WO2017022496A1 - 運転者に支援画像を提示する装置及びその方法 - Google Patents

運転者に支援画像を提示する装置及びその方法 Download PDF

Info

Publication number
WO2017022496A1
WO2017022496A1 PCT/JP2016/071370 JP2016071370W WO2017022496A1 WO 2017022496 A1 WO2017022496 A1 WO 2017022496A1 JP 2016071370 W JP2016071370 W JP 2016071370W WO 2017022496 A1 WO2017022496 A1 WO 2017022496A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
viewpoint
vehicle
unit
imaging
Prior art date
Application number
PCT/JP2016/071370
Other languages
English (en)
French (fr)
Inventor
昇幸 横田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680045331.4A priority Critical patent/CN107852483B/zh
Priority to US15/749,631 priority patent/US10464484B2/en
Priority to DE112016003517.9T priority patent/DE112016003517T5/de
Publication of WO2017022496A1 publication Critical patent/WO2017022496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/304Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/307Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing virtually distinguishing relevant parts of a scene from the background of the scene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • B60R2300/602Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective with an adjustable viewpoint
    • B60R2300/605Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective with an adjustable viewpoint the adjustment being automatic

Definitions

  • the present invention relates to a display control technique for providing a driving assistance image to a driver of a vehicle, and in particular, includes a plurality of imaging devices so as to capture each imaging region around the vehicle, and from the plurality of imaging devices.
  • the present invention relates to a display control technique for providing a driving assistance image based on the image data.
  • an in-vehicle camera detects an object around the vehicle, converts a captured image including the object into an image viewed from a virtual viewpoint, and outputs the viewpoint conversion image as a driving support image to an in-vehicle display.
  • the technology to do is known.
  • the position of an approaching vehicle approaching the host vehicle from the rear of the host vehicle is detected, and the height of the virtual viewpoint is increased or the position of the virtual viewpoint is approached as the approaching vehicle approaches the host vehicle. It has been proposed to set the position of the driver of the vehicle (see Patent Document 1).
  • the conventionally proposed technique requires complicated processing such as setting a virtual viewpoint according to the detection position of the target object and the position of the host vehicle. There is a problem that it takes a long time to generate, and there is a possibility that the real-time property regarding driving assistance may be impaired.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a display control technique that contributes to securing real-time performance related to driving support by generating a viewpoint conversion image by simple processing.
  • the on-vehicle display control device includes an image recognition unit, a viewpoint conversion unit, an image enhancement unit, and an image output unit.
  • the image recognition unit recognizes a predetermined object from captured images of a plurality of imaging devices mounted on the vehicle so as to capture each imaging region around the vehicle.
  • the viewpoint conversion unit identifies, as a recognition imaging device, an imaging device that captures an image including an object recognized by the image recognition unit among a plurality of imaging devices, and is associated with the identified recognition imaging device in advance.
  • the captured image is converted into a viewpoint conversion image viewed from the viewpoint.
  • the image enhancement unit enhances the image portion of the target object included in the viewpoint conversion image converted by the viewpoint conversion unit.
  • the driving assistance image is output from the image output unit to the display device mounted on the vehicle using the viewpoint conversion image in which the image portion of the object is emphasized by the image enhancement unit as the driving assistance image.
  • the virtual viewpoint can be set only by specifying the imaging device that captured the object, the viewpoint can be easily processed without complicated processing as in the conventionally proposed technology.
  • a converted image can be generated, which can contribute to securing real-time performance related to driving support.
  • a viewpoint conversion image in which an object is emphasized is output as a driving assistance image, for example, the presence of pedestrians and other vehicles existing around the vehicle can be presented to the vehicle driver more easily.
  • the same effect as already described in the in-vehicle display control apparatus which is one aspect of the present invention can be obtained for the same reason as described above.
  • FIG. 1 is a block diagram illustrating the configuration of an in-vehicle display control device 1 according to the embodiment.
  • FIG. 2 is an explanatory diagram illustrating each imaging region of the plurality of cameras 10 mounted on the host vehicle according to the embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration of the display control unit 20 according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating the basic correspondence table (FIG. 4A) and the additional correspondence table (FIG. 4B).
  • FIG. 5 illustrates a virtual viewpoint in the front-rear direction with respect to the host vehicle (FIG. 5A)), a virtual viewpoint in the left-right direction with respect to the host vehicle (FIG. 5B), and an oblique direction with respect to the host vehicle.
  • FIG. 6 is an image diagram (A)) illustrating a composite image, and an image diagram (B)) illustrating a driving assistance image to which an enhanced image is added.
  • FIG. 7 is a flowchart illustrating a virtual viewpoint setting process according to the embodiment.
  • FIG. 8 is a flowchart illustrating the table simple selection process according to the embodiment.
  • FIG. 9 is a flowchart illustrating a blend rate setting process according to the embodiment.
  • FIG. 10 illustrates an image of the viewpoint conversion image portion of the object based on the captured image of the rear camera 4 ((A) in FIG. 10). The image of the viewpoint conversion image portion of the object based on the captured image of the right side camera 6 is illustrated.
  • FIG. (B) Illustrated (FIG. (B)), illustrating an image of an overlapped image portion obtained by synthesizing both viewpoint-converted image portions with a blend ratio of 50% ((C) in FIG. 4), and 70% for both-viewpoint-converted image portions. It is explanatory drawing which illustrates the image of the overlapping image part synthesize
  • the in-vehicle display control device 1 illustrated in FIG. 1 includes a plurality of cameras 10, a display control unit 20, and a display 30. Although not shown, the in-vehicle display control device 1 is connected to an in-vehicle local area network (hereinafter referred to as “in-vehicle LAN”) and is connected to another electronic control unit (hereinafter referred to as “ECU”) connected to the in-vehicle LAN. And vehicle information such as detection information of various sensors. In the following description, a vehicle on which these components are mounted is called a host vehicle.
  • the display control unit 20 is a processing device that processes image data captured by a plurality of cameras 10 (described later).
  • the in-vehicle LAN is a local area network provided inside the host vehicle.
  • various communication protocols such as well-known CAN (Controller Area Network), FlexRay, LIN (Local Interconnect Network), MOST (Motor Oriented Systems Transport Network), AVC-LAN (Audio and Video Communication-LAN) are used.
  • Vehicle information is transmitted.
  • information indicating the driving direction of the host vehicle for example, shift lever position, steering operation direction and operation amount, accelerator depression amount, etc.
  • Each camera 10 is installed at each position on the front, rear, left and right of the host vehicle as a plurality of imaging devices mounted on the host vehicle so as to capture the surroundings of the host vehicle.
  • each camera 10 is roughly divided into a front camera 2, a rear camera 4, a right side camera 6, and a left side camera 8 according to the respective installation positions and imaging areas in the host vehicle.
  • the front camera 2 is mounted in the front part (for example, front center part) of the own vehicle, and images the front area A1 of the own vehicle.
  • the rear camera 4 is mounted in the rear part (for example, rear center part) of the own vehicle, and images the back area
  • the right side camera 6 is mounted on the right side part (for example, right side rearview mirror part) of the host vehicle, and images the right side area A3 of the host vehicle.
  • the left side camera 8 is mounted on the left side part (for example, the left rear mirror part) of the host vehicle, and images the left side area A4 of the host vehicle.
  • each camera 10 is installed in the host vehicle so that a part of each imaging area has an area (hereinafter referred to as “overlapping area”) that overlaps a part of the imaging area of at least one other camera 10.
  • overlapping area an area that overlaps a part of the imaging area of at least one other camera 10.
  • a front area A1 that is an imaging area of the front camera 2 is a right front overlapping area OA1 that partially overlaps with a right side area A3 that is an imaging area of the right side camera 6, and a left side camera. 8 and a left front area A4 that partially overlaps the left front area A4.
  • the rear area A2 that is the imaging area of the rear camera 4 is the right rear overlapping area OA3 that partially overlaps with the right-side area A3 that is the imaging area of the right-side camera 6, and the imaging area of the left-side camera 8.
  • a left rear overlapping area OA4 partially overlapping with the left side area A4. That is, these overlapping areas are areas that can be imaged by either of the two cameras 10.
  • the area other than the right front overlapping area OA1 and the left front overlapping area OA2 is referred to as a front single area SA1
  • the right rear overlapping area OA3 and An area other than the left rear overlapping area OA4 is referred to as a rear single area SA2.
  • the areas other than the right front overlapping area OA1 and the right rear overlapping area OA3 are defined as the right side single area SA3
  • the areas other than the left front overlapping area OA2 and the left rear overlapping area OA4 are defined. This is referred to as a left single region SA4.
  • the front area A1 that can be imaged only by the front camera 2 is the front single area SA1
  • the rear area A2 that can be imaged only by the rear camera 4 is the rear single area SA2
  • the right area A3 that can be imaged only by the right side camera 6 is displayed.
  • the left side area A4 that can be imaged only by the right side area SA3 and the left side camera 8 is called the left side area SA4.
  • the display 30 is installed in the passenger compartment as a display device mounted on the host vehicle.
  • the display 30 is configured by a liquid crystal display, a head-up display, or a combination thereof, and is installed at a position where the driver of the host vehicle can easily see.
  • the display control unit 20 includes a CPU (Central Processing Unit) 12, a RAM 14 A (Random Access Memory), a ROM 14 B (Read Only Memory), and a semiconductor memory 14 C (hereinafter referred to as “memory”) 14 such as a flash memory.
  • the CPU 12 executes various processes based on a computerized computer program stored in the memory 14. That is, by executing this program, a method corresponding to the program such as display control is executed.
  • the number of microcomputers may be one or plural, and each of the one to plural microcomputers may be installed inside the own vehicle.
  • the ROM 14B of the memory 14 functions as a non-transitional tangible recording medium.
  • the display control unit 20 has a functional configuration realized by executing various processes of the CPU 12, as shown in FIG. 3, an image recognition unit 21, a viewpoint conversion unit 22, an image composition unit 23, and an image setting unit 24. And an image enhancement unit 25 and an image output unit 26. Note that some or all of these functions executed by the display control unit 20 may be configured in hardware by one or a plurality of logic circuits or electronic circuits such as ICs.
  • the image recognition unit 21 has a function of recognizing a predetermined object from each captured image of the plurality of cameras 10.
  • the object is considered to be desirable to inform the driver of the own vehicle from the viewpoint of driving support such as pedestrians and other vehicles.
  • this object recognition by detecting and tracking an object candidate that is a candidate for the object, a candidate value indicating the probability of the object with respect to this object candidate (indicating the probability that the object is recognized) Value), a movement value indicating the speed of movement of the candidate object, and the like.
  • a portion satisfying a characteristic element predetermined for each target object is detected as a candidate object from the captured image.
  • a feature amount indicating the degree to which the detected object candidate has the characteristic elements qualitatively and quantitatively is stored in the memory 14 as a candidate value.
