WO2017018115A1 - センサモジュール - Google Patents

センサモジュール Download PDF

Info

Publication number
WO2017018115A1
WO2017018115A1 PCT/JP2016/069208 JP2016069208W WO2017018115A1 WO 2017018115 A1 WO2017018115 A1 WO 2017018115A1 JP 2016069208 W JP2016069208 W JP 2016069208W WO 2017018115 A1 WO2017018115 A1 WO 2017018115A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
case body
heat
sensor module
Prior art date
Application number
PCT/JP2016/069208
Other languages
English (en)
French (fr)
Inventor
勝 桜井
勝義 茶円
幸夫 大瀧
吉村 隆
添田 薫
良 下北
Original Assignee
アルプス電気株式会社
ジーニアルライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, ジーニアルライト株式会社 filed Critical アルプス電気株式会社
Publication of WO2017018115A1 publication Critical patent/WO2017018115A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a sensor module including a light emitting element that irradiates a subject with near infrared light and a light receiving element that receives the near infrared light that passes through the subject.
  • the sensor node disclosed in Patent Document 1 includes a pulse sensor that measures a pulse and a temperature sensor that measures body temperature or ambient temperature.
  • the pulse sensor has an infrared light emitting diode and a phototransistor, both of which are arranged to face the skin of the sensor node wearer.
  • This pulse sensor irradiates a subcutaneous blood vessel with infrared light generated by an infrared light emitting diode, detects an intensity change of scattered light from the blood vessel due to blood flow fluctuations, and estimates a pulse from the period of the intensity change.
  • the temperature sensor measures the body temperature and environmental temperature of the wearer.
  • the pulse sensor, temperature sensor, etc. are housed in the case to protect it from sweat and dust.
  • the present invention is for solving the above-described conventional problems, and an object of the present invention is to provide a sensor module capable of reducing the time required for measuring the body temperature of a subject and improving the accuracy.
  • an aspect of the present invention provides a sensor module including a light-emitting element that irradiates a subject with near-infrared light, and a light-receiving element that receives the near-infrared light that passes through the subject.
  • a case body for housing the light emitting element and the light receiving element a temperature detection element housed in the case body, a conductive portion thermally coupled to the temperature detection element in the case body, and And a heat conduction member integrally including a contact portion exposed from the case body so as to be in contact with a subject. Since it did in this way, the body temperature of a subject can be efficiently transmitted to a temperature detection element by a heat conduction member.
  • the heat conducting member is disposed in proximity to the light emitting element, and based on the temperature detected by the temperature detecting element, the light emitting element emits near infrared light to It is preferable to further include a preheating control unit for preheating.
  • the sensor module further includes a substrate housed in the case body, and the light emitting element and the light receiving element are mounted on one surface, and the conductive portion of the heat conducting member receives the light receiving element with respect to the light emitting element. It is preferable to have a light shielding wall portion disposed on the one surface of the substrate so as to hide the element. By doing in this way, since it can suppress that the near-infrared light which the light emitting element irradiated by the light-shielding wall part receives directly to a light receiving element, measurement noise can be reduced.
  • the sensor module may further include a heat radiating member integrally including a heat absorbing portion thermally coupled to the light emitting element in the case body and a heat releasing portion exposed from the case body.
  • the time required for measuring the body temperature of the subject can be shortened and the accuracy can be improved.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is an expanded sectional view showing typically signs that heat which a light emitting element emits is transmitted to a heat conduction member. It is an expanded sectional view showing typically signs that the heat of a subject is transmitted to a temperature detection element via a heat conduction member.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG. 5. It is a perspective view explaining the heat radiating member which the sensor module shown in FIG. 5 has.
  • FIG. 1 is a perspective view of a sensor module according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing how heat generated by the light emitting element is transmitted to the heat conducting member.
  • FIG. 4 is an enlarged cross-sectional view schematically showing how the heat of the subject is transmitted to the temperature detection element via the heat conducting member.
  • a sensor module 1 according to the first embodiment shown in FIG. 1 is attached to the arm or chest of a subject, which is a human living body, with a rubber band or the like, and the blood hemoglobin concentration, blood oxygen concentration, heart rate, and the like of the subject.
  • Biological information such as body temperature is measured, and the measured biological information is transmitted to a portable terminal such as a tablet terminal by wireless communication. It may be attached to a living body other than a person.
  • the sensor module 1 has a case body 10, a substrate body 20 accommodated in the case body 10, and a heat conducting member 30.
  • the case body 10 is a housing of the sensor module 1.
  • the case body 10 includes a case 11, a cover 12, and a flange 15.
  • the case 11 is made of synthetic resin, and has a rectangular flat plate-like lower wall 11a and a peripheral wall 11b standing from the periphery of the lower wall 11a, as shown in FIG. 2, and the upper end side of the peripheral wall 11b is opened. It is formed in a square vessel shape.
  • the cover 12 is made of a translucent synthetic resin sheet that can transmit near infrared light, such as a PET sheet.
  • the cover 12 has a rectangular flat plate-like base portion 13 disposed so as to face the opening of the case 11, and a hollow projection portion 14 having a rectangular shape in a plan view provided at a central portion in the longitudinal direction of the base portion 13. is doing.
  • the flange 15 is formed in a plate shape with a flexible material such as silicone rubber, and an inner peripheral edge 15a is sandwiched between the case 11 and a heat conducting member 30 described later, and the inner peripheral edge 15a is changed to the outer peripheral edge 15b. It extends diagonally upward.
  • the substrate body 20 is accommodated in the case body 10 and is disposed so as to close the opening of the case 11.
  • the substrate body 20 includes a substrate 21 that is a printed board in which a wiring pattern is formed of a copper foil on a glass epoxy substrate, a pair of light emitting elements 22 and 23 mounted on the upper surface 21a of the substrate 21, and an upper surface 21a of the substrate 21.
  • a light receiving element 24 mounted between the pair of light emitting elements 22 and 23, a temperature detection element 25 and a microcomputer (hereinafter simply referred to as “microcomputer”) 26 mounted on the lower surface 21 b of the substrate 21. ing.
  • the pair of light emitting elements 22 and 23 are light sources that emit light including near infrared light, and are configured by infrared light emitting diode elements and laser elements.
  • the pair of light-emitting elements 22 and 23 are accommodated upward at intervals in locations corresponding to both longitudinal ends of the base 13 of the cover 12.
  • the pair of light emitting elements 22 and 23 are provided so as to transmit light upward through the cover 12.
  • the pair of light emitting elements 22, 23 are close to the heat conducting member 30 so that heat generated by emitting light can be conducted to the heat conducting member 30 described later to warm the heat conducting member 30. Has been placed.
  • the light receiving element 24 is a sensor having sensitivity to near-infrared light, and is composed of a photodiode.
  • the light receiving element 24 is arranged between the pair of light emitting elements 22, 23 and is aligned with the pair of light emitting elements 22, 23, and faces upward at a position corresponding to the protruding portion 14 of the cover 12. Contained.
