WO2017017947A1 - 電解コンデンサ - Google Patents

電解コンデンサ Download PDF

Info

Publication number
WO2017017947A1
WO2017017947A1 PCT/JP2016/003443 JP2016003443W WO2017017947A1 WO 2017017947 A1 WO2017017947 A1 WO 2017017947A1 JP 2016003443 W JP2016003443 W JP 2016003443W WO 2017017947 A1 WO2017017947 A1 WO 2017017947A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
mass
capacitor according
dielectric layer
electrolytic
Prior art date
Application number
PCT/JP2016/003443
Other languages
English (en)
French (fr)
Inventor
椿 雄一郎
青山 達治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57884260&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017017947(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017531015A priority Critical patent/JP6883735B2/ja
Priority to CN201680043408.4A priority patent/CN107851519B/zh
Publication of WO2017017947A1 publication Critical patent/WO2017017947A1/ja
Priority to US15/872,948 priority patent/US10373763B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor having a solid electrolyte layer and an electrolytic solution.
  • Electrolytic capacitors As a small capacitor having a large capacity and a low ESR (equivalent series resistance), an anode body having a dielectric layer formed thereon, a solid electrolyte layer formed so as to cover at least a part of the dielectric layer, and an electrolytic solution Electrolytic capacitors are promising.
  • a ⁇ -conjugated conductive polymer is used for the solid electrolyte layer.
  • a solvent containing ethylene glycol and ⁇ -butyrolactone as the electrolytic solution from the viewpoint of enhancing the withstand voltage characteristics of the electrolytic capacitor.
  • adding an antioxidant to electrolyte solution etc. is also proposed (patent document 2).
  • Electrolytic capacitors are required to have low ESR, heat resistance, etc. in addition to withstand voltage characteristics. From the viewpoint of improving the heat resistance as well as the withstand voltage, it is considered desirable to include an acid in the solute of the electrolytic solution and to use a glycol compound as a solvent for the electrolytic solution. However, when a glycol compound is used as a solvent, when a long-term load test is performed at 100 ° C. or higher, low ESR is exhibited initially, but ESR tends to increase rapidly after a certain period of time.
  • an object of the present invention is to provide an electrolytic capacitor that has excellent withstand voltage characteristics and heat resistance and can maintain low ESR.
  • One aspect of the present invention includes an anode body having a dielectric layer, a solid electrolyte layer in contact with the dielectric layer of the anode body, and an electrolyte solution, and the electrolyte solution includes a solvent and a solute,
  • the solvent includes a glycol compound
  • the solute includes a carboxylic acid component and a base component
  • the solute includes 200 parts by mass or more of the carboxylic acid component with respect to 100 parts by mass of the base component.
  • an electrolytic capacitor that has excellent withstand voltage characteristics and heat resistance and can maintain a low ESR.
  • the electrolytic capacitor according to the present invention includes an anode body having a dielectric layer, a solid electrolyte layer in contact with the dielectric layer, and an electrolytic solution.
  • the electrolytic solution includes a solvent and a solute, the solvent includes a glycol compound, and the solute includes a carboxylic acid component and a base component.
  • the solute contains 200 parts by mass or more of the carboxylic acid component with respect to 100 parts by mass of the base component.
  • the solvent containing the glycol compound enhances the orientation or crystallinity of the conductive polymer contained in the solid electrolyte layer.
  • the electroconductivity of a solid electrolyte layer improves and ESR of an electrolytic capacitor becomes low.
  • the contact property between the solid electrolyte layer and the dielectric layer is improved, and the withstand voltage characteristic is also improved.
  • the conductive polymer is swollen by the glycol compound. Since the conductive polymer in the swollen state easily undergoes rearrangement, it is considered that the orientation or crystallinity is improved.
  • the electrolytic solution is easily held between the dielectric layer and the solid electrolyte layer, and appropriate insulation is easily maintained by the held electrolytic solution.
  • the ESR of the electrolytic capacitor can be kept low in the long term as well as in the initial period. It is considered that the deterioration of the conductivity of the solid electrolyte layer is suppressed by excessively containing the carboxylic acid component in the electrolytic solution. Note that the deterioration of the solid electrolyte layer is considered to be one of the causes due to the dedoping of the dopant from the conductive polymer.
  • the amount of the carboxylic acid component may be 200 parts by mass or more with respect to 100 parts by mass of the base component, preferably 400 parts by mass or more, more preferably 600 parts by mass or more, and 900 parts by mass. More preferably, the above is true. Thereby, the effect which suppresses the electroconductive deterioration of a solid electrolyte layer becomes large gradually. However, since the dissociation becomes difficult when there are too many carboxylic acid components, the amount of the carboxylic acid component is preferably 4500 parts by mass or less with respect to 100 parts by mass of the base component.
  • the pH of the electrolytic solution is preferably 4 or less, more preferably 3.8 or less, and still more preferably 3.6 or less.
  • the pH of the electrolytic solution is preferably 4 or less, more preferably 3.8 or less, and still more preferably 3.6 or less.
  • the ratio of the glycol compound contained in the solvent is desirably 50% by mass or more, more desirably 60% by mass or more, and further desirably 70% by mass or more.
  • the solvent can contain, in addition to the glycol compound, for example, a sulfone compound, a lactone compound, a carbonate compound, a monovalent or trivalent or higher alcohol, and the like.
  • a sulfone compound for example, sulfolane, dimethyl sulfoxide, diethyl sulfoxide and the like can be used.
  • lactone compound ⁇ -butyrolactone, ⁇ -valerolactone, and the like can be used.
  • the carbonate compound dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC) and the like can be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • the glycol compound contains at least ethylene glycol.
  • ethylene glycol is the main component of the glycol compound. Since ethylene glycol has a low viscosity among glycol compounds, it easily dissolves excess carboxylic acid components. In addition, ethylene glycol has high thermal conductivity and excellent heat dissipation when a ripple current is generated, and thus has a large effect of improving heat resistance.