  • tracking an object candidate for example, a plurality of captured images that are continuous in time series are used, and an optical flow vector value that represents the motion of the object candidate in such a continuous image as a vector is transferred to the object candidate.
  • the value is stored in the memory 14. That is, an object candidate that satisfies a predetermined condition based on these pieces of information is recognized as an object. Note that a method for recognizing such an object is well known to those skilled in the art, and thus detailed description thereof is omitted.
  • identification information for identifying a captured image including the recognized object in the image from other captured images, or image position information indicating a position in the image related to the recognized object. Etc. are stored in the memory 14.
  • the image position information includes information for specifying any one of the single areas SA1 to SA4 and the overlapping areas OA1 to OA4 as the imaging area including the object recognized by the image recognition unit 21. Yes.
  • the viewpoint conversion unit 22 identifies one or a plurality of cameras 10 that have captured a captured image including the target object recognized by the image recognition unit 21 as a recognition imaging device (hereinafter referred to as “recognition camera”).
  • the viewpoint conversion unit 22 has a function of converting a target captured image into a viewpoint conversion image viewed from a virtual viewpoint that is associated with the recognition camera in advance.
  • virtual viewpoint setting processing details of processing for specifying a recognition camera and setting a virtual viewpoint (hereinafter referred to as “virtual viewpoint setting processing”) will be described later.
  • the viewpoint conversion unit 22 converts the captured images of all the cameras 10 into viewpoint conversion images, and supplies the converted viewpoint conversion images to the image synthesis unit 23.
  • the viewpoint-converted image is an image obtained by coordinate-converting a captured image viewed from the viewpoint of the camera 10 as if viewed from the viewpoint of the virtual camera.
  • the viewpoint of the image can be converted. That is, if the position and orientation of the virtual viewpoint are set as the optical axis of the virtual camera, a desired viewpoint converted image can be obtained. Since the viewpoint conversion technique for images is well known to those skilled in the art, detailed description thereof is omitted.
  • the basic correspondence table is a table in which each camera 10 and the virtual viewpoint are associated one-to-one. That is, the basic correspondence table is a table that allows a virtual viewpoint to be uniquely set if there is one camera 10 identified as a recognition camera.
  • the additional correspondence table is a table in which the combinations of the cameras 10 and the virtual viewpoints are associated one-to-one.
  • the combinations of these cameras 10 are a combination of the front camera 2 and the right side camera 6 (see FIG. 5C, virtual viewpoint E5), and a combination of the front camera 2 and the left side camera 8 (FIG. 5 ( C), the virtual viewpoint E6), the combination of the rear camera 4 and the right side camera 6 (see FIG. 5C, the virtual viewpoint E7), and the combination of the rear camera 4 and the left side camera 8 (FIG. 5 ( C) and the virtual viewpoint E8)).
  • the additional correspondence table is a table that allows a virtual viewpoint to be uniquely set if the camera 10 specified as the recognition camera is any combination of these.
  • Each combination of the four patterns corresponds to “two cameras 10” used in the description of the overlapping area.
  • the front side obliquely including the own vehicle from the position obliquely above the rear side of the own vehicle.
  • a virtual viewpoint E1 that faces downward at a predetermined angle is set (see FIG. 5A).
  • a virtual viewpoint E2 is set so that the rear oblique lower side including the own vehicle is directed at a predetermined angle from the front oblique upper position of the own vehicle (FIG. 5). (See (A)).
  • a virtual viewpoint E3 is set to face the diagonally lower right side including the host vehicle at a predetermined angle from the position on the upper left side of the host vehicle.
  • a virtual viewpoint E4 is set to face the diagonally downward left side including the host vehicle at a predetermined angle from the diagonally upper right side position of the host vehicle. (See FIG. 5B).
  • the virtual viewpoint setting using the additional correspondence table is also performed in accordance with the virtual viewpoint setting using the basic correspondence table. That is, in setting the virtual viewpoint using these correspondence tables, the virtual viewpoints E5 to E8 are set so that the recognition camera side obliquely downward is directed at a predetermined angle from the position obliquely above and opposite the recognition camera position.
  • the orientation of the virtual viewpoint is set in advance to any predetermined angle in at least an angle range (for example, a range of 0 to 80 °) that does not become the vehicle height direction (that is, the vertical direction) of the host vehicle.
  • an angle range for example, a range of 0 to 80 °
  • the object in the image extends in the height direction and is converted as it moves away from the center of the bird's-eye view image. This is because the tendency becomes most prominent.
  • setting the direction of the virtual viewpoint to the horizontal direction of the host vehicle that is, 0 °
  • the set angle related to the orientation of the virtual viewpoint is set to one of an angle range (for example, a range of 10 to 80 °) that does not become the vertical direction and the horizontal direction of the host vehicle.
  • the image composition unit 23 has a function of generating a composite image in which the viewpoint conversion images supplied from the viewpoint conversion unit 22 are partially overlapped and connected.
  • the region including the joint portion in the composite image the overlapping image region in which the viewpoint conversion image of the front camera 2 and the viewpoint conversion image of the right side camera 6 partially overlap, and the viewpoint of the front camera 2 Overlapping image areas in which the converted image and the viewpoint converted image of the left-side camera 8 partially overlap are formed.
  • Overlapping image areas that partially overlap with the viewpoint conversion image are respectively formed.
  • Each of these overlapping image areas can be said to be an area corresponding to each of the overlapping areas OA1 to OA4 (see FIG. 2) in the imaging area of each camera 10.
  • the image composition unit 23 has a function of composing each viewpoint conversion image portion in the overlapping image region with a preset blend rate when generating such a composite image.
  • the reason for this is to synthesize the viewpoint-converted image portions of the overlapping image area including the joint portion in the composite image, thereby making the joint portion inconspicuous in the composite image, thereby reducing the unnaturalness of the joint portion. It is.
  • a composite image is formed by overlapping and joining all the viewpoint conversion images of the respective cameras 10, an around view image in which the unnaturalness of the joint portion is reduced is generated. It will be.
  • the around view image refers to an image that includes the host vehicle and that can display the entire periphery of the host vehicle.
  • the image setting unit 24 has a function of setting a blend rate of each viewpoint conversion image portion (hereinafter also referred to as “overlapping image region portion”) in the overlapping image region based on the recognition result of the object by the image recognition unit 21. Yes.
  • the blend ratio set by the image setting unit 24 is used for the overlapping of the overlapping image region portion by the image combining unit 23.
  • the details of the process for realizing the function as the image setting unit 24 (hereinafter referred to as “blend rate setting process”) will be described later.
  • the image enhancement unit 25 has a function of enhancing an image portion of an object (hereinafter referred to as “object image portion”) included in the viewpoint conversion image converted by the viewpoint conversion unit 22. Specifically, in the present embodiment, processing for emphasizing the object image portion of the composite image generated by the image composition unit 23 is performed. This process is realized by specifying the image position of the object based on the image position information stored in the memory 14. As for the method for enhancing the object image portion, an enhanced image (see FIG. 6B) for emphasizing the object such as an image surrounding the object may be added to the synthesized image, The contrast of at least one of the object image portion and the composite image may be changed, for example, by making the luminance higher than the surrounding image portion.
  • object image portion an object included in the viewpoint conversion image converted by the viewpoint conversion unit 22.
  • processing for emphasizing the object image portion of the composite image generated by the image composition unit 23 is performed. This process is realized by specifying the image position of the object based on the image position information stored in the memory 14.
  • the image output unit 26 has a function of outputting, to the display 30 as a driving support image, a composite image obtained by combining the overlapping image region portions by the image combining unit 23 at the blend rate set by the image setting unit 24.
  • the driving assistance image is output to the display 30 using the around view image in which the object image portion is emphasized by the image enhancement unit 25 as the driving assistance image.
  • a driving assistance image refers to a display image for driving assistance of the host vehicle, such as a warning for notifying the driver of the presence of an object such as another vehicle or a pedestrian.
  • the viewpoint conversion unit 22 first inputs captured images of all the cameras 10 in step S110, and includes an object that is recognized by the image recognition unit 21 in these images. It is determined whether an image exists. This determination can be made based on the presence or absence of identification information stored in the memory 14, for example. If it is determined that there is a captured image including the target object in the image, the process proceeds to step S120. If it is determined that such an image does not exist, the process proceeds to step S150.
  • step S120 a process for simply selecting one of the basic correspondence table and the additional correspondence table used for setting the virtual viewpoint (hereinafter referred to as “table simple selection process”) is performed.
  • the process proceeds to S130.
  • the simple table selection process the recognition camera is also specified when the basic correspondence table or the additional correspondence table is selected. Details of the table simple selection process will be described later.
  • step S130 it is determined whether or not any of the basic correspondence table and the additional correspondence table has been selected by the table simple selection process in step S120. If any of them can be selected in step S130, the process proceeds to step S140. If none of them can be selected, the process proceeds to step S150.
  • a virtual viewpoint is set using the correspondence table selected by the table simple selection process in step S120, and this process ends. Specifically, in the present embodiment, as described above, a virtual viewpoint is set in which the recognition camera side obliquely downward is directed at a predetermined angle from the position obliquely upward on the opposite side of the identified recognition camera position.
  • step S150 a camera with the highest priority (hereinafter referred to as “priority camera”) is selected from the plurality of cameras 10 by a method different from the table simple selection process in step S120, and the selected priority camera is recognized.
  • Processing for identifying the camera as a camera (hereinafter referred to as “recognized camera priority processing”) is performed, and the process proceeds to step S160.
  • the priority camera is selected by a different method for each reason why the recognized camera cannot be specified.
  • one or two cameras 10 corresponding to the driving direction of the host vehicle are selected as the priority cameras. Will be.
  • the driving direction of the host vehicle can be specified based on vehicle information sent from another ECU via the in-vehicle LAN, for example.
  • the following camera 10 is selected as the priority camera. become.
  • the camera 10 that captured the most objects the camera 10 that captured the images including the objects in the imaging region corresponding to the driving direction of the host vehicle, and the images 3 that captured the objects 3
  • One camera 10 is adjacent to any two of the two cameras 10.
  • the priority camera can be specified based on the identification information and the image position information stored in the memory 14.