  • the light receiving element 24 is provided so as to be able to detect near infrared light transmitted through the cover 12.
  • the light receiving element 24 outputs a signal corresponding to the received near infrared light.
  • the temperature detection element 25 is configured using a temperature sensor IC that detects the temperature transmitted to the surface of the package 25a.
  • the package 25a of the temperature detection element 25 is disposed so as to be in contact with the substrate 21, and the temperature detection element 25 is provided so as to detect a temperature transmitted from the heat conducting member 30 described later via the substrate 21.
  • the temperature detection element 25 outputs a signal corresponding to the detected temperature.
  • the microcomputer 26 is a microcomputer for an embedded device, and has a CPU, a memory, and a wireless communication function.
  • the microcomputer 26 executes a program stored in the memory.
  • a pair of light emitting elements 22 and 23 are connected to an output portion of the external interface of the microcomputer 26 via a drive circuit (not shown), and a light receiving element 24 is connected to an input portion incorporating an analog-digital converter via an amplifier circuit (not shown).
  • the temperature detection element 25 is connected.
  • the microcomputer 26 controls the pair of light emitting elements 22 and 23 to emit light including near infrared light, and based on signals received from the light receiving element 24 and the temperature detecting element 25, the blood hemoglobin concentration of the subject It functions as a control unit that acquires biological information related to body temperature.
  • the microcomputer 26 functions as a communication unit that communicates with an external terminal device by a wireless communication function.
  • the heat conducting member 30 is made of a metal having a good thermal conductivity such as copper or aluminum (a metal having a relatively low thermal resistance), for example.
  • the heat conductive member 30 includes a conductive portion 31 formed in a rectangular flat plate shape having the same shape as the plan view of the case 11, and an annular contact portion 32 protruding upward at the peripheral edge portion 31a of the conductive portion 31. It has one.
  • the conductive portion 31 of the heat conducting member 30 is disposed so as to overlap the upper surface 21 a of the substrate 21, and is held by sandwiching the inner peripheral edge 15 a of the flange 15 between the peripheral edge portion 31 a and the upper end of the peripheral wall 11 b of the case 11. Yes. Further, the base portion 13 of the cover 12 is disposed so as to overlap with a location inside the contact portion 32 on the upper surface 31 b of the conductive portion 31. That is, the conductive portion 31 is accommodated in the case body 10, and the contact portion 32 is exposed outside the case body 10. The cover 12 and the heat conducting member 30 hermetically close the opening of the case 11.
  • the conducting portion 31 of the heat conducting member 30 faces the temperature detecting element 25 with the substrate 21 interposed therebetween. Therefore, the heat of the conduction part 31 is transmitted to the package 25 a of the temperature detection element 25 through the substrate 21. That is, the conductive portion 31 is disposed so as to be thermally coupled to the temperature detection element 25.
  • Through holes 31c, 31d and 31e penetrating in the thickness direction are formed at locations corresponding to the pair of light emitting elements 22, 23 and the light receiving element 24 in the conductive portion 31 of the heat conducting member 30.
  • the light emitting elements 22, 23 and the light receiving element 24 are accommodated in the through holes 31c, 31d and 31e, respectively.
  • An annular protrusion 33 protruding upward is provided on the periphery of the through hole 31e in which the light receiving element 24 is accommodated.
  • the upper surface 31b of the conductive portion 31 of the heat conducting member 30 is above the light emitting surfaces 22a and 23a of the pair of light emitting elements 22 and 23 (positions farther from the substrate 21).
  • the upper end of the annular protrusion 33 is above the light receiving surface 24 a of the light receiving element 24. That is, a part 31 f of the conduction part 31 is arranged between the light emitting element 22 and the light receiving element 24, and another part 31 g of the conduction part 31 is arranged between the light emitting element 23 and the light receiving element 24.
  • the part 31f and the other part 31g of the conductive portion 31 hide the light receiving element 24 from the pair of light emitting elements 22 and 23, and light emitted from the pair of light emitting elements 22 and 23 directly to the light receiving element 24. It functions as a light blocking wall that suppresses light reception.
  • the microcomputer 26 executes the following body temperature measurement process.
  • the microcomputer 26 detects the temperature based on the signal output from the temperature detection element 25 periodically (for example, every 1 second) based on the signal output from the temperature detection element 25.
  • the microcomputer 26 causes the pair of light emitting elements 22 and 23 to emit light.
  • the heat generated by the light emitting element 22 is transmitted to the conducting portion 31 of the heat conducting member 30 to warm the heat conducting member 30, that is, preheated.
  • the heat of the heat conducting member 30 is transmitted to the package 25a of the temperature detecting element 25 through the substrate 21.
  • the microcomputer 26 stops the light emission of the pair of light emitting elements 22 and 23. That is, the microcomputer 26 functions as a preheating control unit. In addition, it is good also as a structure which abbreviate
  • FIG. 1
  • the microcomputer 26 transmits the detected temperature to an external terminal device by wireless communication.
  • the microcomputer 26 ends the body temperature measurement process.
  • the sensor module 1 of the present embodiment includes a pair of light emitting elements 22 and 23 that irradiate the subject H with near infrared light, and a light receiving element 24 that receives the near infrared light that passes through the subject H. Yes.
  • the sensor module 1 includes a case body 10 that houses a pair of light emitting elements 22, 23 and a light receiving element 24, a temperature detection element 25 housed in the case body 10, and the temperature detection element 25 in the case body 10.
  • a heat conduction member 30 integrally including a coupled conduction portion 31 and a contact portion 32 exposed from the case body 10 so as to be in contact with the subject H.
  • the body temperature of the subject H can be efficiently transmitted to the temperature detecting element 25 by the heat conducting member 30.
  • the heat conducting member 30 is disposed in the vicinity of the pair of light emitting elements 22 and 23, and the near infrared light is emitted from the pair of light emitting elements 22 and 23 based on the temperature detected by the temperature detecting element 25. Is applied to preheat the heat conducting member 30. Since it did in this way, since the heat conductive member 30 can be previously warmed to the temperature close
  • the sensor module 1 is housed in the case body 10, further includes a substrate 21 on which the pair of light emitting elements 22 and 23 and the light receiving element 24 are mounted on the upper surface 21 a, and the conductive portion 31 of the heat conducting member 30 is a pair of light emitting elements.
  • a light shielding wall (a part 31f and another part 31g) is provided on the upper surface 21a of the substrate 21 so as to hide the light receiving element 24 from the elements 22 and 23. Since it did in this way, since it can suppress that the near-infrared light which the pair of light emitting elements 22 and 23 irradiated by the light-shielding wall part is received by the light receiving element 24 directly, measurement noise can be reduced.
  • the time required for measuring the body temperature of the subject H can be shortened and the accuracy can be improved.
  • FIG. 5 is a perspective view of a sensor module according to the second embodiment of the present invention.
  • 6 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 7 is a perspective view illustrating a heat radiating member included in the sensor module shown in FIG.
