WO2017022058A1 - 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents

位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2017022058A1
WO2017022058A1 PCT/JP2015/071982 JP2015071982W WO2017022058A1 WO 2017022058 A1 WO2017022058 A1 WO 2017022058A1 JP 2015071982 W JP2015071982 W JP 2015071982W WO 2017022058 A1 WO2017022058 A1 WO 2017022058A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned airplane
unmanned
data
acquired
instruction
Prior art date
Application number
PCT/JP2015/071982
Other languages
English (en)
French (fr)
Inventor
英志 山下
光洋 藤田
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2017532282A priority Critical patent/JP6525291B2/ja
Priority to PCT/JP2015/071982 priority patent/WO2017022058A1/ja
Publication of WO2017022058A1 publication Critical patent/WO2017022058A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present invention relates to a position management device and a position management method for managing the positions of a plurality of unmanned airplanes, and further relates to a computer-readable recording medium in which a program for realizing these is recorded.
  • an unmanned aerial plane called “drone” (hereinafter also referred to as “UAV (Unmanned ⁇ ⁇ Aerial Vehicle)”) has been used for various purposes such as military applications and pesticide spraying.
  • UAV Unmanned ⁇ ⁇ Aerial Vehicle
  • small unmanned airplanes that use an electric motor as a power source have been developed due to the downsizing and high output of batteries (see, for example, Non-Patent Documents 1 and 2).
  • Small unmanned aerial vehicles are rapidly becoming popular because of their simple operation.
  • An example of the object of the present invention is to provide a position management device, a position management method, and a computer-readable recording medium capable of solving the above-described problems and improving the certainty of avoiding a collision accident caused by a plurality of unmanned airplanes. is there.
  • a position management device is a device for managing the position of an unmanned airplane, A position that is located above the flying airspace of the unmanned airplane, obtains photographing data from a monitoring device that photographs the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data.
  • a position management method is a method for managing the position of an unmanned airplane, (A) Obtaining photographing data from a monitoring device that photographs the unmanned airplane located above the flying airspace of the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data Step, (B) notifying the unmanned airplane of the estimated position; It is characterized by having.
  • a computer-readable recording medium is a computer-readable recording medium recording a program for managing the position of an unmanned airplane by a computer,
  • (A) Obtaining photographing data from a monitoring device that photographs the unmanned airplane located above the flying airspace of the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data Step, (B) notifying the unmanned airplane of the estimated position;
  • a program including an instruction for executing is recorded.
  • the certainty of avoiding a collision accident by a plurality of unmanned airplanes can be improved.
  • FIG. 1 is a configuration diagram showing a configuration of a management system using a position management device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the location management apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of the shooting data used in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the location management apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a configuration diagram showing a configuration of a management system using the position management device according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing an example of imaging data used in Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram illustrating an example of a computer that implements the location management apparatus according to Embodiments 1 and 2 of the present invention.
  • Embodiment 1 a position management device, a position management method, and a program according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a configuration diagram showing a configuration of a management system using a position management device according to Embodiment 1 of the present invention.
  • the position management system 100 includes a position management device 10 that manages the position of the unmanned airplane 20 and a monitoring device 30 that monitors the unmanned airplane.
  • the monitoring device 30 is located above the flying airspace 40 of the unmanned airplane 20 and photographs the unmanned airplane 20.
  • the position management device 10 acquires shooting data from the monitoring device 30, estimates the position of the unmanned airplane 20 based on the acquired shooting data, and further notifies the unmanned airplane 20 of the estimated position.
  • the position of the unmanned airplane 20 is estimated based on the imaging data acquired from the monitoring device 30, and the estimated position is notified to the unmanned airplane 20. For this reason, the unmanned airplane 20 can specify its own position even if the GPS signal cannot be received in the unmanned airplane 20 and a situation where position measurement using the GPS signal is difficult occurs. According to the present embodiment, when a plurality of unmanned airplanes 20 fly in the same airspace, the certainty of avoiding a collision accident by the plurality of unmanned airplanes 20 can be improved.
  • FIG. 2 is a block diagram showing the configuration of the location management apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of the shooting data used in the first embodiment of the present invention.
  • the unmanned airplane 20 is a multicopter having a plurality of rotors, and is called a so-called drone.
  • the unmanned airplane 20 only needs to be capable of flying by computer control while specifying its own position (for example, latitude and longitude), that is, provided with an autopilot function.
  • the unmanned airplane 20 may have a function of flying by remote control.
  • the unmanned airplane 20 may be automatically piloted or remotely controlled when the position is estimated by the position management device 10.
  • the transmitter for remote control may be incorporated in the position management device 10 or may be a device different from the position management device 10.
  • the monitoring device 30 is an unmanned aerial vehicle including a plurality of rotors similar to the unmanned aerial vehicle 20. Therefore, for example, some of the plurality of unmanned airplanes may be used as the monitoring device 30 and the rest may be used as the unmanned airplane 20 that is a position management target.
  • the unmanned airplane serving as the monitoring device 30 includes a camera for photographing the lower part, and transmits the photographing data to the position management device 10.
  • the shooting data may be still image data or moving image data. In the case of still image data, transmission of shooting data is executed at set intervals. In the case of moving image data, shooting data is transmitted by streaming.
  • the monitoring device 30 may be a flying object other than the unmanned airplane, for example, a balloon, a spherical flying object configured by storing a propeller and an auxiliary wing in a spherical frame, and the like.
  • the position management device 10 includes an instruction unit 13 and a wireless communication unit 14 in addition to the position estimation unit 11 and the position notification unit 12 described above.
  • the wireless communication unit 14 performs wireless data communication with the monitoring device 30 in accordance with instructions from the position estimation unit 11, the position notification unit 12, and the instruction unit 13.
  • the wireless communication unit 14 is realized by a communication device for Wi-Fi communication, for example.
  • the instruction unit 13 is used to control the monitoring device 30 that is an unmanned airplane.
  • the instruction unit 13 outputs an instruction to the monitoring device 30 so as to stay above the flight airspace 40 of the unmanned airplane 20.
  • the output instruction is transmitted to the monitoring device 30 via the wireless communication unit 14.
  • the monitoring device 30 receives the instruction, the monitoring device 30 moves over the flying airspace 40, stays in a suspended state until the landing instruction is given, and transmits the shooting data obtained from the sky as shown in FIG. 3 to the monitoring device 30. To do.
  • the position estimation unit 11 acquires the imaging data transmitted from the monitoring device 30 that is in the sky via the wireless communication unit 14.
  • a marker 41 that serves as a guide for position detection is arranged in advance on the ground, and a marker 21 for position detection is provided on the upper surface of the unmanned airplane 20.
  • the position estimation unit 11 extracts the marker 41 previously arranged on the ground and the marker 21 provided on the unmanned airplane 20 from the imaging data, and uses the extracted marker 41 and the marker 21 to The position of the unmanned airplane 20 is estimated. Specifically, since the position of each marker 41 on the ground is registered in advance in the position management device 10, the position estimation unit 11 determines the distance between the marker 21 and each marker 41 on the ground for each unmanned airplane 20. And the position (position in the plane direction) of the unmanned airplane 20 is estimated based on the calculated distances.
  • the position notification unit 12 creates position data for specifying the position estimated by the position estimation unit 11, and sends the created position data to the unmanned airplane 20 via the wireless communication unit 14. Send to.
  • FIG. 4 is a flowchart showing the operation of the location management apparatus according to Embodiment 1 of the present invention.
  • FIGS. 1 to 3 are referred to as appropriate.
  • the location management method is implemented by operating the location management device 10. Therefore, the description of the position management method in the first embodiment is replaced with the following description of the operation of the position management apparatus 10.
  • the instruction unit 13 outputs an instruction to the monitoring device 30 so as to stay above the flight airspace 40 of the unmanned airplane 20 (step A ⁇ b> 1). ).
