc. can be preferably used.
 有機物層の窒素系有機物の含有量は0.2μg/cm以上であることが好ましく、0.3μg/cm以上であることがより好ましい。これは、本発明の発明者らの検討によれば、有機物層の窒素系有機物の含有量を0.2μg/cm以上とすることで、導電性基板の反射率を大幅に抑制することができるからである。また、有機物層の窒素系有機物の含有量が増加すると、黒化層の色をCIE(L)表色系に換算した際のa値、b値を下げることができ、特に導電性基板の配線を目立たなくすることができるため好ましいからである。 The content of the nitrogen-based organic substance in the organic layer is preferably 0.2 μg / cm 2 or more, and more preferably 0.3 μg / cm 2 or more. According to the study by the inventors of the present invention, the reflectance of the conductive substrate can be greatly suppressed by setting the content of the nitrogen-based organic matter in the organic layer to 0.2 μg / cm 2 or more. Because it can. In addition, when the content of nitrogenous organic matter in the organic matter layer increases, the a * value and b * value when the color of the blackened layer is converted to the CIE (L * a * b * ) color system can be lowered. This is because the wiring of the conductive substrate can be made inconspicuous.
 有機物層の窒素系有機物の含有量の上限値は特に限定されるものではない。ただし、有機物層の窒素系有機物の含有量を増加させるためには、有機物層を形成する際に用いる窒素系有機物溶液の濃度を高めたり、窒素系有機物溶液の供給時間を長くする等を行うこととなる。このため、有機物層の窒素系有機物の含有量を過度に多くしようとすると、窒素系有機物溶液の取扱い性が低下したり、有機物層を形成するために要する時間が長くなり、生産性が低下する恐れがある。そこで、有機物層の窒素系有機化合物の含有量は例えば10μg/cm以下とすることが好ましく、また、含有量が低い方が黒化層の密着性が良好なため、1μg/cm以下とすることがより好ましく、0.5μg/cm以下とすることがさらに好ましい。 The upper limit of the content of nitrogen-based organic matter in the organic matter layer is not particularly limited. However, in order to increase the content of nitrogenous organic matter in the organic matter layer, increase the concentration of the nitrogenous organic matter solution used when forming the organic matter layer, increase the supply time of the nitrogenous organic matter solution, etc. It becomes. For this reason, if the content of the nitrogenous organic matter in the organic matter layer is excessively increased, the handleability of the nitrogenous organic matter solution is lowered or the time required for forming the organic matter layer is increased, resulting in a decrease in productivity. There is a fear. Therefore, the content of the nitrogen-based organic compound in the organic layer is preferably, for example, 10 μg / cm 2 or less, and the lower the content, the better the adhesion of the blackened layer, so that it is 1 μg / cm 2 or less. More preferably, it is more preferably 0.5 μg / cm 2 or less.
 金属層上に窒素系有機物溶液を供給する際の好適な条件等については既に説明したため、ここでは説明を省略する。 Since the suitable conditions for supplying the nitrogen-based organic substance solution onto the metal layer have already been described, the description thereof is omitted here.
 なお、窒素系有機物溶液を塗布後、付着した余剰の窒素系有機物溶液を除去するため、窒素系有機物溶液を塗布した基材を水により洗浄する水洗を実施することもできる。 In addition, in order to remove the adhering excess nitrogen-based organic matter solution after applying the nitrogen-based organic matter solution, it is possible to perform water washing in which the base material coated with the nitrogen-based organic matter solution is washed with water.
 次に、黒化層形成工程について説明する。 Next, the blackening layer forming process will be described.
 黒化層形成工程において、黒化層を形成する方法は特に限定されるものではなく、任意の方法により形成することができる。 In the blackened layer forming step, the method for forming the blackened layer is not particularly limited, and can be formed by any method.
 黒化層形成工程において黒化層を成膜する方法としては、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。特に、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 As a method for forming the blackened layer in the blackened layer forming step, for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used. In particular, the sputtering method is more preferable because the film thickness can be easily controlled. As described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
 また、既述のように黒化層は電気めっき法等の湿式法により成膜することもできる。 Further, as described above, the blackened layer can be formed by a wet method such as an electroplating method.
 ただし、黒化層を形成する際に、有機物層に含まれる窒素系有機物が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。 However, when forming the blackened layer, the nitrogen-based organic matter contained in the organic layer starts to dissolve in the plating solution and is taken into the blackened layer, affecting the color tone and other characteristics of the blackened layer. Since there is a fear, it is preferable to form a film by a dry method.
 黒化層に好適に用いることができる材料や、黒化層の好適な厚さ等については既述のため、ここでは説明を省略する。 Since the materials that can be suitably used for the blackened layer, the preferred thickness of the blackened layer, and the like have already been described, the description thereof is omitted here.
