WO2017022370A1 - アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置 - Google Patents

アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2017022370A1
WO2017022370A1 PCT/JP2016/069216 JP2016069216W WO2017022370A1 WO 2017022370 A1 WO2017022370 A1 WO 2017022370A1 JP 2016069216 W JP2016069216 W JP 2016069216W WO 2017022370 A1 WO2017022370 A1 WO 2017022370A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
antenna
port
pass filter
impedance
Prior art date
Application number
PCT/JP2016/069216
Other languages
English (en)
French (fr)
Inventor
黒田克人
尾仲健吾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680037647.9A priority Critical patent/CN107710607B/zh
Priority to JP2017532429A priority patent/JP6528845B2/ja
Publication of WO2017022370A1 publication Critical patent/WO2017022370A1/ja
Priority to US15/883,593 priority patent/US10424841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/175Series LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H2007/386Multiple band impedance matching

Definitions

  • the present invention relates to an antenna matching circuit that is connected to an antenna and adjusts antenna characteristics, an antenna circuit including the antenna matching circuit, a front-end circuit, and a communication device.
  • An antenna matching circuit is connected to the antenna in order to impedance-match the power feeding circuit and the antenna, or in particular to give a small antenna a predetermined antenna characteristic over a wide band (Patent Documents 1 and 2).
  • Patent Document 1 describes that a variable resonance circuit is inserted between a feeding point of a radiating element and a ground conductor, and the matching frequency of the antenna is switched by changing the resonance frequency.
  • Patent Document 2 discloses an antenna matching circuit using a series-parallel circuit of a variable capacitance element and an inductor.
  • a circuit for switching the antenna matching frequency is generally provided as a means for reducing the size and increasing the bandwidth.
  • narrowband means that several matching states are provided in order to cover the necessary band.
  • the matching frequency of the antenna is switched by changing the capacitance of the variable capacitance element or by switching the capacitance elements having different capacitances with a switch. There is a problem of being limited.
  • An object of the present invention is to provide an antenna matching circuit capable of impedance matching over a wide frequency band without complicating the circuit, an antenna circuit including the antenna matching circuit, a front-end circuit, and a communication device.
  • the antenna matching circuit of the present invention is A first circuit connected between the power feeding port and the antenna port; In an antenna matching circuit comprising a second circuit connected between the power feeding port and the ground or between the antenna port and the ground, A first end of the first circuit is connected to the feed port; a second end of the first circuit is connected to the antenna port; A first end of the second circuit is connected to the ground; At least a first state connecting between the second end of the second circuit and the first end of the first circuit; and between the second end of the second circuit and the second end of the first circuit. A switch for switching between the second state and the second state.
  • impedance matching can be achieved over a wide band with a small number of elements.
  • the first circuit is a circuit in which a first variable capacitor and a first inductor are connected in series
  • the second circuit includes a second variable capacitor and a second inductor.
  • impedance matching can be taken over a wide band while the number of elements is small.
  • the first variable capacitance element, the second variable capacitance element, and the switch are configured by a single IC. Thereby, the number of components to be mounted on a circuit board or the like is reduced. Further, by providing the first inductor and the second inductor outside the IC, it becomes easy to make an IC.
  • the antenna circuit of the present invention The antenna matching circuit according to any one of (1) to (4), and a first antenna for a first communication frequency band connected to the antenna port.
  • the second antenna for the second communication frequency band which is a higher frequency band than the first communication frequency band using the first antenna, and the second communication connected to the second antenna.
  • the antenna port further includes a second power feeding circuit for a frequency band, and a low-pass filter whose cutoff frequency is between the first communication frequency band and the second communication frequency band.
  • the low-pass filter has an impedance conversion function between the first antenna and the antenna matching circuit.
  • the impedance of an antenna is often made small for convenience in a limited space, and therefore often deviates from a standard impedance (50 ⁇ ).
  • the low-pass filter has a configuration in which, for example, a series inductor and a parallel capacitor are connected in a ladder shape, and the impedance of the input and output can be converted. The amount of displacement is reduced, and the efficiency of the entire antenna circuit can be improved.
  • a high-pass filter whose cutoff frequency is between the first communication frequency band and the second communication frequency band is provided between the second feeder circuit and the second antenna. It is preferable. As a result, even if the fundamental wave radiated from the first antenna (low band antenna) wraps around the second antenna (mid / high band antenna), it is reflected by the high-pass filter and re-radiated, so that the efficiency deteriorates. Can be prevented.
  • the high-pass filter has an impedance conversion function between the second antenna and the second feeding circuit.
  • the high-pass filter has a configuration in which, for example, a series capacitor and a parallel inductor are connected in a ladder shape, and the impedance of the input and output can be converted. Therefore, by matching the impedance of the high-pass filter to the impedance of the antenna, antenna matching The amount of impedance displacement due to the circuit is reduced, and the efficiency of the entire antenna circuit can be improved.
  • the antenna circuit of the present invention A diplexer having a low pass filter between the first port and the third port and having a high pass filter between the second port and the third port; An antenna connected to the third port of the diplexer; A first feeding circuit that feeds power to the antenna through the first port of the diplexer; A second feeding circuit that feeds power to the antenna via the second port of the diplexer; With The antenna matching circuit according to any one of (1) to (4) is provided between the first feeding circuit and the first port of the diplexer.
  • an antenna circuit that can be used over a wide band with a small number of elements can be configured in a configuration in which power is supplied from one power supply unit to the antenna.
  • the low-pass filter has an impedance conversion function between the antenna and the antenna matching circuit, or the high-pass filter has an impedance conversion function between the antenna and the antenna matching circuit. It is preferable. Thereby, by making the impedance of one or both of the low-pass filter and the high-pass filter close to the impedance of the antenna, the amount of impedance displacement due to the antenna matching circuit is reduced, and the efficiency of the entire antenna circuit can be improved.
  • the front-end circuit of the present invention is The antenna matching circuit according to any one of (1) to (4) above and a high frequency circuit connected to the antenna matching circuit.
  • the number of parts is reduced by the above configuration. Moreover, by providing an antenna matching circuit corresponding to the impedance fluctuation over a wide range of the antenna, it can be used as a highly versatile module component.
  • the high-frequency circuit may include a power amplifier that amplifies the transmission signal.
  • a communication device of the present invention includes the antenna circuit according to any one of (5) to (11) above and a communication circuit connected to the antenna circuit. As a result, a small communication device including an antenna circuit configured to save space is configured.
  • an antenna matching circuit that enables impedance matching over a wide frequency band without complicating the circuit, an antenna circuit including the antenna matching circuit, a front-end circuit, and a communication device can be obtained.
  • FIG. 1 is a circuit diagram of an antenna circuit 201 according to the first embodiment.
  • FIG. 2A is a circuit diagram of the antenna matching circuit 101 and the antenna circuit 201 in the first state.
  • FIG. 2B is a circuit diagram of the antenna matching circuit 101 and the antenna circuit 201 in the second state.
  • 3A and 3B are diagrams showing the configuration of the antenna matching circuit and the effect of impedance matching by the antenna matching circuit.
  • 4A and 4B are diagrams showing the configuration of the antenna matching circuit and the effect of impedance matching by the antenna matching circuit.
  • FIG. 5A and FIG. 5B are diagrams showing the configuration of the antenna matching circuit and the effect of impedance matching by the antenna matching circuit.
  • FIG. 6A and 6B are diagrams showing the configuration of the antenna matching circuit and the effect of impedance matching by the antenna matching circuit.
  • FIG. 7 is a circuit diagram of the antenna circuit 202 according to the second embodiment.
  • FIG. 8 is a perspective view of the antenna matching circuit module 112 shown in FIG.
  • FIG. 9 is a circuit diagram of the antenna circuit 203 according to the third embodiment.
  • FIG. 10 is a circuit diagram of the antenna circuit 204 according to the fourth embodiment.
  • FIG. 11 is a circuit diagram of an antenna circuit 205 according to the fifth embodiment.
  • FIG. 12 is a diagram illustrating the structure of the antenna 30 of the simulation model.
  • FIG. 13 is a diagram illustrating the values of elements in each part of the antenna matching circuit 101 that are optimal in each band in the low band.
  • FIG. 14 is a diagram showing frequency characteristics of antenna efficiency in the low band.
  • FIG. 15 is a diagram showing frequency characteristics of antenna efficiency in the mid / high band.