  • the instruction output in step A1 is transmitted to the monitoring device 30 via the wireless communication unit 14.
  • the monitoring device 30 receives the instruction, the monitoring device 30 moves over the flying airspace 40 and stays in the air until the landing instruction is received. Then, the monitoring device 30 performs imaging from the sky, and transmits imaging data to the monitoring device 30.
  • the position estimation unit 11 acquires the shooting data transmitted from the monitoring device 30 via the wireless communication unit 14 (step A2). Subsequently, the position estimation unit 11 extracts the marker 41 previously arranged on the ground and the marker 21 provided on the unmanned airplane 20 from the imaging data acquired in step A2, and extracts the extracted marker 41 and the marker 21 is used to estimate the position of each unmanned airplane 20 (step A3).
  • the position notification unit 12 creates position data for specifying the position estimated by the position estimation unit 11 for each unmanned airplane, and the created position data is transmitted to the wireless communication unit 14. Then, it transmits to each unmanned airplane 20 (step A4).
  • each unmanned airplane 20 receives position data. Then, each unmanned airplane 20 identifies its own position based on the received position data when its own position cannot be identified by the GPS signal.
  • the position estimation unit 11 determines whether all the unmanned airplanes 20 have landed (Step A5). If all the unmanned airplanes 20 have not landed as a result of the determination, the position estimating unit 11 executes Step A2 again. On the other hand, if all the unmanned airplanes 20 have landed as a result of the determination, the processing in the position management device 10 ends.
  • each unmanned airplane 20 can identify its own position even when it cannot receive a GPS signal, based on the position notification from the position management device 10. Therefore, according to the first embodiment, it is possible to suppress the occurrence of a collision accident when a plurality of unmanned airplanes 20 fly in the same airspace.
  • the first embodiment there is one monitoring device 30, but in the first embodiment, two or more monitoring devices 30 may be provided.
  • the first embodiment may be an aspect in which two or more unmanned airplanes are used as the monitoring device 30.
  • the instruction unit 13 outputs an instruction to each of the monitoring devices 30 so as to stay at different positions above the flight airspace 40 of the unmanned airplane 20. Then, when shooting data is transmitted from each monitoring device 30, the position estimation unit 11 acquires each shooting data, and estimates the temporary position of the unmanned airplane 20 for each acquired shooting data. Subsequently, the position estimation unit 11 estimates the position of the unmanned airplane 20 using the temporary position estimated for each photographing data.
  • the estimation of the position from the temporary position can be performed, for example, by obtaining average coordinates of a plurality of temporary positions for each unmanned airplane 20. If there are three or more monitoring devices 30 and three or more temporary positions are required for one unmanned airplane 20, the position may be estimated by majority vote.
  • the program in the first embodiment of the present invention may be a program that causes a computer to execute steps A1 to A5 shown in FIG. By installing and executing this program on a computer, the position management device and the position management method according to the first embodiment can be realized.
  • a CPU Central Processing Unit
  • the computer functions as the position estimation unit 11, the position notification unit 12, and the instruction unit 13, and performs processing.
  • FIG. 5 is a configuration diagram showing a configuration of a management system using the position management device according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing an example of imaging data used in Embodiment 2 of the present invention.
  • the position management system 200 includes a position management device 50 and a monitoring device 30 as in the first embodiment.
  • two or more monitoring devices 30 are provided, and at least one of them is located on the side of the flying airspace 40 of the unmanned airplane 20 and photographs the unmanned airplane 20. ing.
  • the difference from Embodiment 1 will be specifically described. Since the configuration of the location management device 50 is the same as the configuration of the location management device 10 shown in FIG. 2, hereinafter, FIGS. 2 to 4 will be referred to.
  • an unmanned airplane similar to the unmanned airplane 20 is used as the monitoring device 30.
  • the instruction unit 13 outputs an instruction to a part of the monitoring devices 30 so as to stay above the flight airspace 40 of the unmanned airplane 20.
  • the instruction unit 13 outputs an instruction to the remaining monitoring device 30 so as to stay in the side of the flying airspace 40 of the unmanned airplane 20.
  • the monitoring device 30 staying in the sky transmits shooting data obtained by shooting from the sky (hereinafter referred to as “upper sky shooting data”).
  • the monitoring device 30 stagnating on the side transmits imaging data obtained by imaging from the side (hereinafter referred to as “side imaging data”).
  • the position estimation unit 11 has been transmitted via the wireless communication unit 14 not only from the aerial shooting data transmitted from the monitoring device 30 remaining in the sky but also from the monitoring device 30 remaining in the side. Also obtains side shot data.
  • the position estimation part 11 extracts the marker 41 previously arrange
  • the unmanned airplane 20 is provided with markers 22 on the lower surface as well as the upper surface.
  • the position estimation unit 11 extracts the marker 22 from the side shooting data, and determines the position of the unmanned airplane 20 from the position of the extracted marker 22 on the side shooting data and the altitude of the monitoring device 30 at the time of shooting. Estimate the position in the height direction.
  • the position notification unit 12 creates position data that specifies not only the position in the plane direction of the unmanned airplane 20 but also the position in the height direction. Further, the position notification unit 12 transmits the created position data to the unmanned airplane 20 via the wireless communication unit 14.
  • each unmanned airplane 20 can specify its own position not only in the surface direction but also in the height direction by notifying the position from the position management device 10. For this reason, according to the second embodiment, the unmanned airplane 20 can identify the position of the unmanned airplane 20 more accurately when the GPS signal cannot be received, so that the occurrence of a collision accident is further suppressed.
  • two or more monitoring devices 30 may be located in the sky.
  • the position estimation unit 11 estimates the temporary position in the surface direction for each unmanned airplane 20 and estimates the position in the surface direction of each unmanned airplane 20 using the estimated temporary position in the surface direction.
  • two or more monitoring devices may be located on the side.
  • the position estimation unit 11 acquires each side shooting data, and for each acquired side shooting data, the height of each unmanned airplane 20 is increased. A temporary position in the vertical direction is estimated. Subsequently, the position estimation unit 11 estimates the position of each unmanned airplane 20 in the height direction using the temporary position estimated for each side image data.
  • steps A2 to A5 shown in FIG. 4 are performed, whereby the location management method in the second embodiment is performed.
  • the program in the second embodiment may be a program that causes a computer to execute steps A1 to A5 shown in FIG.
  • step A3 not only the aerial shooting data but also the side shooting data is acquired in step A2.
  • step A3 the position in the height direction is also estimated. Further, in step A4, the position in the height direction is also notified.
  • FIG. 7 is a block diagram illustrating an example of a computer that implements the location management apparatus according to Embodiments 1 and 2 of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so that data communication is possible.
  • the CPU 111 performs various operations by developing the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executing them in a predetermined order.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. Note that the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 includes a hard disk drive and a semiconductor storage device such as a flash memory.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls display on the display device 119.
  • the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and reads a program from the recording medium 120 and writes a processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic storage media such as a flexible disk, or CD- Optical storage media such as ROM (Compact Disk Read Only Memory) are listed.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic storage media such as a flexible disk
  • CD- Optical storage media such as ROM (Compact Disk Read Only Memory) are listed.
  • the monitoring device and the position management device are separate devices, but these embodiments are not limited to this mode.
  • the position management device may be incorporated in the monitoring device.
  • the computer mounted on the monitoring device may be configured to construct the position estimation unit and the position notification unit.
  • the monitoring device transmits position data specifying the estimated position to the unmanned airplane.
  • only the instruction unit may be constructed by a computer different from the monitoring device.
  • the position notification unit constructed in the monitoring device passes through the computer that constructs the instruction unit.
  • the position data may be transmitted to the unmanned airplane.
  • the position management device may be incorporated in one of the plurality of monitoring devices, or the position management device may be incorporated in all the monitoring devices. . Also in the second embodiment, only the instruction unit may be constructed by a computer different from each monitoring device.
