WO2017020856A1 - Dispositif et procédé de photographie utilisant un drone pour suivre et photographier automatiquement un objet mobile - Google Patents

Dispositif et procédé de photographie utilisant un drone pour suivre et photographier automatiquement un objet mobile Download PDF

Info

Publication number
WO2017020856A1
WO2017020856A1 PCT/CN2016/093490 CN2016093490W WO2017020856A1 WO 2017020856 A1 WO2017020856 A1 WO 2017020856A1 CN 2016093490 W CN2016093490 W CN 2016093490W WO 2017020856 A1 WO2017020856 A1 WO 2017020856A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving object
drone
load
platform
flight platform
Prior art date
Application number
PCT/CN2016/093490
Other languages
English (en)
Chinese (zh)
Inventor
黄立
刘华斌
王效杰
顾兴
Original Assignee
普宙飞行器科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普宙飞行器科技(深圳)有限公司 filed Critical 普宙飞行器科技(深圳)有限公司
Publication of WO2017020856A1 publication Critical patent/WO2017020856A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the invention relates to a moving object automatic locking photographing device and a photographing method.
  • the traditional sports aerial photography technology or the professional shooting based on the stability of the gimbal there are difficulties in the details of the long motion process, and it is necessary to set a plurality of viewing angles in a designated place, and to select the best details in the later stage, and the shooting equipment is constructed and Control debugging is difficult and costly;
  • the emerging follow-up shooting technology based on the UAV flight platform has lower cost and can lock moving objects, but only the rear shooting angle can be set, more exciting details can not be captured, and there is no tracking based.
  • the region of interest of the algorithm is adjusted, and the specific parameters of the locked moving object, such as the shooting angle and the shooting distance, cannot be arbitrarily adjusted.
  • the utility model relates to an automatic locking shooting device for a moving object by using a drone, comprising a drone flight platform, a load stabilization device, a motion camera and a mobile control terminal, wherein:
  • the bottom of the UAV flight platform is fixed with a load stabilizer.
  • the motion camera is fixed on the load stabilizer.
  • the mobile control terminal is carried by the moving target.
  • the mobile control terminal obtains the real-time image of the motion camera from the UAV flight platform through the data link. State information, and according to the instruction of the moving object to automatically lock the feedback of the shooting algorithm, control the flight platform of the drone with the moving object;
  • the UAV flight platform has an automatic hovering and GPS navigation flight function, and the route is planned by GPS;
  • the load stabilizing device is used for stabilizing the motion camera load and feeding back the load attitude in real time; the load stabilizing device ensures that the motion camera load can filter out motion disturbances from outside the load, maintaining a fixed viewing angle without jitter.
  • the motion camera as an image acquisition source device, provides high-definition scene data that is of most interest to the user.
  • the load stabilizing device will stabilize the motion camera load to ensure that the motion camera can capture high quality HD images for moving objects;
  • the mobile control terminal acquires the real-time image and related state information of the motion camera from the UAV flight platform through the data link, and automatically controls the unmanned aerial vehicle flight platform to shoot with the moving object according to the instruction of the moving object automatically locking the shooting algorithm feedback. ;
  • the mobile control terminal is equipped with an automatic locking imaging algorithm for moving objects, real-time intelligent calculation based on image and status information, combined with image tracking and GPS trend following or prediction, and finally realizes that the moving camera load locks the moving object and simultaneously captures the most moving objects. Good angle image.
  • the UAV flight platform can perform GPS navigation flight, set multiple waypoints to fly in sequence, and automatically hover when idle.
  • the UAV flight platform has a data link, and transmits a real-time image and status information of the loaded camera load to the mobile control terminal of the data link, and receives from the mobile control terminal connected to the data link. Intelligent control information to track moving shots.
  • the load stabilizing device can stabilize the three dimensions of pitch, roll and azimuth for the mounted moving camera load.
  • the motion camera is optimized for shooting moving objects, and has faster exposure time and motion compensation under the premise of ensuring image quality, ensuring that the motion details of the object can be photographed.
  • the mobile control terminal can establish a data link based on WIFI or digital transmission on the unmanned aerial vehicle flight platform, thereby performing image and status information transmission and control signal uploading.
  • the mobile control terminal has a GPS positioning function and is carried or fixed by a moving object.
  • a photographing method for automatically locking a moving object by using a drone characterized in that the method comprises the following steps:
  • the mobile control terminal analyzes the data preprocessing, performs screening or serialization modeling, estimates the motion state of the target to be tracked, and establishes a cumulative tracking pipeline for target tracking processing;
  • the mobile control terminal comprehensive decision data processing based on the target motion estimation and tracking processing data, generates comprehensive decision data, and transmits it to the drone flight platform through the data link to control the load and the next movement of the drone.
  • UAV flight plan prediction compare the motion curve of the target with the motion curve of the drone, calculate the difference between the two running trajectories, and set the standard according to the trajectory of the UAV's motion trajectory to the target trajectory. Flight plan for man and machine;
  • Target position search and positioning In order to ensure that the target of interest has a good shooting effect, the target needs to be located at the center of the motion camera, so the target search positioning is performed;