  • the sensor module 2 of the second embodiment shown in FIG. 5 is also attached to the arm or chest of a subject, which is a human body, by a rubber band or the like.
  • the biological information such as blood hemoglobin concentration, blood oxygen concentration, heart rate, and body temperature is measured, and the measured biological information is transmitted to a portable terminal such as a tablet terminal by wireless communication. It may be attached to a living body other than a person.
  • the sensor module 2 includes a case body 60, a substrate body 70 accommodated in the case body 60, and a heat conducting member 90.
  • the case body 60 is a housing of the sensor module 2 and includes a case 61 and a cover 62.
  • the case 61 is made of a synthetic resin and has a hollow box shape. As shown in FIG. 6, the case 61 has a rectangular flat plate-like lower wall 61 a, a peripheral wall 61 b that stands up from the peripheral edge of the lower wall 61 a, and a rectangular flat plate-like shape provided so as to close the opening at the upper end of the peripheral wall 61 b. It has an upper wall 61c and a flange portion 61d projecting upward provided at the peripheral edge of the upper wall 61c.
  • the upper wall 61c of the case 61 is formed with an opening 61e having a rectangular shape in plan view.
  • the cover 62 is made of a translucent synthetic resin sheet that can transmit near infrared light, such as a PET sheet.
  • the cover 62 has a rectangular plate-like base 63 and a hollow protrusion 64 provided at the center of the base 63.
  • the base 63 of the cover 62 is overlapped with the inner surface of the upper wall 61 c of the case 61 so as to airtightly close the opening 61 e of the case 61.
  • the protruding portion 64 is provided with a first portion 64a extending in a band shape and a second portion 64b having a rectangular shape in plan view that further protrudes in the longitudinal center of the first portion 64a.
  • the second portion 64b protrudes from the first portion 64a.
  • the protruding portion 64 is disposed so as to protrude upward from the opening 61 e of the case 61.
  • the substrate body 70 includes a main substrate 71, a sub-substrate 72 overlaid on the upper surface 71 a of the main substrate 71, a pair of light emitting elements 73 and 74 mounted on the upper surface 72 a of the sub-substrate 72, and an upper surface 72 a of the sub-substrate 72.
  • a light receiving element 75 mounted on the light receiving element 75, a light shielding case 76 surrounding the light receiving element 75, a temperature detecting element 77 mounted on the upper surface 71a of the main substrate 71, and a microcomputer mounted on the lower surface 71b of the main substrate 71 (hereinafter, referred to as the following). 78) and a heat radiating member 80.
  • the main board 71 and the sub board 72 are, for example, printed boards in which a wiring pattern is formed of copper foil on a glass epoxy board.
  • the pair of light emitting elements 73 and 74 are light sources that emit light including near infrared light, and are configured by infrared light emitting diode elements or laser elements.
  • the pair of light emitting elements 73 and 74 are accommodated upward at locations corresponding to both ends in the longitudinal direction of the first portion 64 a of the protrusion 64 of the cover 62 with a space therebetween.
  • the pair of light emitting elements 73 and 74 are provided so as to transmit light upward through the cover 62.
  • the light receiving element 75 is a sensor having sensitivity to near infrared light, and is configured using a photodiode.
  • the light receiving element 75 is aligned with the pair of light emitting elements 73 and 74 and is accommodated upward at a position corresponding to the longitudinal center of the second portion 64 b of the cover 62.
  • the light receiving element 75 is provided so as to be able to detect near infrared light transmitted through the cover 62.
  • the light receiving element 75 outputs a signal corresponding to the received near infrared light.
  • the light shielding case 76 is formed in a square cylinder shape using a synthetic resin having a light shielding property, and is provided on the upper surface 72a of the sub-substrate 72 so that the light receiving element 75 is accommodated inside.
  • the light shielding case 76 prevents the light emitted from the pair of light emitting elements 73 and 74 from being directly received by the light receiving element 75.
  • the temperature detection element 77 is configured using a temperature sensor IC that detects the temperature in the package 77a.
  • the package 77a of the temperature detection element 77 is disposed so as to be in direct contact with a conductive portion 91 of a heat conductive member 90 described later.
  • the temperature detection element 77 outputs a signal corresponding to the detected temperature.
  • the microcomputer 78 is a microcomputer for an embedded device, and has a CPU, a memory, and a wireless communication function.
  • the microcomputer 78 executes a program stored in the memory.
  • a pair of light emitting elements 73 and 74 are connected to an output portion of the external interface of the microcomputer 78 via a drive circuit (not shown), and a light receiving element 75 is connected to an input portion incorporating an analog-digital converter via an amplifier circuit (not shown).
  • the temperature detection element 77 is connected.
  • the microcomputer 78 controls the pair of light emitting elements 73 and 74 to emit light including near infrared light, and based on signals received from the light receiving element 75 and the temperature detecting element 77, the blood hemoglobin concentration of the subject It functions as a control unit that acquires biological information related to body temperature.
  • the microcomputer 78 functions as a communication unit that communicates with an external terminal device by a wireless communication function.
  • the microcomputer 78 performs the body temperature measurement process similar to the microcomputer 26 of 1st Embodiment mentioned above. That is, the microcomputer 78 functions as a preheating control unit.
  • the heat radiating member 80 is formed by punching a metal plate having relatively good thermal conductivity such as copper or aluminum into a predetermined shape and bending it.
  • the heat dissipating member 80 is bent into a flat plate-shaped heat absorbing portion 81 disposed on the upper surface 72a of the sub-substrate 72 and a bowl shape having a U-shaped cross section, and penetrates the peripheral wall 61b of the case 61 to the outside. And an exposed heat release portion 82.
  • the heat radiating member 80 integrally includes a heat absorbing portion 81 thermally coupled to the pair of light emitting elements 73 and 74 in the case body 60 and a heat releasing portion 82 exposed from the case body 60. .
  • the heat conducting member 90 is made of a metal having a good thermal conductivity such as copper or aluminum (a metal having a relatively low thermal resistance), for example.
  • the heat conductive member 90 includes a conductive portion 91 disposed through the base portion 63 of the cover 62, and the outer edge shape is substantially the same as the opening 61 e of the case 61 and the inner edge shape is a plan view shape of the protruding portion 64 of the cover 62. And an annular contact portion 92 having substantially the same shape.
  • the heat conducting member 90 is disposed such that the contact portion 92 is overlapped with the base portion 63 of the cover 62 in the opening 61 e of the case 61 so that the protruding portion 64 protrudes inside, and the conductive portion 91 is disposed inside the case body 60.
  • the sensor module 2 of the present embodiment also has the same effects as the sensor module 1 of the first embodiment described above.
  • the sensor module 2 integrally includes a heat absorption part 81 thermally coupled to the pair of light emitting elements 73 and 74 and a heat release part 82 exposed from the case body 60 in the case body 60. 80 is further provided.
  • the heat generated from the pair of light emitting elements 73 and 74 is released from the inside of the case body 60 to the outside by the heat radiating member 80, so that the temperature detection by the heat accumulation in the case body 60 can be achieved. The influence can be suppressed.
  • the time required for measuring the body temperature of the subject can be shortened and the accuracy can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