  • a device for managing the position of an unmanned aerial vehicle A position that is located above the flying airspace of the unmanned airplane, obtains photographing data from a monitoring device that photographs the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data.
  • a location management device comprising:
  • the position estimation unit extracts, from the imaging data, a first marker arranged in advance on the ground and a second marker provided on the unmanned airplane, and the extracted first marker and the extracted Estimating a position of the unmanned airplane using a second marker;
  • the location management device according to attachment 1.
  • the monitoring device is an unmanned air vehicle;
  • the location management device further includes an instruction unit that outputs an instruction to the monitoring device so as to stay above the flight space of the unmanned airplane,
  • the position estimation unit obtains the shooting data from the flying object that is above the unmanned airplane
  • the location management device according to attachment 1.
  • the instruction unit outputs instructions to each of the two or more monitoring devices so as to stay at different positions above the flight airspace of the unmanned airplane,
  • the position estimation unit acquires the shooting data from each of the two or more flying objects, estimates the temporary position of the unmanned airplane for each of the acquired shooting data, and uses the estimated temporary position, Estimating the position of the unmanned airplane,
  • the location management device according to attachment 3.
  • the instruction unit outputs an instruction to one or two or more of the monitoring devices so as to stay above the flying airspace of the unmanned airplane, and to one or more of the other monitoring devices. , Output instructions to stay on the side of the unmanned airplane flight area,
  • the position estimation unit further acquires second imaging data from the flying object that has been instructed to fly sideways, and based on the acquired second imaging data, in the height direction of the unmanned airplane Estimate the position,
  • the position notification unit further notifies the position in the estimated height direction to the unmanned airplane,
  • the location management device according to attachment 3.
  • the instruction unit outputs instructions to each of the two or more other monitoring devices so as to stay at different positions on the sides of the flight airspace of the unmanned airplane,
  • the position estimation unit acquires the second imaging data from each of two or more of the flying bodies stagnating on the side of the airspace of the unmanned airplane, and the unmanned airplane for each of the acquired second imaging data Estimating a temporary position in the height direction of the aircraft, and using the estimated temporary position, estimating a position in the height direction of the unmanned airplane, The location management device according to attachment 5.
  • the position estimation unit is further located on a side of a flying airspace of the unmanned airplane, acquires second photographing data from a monitoring device that photographs the unmanned airplane, and based on the second photographing data , Estimate the position of the unmanned airplane in the height direction, The position notification unit further notifies the position in the estimated height direction to the unmanned airplane,
  • the location management device according to attachment 1.
  • a method for managing the position of an unmanned airplane (A) Obtaining photographing data from a monitoring device that photographs the unmanned airplane located above the flying airspace of the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data Step, (B) notifying the unmanned airplane of the estimated position;
  • a location management method characterized by comprising:
  • the monitoring device is an unmanned air vehicle; (C) outputting an instruction to the monitoring device so as to stay above the flight space of the unmanned airplane, In the step (a), the imaging data is acquired from the flying object that is above the unmanned airplane and stays in the sky.
  • step (c) an instruction is output to each of the two or more monitoring devices so as to stay at different positions above the flight airspace of the unmanned airplane,
  • step (a) the imaging data is acquired from each of the two or more flying objects, the temporary position of the unmanned airplane is estimated for each acquired imaging data, and the estimated temporary position is used. Estimating the position of the unmanned airplane, The location management method according to attachment 10.
  • step (c) an instruction is output to one or two or more of the monitoring devices so as to stay above the flying airspace of the unmanned airplane, and another one or more of the monitoring devices are output.
  • the instruction is output so as to stay at the side of the flight area of the unmanned airplane.
  • step (a) the second shooting data is further acquired from the flying object instructed to stay sideways, and the height of the unmanned airplane is calculated based on the acquired second shooting data. Estimate the position in the direction, In the step (b), the unmanned airplane is further notified of the estimated position in the height direction.
  • step (c) an instruction is output to each of the other two or more monitoring devices so as to stay at different positions on the side of the flight airspace of the unmanned airplane
  • step (a) the second imaging data is acquired from each of the two or more flying bodies stagnating at the side of the flying airspace of the unmanned airplane, and for each acquired second imaging data, Estimating a temporary position in the height direction of the unmanned airplane, and using the estimated temporary position, estimating a position in the height direction of the unmanned airplane; The location management method according to attachment 12.
  • step (a) further, second imaging data is acquired from a monitoring device that images the unmanned airplane located at a side of a flying airspace of the unmanned airplane, and the second imaging data is obtained. Based on the position of the unmanned airplane in the height direction, In the step (b), the unmanned airplane is further notified of the estimated position in the height direction.
  • (Appendix 15) A computer-readable recording medium recording a program for managing the position of an unmanned airplane by a computer, In the computer, (A) Obtaining photographing data from a monitoring device that photographs the unmanned airplane located above the flying airspace of the unmanned airplane, and estimates the position of the unmanned airplane based on the obtained photographing data Step, (B) notifying the unmanned airplane of the estimated position; The computer-readable recording medium which recorded the program containing the instruction
  • the monitoring device is an unmanned air vehicle;
  • the program is stored in the computer.
  • (C) further including an instruction to execute a step of outputting an instruction to the monitoring device so as to stay above a flight airspace of the unmanned airplane,
  • the imaging data is acquired from the flying object that is above the unmanned airplane and stays in the sky.
  • the computer-readable recording medium according to appendix 15.
  • step (c) an instruction is output to each of the two or more monitoring devices so as to stay at different positions above the flight airspace of the unmanned airplane,
  • step (a) the imaging data is acquired from each of the two or more flying objects, the temporary position of the unmanned airplane is estimated for each acquired imaging data, and the estimated temporary position is used. Estimating the position of the unmanned airplane, The computer-readable recording medium according to appendix 17.
  • step (c) an instruction is output to one or two or more of the monitoring devices so as to stay above the flying airspace of the unmanned airplane, and another one or more of the monitoring devices are output.
  • the instruction is output so as to stay at the side of the flight area of the unmanned airplane.
  • step (a) the second shooting data is further acquired from the flying object instructed to stay sideways, and the height of the unmanned airplane is calculated based on the acquired second shooting data. Estimate the position in the direction, In the step (b), the unmanned airplane is further notified of the estimated position in the height direction.
  • the computer-readable recording medium according to appendix 17.
  • step (c) an instruction is output to each of the other two or more monitoring devices so as to stay at different positions on the side of the flight airspace of the unmanned airplane,
  • the second imaging data is acquired from each of the two or more flying bodies stagnating at the side of the flying airspace of the unmanned airplane, and for each acquired second imaging data, Estimating a temporary position in the height direction of the unmanned airplane, and using the estimated temporary position, estimating a position in the height direction of the unmanned airplane;
  • the computer-readable recording medium according to appendix 19.
  • step (a) In the step (a), further, second imaging data is acquired from a monitoring device that images the unmanned airplane located at a side of a flying airspace of the unmanned airplane, and the second imaging data is obtained. Based on the position of the unmanned airplane in the height direction, In the step (b), the unmanned airplane is further notified of the estimated position in the height direction.
  • the certainty of avoiding a collision accident by a plurality of unmanned airplanes can be improved.
  • the present invention is useful in the field of unmanned aerial vehicles.
  • Position management device (Embodiment 1) DESCRIPTION OF SYMBOLS 11 Position estimation part 12 Position notification part 13 Instruction part 14 Wireless communication part 20 Unmanned airplane 21, 22 Marker 30 Monitoring apparatus 40 Flight space 41 Marker 50 Position management apparatus (Embodiment 2) 100 Location management system (Embodiment 1) 110 Computer 111 CPU 112 Main Memory 113 Storage Device 114 Input Interface 115 Display Controller 116 Data Reader / Writer 117 Communication Interface 118 Input Device 119 Display Device 120 Recording Medium 121 Bus 200 Position Management System (Embodiment 2)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Navigation (AREA)