  • FIG. 16 is a circuit diagram of the low-pass filter 51 and the high-pass filter 52 of the antenna matching circuit according to the sixth embodiment.
  • FIG. 17 is a diagram illustrating values of elements in respective parts of the low-pass filter 51 and the high-pass filter 52 of the antenna matching circuit according to the sixth embodiment.
  • FIG. 18 is a diagram illustrating frequency characteristics of reflection loss and insertion loss of three ports of the diplexer according to the sixth embodiment.
  • FIG. 19 is a circuit diagram of an antenna circuit 207 according to the seventh embodiment.
  • FIG. 20 is a block diagram of a communication device 308A according to the eighth embodiment.
  • FIG. 21 is a block diagram of another communication apparatus 308B according to the eighth embodiment.
  • FIG. 1 is a circuit diagram of an antenna circuit 201 according to the first embodiment.
  • the antenna circuit 201 includes an antenna matching circuit (antenna tuner) 101, a power feeding circuit 21, a transmission line 41, and an antenna 31.
  • the antenna matching circuit 101 is connected in parallel between the first circuit 11 connected in series between the feeding port Pf and the antenna port Pa, and between the feeding port Pf and the ground, or between the antenna port Pa and the ground.
  • a second circuit 12 and a switch 13 are provided.
  • the first circuit 11 is a circuit in which the first variable capacitance element C1 and the first inductor L1 are connected in series.
  • the second circuit 12 is a circuit in which the second variable capacitance element C2 and the second inductor L2 are connected in parallel.
  • the first end P11 of the first circuit 11 is connected to the power supply port Pf, and the second end P12 of the first circuit 11 is connected to the antenna port Pa.
  • a first terminal P21 of the second circuit 12 is connected to the ground.
  • the switch 13 includes a first state in which the second end P22 of the second circuit 12 and the first end P12 of the first circuit 11 are connected to each other, and a second end of the second circuit 12.
  • the second state (conductive state between c and b) connecting P22 and the second end P12 of the first circuit 11 is switched.
  • the antenna matching circuit 101 is connected to a control circuit for supplying a control signal for the variable capacitance elements C1 and C2 and a control signal for the switch 13, respectively.
  • FIG. 2A is a circuit diagram of the antenna matching circuit 101 and the antenna circuit 201 in the first state.
  • FIG. 2B is a circuit diagram of the antenna matching circuit 101 and the antenna circuit 201 in the second state.
  • the first circuit 11 is connected in series between the transmission line 41 and the power feeding circuit 21 in both the first state and the second state.
  • the first state as shown in FIG. 2A, as viewed from the antenna 31 side, the first circuit 11 is first connected in series to the transmission line 41, and the second circuit 12 is connected in parallel to the subsequent stage.
  • the second state as shown in FIG. 2B, the second circuit 12 is first connected in parallel to the transmission line 41, and the first circuit 11 is connected in series to the subsequent stage.
  • FIGS. 3A, 4B, 4A, 5B, 5A, 6B, 6A, and 6B show the configuration of the antenna matching circuit and the effect of impedance matching by the antenna matching circuit.
  • FIG. 3A, 3B, 4A, and 4B correspond to the first state of the switch 13
  • FIGS. 5A, 5B, 6A, and 6B show the first state of the switch 13.
  • FIG. Corresponds to two states.
  • the first circuit 11 is inductive reactance
  • the second circuit 12 is Capacitive reactance.
  • the first circuit 11 is displaced in a direction to increase the inductivity of the antenna impedance (trajectory T (L))
  • the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (C)). Align.
  • the first circuit 11 is capacitive reactance
  • the second circuit 12 is Inductive reactance.
  • the first circuit 11 is displaced in a direction to increase the capacitive capacity of the antenna impedance (trajectory T (C))
  • the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (L)). Align.
  • both the first circuit 11 and the second circuit 12 have inductive reactance as shown in FIG. 4A.
  • the first circuit 11 is displaced in a direction to increase the inductivity of the antenna impedance (trajectory T (L1))
  • the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (L2)). Align.
  • both the first circuit 11 and the second circuit 12 have capacitive reactance as shown in FIG. 4B.
  • the first circuit 11 is displaced in the direction of increasing the antenna impedance capacitance (trajectory T (C1)), and the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (C2)). Align.
  • the second circuit 12 is inductive reactance and the first circuit 11 is Capacitive reactance.
  • the second circuit 12 is displaced in a direction to increase the inductivity of the antenna impedance (trajectory T (L)), and the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (C)). Align.
  • the second circuit 12 is capacitive reactance, and the first circuit 11 is Inductive reactance.
  • the second circuit 12 is displaced in a direction to increase the antenna impedance capacitance (trajectory T (C)), and the second circuit 12 is displaced to a specified impedance (50 ⁇ ) (trajectory T (L)). Align.
  • both the first circuit 11 and the second circuit 12 have inductive reactance as shown in FIG. 6A.
  • the second circuit 12 is displaced in a direction to increase the inductivity of the antenna impedance (trajectory T (L2)), and the first circuit 11 is displaced to a specified impedance (50 ⁇ ) (trajectory T (L1)). Align.
  • both the first circuit 11 and the second circuit 12 have capacitive reactance as shown in FIG. 6B.
  • the second circuit 12 is displaced in a direction to increase the antenna impedance capacitance (trajectory T (C2)), and the first circuit 11 is displaced to a specified impedance (50 ⁇ ) (trajectory T (C1)). Align.
  • the amount of impedance displacement by the first circuit 11 is determined by the first variable capacitance element C1 and the first inductor L1.
  • the reactance of the first circuit 11 can be set in a range from inductive to capacitive by appropriately determining the minimum and maximum values of the capacitance of the first variable capacitance element C1 and the inductance of the first inductor L1. However, it is not essential that the reactance of the first circuit 11 can be set in a range from inductive to capacitive. Although the impedance matching range is narrow, the impedance matching range may be set within the inductive range or the capacitive range.
  • the amount of impedance displacement by the second circuit 12 is determined by the second variable capacitance element C2 and the second inductor L2.
  • the reactance of the second circuit 12 can be set in a range from inductive to capacitive by appropriately determining the minimum and maximum values of the capacitance of the second variable capacitance element C2 and the inductance of the second inductor L2. It is not essential that the reactance of the second circuit 12 can be set in a range from inductive to capacitive. Although the impedance matching range is narrow, the impedance matching range may be set within the inductive range or the capacitive range.
  • impedance matching over a wide range is possible with a circuit having a small number of elements (the first circuit 11, the second circuit 12, and the switch 13).
  • Second Embodiment an antenna circuit 202 including two antennas and two power feeding circuits is shown.
  • FIG. 7 is a circuit diagram of the antenna circuit 202 according to the second embodiment.
  • the antenna circuit 202 includes a low-band antenna circuit and a mid / high-band antenna circuit.
  • the mid / high band antenna circuit includes a second feeding circuit 22, a second transmission line 42, and a second antenna 32.
  • the low-band antenna circuit includes an antenna matching circuit 101, a first feeding circuit 21, a low-pass filter 51, a first transmission line 41, and a first antenna 31.
  • the low-pass filter 51 is inserted between the antenna matching circuit and the first transmission line 41, that is, on the antenna side of the antenna matching circuit 101.
  • the antenna matching circuit 101 and the low-pass filter 51 are configured as one antenna matching circuit module 112.
  • the low band is an example of the “first communication frequency band” according to the present invention, 699 MHz to 960 MHz, and the mid / high band is an example of the “second communication frequency band” according to the present invention, and is from 1710 MHz to 2690 MHz. is there.
  • the cutoff frequency of the low-pass filter 51 is between the low band and the mid / high band. That is, the low-pass filter 51 passes the low band signal and blocks the mid / high band signal. As a result, unnecessary waves such as harmonics generated by the variable capacitance elements C1 and C2 and the switch 13 in the antenna matching circuit 101 are suppressed from being radiated from the first antenna 31, and the unnecessary waves wrap around the second antenna 32. Sensitivity degradation caused by this can be suppressed.
  • the mid / high band transmission wave radiated from the second antenna 32 during the low band and mid / high band 2up link is prevented from wrapping around from the first antenna 31 to the antenna matching circuit 101.
  • Generation of intermodulation distortion (IMD) due to mixing of the transmission wave and the mid / high band transmission wave by the variable capacitance elements C1 and C2 and the switch 13 is suppressed.
  • FIG. 8 is a perspective view of the antenna matching circuit module 112 shown in FIG.
  • the low-pass filter 51 is composed of a resin multilayer substrate. Variable capacitance elements C1 and C2, inductors L1 and L2, and a switch 13 are mounted on the low-pass filter 51 (resin multilayer substrate).
  • the variable capacitance elements C1 and C2 are semiconductor IC chips whose capacitance is determined by digital signal control.
  • the switch 13 is a semiconductor IC chip that switches to the first state or the second state according to a control signal.
  • the inductors L1 and L2 are chip inductors formed of a resin multilayer substrate or a ceramic multilayer substrate.
  • a communication signal input / output terminal On the lower surface of the low-pass filter 51 (resin multilayer substrate), a communication signal input / output terminal, a ground terminal, a control signal input terminal for the variable capacitance elements C1 and C2, and a control signal input terminal for the switch 13 are formed.