  • Flight and load stability decision The flight joint prediction scheme and the load stability control scheme are integrated, and the decision of the trade-off is made, and the final joint control scheme is obtained.
  • the moving target of the present invention carries a mobile control terminal, and the mobile control terminal is carried by the moving object, can perform real-time GPS positioning, and can run a moving object automatic locking shooting algorithm;
  • the UAV flight platform of the present invention can transmit telemetry data including the motion posture of the UAV and the load stabilizing device to the mobile control terminal through the data link in real time, and real-time images of the moving object target captured by the motion camera;
  • the mobile control terminal of the invention is based on the attitude of the unmanned aerial vehicle and the load stabilizing device, the real-time image of the moving target, the real-time GPS positioning information of the moving object, the automatic target locking tracking algorithm of the moving object, and the control of the drone and the load stabilizing device.
  • the solution is sent to the drone and load stabilizer via the data link.
  • the following or predictive algorithm combines the GPS trajectory calculation tracking and prediction algorithm with the image tracking and prediction algorithm, which has better robustness.
  • the invention needs to be combined with the unmanned aerial vehicle flight platform, equipped with a load stabilizing device, a motion camera, and a mobile control terminal to complete the wonderful detail shooting for the moving object.
  • Figure 1 is a block diagram showing the overall assembly of the system of the present invention
  • FIG. 3 is a flow chart of an automatic locking shooting algorithm for a moving object according to the present invention.
  • the present invention includes: a drone flight platform 10, a load stabilizing device 20, a motion camera 30, and a mobile control terminal 40.
  • the motion camera 30 is fixed to the load stabilizing device 20, and the load stabilizing device 20 and the motion camera 30 is again carried on the UAV flight platform 10; the digital transmission device of the UAV flight platform 10 establishes a data link with the mobile control terminal 40.
  • the bottom of the UAV flight platform 10 is fixed with a load stabilizing device 20, the motion camera 30 is fixed on the load stabilizing device 20, the mobile control terminal 40 is carried by the moving target, and the mobile control terminal 40 is obtained from the UAV flight platform 10 via the data link.
  • the real-time image of the motion camera 30 and related state information, and according to the instruction of the moving object automatically locking the feedback of the shooting algorithm, controlling the drone flight platform to shoot with the moving object
  • a data link is established with the mobile control terminal 40 by the data transmission device of the drone flight platform 10.
  • the UAV flight platform 10 is composed of intelligent flight control, ESC, motor, propeller, frame, power lithium battery, and digital transmission device components, and is used for carrying a moving camera and a load stabilizing device for moving objects accompanying flight;
  • a load stabilizing device 20 is fixed to the bottom of the drone flight platform for stabilizing the motion camera 30 at a specified viewing angle
  • the motion camera 30 is used as an image acquisition source device for capturing wonderful details of moving objects
  • the mobile control terminal 40 acquires the real-time image and load status of the moving object through the data link to the UAV flight platform, and transmits the load and the control signal of the flight platform, and has a GPS positioning function, and is carried by the moving object for motion. GPS positioning of objects;
  • the mobile control terminal 40 is provided with an automatic locking imaging algorithm for moving objects, which is an algorithm application running on the mobile control terminal, which inputs real-time images, load states, etc. as auxiliary parameters for motion state analysis of moving objects, and outputs the flight platform of the unmanned aerial vehicle.
  • the flight control command ensures that the front of the moving object or the image of the user's interest is in the central area of the shooting result.
  • the device provided by the invention can realize moving object following or pre-shooting to obtain the best motion detail shooting effect.
  • a shooting method for automatically locking a shooting device using a no-face surface includes the following steps:
  • the data source comes from the real-time image and attitude data generated by the flight control, load stabilizer and motion camera from the front end of the drone, and is transmitted to the mobile control terminal through the data link, wherein the data source mainly includes none.
  • Man-machine attitude data pitch angle, yaw angle and roll angle
  • the camera's attitude data is obtained by the load stabilizer, the real-time image data obtained by the camera, and the UAV position coordinates and target position coordinates obtained by the GPS positioning system;
  • the mobile control terminal After receiving the data source collected in real time, the mobile control terminal enters the processing flow of the automatic locking imaging algorithm of the moving object.
  • the first step is data analysis preprocessing, which refines, detects and analyzes all the original data.
  • the real-time image data is processed to output the relative position of the target center and the image center in the image, and the output camera motion is up, down, left, and right.
  • Deflection control parameters processing the GPS sequence position of the drone and the GPS sequence position of the target, and outputting the direction and speed of movement of the drone and the target;
  • the mobile control terminal is carried by the moving object target, so that the moving object target also has the GPS positioning function; the real-time image of the moving object target, the complete attitude angle of the load, and the real-time GPS position of the drone through the data link
  • the downlink control arrives at the mobile control terminal.
  • the moving object automatic locking shooting algorithm APP will perform the motion state analysis of the load and the moving object target from the image feature and the motion curve according to the information, combined with the GPS position of the moving object;