Abstract

位置管理装置10は、無人飛行機20の位置を管理するための装置である。位置管理装置10は、まず、無人飛行機20の飛行空域40よりも上空に位置して、無人飛行機20の撮影を行なう監視装置30から、撮影データを取得し、取得した撮影データに基づいて、無人飛行機の位置を推定する。次に、位置管理装置10は、無人飛行機20に対して、推定した位置を通知する。

Description

位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体
 本発明は、複数の無人飛行機の位置を管理するための、位置管理装置及び位置管理方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
 従来から、「ドローン」と呼ばれる無人飛行機(以下、「UAV(Unmanned Aerial Vehicle)」とも表記する。)は、軍事用途、農薬散布といった様々な用途に用いられている。とりわけ、近年においては、バッテリーの小型化及び高出力化により、動力原として電動モータを利用する小型の無人飛行機が開発されている(例えば、非特許文献1及び2参照。)。小型の無人飛行機は、運用が簡単であることから、急速に普及している。
"無人航空機"、[online]、2015年5月25日、ウィキペディア、[2015年6月1日検索]、インターネット<URL:http://ja.wikipedia.org/wiki/%E7%84%A1%E4%BA%BA%E8%88%AA%E7%A9%BA%E6%A9%9F> "ドローン"、[online]、2015年4月22日、weblio辞書、[2015年6月1日検索]、インターネット<URL:http://www.weblio.jp/content/%E3%83%89%E3%83%AD%E3%83%BC%E3%83%B3>
 ところで、無人飛行機の普及により、同じエリアにおいて、複数の無人飛行機が同時に飛行する場面が増加すると考えられる。このような場合、衝突事故が発生する可能生も高まるが、通常、無人飛行機は、GPS(Global Positioning System)受信機を備え、自身の位置を特定することができる。従って、複数の無人飛行機を同じエリアで飛行させる場合には、各無人飛行機の位置を管理することによって、上述した衝突事故を回避できると考えられる。
 しかしながら、GPS受信機は、常にGPS信号を確実に受信できるとは限らないため、無人飛行機において位置を特定できない事態が発生する可能生がある。このような事態が発生した場合は、各無人飛行機の位置を管理するだけでは、衝突事故を回避することは困難である。
 本発明の目的の一例は、上記問題を解消し、複数の無人飛行機による衝突事故の回避の確実性を高め得る、位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
 上記目的を達成するため、本発明の一側面における位置管理装置は、無人飛行機の位置を管理するための装置であって、
 前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、位置推定部と、
 前記無人飛行機に対して、推定した位置を通知する、位置通知部と、
を備えていることを特徴とする。
 また、上記目的を達成するため、本発明の一側面における位置管理方法は、無人飛行機の位置を管理するための方法であって、
(a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
(b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
を有することを特徴とする。
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、コンピュータによって無人飛行機の位置を管理するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
(b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
 以上のように、本発明によれば、複数の無人飛行機による衝突事故の回避の確実性を高めることができる。
図1は、本発明の実施の形態1における位置管理装置を用いた管理システムの構成を示す構成図である。 図2は、本発明の実施の形態1における位置管理装置の構成を示すブロック図である。 図3は、本発明の実施の形態1で用いられる撮影データの一例を示す図である。 図4は、本発明の実施の形態1における位置管理装置の動作を示すフロー図である。 図5は、本発明の実施の形態2における位置管理装置を用いた管理システムの構成を示す構成図である。 図6は、本発明の実施の形態2で用いられる撮影データの一例を示す図である。 図7は、本発明の実施の形態1及び2における位置管理装置を実現するコンピュータの一例を示すブロック図である。
(実施の形態1)
 以下、本発明の実施の形態1における、位置管理装置、位置管理方法、及びプログラムについて、図1~図4を参照しながら説明する。
[装置構成]
 最初に、図1を用いて、本発明の実施の形態1における位置管理装置を用いた位置管理システムについて説明する。図1は、本発明の実施の形態1における位置管理装置を用いた管理システムの構成を示す構成図である。
 図1に示すように、位置管理システム100は、無人飛行機20の位置を管理する位置管理装置10と、無人飛行機を監視する監視装置30とを備えている。このうち、監視装置30は、無人飛行機20の飛行空域40よりも上空に位置して、無人飛行機20の撮影を行なっている。
 位置管理装置10は、監視装置30から、撮影データを取得し、取得した撮影データに基づいて、無人飛行機20の位置を推定し、更に、無人飛行機20に対して、推定した位置を通知する。
 このように、本実施の形態では、監視装置30から取得した撮影データに基づいて、無人飛行機20の位置が推定され、推定した位置が無人飛行機20に通知される。このため、無人飛行機20において、GPS信号を受信することができず、GPS信号による位置測定が困難な状況が発生しても、無人飛行機20は、自身の位置を特定することができる。本実施の形態によれば、複数の無人飛行機20が同じ空域を飛行する場合において、複数の無人飛行機20による衝突事故の回避の確実性を高めることができる。
 ここで、図1に加え、更に図2及び図3を用いて、位置管理装置10の構成及び機能について更に具体的に説明する。図2は、本発明の実施の形態1における位置管理装置の構成を示すブロック図である。図3は、本発明の実施の形態1で用いられる撮影データの一例を示す図である。
 まず、本実施の形態1では、無人飛行機20は、複数のローターを備えたマルチコプターであり、いわゆるドローンと呼ばれている。無人飛行機20は、自身の位置(例えば、緯度及び経度)を特定しながら、コンピュータ制御によって飛行可能なもの、即ち、自動操縦機能を備えたものであれば良い。また、無人飛行機20は、遠隔操縦によって飛行する機能を備えていても良い。加えて、無人飛行機20は、位置管理装置10によって位置推定されている際において、自動操縦されていても良いし、遠隔操縦されていても良い。なお、遠隔操縦時の送信機は、位置管理装置10に組み込まれていても良いし、位置管理装置10とは別の装置であっても良い。
 また、本実施の形態1では、監視装置30は、無人飛行機20と同様の複数のローターを備えた無人飛行機である。従って、例えば、複数の無人飛行機のうち、一部が、監視装置30として用いられ、残りが、位置管理の対象となる無人飛行機20として用いられても良い。
 加えて、監視装置30となる無人飛行機は、下方を撮影するためのカメラを備えており、撮影データを位置管理装置10に送信する。また、撮影データは、静止画データであっても良いし、動画データであっても良い。静止画データの場合、撮影データの送信は、設定間隔で実行される。動画データの場合は、撮影データの送信は、ストリーミングによって行なわれる。また、監視装置30は、無人飛行機以外の飛行体、例えば、バルーン、球形のフレーム内にプロペラと補助翼とを収めて構成された球形の飛行体、等であっても良い。
 更に、本実施の形態1では、位置管理装置10は、上述した位置推定部11及び位置通知部12に加えて、指示部13と、無線通信部14とを備えている。このうち、無線通信部14は、監視装置30との間で、位置推定部11、位置通知部12、及び指示部13の指示に応じて、無線によるデータ通信を実行する。具体的には、無線通信部14は、例えば、Wi-Fi通信用の通信デバイスによって実現される。
 また、指示部13は、無人飛行機である監視装置30の制御に用いられる。指示部13は、例えば、監視装置30に対して、無人飛行機20の飛行空域40よりも上空で滞空するように指示を出力する。出力された指示は、無線通信部14を介して、監視装置30へと送信される。監視装置30は、指示を受け取ると、飛行空域40の上空に移動し、着陸指示があるまで滞空状態となり、図3に示すように上空から撮影して得られた撮影データを監視装置30に送信する。
 位置推定部11は、本実施の形態1では、無線通信部14を介して、上空で滞空している監視装置30から送信されてきた撮影データを取得する。また、本実施の形態1では、地上には、位置検出の目安となるマーカ41が予め配置され、無人飛行機20の上面には、位置検出用のマーカ21が設けられている。