  • FIG. 9 is a circuit diagram of the antenna circuit 203 according to the third embodiment.
  • the antenna circuit 203 includes a low-band antenna circuit and a mid / high-band antenna circuit.
  • the mid / high band antenna circuit includes a second feeding circuit 22, a high-pass filter 52, a second transmission line 42, and a second antenna 32.
  • the low-band antenna circuit includes an antenna matching circuit 101, a first feeding circuit 21, a low-pass filter 51, a first transmission line 41, and a first antenna 31.
  • the cutoff frequency of the high-pass filter 52 is between the low band and the mid / high band. That is, the high pass filter 52 passes the mid / high band signal and blocks the low band signal.
  • the transmission wave (fundamental wave) radiated from the first antenna (low band antenna) 31 wraps around the second antenna (mid / high band antenna) 32, the signal is reflected by the high pass filter 52. Since it is re-radiated, it is possible to prevent deterioration in efficiency in the low band.
  • an antenna circuit 204 including one antenna and two power feeding circuits is shown.
  • FIG. 10 is a circuit diagram of the antenna circuit 204 according to the fourth embodiment.
  • the antenna circuit 204 includes a first power feeding circuit 21, a second power feeding circuit 22, a low band antenna circuit, a diplexer 50, a transmission line 40, and an antenna 30.
  • the configuration of the low-band antenna circuit is the same as that of the embodiments shown so far.
  • the diplexer 50 includes a low-pass filter between the first port P1 and the third port P3, and includes a high-pass filter between the second port P2 and the third port P3.
  • the antenna 30 is connected to the third port of the diplexer 50 via the transmission line 40, the antenna matching circuit 101 for low band is connected to the first port P1 of the diplexer, and the mid / high band is connected to the second port P2. Are connected.
  • the low-pass filter of the diplexer 50 operates in the same manner as the low-pass filter 51 shown in the second embodiment, and the high-pass filter of the diplexer 50 operates in the same manner as the high-pass filter 52 shown in the third embodiment.
  • an antenna circuit that can be used over a wide band with a small number of elements can be configured in a configuration in which power is supplied from one power supply unit to the antenna.
  • an antenna circuit 205 including one antenna and two power feeding circuits is shown.
  • a simulation result of antenna efficiency is shown.
  • FIG. 11 is a circuit diagram of the antenna circuit 205 according to the fifth embodiment.
  • the antenna circuit 205 includes a low-band antenna circuit unit, a mid / high-band antenna circuit unit, and an antenna 30.
  • the mid / high band antenna circuit unit includes a second feeding circuit 22, an antenna matching circuit 103 ⁇ / b> H, a high-pass filter 52, and a second transmission line 42.
  • the low-band antenna circuit unit includes an antenna matching circuit 101, a first feeding circuit 21, a low-pass filter 51, and a first transmission line 41.
  • FIG. 12 is a diagram showing the structure of the antenna 30 of the simulation model.
  • the antenna 30 is a U-shaped metal body that is one end of a metal housing.
  • a low-band antenna circuit unit and a mid / high-band antenna circuit unit are formed on the circuit board 60.
  • FIG. 13 is a diagram showing the values of the elements in each part of the antenna matching circuit 101 that are optimum in each band in the low band.
  • the switch 13 is in the second state (conductive state between c and b).
  • FIG. 14 is a diagram showing frequency characteristics of antenna efficiency in the low band
  • FIG. 15 is a diagram showing frequency characteristics of antenna efficiency in the mid / high band.
  • each of the six bands in the low band has a mountain-shaped curve, and the peak value thereof is about ⁇ 2.5 dB, and high antenna efficiency can be obtained in any band.
  • the matching circuit is not included for the mid / high band, as shown in FIG. 15, there is almost no frequency dependence of the antenna efficiency, and high antenna efficiency can be obtained.
  • FIG. 16 is a circuit diagram of the low-pass filter 51 and the high-pass filter 52 of the antenna matching circuit according to the sixth embodiment.
  • the low pass filter 51 and the high pass filter 52 constitute a diplexer.
  • the value of each element is as shown in FIG. In FIG. 17, the numerical value described in the column of “impedance conversion” is the value of impedance conversion between input and output.
  • “LPF30-50” is a condition when the input impedance of the low-pass filter 51 is 30 ⁇ and the output impedance is 50 ⁇ .
  • the high pass filter 52 of the mid / high band antenna matching circuit does not perform impedance conversion, and the input impedance of the high pass filter 52 is 50 ⁇ and the output impedance is 50 ⁇ . is there.
  • FIG. 18 is a diagram showing the frequency characteristics of the reflection loss and insertion loss of the three ports of the diplexer.
  • the low-pass filter side is port 1
  • the high-pass filter side is port 2
  • the antenna side is port 3. Both are characteristics when the input / output impedance is 50 ⁇ .
  • the low-pass filter 51 of the low-band antenna circuit can match the impedance of the antenna 30 whose impedance in the low band is lower than 50 ⁇ to 50 ⁇ .
  • impedance conversion may also be performed by setting an element value for a high-pass filter of a mid / high band antenna circuit.
  • the use of the impedance conversion action of the low-pass filter and the high-pass filter may be applied to the diplexer 50 shown in FIG.
  • FIG. 19 is a circuit diagram of an antenna circuit 207 according to the seventh embodiment.
  • the first variable capacitance element C1, the second variable capacitance element C2, and the switch 13 are configured by a single IC 61.
  • the IC 61, the first inductor L1, and the second inductor L2 constitute an antenna matching circuit.
  • the operation of this antenna matching circuit is the same as that of the antenna matching circuit 101 shown in FIG. 1 in the first embodiment.
  • the number of components to be mounted on a circuit board or the like is reduced. Further, by providing the first inductor L1 and the second inductor L2 outside the IC 61, the IC 61 can be easily configured as a semiconductor integrated circuit.
  • FIG. 20 is a block diagram of a communication device 308A according to the eighth embodiment.
  • the communication device 308 is, for example, a mobile phone terminal.
  • An antenna matching circuit 101 is connected to the antenna 31.
  • a coupler 80 is provided between the antenna matching circuit 101 and the demultiplexing / switching circuit 71.
  • the configuration of the antenna matching circuit 101 is as shown in FIG.
  • a CPU 83 is connected to the antenna matching circuit 101.
  • a demultiplexing / switching circuit 71 is provided between the coupler 80 and the reception filter 72 and the transmission filter 73.
  • a low noise amplifier 74 is provided between the RFIC 76 and the reception filter 72, and a power amplifier 75 is provided between the RFIC 76 and the transmission filter 73.
  • the power amplifier 75 amplifies the transmission signal output from the RFIC 76.
  • An RFIC 76 and a display device 78 are connected to the baseband IC 77.
  • the antenna matching circuit 101, the coupler 80, the demultiplexing / switching circuit 71, the reception filter 72, and the transmission filter 73 are configured as one front-end circuit (one module component) 70A.
  • the circuit portions other than the antenna matching circuit 101 correspond to the “high frequency circuit” according to the present invention.
  • a phase detection circuit 81 is connected to the coupler 80, and an A / D converter 82 is connected between the phase detection circuit 81 and the CPU 83.
  • the phase detection circuit 81 detects the amplitude and phase of the two signals output from the coupler 80, and the CPU 83 inputs the AD conversion value of the detection signal of the phase detection circuit 81, and based on this value, the reflection loss of the antenna 31 is detected. Alternatively, the reflection coefficient is obtained. Then, the antenna matching circuit 101 is controlled so that the value decreases. That is, the state of the switch 13 of the antenna matching circuit 101 is determined, and the value of the first variable capacitance element C1 and the value of the second variable capacitance element C2 are adjusted.
  • the antenna matching circuit 101 is tuned so that the reflection from the antenna 31 is reduced, so that the antenna and the feeding circuit can always be matched.
  • FIG. 21 is a block diagram of a communication device 308B according to the eighth embodiment.
  • the configuration of the front end circuit is different from the communication device 308A shown in FIG.
  • the front end circuit 70B of the communication device 308B includes an antenna matching circuit 101, a coupler 80, a demultiplexing / switching circuit 71, a reception filter 72, a transmission filter 73, a low noise amplifier 74, and a power amplifier 75. Component) 70B.
  • Other configurations are the same as those of the communication device 308A.
  • the circuit portions other than the antenna matching circuit 101 correspond to the “high frequency circuit” according to the present invention.
  • the front end circuit 70B including the power amplifier 75 may be configured.
  • the low noise amplifier 74 may be included in the front end circuit 70B as shown in FIG. 21, or may be provided outside the front end circuit 70B.
  • the number of parts is reduced by using the front end circuits 70A and 70B including the antenna matching circuit 101. Further, since the antenna matching circuit 101 can cope with the impedance variation over a wide range of the antenna 31, the front end circuits 70A and 70B can be used as highly versatile module parts.
  • Switching circuit 72 ... Reception filter 73 ... Transmission filter 74 ... Low noise amplifier 75 ... Power amplifier 76 ... RFIC 78 ... Display device 80 ... Coupler 81 ... Phase detection circuit 82 ... A / D converter 83 ... CPU DESCRIPTION OF SYMBOLS 101 ... Antenna matching circuit 103H ... Antenna matching circuit 112 ... Antenna matching circuit module 201, 202, 203, 204, 205, 207 ... Antenna circuit 308 ... Communication apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Details Of Aerials (AREA)
  • Transmitters (AREA)
  • Filters And Equalizers (AREA)