  • the proportion of ethylene glycol in the glycol compound is preferably 30% by mass or more, more preferably 50% by mass or more, and the glycol compound may be 100% by mass of ethylene glycol.
  • the glycol compound may contain, for example, diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol having an average molecular weight of about 190 to 400, and the like.
  • 3 to 25% by mass of the solvent may be polyethylene glycol having an average molecular weight of 200 to 300.
  • a part of the carboxylic acid component may be derived from a salt with a base component. That is, a salt of a carboxylic acid component and a base component may be used as part of the solute. By using such a salt, the effect of improving the dissociation degree of the carboxylic acid component can be obtained. For example, 10% by mass to 50% by mass of the carboxylic acid component is desirably derived from a salt with the base component.
  • the base component is preferably at least one selected from the group consisting of primary amines, secondary amines and tertiary amines.
  • an amine component particularly a primary to tertiary amine, the effect of stabilizing ESR in the long term can be enhanced.
  • a quaternary amine may be used, but from the viewpoint of suppressing side reactions as much as possible, primary to tertiary amines exhibiting moderate basicity are desirable.
  • an aliphatic amine, an aromatic amine, a heterocyclic amine, or the like can be used, but an aliphatic amine having a molecular weight of 72 to 102 is preferable in terms of a high degree of dissociation.
  • Examples of primary to tertiary amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, N, N-diisopropylethylamine, tetramethylethylenediamine, hexamethylenediamine, spermidine, spermine, amantadine, aniline, Examples include phenethylamine, toluidine, pyrrolidine, piperidine, piperazine, morpholine, imidazole, pyridine, pyridazine, pyrimidine, pyrazine, 4-dimethylaminopyridine and the like. These may be used alone or in combination of two or more. Of these, tertiary amines such as triethylamine and monoethyldimethylamine are particularly preferred.
  • the solute may further contain an aromatic compound (first aromatic compound) containing two or more hydroxyl groups.
  • the hydroxyl group of the first aromatic compound has an effect of stabilizing the conductive polymer by supplementing the action of the carboxylic acid component. Such a stabilizing action is considered to be related to the weakly acidic hydroxyl group of the first aromatic compound.
  • the hydroxyl group of the first aromatic compound is stable and hardly causes a side reaction such as an esterification reaction to proceed. Therefore, the first aromatic compound exhibits an effect of stabilizing the conductive polymer over a long period of time.
  • the aromatic ring of the first aromatic compound is preferably a C6 benzene ring or a C10 naphthalene ring from the viewpoint of suppressing an increase in the viscosity of the electrolytic solution.
  • the first aromatic compound desirably has two or more phenolic hydroxyl groups that are directly bonded to the aromatic ring in terms of long-term stability. Of these, divalent to tetravalent phenolic compounds are preferred. More specifically, it is more preferable to use at least one selected from the group consisting of catechol and pyrogallol as the first aromatic compound. Pyrogallol is particularly preferable in that it exhibits moderate acidity, and 90% by mass or more of the first aromatic compound is preferably pyrogallol.
  • the carboxylic acid component preferably contains an aromatic compound (second aromatic compound) having two or more carboxyl groups.
  • the carboxyl group of the second aromatic compound is stable and does not easily cause side reactions. Therefore, the first aromatic compound exhibits an effect of stabilizing the conductive polymer over a long period of time.
  • the second aromatic compound since the second aromatic compound exhibits moderate acidity in the electrolytic solution, the possibility of damaging the anode body due to corrosion is low.
  • the aromatic ring of the second aromatic compound is preferably a C6 benzene ring or a C10 naphthalene ring from the viewpoint of suppressing an increase in the viscosity of the electrolytic solution.
  • the second aromatic compound is preferably a divalent to tetravalent carboxylic acid in that it exhibits moderate acidity, and has a carboxyl group that directly binds to the ortho position of the aromatic ring in that the carboxyl group is easily stabilized. It is further desirable to have at least two. More specifically, as the second aromatic compound, it is more preferable to use at least one selected from the group consisting of o-phthalic acid and pyromellitic acid.
  • O-phthalic acid is particularly preferable in that the carboxyl group is easily stabilized and the effect of stabilizing the conductive polymer over a longer period of time is obtained, and 90% by mass or more of the second aromatic compound is o-phthalic acid. It is desirable that
  • the proportion of the solute contained in the electrolytic solution is preferably 2 to 30% by mass, more preferably 10 to 30% by mass, and still more preferably 15 to 30% by mass.
  • an excess carboxylic acid component can be included while appropriately including a base component effective for dissociation of the carboxylic acid component.
  • the increase in the viscosity of the electrolytic solution is small, and the voltage is hardly lowered.
  • the total amount of the carboxylic acid component (or the second aromatic compound), the base component, and the first aromatic compound is preferably 2 to 30% by mass of the electrolytic solution, and is 10 to 30% by mass. More desirably, it is more desirably 15 to 30% by mass.
  • the ratio of the first aromatic compound containing two or more hydroxyl groups is 0.3 to 70% by mass of the entire solute from the viewpoint of further improving the heat resistance of the electrolytic capacitor and further suppressing the deterioration of the solid electrolyte layer. Desirable is 3 to 40% by mass, more desirably 3 to 25% by mass.
  • the ratio of the second aromatic compound having two or more carboxyl groups is preferably 3 to 99% by mass, and 50 to 95% by mass of the entire solute from the viewpoint of further suppressing deterioration of the solid electrolyte layer. Is more desirably 70 to 95% by mass.
  • the solid electrolyte layer may be formed by a method in which a solution containing a monomer, a dopant, an oxidant, and the like is applied to the dielectric layer, and chemical polymerization or electrolytic polymerization is performed in situ.
  • a conductive polymer is applied to the dielectric layer from the viewpoint that excellent withstand voltage characteristics can be expected. That is, the solid electrolyte layer is formed by impregnating a dielectric layer with a polymer dispersion containing a liquid component and a conductive polymer dispersed in the liquid component to form a film covering at least a part of the dielectric layer.