  • the dimension of the feature called the target location tracking sub-algorithm, is selected while the moving target object is selected, and the impact template of the moving target is saved as an important reference data for real-time tracking calculation; the real-time image is continuously updated, and the moving target is utilized.
  • Influencing the template to match in real time detecting the target, so that the target is continuously positioned. If it is about to deviate from the field of view, it will calculate according to the complete attitude parameter of the motion camera. After calculating the deviation angle, upload the control command of the load stabilization device to ensure Load stabilizers can be adjusted and reversed Deviation angle off target. From the dimension of the motion curve, called the flight platform trajectory correction sub-algorithm, according to the sequence position of the UAV flight platform obtained by the GPS positioning system and the sequence position of the moving object target, the motion curves of the two can be calculated.
  • the adjustment command is issued to the UAV flight platform in real time to ensure that the UAV flight curve can maintain a stable distance to the moving object target as much as possible, as well as the flight curve of the same shape.
  • the target positioning tracking sub-algorithm is first used to continuously locate the target, and the moving camera offset angle is continuously adjusted by the load stabilization device to ensure that the target is at the center of the image. Then use the flight platform trajectory correction sub-algorithm to adjust the motion direction of the drone, so that the trajectory of the drone is consistent with the trajectory of the target, ensuring that the target does not deviate from the camera field of view, and adjust the speed of the drone. , to ensure that the target has a suitable proportion in the image.
  • the tangential direction of the current time point on the motion trajectory curve is used as the predicted value of the moving direction of the target next time, and the moving speed of the current target is calculated according to the target position information of the first two moments.
  • UAV flight plan prediction compare the motion curve of the target and the motion curve of the drone, and the direction of motion of the target and the next moment of the drone, calculate the difference between the running track and the moving direction of the drone, according to the drone
  • Target position search and positioning In order to ensure that the target of interest has a good shooting effect, the target needs to be located at the center of the motion camera, so the target search positioning is performed.
  • Flight and load stability decision-making The flight joint prediction scheme and the load stability control scheme are integrated, and the decision of the trade-off is made, and the final joint control scheme can be obtained.
  • the angular velocity, acceleration, and magnetic field of the current load stabilizing device are obtained by a three-axis gyro, a three-axis accelerometer, and a three-axis magnetic compass.
  • Flight and load stability decision The integrated flight prediction scheme and the load stability control scheme, through the trade-off decision, the final joint control scheme is obtained.
  • the motor is controlled to ensure the camera is stable.
  • the displacement in the X direction is adjusted by the left and right rotation of the camera
  • the displacement in the Y direction is adjusted by the up and down rotation of the camera
  • the UAV flight platform has a GPS navigation flight mode, which can sequentially set a plurality of waypoints to be flighted; can be controlled to hover at a specified altitude at any time; there is wireless data transmission Function, can be connected to the mobile control terminal to become a data link, The image is transmitted down and the state control information is bidirectionally transmitted; the load stabilizing device can be fixed and the motion camera is carried for stable shooting of the moving object object.
  • the load stabilizing device comprises a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetic compass to form a closed-loop feedback control system, which can be used to stabilize the motion camera to a specified viewing angle, Disturbed by external high frequency or small motion, such as the vibration of the drone or the wind blowing.
  • the load stabilizing device consists of three parts:
  • Three-axis gyro The angular velocity of the output load stabilizing device x, y, z.
  • Three-axis accelerometer The acceleration of the output load stabilizing device x, y, z.
  • Three-axis magnetic compass The magnetic field of the output load stabilizing device x, y, z.
  • the attitude parameters and positioning parameters of the load stabilizing device can be obtained through calculation, and when there is external interference, it can be adjusted in real time to achieve the purpose of stabilizing the motion camera.
  • the motion camera has a high-definition photo shooting or high-definition video recording function, and has a large-capacity SD card storage; and is optimized for shooting of moving objects, and is suitable for the field of sports aerial photography.
  • the mobile control terminal may be a mobile phone or a tablet, and an Android or IOS operating system is installed, and the mobile APP configured with a moving object automatic locking shooting algorithm may be executed, and has a GPS positioning function, which can be the same
  • the UAV flight platform establishes a data link, and the image data and motion camera status information can be transmitted from the data link to the mobile control terminal and finally to the algorithm APP.
  • the algorithm APP transmits the precise control information to none.
  • Man-machine flight platform, load stabilizer and motion camera. Moving objects will be bundled or carry mobile control terminals, which also have GPS positioning capabilities.
  • the moving object automatically locks the shooting algorithm, combines the motion object trajectory calculation and prediction based on the moving object GPS positioning, and runs a real-time image tracking locking algorithm to pull the object of interest into the motion camera. Central area for better sports shooting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