Abstract

給電ポート(Pf)とアンテナポート(Pa)との間に接続される第1回路(11)と、給電ポート(Pf)とグランドとの間、またはアンテナポート(Pa)とグランドとの間に接続される第2回路(12)とを備える。第1回路(11)は、例えば第1可変容量素子(C1)と第1インダクタ(L1)とが直列接続された回路であり、第2回路(12)は、例えば第2可変容量素子(C2)と第2インダクタ(L2)とが並列接続された回路である。スイッチ(13)は、少なくとも、第2回路(12)の第2端(P22)と第1回路(11)の第1端(P11)との間を接続する第1状態と、第2回路(12)の第2端(P22)と第1回路(11)の第2端(P12)との間を接続する第2状態とを切り替える。

Description

アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
 本発明は、アンテナに接続されてアンテナ特性を調整するアンテナ整合回路、それを備えるアンテナ回路、フロントエンド回路および通信装置に関する。
 給電回路とアンテナとをインピーダンス整合させるため、または、特に小型のアンテナを広帯域に亘って所定のアンテナ特性をもたせるため、アンテナにアンテナ整合回路が接続される(特許文献1,2)。
 特許文献1には、放射素子の給電点とグランド導体との間に可変共振回路が挿入され、その共振周波数を変化させることで、アンテナのマッチング周波数を切り替えることが記載されている。
 特許文献2には、可変容量素子とインダクタとの直並列回路によるアンテナ整合回路が示されている。
国際公開第2014/181569号 特表2012-505580号公報
 近年、携帯電話の周波数がますます広帯域化していくのに伴い、アンテナの特性についても広帯域化が要求されている。しかし携帯電話端末に搭載可能なアンテナのスペースは限られており、特に低域側(ローバンド)のアンテナについては小型化した上で広帯域化する必要がある。低域側は高域側よりも波長が長いため、同じアンテナ体積でも、低域側のアンテナは高域側のアンテナよりも体積が小さく見えるため、低域側のアンテナは高域側のアンテナよりも一層の小型化が必要になるからである。そして、小型化した上で広帯域化するための手段として、アンテナのマッチング周波数を切り替える回路を設けることが一般的である。
 なお、ここでいう、広帯域化とは、必要帯域をカバーするためにいくつかの整合状態を設けることを意味する。
 しかし、特許文献1に示されている構成では、可変容量素子のキャパシタンスを変えることによって、またはキャパシタンスの異なる容量素子をスイッチで切り替えることによって、アンテナのマッチング周波数を切り替えるので、マッチングできるインピーダンスの範囲が限定されるという問題がある。
 また、特許文献2に示されている構成では、2つの可変容量素子のキャパシタンスを変化させることでアンテナのマッチング周波数を切り替えるので、すなわち回路構成が固定されているので、マッチングできるインピーダンス範囲が限定されるという問題がある。
 本発明の目的は、回路を複雑化せずに広周波数帯に亘ってインピーダンスマッチングを可能としたアンテナ整合回路、それを備えるアンテナ回路、フロントエンド回路および通信装置を提供することにある。
(1)本発明のアンテナ整合回路は、
 給電ポートとアンテナポートとの間に接続される第1回路と、
前記給電ポートとグランドとの間、または前記アンテナポートと前記グランドとの間に接続される第2回路とを備えるアンテナ整合回路において、
 前記第1回路の第1端は前記給電ポートに接続され、前記第1回路の第2端は前記アンテナポートに接続され、
 前記第2回路の第1端は前記グランドに接続され、
 少なくとも、前記第2回路の第2端と前記第1回路の第1端との間を接続する第1状態と、前記第2回路の第2端と前記第1回路の第2端との間を接続する第2状態とを切り替えるスイッチを備えた、ことを特徴とする。
 上記構成により、少ない素子数で広帯域に亘ってインピーダンスマッチングをとることができる。
(2)上記(1)において、前記第1回路は、第1可変容量素子と第1インダクタとが直列接続された回路であり、前記第2回路は、第2可変容量素子と第2インダクタとが並列接続された回路であることが好ましい。これにより、少ない素子数でありながら広帯域に亘ってインピーダンスマッチングをとることができる。
(3)上記(1)または(2)において、前記アンテナポートに接続されるアンテナのインピーダンスを反射係数で表すときに前記反射係数の実部が負であるとき、前記スイッチは第1状態に切り替えられ、前記反射係数の実部が正であるとき、前記スイッチは第2状態に切り替えられることが好ましい。これにより、スミスチャート上でのインピーダンスの少ない変位量でインピーダンスマッチングがとれる。
(4)上記(1)から(3)のいずれかにおいて、前記第1可変容量素子、前記第2可変容量素子および前記スイッチは単一のICで構成されていることが好ましい。これにより、回路基板等へ実装すべき部品数が削減される。また、第1インダクタおよび第2インダクタをICの外に設けることにより、IC化が容易となる。
(5)本発明のアンテナ回路は、
 上記(1)から(4)のいずれかに記載のアンテナ整合回路と、前記アンテナポートに接続される第1通信周波数帯用の第1アンテナとを備える。
 上記構成により、少ない素子数で広帯域に亘ってインピーダンス整合するアンテナ回路が構成できる。
(6)上記(5)において、前記第1アンテナを用いる第1通信周波数帯より高い周波数帯である第2通信周波数帯用の第2アンテナと、前記第2アンテナに接続される前記第2通信周波数帯用の第2給電回路とを更に備え、遮断周波数が第1通信周波数帯と第2通信周波数帯との間であるローパスフィルタを前記アンテナポートに備えることが好ましい。これにより、可変容量素子やスイッチで発生した高調波等の不要波の第1アンテナからの放射が抑制され、不要波が第2アンテナに回り込むことで生じる感度劣化を抑えることができる。
(7)上記(6)において、前記ローパスフィルタは、前記第1アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有することが好ましい。通常、アンテナのインピーダンスは、限られたスペースに収める都合上、小型に構成されるため、標準的なインピーダンス(50Ω)からずれることが多い。上記ローパスフィルタは例えば直列インダクタと並列キャパシタを梯子形に接続する構成であり、入出力のインピーダンスを変換することができるため、ローパスフィルタのインピーダンスをアンテナのインピーダンスに近づけることで、アンテナ整合回路によるインピーダンス変位量が軽減され、アンテナ回路全体の効率を改善できる。
(8)上記(6)または(7)において、遮断周波数が第1通信周波数帯と第2通信周波数帯との間であるハイパスフィルタを前記第2給電回路と前記第2アンテナとの間に備えることが好ましい。これにより、第1アンテナ(ローバンド用アンテナ)から放射された基本波が第2アンテナ(ミッド/ハイバンド用アンテナ)に回り込んでも、上記ハイパスフィルタで反射して再放射されるので、効率の悪化を防ぐことができる。
(9)上記(8)において、前記ハイパスフィルタは、前記第2アンテナと前記第2給電回路とのインピーダンス変換機能を有することが好ましい。これにより、上記ハイパスフィルタは例えば直列キャパシタと並列インダクタを梯子形に接続する構成であり、入出力のインピーダンスを変換することができるため、ハイパスフィルタのインピーダンスをアンテナのインピーダンスに近づけることで、アンテナ整合回路によるインピーダンス変位量が軽減され、アンテナ回路全体の効率を改善できる。
(10)本発明のアンテナ回路は、
 第1ポートと第3ポートとの間にローパスフィルタを有し、第2ポートと前記第3ポートとの間にハイパスフィルタを有するダイプレクサと、
 前記ダイプレクサの第3ポートに接続されるアンテナと、
 前記ダイプレクサの第1ポートを介して前記アンテナに給電する第1給電回路と、
 前記ダイプレクサの第2ポートを介して前記アンテナに給電する第2給電回路と、
 を備え、
 前記第1給電回路と前記ダイプレクサの第1ポートとの間に、上記(1)から(4)のいずれかに記載のアンテナ整合回路が設けられたことを特徴とする。
 上記構成により、アンテナに対して1つの給電部から給電する構成において、少ない素子数で広帯域に亘って使用可能なアンテナ回路が構成できる。
(11)上記(10)において、前記ローパスフィルタは、前記アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有し、または前記ハイパスフィルタは、前記アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有することが好ましい。これにより、ローパスフィルタ、ハイパスフィルタの一方または両方のインピーダンスをアンテナのインピーダンスに近づけることで、アンテナ整合回路によるインピーダンス変位量が軽減され、アンテナ回路全体の効率を改善できる。
(12)本発明のフロントエンド回路は、
 上記(1)から(4)のいずれかに記載のアンテナ整合回路と、前記アンテナ整合回路に接続された高周波回路とを備える。
 上記構成により、部品点数が削減される。また、アンテナの広範囲に亘るインピーダンス変動に対応するアンテナ整合回路を備えることで、汎用性の高いモジュール部品として利用できる。
(13)上記(12)において、前記高周波回路は、送信信号を電力増幅するパワーアンプを含んでもよい。
(14)本発明の通信装置は、上記(5)から(11)のいずれかに記載のアンテナ回路と前記アンテナ回路に接続される通信回路とを備える。これにより、省スペースに構成されたアンテナ回路を備える小型の通信装置が構成される。
 本発明によれば、回路を複雑化せずに広周波数帯に亘ってインピーダンスマッチングを可能としたアンテナ整合回路、それを備えるアンテナ回路、フロントエンド回路および通信装置が得られる。
図1は第1の実施形態に係るアンテナ回路201の回路図である。 図2(A)は第1状態でのアンテナ整合回路101およびアンテナ回路201の回路図である。図2(B)は第2状態でのアンテナ整合回路101およびアンテナ回路201の回路図である。 図3(A)、図3(B)は、アンテナ整合回路の構成と、それによるインピーダンス整合の作用を示す図である。 図4(A)、図4(B)は、アンテナ整合回路の構成と、それによるインピーダンス整合の作用を示す図である。 図5(A)、図5(B)は、アンテナ整合回路の構成と、それによるインピーダンス整合の作用を示す図である。 図6(A)、図6(B)は、アンテナ整合回路の構成と、それによるインピーダンス整合の作用を示す図である。 図7は第2の実施形態に係るアンテナ回路202の回路図である。 図8は、図7に示したアンテナ整合回路モジュール112の斜視図である。 図9は第3の実施形態に係るアンテナ回路203の回路図である。 図10は第4の実施形態に係るアンテナ回路204の回路図である。 図11は第5の実施形態に係るアンテナ回路205の回路図である。 図12はシミュレーションモデルのアンテナ30の構造を示す図である。 図13は、ローバンドにおける各バンドにおいて最適なアンテナ整合回路101の各部の素子の値を示す図である。 図14はローバンドでのアンテナ効率の周波数特性を示す図である。 図15はミッド/ハイバンドでのアンテナ効率の周波数特性を示す図である。 図16は第6の実施形態に係るアンテナ整合回路のローパスフィルタ51およびハイパスフィルタ52の回路図である。 図17は、第6の実施形態に係るアンテナ整合回路のローパスフィルタ51およびハイパスフィルタ52の各部の素子の値を示す図である。 図18は第6の実施形態に係るダイプレクサの3つのポートの反射損失と挿入損失の周波数特性について示す図である。 図19は第7の実施形態に係るアンテナ回路207の回路図である。 図20は第8の実施形態に係る通信装置308Aのブロック図である。 図21は第8の実施形態に係る別の通信装置308Bのブロック図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るアンテナ回路201の回路図である。このアンテナ回路201は、アンテナ整合回路(アンテナチューナー)101、給電回路21、伝送線路41およびアンテナ31を備える。