 本実施形態の導電性基板の製造方法においては、上述の工程に加えてさらに任意の工程を実施することもできる。 In the method for manufacturing a conductive substrate according to the present embodiment, an optional step can be further performed in addition to the above-described steps.
 例えば絶縁性基材と金属層との間に密着層を形成する場合、絶縁性基材の金属層を形成する面上に密着層を形成する密着層形成工程を実施することができる。密着層形成工程を実施する場合、金属層形成工程は、密着層形成工程の後に実施することができ、金属層形成工程では、本工程で絶縁性基材上に密着層を形成した基材に金属薄膜層を形成できる。 For example, when forming an adhesion layer between an insulating substrate and a metal layer, an adhesion layer forming step of forming an adhesion layer on the surface of the insulating substrate on which the metal layer is formed can be performed. When carrying out the adhesion layer forming step, the metal layer forming step can be carried out after the adhesion layer forming step, and in the metal layer forming step, the substrate having the adhesion layer formed on the insulating substrate in this step. A metal thin film layer can be formed.
 密着層形成工程において、密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 In the adhesion layer forming step, the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled. As described above, one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, the reactive sputtering method can be more preferably used.
 密着層に好適に用いることができる材料や、密着層の好適な厚さ等については既述のため、ここでは説明を省略する。 Since the materials that can be suitably used for the adhesion layer, the preferred thickness of the adhesion layer, and the like have already been described, description thereof is omitted here.
 本実施形態の導電性基板の製造方法で得られる導電性基板は例えばタッチパネル等の各種用途に用いることができる。そして、各種用途に用いる場合には、本実施形態の導電性基板に含まれる金属層、有機物層、及び黒化層がパターン化されていることが好ましい。なお、密着層を設ける場合は、密着層についてもパターン化されていることが好ましい。金属層、有機物層、及び黒化層、場合によってはさらに密着層は、例えば所望の配線パターンにあわせてパターン化することができ、金属層、有機物層、及び黒化層、場合によってはさらに密着層は同じ形状にパターン化されていることが好ましい。 The conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment can be used for various applications such as a touch panel. And when using for various uses, it is preferable that the metal layer, organic substance layer, and blackening layer which are contained in the electroconductive board | substrate of this embodiment are patterned. In addition, when providing an adhesion layer, it is preferable that the adhesion layer is also patterned. The metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be patterned in accordance with, for example, a desired wiring pattern, and the metal layer, the organic material layer, and the blackening layer, and in some cases, further adhesion. The layers are preferably patterned in the same shape.
 このため、本実施形態の導電性基板の製造方法は、金属層、有機物層及び黒化層をパターニングするパターニング工程を有することができる。なお、密着層を形成した場合には、パターニング工程は、密着層、金属層、有機物層、及び黒化層をパターニングする工程とすることができる。 For this reason, the manufacturing method of the conductive substrate of the present embodiment can include a patterning step of patterning the metal layer, the organic material layer, and the blackening layer. When the adhesion layer is formed, the patterning step can be a step of patterning the adhesion layer, the metal layer, the organic material layer, and the blackening layer.
 パターニング工程の具体的手順は特に限定されるものではなく、任意の手順により実施することができる。例えば図1Aのように絶縁性基材11上に金属層12、有機物層13、黒化層14が積層された導電性基板10Aの場合、まず黒化層14上の表面Aに所望のパターンを有するマスクを配置するマスク配置ステップを実施することができる。次いで、黒化層14の上の表面A、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。 The specific procedure of the patterning step is not particularly limited, and can be performed by an arbitrary procedure. For example, in the case of the conductive substrate 10A in which the metal layer 12, the organic material layer 13, and the blackening layer 14 are laminated on the insulating base 11 as shown in FIG. 1A, first, a desired pattern is formed on the surface A on the blackening layer 14. A mask placement step of placing a mask having it can be performed. Next, an etching step of supplying an etching solution to the surface A on the blackened layer 14, that is, the side on which the mask is disposed can be performed.
 エッチングステップにおいて用いるエッチング液は特に限定されるものではなく、エッチングを行う層を構成する材料に応じて任意に選択することができる。例えば、層毎にエッチング液を変えることもでき、また、同じエッチング液により同時に金属層、有機物層、及び黒化層、場合によってはさらに密着層をエッチングすることもできる。 The etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the material constituting the layer to be etched. For example, the etching solution can be changed for each layer, and the metal layer, the organic material layer, and the blackening layer, and in some cases, the adhesion layer can be etched simultaneously with the same etching solution.