L'invention concerne un dispositif utilisant un drone pour suivre et photographier automatiquement un objet mobile, comprenant : une plate-forme de vol de drone, un dispositif de stabilisation de charge, un appareil de prise de vues, et un terminal mobile, l'appareil de prise de vues étant fixé à la plate-forme de vol de drone par l'intermédiaire du dispositif de stabilisation de charge et étant configuré pour capturer une image d'un objet mobile, et le terminal mobile est disposé sur l'objet mobile et peut acquérir des informations d'emplacement de l'objet mobile. Selon des informations d'emplacement de la plate-forme de vol de drone et de l'objet mobile, une trajectoire de vol de la plate-forme de vol de drone et un emplacement relatif de l'appareil de prise de vues par rapport à la plate-forme de vol de drone sont réglés. En outre, une orientation de l'appareil de prise de vues est réglée en fonction de l'image capturée par l'appareil de prise de vues, ce qui permet à l'appareil de prise de vues de suivre l'objet mobile. L'invention concerne également un procédé utilisant un drone pour suivre et photographier automatiquement un objet mobile, un drone et un terminal de commande.
PCT/CN2016/093490 2015-08-05 2016-08-05 Dispositif et procédé de photographie utilisant un drone pour suivre et photographier automatiquement un objet mobile WO2017020856A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510473852.7 2015-08-05
CN201510473852.7A CN105120146B (zh) 2015-08-05 2015-08-05 一种利用无人机进行运动物体自动锁定拍摄装置及拍摄方法