  • step S160 either one of the basic correspondence table and the additional correspondence table is selected according to the priority camera specified by the recognition camera priority process in step S150. Thereafter, a virtual viewpoint is set using the selected correspondence table, and this process is terminated.
  • a virtual viewpoint that faces the priority camera side obliquely downward at a predetermined angle from a position obliquely above and opposite to the priority camera position. Will be set.
  • the viewpoint conversion unit 22 first identifies a recognition camera based on the identification information stored in the memory 14 in step S210, and determines whether or not only one recognition camera has been identified. judge. When it is determined that there is only one recognition camera, the process proceeds to step S220, the basic correspondence table is selected, and this process ends. If it is determined that there is not only one recognition camera (in this embodiment, there are two or more recognition cameras), the process proceeds to step S230, and it is determined whether there are two recognition cameras that can be identified. . If it is determined that there are two recognition cameras, the process proceeds to step S240, and if it is determined that there are three or more recognition cameras, this process ends. Note that the above steps S210 and S230 constitute a number determination that functionally determines the number of recognized cameras by the processing executed by the CPU 12.
  • step S240 the imaging area including the object recognized by the image recognition unit 21 is set as the object imaging area, and it is determined whether or not a predetermined imaging area condition regarding the object imaging area is satisfied. If it is determined that the imaging area condition is satisfied, the process proceeds to step S250, the additional correspondence table is selected, and the present process ends. If it is determined that the imaging area condition is not satisfied, the present process is terminated without selecting the correspondence table. Specifically, in the present embodiment, the object imaging region is specified based on the image position information stored in the memory 14.
  • the imaging area condition can be one of the requirements for establishing that the object imaging area is any one of the overlapping areas OA1 to OA4. That is, even if two recognition cameras are specified, if the object recognized by the image recognition unit 21 exists only in any one of the overlapping areas OA1 to OA4, these two recognition cameras are used. A virtual viewpoint corresponding to the combination can be set. This can be performed by selecting an additional correspondence table because any of these recognition cameras images the object.
  • one of the requirements for establishing the imaging area condition is that the object imaging area is two of the single areas SA1 to SA4 adjacent to any one of the overlapping areas OA1 to OA4. Can do. That is, two or more objects are recognized by the image recognizing unit 21, and two single areas SA1 to SA4 are sandwiched by any one of the overlapping areas OA1 to OA4 between different imaging areas. If distributed, a virtual viewpoint corresponding to the combination of the two recognition cameras can be set as described above.
  • the imaging region conditions are not limited to those exemplified above, and a plurality of imaging region conditions can be determined in advance.
  • the image setting unit 24 first determines in step S310 whether or not the object recognized by the image recognition unit 21 exists in any of the overlapping areas OA1 to OA4. This determination can be made based on image position information stored in the memory 14, for example. If it is determined that the object exists in any of the overlapping areas OA1 to OA4, the process proceeds to step S320.
  • the process proceeds to step S360, and the blend ratio of each viewpoint conversion image part in all the overlapping image areas is set to 50%.
  • the initial setting to be continued is continued, and this processing ends.
  • the blend rate refers to a composition ratio of pixel values (for example, RGB values) of each viewpoint conversion image portion in the overlapping image region. For this reason, when the blend ratio is set to 50%, when the viewpoint-converted image parts before synthesis in the overlap image area are the image part B1 and the image part C1, respectively, the pixel values constituting the image part B1 are set to the pixel values.
  • the image part B2 multiplied by 50% and the image part C2 obtained by multiplying each pixel value constituting the image part C1 by 50% are added.
  • step S320 the recognition result of the object determined to exist in step S310 is acquired, and the process proceeds to step S330.
  • the recognition result of the object can be obtained by reading the candidate value related to the object stored in the memory 14, the vector value of the optical flow, and the like.
  • step S330 an area where the object determined in step S310 exists in the overlapping areas OA1 to OA4 is set as an object overlapping area, and for each object overlapping area, in each captured image of the two cameras 10 that captured the area. Compare recognition accuracy of objects.
  • step S330 it is determined whether the recognition accuracy of the object in both captured images is different. Specifically, in the present embodiment, among the recognition results acquired in step S320, it can be determined that the recognition accuracy is higher as the candidate value related to the target object is larger.
  • step S370 the blend rate of the overlapping image region portion where the object is located in the image is variably set, and this process is performed. finish.
  • the blend rate regarding the viewpoint conversion image portion based on the captured image with higher recognition accuracy is higher than the blend rate regarding the other viewpoint conversion image portion.
  • the blend ratio of both captured image parts it is necessary to set the blend ratio of both captured image parts to be 100%.
  • An image portion C2 obtained by multiplying each pixel value constituting the portion C1 by 30% can be added.
  • step S340 for each object overlap area, the warning priority of the object in each captured image of the two cameras 10 that captured the area is compared, and whether or not the warning priority of the object in both captured images is different. Determine. Specifically, in the present embodiment, it can be determined that the warning priority is higher as the vector value of the optical flow related to the object is larger in the recognition result acquired in step S320. Note that the warning priority comparison method is not limited to the above example, and the warning priority can be determined in advance by another index such as the type of the object in the image.
  • step S370 variably set the blend ratio of the overlapping image region portion where the object is located in the image.
  • the blend rate for the viewpoint conversion image portion based on the captured image with the higher warning priority is set to be higher than the blend rate for the other viewpoint conversion image portion.
  • the blend rate can be set to be higher as the warning priority is higher.
  • step S350 it is determined whether one of the captured image portions satisfies a predetermined object position condition regarding the position of the target object. Specifically, in the present embodiment, based on the image position information stored in the memory 14, the distance from the center of each captured image is compared for the position in the image related to the object. For example, it is possible to determine that the distance is smaller than a predetermined threshold as a requirement for satisfying the object position condition.
  • the requirements for establishing the object position condition are not limited to those exemplified above, but can be defined in advance as conditions relating to the actual position of the object and the position in the image.
  • the requirements for establishing the object position condition can reduce the processing load if the condition is such that it can be directly determined based on the position in the image.
  • the process proceeds to step S370, and the blend ratio of the overlapping image region portion in which the object is located in the image is variable. Set and finish this process. Specifically, among the viewpoint conversion image parts in the overlapping image area, the blend ratio for the viewpoint conversion image part based on the captured image that satisfies the object position condition is set as the blend ratio for the other viewpoint conversion image part. Set higher than.
  • the blend rate can be set to increase as the distance from the center of each captured image decreases according to the image position of the object in both captured image portions.
  • step S360 If it is determined that there is no one captured image portion that satisfies the object position condition between the captured images, the process proceeds to step S360, and the blend rate of each viewpoint conversion image portion in all overlapping image regions is set. The initial setting that is set to 50% is continued, and this processing is terminated.
  • the blend rate of the viewpoint conversion image portion in the overlapping image region is set according to the recognition accuracy, the warning priority, and the object position condition.
  • FIG. 10 shows a case where there are both captured image portions in which a pedestrian as an object is captured by the rear camera 4 and the right side camera 6.
  • the case where the rear camera 4 (see FIG. 10A) is higher than the right camera 6 (see FIG. 10B) in the recognition accuracy of both captured image portions is illustrated.
  • the blend ratio of each viewpoint conversion image portion in the overlapping image region is set to 50%, the pedestrians of both viewpoint conversion image portions are synthesized and displayed at the same level. Is likely to deteriorate (see FIG. 10C).
  • the viewpoint conversion image portion of the rear camera 4 with higher recognition accuracy is set to 70% and the viewpoint conversion image portion of the right camera 6 with lower recognition accuracy is set to 30%, recognition is performed. Since the pedestrian with higher accuracy is displayed in a conspicuous manner, deterioration of the visibility of the driving assistance image can be suppressed (see FIG. 10D).
  • a virtual viewpoint can be set simply by specifying a recognition camera that has captured an object, it is possible to generate a viewpoint-converted image with simple processing without complicated processing. As a result, the output timing of the driving support image can be advanced, and as a result, it can contribute to securing real-time performance related to driving support. Furthermore, since the viewpoint conversion image in which the object is emphasized is output as a driving assistance image, the presence of pedestrians and other vehicles existing around the host vehicle can be presented to the driver more easily.
  • the virtual viewpoint is set using the basic correspondence table in which the camera and the virtual viewpoint are associated one-to-one. Can be reduced.
  • a virtual viewpoint is set using an additional correspondence table in which a virtual viewpoint is associated with a one-to-one correspondence. Therefore, the availability regarding the setting of the virtual viewpoint can be preferably increased.
  • one of the requirements for satisfying the imaging area condition is that the imaging area including the object recognized by the image recognition unit 21 is an overlapping area that can be captured by any of the two cameras. Therefore, even when there are two recognition cameras, it is possible to suitably reduce the processing burden related to the setting of the virtual viewpoint.
  • the viewpoint conversion images obtained by converting the viewpoints of the captured images of the cameras 10 are combined and the combined image is output as the driving support image.
  • the present invention is not limited to this.
  • a viewpoint conversion image obtained by converting the viewpoint of at least one captured image of each camera 10 may be output as a driving assistance image without being combined with another viewpoint conversion image.
  • a system including the in-vehicle display control device 1 as a constituent element, one or more programs for causing a computer to function as the in-vehicle display control device 1, and at least a part of the program are recorded.
  • the present invention can also be realized in various forms such as one or more recording media (specifically, non-transitional tangible recording media such as a semiconductor memory) and a vehicle-mounted display control method.
  • SYMBOLS 1 Vehicle-mounted display control apparatus, 2 ... Front camera, 4 ... Back camera, 6 ... Right side camera, 8 ... Left side camera, 10 ... Camera, 12 ... CPU, 14 ... Memory, 20 ... Display control unit, 21 ... Image Recognition unit, 22 ... viewpoint conversion unit, 23 ... image composition unit, 24 ... image setting unit, 25 ... image enhancement unit, 26 ... image output unit, 30 ... display, A1 ... front area, A2 ... rear area, A3 ... right side Area, A4 ... left side area, E1 to E8 ... virtual viewpoint, OA1 ... right front overlapping area, OA2 ... left front overlapping area, OA3 ... right rear overlapping area, OA4 ... left rear overlapping area, SA1 ... front single area, SA2 ... Rear single region, SA3 ... right single region, SA4 ... left single region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