  • the film is preferably formed by volatilizing a liquid component from the film.
  • the electrolytic solution is particularly effective for suppressing deterioration of the conductive polymer contained in the polymer dispersion, and is also effective for improving the orientation.
  • the concentration of the conductive polymer contained in the polymer dispersion is preferably 0.5 to 10% by mass.
  • the average particle diameter D50 of the conductive polymer is preferably 0.01 to 0.5 ⁇ m, for example.
  • the average particle diameter D50 is a median diameter in a volume particle size distribution determined by a particle size distribution measuring apparatus using a dynamic light scattering method.
  • the polymer dispersion having such a concentration is suitable for forming a solid electrolyte layer having an appropriate thickness and is easily impregnated in the dielectric layer.
  • polypyrrole, polythiophene, polyaniline and the like are preferable. These may be used alone or in combination of two or more, or may be a copolymer of two or more monomers. When the solid electrolyte layer contains such a conductive polymer, further improvement in the withstand voltage characteristic can be expected.
  • polypyrrole, polythiophene, polyaniline and the like mean polymers having a basic skeleton of polypyrrole, polythiophene, polyaniline and the like, respectively. Accordingly, polypyrrole, polythiophene, polyaniline and the like can also include their respective derivatives.
  • polythiophene includes poly (3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • a dopant may be added to the conductive polymer. That is, the solid electrolyte layer may contain a dopant, and it is desirable that the solid electrolyte layer contains a polymer dopant from the viewpoint of suppressing dedoping from the conductive polymer.
  • Polymeric dopants include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, polyacrylic And anions such as acids. These may be used alone or in combination of two or more. These may be a homopolymer or a copolymer of two or more monomers. Of these, polystyrene sulfonic acid (PSS) is preferable.
  • PSS polystyrene sulfonic acid
  • the weight average molecular weight of the dopant is not particularly limited, but it is preferably, for example, 1000 to 100,000, from the viewpoint of easily forming a homogeneous solid electrolyte layer.
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to the present embodiment
  • FIG. 2 is a schematic view in which a part of a capacitor element according to the electrolytic capacitor is developed.
  • the electrolytic capacitor includes, for example, a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, a seat plate 13 that covers the sealing member 12, and a sealing member.
  • Lead wires 14A and 14B led out from the member 12 and penetrating the seat plate 13, lead tabs 15A and 15B connecting the lead wires and the electrodes of the capacitor element 10, and an electrolyte (not shown) are provided.
  • the vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to caulk the sealing member 12.
  • the sealing member 12 is formed of an elastic material containing a rubber component.
  • rubber components include butyl rubber (IIR), nitrile rubber (NBR), ethylene propylene rubber, ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), isoprene rubber (IR), hyperon rubber, silicone rubber, fluorine rubber, etc. Can be used.
  • the sealing member 12 may include a filler such as carbon black or silica.
  • the electrolytic solution it is necessary to consider the volatilization of the electrolytic solution to the outside through the sealing member 12 that forms the seal portion.
  • the electrolytic solution according to the present embodiment includes a glycol compound, it does not easily pass through the seal portion even at high temperatures. Therefore, an electrolytic capacitor having excellent heat resistance can be obtained.
  • the capacitor element 10 is manufactured from a wound body as shown in FIG.
  • the wound body is a semi-finished product of the capacitor element 10 and means that a solid electrolyte layer is not formed between the anode body 21 and the cathode body 22 having a dielectric layer on the surface.
  • the wound body includes an anode body 21 connected to the lead tab 15A, a cathode body 22 connected to the lead tab 15B, and a separator 23.
  • FIG. 2 has shown the state by which one part was expand
  • the anode body 21 includes a metal foil roughened so that the surface has irregularities, and a dielectric layer is formed on the metal foil having irregularities.
  • a solid electrolyte layer is formed by attaching a conductive polymer to at least a part of the surface of the dielectric layer.
  • the solid electrolyte layer may cover at least a part of the surface of the cathode body 22 and / or the surface of the separator 23.
  • the capacitor element 10 on which the solid electrolyte layer is formed is accommodated in the outer case together with the electrolytic solution.
  • Step of preparing anode body 21 having a dielectric layer First, a metal foil that is a raw material of anode body 21 is prepared.
  • the type of the metal is not particularly limited, but it is preferable to use a valve action metal such as aluminum, tantalum, or niobium or an alloy containing the valve action metal because the dielectric layer can be easily formed.
  • the surface of the metal foil is roughened.
  • a plurality of irregularities are formed on the surface of the metal foil.
  • the roughening is preferably performed by etching the metal foil.
  • the etching process may be performed by, for example, a direct current electrolytic method or an alternating current electrolytic method.
  • the metal foil can be formed by chemical conversion treatment.
  • the metal foil is immersed in a chemical conversion solution such as an ammonium adipate solution and heat treated.
  • a metal foil may be immersed in a chemical conversion liquid, and a voltage may be applied.
  • the anode body 21 is prepared by cutting the foil after processing into a desired size.
  • a metal foil can be used for the cathode body 22.
  • the type of metal is not particularly limited, but it is preferable to use a valve action metal such as aluminum, tantalum, or niobium or an alloy containing the valve action metal. If necessary, the surface of the anode body 22 may be roughened.
  • a winding body is produced using the anode body 21 and the cathode body 22.
  • the anode body 21 and the cathode body 22 are wound through the separator 23.
  • the lead tabs 15A and 15B can be planted from the wound body as shown in FIG.
  • a nonwoven fabric mainly composed of synthetic cellulose, polyethylene terephthalate, vinylon, aramid fiber, or the like can be used as the material of the separator 23, for example.