Publications (1)

Publication Number Publication Date
WO2017020856A1 true WO2017020856A1 (fr) 2017-02-09

Family

ID=54668022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093490 WO2017020856A1 (fr) 2015-08-05 2016-08-05 Dispositif et procédé de photographie utilisant un drone pour suivre et photographier automatiquement un objet mobile

Country Status (2)

Country Link
CN (1) CN105120146B (fr)
WO (1) WO2017020856A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668853A (zh) * 2017-10-13 2019-04-23 中国石油化工股份有限公司 一种大气污染物监测系统
CN110678822A (zh) * 2018-07-23 2020-01-10 深圳市大疆创新科技有限公司 移动机器人的控制方法、装置及移动机器人系统
CN111343593A (zh) * 2018-12-19 2020-06-26 广州海格通信集团股份有限公司 无人行驶工具的控制方法、装置、设备和存储介质
WO2020176969A1 (fr) * 2019-03-05 2020-09-10 Metaoptima Technology Inc. Robot mobile sans pilote et logiciel destiné à un examen et un traitement cliniques
US10880465B1 (en) 2017-09-21 2020-12-29 IkorongoTechnology, LLC Determining capture instructions for drone photography based on information received from a social network
CN112955712A (zh) * 2020-04-28 2021-06-11 深圳市大疆创新科技有限公司 目标跟踪方法、设备及存储介质
CN113093814A (zh) * 2021-04-07 2021-07-09 浙江大华技术股份有限公司 控制云台运动的方法及装置
CN113238568A (zh) * 2021-04-26 2021-08-10 天津小鲨鱼智能科技有限公司 跟随方法、飞行器及第一设备
CN113467499A (zh) * 2018-05-30 2021-10-01 深圳市大疆创新科技有限公司 飞行控制方法及飞行器
CN114136343A (zh) * 2021-12-03 2022-03-04 中国人民解放军63660部队 一种姿态稳定跟踪平台动态指向误差的测量方法
CN114239392A (zh) * 2021-12-09 2022-03-25 南通大学 无人机决策模型训练方法、使用方法、设备及介质
CN114285996A (zh) * 2021-12-23 2022-04-05 中国人民解放军海军航空大学 一种地面目标覆盖拍摄方法和系统
CN114489093A (zh) * 2020-10-27 2022-05-13 北京远度互联科技有限公司 姿态调整方法、装置、存储介质、图像采集设备及无人机
CN114814970A (zh) * 2022-04-14 2022-07-29 中交遥感天域科技江苏有限公司 一种机场用无人机发现装置及其处置方法
WO2023070441A1 (fr) * 2021-10-28 2023-05-04 深圳市大疆创新科技有限公司 Procédé et appareil de positionnement de plateforme mobile