車載表示制御装置(1)は、画像認識部(21)と、視点変換部(22)と、画像強調部(25)と、画像出力部(26)と、を備える。画像認識部(21)は、車両の周囲における各撮像領域をそれぞれ撮像するように車両に搭載された複数の撮像装置の撮像画像の中から対象物を認識する。視点変換部(22)は、複数の撮像装置のうち、画像認識部により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、特定した認識撮像装置に対応づけられている仮想視点から見た視点変換画像に撮像画像を変換する。画像強調部(25)は、視点変換部(22)により変換された視点変換画像に含まれている対象物の画像部分を強調させる。画像強調部(25)により対象物の画像部分が強調された視点変換画像を運転支援画像として、運転支援画像が画像出力部から表示装置へ出力される。

Description

運転者に支援画像を提示する装置及びその方法
 本発明は、車両の運転者に運転支援画像を提供する表示制御技術に係り、とくに、車両の周囲における各撮像領域をそれぞれ撮像するように複数の撮像装置を搭載し、それら複数の撮像装置からの画像データに基づいて運転支援画像を提供する表示制御技術に関する。
 従来の車載表示制御では、車載カメラにより車両周囲の対象物を検出して、対象物を含む撮像画像を仮想視点から見た画像に変換し、この視点変換画像を運転支援画像として車載ディスプレイに出力する技術が知られている。
 例えば、この技術においては、自車両の後方から自車両に接近する接近車両の位置を検出して、接近車両が自車両に近づくにつれて仮想視点の高さを上昇させたり、仮想視点の位置を接近車両の運転者の位置に設定したりすることが提案されている(特許文献1参照)。
特許第5681569号公報
 しかしながら、従来提案されている技術では、対象物の検出位置と自車位置とに応じて仮想視点を設定するような複雑な処理を要するため、この処理負担が大きいことにより、例えば視点変換画像の生成に時間がかかってしまい、運転支援に関するリアルタイム性を損なうおそれが考えられるという課題があった。
 本発明は、こうした問題に鑑みてなされたものであり、簡易な処理で視点変換画像を生成することにより、運転支援に関するリアルタイム性の確保に資する表示制御技術を提供することを目的としている。
 本発明の一局面である車載表示制御装置は、画像認識部と、視点変換部と、画像強調部と、画像出力部と、を備える。画像認識部は、車両の周囲における各撮像領域をそれぞれ撮像するように車両に搭載された複数の撮像装置の撮像画像の中から予め定められた対象物を認識する。
 視点変換部は、複数の撮像装置のうち、画像認識部により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、特定した認識撮像装置に予め対応づけられている仮想視点から見た視点変換画像に撮像画像を変換する。
 画像強調部は、視点変換部により変換された視点変換画像に含まれている対象物の画像部分を強調させる。こうして画像強調部により対象物の画像部分が強調された視点変換画像を運転支援画像として、車両に搭載された表示装置へ画像出力部から運転支援画像が出力される。
 このような構成によれば、対象物を撮像した撮像装置を特定するだけで仮想視点が設定され得るため、従来提案されている技術のような複雑な処理を伴うことなく、簡易な処理で視点変換画像を生成することが可能となり、これにより運転支援に関するリアルタイム性の確保に資することができる。
 さらには、対象物が強調された視点変換画像が運転支援画像として出力されるため、例えば車両周囲に存在する歩行者や他車両等の存在をよりわかりやすく車両運転者に提示することができる。
 また、本発明の一局面である車載表示制御方法によれば、上記同様の理由により、本発明の一局面である車載表示制御装置において既に述べた効果と同様の効果を得ることができる。
 なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
 添付図面において:
図1は、実施形態に係る車載表示制御装置1の構成を例示するブロック図である。 図2は、実施形態に係る自車両に搭載された複数のカメラ10の各撮像領域を例示する説明図である。 図3は、実施形態に係る表示制御ユニット20の機能的構成を例示するブロック図である。 図4は、基本対応テーブルを例示する(同図)(A))とともに、付加対応テーブルを例示する(同図(B))説明図である。 図5は、自車両に対する前後方向の仮想視点を説明し(同図)A))、また自車両に対する左右方向の仮想視点を説明し(同図(B))、さらに自車両に対する斜め方向の仮想視点を説明する(同図(C))、説明図である。 図6は、合成画像を例示するイメージ図(同図)(A))、及び、強調画像を付加した運転支援画像を例示するイメージ図(同図(B))である。 図7は、実施形態に係る仮想視点設定処理を例示するフローチャートである。 図8は、実施形態に係るテーブル簡易選択処理を例示するフローチャートである。 図9は、実施形態に係るブレンド率設定処理を例示するフローチャートである。 図10は、後方カメラ4の撮像画像に基づく対象物の視点変換画像部分のイメージを例示し(同図(A))右側方カメラ6の撮像画像に基づく対象物の視点変換画像部分のイメージを例示し(同図(B))、両視点変換画像部分を50%のブレンド率で合成した重複画像部分のイメージを例示し(同図(C))、及び、両視点変換画像部分を70%対30%のブレンド率で合成した重複画像部分のイメージを例示する(同図(D))、説明図である。
 以下、本発明が適用された実施形態について、図面を用いて説明する。
 [第1実施形態]
 図1に示す車載表示制御装置1は、複数のカメラ10と、表示制御ユニット20と、ディスプレイ30と、を備える。また、図示を省略しているが、車載表示制御装置1は、車内ローカルエリアネットワーク(以下「車内LAN」という)に接続されており、車内LANに接続された他の電子制御ユニット(以下「ECU」という)との間で、各種センサの検出情報等の車両情報を共有するように構成されている。以下の説明では、これらの構成要素が搭載された車両を自車両という。
 なお、表示制御ユニット20は、本実施例において、複数のカメラ10(後述する)で撮像した画像データを処理する処理装置である。
 なお、車内LANは、自車両の内部に配備されているローカルエリアネットワークである。例えば、周知のCAN(Controller Area Network)やFlexRay、LIN(Local Interconnect Network)、MOST(Motor Orientated Systems Transport Network)、AVC-LAN(Audio and Video Communication-LAN)等の通信プロトコルを利用して各種の車両情報を伝送するものである。本実施形態においては、例えば、自車両の運転方向を示す情報(例えば、シフトレバー位置、ステアリング操作方向及び操作量、アクセル踏込量、等)が車両情報として、他のECUから車載表示制御装置1に送信される。
 各カメラ10は、自車両の周囲を撮像するように自車両に搭載された複数の撮像装置として、自車両の前後左右における各位置に設置されている。本実施形態において、各カメラ10は、自車両におけるそれぞれの設置位置及び撮像領域に応じて、前方カメラ2と、後方カメラ4と、右側方カメラ6と、左側方カメラ8と、に大別される。図2に示すように、前方カメラ2は、自車両の前部(例えば前部中央部)に搭載され、自車両の前方領域A1を撮像する。なお、後方カメラ4は、自車両の後部(例えば後部中央部)に搭載され、自車両の後方領域A2を撮像する。右側方カメラ6は、自車両の右側部(例えば右側バックミラー部)に搭載され、自車両の右側方領域A3を撮像する。左側方カメラ8は、自車両の左側部(例えば左側バックミラー部)に搭載され、自車両の左側方領域A4を撮像する。
 また、各カメラ10は、各撮像領域の一部が他の少なくとも1つのカメラ10の撮像領域の一部と重複する領域(以下「重複領域」という)を有するように自車両に設置されている。例えば、図2に示すように、前方カメラ2の撮像領域である前方領域A1は、右側方カメラ6の撮像領域である右側方領域A3と一部が重複する右前重複領域OA1と、左側方カメラ8の撮像領域である左側方領域A4と一部が重複する左前重複領域OA2と、を有している。また、後方カメラ4の撮像領域である後方領域A2は、右側方カメラ6の撮像領域である右側方領域A3と一部が重複する右後重複領域OA3と、左側方カメラ8の撮像領域である左側方領域A4と一部が重複する左後重複領域OA4と、を有している。つまり、これらの重複領域は、二つのカメラ10の何れでも撮像可能な領域ということになる。
 以下の説明では、図2に示すように、前方領域A1のうち、右前重複領域OA1及び左前重複領域OA2以外の領域を前方単領域SA1といい、後方領域A2のうち、右後重複領域OA3及び左後重複領域OA4以外の領域を後方単領域SA2という。また、右側方領域A3のうち、右前重複領域OA1及び右後重複領域OA3以外の領域を右側方単領域SA3、左側方領域A4のうち、左前重複領域OA2及び左後重複領域OA4以外の領域を左側方単領域SA4という。つまり、前方カメラ2だけが撮像可能な前方領域A1を前方単領域SA1、後方カメラ4だけが撮像可能な後方領域A2を後方単領域SA2、右側方カメラ6だけが撮像可能な右側方領域A3を右側方単領域SA3、左側方カメラ8だけが撮像可能な左側方領域A4を左側方単領域SA4ということになる。
 ディスプレイ30は、自車両に搭載される表示装置として、車室内等に設置されるものである。例えば、ディスプレイ30は、液晶ディスプレイ、ヘッドアップディスプレイ、又はこれらの組合せ等によって構成され、自車両の運転者が視認しやすい位置に設置される。
 表示制御ユニット20は、即ち、処理装置は、CPU(Central Processing Unit)12と、RAM14A(Random Access Memory)、ROM14B(Read Only Memory)、フラッシュメモリ等の半導体メモリ14C(以下「メモリ」という)14と、を有する周知のマイクロコンピュータ及び車内LAN用の通信コントローラを中心に構成され、メモリ14に格納されている、デジタル化されたコンピュータプログラムに基づいてCPU12により各種処理が実行されるものである。つまり、このプログラムが実行されることで、表示制御等のプログラムに対応する方法が実行されることになる。なお、表示制御ユニット20において、例えばマイクロコンピュータの数は1つでも複数でもよく、これら1ないし複数のマイクロコンピュータの各設置場所は自車両内部の何れでもよい。
 なお、上記メモリ14のROM14Bは、非遷移的実体的記録媒体として機能する。
 表示制御ユニット20は、CPU12の各種処理の実行により実現される機能的構成として、図3に示すように、画像認識部21と、視点変換部22と、画像合成部23と、画像設定部24と、画像強調部25と、画像出力部26と、機能的に備える。なお、表示制御ユニット20が実行するこれら機能の一部または全部を、一つあるいは複数の論理回路若しくはIC等の電子回路によりハードウェア的に構成してもよい。
 画像認識部21は、複数のカメラ10の各撮像画像の中から予め定められた対象物を認識する機能を有している。対象物とは、例えば歩行者や他車両等、運転支援の観点から自車両の運転者にその存在を知らせることが望ましいと考えられるものである。この対象物の認識には、対象物の候補となる対象物候補の検出及び追跡を行うことにより、この対象物候補に関して対象物の確からしさを示す候補値(対象物が認識される確率を示す値)や、対象物候補の動きの速さを示す移動値、等を算出する処理が含まれる。
 対象物候補の検出においては、例えば撮像画像の中から対象物毎に予め定められた特徴的要素を満たす部分を対象物候補として検出する。また、検出した対象物候補がその特徴的要素を質的及び量的に具備する程度を示す特徴量を候補値としてメモリ14に記憶する。また対象物候補の追跡においては、例えば時系列に沿って連続する複数の撮像画像を用い、こうした連続画像中の対象物候補の動きをベクトルで表すオプティカルフローのベクトル値を、対象物候補の移動値としてメモリ14に記憶する。つまり、これらの情報に基づく所定条件を満たす対象物候補が、対象物として認識されることになる。なお、こうした対象物の認識方法については当業者にとって周知なため、詳細な説明を省略する。
 また、画像認識部21においては、認識された対象物を画像中に含む撮像画像を他の撮像画像と識別するための識別情報や、認識された対象物に関する画像中の位置を示す画像位置情報等がメモリ14に記憶される。なお、画像位置情報には、画像認識部21により認識された対象物を含む撮像領域として、単領域SA1~SA4及び重複領域OA1~OA4の中の何れか一つを特定する情報も含まれている。