 このため、位置推定部11は、撮影データから、地上に予め配置されているマーカ41と、無人飛行機20に設けられているマーカ21とを抽出し、抽出したマーカ41及びマーカ21を用いて、無人飛行機20の位置を推定する。具体的には、地上の各マーカ41の位置は、位置管理装置10において、予め登録されているので、位置推定部11は、無人飛行機20毎に、マーカ21と地上の各マーカ41との距離を算出し、算出した各距離に基づいて、無人飛行機20の位置(面方向における位置)を推定する。
 また、位置通知部12は、本実施の形態1では、位置推定部11によって推定された位置を特定する位置データを作成し、作成した位置データを、無線通信部14を介して、無人飛行機20に送信する。
[装置動作]
 次に、本発明の実施の形態1における位置管理装置10の動作について図4を用いて説明する。図4は、本発明の実施の形態1における位置管理装置の動作を示すフロー図である。以下の説明においては、適宜図1~図3を参酌する。また、本実施の形態1では、位置管理装置10を動作させることによって、位置管理方法が実施される。よって、本実施の形態1における位置管理方法の説明は、以下の位置管理装置10の動作説明に代える。
 図4に示すように、最初に、位置管理装置10において、指示部13が、監視装置30に対して、無人飛行機20の飛行空域40よりも上空で滞空するように指示を出力する(ステップA1)。
 ステップA1で出力された指示は、無線通信部14を介して、監視装置30へと送信される。監視装置30は、指示を受け取ると、飛行空域40の上空に移動し、着陸指示があるまで滞空状態となる。そして、監視装置30は、上空から撮影を行ない、撮影データを監視装置30に送信する。
 次に、位置推定部11は、無線通信部14を介して、監視装置30から送信されてきた撮影データを取得する(ステップA2)。続いて、位置推定部11は、ステップA2で取得した撮影データから、地上に予め配置されているマーカ41と、無人飛行機20に設けられているマーカ21とを抽出し、抽出したマーカ41及びマーカ21を用いて、各無人飛行機20の位置を推定する(ステップA3)。
 次に、位置通知部12は、本実施の形態1では、無人飛行機毎に、位置推定部11によって推定された位置を特定する位置データを作成し、作成した位置データを、無線通信部14を介して、各無人飛行機20に送信する(ステップA4)。
 ステップA4が実行されると、各無人飛行機20は、位置データを受信する。そして、各無人飛行機20は、GPS信号によって自身の位置を特定できない場合は、受信した位置データによって自身の位置を特定する。
 その後、位置推定部11は、全ての無人飛行機20が着陸しているかどうかの判定を行なう(ステップA5)。判定の結果、全ての無人飛行機20が着陸していない場合は、位置推定部11は、再度、ステップA2を実行する。一方、判定の結果、全ての無人飛行機20が着陸している場合は、位置管理装置10における処理は終了する。
 以上のように本実施の形態1では、各無人飛行機20は、位置管理装置10からの位置の通知により、GPS信号を受信できない場合でも、自身の位置を特定することができる。よって、本実施の形態1によれば、複数の無人飛行機20が同じ空域を飛行する場合における衝突事故の発生を抑制できる。
 また、上述した例では、監視装置30は1つであるが、本実施の形態1では、監視装置30は2つ以上であっても良い。例えば、本実施の形態1は、2つ以上の無人飛行機が監視装置30として用いられる態様であっても良い。
 この態様では、指示部13は、監視装置30それぞれに対して、無人飛行機20の飛行空域40よりも上空の互いに異なる位置で滞空するように指示を出力する。そして、各監視装置30から撮影データが送信されてくると、位置推定部11は、各撮影データを取得し、取得した撮影データ毎に、無人飛行機20の仮位置を推定する。続いて、位置推定部11は、撮影データ毎に推定した仮位置を用いて、無人飛行機20の位置を推定する。
 また、仮位置からの位置の推定は、例えば、無人飛行機20毎に、複数の仮位置の平均座標を求めることによって行なうことができる。また、監視装置30が3つ以上あり、1つの無人飛行機20に対して3つ以上の仮位置が求められている場合は、多数決によって位置の推定が行なわれていても良い。
[プログラム]
 本発明の実施の形態1におけるプログラムは、コンピュータに、図4に示すステップA1~A5を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における位置管理装置と位置管理方法とを実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、位置推定部11、位置通知部12、及び指示部13として機能し、処理を行なう。
(実施の形態2)
 次に、本発明の実施の形態2における、位置管理装置、位置管理方法、及びプログラムについて、図5及び図6を参照しながら説明する。図5は、本発明の実施の形態2における位置管理装置を用いた管理システムの構成を示す構成図である。図6は、本発明の実施の形態2で用いられる撮影データの一例を示す図である。
 図5に示すように、本実施の形態2においても、実施の形態1と同様に、位置管理システム200は、位置管理装置50と、監視装置30とを備えている。但し、本実施の形態2では、監視装置30は2つ以上備えられており、そのうちの少なくとも1つは、無人飛行機20の飛行空域40の側方に位置して、無人飛行機20の撮影を行なっている。以下、実施の形態1との相違点を中心に具体的に説明する。なお、位置管理装置50の構成は、図2に示した位置管理装置10の構成と同様であるため、以下においては、図2~図4を参照する。
 まず、本実施の形態2においても、監視装置30として、無人飛行機20と同様の無人飛行機が用いられている。但し、本実施の形態2では、位置管理装置10において、指示部13は、一部の監視装置30に対しては、無人飛行機20の飛行空域40よりも上空で滞空するように指示を出力する。また、指示部13は、残りの監視装置30に対しては、無人飛行機20の飛行空域40の側方で滞空するように指示を出力する。
 この場合、上空で滞空している監視装置30は、図3の例と同様に、上空からの撮影で得た撮影データ(以下「上空撮影データ」と表記する。)を送信する。一方、側方で滞空している監視装置30は、図6に示すように、側方からの撮影で得た撮影データ(以下「側方撮影データ」と表記する。)を送信する。
 位置推定部11は、無線通信部14を介して、上空で滞空している監視装置30から送信されてきた上空撮影データだけでなく、側方で滞空している監視装置30から送信されてきた側方撮影データも取得する。
 そして、位置推定部11は、実施の形態1と同様に、上空撮影データから、地上に予め配置されているマーカ41と、無人飛行機20の上面に設けられているマーカ21とを抽出し、各無人飛行機20の面方向における位置を推定する。
 また、本実施の形態2では、図6に示すように、無人飛行機20には、上面だけでなく、 下面にもマーカ22が設けられている。このため、位置推定部11は、側方撮影データから、マーカ22を抽出し、抽出したマーカ22の側方撮影データ上での位置と撮影時の監視装置30の高度とから、無人飛行機20の高さ方向における位置を推定する。
 位置通知部12は、本実施の形態2では、無人飛行機20の面方向における位置だけでなく、高さ方向における位置も特定する位置データを作成する。更に、位置通知部12は、作成した位置データを、無線通信部14を介して、無人飛行機20に送信する。
 この結果、本実施の形態2では、各無人飛行機20は、位置管理装置10からの位置の通知により、面方向だけなく、高さ方向においても、自身の位置を特定することができる。このため、本実施の形態2によれば、無人飛行機20は、GPS信号を受信できない場合に、より正確に自身の位置を特定することができるので、衝突事故の発生がいっそう抑制される。
 また、本実施の形態2においても、実施の形態1と同様に、上空に位置する監視装置30は2つ以上であっても良い。この場合、位置推定部11は、各無人飛行機20について、面方向における仮位置を推定し、推定した面方向における仮位置を用いて、各無人飛行機20の面方向における位置を推定する。
 更に、本実施の形態2においては、側方に位置する監視装置も2つ以上であって良い。この場合は、各監視装置30から側方撮影データが送信されてくると、位置推定部11は、各側方撮影データを取得し、取得した側方撮影データ毎に、各無人飛行機20の高さ方向における仮位置を推定する。続いて、位置推定部11は、側方撮影データ毎に推定した仮位置を用いて、各無人飛行機20の高さ方向における位置を推定する。
 また、本実施の形態2においても、図4に示したステップA2~A5が実施され、これにより、本実施の形態2における位置管理方法が実施される。更に、本実施の形態2におけるプログラムも、コンピュータに、図4に示すステップA1~A5を実行させるプログラムであれば良い。
 但し、本実施の形態2においては、ステップA2において、上空撮影データだけでなく、側方撮影データも取得される。また、ステップA3において、高さ方向における位置の推定も行なわれる。更に、ステップA4においては、高さ方向における位置も通知される。
(物理構成)
 ここで、実施の形態1及び2におけるプログラムを実行することによって、位置管理装置を実現するコンピュータについて図7を用いて説明する。図7は、本発明の実施の形態1及び2における位置管理装置を実現するコンピュータの一例を示すブロック図である。