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105120146B (zh) * 2015-08-05 2018-06-26 普宙飞行器科技(深圳)有限公司 一种利用无人机进行运动物体自动锁定拍摄装置及拍摄方法
US10824141B2 (en) * 2015-12-09 2020-11-03 SZ DJI Technology Co., Ltd. Systems and methods for UAV flight control
US10200659B2 (en) * 2016-02-29 2019-02-05 Microsoft Technology Licensing, Llc Collaborative camera viewpoint control for interactive telepresence
CN105847681A (zh) * 2016-03-30 2016-08-10 乐视控股(北京)有限公司 拍摄控制方法、设备及系统
CN105872372A (zh) * 2016-03-31 2016-08-17 纳恩博(北京)科技有限公司 一种图像采集方法及电子设备
CN105857582A (zh) * 2016-04-06 2016-08-17 北京博瑞爱飞科技发展有限公司 调整拍摄角度的方法、装置和无人驾驶飞行器
CN107305374A (zh) * 2016-04-22 2017-10-31 优利科技有限公司 无人机航拍系统
KR20170130952A (ko) * 2016-05-20 2017-11-29 엘지전자 주식회사 이동 단말기 및 그 제어방법
CN105938372A (zh) * 2016-06-03 2016-09-14 南京奇蛙智能科技有限公司 一种组合式可穿戴无人机控制器
CN105939463A (zh) * 2016-06-16 2016-09-14 四川建筑职业技术学院 一种基于gps定位的航拍无人机影像追踪系统
CN106131482B (zh) * 2016-06-27 2019-01-11 西安应用光学研究所 无人载体光电系统目标捕获系统及方法
CN106254009B (zh) * 2016-07-21 2018-08-03 北京航空航天大学 一种无人机数据链测试用电磁干扰信号复现系统和复现方法
CN108431869A (zh) 2016-08-06 2018-08-21 深圳市大疆创新科技有限公司 用于移动平台成像的系统和方法
CN106295695B (zh) * 2016-08-08 2019-08-16 中国民用航空总局第二研究所 一种飞机起降过程自动追踪拍摄方法及装置
CN109643116A (zh) * 2016-08-22 2019-04-16 深圳市大疆创新科技有限公司 用于定位移动物体的系统和方法
CN107783551A (zh) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 控制无人机跟随的方法及装置
US20180365839A1 (en) * 2016-09-27 2018-12-20 SZ DJI Technology Co., Ltd. Systems and methods for initialization of target object in a tracking system
US10241520B2 (en) * 2016-12-22 2019-03-26 TCL Research America Inc. System and method for vision-based flight self-stabilization by deep gated recurrent Q-networks
CN106777305A (zh) * 2016-12-30 2017-05-31 易瓦特科技股份公司 基于无人机构建目标对象标准数据库的方法及设备
CN107025262A (zh) * 2016-12-30 2017-08-08 易瓦特科技股份公司 应用于无人机获取目标对象标准标识信息的方法及装置
CN106844542A (zh) * 2016-12-30 2017-06-13 易瓦特科技股份公司 基于无人机获取目标对象标识信息的方法及装置
CN106844547A (zh) * 2016-12-30 2017-06-13 易瓦特科技股份公司 获取目标对象标识信息的方法及装置
CN106777307A (zh) * 2016-12-30 2017-05-31 易瓦特科技股份公司 目标对象的数据信息获取方法及系统
CN106845369A (zh) * 2016-12-30 2017-06-13 易瓦特科技股份公司 应用于无人机获取数据信息的方法及系统
CN106844543A (zh) * 2016-12-30 2017-06-13 易瓦特科技股份公司 应用于无人机进行标识信息获取的方法及系统
CN106874369A (zh) * 2016-12-30 2017-06-20 易瓦特科技股份公司 基于无人机的标准数据库构建方法及系统
CN106815335A (zh) * 2016-12-30 2017-06-09 易瓦特科技股份公司 标准数据库的构建方法及系统
CN106874372A (zh) * 2016-12-30 2017-06-20 易瓦特科技股份公司 基于无人机获取目标对象标识信息的方法及装置
CN106791684A (zh) * 2016-12-31 2017-05-31 深圳市乐信兴业科技有限公司 电子设备跟踪方法及相关装置与系统、以及移动终端
JP6873716B2 (ja) * 2017-01-31 2021-05-19 キヤノン株式会社 像ブレ補正装置およびその制御方法、撮像装置、レンズ装置
US10375289B2 (en) * 2017-03-31 2019-08-06 Hangzhou Zero Zero Technology Co., Ltd. System and method for providing autonomous photography and videography
CN107272732A (zh) * 2017-06-12 2017-10-20 广东工业大学 无人飞行装置集群系统
CN109144106A (zh) * 2017-06-28 2019-01-04 北京天龙智控科技有限公司 无人机跟随飞行系统、跟随飞行方法
CN107172360A (zh) * 2017-07-06 2017-09-15 杨顺伟 无人机跟拍方法及装置
CN107590450A (zh) * 2017-09-01 2018-01-16 歌尔科技有限公司 一种运动目标的标记方法、装置和无人机
EP3674210A4 (fr) * 2017-09-18 2020-09-23 SZ DJI Technology Co., Ltd. Procédé de commande d'objet mobile, dispositif et système
CN108052114A (zh) * 2017-12-06 2018-05-18 四川豪斯特电子技术有限责任公司 一种无人机的图像采集及跟踪控制系统
CN109995991A (zh) * 2017-12-29 2019-07-09 深圳市优必选科技有限公司 一种拍摄方法、机器人及移动终端
JP6904263B2 (ja) * 2018-01-10 2021-07-14 オムロン株式会社 画像処理システム
CN108573498B (zh) * 2018-03-08 2019-04-26 上海申雪供应链管理有限公司 基于无人机的行驶车辆即时跟踪系统
WO2019178829A1 (fr) * 2018-03-23 2019-09-26 深圳市大疆创新科技有限公司 Procédé, dispositif et système de commande
CN108566513A (zh) * 2018-03-28 2018-09-21 深圳臻迪信息技术有限公司 一种无人机对运动目标的拍摄方法
CN108683840A (zh) * 2018-03-28 2018-10-19 深圳臻迪信息技术有限公司 拍摄控制方法、拍摄方法以及无人设备端
CN113474741A (zh) * 2019-12-26 2021-10-01 深圳市大疆创新科技有限公司 数据处理方法、装置、无人飞行器与飞行控制系统
JP7247904B2 (ja) * 2020-01-15 2023-03-29 トヨタ自動車株式会社 ドローンシステム及びドローンによる車両撮影方法
WO2022141369A1 (fr) * 2020-12-31 2022-07-07 SZ DJI Technology Co., Ltd. Systèmes et procédés de prise en charge de capture et d'édition vidéo automatiques
CN114281100B (zh) * 2021-12-03 2023-09-05 国网智能科技股份有限公司 一种不悬停无人机巡检系统及其方法