  • the material of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
  • the material of the lead wires 14A and 14B connected to each of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
  • the winding tape 24 is disposed on the outer surface of the cathode body 22 located in the outermost layer among the wound anode body 21, cathode body 22 and separator 23, and the end of the cathode body 22 is fastened. Secure with tape 24.
  • the wound body 21 is prepared by cutting a large-sized metal foil, the wound body may be further subjected to chemical conversion treatment in order to provide a dielectric layer on the cut surface of the anode body 21. .
  • the polymer dispersion is impregnated into the dielectric layer, and a film covering at least a part of the dielectric layer is formed.
  • the polymer dispersion includes a liquid component and a conductive polymer dispersed in the liquid component.
  • the polymer dispersion may be a solution in which a conductive polymer is dissolved in a liquid component, or a dispersion in which conductive polymer particles are dispersed in a liquid component.
  • the liquid component is volatilized from the formed film by drying, thereby forming a dense solid electrolyte layer covering at least a part of the dielectric layer. Since the polymer dispersion is uniformly distributed in the liquid component, it is easy to form a uniform solid electrolyte layer. Thereby, the capacitor element 10 is obtained.
  • the polymer dispersion can be obtained by, for example, a method of dispersing a conductive polymer in a liquid component, a method of polymerizing a precursor monomer in a liquid component, and generating particles of a conductive polymer.
  • Preferred polymer dispersions include, for example, poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS), that is, PEDOT / PSS.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • the antioxidant of a conductive polymer may be added, since PEDOT / PSS hardly oxidizes, it is not necessary to use an antioxidant.
  • the liquid component may be water, a mixture of water and a non-aqueous solvent, or a non-aqueous solvent.
  • the non-aqueous solvent is not particularly limited, and for example, a protic solvent or an aprotic solvent can be used.
  • the protic solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol and propylene glycol, and ethers such as formaldehyde and 1,4-dioxane.
  • aprotic solvent examples include amides such as N-methylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, esters such as methyl acetate, and ketones such as methyl ethyl ketone.
  • a method for applying the polymer dispersion to the surface of the dielectric layer for example, a method of immersing a wound body in a polymer dispersion accommodated in a container is simple and preferable.
  • the immersion time is, for example, 1 second to 5 hours, preferably 1 minute to 30 minutes, depending on the size of the wound body.
  • the impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa.
  • ultrasonic vibration may be applied to the wound body or the polymer dispersion while being immersed in the polymer dispersion. Drying after lifting the wound body from the polymer dispersion is preferably performed at 50 to 300 ° C., for example, and more preferably at 100 to 200 ° C.
  • the step of applying the polymer dispersion to the surface of the dielectric layer and the step of drying the wound body may be repeated twice or more. By performing these steps a plurality of times, the coverage of the solid electrolyte layer with respect to the dielectric layer can be increased. At this time, a solid electrolyte layer may be formed not only on the surface of the dielectric layer but also on the surfaces of the cathode body 22 and the separator 23.
  • a solid electrolyte layer is formed between the anode body 21 and the cathode body 22, and the capacitor element 10 is manufactured. Note that the solid electrolyte layer formed on the surface of the dielectric layer functions as a practical cathode material.
  • (V) Step of impregnating capacitor element 10 with electrolytic solution the capacitor element 10 is impregnated with the electrolytic solution.
  • the method for impregnating the capacitor element 10 with the electrolytic solution is not particularly limited.
  • a method of immersing the capacitor element 10 in an electrolytic solution accommodated in a container is simple and preferable.
  • the immersion time depends on the size of the capacitor element 10, it is, for example, 1 second to 5 minutes.
  • the impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa.
  • the capacitor element 10 is sealed. Specifically, first, the capacitor element 10 is housed in the bottomed case 11 so that the lead wires 14 ⁇ / b> A and 14 ⁇ / b> B are positioned on the upper surface where the bottomed case 11 opens.
  • a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof can be used.
  • the sealing member 12 formed so that the lead wires 14 ⁇ / b> A and 14 ⁇ / b> B penetrate is disposed above the capacitor element 10, and the capacitor element 10 is sealed in the bottomed case 11.
  • lateral drawing is performed in the vicinity of the open end of the bottomed case 11, and the open end is crimped to the sealing member 12 for curling.
  • the electrolytic capacitor as shown in FIG. 1 is completed by arrange
  • the wound type electrolytic capacitor has been described.
  • the scope of the present invention is not limited to the above, and other electrolytic capacitors, for example, a chip type electrolytic capacitor using a metal sintered body as an anode body.
  • the present invention can also be applied to a capacitor or a multilayer electrolytic capacitor using a metal plate as an anode body.
  • Example 1 In this example, a wound type electrolytic capacitor ( ⁇ 10.0 mm ⁇ L (length) 10.0 mm) having a rated voltage of 80 V and a rated capacitance of 38 ⁇ F was produced. Below, the specific manufacturing method of an electrolytic capacitor is demonstrated.
  • Etching was performed on an aluminum foil having a thickness of 100 ⁇ m to roughen the surface of the aluminum foil. Thereafter, a dielectric layer was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was performed by immersing an aluminum foil in an ammonium adipate solution and applying a voltage of 150 V thereto. Thereafter, the aluminum foil was cut so that the length ⁇ width was 6 mm ⁇ 120 mm to prepare an anode body.
  • the aluminum foil having a thickness of 50 ⁇ m was etched to roughen the surface of the aluminum foil. Thereafter, the aluminum foil was cut so that the length ⁇ width was 6 mm ⁇ 120 mm to prepare a cathode body.
  • the anode lead tab and the cathode lead tab were connected to the anode body and the cathode body, and the anode body and the cathode body were wound through the separator while winding the lead tab.
  • An anode lead wire and a cathode lead wire were respectively connected to the end portions of the lead tabs protruding from the wound body.
  • the formed wound body was subjected to a chemical conversion treatment again, and a dielectric layer was formed on the cut end portion of the anode body.
  • the end of the outer surface of the wound body was fixed with a winding tape to produce a wound body.