 図7に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記憶媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記憶媒体が挙げられる。
 ところで、上述の実施の形態1及び2においては、監視装置と位置管理装置とは、互いに別の装置であるが、これらの実施の形態は、この態様に限定されるものではない。例えば、位置管理装置が、監視装置に組み込まれた態様であっても良い。
 具体的には、監視装置に搭載されているコンピュータが、位置推定部及び位置通知部を構築している態様であっても良い。この態様では、監視装置が、無人飛行機に対して、推定した位置を特定する位置データを送信する。更に、この態様では、指示部のみが、監視装置とは別のコンピュータによって構築されていても良く、この場合は、監視装置に構築された位置通知部は、指示部を構築するコンピュータを経由して、無人飛行機に位置データを送信しても良い。
 また、実施の形態2においては、複数の監視装置のうちの1つの監視装置に、位置管理装置が組み込まれていても良いし、全ての監視装置に、位置管理装置が組み込まれていても良い。また、本実施の形態2においても、指示部のみが、各監視装置とは別のコンピュータによって構築されていても良い。
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記21)によって表現することができるが、以下の記載に限定されるものではない。
(付記1)
 無人飛行機の位置を管理するための装置であって、
 前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、位置推定部と、
 前記無人飛行機に対して、推定した位置を通知する、位置通知部と、
を備えていることを特徴とする、位置管理装置。
(付記2)
 前記位置推定部が、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
付記1に記載の位置管理装置。
(付記3)
 前記監視装置が、無人の飛行体であり、
 当該位置管理装置が、前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、指示部を更に備え、
 前記位置推定部が、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
付記1に記載の位置管理装置。
(付記4)
 前記指示部が、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
 前記位置推定部が、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
付記3に記載の位置管理装置。
(付記5)
 前記指示部が、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
 前記位置推定部が、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記位置通知部が、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記3に記載の位置管理装置。
(付記6)
 前記指示部が、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
 前記位置推定部が、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
付記5に記載の位置管理装置。
(付記7)
 前記位置推定部が、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記位置通知部が、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記1に記載の位置管理装置。
(付記8)
 無人飛行機の位置を管理するための方法であって、
(a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
(b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
を有することを特徴とする、位置管理方法。
(付記9)
 前記(a)のステップにおいて、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
付記8に記載の位置管理方法。
(付記10)
 前記監視装置が、無人の飛行体であり、
(c)前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、ステップを更に有し、
 前記(a)のステップにおいて、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
付記8に記載の位置管理方法。
(付記11)
 前記(c)のステップにおいて、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
 前記(a)のステップにおいて、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
付記10に記載の位置管理方法。
(付記12)
 前記(c)のステップにおいて、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
 前記(a)のステップにおいて、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記10に記載の位置管理方法。
(付記13)
 前記(c)のステップにおいて、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
 前(a)のステップにおいて、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
付記12に記載の位置管理方法。
(付記14)
 前記(a)のステップにおいて、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記8に記載の位置管理方法。
(付記15)
 コンピュータによって無人飛行機の位置を管理するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
(b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(付記16)
 前記(a)のステップにおいて、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
付記15に記載のコンピュータ読み取り可能な記録媒体。
(付記17)
 前記監視装置が、無人の飛行体であり、
 前記プログラムが、前記コンピュータに、
(c)前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、ステップを実行させる命令を更に含み、
 前記(a)のステップにおいて、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
付記15に記載のコンピュータ読み取り可能な記録媒体。
(付記18)
 前記(c)のステップにおいて、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
 前記(a)のステップにおいて、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
付記17に記載のコンピュータ読み取り可能な記録媒体。
(付記19)
 前記(c)のステップにおいて、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
 前記(a)のステップにおいて、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記17に記載のコンピュータ読み取り可能な記録媒体。
(付記20)
 前記(c)のステップにおいて、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
 前(a)のステップにおいて、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
付記19に記載のコンピュータ読み取り可能な記録媒体。
(付記21)
 前記(a)のステップにおいて、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
 前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
付記15に記載のコンピュータ読み取り可能な記録媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上のように、本発明によれば、複数の無人飛行機による衝突事故の回避の確実性を高めることができる。本発明は、無人飛行機の分野において有用である。
 10 位置管理装置(実施の形態1)
 11 位置推定部
 12 位置通知部
 13 指示部
 14 無線通信部
 20 無人飛行機
 21、22 マーカ
 30 監視装置
 40 飛行空域
 41 マーカ
 50 位置管理装置(実施の形態2)
 100 位置管理システム(実施の形態1)
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 200 位置管理システム(実施の形態2)