被検体の体温計測に要する時間を短縮しかつ精度を向上できるセンサモジュールとして、近赤外光を被検体に照射する一対の発光素子22、23と、被検体を経由した近赤外光を受光する受光素子24と、を備えている。センサモジュール1は、一対の発光素子22、23及び受光素子24を収容するケース体10と、ケース体10に収容された温度検出素子25と、ケース体内において温度検出素子25と熱的に結合された伝導部31、及び被検体に接触可能なようにケース体10から露出された接触部32を一体に有する熱伝導部材30と、を備えるセンサモジュール1が提供される。

Description

センサモジュール
 近赤外光を被検体に照射する発光素子と、前記被検体を経由した前記近赤外光を受光する受光素子と、を有するセンサモジュールに関する。
 特許文献1に開示されているセンサノードは、脈拍を計測する脈拍センサと、体温または周囲温度を計測する温度センサと、を備える。
 脈拍センサは、赤外線発光ダイオードとフォトトランジスタとを有し、いずれもセンサノード装着者の皮膚と対向するように配置される。この脈拍センサは、赤外線発光ダイオードで発生させた赤外光を皮下の血管に照射し、血流変動による血管からの散乱光の強度変化を検知し、その強度変化の周期から脈拍を推定する。温度センサは、装着者の体温や環境温度を計測する。
特開2006-312010号公報
 しかしながら、上記センサノードは人体に装着されることから汗や塵埃から保護するために脈拍センサや温度センサなどをケース内に収容しているので、温度センサにケース外部の温度が伝わりにくく、温度計測に比較的長い時間を要し、さらに温度計測の精度が低いという問題があった。
 そこで本発明は、上記従来の課題を解決するためのものであり、被検体の体温計測に要する時間を短縮しかつ精度を向上できるセンサモジュールを提供することを目的とする。
 上記課題を解決するため、本発明の一態様は、近赤外光を被検体に照射する発光素子と、前記被検体を経由した前記近赤外光を受光する受光素子と、を有するセンサモジュールであって、前記発光素子及び前記受光素子を収容するケース体と、前記ケース体に収容された温度検出素子と、前記ケース体内において前記温度検出素子と熱的に結合された伝導部、及び前記被検体に接触可能なように前記ケース体から露出された接触部を一体に有する熱伝導部材と、を備えていることを特徴とするセンサモジュールである。このようにしたことから、熱伝導部材によって被検体の体温を温度検出素子に効率的に伝えることができる。
 上記センサモジュールは、前記熱伝導部材が、前記発光素子に近接して配置され、前記温度検出素子によって検出された温度に基づき、前記発光素子から近赤外光を照射して前記熱伝導部材を予熱する予熱制御部と、をさらに備えていることが好ましい。このようにすることで、熱伝導部材をあらかじめ被検体の体温に近い温度まで温めることができるので、熱伝導部材が温まるまでの時間を短縮することができる。
 上記センサモジュールは、前記ケース体に収容され、前記発光素子及び前記受光素子が一方の面に実装された基板をさらに備え、前記熱伝導部材の前記伝導部が、前記発光素子に対して前記受光素子を隠すように前記基板の前記一方の面に配置された遮光壁部を有していることが好ましい。このようにすることで、遮光壁部によって発光素子が照射した近赤外光が受光素子に直接受光されることを抑制できるので、計測ノイズを低減することができる。
 上記センサモジュールは、前記ケース体内において前記発光素子と熱的に結合された熱吸収部、及び前記ケース体から露出された熱放出部を一体に有する放熱部材をさらに備えていてもよい。このようにすることで、発光素子から発生する熱が放熱部材によってケース体の内側から外側に放出されるので、ケース体内に熱がこもることによる温度検出への影響を抑制することができる。
 本発明によれば、被検体の体温計測に要する時間を短縮しかつ精度を向上できる。
本発明の第1実施形態にかかるセンサモジュールの斜視図である。 図1のA-A線に沿う断面図である。 発光素子が発する熱が熱伝導部材に伝わる様子を模式的に示す拡大断面図である。 被検体の熱が熱伝導部材を経由して温度検出素子に伝わる様子を模式的に示す拡大断面図である。 本発明の第2実施形態にかかるセンサモジュールの斜視図である。 図5のB-B線に沿う断面図である。 図5に示すセンサモジュールが有する放熱部材を説明する斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。また、「上下」を示す記載は各部材間の相対的な位置関係を説明するために便宜的に用いているものであり、絶対的な位置関係を示すものではない。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかるセンサモジュールの斜視図である。図2は、図1のA-A線に沿う断面図である。図3は、発光素子が発する熱が熱伝導部材に伝わる様子を模式的に示す拡大断面図である。図4は、被検体の熱が熱伝導部材を経由して温度検出素子に伝わる様子を模式的に示す拡大断面図である。
 図1に示す第1実施形態のセンサモジュール1は、ゴムバンドなどにより人の生体である被検体の腕や胸などに装着され、被検体の血中ヘモグロビン濃度、血中酸素濃度、心数及び体温などの生体情報を計測して、計測した生体情報を無線通信によりタブレット端末などの携帯端末に送信するものである。人以外の生体に装着してもよい。
 図1、図2に示すように、センサモジュール1は、ケース体10と、ケース体10に収容された基板体20と、熱伝導部材30と、を有している。
 ケース体10は、センサモジュール1の筐体である。ケース体10は、ケース11と、カバー12と、フランジ15と、を有している。
 ケース11は、合成樹脂製であり、図2に示すように、矩形平板状の下壁11aと、下壁11aの周縁から立接した周壁11bと、を有し、周壁11bの上端側が開口した角形の器形状に形成されている。
 カバー12は、例えば、PETシートなど、近赤外光を透過可能な透光性の合成樹脂シートで構成されている。カバー12は、ケース11の上記開口と対向するように配置された矩形平板状の基部13と、基部13の長手方向中央部に設けられた平面視矩形状の中空の突出部14と、を有している。