 また、図1Bのように絶縁性基材11の一方の面11a、他方の面11bに金属層12A、12B、有機物層13A、13B、黒化層14A、14Bを積層した導電性基板10Bについてもパターニングするパターニング工程を実施できる。この場合例えば黒化層14A、14B上の表面A、及び表面Bに所望のパターンを有するマスクを配置するマスク配置ステップを実施できる。次いで、黒化層14A、14B上の表面A、及び表面B、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。 Further, as shown in FIG. 1B, the conductive substrate 10B in which the metal layers 12A and 12B, the organic layers 13A and 13B, and the blackening layers 14A and 14B are stacked on the one surface 11a and the other surface 11b of the insulating base 11 is also used. A patterning process for patterning can be performed. In this case, for example, a mask placement step of placing a mask having a desired pattern on the surface A and the surface B on the blackening layers 14A and 14B can be performed. Next, an etching step of supplying an etching solution to the surface A and the surface B on the blackening layers 14A and 14B, that is, the surface side where the mask is disposed can be performed.
 エッチングステップで形成するパターンについては特に限定されるものではなく、任意の形状とすることができる。例えば図1Aに示した導電性基板10Aの場合、既述のように金属層12、有機物層13、及び黒化層14を複数の直線や、ぎざぎざに屈曲した線(ジグザグ直線)を含むようにパターンを形成することができる。 The pattern formed in the etching step is not particularly limited, and can be an arbitrary shape. For example, in the case of the conductive substrate 10A shown in FIG. 1A, as described above, the metal layer 12, the organic material layer 13, and the blackened layer 14 include a plurality of straight lines or jagged lines (zigzag straight lines). A pattern can be formed.
 また、図1Bに示した導電性基板10Bの場合、金属層12Aと、金属層12Bとでメッシュ状の配線となるようにパターンを形成することができる。この場合、有機物層13A、及び黒化層14Aは、金属層12Aと同様の形状に、有機物層13B、及び黒化層14Bは金属層12Bと同様の形状になるようにそれぞれパターニングを行うことが好ましい。 Further, in the case of the conductive substrate 10B shown in FIG. 1B, a pattern can be formed by the metal layer 12A and the metal layer 12B so as to form a mesh-like wiring. In this case, the organic material layer 13A and the blackening layer 14A may be patterned to have the same shape as the metal layer 12A, and the organic material layer 13B and the blackening layer 14B may be patterned to have the same shape as the metal layer 12B. preferable.
 また、例えばパターニング工程で上述の導電性基板10Aについて金属層12等をパターン化した後、パターン化した2枚以上の導電性基板を積層する積層工程を実施することもできる。積層する際、例えば各導電性基板の金属層のパターンが交差するように積層することにより、メッシュ状の配線を備えた積層導電性基板を得ることもできる。 Further, for example, after the metal layer 12 and the like are patterned on the above-described conductive substrate 10A in the patterning step, a lamination step of laminating two or more patterned conductive substrates may be performed. When laminating, for example, by laminating so that the pattern of the metal layer of each conductive substrate intersects, a laminated conductive substrate provided with mesh-like wiring can be obtained.
 積層した2枚以上の導電性基板を固定する方法は特に限定されるものではないが、例えば接着剤等により固定することができる。 The method of fixing two or more laminated conductive substrates is not particularly limited, but can be fixed by, for example, an adhesive.
 以上の本実施形態の導電性基板の製造方法により得られる導電性基板は、絶縁性基材の少なくとも一方の面上に形成された金属層上に、窒素系有機物を一定量以上含む有機物層と、黒化層と、を積層した構造を有している。このため、金属層表面における光の反射を抑制し、反射率を抑制した導電性基板とすることができる。また、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。 The conductive substrate obtained by the above-described method for manufacturing a conductive substrate according to the present embodiment includes an organic layer containing a certain amount or more of a nitrogen-based organic substance on a metal layer formed on at least one surface of an insulating base. And a blackened layer. For this reason, it can be set as the electroconductive board | substrate which suppressed reflection of the light in the metal layer surface and suppressed the reflectance. Moreover, the visibility of a display can be improved when used for applications such as a touch panel.
 以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、得られた導電性基板の評価方法について説明する。
(1)反射率
 以下の各実施例、比較例において作製した導電性基板について反射率の測定を行った。
Specific examples and comparative examples will be described below, but the present invention is not limited to these examples.
(Evaluation methods)
First, a method for evaluating the obtained conductive substrate will be described.
(1) Reflectance The reflectance was measured for the conductive substrates prepared in the following examples and comparative examples.