Claims (21)

  1.  無人飛行機の位置を管理するための装置であって、
     前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、位置推定部と、
     前記無人飛行機に対して、推定した位置を通知する、位置通知部と、
    を備えていることを特徴とする、位置管理装置。
  2.  前記位置推定部が、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
    請求項1に記載の位置管理装置。
  3.  前記監視装置が、無人の飛行体であり、
     当該位置管理装置が、前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、指示部を更に備え、
     前記位置推定部が、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
    請求項1または2に記載の位置管理装置。
  4.  前記指示部が、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
     前記位置推定部が、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
    請求項3に記載の位置管理装置。
  5.  前記指示部が、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
     前記位置推定部が、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記位置通知部が、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項3または4に記載の位置管理装置。
  6.  前記指示部が、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
     前記位置推定部が、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
    請求項5に記載の位置管理装置。
  7.  前記位置推定部が、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記位置通知部が、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項1~4のいずれかに記載の位置管理装置。
  8.  無人飛行機の位置を管理するための方法であって、
    (a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
    (b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
    を有することを特徴とする、位置管理方法。
  9.  前記(a)のステップにおいて、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
    請求項8に記載の位置管理方法。
  10.  前記監視装置が、無人の飛行体であり、
    (c)前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、ステップを更に有し、
     前記(a)のステップにおいて、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
    請求項8または9に記載の位置管理方法。
  11.  前記(c)のステップにおいて、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
     前記(a)のステップにおいて、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
    請求項10に記載の位置管理方法。
  12.  前記(c)のステップにおいて、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
     前記(a)のステップにおいて、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項10または11に記載の位置管理方法。
  13.  前記(c)のステップにおいて、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
     前(a)のステップにおいて、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
    請求項12に記載の位置管理方法。
  14.  前記(a)のステップにおいて、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項8~12のいずれかに記載の位置管理方法。
  15.  コンピュータによって無人飛行機の位置を管理するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
    前記コンピュータに、
    (a)前記無人飛行機の飛行空域よりも上空に位置して、前記無人飛行機の撮影を行なう監視装置から、撮影データを取得し、取得した前記撮影データに基づいて、前記無人飛行機の位置を推定する、ステップと、
    (b)前記無人飛行機に対して、推定した位置を通知する、ステップと、
    を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
  16.  前記(a)のステップにおいて、前記撮影データから、地上に予め配置されている第1のマーカと、前記無人飛行機に設けられている第2のマーカとを抽出し、抽出した前記第1のマーカ及び前記第2のマーカを用いて、前記無人飛行機の位置を推定する、
    請求項15に記載のコンピュータ読み取り可能な記録媒体。
  17.  前記監視装置が、無人の飛行体であり、
     前記プログラムが、前記コンピュータに、
    (c)前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力する、ステップを実行させる命令を更に含み、
     前記(a)のステップにおいて、前記無人飛行機よりも上空で滞空している前記飛行体から、前記撮影データを取得する、
    請求項15または16に記載のコンピュータ読み取り可能な記録媒体。
  18.  前記(c)のステップにおいて、2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域よりも上空の互いに異なる位置で滞空するように指示を出力し、
     前記(a)のステップにおいて、2以上の前記飛行体それぞれから前記撮影データを取得し、取得した前記撮影データ毎に、前記無人飛行機の仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の位置を推定する、
    請求項17に記載のコンピュータ読み取り可能な記録媒体。
  19.  前記(c)のステップにおいて、1又は2以上の前記監視装置に対して、前記無人飛行機の飛行空域よりも上空で滞空するように指示を出力し、別の1又は2以上の前記監視装置に対しては、前記無人飛行機の飛行区域の側方で滞空するように指示を出力し、
     前記(a)のステップにおいて、更に、側方で滞空するように指示した前記飛行体から第2の撮影データを取得し、取得した前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項17または18に記載のコンピュータ読み取り可能な記録媒体。
  20.  前記(c)のステップにおいて、別の2以上の前記監視装置それぞれに対して、前記無人飛行機の飛行空域の側方の互いに異なる位置で滞空するように指示を出力し、
     前(a)のステップにおいて、前記無人飛行機の飛行空域の側方で滞空する2以上の前記飛行体それぞれから前記第2の撮影データを取得し、取得した前記第2の撮影データ毎に、前記無人飛行機の高さ方向における仮位置を推定し、そして、推定した前記仮位置を用いて、前記無人飛行機の高さ方向における位置を推定する、
    請求項19に記載のコンピュータ読み取り可能な記録媒体。
  21.  前記(a)のステップにおいて、更に、前記無人飛行機の飛行空域の側方に位置して、前記無人飛行機を撮影する監視装置から、第2の撮影データを取得し、前記第2の撮影データに基づいて、前記無人飛行機の高さ方向における位置を推定し、
     前記(b)のステップにおいて、前記無人飛行機に対して、更に、推定した高さ方向における位置を通知する、
    請求項15~19のいずれかに記載のコンピュータ読み取り可能な記録媒体。
PCT/JP2015/071982 2015-08-03 2015-08-03 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体 WO2017022058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017532282A JP6525291B2 (ja) 2015-08-03 2015-08-03 位置管理装置、位置管理方法、及びプログラム
PCT/JP2015/071982 WO2017022058A1 (ja) 2015-08-03 2015-08-03 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071982 WO2017022058A1 (ja) 2015-08-03 2015-08-03 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体