 アンテナ整合回路101は、給電ポートPfとアンテナポートPaとの間に直列接続される第1回路11と、給電ポートPfとグランドとの間、またはアンテナポートPaとグランドとの間に並列接続される第2回路12と、スイッチ13とを備える。
 第1回路11は、第1可変容量素子C1と第1インダクタL1とが直列接続された回路である。第2回路12は、第2可変容量素子C2と第2インダクタL2とが並列接続された回路である。
 第1回路11の第1端P11は給電ポートPfに接続されていて、第1回路11の第2端P12はアンテナポートPaに接続されている。第2回路12の第1端P21は前記グランドに接続されている。
 スイッチ13は、第2回路12の第2端P22と第1回路11の第1端P12との間を接続する第1状態(c-a間導通状態)と、第2回路12の第2端P22と第1回路11の第2端P12との間を接続する第2状態(c-b間導通状態)とを切り替える。
 但し、整合の上で並列共振回路が必要のない場合は、上記スイッチがすべてOFFになり、cがaにもbにも接続されない状態を設けてもよい。
 アンテナ整合回路101には、可変容量素子C1,C2に対する制御信号およびスイッチ13に対する制御信号をそれぞれ与える制御回路が接続される。
 図2(A)は上記第1状態でのアンテナ整合回路101およびアンテナ回路201の回路図である。図2(B)は上記第2状態でのアンテナ整合回路101およびアンテナ回路201の回路図である。
 第1状態、第2状態のいずれにおいても伝送線路41と給電回路21との間に第1回路11が直列接続される。第1状態では、図2(A)に表れるように、アンテナ31側から視て、伝送線路41に先ず第1回路11が直列接続され、その後段に第2回路12が並列接続される。第2状態では、図2(B)に表れるように、伝送線路41に先ず第2回路12が並列接続され、その後段に第1回路11が直列接続される。
 次に、上記アンテナ整合回路101の作用について図3~図6を参照して説明する。図3(A)(B)、図4(A)(B)、図5(A)(B)、図6(A)(B)それぞれは、アンテナ整合回路の構成とそれによるインピーダンス整合の作用を示す図である。図3(A)(B)、図4(A)(B)はスイッチ13の第1状態に対応し、図5(A)(B)、図6(A)(B)はスイッチ13の第2状態に対応する。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図3(A)のハッチング領域にあるとき、図3(A)中に示すように、第1回路11を誘導性リアクタンス、第2回路12を容量性リアクタンスとする。先ず、第1回路11でアンテナのインピーダンスの誘導性を高める方向に変位させ(軌跡T(L))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(C))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図3(B)のハッチング領域にあるとき、図3(B)中に示すように、第1回路11を容量性リアクタンス、第2回路12を誘導性リアクタンスとする。先ず、第1回路11でアンテナのインピーダンスの容量性を高める方向に変位させ(軌跡T(C))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(L))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図4(A)のハッチング領域にあるとき、図4(A)中に示すように、第1回路11、第2回路12共に誘導性リアクタンスとする。先ず、第1回路11でアンテナのインピーダンスの誘導性を高める方向に変位させ(軌跡T(L1))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(L2))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図4(B)のハッチング領域にあるとき、図4(B)中に示すように、第1回路11、第2回路12共に容量性リアクタンスとする。先ず、第1回路11でアンテナのインピーダンスの容量性を高める方向に変位させ(軌跡T(C1))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(C2))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図5(A)のハッチング領域にあるとき、図5(A)中に示すように、第2回路12を誘導性リアクタンス、第1回路11を容量性リアクタンスとする。先ず、第2回路12でアンテナのインピーダンスの誘導性を高める方向に変位させ(軌跡T(L))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(C))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図5(B)のハッチング領域にあるとき、図5(B)中に示すように、第2回路12を容量性リアクタンス、第1回路11を誘導性リアクタンスとする。先ず、第2回路12でアンテナのインピーダンスの容量性を高める方向に変位させ(軌跡T(C))、第2回路12で規定のインピーダンス(50Ω)に変位(軌跡T(L))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図6(A)のハッチング領域にあるとき、図6(A)中に示すように、第1回路11、第2回路12共に誘導性リアクタンスとする。先ず、第2回路12でアンテナのインピーダンスの誘導性を高める方向に変位させ(軌跡T(L2))、第1回路11で規定のインピーダンス(50Ω)に変位(軌跡T(L1))させることによって整合させる。
 アンテナ31のインピーダンスをスミスチャート上に表したときに図6(B)のハッチング領域にあるとき、図6(B)中に示すように、第1回路11、第2回路12共に容量性リアクタンスとする。先ず、第2回路12でアンテナのインピーダンスの容量性を高める方向に変位させ(軌跡T(C2))、第1回路11で規定のインピーダンス(50Ω)に変位(軌跡T(C1))させることによって整合させる。
 第1回路11によるインピーダンスの変位量は、第1可変容量素子C1と第1インダクタL1とで定まる。そして、第1可変容量素子C1のキャパシタンスの最小値、最大値、および第1インダクタL1のインダクタンスを適宜定めておくことによって、第1回路11のリアクタンスを誘導性から容量性の範囲で設定できる。但し、第1回路11のリアクタンスを誘導性から容量性の範囲で設定可能とすることは必須ではない。インピーダンス整合の範囲は狭くなるが、誘導性の範囲または容量性の範囲で設定するように構成してもよい。
 第2回路12によるインピーダンスの変位量は、第2可変容量素子C2と第2インダクタL2とで定まる。そして、第2可変容量素子C2のキャパシタンスの最小値、最大値、および第2インダクタL2のインダクタンスを適宜定めておくことによって、第2回路12のリアクタンスを誘導性から容量性の範囲で設定できる。第2回路12についても、そのリアクタンスを誘導性から容量性の範囲で設定可能とすることは必須ではない。インピーダンス整合の範囲は狭くなるが、誘導性の範囲または容量性の範囲で設定するように構成してもよい。
 以上に示したとおり、図3(A)(B)、図4(A)(B)に示したように、アンテナのインピーダンスを反射係数で表すときに反射係数の実部が負であるとき、スイッチ13を第1状態にする。逆に、図5(A)(B)、図6(A)(B)に示したように、アンテナのインピーダンスを反射係数で表すときに反射係数の実部が正であるときは、スイッチ13を第2状態にする。これにより、少ないインピーダンス整合量でインピーダンスマッチングがとれる。
 本実施形態によれば、少ない素子数の回路(第1回路11、第2回路12およびスイッチ13)で、広範囲に亘るインピーダンス整合が可能となる。
 なお、本実施形態では(以降に示す実施形態においても)アンテナに対し伝送線路を介して給電する例を示したが、この伝送線路は必須ではない。
《第2の実施形態》
 第2の実施形態では、2つのアンテナおよび2つの給電回路を備えるアンテナ回路202について示す。
 図7は第2の実施形態に係るアンテナ回路202の回路図である。このアンテナ回路202はローバンド用のアンテナ回路とミッド/ハイバンド用のアンテナ回路を備える。ミッド/ハイバンド用アンテナ回路は、第2給電回路22、第2伝送線路42および第2アンテナ32を備える。ローバンド用アンテナ回路は、アンテナ整合回路101、第1給電回路21、ローパスフィルタ51、第1伝送線路41および第1アンテナ31を備える。ローパスフィルタ51は、アンテナ整合回路と第1伝送線路41との間、すなわち、アンテナ整合回路101のアンテナ側に挿入されている。アンテナ整合回路101およびローパスフィルタ51は1つのアンテナ整合回路モジュール112として構成されている。
 ここで、ローバンドは本発明に係る「第1通信周波数帯」の例ではあり、699MHz~960MHz、ミッド/ハイバンドは本発明に係る「第2通信周波数帯」の例であり、1710MHz~2690MHzである。
 上記ローパスフィルタ51の遮断周波数は、ローバンドとミッド/ハイバンドとの間である。すなわち、ローパスフィルタ51はローバンドの信号を通過させ、ミッド/ハイバンドの信号を遮断する。これにより、アンテナ整合回路101内の可変容量素子C1,C2やスイッチ13で発生した高調波等の不要波が第1アンテナ31から放射されることが抑制され、不要波が第2アンテナ32に回り込むことで生じる感度劣化を抑えられる。
 また、キャリアアグリゲーション運用においてローバンドとミッド/ハイバンドの2up link時に第2アンテナ32から放射されたミッド/ハイバンドの送信波が第1アンテナ31からアンテナ整合回路101に回り込むことが防止され、ローバンドの送信波とミッド/ハイバンドの送信波とが可変容量素子C1,C2およびスイッチ13で混合されることによる相互変調歪(IMD)の発生が抑制される。
 図8は、図7に示したアンテナ整合回路モジュール112の斜視図である。ローパスフィルタ51は樹脂多層基板で構成されている。このローパスフィルタ51(樹脂多層基板)上に可変容量素子C1,C2、インダクタL1,L2およびスイッチ13が搭載されている。
 可変容量素子C1,C2はデジタル信号制御でキャパシタンスが定められる半導体ICチップである。スイッチ13は制御信号によって上記第1状態または第2状態に切り替える半導体ICチップである。インダクタL1,L2は樹脂多層基板またはセラミック多層基板で構成されたチップインダクタである。
 ローパスフィルタ51(樹脂多層基板)の下面には通信信号用入出力端子、グランド端子、可変容量素子C1,C2に対する制御信号入力端子およびスイッチ13に対する制御信号入力端子が形成されている。