  • An electrolytic solution having the composition shown in Table A below containing ethylene glycol (EG) as a glycol compound and polyethylene glycol (PEG) having an average molecular weight of about 300 was prepared, and a capacitor element was added to the electrolytic solution in a reduced pressure atmosphere (40 kPa). Immerse for a minute. A part of the carboxylic acid component and the base component (triethylamine) were added as phthalic acid triethylamine (salt).
  • Capacitor element sealing The capacitor element impregnated with the electrolytic solution was sealed to complete the electrolytic capacitor. Specifically, the capacitor element is accommodated in the bottomed case so that the lead wire is positioned on the opening side of the bottomed case, and the sealing member formed so that the lead wire penetrates (elasticity including butyl rubber as a rubber component) The material was placed above the capacitor element, and the capacitor element was sealed in the bottomed case. Then, the electrolytic capacitor (A1) as shown in FIG. 1 was completed by drawing the vicinity of the open end of the bottomed case, further curling the open end, and arranging a seat plate on the curled portion. Thereafter, an aging treatment was performed at 130 ° C. for 2 hours while applying a rated voltage.
  • Example 2 An electrolytic capacitor A2 was prepared in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table B below was used, and evaluated in the same manner.
  • Example 3 An electrolytic capacitor A3 was produced in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table C below was used, and was evaluated in the same manner.
  • Comparative Example 1 An electrolytic capacitor B1 was prepared in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table D below was used, and was evaluated in the same manner.
  • the obtained electrolytic capacitor was measured for capacitance, ESR, and breakdown voltage (BDV). With respect to the breakdown voltage (BDV), a voltage was applied while boosting at a rate of 1.0 V / second, and the voltage when an overcurrent of 0.5 A flows was measured.
  • Example 4 An electrolytic capacitor A4 was prepared in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table E below was used, and was evaluated in the same manner.
  • Example 5 An electrolytic capacitor A5 was produced in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table F below was used, and was evaluated in the same manner.
  • Example 6 An electrolytic capacitor A6 was produced in the same manner as in Example 1 except that an electrolytic solution having the composition shown in Table G below was used, and was evaluated in the same manner. In addition, a part of carboxylic acid component (pyromellitic acid) and a base component (triethylamine) were added as pyromellitic acid ditriethylamine (salt).
  • carboxylic acid component pyromellitic acid
  • a base component triethylamine
  • Example 7 An electrolytic capacitor A7 was prepared in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table H below was used, and was evaluated in the same manner.
  • Example 8 An electrolytic capacitor A8 was produced in the same manner as in Example 1 except that the electrolytic solution having the composition shown in Table I below was used, and was evaluated in the same manner.