Publications (1)

Publication Number Publication Date
WO2017022058A1 true WO2017022058A1 (ja) 2017-02-09

Family

ID=57942605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071982 WO2017022058A1 (ja) 2015-08-03 2015-08-03 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体

Country Status (2)

Country Link
JP (1) JP6525291B2 (ja)
WO (1) WO2017022058A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059314A (ja) * 2017-09-26 2019-04-18 日本電信電話株式会社 飛行制御装置、方法、及びプログラム
WO2019172335A1 (ja) * 2018-03-08 2019-09-12 日本電信電話株式会社 飛行制御装置、方法、プログラム、及び記憶媒体
JP2019178998A (ja) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 位置同定システム
WO2020105183A1 (ja) * 2018-11-22 2020-05-28 楽天株式会社 情報処理システム、情報処理方法及びプログラム
CN111935444A (zh) * 2019-05-13 2020-11-13 丰田自动车工程及制造北美公司 用于生成无人飞行器的视野的系统和方法
CN112572793A (zh) * 2019-09-30 2021-03-30 本田技研工业株式会社 管理装置
US11378971B1 (en) 2021-03-04 2022-07-05 Pablo Air Co., Ltd. Autonomous vehicle for handling goods in cooperation with unmanned aerial vehicle and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562672B1 (ko) * 2021-02-18 2023-08-02 광주과학기술원 다중 드론 측위 및 촬영 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059065A1 (en) * 2006-09-05 2008-03-06 Honeywell International Inc. Method and system for navigation of an unmanned aerial vehicle in an urban environment
US8315794B1 (en) * 2006-09-05 2012-11-20 Honeywell International Inc. Method and system for GPS-denied navigation of unmanned aerial vehicles
JP2014122019A (ja) * 2012-12-12 2014-07-03 Boeing Co 樹木計測システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059065A1 (en) * 2006-09-05 2008-03-06 Honeywell International Inc. Method and system for navigation of an unmanned aerial vehicle in an urban environment
US8315794B1 (en) * 2006-09-05 2012-11-20 Honeywell International Inc. Method and system for GPS-denied navigation of unmanned aerial vehicles
JP2014122019A (ja) * 2012-12-12 2014-07-03 Boeing Co 樹木計測システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059314A (ja) * 2017-09-26 2019-04-18 日本電信電話株式会社 飛行制御装置、方法、及びプログラム
WO2019172335A1 (ja) * 2018-03-08 2019-09-12 日本電信電話株式会社 飛行制御装置、方法、プログラム、及び記憶媒体
JP7161304B2 (ja) 2018-03-30 2022-10-26 大和ハウス工業株式会社 位置同定システム
JP2019178998A (ja) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 位置同定システム
WO2020105183A1 (ja) * 2018-11-22 2020-05-28 楽天株式会社 情報処理システム、情報処理方法及びプログラム
JP6761146B1 (ja) * 2018-11-22 2020-09-23 楽天株式会社 情報処理システム、情報処理方法及びプログラム
CN111935444A (zh) * 2019-05-13 2020-11-13 丰田自动车工程及制造北美公司 用于生成无人飞行器的视野的系统和方法
CN112572793A (zh) * 2019-09-30 2021-03-30 本田技研工业株式会社 管理装置
CN112572793B (zh) * 2019-09-30 2024-01-05 本田技研工业株式会社 管理装置
KR102433306B1 (ko) * 2021-03-04 2022-08-18 주식회사 파블로항공 무인 비행체와의 거리를 이용하여 물품을 처리하는 자율 주행 이동체 및 그 방법
KR20220125141A (ko) * 2021-03-04 2022-09-14 주식회사 파블로항공 마커를 이용하여 물품을 처리하는 자율 주행 이동체 및 그 방법
US11378971B1 (en) 2021-03-04 2022-07-05 Pablo Air Co., Ltd. Autonomous vehicle for handling goods in cooperation with unmanned aerial vehicle and method thereof
KR102495164B1 (ko) * 2021-03-04 2023-02-06 주식회사 파블로항공 마커를 이용하여 물품을 처리하는 자율 주행 이동체 및 그 방법
KR20230020480A (ko) * 2021-03-04 2023-02-10 주식회사 파블로항공 마커를 이용하여 물품을 처리하는 자율 주행 이동체 및 그 방법
KR102625240B1 (ko) * 2021-03-04 2024-01-15 주식회사 파블로항공 마커를 이용하여 물품을 처리하는 자율 주행 이동체 및 그 방법

Also Published As

Publication number Publication date
JPWO2017022058A1 (ja) 2018-07-12
JP6525291B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2017022058A1 (ja) 位置管理装置、位置管理方法、及びコンピュータ読み取り可能な記録媒体
US20230236611A1 (en) Unmanned Aerial Vehicle Sensor Activation and Correlation System
WO2017081898A1 (ja) 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
JP7456537B2 (ja) 飛行体制御装置、飛行体制御方法、及びプログラム
US11604479B2 (en) Methods and system for vision-based landing
US20190265735A1 (en) Flight control device, unmanned aerial vehicle, flight control method, and computer-readable recording medium
KR101688585B1 (ko) 무인항공기 관제시스템
JP6485889B2 (ja) 飛行制御装置、飛行制御方法、及びプログラム
US20170132943A1 (en) Unmanned aerial vehicle
WO2018179404A1 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
WO2019009171A1 (en) IMAGING DEVICE, DRONE EQUIPPED WITH CAMERA, METHOD OF CONTROLLING MODE AND PROGRAM
JP2018070010A (ja) 無人航空機制御システム、その制御方法、及びプログラム
JP6781375B2 (ja) 無人航空機制御システム、その制御方法、及びプログラム
JP2019144804A5 (ja)
JP6265576B1 (ja) 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
WO2018092283A1 (ja) 制御装置、撮像システム、移動体、制御方法、およびプログラム
JP7178351B2 (ja) 飛行制御システム
JP6555226B2 (ja) 無人航空機制御システム、その制御方法、及びプログラム
KR102183415B1 (ko) 드론의 실내 정밀 착륙 시스템 및 방법
KR101911353B1 (ko) Gnss 신호 손실시 자율 비행 방법 및 이를 위한 무인 비행체
JPWO2019107047A1 (ja) 情報処理装置
KR20210136191A (ko) 셀프 카메라를 구비한 드론
JP6529098B2 (ja) 位置推定装置、位置推定方法、及びプログラム
US20200110424A1 (en) Geofencing of unmanned aerial vehicles
JP2019182423A (ja) 無人航空機制御システム、その制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900371

Country of ref document: EP

Kind code of ref document: A1