 測定は、紫外可視分光光度計(株式会社 島津製作所製 型式:UV-2550)に反射率測定ユニットを設置して行った。 The measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
 後述のように各実施例、比較例では図2Aに示した構造を有する導電性基板を作製した。このため、反射率測定は図2Aに示した導電性基板10Aの黒化層14の表面Aに対して入射角5°、受光角5°として、波長400nm以上700nm以下の範囲の光を照射して実施した。なお、導電性基板に照射した光は、400nm以上700nm以下の範囲内で、1nm毎に波長を変化させて測定を行い、測定結果の平均を該導電性基板の反射率(平均反射率)とした。
(2)黒化層のL値、a値、b
 反射率を測定する際に、黒化層14の表面Aに対して波長400nm以上700nm以下の光を波長1nm間隔で波長を変化させて照射して測定した測定値からL、a、bを算出した。
(3)窒素系有機物の含有量
 絶縁性基材上に、密着層、金属層、有機物層を形成した後、黒化層を形成する前に、作製した基板の一部を切り取り、有機物層に含まれる窒素系有機物の含有量の評価を行った。
As will be described later, conductive substrates having the structure shown in FIG. 2A were prepared in the examples and comparative examples. For this reason, the reflectance measurement is performed by irradiating the surface A of the blackened layer 14 of the conductive substrate 10A shown in FIG. 2A with an incident angle of 5 ° and a light receiving angle of 5 ° in a wavelength range of 400 nm to 700 nm. Carried out. In addition, the light irradiated to the conductive substrate is measured by changing the wavelength every 1 nm within a range of 400 nm to 700 nm, and the average of the measurement result is the reflectance (average reflectance) of the conductive substrate. did.
(2) L * value, a * value, b * value of the blackened layer When measuring the reflectance, the light having a wavelength of 400 nm to 700 nm with respect to the surface A of the blackened layer 14 is measured at a wavelength of 1 nm. L * , a * , and b * were calculated from the measured values measured by irradiating and changing.
(3) Content of nitrogen-based organic matter After forming the adhesion layer, the metal layer, and the organic matter layer on the insulating base material, before forming the blackening layer, a part of the produced substrate is cut out to form the organic matter layer. The content of nitrogen-containing organic substances contained was evaluated.
 有機物層まで形成し、一部を切り出した基板と、抽出用溶液とを、基板が抽出用溶液に浸漬するようにしてスクリュー瓶内に入れ、超音波洗浄機に15分間かけた。 The organic substance layer was formed and a part of the substrate cut out and the extraction solution were placed in a screw bottle so that the substrate was immersed in the extraction solution, and then placed in an ultrasonic cleaner for 15 minutes.
 この際、抽出用溶液としては、体積比で塩酸1%と、水49%と、メタノール50%とを含有する溶液を用いた。 At this time, a solution containing 1% hydrochloric acid, 49% water, and 50% methanol was used as the extraction solution.
 有機物層中の窒素系有機物を抽出用溶液中に抽出した抽出液を液体クロマトグラフ質量分析計(LC-MS)を用いて、液体クロマトグラフ分析法により分析し、抽出液中の窒素系有機物の含有量を算出した。 The extract obtained by extracting nitrogenous organic matter in the organic matter layer into the extraction solution is analyzed by liquid chromatography using a liquid chromatograph mass spectrometer (LC-MS), and the nitrogenous organic matter in the extract is analyzed. The content was calculated.
 なお、用いた液体クロマトグラフ質量分析計は、液体クロマトグラフィー部がWaters社製 型式:Aquity H-Class、質量分析計が、エービーサイエックス社製 型式:Q-STAR XLの装置を用いた。 The liquid chromatograph mass spectrometer used was an apparatus with a liquid chromatograph section manufactured by Waters, Model: Aquity H-Class, and a mass spectrometer manufactured by AB XS, Inc., model: Q-STAR XL.
 そして、算出した窒素系有機物の含有量(μg)を、上記スクリュー瓶内に入れた基板の有機物層の面積(cm)で割ることにより窒素系有機物の含有量を算出した。
(試料の作製条件)
 実施例、比較例として、以下に説明する条件で導電性基板を作製し、上述の評価方法により評価を行った。
[実施例1]
(密着層形成工程)
 縦500mm×横500mm、厚さ50μmのポリエチレンテレフタレート樹脂(PET)製の絶縁性基材の一方の面上に密着層を成膜した。なお、絶縁性基材として用いたポリエチレンテレフタレート樹脂製の絶縁性基材について、全光線透過率をJIS K 7361-1に規定された方法により評価を行ったところ97%であった。
Then, the content of nitrogen-based organic matter was calculated by dividing the calculated content (μg) of nitrogen-based organic matter by the area (cm 2 ) of the organic matter layer of the substrate placed in the screw bottle.
(Sample preparation conditions)
As examples and comparative examples, conductive substrates were produced under the conditions described below and evaluated by the above-described evaluation method.
[Example 1]
(Adhesion layer forming process)
An adhesion layer was formed on one surface of an insulating base made of polyethylene terephthalate resin (PET) having a length of 500 mm × width of 500 mm and a thickness of 50 μm. Note that the total light transmittance of the insulating base material made of polyethylene terephthalate resin used as the insulating base material was evaluated by the method prescribed in JIS K 7361-1, and found to be 97%.