 フランジ15は、例えば、シリコーンゴムなどの柔軟性を有する材料で板環状に形成され、内周縁15aがケース11と後述する熱伝導部材30との間に挟持され、内周縁15aから外周縁15bに向けて斜め上方に延びている。
 基板体20は、ケース体10内に収容されており、ケース11の上記開口を塞ぐように配置されている。基板体20は、ガラスエポキシ基板に銅箔で配線パターンが形成されたプリント基板である基板21と、基板21の上面21aに実装された一対の発光素子22、23と、基板21の上面21aの一対の発光素子22、23の間に実装された受光素子24と、基板21の下面21bに実装された温度検出素子25及びマイクロコンピュータ(以下、単に「マイコン」という。)26と、を有している。
 一対の発光素子22、23は、近赤外光を含む光を発する光源であり、赤外発光ダイオード素子やレーザー素子により構成されている。一対の発光素子22、23は、カバー12の基部13の長手方向両端部に対応する箇所に互いに間隔をあけ上方に向けて収容されている。一対の発光素子22、23は、カバー12を透過して上方に向けて光を発することができるように設けられている。
 一対の発光素子22、23は、光を発することにより生じる熱が後述する熱伝導部材30に伝導して当該熱伝導部材30を温めることが可能なように、当該熱伝導部材30に近接して配置されている。
 受光素子24は、近赤外光に感度を有するセンサであり、フォトダイオードにより構成されている。受光素子24は、一対の発光素子22、23の間に配置されてこれら一対の発光素子22、23と一直線上に並べられており、カバー12の突出部14に対応する箇所に上方に向けて収容されている。受光素子24は、カバー12を透過した近赤外光を検出することができるように設けられている。受光素子24は、受光した近赤外光に応じた信号を出力する。
 温度検出素子25は、パッケージ25aの表面に伝わる温度を検出する温度センサICを用いて構成している。温度検出素子25のパッケージ25aは、基板21と接するように配置されており、温度検出素子25は、基板21を介して後述する熱伝導部材30から伝わる温度を検出するように設けられている。温度検出素子25は、検出した温度に応じた信号を出力する。
 マイコン26は、組込機器向けのマイクロコンピュータであって、CPU、メモリ、及び無線通信機能を有している。マイコン26は、メモリに格納されたプログラムを実行する。マイコン26の外部インタフェースの出力部には図示しないドライブ回路を介して一対の発光素子22、23が接続され、アナログ-デジタル変換器を内蔵した入力部には図示しない増幅回路を介して受光素子24及び温度検出素子25が接続されている。
 マイコン26は、一対の発光素子22、23を近赤外光を含む光を発するように制御し、受光素子24及び温度検出素子25から受信する信号に基づいて、被検体の血中ヘモグロビン濃度や体温にかかる生体情報を取得する制御部として機能する。また、マイコン26は、無線通信機能により外部の端末装置と通信する通信部として機能する。
 熱伝導部材30は、例えば、銅やアルミニウムなどの熱伝導率の良好な金属(熱抵抗の比較的低い金属)で構成されている。熱伝導部材30は、ケース11の平面視形状と同一形状の矩形平板状に形成された伝導部31と、伝導部31の周縁部31aにおいて上方に向けて突出した環状の接触部32と、を一体に有している。
 熱伝導部材30の伝導部31は、基板21の上面21aに重ねて配置されており、周縁部31aとケース11の周壁11bの上端との間にフランジ15の内周縁15aを挟んで保持している。また、伝導部31の上面31bにおける接触部32より内側の箇所に、カバー12の基部13が重ねて配置されている。即ち、伝導部31はケース体10内に収容され、接触部32はケース体10外に露出されている。カバー12と熱伝導部材30とで、ケース11の開口を気密に塞いでいる。
 熱伝導部材30の伝導部31は、基板21を間に挟んで温度検出素子25と対向している。そのため、伝導部31の熱は、基板21を介して温度検出素子25のパッケージ25aに伝わる。即ち、伝導部31は、温度検出素子25と熱的に結合するように配置されている。
 熱伝導部材30の伝導部31における一対の発光素子22、23及び受光素子24に対応する箇所には、厚さ方向に貫通する貫通孔31c、31d及び31eが形成されている。これら貫通孔31c、31d及び31eには、それぞれ発光素子22、23及び受光素子24が収容されている。受光素子24が収容された貫通孔31eの周縁には、上方に突出した環状突部33が設けられている。
 熱伝導部材30の伝導部31の上面31bは、一対の発光素子22、23の発光面22a、23aより上方(基板21からより離れた位置)にある。環状突部33の上端は、受光素子24の受光面24aより上方にある。すなわち、発光素子22と受光素子24との間には、伝導部31の一部分31fが配置され、発光素子23と受光素子24との間には、伝導部31の他部分31gが配置されており、発光面22a、23aから受光面24aに至るためには、伝導部31の一部分31f、他部分31gを回り込まなければならず、発光面22a、23aと受光面24aとを直線経路で結ぶことはできない。換言すると、伝導部31の一部分31f、他部分31gは、一対の発光素子22、23に対して受光素子24を隠しており、一対の発光素子22、23が発した光が受光素子24に直接受光されることを抑制する遮光壁部として機能している。
 次に、センサモジュール1のマイコン26における体温検出処理の一例について説明する。
 マイコン26は、例えば、無線通信機能により外部の端末装置から体温計測要求信号を受信すると、以下の体温計測処理を実行する。
 体温計測処理において、マイコン26は、温度検出素子25が出力する信号に基づいて周期的(例えば、1秒周期)に温度検出素子25の出力する信号に基づき温度を検出する。マイコン26は、検出した温度が基準温度(例えば、摂氏33度)より低いとき、一対の発光素子22、23を発光させる。これにより、図3において矢印で模式的に示すように、発光素子22が発する熱が熱伝導部材30の伝導部31に伝わって熱伝導部材30が温められ、即ち、予熱される。発光素子23でも同様である。熱伝導部材30の熱は基板21を介して温度検出素子25のパッケージ25aに伝わる。マイコン26は、検出した温度が基準温度以上になると、一対の発光素子22、23の発光を停止する。即ち、マイコン26は、予熱制御部として機能する。なお、熱伝導部材30を予熱する処理を省略した構成としてもよい。