  • Example 9 An electrolytic capacitor A9 was produced in the same manner as in Example 1 except that an electrolytic solution having the composition shown in Table J below was used, and was similarly evaluated.
  • the present invention can be used for an electrolytic capacitor including a solid electrolyte layer covering at least a part of a dielectric layer and an electrolytic solution.

Abstract

本発明は、耐電圧特性と耐熱性に優れ、低ESRを維持できる電解コンデンサを提供することを目的とする。本発明の電解コンデンサは、誘電体層を有する陽極体と、誘電体層に接触した固体電解質層と、電解液と、を備える。そして、本発明の電解液は、溶媒および溶質を含み、溶媒は、グリコール化合物を含み、溶質は、カルボン酸成分と、塩基成分とを含み、溶質は、塩基成分100質量部に対して、カルボン酸成分を200質量部以上含む。

Description

電解コンデンサ
 本発明は、固体電解質層と電解液を有する電解コンデンサに関する。
 小型かつ大容量でESR(等価直列抵抗)の低いコンデンサとして、誘電体層を形成した陽極体と、誘電体層の少なくとも一部を覆うように形成された固体電解質層と、電解液とを具備する、電解コンデンサが有望視されている。
 固体電解質層には、π共役系の導電性高分子が用いられている。一方、電解液には、電解コンデンサの耐電圧特性を高める観点から、エチレングリコールとγ-ブチロラクトンを含む溶媒を用いることが提案されている(特許文献1参照)。なお、火花電圧を上昇させるために、電解液に酸化防止剤を添加することなども提案されている(特許文献2)。
国際公開第2014/021333号公報 特開2006-114540号公報
 電解コンデンサには、耐電圧特性の他に、低ESR、耐熱性なども要求される。耐電圧とともに耐熱性を向上させる観点からは、電解液の溶質に酸を含ませるとともに、グリコール化合物を電解液の溶媒に用いることが望ましいと考えられる。しかし、溶媒としてグリコール化合物を用いる場合、100℃以上で長期の負荷試験を行うと、初期は低ESRが発揮されるものの、一定時間経過後にESRが急激に増大する傾向がある。
 上記に鑑み、本発明は、耐電圧特性および耐熱性に優れ、低ESRを維持できる電解コンデンサを提供することを目的とする。
 本発明の一局面は、誘電体層を有する陽極体と、前記陽極体の前記誘電体層に接触した固体電解質層と、電解液と、を備え、前記電解液は、溶媒および溶質を含み、前記溶媒は、グリコール化合物を含み、前記溶質は、カルボン酸成分と、塩基成分とを含み、前記溶質は、前記塩基成分100質量部に対して、前記カルボン酸成分を200質量部以上含む、電解コンデンサに関する。
 本発明によれば、耐電圧特性および耐熱性に優れ、低ESRを維持できる電解コンデンサを提供することができる。
本発明の一実施形態に係る電解コンデンサの断面模式図である。 同実施形態に係るコンデンサ素子の構成を説明するための概略図である。
 本発明に係る電解コンデンサは、誘電体層を有する陽極体と、誘電体層に接触した固体電解質層と、電解液とを備える。電解液は、溶媒および溶質を含み、溶媒は、グリコール
化合物を含み、溶質は、カルボン酸成分と、塩基成分とを含む。溶質は、塩基成分100質量部に対して、カルボン酸成分を200質量部以上含む。
 溶媒がグリコール化合物を含むことで、固体電解質層に含まれる導電性高分子の配向性もしくは結晶性が高められる。これにより、固体電解質層の導電性が向上し、電解コンデンサのESRが低くなる。また、固体電解質層と誘電体層とのコンタクト性が向上し、耐電圧特性も向上する。導電性高分子は、グリコール化合物により膨潤すると考えられる。膨潤状態の導電性高分子は、再配列を起こしやすいため、配向性もしくは結晶性が向上するものと考えられる。また、誘電体層と固体電解質層との間に電解液が保持されやすくなり、保持された電解液によって適度な絶縁性を維持しやすくなると考えられる。
 溶質が塩基成分100質量部に対して、カルボン酸成分を200質量部以上含む場合、初期だけでなく、長期的に、電解コンデンサのESRを低く維持することができる。電解液中にカルボン酸成分が過剰に含まれることで、固体電解質層の導電性の劣化が抑制されるものと考えられる。なお、固体電解質層の劣化は、導電性高分子からのドーパントの脱ドープが原因の1つと考えられる。
 上記構成によれば、電解コンデンサの耐熱性もしくは耐リップル性の向上も期待できる。グリコール化合物は、電解コンデンサから外部に揮散しにくいためである。電解液の揮散は、電解コンデンサのシール部で発生するが、グリコール化合物は、シール部を透過しにくいと考えられる。
 カルボン酸成分の量は、塩基成分100質量部に対して、200質量部以上であればよいが、400質量部以上であることが望ましく、600質量部以上であることがより望ましく、900質量部以上であることが更に望ましい。これにより、固体電解質層の導電性の劣化を抑制する効果が次第に大きくなる。ただし、カルボン酸成分が多すぎると、その解離が困難となるため、カルボン酸成分の量は、塩基成分100質量部に対して、4500質量部以下であることが好ましい。
 電解液のpHは4以下であることが好ましく、3.8以下であることがより好ましく、3.6以下であることが更に好ましい。電解液のpHを4以下とすることで、導電性高分子の劣化が更に抑制される。通常、pH4以下の領域では、陽極体が腐食すると考えられているが、上記電解液の場合、陽極体の腐食も抑制される。なお、pHは2.0以上であることがより好ましい。
 溶媒に含まれるグリコール化合物の割合は、50質量%以上であることが望ましく、60質量%以上であることがより望ましく、70質量%以上であることが更に望ましい。電解液がグリコール化合物を主溶媒として含むことで、電解コンデンサのESRを低減する効果と、耐熱性を向上させる効果が大きくなる。
 溶媒は、グリコール化合物以外に、例えば、スルホン化合物、ラクトン化合物、カーボネート化合物、1価または3価以上のアルコールなどを含むことができる。スルホン化合物としては、スルホラン、ジメチルスルホキシド、ジエチルスルホキシドなどを用いることができる。ラクトン化合物としては、γ-ブチロラクトン、γ-バレロラクトンなどを用いることができる。カーボネート化合物としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート(FEC)などを用いることができる。アルコールとしては、例えばグリセリンを用いることができる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 グリコール化合物は、少なくともエチレングリコールを含むことが望ましい。また、溶媒が複数種のグリコール化合物を含む場合、エチレングリコールがグリコール化合物の主成分であることが望ましい。エチレングリコールは、グリコール化合物の中でも粘度が低いため、過剰のカルボン酸成分を溶解しやすい。また、エチレングリコールは、熱伝導性が高く、リップル電流が発生したときの放熱性にも優れているため、耐熱性を向上させる効果も大きい。
 グリコール化合物に占めるエチレングリコールの割合は、30質量%以上であることが望ましく、50質量%以上であることが更に望ましく、グリコール化合物は100質量%がエチレングリコールであってもよい。