 視点変換部22は、画像認識部21により認識された対象物を画像中に含む撮像画像を撮像した1ないし複数のカメラ10を認識撮像装置(以下「認識カメラ」という)として特定する。また、視点変換部22は、この認識カメラに予め対応づけられている仮想視点から見た視点変換画像に対象となる撮像画像を変換する機能を有している。なお、こうした機能のうち、認識カメラを特定して仮想視点を設定する機能を実現するための処理(以下「仮想視点設定処理」という)の詳細については後述する。本実施形態において、視点変換部22は、全てのカメラ10の撮像画像を対象として視点変換画像に変換し、変換した各視点変換画像を画像合成部23に供給する。
 視点変換画像は、カメラ10の視点から見た撮像画像を、仮想カメラの視点から見ているかのように座標変換した画像であるといえる。例えば、カメラ座標系の光軸を基準とすると、撮像画像上のあらゆる点の座標位置を光軸からの角度と距離とによって求め、これらの座標位置を仮想カメラの光軸に基づいて回転及び並進させることにより、画像を視点変換することができる。つまり、仮想カメラの光軸として、仮想視点の位置及び向きを設定すれば、所望の視点変換画像を得ることが可能となる。なお、画像の視点変換技術は当業者にとって周知のため、その詳細な説明については省略する。
 また、仮想視点の位置及び向きの設定では、メモリ14に予め記憶されている対応テーブルが用いられる。この対応テーブルは、基本対応テーブルと付加対応テーブルとに大別される。基本対応テーブルは、図4(A)に例示するように、各カメラ10と仮想視点とが一対一に対応づけられたテーブルである。つまり、基本対応テーブルは、認識カメラとして特定したカメラ10が一つであれば、仮想視点を一意に設定することが可能となるテーブルである。
 一方、付加対応テーブルは、図4(B)に例示するように、各カメラ10の組合せと仮想視点とが一対一に対応づけられたテーブルである。例えば、これらの各カメラ10の組合せは、前方カメラ2と右側方カメラ6との組合せ(図5(C),仮想視点E5参照)、前方カメラ2と左側方カメラ8との組合せ(図5(C),仮想視点E6参照)、後方カメラ4と右側方カメラ6との組合せ(図5(C),仮想視点E7参照)、及び、後方カメラ4と左側方カメラ8との組合せ(図5(C),仮想視点E8参照)、の4つのパターンからなる。つまり、付加対応テーブルは、認識カメラとして特定したカメラ10がこれら何れかの組合せであれば、仮想視点を一意に設定することが可能となるテーブルである。なお、上記4つのパターンの各組合せは、重複領域の説明で用いた「二つのカメラ10」に相当している。
 また具体的には、基本対応テーブルを用いた仮想視点の設定では、認識カメラとして特定したカメラ10が前方カメラ2だけである場合、自車両の後側斜め上方の位置から自車両を含む前側斜め下方を所定角度で向く仮想視点E1が設定される(図5(A)参照)。また認識カメラとして特定したカメラ10が後方カメラ4だけである場合は、自車両の前側斜め上方の位置から自車両を含む後側斜め下方を所定角度で向く仮想視点E2が設定される(図5(A)参照)。
 同様に認識カメラとして特定したカメラ10が右側方カメラ6だけである場合は、自車両の左側方斜め上側の位置から自車両を含む右側方斜め下方を所定角度で向く仮想視点E3が設定される。また、認識カメラとして特定したカメラ10が左側方カメラ8だけである場合は、自車両の右側方斜め上方の位置から自車両を含む左側方斜め下方を所定角度で向く仮想視点E4が設定される(図5(B)参照)。
 付加対応テーブルを用いた仮想視点の設定についても、この基本対応テーブルを用いた仮想視点の設定に準じて行われる。つまり、これらの対応テーブルを用いた仮想視点の設定では、認識カメラの位置の反対側斜め上方の位置から認識カメラ側斜め下方を所定角度で向く仮想視点E5~E8が設定されることになる。
 なお、仮想視点の向きついては、少なくとも自車両の車高方向(即ち垂直方向)とならない角度範囲(例えば0~80°の範囲)のうち何れかの所定角度に予め設定されている。この理由は、仮想視点の向きを垂直方向(即ち90°)とした鳥瞰画像を視点変換画像として生成すると、鳥瞰画像の中央から離れるに従って画像中の物体が高さ方向に延びて変換されてしまう傾向が最も顕著になるためである。また、仮想視点の向きを自車両の水平方向(即ち0°)とすることも、合成画像中の自車両による死角領域が最も増大してしまう。このため、本実施形態において、仮想視点の向きに関する設定角度は、自車両の垂直方向及び水平方向とならない角度範囲(例えば10~80°の範囲)のうち何れかとされている。
 画像合成部23は、視点変換部22から供給された各視点変換画像を一部重ねて繋ぎ合わせた合成画像を生成する機能を有している。具体的に本実施形態では、合成画像における繋ぎ目部分を含む領域として、前方カメラ2の視点変換画像と右側方カメラ6の視点変換画像とが一部重なる重複画像領域、及び前方カメラ2の視点変換画像と左側方カメラ8の視点変換画像とが一部重なる重複画像領域がそれぞれ形成されることになる。さらに、合成画像における繋ぎ目部分を含む領域として後方カメラ4の視点変換画像と右側方カメラ6の視点変換画像とが一部重なる重複画像領域、及び後方カメラ4の視点変換画像と左側方カメラ8の視点変換画像とが一部重なる重複画像領域がそれぞれ形成されることになる。なお、これらの各重複画像領域は、各カメラ10の撮像領域における各重複領域OA1~OA4(図2参照)にそれぞれ対応する領域であるといえる。
 また、画像合成部23は、こうした合成画像を生成する際に、重複画像領域における各視点変換画像部分を予め設定されたブレンド率で合成する機能を有している。この理由は、合成画像において繋ぎ目部分を含む重複画像領域の各視点変換画像部分を合成することにより、合成画像において繋ぎ目部分を目立たなくし、これにより繋ぎ目部分の不自然さを緩和させるためである。なお、本実施形態では、各カメラ10の全ての視点変換画像を一部重ねて繋ぎ合わせた合成画像が形成されるため、繋ぎ目部分の不自然さを緩和させたアラウンドビュー画像が生成されることになる。アラウンドビュー画像とは、図6(A)に示すように、自車両を含むとともに自車両の全周囲を表示可能とする画像のことをいう。
 画像設定部24は、画像認識部21による対象物の認識結果に基づき、重複画像領域における各視点変換画像部分(以下「重複画像領域部分」ともいう)のブレンド率を設定する機能を有している。画像設定部24により設定されたブレンド率は、画像合成部23による重複画像領域部分の合成に用いられる。なお、画像設定部24としての機能を実現するための処理(以下「ブレンド率設定処理」という)の詳細については後述する。
 画像強調部25は、視点変換部22により変換された視点変換画像に含まれている対象物の画像部分(以下「対象物画像部分」という)を強調させる機能を有している。具体的に本実施形態では、画像合成部23により生成された合成画像の対象物画像部分を強調させる処理を実施する。この処理は、メモリ14に記憶されている画像位置情報に基づいて、対象物の画像位置を特定することにより実現される。対象物画像部分の強調方法については、対象物を囲う画像等、対象物を強調させるための強調画像(図6(B)参照)を合成画像に付加しても良いし、対象物画像部分の輝度を周囲の画像部分よりも高くする等、対象物画像部分及び合成画像のうち少なくとも一方のコントラストを変更しても良い。
 画像出力部26は、画像設定部24により設定されたブレンド率で画像合成部23により重複画像領域部分が合成された合成画像を運転支援画像として、ディスプレイ30に出力する機能を有している。具体的に本実施形態では、画像強調部25により対象物画像部分が強調されたアラウンドビュー画像を運転支援画像として、ディスプレイ30に運転支援画像が出力される。運転支援画像とは、他車両や歩行者等の対象物の存在を運転者に知らせるための警告を行う等、自車両の運転支援を目的とする表示画像のことをいう。
 [処理]
 [仮想視点設定処理]
 次に、視点変換部22の一部機能を実現させるためにCPU12が行う仮想視点設定処理について、図7のフローチャートを用いて説明する。なお、本処理は、例えば車載表示制御装置1のスイッチ(非図示)がオン状態である間、表示制御ユニット20内において機能毎に予め設定されたタイミングで繰り返し起動される。
 本処理が起動すると、視点変換部22では、まず、ステップ S110において、全てのカメラ10の撮像画像を入力するとともに、これらの中で画像認識部21により認識された対象物を画像中に含む撮像画像が存在するか否かを判定する。この判定は、例えばメモリ14に記憶される識別情報の有無に基づいて行うことができる。対象物を画像中に含む撮像画像が存在すると判定した場合には、ステップS120に移行し、こうした画像が存在しないと判定した場合には、ステップS150に移行する。
 ステップS120では、仮想視点を設定するために用いられる基本対応テーブル及び付加対応テーブルのうち何れかの対応テーブルを簡易に選択するための処理(以下「テーブル簡易選択処理」という)を実施し、ステップS130に移行する。なお、テーブル簡易選択処理では、基本対応テーブル又は付加対応テーブルが選択される際に、認識カメラも特定されることになる。このテーブル簡易選択処理の詳細については後述する。
 ステップS130では、ステップS120のテーブル簡易選択処理によって基本対応テーブル及び付加対応テーブルのうち何れかを選択できたか否かを判定する。ステップS130で何れかを選択できた場合には、ステップS140に移行し、何れも選択できなかった場合には、ステップS150に移行する。
 ステップS140では、ステップS120のテーブル簡易選択処理によって選択された対応テーブルを用いて仮想視点を設定し、本処理を終了する。なお、具体的に本実施形態では、前述したように、特定した認識カメラの位置の反対側斜め上方の位置から認識カメラ側斜め下方を所定角度で向く仮想視点が設定されることになる。
 一方、ステップS150では、ステップS120のテーブル簡易選択処理とは異なる方法で、複数のカメラ10の中から最も優先度の高いカメラ(以下「優先カメラ」という)を選択し、選択した優先カメラを認識カメラとみなして特定するための処理(以下「認識カメラ優先処理」という)を実施し、ステップS160に移行する。具体的には、認識カメラを特定できなかった理由毎に異なる方法で、優先カメラが選択されることになる。
 具体的に本実施形態では、例えば、ステップS110において対象物を画像中に含む撮像画像が存在しないと判定した場合は、自車両の運転方向に対応する一ないし二つのカメラ10が優先カメラとして選択されることになる。なお、自車両の運転方向は、例えば他のECUから車内LANを介して送られてくる車両情報に基づいて特定することができる。また例えば、認識カメラが3つ以上である場合や、認識カメラが2つであっても後述する撮像領域条件が不成立である場合等は、次のようなカメラ10が優先カメラとして選択されることになる。具体的には、最も多くの対象物を含む撮像したカメラ10や、自車両の運転方向に対応する撮像領域の対象物を含む画像を撮像したカメラ10や、対象物を含む画像を撮像した3つのカメラ10のうち2つの何れにも隣接する1つのカメラ10等である。優先カメラは、メモリ14に記憶されている識別情報及び画像位置情報に基づいて特定することができる。
 ステップS160では、ステップS150の認識カメラ優先処理によって特定した優先カメラに応じて、基本対応テーブル及び付加対応テーブルのうち何れかの対応テーブルを選択する。この後、選択した対応テーブルを用いて仮想視点を設定して、本処理を終了する。具体的に本実施形態では、前述したように、特定した優先カメラが認識カメラとみなされため、優先カメラの位置の反対側斜め上方の位置から優先カメラ側斜め下方を所定角度で向く仮想視点が設定されることになる。
 [テーブル簡易選択処理]
 次に、ステップS120においてCPU12が実行するテーブル簡易選択処理について、図8のフローチャートを用いて説明する。
 本処理が起動すると、視点変換部22では、まず、ステップS210において、メモリ14に記憶されている識別情報に基づき認識カメラを特定し、特定できた認識カメラが1つだけであるか否かを判定する。認識カメラが1つだけであると判定した場合は、ステップS220に移行して、基本対応テーブルを選択し、本処理を終了する。認識カメラが1つだけでない(本実施形態では認識カメラが2つ以上である)と判定した場合は、ステップS230に移行して、特定できた認識カメラが2つであるか否かを判定する。認識カメラが2つであると判定した場合は、ステップS240に移行し、認識カメラが3つ以上であると判定した場合は、本処理を終了する。