 密着層形成工程では、Ni-17重量%Cu合金のターゲットを装着したスパッタリング装置により、密着層として酸素を含有するNi-Cu合金層を成膜した。以下に密着層の成膜手順について説明する。 In the adhesion layer forming step, a Ni—Cu alloy layer containing oxygen was formed as an adhesion layer using a sputtering apparatus equipped with a Ni-17 wt% Cu alloy target. The procedure for forming the adhesion layer will be described below.
 予め60℃まで加熱して水分を除去した上述の絶縁性基材を、スパッタリング装置のチャンバー内に設置した。 The above-mentioned insulating base material, which was previously heated to 60 ° C. to remove moisture, was placed in the chamber of the sputtering apparatus.
 次に、チャンバー内を1×10-3Paまで排気した後、アルゴンガスと酸素ガスとを導入し、チャンバー内の圧力を1.3Paとした。なお、この際チャンバー内の雰囲気は体積比で30%が酸素、残部がアルゴンとしている。 Next, after evacuating the chamber to 1 × 10 −3 Pa, argon gas and oxygen gas were introduced, and the pressure in the chamber was set to 1.3 Pa. At this time, the atmosphere in the chamber is 30% oxygen by volume, and the remainder is argon.
 そして係る雰囲気下でターゲットに電力を供給し、絶縁性基材の一方の面上に密着層を厚さが20nmになるように成膜した。
(金属層形成工程)
 金属層形成工程では、金属薄膜層形成工程と、金属めっき層形成工程と、を実施した。
Then, electric power was supplied to the target in such an atmosphere, and an adhesion layer was formed on one surface of the insulating base so as to have a thickness of 20 nm.
(Metal layer forming process)
In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
 まず、金属薄膜層形成工程について説明する。 First, the metal thin film layer forming process will be described.
 金属薄膜層形成工程では、基材として密着層形成工程で絶縁性基材上に密着層を成膜したものを用い、密着層上に金属薄膜層として銅薄膜層を形成した。 In the metal thin film layer forming step, a copper thin film layer was formed as a metal thin film layer on the adhesion layer using a substrate in which the adhesion layer was formed on the insulating substrate in the adhesion layer forming step.
 金属薄膜層は、銅のターゲットを用いた点と、基材をセットしたチャンバー内を排気した後、アルゴンガスを供給してアルゴン雰囲気とした点以外は、密着層の場合と同様にしてスパッタリング装置により成膜した。 The metal thin film layer is a sputtering apparatus as in the case of the adhesion layer except that a copper target is used and the inside of the chamber in which the substrate is set is evacuated and then an argon gas is supplied to form an argon atmosphere. Was formed.
 金属薄膜層である銅薄膜層は膜厚が150nmとなるように成膜した。 The copper thin film layer, which is a metal thin film layer, was formed to a thickness of 150 nm.
 次に、金属めっき層形成工程においては、金属めっき層として銅めっき層を形成した。銅めっき層は、電気めっき法により銅めっき層の厚さが0.5μmになるように成膜した。
(有機物層形成工程)
 有機物層形成工程では、絶縁性基材上に、密着層と、金属層とが形成された積層体の金属層上に有機物層を形成した。
Next, in the metal plating layer forming step, a copper plating layer was formed as the metal plating layer. The copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.5 μm.
(Organic layer formation process)
In the organic layer forming step, an organic layer was formed on the metal layer of the laminate in which the adhesion layer and the metal layer were formed on the insulating base material.
 有機物層形成工程ではまず、上述の積層体を窒素系有機物として1,2,3-ベンゾトリアゾールを含有するOPCディフューザー(奥野製薬工業株式会社製)溶液に7秒間浸漬した。なお、用いたOPCディフューザー溶液は、1,2,3-ベンゾトリアゾールの濃度が3mL/Lであり、浴温30℃、pH3となるように予め調整して用いた。 In the organic material layer forming step, first, the above laminate was immersed in an OPC diffuser (Okuno Pharmaceutical Co., Ltd.) solution containing 1,2,3-benzotriazole as a nitrogen-based organic material for 7 seconds. The OPC diffuser solution used was adjusted in advance so that the concentration of 1,2,3-benzotriazole was 3 mL / L, the bath temperature was 30 ° C., and the pH was 3.
 そして、金属層の上面、すなわち金属層の密着層と対向する面と反対側の面以外に付着した溶液を水洗により除去した後、乾燥することで、金属層上に有機物層を形成した。 Then, the solution adhering to the upper surface of the metal layer, that is, the surface other than the surface opposite to the surface opposite to the adhesion layer of the metal layer was removed by washing with water, and dried to form an organic layer on the metal layer.
 なお、有機物層形成工程後、基板の一部を切り出し、既述の窒素系有機物の含有量の評価に供した。
(黒化層形成工程)
 黒化層形成工程では、有機物層形成工程で形成した有機物層上に、スパッタリング法により黒化層としてNi-Cu層を形成した。
In addition, after the organic substance layer formation process, a part of board | substrate was cut out and it used for evaluation of content of the above-mentioned nitrogen-type organic substance.