 そして、図4に示すように、センサモジュール1が被検体Hに装着されると、フランジ15が外側に広がるように変形し、カバー12の突出部14と、熱伝導部材30の接触部32とが被検体Hに接触する。これにより、図4において矢印L1、L2で模式的に示すように、被検体Hの熱が熱伝導部材30の接触部32から伝導部31に伝わり、基板21を介して温度検出素子25のパッケージ25aに伝わる。特に矢印L2の経路では、基板21を厚さ方向に進むため、熱伝導部材30から最短距離でパッケージ25aに伝わる。
 そして、マイコン26は検出した温度を無線通信により外部の端末装置に送信する。マイコン26は、外部の端末装置から体温計測停止信号を受信すると、上記体温計測処理を終了する。
 本実施形態のセンサモジュール1は、近赤外光を被検体Hに照射する一対の発光素子22、23と、被検体Hを経由した近赤外光を受光する受光素子24と、を備えている。センサモジュール1は、一対の発光素子22、23及び受光素子24を収容するケース体10と、ケース体10に収容された温度検出素子25と、ケース体10内において温度検出素子25と熱的に結合された伝導部31、及び被検体Hに接触可能なようにケース体10から露出された接触部32を一体に有する熱伝導部材30と、を備えている。このようにしたことから、熱伝導部材30によって被検体Hの体温を温度検出素子25に効率的に伝えることができる。
 上記センサモジュール1は、熱伝導部材30が、一対の発光素子22、23に近接して配置され、温度検出素子25によって検出された温度に基づき、一対の発光素子22、23から近赤外光を照射して熱伝導部材30を予熱する。このようにしたことから、熱伝導部材30をあらかじめ被検体Hの体温に近い温度まで温めることができるので、熱伝導部材30が温まるまでの時間を短縮することができる。
 上記センサモジュール1は、ケース体10に収容され、一対の発光素子22、23及び受光素子24が上面21aに実装された基板21をさらに備え、熱伝導部材30の伝導部31が、一対の発光素子22、23に対して受光素子24を隠すように基板21の上面21aに配置された遮光壁部(一部分31f、他部分31g)を有している。このようにしたことから、遮光壁部によって一対の発光素子22、23が照射した近赤外光が受光素子24に直接受光されることを抑制できるので、計測ノイズを低減することができる。
 上記センサモジュール1によれば、被検体Hの体温計測に要する時間を短縮しかつ精度を向上できる。
 (第2実施形態)
 図5は、本発明の第2実施形態にかかるセンサモジュールの斜視図である。図6は、図5のB-B線に沿う断面図である。図7は、図5に示すセンサモジュールが有する放熱部材を説明する斜視図である。
 図5に示す第2実施形態のセンサモジュール2も、上述した第1実施形態のセンサモジュール1と同様に、ゴムバンドなどにより人の生体である被検体の腕や胸などに装着され、被検体の血中ヘモグロビン濃度、血中酸素濃度、心数及び体温などの生体情報を計測して、計測した生体情報を無線通信によりタブレット端末などの携帯端末に送信するものである。人以外の生体に装着してもよい。
 図5、図6に示すように、センサモジュール2は、ケース体60と、ケース体60に収容された基板体70と、熱伝導部材90と、を有している。
 ケース体60は、センサモジュール2の筐体であり、ケース61と、カバー62と、を有している。
 ケース61は、合成樹脂製で中空箱状に形成されている。ケース61は、図6に示すように、矩形平板状の下壁61aと、下壁61aの周縁から立接した周壁61bと、周壁61bの上端の開口を塞ぐように設けられた矩形平板状の上壁61cと、上壁61cの周縁部に設けられた上方に突出するフランジ部61dと、を有している。ケース61の上壁61cには、平面視矩形状の開口61eが形成されている。
 カバー62は、例えば、PETシートなど、近赤外光を透過可能な透光性の合成樹脂シートで構成されている。カバー62は、矩形平板状の基部63と、基部63の中央部に設けられた中空の突出部64と、を有している。
 カバー62の基部63は、図6に示すように、周縁部がケース61の上壁61cの内側の面に重ねられており、ケース61の開口61eを気密に塞いでいる。突出部64は、帯状に延在する第1部分64aと、第1部分64aの長手方向中央においてさらに突出した平面視矩形状の第2部分64bとが設けられている。第2部分64bは、第1部分64aより突出している。突出部64は、ケース61の開口61eから上方に突出するように配置されている。
 基板体70は、主基板71と、主基板71の上面71aに重ねられた副基板72と、副基板72の上面72aに実装された一対の発光素子73、74と、副基板72の上面72aに実装された受光素子75と、受光素子75を囲う遮光ケース76と、主基板71の上面71aに実装された温度検出素子77と、主基板71の下面71bに実装されたマイクロコンピュータ(以下、単に「マイコン」という。)78と、放熱部材80と、を有している。
 主基板71及び副基板72は、例えば、ガラスエポキシ基板に銅箔で配線パターンが形成されたプリント基板である。
 一対の発光素子73、74は、近赤外光を含む光を発する光源であり、赤外発光ダイオード素子又はレーザー素子などで構成されている。一対の発光素子73、74は、互いに間隔をあけて、カバー62の突出部64の第1部分64aの長手方向両端部に対応する箇所に、上方に向けて収容されている。一対の発光素子73、74は、カバー62を透過して上方に向けて光を発することができるように設けられている。
 受光素子75は、近赤外光に感度を有するセンサであり、フォトダイオードを用いて構成されている。受光素子75は、一対の発光素子73、74と一直線上に並べられており、カバー62の第2部分64bの長手方向中央部に対応する箇所に、上方に向けて収容されている。受光素子75は、カバー62を透過した近赤外光を検出することができるように設けられている。受光素子75は、受光した近赤外光に応じた信号を出力する。
 遮光ケース76は、遮光性を有する合成樹脂を用いて四角筒形状に形成され、内側に受光素子75が収容されるように副基板72の上面72aに設けられている。遮光ケース76は、一対の発光素子73、74が発した光が受光素子75に直接受光されることを抑制する。