CN115657728B (zh) * 2022-12-12 2023-03-21 辽宁电力能源发展集团有限公司 一种无人机仿真控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143324A (zh) * 2011-04-07 2011-08-03 天津市亚安科技电子有限公司 一种云台自动平滑跟踪目标的方法
CN103188431A (zh) * 2011-12-27 2013-07-03 鸿富锦精密工业(深圳)有限公司 控制无人飞行载具进行影像采集的系统及方法
CN103744390A (zh) * 2013-12-31 2014-04-23 中国测绘科学研究院 无人机电力线路巡检的协同控制方法
US20140211987A1 (en) * 2013-01-30 2014-07-31 International Business Machines Corporation Summarizing salient events in unmanned aerial videos
US20150029332A1 (en) * 2013-07-24 2015-01-29 The Boeing Company Controlling movement of a camera to autonomously track a mobile object
CN104571135A (zh) * 2013-10-20 2015-04-29 郁杰夫 一种云台追踪摄影系统和云台追踪摄影方法
CN104796611A (zh) * 2015-04-20 2015-07-22 零度智控(北京)智能科技有限公司 移动终端遥控无人机实现智能飞行拍摄的方法及系统
CN104853104A (zh) * 2015-06-01 2015-08-19 深圳市微队信息技术有限公司 一种自动跟踪拍摄运动目标的方法以及系统
CN105120146A (zh) * 2015-08-05 2015-12-02 普宙飞行器科技(深圳)有限公司 一种利用无人机进行运动物体自动锁定拍摄装置及拍摄方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604427B (zh) * 2013-12-10 2016-10-12 中国航天空气动力技术研究院 对地面移动目标动态定位的无人机系统和方法
CN104133484B (zh) * 2014-07-10 2017-09-22 浙江飞神车业有限公司 多旋翼飞行器电子控制装置、多旋翼飞行器的航拍电子控制装置及跟随航拍式多旋翼飞行器
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制系统、终端及机载飞控系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143324A (zh) * 2011-04-07 2011-08-03 天津市亚安科技电子有限公司 一种云台自动平滑跟踪目标的方法
CN103188431A (zh) * 2011-12-27 2013-07-03 鸿富锦精密工业(深圳)有限公司 控制无人飞行载具进行影像采集的系统及方法
US20140211987A1 (en) * 2013-01-30 2014-07-31 International Business Machines Corporation Summarizing salient events in unmanned aerial videos
US20150029332A1 (en) * 2013-07-24 2015-01-29 The Boeing Company Controlling movement of a camera to autonomously track a mobile object
CN104571135A (zh) * 2013-10-20 2015-04-29 郁杰夫 一种云台追踪摄影系统和云台追踪摄影方法
CN103744390A (zh) * 2013-12-31 2014-04-23 中国测绘科学研究院 无人机电力线路巡检的协同控制方法
CN104796611A (zh) * 2015-04-20 2015-07-22 零度智控(北京)智能科技有限公司 移动终端遥控无人机实现智能飞行拍摄的方法及系统
CN104853104A (zh) * 2015-06-01 2015-08-19 深圳市微队信息技术有限公司 一种自动跟踪拍摄运动目标的方法以及系统
CN105120146A (zh) * 2015-08-05 2015-12-02 普宙飞行器科技(深圳)有限公司 一种利用无人机进行运动物体自动锁定拍摄装置及拍摄方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11363185B1 (en) 2017-09-21 2022-06-14 Ikorongo Technology, LLC Determining capture instructions for drone photography based on images on a user device
US10880465B1 (en) 2017-09-21 2020-12-29 IkorongoTechnology, LLC Determining capture instructions for drone photography based on information received from a social network
US11889183B1 (en) 2017-09-21 2024-01-30 Ikorongo Technology, LLC Determining capture instructions for drone photography for event photography
CN109668853A (zh) * 2017-10-13 2019-04-23 中国石油化工股份有限公司 一种大气污染物监测系统
CN113467499A (zh) * 2018-05-30 2021-10-01 深圳市大疆创新科技有限公司 飞行控制方法及飞行器
CN110678822A (zh) * 2018-07-23 2020-01-10 深圳市大疆创新科技有限公司 移动机器人的控制方法、装置及移动机器人系统
CN111343593B (zh) * 2018-12-19 2021-09-07 广州海格通信集团股份有限公司 无人行驶工具的控制方法、装置、设备和存储介质
CN111343593A (zh) * 2018-12-19 2020-06-26 广州海格通信集团股份有限公司 无人行驶工具的控制方法、装置、设备和存储介质
WO2020176969A1 (fr) * 2019-03-05 2020-09-10 Metaoptima Technology Inc. Robot mobile sans pilote et logiciel destiné à un examen et un traitement cliniques
CN112955712A (zh) * 2020-04-28 2021-06-11 深圳市大疆创新科技有限公司 目标跟踪方法、设备及存储介质
CN114489093A (zh) * 2020-10-27 2022-05-13 北京远度互联科技有限公司 姿态调整方法、装置、存储介质、图像采集设备及无人机
CN114489093B (zh) * 2020-10-27 2022-11-29 北京远度互联科技有限公司 姿态调整方法、装置、存储介质、图像采集设备及无人机
CN113093814A (zh) * 2021-04-07 2021-07-09 浙江大华技术股份有限公司 控制云台运动的方法及装置
CN113238568A (zh) * 2021-04-26 2021-08-10 天津小鲨鱼智能科技有限公司 跟随方法、飞行器及第一设备
WO2023070441A1 (fr) * 2021-10-28 2023-05-04 深圳市大疆创新科技有限公司 Procédé et appareil de positionnement de plateforme mobile
CN114136343A (zh) * 2021-12-03 2022-03-04 中国人民解放军63660部队 一种姿态稳定跟踪平台动态指向误差的测量方法
CN114136343B (zh) * 2021-12-03 2024-03-26 中国人民解放军63660部队 一种姿态稳定跟踪平台动态指向误差的测量方法
CN114239392A (zh) * 2021-12-09 2022-03-25 南通大学 无人机决策模型训练方法、使用方法、设备及介质
CN114285996A (zh) * 2021-12-23 2022-04-05 中国人民解放军海军航空大学 一种地面目标覆盖拍摄方法和系统
CN114814970A (zh) * 2022-04-14 2022-07-29 中交遥感天域科技江苏有限公司 一种机场用无人机发现装置及其处置方法