 なお、上記ステップS210及びS230が、CPU12により実行される処理によって機能的に、認識カメラの数を判断する数判断を構成している。
 ステップS240では、画像認識部21により認識された対象物を含む撮像領域を対象物撮像領域とし、この対象物撮像領域に関する所定の撮像領域条件が成立しているか否かを判定する。撮像領域条件が成立していると判定した場合は、ステップS250に移行して、付加対応テーブルを選択し、本処理を終了する。撮像領域条件が不成立であると判定した場合は、対応テーブルを選択することなく、本処理を終了する。具体的に本実施形態では、メモリ14に記憶されている画像位置情報に基づいて対象物撮像領域が特定されることになる。
 撮像領域条件は、対象物撮像領域が重複領域OA1~OA4の中の何れか一つであることを、その成立要件の一つとすることができる。つまり、認識カメラが2つ特定されたとしても、画像認識部21により認識された対象物が重複領域OA1~OA4の中の何れか一つだけに存在していれば、これら2つの認識カメラの組合せに対応する仮想視点を設定することができる。これは、これらの認識カメラの何れもが対象物を撮像しているため、付加対応テーブルを選択することにより行うことができる。
 また、撮像領域条件は、対象物撮像領域が重複領域OA1~OA4の中の何れか一つに隣接する単領域SA1~SA4の中の二つであることを、その成立要件の一つとすることができる。つまり、画像認識部21により対象物が二つ以上認識され、かつ、これらの対象物が異なる撮像領域に重複領域OA1~OA4の中の何れか一つを挟んだ二つの単領域SA1~SA4に分散されていれば、上記のように2つの認識カメラの組合せに対応する仮想視点を設定することができる。なお、撮像領域条件は、これらの例示したもの限らず、予め複数決めておくことができる。
 [ブレンド率設定処理]
 次に、画像設定部24の機能を実現させるためにCPU12が行う仮想視点設定処理について、図9のフローチャートを用いて説明する。なお、本処理は、例えば車載表示制御装置1のスイッチ(非図示)がオン状態である間、表示制御ユニット20内において機能毎に予め設定されたタイミングで繰り返し起動される。
 本処理が起動すると、画像設定部24では、まず、ステップS310において、画像認識部21により認識された対象物が重複領域OA1~OA4の中の何れかに存在するか否かを判定する。この判定は、例えばメモリ14に記憶される画像位置情報に基づいて行うことができる。対象物が重複領域OA1~OA4の中の何れかに存在すると判定した場合には、ステップS320に移行する。
 一方、対象物が重複領域OA1~OA4の中の何れにも存在しないと判定した場合には、ステップS360に移行して、全ての重複画像領域における各視点変換画像部分のブレンド率を50%ずつに設定する初期設定を継続し、本処理を終了する。ブレンド率は、重複画像領域における各視点変換画像部分の画素値(例えばRGB値)の合成割合をいう。このため、ブレンド率が50%ずつに設定されると、重複画像領域における合成前の各視点変換画像部分をそれぞれ画像部分B1、画像部分C1とした場合、画像部分B1を構成する各画素値に50%を乗じた画像部分B2と、画像部分C1を構成する各画素値に50%を乗じた画像部分C2と、を加算することになる。
 ステップS320では、ステップS310で存在すると判定した対象物の認識結果を取得し、ステップS330に移行する。具体的に本実施形態では、メモリ14に記憶されている対象物に関する候補値やオプティカルフローのベクトル値等を読み出すことにより、対象物の認識結果を得ることができる。
 ステップS330では、重複領域OA1~OA4のうちステップS310で判定した対象物が存在する領域を対象物重複領域とし、各対象物重複領域について、その領域を撮像した2つのカメラ10の各撮像画像における対象物の認識精度を比較する。またステップS330では、両撮像画像における対象物の認識精度が異なるか否かを判定する。具体的に本実施形態では、ステップS320で取得した認識結果のうち、対象物に関する候補値が大きいほど認識精度が高いものとみなして判定することができる。
 こうして各撮像画像間で対象物の認識精度が異なると判定した場合には、ステップS370に移行して、対象物が画像中に位置する重複画像領域部分のブレンド率を可変設定し、本処理を終了する。具体的には、重複画像領域における各視点変換画像部分のうち、認識精度が高い方の撮像画像を基にした視点変換画像部分に関するブレンド率を、他方の視点変換画像部分に関するブレンド率よりも高く設定する。例えば本実施形態では、両撮像画像部分における対象物のそれぞれの認識精度に応じて、認識精度が高いほどブレンド率が大きくなるように設定することができる。
 ただし、この設定においては、両撮像画像部分のブレンド率を足し合わせると100%になるように設定する必要がある。例えば、重複画像領域における合成前の各視点変換画像部分のうち、認識精度が高い方の画像部分B1を構成する各画素値に70%を乗じた画像部分B2と、認識精度が低い方の画像部分C1を構成する各画素値に30%を乗じた画像部分C2と、を加算することができる。
 一方で、各撮像画像間で対象物の認識精度が異ならないと判定した場合には、ステップS340に移行する。ステップS340では、各対象物重複領域について、その領域を撮像した2つのカメラ10の各撮像画像における対象物の警告優先度を比較し、両撮像画像における対象物の警告優先度が異なるか否かを判定する。具体的に本実施形態では、ステップS320で取得した認識結果のうち、対象物に関するオプティカルフローのベクトル値が大きいほど警告優先度が高いものとみなして判定することができる。なお、警告優先度の比較方法では、上記例に限らず、例えば画像中の対象物の種別等、他の指標によって警告優先度を予め決めておくことができる。
 こうして各撮像画像間で対象物の警告優先度が異なると判定した場合にも、ステップS370に移行して、対象物が画像中に位置する重複画像領域部分のブレンド率を可変設定し、本処理を終了する。具体的には、重複画像領域における各視点変換画像部分のうち、警告優先度が高い方の撮像画像を基にした視点変換画像部分に関するブレンド率を、他方の視点変換画像部分に関するブレンド率よりも高く設定する。例えば本実施形態では、両撮像画像部分における対象物の各警告優先度に応じて、警告優先度が高いほどブレンド率が大きくなるように設定することができる。
 一方で、各撮像画像間で対象物の警告優先度が異ならないと判定した場合には、ステップS350に移行して、各対象領域について、その領域を撮像した2つのカメラ10の各撮像画像部分における対象物の画像位置を比較する。そして、ステップS350では、両撮像画像部分のうち、対象物の位置に関する所定の対象物位置条件を満たす一方の撮像画像部分が存在するか否かを判定する。具体的に本実施形態では、メモリ14に記憶されている画像位置情報に基づいて、対象物に関する画像中の位置について各撮像画像の中心からの距離を比較する。例えばこの距離が所定の閾値よりも小さいことを対象物位置条件の成立要件として判定することができる。対象物位置条件の成立要件は、上記例示したものに限らず、対象物の実際の位置や画像中の位置に関する条件として予め規定しておくことができる。対象物位置条件の成立要件は、画像中の位置に基づいて直接的に判定可能な条件である方が処理負担を軽減することができる。
 こうして各撮像画像間で対象物位置条件を満たす一方の撮像画像部分が存在すると判定した場合にも、ステップS370に移行して、対象物が画像中に位置する重複画像領域部分のブレンド率を可変設定し、本処理を終了する。具体的には、重複画像領域における各視点変換画像部分のうち、対象物位置条件が成立する方の撮像画像を基にした視点変換画像部分に関するブレンド率を、他方の視点変換画像部分に関するブレンド率よりも高く設定する。例えば本実施形態では、両撮像画像部分における対象物の画像位置に応じて、各撮像画像の中心からの距離が小さいほどブレンド率が大きくなるように設定することができる。
 なお、各撮像画像間で対象物位置条件を満たす一方の撮像画像部分が存在しないと判定した場合には、ステップS360に移行して、全ての重複画像領域における各視点変換画像部分のブレンド率を50%ずつに設定する初期設定を継続し、本処理を終了する。
 このように本処理では、認識精度や警告優先度や対象物位置条件に応じて、重複画像領域における視点変換画像部分のブレンド率を設定するようにしている。図10は、対象物としての歩行者が後方カメラ4と右側方カメラ6とで撮像された両撮像画像部分が存在する場合である。図10においては、両撮像画像部分の認識精度について、後方カメラ4(図10(A)参照)の方が、右側方カメラ6(図10(B)参照)よりも高い場合を例示している。この場合、重複画像領域における各視点変換画像部分のブレンド率について、50%ずつに設定すると、両視点変換画像部分の歩行者が同程度に合成されて表示されるため、運転支援画像の視認性が悪化しやすくなる(図10(C)参照)。一方で、ブレンド率について、例えば、認識精度が高い後方カメラ4の方の視点変換画像部分を70%、認識精度が低い右側方カメラ6の方の視点変換画像部分を30%に設定すると、認識精度が高い方の歩行者が目立つように合成されて表示されるため、運転支援画像の視認性の悪化を抑制することができる(図10(D)参照)。
 [効果]
以上詳述した第1実施形態によれば、以下の効果が得られる。
 対象物を撮像した認識カメラを特定するだけで仮想視点が設定され得るため、複雑な処理を伴うことなく、簡易な処理で視点変換画像を生成することが可能となる。これにより運転支援画像の出力タイミングを早めることができ、ひいては運転支援に関するリアルタイム性の確保に資することができる。さらには、対象物が強調された視点変換画像が運転支援画像として出力されるため、自車両の周囲に存在する歩行者や他車両等の存在をよりわかりやすく運転者に提示することができる。
 テーブル簡易選択処理では、認識カメラが一つである場合、カメラと仮想視点とが一対一に対応づけられた基本対応テーブルを用いて仮想視点を設定するので、仮想視点の設定に関する処理負担を好適に削減することができる。
 また、テーブル簡易選択処理では、認識カメラが二つである場合、画像認識部21により認識された対象物を含む撮像領域に関する所定の撮像領域条件が成立しているときに、カメラの組合せパターンと仮想視点とが一対一に対応づけられた付加対応テーブルを用いて仮想視点を設定する。そのため、仮想視点の設定に関する可用性を好適に高めることができる。
 また、テーブル簡易選択処理では、画像認識部21により認識された対象物を含む撮像領域が二つのカメラの何れでも撮像可能な重複領域であることを、撮像領域条件の成立要件の一つとしているので、認識カメラが二つである場合にも、仮想視点の設定に関する処理負担を好適に削減することができる。
 [他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく、種々の形態を採り得る。
 上記実施形態では、各カメラ10の撮像画像が視点変換された視点変換画像を合成し、合成画像を運転支援画像として出力しているが、これに限定されるものではない。例えば、各カメラ10のうち少なくとも1つの撮像画像が視点変換された視点変換画像を他の視点変換画像と合成することなく、運転支援画像として出力してもよい。
 上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
 上述した車載表示制御装置1の他、当該車載表示制御装置1を構成要素とするシステム、当該車載表示制御装置1としてコンピュータを機能させるための1つ以上のプログラム、このプログラムの少なくとも一部を記録した1つ以上の記録媒体(具体的には、半導体メモリ等の非遷移的実体的記録媒体)、車載表示制御方法など、種々の形態で本発明を実現することもできる。
 1…車載表示制御装置、2…前方カメラ、4…後方カメラ、6…右側方カメラ、8…左側方カメラ、10…カメラ、12…CPU、14…メモリ、20…表示制御ユニット、21…画像認識部、22…視点変換部、23…画像合成部、24…画像設定部、25…画像強調部、26…画像出力部、30…ディスプレイ、A1…前方領域、A2…後方領域、A3…右側方領域、A4…左側方領域、E1~E8…仮想視点、OA1…右前重複領域、OA2…左前重複領域、OA3…右後重複領域、OA4…左後重複領域、SA1…前方単領域、SA2…後方単領域、SA3…右側方単領域、SA4…左側方単領域。