 このようにフィルタを含めてアンテナ整合回路をモジュール化することによって、回路基板等への実装すべき部品数が削減される。
《第3の実施形態》
 第3の実施形態では、2つのアンテナおよび2つの給電回路を備えるアンテナ回路203について示す。
 図9は第3の実施形態に係るアンテナ回路203の回路図である。このアンテナ回路203はローバンド用のアンテナ回路とミッド/ハイバンド用のアンテナ回路を備える。ミッド/ハイバンド用アンテナ回路は、第2給電回路22、ハイパスフィルタ52、第2伝送線路42および第2アンテナ32を備える。ローバンド用アンテナ回路は、アンテナ整合回路101、第1給電回路21、ローパスフィルタ51、第1伝送線路41および第1アンテナ31を備える。
 上記ハイパスフィルタ52の遮断周波数は、ローバンドとミッド/ハイバンドとの間である。すなわち、ハイパスフィルタ52はミッド/ハイバンドの信号を通過させ、ローバンドの信号を遮断する。これにより、第1アンテナ(ローバンド用アンテナ)31から放射された送信波(基本波)が第2アンテナ(ミッド/ハイバンド用アンテナ)32に回り込んでも、その信号はハイパスフィルタ52で反射して再放射されるので、ローバンドにおける効率の悪化を防止できる。
《第4の実施形態》
 第4の実施形態では、1つのアンテナと2つの給電回路を備えるアンテナ回路204について示す。
 図10は第4の実施形態に係るアンテナ回路204の回路図である。このアンテナ回路204は、第1給電回路21、第2給電回路22、ローバンド用のアンテナ回路、ダイプレクサ50、伝送線路40およびアンテナ30を備える。
 ローバンド用アンテナ回路の構成は、これまでに示した実施形態の回路と同じである。ダイプレクサ50は第1ポートP1と第3ポートP3との間にローパスフィルタを備え、第2ポートP2と第3ポートP3との間にハイパスフィルタを備える。ダイプレクサ50の第3ポートには伝送線路40を介してアンテナ30が接続され、ダイプレクサの第1ポートP1にはローバンド用のアンテナ整合回路101が接続され、第2ポートP2にはミッド/ハイバンド用の給電回路22が接続される。
 ダイプレクサ50のローパスフィルタは第2の実施形態で示したローパスフィルタ51と同様に作用し、ダイプレクサ50のハイパスフィルタは第3の実施形態で示したハイパスフィルタ52と同様に作用する。
 本実施形態によれば、アンテナに対して1つの給電部から給電する構成において、少ない素子数で広帯域に亘って使用可能なアンテナ回路が構成できる。
《第5の実施形態》
 第5の実施形態では、1つのアンテナと2つの給電回路を備えるアンテナ回路205について示す。また、本実施形態ではアンテナ効率のシミュレーション結果について示す。
 図11は第5の実施形態に係るアンテナ回路205の回路図である。このアンテナ回路205はローバンド用のアンテナ回路部、ミッド/ハイバンド用のアンテナ回路部およびアンテナ30を備える。ミッド/ハイバンド用アンテナ回路部は、第2給電回路22、アンテナ整合回路103H、ハイパスフィルタ52、および第2伝送線路42を備える。ローバンド用アンテナ回路部は、アンテナ整合回路101、第1給電回路21、ローパスフィルタ51、および第1伝送線路41を備える。
 次に、アンテナ回路205のアンテナ効率に関するシミュレーション結果について示す。
 図12はシミュレーションモデルのアンテナ30の構造を示す図である。このアンテナ30は、金属筐体の一方端であるコ字型の金属体である。回路基板60にローバンド用のアンテナ回路部およびミッド/ハイバンド用のアンテナ回路部が形成されている。
 図13は、ローバンドにおける各バンドにおいて最適なアンテナ整合回路101の各部の素子の値を示す図である。スイッチ13は第2状態(c-b間導通状態)である。
 図14はローバンドでのアンテナ効率の周波数特性を示す図であり、図15はミッド/ハイバンドでのアンテナ効率の周波数特性を示す図である。図14に表れているように、ローバンドにおける6つのバンドで、それぞれ山なりの曲線を描くが、それらのピーク値は約-2.5dBであり、いずれのバンドにおいても高いアンテナ効率が得られる。また、ミッド/ハイバンドについては整合回路を含まないので、図15に表れているように、アンテナ効率の周波数依存性は殆ど無く、高いアンテナ効率が得られる。
《第6の実施形態》
 第6の実施形態では、アンテナ整合回路に設けるローパスフィルタおよびハイパスフィルタのインピーダンス変換作用について示す。
 図16は第6の実施形態に係るアンテナ整合回路のローパスフィルタ51およびハイパスフィルタ52の回路図である。ローパスフィルタ51とハイパスフィルタ52とでダイプレクサが構成される。各素子の値は図17に示すとおりである。図17において、「インピーダンス変換」の欄に記載した数値は入出力間でのインピーダンス変換の値である。例えば、"LPF30-50"は、ローパスフィルタ51の入力インピーダンスを30Ω、出力インピーダンスを50Ωとする場合の条件である。ミッド/ハイバンドにおいてはアンテナ30のインピーダンスはほぼ50Ωであるので、ミッド/ハイバンド用アンテナ整合回路のハイパスフィルタ52はインピーダンス変換を行わず、ハイパスフィルタ52の入力インピーダンスは50Ω、出力インピーダンスは50Ωである。
 図18は上記ダイプレクサの3つのポートの反射損失と挿入損失の周波数特性について示す図である。ここで、ローパスフィルタ側をポート1、ハイパスフィルタ側をポート2、アンテナ側をポート3としている。いずれも入出力インピーダンスを50Ωとしたときの特性である。
 このようにローバンド用アンテナ回路のローパスフィルタ51によって、ローバンドにおけるインピーダンスが50Ωより低いアンテナ30のインピーダンスを50Ωに整合させることができる。
 以上に示した例では、ローパスフィルタによるインピーダンス変換の例を示したが、ミッド/ハイバンド用アンテナ回路のハイパスフィルタについても、素子値の設定により、インピーダンス変換を行うようにしてもよい。
 また、ローパスフィルタおよびハイパスフィルタのインピーダンス変換作用の利用は、図10に示したダイプレクサ50に適用してもよい。
《第7の実施形態》
 第7の実施形態では、アンテナ整合回路101の一部をICで構成した例を示す。
 図19は第7の実施形態に係るアンテナ回路207の回路図である。第1可変容量素子C1、第2可変容量素子C2およびスイッチ13は単一のIC61で構成されている。このIC61と第1インダクタL1および第2インダクタL2とでアンテナ整合回路が構成される。このアンテナ整合回路の作用は第1の実施形態で図1に示したアンテナ整合回路101と同じである。
 本実施形態によれば、回路基板等へ実装すべき部品数が削減される。また、第1インダクタL1および第2インダクタL2をIC61の外に設けることにより、IC61は半導体集積回路として容易に構成される。
《第8の実施形態》
 第8の実施形態では、通信装置について示す。
 図20は第8の実施形態に係る通信装置308Aのブロック図である。この通信装置308は例えば携帯電話端末である。アンテナ31にアンテナ整合回路101が接続されている。アンテナ整合回路101と分波/切替回路71との間にはカプラ80が設けられている。アンテナ整合回路101の構成は図1に示したとおりである。アンテナ整合回路101にはCPU83が接続されている。カプラ80と受信フィルタ72、送信フィルタ73との間に分波/切替回路71が設けられている。RFIC76と受信フィルタ72との間にローノイズアンプ74が設けられていて、RFIC76と送信フィルタ73との間にパワーアンプ75が設けられている。このパワーアンプ75はRFIC76から出力される送信信号を電力増幅する。ベースバンドIC77にはRFIC76や表示装置78が接続されている。アンテナ整合回路101、カプラ80、分波/切替回路71、受信フィルタ72および送信フィルタ73は1つのフロントエンド回路(1つのモジュール部品)70Aとして構成されている。
 上記フロントエンド回路70A内において、アンテナ整合回路101以外の回路部は本発明に係る「高周波回路」に相当する。
 カプラ80には位相検波回路81が接続されていて、位相検波回路81とCPU83との間にA/Dコンバータ82が接続されている。
 位相検波回路81はカプラ80から出力される2つの信号の振幅および位相を検出し、CPU83は位相検波回路81の検出信号のAD変換値を入力し、この値に基づいて、アンテナ31の反射損失または反射係数を求める。そして、その値が小さくなる方向に、アンテナ整合回路101を制御する。すなわち、アンテナ整合回路101のスイッチ13の状態を定め、第1可変容量素子C1の値および第2可変容量素子C2の値を調整する。
 携帯電話端末である通信装置308の使用状態によって、アンテナ31近傍の環境は大きく変化し、それに伴ってアンテナ31のインピーダンスは変化し、給電回路側から視たインピーダンスが変化する。本実施形態によれば、アンテナ31からの反射が小さくなるようにアンテナ整合回路101がチューニングされるので、常にアンテナと給電回路とを整合させることができる。
 図21は第8の実施形態に係る通信装置308Bのブロック図である。図20に示した通信装置308Aとはフロントエンド回路の構成異なる。通信装置308Bのフロントエンド回路70Bは、アンテナ整合回路101、カプラ80、分波/切替回路71、受信フィルタ72、送信フィルタ73、ローノイズアンプ74およびパワーアンプ75が1つのフロントエンド回路(1つのモジュール部品)70Bとして構成されている。その他の構成は通信装置308Aと同じである。
 上記フロントエンド回路70B内において、アンテナ整合回路101以外の回路部は本発明に係る「高周波回路」に相当する。
 このようにパワーアンプ75を含むフロントエンド回路70Bを構成してもよい。なお、ローノイズアンプ74は図21に示すようにフロントエンド回路70Bに含めてもよいし、フロントエンド回路70B外に設けてもよい。
 本実施形態によれば、アンテナ整合回路101を含むフロントエンド回路70A,70Bを用いることで、部品点数が削減される。また、アンテナ整合回路101はアンテナ31の広範囲に亘るインピーダンス変動に対応できるので、フロントエンド回路70A,70Bは汎用性の高いモジュール部品として利用できる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。例えば、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
C1…第1可変容量素子
C2…第2可変容量素子
L1…第1インダクタ
L2…第2インダクタ
P1…第1ポート
P2…第2ポート
P3…第3ポート
Pa…アンテナポート
Pf…給電ポート
11…第1回路
12…第2回路
13…スイッチ
21…給電回路,第1給電回路
22…第2給電回路
30…アンテナ
31…アンテナ,第1アンテナ
32…第2アンテナ
40…伝送線路,
41…伝送線路,第1伝送線路
42…第2伝送線路
50…ダイプレクサ
51…ローパスフィルタ
52…ハイパスフィルタ
60…回路基板
61…IC
70…フロントエンド回路
71…切替回路
72…受信フィルタ
73…送信フィルタ
74…ローノイズアンプ
75…パワーアンプ
76…RFIC
78…表示装置
80…カプラ
81…位相検波回路
82…A/Dコンバータ
83…CPU
101…アンテナ整合回路
103H…アンテナ整合回路
112…アンテナ整合回路モジュール
201,202,203,204,205,207…アンテナ回路
308…通信装置