 温度検出素子77は、パッケージ77aにおいて温度を検出する温度センサICを用いて構成している。温度検出素子77のパッケージ77aは、後述する熱伝導部材90の伝導部91と直接接するように配置されている。温度検出素子77は、検出した温度に応じた信号を出力する。
 マイコン78は、組込機器向けのマイクロコンピュータであって、CPU、メモリ、及び無線通信機能を有している。マイコン78は、メモリに格納されたプログラムを実行する。マイコン78の外部インタフェースの出力部には図示しないドライブ回路を介して一対の発光素子73、74が接続され、アナログ-デジタル変換器を内蔵した入力部には図示しない増幅回路を介して受光素子75及び温度検出素子77が接続されている。
 マイコン78は、一対の発光素子73、74を近赤外光を含む光を発するように制御し、受光素子75及び温度検出素子77から受信する信号に基づいて、被検体の血中ヘモグロビン濃度や体温にかかる生体情報を取得する制御部として機能する。また、マイコン78は、無線通信機能により外部の端末装置と通信する通信部として機能する。また、マイコン78は、上述した第1実施形態のマイコン26と同様の体温計測処理を実行する。即ち、マイコン78は、予熱制御部として機能する。
 放熱部材80は、図7に示すように、例えば、銅やアルミニウムなどの比較的良好な熱伝導性を有する金属製の板を所定形状に打ち抜くとともに折り曲げて形成されている。放熱部材80は、副基板72の上面72aに重ねて配置される平板板状の熱吸収部81と、断面がU字となる樋状に折り曲げられ、ケース61の周壁61bを貫通して外部に露出されている熱放出部82と、を有している。
 放熱部材80の熱吸収部81は、一対の発光素子73、74及び遮光ケース76に対応する箇所に貫通孔81a、81b及び81cが形成されている。これら貫通孔81a、81b及び81c内に一対の発光素子73、74及び遮光ケース76が配置されている。これにより、熱吸収部81は一対の発光素子73、74に近接して配置されているので、これら一対の発光素子73、74が発する熱を吸収する。熱吸収部81が吸収した熱は熱放出部82に伝わり、熱放出部82から大気中に放出される。即ち、放熱部材80は、ケース体60内において一対の発光素子73、74と熱的に結合された熱吸収部81、及びケース体60から露出された熱放出部82を一体に有している。
 熱伝導部材90は、例えば、銅やアルミニウムなどの熱伝導率の良好な金属(熱抵抗の比較的低い金属)で構成されている。熱伝導部材90は、カバー62の基部63を貫通して配置された伝導部91と、外縁形状がケース61の開口61eとほぼ同じ形状でかつ内縁形状がカバー62の突出部64の平面視形状とほぼ同じ形状のとなる板環状の接触部92と、を一体に有している。熱伝導部材90は、接触部92がケース61の開口61e内においてカバー62の基部63に重ねられてその内側に突出部64が突出するように配置されており、伝導部91がケース体60内において温度検出素子77のパッケージ77aと接して当該温度検出素子77と熱的に結合するように配置されている。即ち、伝導部91はケース体60内に収容され、接触部92はケース体60外に露出されている。
 本実施形態のセンサモジュール2も、上述した第1実施形態のセンサモジュール1と同様の作用効果を奏する。
 そして、上記センサモジュール2は、ケース体60内において一対の発光素子73、74と熱的に結合された熱吸収部81、及びケース体60から露出された熱放出部82を一体に有する放熱部材80をさらに備えている。このようにしたことから、一対の発光素子73、74から発生する熱が放熱部材80によってケース体60の内側から外側に放出されるので、ケース体60内に熱がこもることによる温度検出への影響を抑制することができる。
 上記センサモジュール2によれば、被検体の体温計測に要する時間を短縮しかつ精度を向上できる。
 なお、上記に本実施形態及びその適用例を説明したが、本発明はこれらの例に限定されるものではない。前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
 (第1実施形態)
 1     センサモジュール
 10    ケース体
 11    ケース
 11a   (ケースの)下壁
 11b   (ケースの)周壁
 12    カバー
 13    (ケースの)基部
 14    (ケースの)突出部
 15    フランジ
 15a   (フランジの)内周縁
 15b   (フランジの)外周縁
 20    基板体
 21    基板
 21a   (基板の)上面
 21b   (基板の)下面
 22、23 発光素子
 22a、23a (発光素子の)発光面
 24    受光素子
 24a   (受光素子の)受光面
 25    温度検出素子
 25a   (温度検出素子の)パッケージ
 26    マイクロコンピュータ(予熱制御部)
 30    熱伝導部材
 31    伝導部
 31a   (伝導部の)周縁部
 31b   (伝導部の)上面
 31c~31e (伝導部の)貫通孔
 31f   (伝導部の)一部分(遮光壁部)
 31g   (伝導部の)他部分(遮光壁部)
 32    接触部
 33    環状突部
 (第2実施形態)
 2     センサモジュール
 60    ケース体
 61    ケース
 61a   (ケースの)下壁
 61b   (ケースの)周壁
 61c   (ケースの)上壁
 61d   (ケースの)フランジ部
 61e   (ケースの)開口
 62    カバー
 63    (カバーの)基部
 64    (カバーの)突出部
 64a   (突出部の)第1部分
 64b   (突出部の)第2部分
 70    基板体
 71    主基板
 71a   (主基板の)上面
 71b   (主基板の)下面
 72    副基板
 72a   (副基板の)上面
 73、74 発光素子
 75    受光素子
 76    遮光ケース
 77    温度検出素子
 77a   (温度検出素子)パッケージ
 78    マイクロコンピュータ(予熱制御部)
 80    放熱部材
 81    熱吸収部
 81a~81c (熱吸収部の)貫通孔
 82    熱放出部
 90    熱伝導部材
 91    伝導部
 92    接触部