Also Published As

Publication number Publication date
CN105120146B (zh) 2018-06-26
CN105120146A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2017020856A1 (fr) Dispositif et procédé de photographie utilisant un drone pour suivre et photographier automatiquement un objet mobile
US10979615B2 (en) System and method for providing autonomous photography and videography
CN105487552B (zh) 无人机跟踪拍摄的方法及装置
CN105242685B (zh) 一种伴飞无人机航拍系统及方法
CN110347171B (zh) 一种飞行器控制方法及飞行器
US9641810B2 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
WO2016138687A1 (fr) Système de commande, terminal et système de commande de vol aéroporté d'aéronef à rotors multiples
US11960284B2 (en) Multipoint cable cam system and method
US11401045B2 (en) Camera ball turret having high bandwidth data transmission to external image processor
CN105468014B (zh) 一种单自驾仪一体化的飞行器系统及其二维云台控制方法
CN205353774U (zh) 一种伴随拍摄飞行器的无人机航拍系统
WO2019061063A1 (fr) Procédé de collecte d'image pour un véhicule aérien sans pilote, et véhicule aérien sans pilote
US20230058405A1 (en) Unmanned aerial vehicle (uav) swarm control
CN105242684A (zh) 一种伴随拍摄飞行器的无人机航拍系统及方法
CN109976370B (zh) 立面环绕飞行的控制方法、装置、终端及存储介质
WO2018214093A1 (fr) Procédé et appareil de suivi
WO2018059295A1 (fr) Procédé, dispositif et système de commande de véhicule aérien à rotors multiples
CN111699454B (zh) 一种飞行规划方法及相关设备
CN106094876A (zh) 一种无人机目标锁定系统及其方法
CN108780321A (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
WO2018053785A1 (fr) Traitement d'image dans un véhicule autonome sans pilote
CN107734289A (zh) 捕获图像的方法、相关计算机程序和捕获视频的电子系统
CN107144264A (zh) 一种用于固定翼无人机采集高清路面图像的航空摄影方法
WO2019140695A1 (fr) Procédé et appareil de commande de vol d'aéronef
WO2021217408A1 (fr) Système de véhicule aérien sans pilote, et procédé et dispositif de commande associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16832344

Country of ref document: EP

Kind code of ref document: A1