 グリコール化合物は、エチレングリコール以外に、例えばジエチレングリコール、トリエチレングリコール、プロピレングリコール、平均分子量190~400程度のポリエチレングリコールなどを含んでもよい。例えば、溶媒の3~25質量%が、平均分子量200~300のポリエチレングリコールであってもよい。これにより、電解コンデンサの耐熱性を更に向上させることができる。
 カルボン酸成分の一部は、塩基成分との塩に由来してもよい。すなわち、溶質の一部として、カルボン酸成分と塩基成分との塩を用いてもよい。このような塩を用いることで、カルボン酸成分の解離度を向上させる効果が得られる。例えば、カルボン酸成分の10質量%~50質量%は、塩基成分との塩に由来することが望ましい。
 塩基成分は、第1級アミン、第2級アミンおよび第3級アミンよりなる群から選択される少なくとも1種であることが好ましい。アミン成分、特に第1~3級アミンを用いることで、ESRを長期的に安定化する効果が高められる。第4級アミンを用いてもよいが、副反応をできるだけ抑制する観点からは、適度な塩基性を示す第1~3級アミンが望ましい。各アミンとして、脂肪族アミン、芳香族アミン、複素環式アミンなどを用いることができるが、分子量72~102の脂肪族アミンが、解離度が高い点で好ましい。
 第1~3級アミンとしては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N,N-ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン、スペルミジン、スペルミン、アマンタジン、アニリン、フェネチルアミン、トルイジン、ピロリジン、ピペリジン、ピペラジン、モルホリン、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、4-ジメチルアミノピリジンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中では、トリエチルアミン、モノエチルジメチルアミンなどの第3級アミンが特に好ましい。
 溶質は、更に、ヒドロキシル基を2個以上含む芳香族化合物(第1芳香族化合物)を含んでもよい。第1芳香族化合物のヒドロキシル基には、カルボン酸成分の作用を補って、導電性高分子を安定化させる作用がある。このような安定化の作用には、第1芳香族化合物のヒドロキシル基が弱酸性を示すことに関連していると考えられる。また、第1芳香族化合物のヒドロキシル基は、安定であり、例えばエステル化反応などの副反応を進行させにくい。よって、第1芳香族化合物は、長期間にわたって、導電性高分子を安定化させる効果を発現する。
 第1芳香族化合物の芳香環は、電解液の粘度上昇を抑制する観点から、C6のベンゼン環またはC10のナフタレン環であることが望ましい。また、第1芳香族化合物は、長期的安定性を有する点で、芳香環に直接結合するフェノール性のヒドロキシル基を2個以上有することが望ましい。これらの中でも、2価~4価のフェノール性化合物が好ましい。
より具体的には、第1芳香族化合物として、カテコールおよびピロガロールよりなる群から選択される少なくとも1種を用いることが更に好ましい。適度な酸性を呈する点で、ピロガロールが特に好ましく、第1芳香族化合物の90質量%以上がピロガロールであることが望ましい。
 カルボン酸成分は、カルボキシル基を2個以上有する芳香族化合物(第2芳香族化合物)を含むことが好ましい。第2芳香族化合物のカルボキシル基は、安定であり、副反応を進行させにくい。よって、第1芳香族化合物は、長期間にわたって、導電性高分子を安定化させる効果を発現する。また、第2芳香族化合物は、電解液中で適度な酸性を呈することから、陽極体を腐食により損傷する可能性も低い。
 第2芳香族化合物の芳香環は、電解液の粘度上昇を抑制する観点から、C6のベンゼン環またはC10のナフタレン環であることが望ましい。また、第2芳香族化合物は、適度な酸性を呈する点で、2価~4価のカルボン酸が好ましく、カルボキシル基が安定化されやすい点で、芳香環のオルト位に直接結合するカルボキシル基を少なくとも2個有することが更に望ましい。より具体的には、第2芳香族化合物としては、o-フタル酸およびピロメリット酸よりなる群から選択される少なくとも1種を用いることが更に好ましい。カルボキシル基が安定化されやすく、より長期間にわたって導電性高分子を安定化させる効果を発現する点で、o-フタル酸が特に好ましく、第2芳香族化合物の90質量%以上がo-フタル酸であることが望ましい。
 電解液に含まれる溶質の割合は、2~30質量%であることが望ましく、10~30質量%であることがより望ましく、15~30質量%であることが更に望ましい。これにより、カルボン酸成分の解離に有効となる塩基成分を適度に含みつつ、過剰のカルボン酸成分を含むことができる。上記範囲では、電解液の粘度上昇が小さく、電圧の低下も生じにくい。例えば、カルボン酸成分(もしくは第2芳香族化合物)と、塩基成分と、第1芳香族化合物との合計量は、電解液の2~30質量%であることが望ましく、10~30質量%であることがより望ましく、15~30質量%であることが更に望ましい。
 ヒドロキシル基を2個以上含む第1芳香族化合物の割合は、電解コンデンサの耐熱性をより高め、固体電解質層の劣化をより抑制する観点から、溶質全体の0.3~70質量%であることが望ましく、3~40質量%であることがより望ましく、3~25質量%であることが更に望ましい。
 カルボキシル基を2個以上有する第2芳香族化合物の割合は、固体電解質層の劣化をより抑制する観点から、溶質全体の3~99質量%であることが望ましく、50~95質量%であることがより望ましく、70~95質量%であることが更に望ましい。
 固体電解質層は、モノマー、ドーパントおよび酸化剤などを含有する溶液を誘電体層に付与し、その場で、化学重合もしくは電解重合させる方法で形成してもよい。ただし、優れた耐電圧特性を期待できる点で、導電性高分子を誘電体層に付与する方法により、固体電解質層を形成することが好ましい。すなわち、固体電解質層は、液状成分と、液状成分に分散する導電性高分子とを含む高分子分散体を、誘電体層に含浸させ、誘電体層の少なくとも一部を覆う膜を形成した後、その膜から液状成分を揮発させることにより形成されたものであることが好ましい。上記電解液は、高分子分散体に含まれる導電性高分子の劣化の抑制に特に効果的であり、配向性の向上にも効果的である。
 高分子分散体に含まれる導電性高分子の濃度は、0.5~10質量%であることが好ましい。また、導電性高分子の平均粒径D50は、例えば0.01~0.5μmであることが好ましい。ここで、平均粒径D50は、動的光散乱法による粒度分布測定装置により求
められる体積粒度分布におけるメディアン径である。このような濃度の高分子分散体は、適度な厚みの固体電解質層を形成するのに適するとともに、誘電体層に含浸されやすい。
 固体電解質層に含まれる導電性高分子としては、ポリピロール、ポリチオフェンおよびポリアニリンなどが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。固体電解質層が、このような導電性高分子を含むことにより、耐電圧特性のさらなる向上が期待できる。
 なお、本明細書では、ポリピロール、ポリチオフェン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。
 導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。
 導電性高分子には、ドーパントを添加してもよい。すなわち、固体電解質層は、ドーパントを含んでいてもよく、導電性高分子からの脱ドープを抑制する観点からは、高分子ドーパントを含むことが望ましい。高分子ドーパントとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのアニオンが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらは単独重合体であってもよく、2種以上のモノマーの共重合体であってもよい。なかでも、ポリスチレンスルホン酸(PSS)が好ましい。