(Blackening layer forming process)
In the blackened layer forming step, a Ni—Cu layer was formed as a blackened layer by sputtering on the organic layer formed in the organic layer forming step.
 黒化層形成工程では、Ni-35重量%Cu合金のターゲットを装着したスパッタリング装置により、黒化層としてNi-Cu合金層を成膜した。以下に黒化層の成膜手順について説明する。 In the blackening layer forming step, a Ni—Cu alloy layer was formed as a blackening layer by a sputtering apparatus equipped with a Ni-35 wt% Cu alloy target. The procedure for forming the blackened layer will be described below.
 まず、絶縁性基材上に、密着層と、金属層と、有機物層と、を積層した積層体をスパッタリング装置のチャンバー内にセットした。 First, a laminated body in which an adhesion layer, a metal layer, and an organic layer were laminated on an insulating substrate was set in a chamber of a sputtering apparatus.
 次にチャンバー内を1×10-3Paまで排気した後、アルゴンガスを導入し、チャンバー内の圧力を1.3Paとした。 Next, after evacuating the inside of the chamber to 1 × 10 −3 Pa, argon gas was introduced, and the pressure in the chamber was set to 1.3 Pa.
 そして係る雰囲気下でターゲットに電力を供給し、有機物層上に厚さ30nmになるように黒化層を成膜した。 Then, power was supplied to the target in such an atmosphere, and a blackening layer was formed on the organic layer so as to have a thickness of 30 nm.
 以上の工程により、金属層の上面、すなわち、金属層の密着層と対向する面と反対側の面に有機物層を介して黒化層を形成し、絶縁性基材上に、密着層、金属層、有機物層、黒化層がその順で積層された導電性基板が得られた。 Through the above steps, a blackening layer is formed on the upper surface of the metal layer, that is, the surface opposite to the surface facing the adhesion layer of the metal layer through the organic material layer, and the adhesion layer, the metal is formed on the insulating substrate. A conductive substrate in which a layer, an organic material layer, and a blackening layer were laminated in that order was obtained.
 得られた導電性基板について、上述の反射率、黒化層のL値、a値、b値を評価した。 About the obtained electroconductive board | substrate, the above-mentioned reflectance, L * value of a blackening layer, a * value, b * value were evaluated.
 結果を表1に示す。
[実施例2~実施例18]
 有機物層を形成する際に、OPCディフューザー溶液の濃度や、浴温、pHを変化させることにより、有機物層の窒素系有機物の含有量が異なるようにした点を除いては、実施例1と同様にして導電性基板を作製した。
The results are shown in Table 1.
[Examples 2 to 18]
Similar to Example 1 except that when the organic layer is formed, the concentration of the OPC diffuser solution, the bath temperature, and the pH are changed to change the content of the nitrogen-based organic matter in the organic layer. Thus, a conductive substrate was produced.
 得られた導電性基板について、上述の反射率、黒化層のL値、a値、b値を評価した。 About the obtained electroconductive board | substrate, the above-mentioned reflectance, L * value of a blackening layer, a * value, b * value were evaluated.
 結果を表1に示す。
[比較例1]
 有機物層を形成する際に、OPCディフューザー溶液のpHを1とした点以外は実施例1と同様にして導電性基板を作製した。なお、有機物層形成工程後、基板の一部を切り出し、既述の窒素系有機物の含有量の評価に供した。
The results are shown in Table 1.
[Comparative Example 1]
A conductive substrate was produced in the same manner as in Example 1 except that the pH of the OPC diffuser solution was set to 1 when the organic layer was formed. In addition, after the organic substance layer formation process, a part of board | substrate was cut out and it used for evaluation of content of the above-mentioned nitrogen-type organic substance.
 得られた導電性基板について、上述の反射率、黒化層のL値、a値、b値を評価した。 About the obtained electroconductive board | substrate, the above-mentioned reflectance, L * value of a blackening layer, a * value, b * value were evaluated.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示した窒素系有機物の含有量と、反射率、a、bとの関係をグラフにしたものを図5~図7に示す。なお、各図中点線より左側にある△のマークが比較例1を示しており、その他の点が実施例1~実施例18の結果を示している。
Figure JPOXMLDOC01-appb-T000001
FIG. 5 to FIG. 7 are graphs showing the relationship between the nitrogen-based organic substance content shown in Table 1 and the reflectances, a * and b * . In each figure, the Δ mark on the left side of the dotted line indicates Comparative Example 1, and the other points indicate the results of Examples 1 to 18.