Claims (10)

  1.  車両の周囲に予め設定された複数の撮像領域それぞれを分担して撮像するように前記車両に搭載された複数の撮像装置(10)と、
     この複数の撮像装置それぞれが撮像した撮像画像の中から予め定められた対象物を認識する画像認識部(21)と、
     前記複数の撮像装置のうち、前記画像認識部により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、前記認識撮像装置に予め対応づけられている仮想視点から見た視点変換画像に前記撮像画像を変換する視点変換部(22)と、
     前記視点変換部により変換された視点変換画像に含まれている前記対象物の画像部分を強調させる画像強調部(25)と、
     前記画像強調部により前記対象物の画像部分が強調された前記視点変換画像を運転支援画像として、前記車両に搭載された表示装置(30)に前記運転支援画像を出力する画像出力部(26)と、を備えることを特徴とする車載表示制御装置(1)。
  2.  請求項1に記載の車載表示制御装置であって、
     前記視点変換部は、前記認識撮像装置の数を判断する数判断手段(S210,S230)と、
     前記数判断手段が、前記認識撮像装置の数が一つであると判断した場合、前記撮像装置と前記仮想視点とが一対一に対応づけられた基本対応テーブルを用いて前記仮想視点を設定する第1の設定手段(ステップS220)を備える、ことを特徴とする車載表示制御装置。
  3.  請求項2に記載の車載表示制御装置であって、
     前記視点変換部は、前記認識撮像装置の数を判断する数判断手段(S210,S230)と、
     前記数判断手段は、前記認識撮像装置の数が二つであると判断した場合、前記画像認識部により認識された対象物を含む撮像領域に関する所定の撮像領域条件が成立しているときに、前記撮像装置の組合せパターンと前記仮想視点とが一対一に対応づけられた付加対応テーブルを用いて前記仮想視点を設定する第2の設定手段(ステップS250)を備える、ことを特徴とする車載表示制御装置。
  4.  請求項3に記載の車載表示制御装置であって、
     前記視点変換部は、前記画像認識部により認識された対象物を含む撮像領域が二つの前記撮像装置の何れでも撮像可能な重複領域であることを、前記撮像領域条件の成立要件の一つとする、ことを特徴とする車載表示制御装置。
  5.  車両の周囲における各撮像領域をそれぞれ撮像するように前記車両に搭載された複数の撮像装置(10)の撮像画像の中から予め定められた対象物を認識する画像認識工程(21)と、
     前記複数の撮像装置のうち、前記画像認識工程により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、前記認識撮像装置に予め対応づけられている仮想視点から見た視点変換画像に前記撮像画像を変換する視点変換工程(22)と、
     前記視点変換工程により変換された視点変換画像に含まれている前記対象物の画像部分を強調させる画像強調工程(25)と、
     前記画像強調工程により前記対象物の画像部分が強調された前記視点変換画像を運転支援画像として、前記車両に搭載された表示装置(30)に前記運転支援画像を出力する画像出力工程(26)と、を備えることを特徴とする車載表示制御方法。
  6.  車両の周囲に予め設定された複数の撮像領域それぞれを分担して撮像するように前記車両に搭載された複数の撮像装置(10)それぞれが撮像した撮像画像の中から予め定められた対象物を認識する画像認識部(21)と、
     前記複数の撮像装置のうち、前記画像認識部により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、前記認識撮像装置に予め対応づけられている仮想視点から見た視点変換画像に前記撮像画像を変換する視点変換部(22)と、
     前記視点変換部により変換された視点変換画像に含まれている前記対象物の画像部分を強調させる画像強調部(25)と、
     前記画像強調部により前記対象物の画像部分が強調された前記視点変換画像を運転支援画像として、前記車両に搭載された表示装置(30)に前記運転支援画像を出力する画像出力部(26)と、を備えることを特徴とする処理装置(20)。
  7.  前記視点変換部は、前記認識撮像装置の数を判断する数判断手段(S210,S230)と、
     前記数判断手段が、前記認識撮像装置の数が一つであると判断した場合、前記撮像装置と前記仮想視点とが一対一に対応づけられた基本対応テーブルを用いて前記仮想視点を設定する第1の設定手段(ステップS220)を備える、ことを特徴とする請求項6に記載の処理装置。
  8.  前記視点変換部は、前記認識撮像装置の数を判断する数判断手段(S210,S230)と、
     前記数判断手段は、前記認識撮像装置の数が二つであると判断した場合、前記画像認識部により認識された対象物を含む撮像領域に関する所定の撮像領域条件が成立しているときに、前記撮像装置の組合せパターンと前記仮想視点とが一対一に対応づけられた付加対応テーブルを用いて前記仮想視点を設定する第2の設定手段(ステップS250)を備える、ことを特徴とする請求項7に記載の処理装置。
  9.  前記視点変換部は、前記画像認識部により認識された対象物を含む撮像領域が二つの前記撮像装置の何れでも撮像可能な重複領域であることを、前記撮像領域条件の成立要件の一つとする、ことを特徴とする請求項8に記載の処理装置。
  10.  デジタル化されたプログラムデータを読み出し可能に保存した記録媒体(14)であって、CPU(central processing unit)がそのプログラムデータを読み出して実行することにより、当該CPUに:
     車両の周囲に予め設定された複数の撮像領域それぞれを分担して撮像するように前記車両に搭載された複数の撮像装置(10)それぞれが撮像した撮像画像の中から予め定められた対象物を認識する画像認識部(21)と、
     前記複数の撮像装置のうち、前記画像認識部により認識された対象物を含む画像を撮像した撮像装置を認識撮像装置として特定し、前記認識撮像装置に予め対応づけられている仮想視点から見た視点変換画像に前記撮像画像を変換する視点変換部(22)と、
     前記視点変換部により変換された視点変換画像に含まれている前記対象物の画像部分を強調させる画像強調部(25)と、
     前記画像強調部により前記対象物の画像部分が強調された前記視点変換画像を運転支援画像として、前記車両に搭載された表示装置(30)に前記運転支援画像を出力する画像出力部(26)と、
     の機能を持たせることを特徴とする記録媒体(14)。
PCT/JP2016/071370 2015-08-04 2016-07-21 運転者に支援画像を提示する装置及びその方法 WO2017022496A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680045331.4A CN107852483B (zh) 2015-08-04 2016-07-21 向驾驶员提示辅助图像的装置及其方法
US15/749,631 US10464484B2 (en) 2015-08-04 2016-07-21 Apparatus for presenting support images to a driver and method thereof
DE112016003517.9T DE112016003517T5 (de) 2015-08-04 2016-07-21 Vorrichtung zum Darstellen von Unterstützungsbildern für einen Fahrer und Verfahren dazu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015154409A JP6406159B2 (ja) 2015-08-04 2015-08-04 車載表示制御装置、車載表示制御方法
JP2015-154409 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017022496A1 true WO2017022496A1 (ja) 2017-02-09