Claims (4)

  1.  近赤外光を被検体に照射する発光素子と、前記被検体を経由した前記近赤外光を受光する受光素子と、を有するセンサモジュールであって、
     前記発光素子及び前記受光素子を収容するケース体と、
     前記ケース体に収容された温度検出素子と、
     前記ケース体内において前記温度検出素子と熱的に結合された伝導部、及び前記被検体に接触可能なように前記ケース体から露出された接触部を一体に有する熱伝導部材と、を備えていることを特徴とするセンサモジュール。
  2.  前記熱伝導部材が、前記発光素子に近接して配置され、
     前記温度検出素子によって検出された温度に基づき、前記発光素子から近赤外光を照射して前記熱伝導部材を予熱する予熱制御部と、をさらに備えている請求項1に記載のセンサモジュール。
  3.  前記ケース体に収容され、前記発光素子及び前記受光素子が一方の面に実装された基板をさらに備え、
     前記熱伝導部材の前記伝導部が、前記発光素子に対して前記受光素子を隠すように前記基板の前記一方の面に配置された遮光壁部を有している請求項1又は2に記載のセンサモジュール。
  4.  前記ケース体内において前記発光素子と熱的に結合された熱吸収部、及び前記ケース体から露出された熱放出部を一体に有する放熱部材をさらに備えている請求項1~3のいずれか一項に記載のセンサモジュール。
PCT/JP2016/069208 2015-07-30 2016-06-29 センサモジュール WO2017018115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015150601A JP2018143259A (ja) 2015-07-30 2015-07-30 センサモジュール
JP2015-150601 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018115A1 true WO2017018115A1 (ja) 2017-02-02

Family

ID=57884502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069208 WO2017018115A1 (ja) 2015-07-30 2016-06-29 センサモジュール

Country Status (2)

Country Link
JP (1) JP2018143259A (ja)
WO (1) WO2017018115A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982576B1 (ko) * 2018-10-04 2019-05-27 한상훈 일체형 생체 센서
EP3977894A4 (en) * 2019-05-28 2023-01-04 Acumen Houseware Industry (Nanning) Co., Ltd TOOTHBRUSH WITH PHYSIOLOGICAL SENSOR FUNCTION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162934A (ja) * 1985-01-14 1986-07-23 萩原 文二 血中色素の経皮測定センサ−及び経皮測定装置
JPH0323846A (ja) * 1989-06-22 1991-01-31 Koorin Denshi Kk パルスオキシメータ
JP2006115948A (ja) * 2004-10-19 2006-05-11 Hitachi Ltd 血糖値測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162934A (ja) * 1985-01-14 1986-07-23 萩原 文二 血中色素の経皮測定センサ−及び経皮測定装置
JPH0323846A (ja) * 1989-06-22 1991-01-31 Koorin Denshi Kk パルスオキシメータ
JP2006115948A (ja) * 2004-10-19 2006-05-11 Hitachi Ltd 血糖値測定装置

Also Published As

Publication number Publication date
JP2018143259A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
US6745061B1 (en) Disposable oximetry sensor
EP3242247B1 (en) Fingerprint identification device and mobile terminal
JP2547840Y2 (ja) オキシメータプローブ
US4865038A (en) Sensor appliance for non-invasive monitoring
US5520177A (en) Oximeter probe
EP2489998A1 (en) Infrared sensor and circuit substrate equipped therewith
WO2017018115A1 (ja) センサモジュール
US11103185B2 (en) Sensor module
KR101981632B1 (ko) 혈당 측정 장치
US10884160B2 (en) Stick-on sensor device for determining living body abnormality
US9642565B2 (en) Deformable physiological sensor
WO2017094089A1 (ja) フォトセンサ
JP4208775B2 (ja) 光電信号検出器
JP2008126017A (ja) 光センサ及びこれを用いた計測システム
CN110475507B (zh) 生物体传感器
KR101982576B1 (ko) 일체형 생체 센서
JP2017093808A (ja) 携帯型生体情報測定装置
US20190246922A1 (en) Biological information measurement device
JP6770830B2 (ja) 受発光モジュール、電子機器および受発光モジュールの製造方法
WO2021026967A1 (zh) 一种血糖测量探头和血糖测量装置和方法
JPWO2019026387A1 (ja) 生体情報測定装置
KR102403491B1 (ko) 온도 및 압력 감응 일체형 광학 센서
JP2010197162A (ja) 温度センサ
JP2016096977A (ja) 光学センサモジュール
JP2017148139A (ja) 生体情報測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16830220

Country of ref document: EP

Kind code of ref document: A1