 表1、及び図5~図7の結果からも明らかなように、有機物層の窒素系有機物の含有量が0.2μg/cm以上になると、大幅に導電性基板の反射率が低減し、黒化層の色度であるa値、b値も大きく変化することが確認できる。 As is clear from the results of Table 1 and FIGS. 5 to 7, when the content of the nitrogenous organic material in the organic material layer is 0.2 μg / cm 2 or more, the reflectance of the conductive substrate is greatly reduced. It can be confirmed that the a * value and b * value, which are the chromaticity of the blackened layer, also change greatly.
 これらの結果から、金属層と黒化層との間に、窒素系有機物を含有する有機物層を設け、該有機物層の含有量を0.2μg/cm以上とすることで、導電性基板の反射率を特に抑制できることを確認できた。 From these results, an organic material layer containing a nitrogen-based organic material is provided between the metal layer and the blackening layer, and the content of the organic material layer is set to 0.2 μg / cm 2 or more. It was confirmed that the reflectance can be particularly suppressed.
 以上に導電性基板、導電性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the conductive substrate and the method for manufacturing the conductive substrate have been described in the embodiments and examples, the present invention is not limited to the above-described embodiments and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.
 本出願は、2015年7月31日に日本国特許庁に出願された特願2015-152895号に基づく優先権を主張するものであり、特願2015-152895号の全内容を本国際出願に援用する。 This application claims priority based on Japanese Patent Application No. 2015-152895 filed with the Japan Patent Office on July 31, 2015. The entire contents of Japanese Patent Application No. 2015-152895 are incorporated herein by reference. Incorporate.
10A、10B、20A、20B、30 導電性基板
11                 絶縁性基材
12、12A、12B         金属層
13、13A、13B、32A、32B 有機物層
14、14A、14B、33A、33B 黒化層
10A, 10B, 20A, 20B, 30 Conductive substrate 11 Insulating substrate 12, 12A, 12B Metal layer 13, 13A, 13B, 32A, 32B Organic layer 14, 14A, 14B, 33A, 33B Blackening layer

Claims (5)

  1.  絶縁性基材と、
     前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
     前記金属層上に形成された窒素系有機物を含有する有機物層と、
     前記有機物層上に形成された黒化層と、を有しており、
     前記有機物層は、前記窒素系有機物を0.2μg/cm以上含有する導電性基板。
    An insulating substrate;
    A metal layer formed on at least one surface of the insulating substrate;
    An organic material layer containing a nitrogen-based organic material formed on the metal layer;
    A blackening layer formed on the organic layer,
    The organic material layer is a conductive substrate containing the nitrogen-based organic material in an amount of 0.2 μg / cm 2 or more.
  2.  前記窒素系有機物が1,2,3-ベンゾトリアゾール、またはその誘導体を含有する請求項1に記載の導電性基板。 The conductive substrate according to claim 1, wherein the nitrogen-based organic substance contains 1,2,3-benzotriazole or a derivative thereof.
  3.  波長400nm以上700nm以下の光の平均反射率が20%以下である請求項1または2に記載の導電性基板。 The conductive substrate according to claim 1 or 2, wherein an average reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 20% or less.
  4.  絶縁性基材の少なくとも一方の面上に金属層を形成する金属層形成工程と、
     前記金属層上に窒素系有機物を含有する有機物層を形成する有機物層形成工程と、
     前記有機物層上に黒化層を形成する黒化層形成工程と、を有し、
     前記有機物層形成工程では、前記窒素系有機物を0.2μg/cm以上含有するように前記有機物層を形成する導電性基板の製造方法。
    A metal layer forming step of forming a metal layer on at least one surface of the insulating substrate;
    An organic material layer forming step of forming an organic material layer containing a nitrogenous organic material on the metal layer;
    A blackening layer forming step of forming a blackening layer on the organic material layer,
    In the organic material layer forming step, the method for producing a conductive substrate, wherein the organic material layer is formed so as to contain 0.2 μg / cm 2 or more of the nitrogen-based organic material.
  5.  前記窒素系有機物が1,2,3-ベンゾトリアゾール、またはその誘導体を含有する請求項4に記載の導電性基板の製造方法。 The method for producing a conductive substrate according to claim 4, wherein the nitrogen-based organic substance contains 1,2,3-benzotriazole or a derivative thereof.