Family

ID=57942843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071370 WO2017022496A1 (ja) 2015-08-04 2016-07-21 運転者に支援画像を提示する装置及びその方法

Country Status (5)

Country Link
US (1) US10464484B2 (ja)
JP (1) JP6406159B2 (ja)
CN (1) CN107852483B (ja)
DE (1) DE112016003517T5 (ja)
WO (1) WO2017022496A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110688887A (zh) * 2018-07-06 2020-01-14 现代摩比斯株式会社 无后视镜车辆的横向图像处理装置和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101915A (ko) * 2014-02-27 2015-09-04 삼성전자주식회사 3차원 gui 화면의 표시 방법 및 이를 수행하기 위한 디바이스
JP6723820B2 (ja) * 2016-05-18 2020-07-15 株式会社デンソーテン 画像生成装置、画像表示システムおよび画像表示方法
WO2018020751A1 (ja) * 2016-07-26 2018-02-01 株式会社Jvcケンウッド 車両用表示制御装置、車両用表示システム、車両用表示制御方法およびプログラム
JP6539253B2 (ja) * 2016-12-06 2019-07-03 キヤノン株式会社 情報処理装置、その制御方法、およびプログラム
JP7092688B2 (ja) * 2017-02-17 2022-06-28 住友重機械工業株式会社 作業機械用周辺監視システム
US10521963B1 (en) * 2018-06-08 2019-12-31 Verizon Patent And Licensing Inc. Methods and systems for representing a pre-modeled object within virtual reality data
US11721005B2 (en) * 2018-08-31 2023-08-08 Mitsubishi Electric Corporation Automobile use video image recording device and automobile use graphical image recognition device
US10926715B1 (en) * 2019-06-13 2021-02-23 Vidal M. Soler Vehicle camera system
JP7243478B2 (ja) * 2019-06-24 2023-03-22 トヨタ自動車株式会社 車両用情報記録装置
EP4239613A4 (en) * 2020-11-02 2023-09-20 Nissan Motor Co., Ltd. PARKING ASSISTANCE METHOD AND PARKING ASSISTANCE DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007373A1 (fr) * 1998-07-31 2000-02-10 Matsushita Electric Industrial Co., Ltd. Procede et appareil d'affichage d'images
JP2009040107A (ja) * 2007-08-06 2009-02-26 Denso Corp 画像表示制御装置及び画像表示制御システム
JP2011119917A (ja) * 2009-12-02 2011-06-16 Denso Corp 車両用表示装置
WO2011108198A1 (ja) * 2010-03-03 2011-09-09 本田技研工業株式会社 車両の周辺監視装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252954A (en) 1979-10-25 1981-02-24 Eli Lilly And Company Salts of dihalo-3,4-dihydro-3-oxo-2-quinoxaline carboxylic acids and hindered amines
JP4196841B2 (ja) * 2004-01-30 2008-12-17 株式会社豊田自動織機 映像位置関係補正装置、該映像位置関係補正装置を備えた操舵支援装置、及び映像位置関係補正方法
JP4725233B2 (ja) 2005-08-02 2011-07-13 日産自動車株式会社 俯瞰画像表示システム
US8004394B2 (en) * 2006-11-07 2011-08-23 Rosco Inc. Camera system for large vehicles
JP5088669B2 (ja) * 2007-03-23 2012-12-05 株式会社デンソー 車両周辺監視装置
JP5681569B2 (ja) 2011-05-31 2015-03-11 富士通テン株式会社 情報処理システム、サーバ装置、および、車載装置
JP5483120B2 (ja) * 2011-07-26 2014-05-07 アイシン精機株式会社 車両周辺監視システム
JP5904093B2 (ja) * 2012-10-30 2016-04-13 株式会社デンソー 車載画像生成装置
JP6310652B2 (ja) 2013-07-03 2018-04-11 クラリオン株式会社 映像表示システム、映像合成装置及び映像合成方法
CN103810686A (zh) * 2014-02-27 2014-05-21 苏州大学 无缝拼接全景辅助驾驶系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007373A1 (fr) * 1998-07-31 2000-02-10 Matsushita Electric Industrial Co., Ltd. Procede et appareil d'affichage d'images
JP2009040107A (ja) * 2007-08-06 2009-02-26 Denso Corp 画像表示制御装置及び画像表示制御システム
JP2011119917A (ja) * 2009-12-02 2011-06-16 Denso Corp 車両用表示装置
WO2011108198A1 (ja) * 2010-03-03 2011-09-09 本田技研工業株式会社 車両の周辺監視装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110688887A (zh) * 2018-07-06 2020-01-14 现代摩比斯株式会社 无后视镜车辆的横向图像处理装置和方法
CN110688887B (zh) * 2018-07-06 2023-07-11 现代摩比斯株式会社 无后视镜车辆的横向图像处理装置和方法

Also Published As

Publication number Publication date
JP6406159B2 (ja) 2018-10-17
CN107852483A (zh) 2018-03-27
US20180229656A1 (en) 2018-08-16
CN107852483B (zh) 2020-02-07
DE112016003517T5 (de) 2018-04-26
US10464484B2 (en) 2019-11-05
JP2017034543A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2017022496A1 (ja) 運転者に支援画像を提示する装置及びその方法
WO2017022497A1 (ja) 運転者に支援画像を提示する装置及びその方法
WO2016002163A1 (ja) 画像表示装置、画像表示方法
JP5347257B2 (ja) 車両用周辺監視装置および映像表示方法
JP6524922B2 (ja) 運転支援装置、運転支援方法
US9592764B2 (en) Redundant object detection for driver assistance systems
JP6649738B2 (ja) 駐車区画認識装置、駐車区画認識方法
JP6425991B2 (ja) 牽引車両周囲画像生成装置および牽引車両周囲画像生成方法
JP2009524171A (ja) 複数の画像を結合して鳥瞰図画像にする方法
JP6586849B2 (ja) 情報表示装置及び情報表示方法
JP2009206747A (ja) 車両用周囲状況監視装置及び映像表示方法
JP2020068515A (ja) 画像処理装置
JP2008048094A (ja) 車両用映像表示装置及び車両周囲映像の表示方法
WO2015122124A1 (ja) 車両周辺画像表示装置、車両周辺画像表示方法
JP2018074411A (ja) 物体検出装置及び物体検出方法
JP6406175B2 (ja) 車載表示制御装置、車載表示制御方法
WO2019155868A1 (ja) 画像生成装置および画像生成方法
JP6032141B2 (ja) 走行路面標示検知装置および走行路面標示検知方法
JP5759709B2 (ja) 画像認識装置
WO2017086057A1 (ja) 車両用表示装置および車両用表示方法
JP2020053916A (ja) 表示制御装置、車両、表示制御方法
JP6020736B2 (ja) 予測進路提示装置及び予測進路提示方法
WO2024111324A1 (ja) 表示制御装置
JP2020155792A (ja) 画像表示装置
WO2016002418A1 (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15749631

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003517

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832775

Country of ref document: EP

Kind code of ref document: A1