Claims (14)

  1.  給電ポートとアンテナポートとの間に接続される第1回路と、
     前記給電ポートとグランドとの間、または前記アンテナポートと前記グランドとの間に接続される第2回路とを備えるアンテナ整合回路において、
     前記第1回路の第1端は前記給電ポートに接続され、前記第1回路の第2端は前記アンテナポートに接続され、
     前記第2回路の第1端は前記グランドに接続され、
     少なくとも、前記第2回路の第2端と前記第1回路の第1端との間を接続する第1状態と、前記第2回路の第2端と前記第1回路の第2端との間を接続する第2状態とを切り替えるスイッチを備えた、ことを特徴とするアンテナ整合回路。
  2.  前記第1回路は、第1可変容量素子と第1インダクタとが直列接続された回路であり、
     前記第2回路は、第2可変容量素子と第2インダクタとが並列接続された回路である、
     請求項1記載のアンテナ整合回路。
  3.  前記アンテナポートに接続されるアンテナのインピーダンスを反射係数で表すときに前記反射係数の実部が負であるとき、前記スイッチは第1状態に切り替えられ、前記反射係数の実部が正であるとき、前記スイッチは第2状態に切り替えられる、請求項1または2に記載のアンテナ整合回路。
  4.  前記第1可変容量素子、前記第2可変容量素子および前記スイッチは単一のICで構成されている、請求項1から3のいずれかに記載のアンテナ整合回路。
  5.  請求項1から4のいずれかに記載のアンテナ整合回路と、前記アンテナポートに接続される第1通信周波数帯用の第1アンテナとを備える、アンテナ回路。
  6.  前記第1アンテナを用いる第1通信周波数帯より高い周波数帯である第2通信周波数帯用の第2アンテナと、前記第2アンテナに接続される前記第2通信周波数帯用の第2給電回路とを更に備え、
     遮断周波数が第1通信周波数帯と第2通信周波数帯との間であるローパスフィルタを前記アンテナポートに備える、請求項5に記載のアンテナ回路。
  7.  前記ローパスフィルタは、前記第1アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有する、請求項6に記載のアンテナ回路。
  8.  遮断周波数が第1通信周波数帯と第2通信周波数帯との間であるハイパスフィルタを前記第2給電回路と前記第2アンテナとの間に備える、請求項6または7に記載のアンテナ回路。
  9.  前記ハイパスフィルタは、前記第2アンテナと前記第2給電回路とのインピーダンス変換機能を有する、請求項8に記載のアンテナ回路。
  10.  第1ポートと第3ポートとの間にローパスフィルタを有し、第2ポートと前記第3ポートとの間にハイパスフィルタを有するダイプレクサと、
     前記ダイプレクサの第3ポートに接続されるアンテナと、
     前記ダイプレクサの第1ポートを介して前記アンテナに給電する第1給電回路と、
     前記ダイプレクサの第2ポートを介して前記アンテナに給電する第2給電回路と、
     を備え、
     前記第1給電回路と前記ダイプレクサの第1ポートとの間に、請求項1から4のいずれかに記載のアンテナ整合回路が設けられた、アンテナ回路。
  11.  前記ローパスフィルタは、前記アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有し、または前記ハイパスフィルタは、前記アンテナと前記アンテナ整合回路とのインピーダンス変換機能を有する、請求項10に記載のアンテナ回路。
  12.  請求項1から4のいずれかに記載のアンテナ整合回路と、前記アンテナ整合回路に接続された高周波回路とを備える、フロントエンド回路。
  13.  前記高周波回路は、送信信号を電力増幅するパワーアンプを含む、請求項12に記載のフロントエンド回路。
  14.  請求項5から11のいずれかに記載のアンテナ回路と前記アンテナ回路に接続される通信回路とを備える通信装置。
PCT/JP2016/069216 2015-07-31 2016-06-29 アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置 WO2017022370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680037647.9A CN107710607B (zh) 2015-07-31 2016-06-29 天线匹配电路、天线电路、前端电路以及通信装置
JP2017532429A JP6528845B2 (ja) 2015-07-31 2016-06-29 アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
US15/883,593 US10424841B2 (en) 2015-07-31 2018-01-30 Antenna matching circuit, antenna circuit, front-end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-151460 2015-07-31
JP2015151460 2015-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,593 Continuation US10424841B2 (en) 2015-07-31 2018-01-30 Antenna matching circuit, antenna circuit, front-end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2017022370A1 true WO2017022370A1 (ja) 2017-02-09

Family

ID=57942786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069216 WO2017022370A1 (ja) 2015-07-31 2016-06-29 アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置

Country Status (4)