PCT/JP2016/071703 2015-07-31 2016-07-25 Conductive substrate and conductive substrate manufacturing method WO2017022543A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017532504A JP6428942B2 (en) 2015-07-31 2016-07-25 Conductive substrate, method for manufacturing conductive substrate
CN201680043312.8A CN107850965B (en) 2015-07-31 2016-07-25 Conductive substrate and method for manufacturing conductive substrate
KR1020187001675A KR102587363B1 (en) 2015-07-31 2016-07-25 Conductive substrate and conductive substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-152895 2015-07-31
JP2015152895 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022543A1 true WO2017022543A1 (en) 2017-02-09

Family

ID=57944084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071703 WO2017022543A1 (en) 2015-07-31 2016-07-25 Conductive substrate and conductive substrate manufacturing method

Country Status (5)

Country Link
JP (1) JP6428942B2 (en)
KR (1) KR102587363B1 (en)
CN (1) CN107850965B (en)
TW (1) TWI702522B (en)
WO (1) WO2017022543A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2013235315A (en) * 2012-05-07 2013-11-21 Dainippon Printing Co Ltd Touch panel sensor
JP2014029671A (en) * 2012-07-06 2014-02-13 Fujifilm Corp Conductive film for touch panel and touch panel

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213114A (en) 2002-12-27 2004-07-29 Pentel Corp Electrostatic capacity type digital type touch panel
JP5111362B2 (en) * 2006-03-15 2013-01-09 日本パーカライジング株式会社 Surface treatment liquid for copper material, surface treatment method for copper material, copper material with surface treatment film, and laminated member
US8753933B2 (en) 2008-11-19 2014-06-17 Micron Technology, Inc. Methods for forming a conductive material, methods for selectively forming a conductive material, methods for forming platinum, and methods for forming conductive structures
TWI425530B (en) * 2010-09-30 2014-02-01 Far Eastern New Century Corp Transparent conductive film having high optical transmittance and method for manufacturing the same
JP5473990B2 (en) * 2011-06-17 2014-04-16 日東電工株式会社 A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.
JP5775494B2 (en) * 2012-02-28 2015-09-09 富士フイルム株式会社 Silver ion diffusion suppression layer forming composition, silver ion diffusion suppression layer film, wiring board, electronic device, conductive film laminate, and touch panel
JP2013206315A (en) 2012-03-29 2013-10-07 Toppan Printing Co Ltd Film-shaped touch panel sensor and method for manufacturing the same
CN102621736A (en) * 2012-04-09 2012-08-01 友达光电股份有限公司 Method for patterning black matrix in touch control panel
KR101521681B1 (en) * 2012-04-24 2015-05-19 삼성전기주식회사 Touch Panel
JP6047713B2 (en) 2012-05-11 2016-12-21 石原ケミカル株式会社 Electroless copper plating method
JP5224203B1 (en) * 2012-07-11 2013-07-03 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
JP2015533682A (en) * 2012-08-31 2015-11-26 エルジー・ケム・リミテッド Conductive structure and manufacturing method thereof
WO2014035207A1 (en) * 2012-08-31 2014-03-06 주식회사 엘지화학 Conductive structure and method for manufacturing same
JP2014219963A (en) * 2013-04-12 2014-11-20 信越ポリマー株式会社 Sheet for sensor sheet production, method for producing the same, sensor sheet for touchpad, and method for producing the same
JP6129769B2 (en) * 2013-05-24 2017-05-17 富士フイルム株式会社 Transparent conductive film for touch panel, method for manufacturing transparent conductive film, touch panel and display device
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
CN105706182B (en) * 2013-10-31 2017-07-28 住友金属矿山股份有限公司 The manufacture method of conductive board, conductive board
TWM490025U (en) * 2014-06-20 2014-11-11 Koatech Tech Corporation Display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2013235315A (en) * 2012-05-07 2013-11-21 Dainippon Printing Co Ltd Touch panel sensor
JP2014029671A (en) * 2012-07-06 2014-02-13 Fujifilm Corp Conductive film for touch panel and touch panel

Also Published As

Publication number Publication date
TWI702522B (en) 2020-08-21
KR20180034401A (en) 2018-04-04
TW201719361A (en) 2017-06-01
CN107850965A (en) 2018-03-27
JP6428942B2 (en) 2018-11-28
KR102587363B1 (en) 2023-10-10
CN107850965B (en) 2021-01-29
JPWO2017022543A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
EP3101517B1 (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
JP6497391B2 (en) Conductive substrate for touch panel, manufacturing method of conductive substrate for touch panel
JP6905828B2 (en) Conductive substrate, laminated conductive substrate, method for manufacturing conductive substrate, method for manufacturing laminated conductive substrate
WO2017022596A1 (en) Conductive substrate, and method for manufacturing conductive substrate
JP6428942B2 (en) Conductive substrate, method for manufacturing conductive substrate
KR102443827B1 (en) Conductive substrate and liquid crystal touch panel
JP6500746B2 (en) Method of manufacturing conductive substrate
JP6597139B2 (en) Blackening plating solution, conductive substrate
WO2016190224A1 (en) Blackening plating solution and conductive substrate
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate
KR102629297B1 (en) conductive substrate
WO2017130869A1 (en) Blackening plating solution and method for manufacturing conductive substrate
KR102535550B1 (en) Organic film manufacturing method, conductive substrate manufacturing method, and organic film manufacturing apparatus
JPWO2017130867A1 (en) Conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187001675

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017532504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832822

Country of ref document: EP

Kind code of ref document: A1