Country Link
US (1) US10424841B2 (ja)
JP (1) JP6528845B2 (ja)
CN (1) CN107710607B (ja)
WO (1) WO2017022370A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966982B2 (en) 2015-09-02 2018-05-08 Skyworks Solutions, Inc. Contour tuning circuit
US10340963B2 (en) 2015-08-28 2019-07-02 Skyworks Solutions, Inc. Contour tuning circuit and related systems and methods
CN109962329A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种天线及通信装置
CN111295800A (zh) * 2017-10-30 2020-06-16 株式会社村田制作所 天线装置和通信装置
CN111344164A (zh) * 2017-11-17 2020-06-26 法国大陆汽车公司 具有连接到共有天线的至少两个收发单元的系统
CN112311350A (zh) * 2019-07-31 2021-02-02 株式会社村田制作所 滤波器装置
CN113437514A (zh) * 2021-06-25 2021-09-24 歌尔科技有限公司 天线装置及便携式电子设备
WO2022018925A1 (ja) * 2020-07-20 2022-01-27 株式会社村田製作所 アンテナ装置、アンテナシステム及び通信端末装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729790B2 (ja) * 2017-03-14 2020-07-22 株式会社村田製作所 高周波モジュール
US10071605B1 (en) * 2017-07-20 2018-09-11 Keycore Technology Corp. Specific multi-band antenna impedance matching circuit and tire-pressure monitoring device using same
CN109103608B (zh) * 2018-07-27 2021-04-23 南昌黑鲨科技有限公司 天线装置及终端
CN108712813B (zh) * 2018-09-13 2019-01-04 中微半导体设备(上海)有限公司 一种可切换匹配网络及电感耦合等离子处理器
CN110752855B (zh) * 2019-10-31 2021-09-14 Oppo广东移动通信有限公司 天线匹配电路、射频电路及电子设备
CN111092295B (zh) * 2019-12-16 2023-04-07 闻泰通讯股份有限公司 天线、天线调节方法、终端及存储介质
CN113471665B (zh) * 2020-03-31 2022-09-16 华为技术有限公司 一种天线及终端
CN111682324B (zh) * 2020-06-22 2022-01-21 华勤技术股份有限公司 降低天线sar的电路及方法
US20220029646A1 (en) * 2020-07-27 2022-01-27 Corning Research & Development Corporation Radio frequency transceiver filter circuit having inter-stage impedance matching
TWI764660B (zh) * 2021-04-01 2022-05-11 立積電子股份有限公司 匹配電路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125480A (ja) * 1994-10-27 1996-05-17 Kokusai Electric Co Ltd 整合回路、整合方法
WO2001048934A1 (en) * 1999-12-28 2001-07-05 Mitsubishi Denki Kabushiki Kaisha Cellular telephone
JP2004304435A (ja) * 2003-03-31 2004-10-28 Tdk Corp マルチバンド無線通信モジュールおよびマルチバンド無線通信端末機
JP2007174034A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 受信装置とこれを用いた電子機器
JP2008527808A (ja) * 2005-01-04 2008-07-24 Tdk株式会社 バンドパスフィルタ構造を用いたマルチプレクサ
US20110227666A1 (en) * 2010-03-22 2011-09-22 Paratek Microwave, Inc. Method and apparatus for adapting a variable impedance network

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923297A (en) * 1998-05-06 1999-07-13 Ericsson Inc. Retractable antenna system with switchable impedance matching
US7620376B2 (en) * 2005-11-03 2009-11-17 Nokia Corporation Method and arrangement for performing analog signal processing and measuring between a signal source and a load
EP2122924A2 (de) * 2007-01-17 2009-11-25 Continental Teves AG & CO. OHG Schaltungsanordnung für einen kraftfahrzeugdatenbus
US8351874B2 (en) * 2008-04-08 2013-01-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for adaptive antenna impedance matching
DE102008050743B4 (de) 2008-10-08 2016-11-17 Qualcomm Technologies, Inc. (N.D.Ges.D. Staates Delaware) Impedanzanpass-Schaltung zur Anpassung von Planarantennen
DE102009004720B4 (de) * 2009-01-15 2017-07-27 Qualcomm Technologies, Inc. (N.D.Ges.D. Staates Delaware) Multiband-Impedanzanpass-Schaltung zur Anpassung von Planarantennen
US8320850B1 (en) * 2009-03-18 2012-11-27 Rf Micro Devices, Inc. Power control loop using a tunable antenna matching circuit
WO2011024280A1 (ja) * 2009-08-27 2011-03-03 株式会社 東芝 アンテナ装置及び通信装置
US8355460B2 (en) * 2011-05-24 2013-01-15 Continental Electronics Corp. Radio transmitter system and method
AR086709A1 (es) * 2011-06-22 2014-01-15 Purdue Pharma Lp Antagonistas trpv1 que incluyen sustituyentes dihidroxi y sus usos
KR101905783B1 (ko) * 2012-04-05 2018-12-05 엘지이노텍 주식회사 임피던스 정합 장치
WO2014181569A1 (ja) 2013-05-10 2014-11-13 株式会社村田製作所 アンテナ装置
TWI594589B (zh) * 2013-05-17 2017-08-01 群邁通訊股份有限公司 射頻匹配電路及無線通訊裝置
CN104184488A (zh) * 2013-05-27 2014-12-03 深圳富泰宏精密工业有限公司 射频匹配电路及无线通信装置
CN103337717B (zh) * 2013-06-25 2015-07-08 华为技术有限公司 天线阻抗匹配装置、半导体芯片和方法
US9287624B2 (en) * 2013-10-21 2016-03-15 Hong Kong Applied Science and Technology Research Institute Company Limited Antenna circuit and a method of optimisation thereof
JP5928433B2 (ja) * 2013-10-25 2016-06-01 株式会社村田製作所 高周波回路モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125480A (ja) * 1994-10-27 1996-05-17 Kokusai Electric Co Ltd 整合回路、整合方法
WO2001048934A1 (en) * 1999-12-28 2001-07-05 Mitsubishi Denki Kabushiki Kaisha Cellular telephone
JP2004304435A (ja) * 2003-03-31 2004-10-28 Tdk Corp マルチバンド無線通信モジュールおよびマルチバンド無線通信端末機
JP2008527808A (ja) * 2005-01-04 2008-07-24 Tdk株式会社 バンドパスフィルタ構造を用いたマルチプレクサ
JP2007174034A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 受信装置とこれを用いた電子機器
US20110227666A1 (en) * 2010-03-22 2011-09-22 Paratek Microwave, Inc. Method and apparatus for adapting a variable impedance network

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340963B2 (en) 2015-08-28 2019-07-02 Skyworks Solutions, Inc. Contour tuning circuit and related systems and methods
US9966982B2 (en) 2015-09-02 2018-05-08 Skyworks Solutions, Inc. Contour tuning circuit
GB2546188B (en) * 2015-09-02 2019-07-03 Skyworks Solutions Inc Contour tuning circuit
CN111295800A (zh) * 2017-10-30 2020-06-16 株式会社村田制作所 天线装置和通信装置
US11811151B2 (en) 2017-11-17 2023-11-07 Continental Automotive France System of at least two transmitting and/or receiving units connected to a common antenna
CN111344164A (zh) * 2017-11-17 2020-06-26 法国大陆汽车公司 具有连接到共有天线的至少两个收发单元的系统
EP3716396A4 (en) * 2017-12-22 2020-12-09 Huawei Technologies Co., Ltd. ANTENNA AND COMMUNICATION DEVICE
CN109962329A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种天线及通信装置
CN112311350A (zh) * 2019-07-31 2021-02-02 株式会社村田制作所 滤波器装置
CN112311350B (zh) * 2019-07-31 2024-05-28 株式会社村田制作所 滤波器装置
WO2022018925A1 (ja) * 2020-07-20 2022-01-27 株式会社村田製作所 アンテナ装置、アンテナシステム及び通信端末装置
JPWO2022018925A1 (ja) * 2020-07-20 2022-01-27
JP7176667B2 (ja) 2020-07-20 2022-11-22 株式会社村田製作所 アンテナ装置、アンテナシステム及び通信端末装置
CN113437514A (zh) * 2021-06-25 2021-09-24 歌尔科技有限公司 天线装置及便携式电子设备
CN113437514B (zh) * 2021-06-25 2022-11-22 歌尔科技有限公司 天线装置及便携式电子设备

Also Published As

Publication number Publication date
CN107710607A (zh) 2018-02-16
JPWO2017022370A1 (ja) 2018-02-22
JP6528845B2 (ja) 2019-06-12
CN107710607B (zh) 2021-04-20
US10424841B2 (en) 2019-09-24
US20180159220A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017022370A1 (ja) アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
TWI407691B (zh) 天線模組及其阻抗匹配方法
US7633355B2 (en) Variable matching circuit
CN113572440A (zh) 功放输出匹配电路、射频前端模组和无线装置
WO2011001769A1 (ja) 無線通信用高周波回路及び無線通信機
JP6075510B2 (ja) アンテナ整合回路、アンテナ整合モジュール、アンテナ装置および無線通信装置
WO2005101670A2 (en) Apparatus, methods and articles of manufacture for output impedance matching using multi-band signal processing
JP5429409B2 (ja) 周波数安定化回路、アンテナ装置および通信端末装置
US20090033437A1 (en) Filter module and communication apparatus
CN108233973B (zh) 通信模块
US11283153B2 (en) Antenna for mobile communication device
TWI594589B (zh) 射頻匹配電路及無線通訊裝置
KR20170004238A (ko) 광대역 모듈 및 이를 포함하는 통신 장치
CN110710119B (zh) 高频模块
JP5908539B2 (ja) インピーダンス整合回路
US20130309985A1 (en) Transmission module
US20200382146A1 (en) Multiplexer, radio frequency front-end circuit, and communication device
US7492239B1 (en) Radio frequency combiner
US10056936B2 (en) Front end circuit and communication apparatus
US9203370B2 (en) Broadband circuit and communication apparatus including same
JP6525055B2 (ja) 電源回路
CN211860062U (zh) 一种跳频滤波器
KR101473717B1 (ko) 광대역 모듈 및 이를 포함하는 통신 장치
NL2005607C2 (en) A configurable communication device.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832649

Country of ref document: EP

Kind code of ref document: A1