 ドーパントの重量平均分子量は、特に限定されないが、均質な固体電解質層を形成しやすい点で、例えば1000~100000であることが好ましい。
 以下、本発明を実施形態に基づいて、より具体的に説明する。ただし、以下の実施形態は本発明を限定するものではない。
 図1は、本実施形態に係る電解コンデンサの断面模式図であり、図2は、同電解コンデンサに係るコンデンサ素子の一部を展開した概略図である。
 電解コンデンサは、例えば、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14A、14Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ15A、15Bと、電解液(図示せず)とを備える。有底ケース11の開口端近傍は、内側に絞り加工されており、開口端は封止部材12にかしめるようにカール加工されている。
 封止部材12は、ゴム成分を含む弾性材料で形成されている。ゴム成分としては、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレンプロピレンゴム、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、イソプレンゴム(IR)、ハイパロンゴム、シリコーンゴム、フッ素ゴムなどを用いることができる。封止部材12は、カーボンブラック、シリカなどのフィラーを含んでもよい。
 電解液の設計においては、シール部を形成する封止部材12を介した電解液の外部への
揮散を考慮する必要がある。この点、本実施形態に係る上記電解液は、グリコール化合物を含むため、高温下でもシール部を透過しにくい。よって、耐熱性に優れた電解コンデンサが得られる。
 コンデンサ素子10は、図2に示すような巻回体から作製される。巻回体とは、コンデンサ素子10の半製品であり、表面に誘電体層を有する陽極体21と陰極体22との間に、固体電解質層が形成されていないものをいう。巻回体は、リードタブ15Aと接続された陽極体21と、リードタブ15Bと接続された陰極体22と、セパレータ23とを備える。
 陽極体21および陰極体22は、セパレータ23を介して巻回されている。巻回体の最外周は、巻止めテープ24により固定される。なお、図2は、巻回体の最外周を止める前の、一部が展開された状態を示している。
 陽極体21は、表面が凹凸を有するように粗面化された金属箔を具備し、凹凸を有する金属箔上に誘電体層が形成されている。誘電体層の表面の少なくとも一部に、導電性高分子を付着させることにより、固体電解質層が形成される。固体電解質層は、陰極体22の表面および/またはセパレータ23の表面の少なくとも一部を被覆していてもよい。固体電解質層が形成されたコンデンサ素子10は、電解液とともに、外装ケースに収容される。
≪電解コンデンサの製造方法≫
 以下、本実施形態に係る電解コンデンサの製造方法の一例について、工程ごとに説明する。
(i)誘電体層を有する陽極体21を準備する工程
 まず、陽極体21の原料である金属箔を準備する。金属の種類は特に限定されないが、誘電体層の形成が容易である点から、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。
 次に、金属箔の表面を粗面化する。粗面化により、金属箔の表面に、複数の凹凸が形成される。粗面化は、金属箔をエッチング処理することにより行うことが好ましい。エッチング処理は、例えば直流電解法や交流電解法により行えばよい。
 次に、粗面化された金属箔の表面に誘電体層を形成する。形成方法は特に限定されないが、金属箔を化成処理することにより形成することができる。化成処理では、例えば、金属箔をアジピン酸アンモニウム溶液などの化成液に浸漬し、熱処理する。また、金属箔を化成液に浸漬し、電圧を印加してもよい。
 通常、量産性の観点から、大判の弁作用金属などの箔(金属箔)に対して、粗面化処理および化成処理が行われる。その場合、処理後の箔を所望の大きさに裁断することによって、陽極体21が準備される。
(ii)陰極体22を準備する工程
 陰極体22には、陽極体と同様、金属箔を用いることができる。金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。必要に応じて、陽極体22の表面を粗面化してもよい。
(iii)巻回体の作製
 次に、陽極体21および陰極体22を用いて巻回体を作製する。
 まず、陽極体21と陰極体22とを、セパレータ23を介して巻回する。このとき、リ
ードタブ15A、15Bを巻き込みながら巻回することにより、図2に示すように、リードタブ15A、15Bを巻回体から植立させることができる。
 セパレータ23の材料は、例えば、合成セルロース、ポリエチレンテレフタレート、ビニロン、アラミド繊維などを主成分とする不織布を用いることができる。
 リードタブ15A、15Bの材料も特に限定されず、導電性材料であればよい。リードタブ15A、15Bの各々に接続されるリード線14A、14Bの材料についても、特に限定されず、導電性材料であればよい。
 次に、巻回された陽極体21、陰極体22およびセパレータ23のうち、最外層に位置する陰極体22の外側表面に、巻止めテープ24を配置し、陰極体22の端部を巻止めテープ24で固定する。なお、陽極体21を大判の金属箔を裁断することによって準備した場合には、陽極体21の裁断面に誘電体層を設けるために、巻回体に対し、さらに化成処理を行ってもよい。
(iv)コンデンサ素子10を形成する工程
 次に、高分子分散体を、誘電体層に含浸させ、誘電体層の少なくとも一部を覆う膜を形成する。高分子分散体は、液状成分と、液状成分に分散する導電性高分子とを含む。高分子分散体は、液状成分に導電性高分子が溶解した溶液でもよく、液状成分に導電性高分子の粒子が分散した分散液でもよい。次に、乾燥により、形成された膜から液状成分を揮発させることにより、誘電体層の少なくとも一部を覆う緻密な固体電解質層が形成される。高分子分散体は、液状成分中に均一に分布しているため、均一な固体電解質層を形成しやすい。これにより、コンデンサ素子10が得られる。
 高分子分散体は、例えば、液状成分に導電性高分子を分散させる方法、液状成分中で前駆体モノマーを重合させ、導電性高分子の粒子を生成させる方法などにより得ることができる。好ましい高分子分散体としては、例えば、ポリスチレンスルホン酸(PSS)がドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、すなわちPEDOT/PSSが挙げられる。なお、導電性高分子の酸化防止剤を添加してもよいが、PEDOT/PSSは、ほとんど酸化しないため、酸化防止剤を用いる必要はない。
 液状成分は、水でもよく、水と非水溶媒との混合物でもよく、非水溶媒でもよい。非水溶媒は、特に限定されないが、例えば、プロトン性溶媒、非プロトン性溶媒を用いることができる。プロトン性溶媒としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類、ホルムアルデヒド、1,4-ジオキサンなどのエーテル類などが例示できる。非プロトン性溶媒としては、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類や、酢酸メチルなどのエステル類、メチルエチルケトンなどのケトン類などが例示できる。
 高分子分散体を誘電体層の表面に付与する方法としては、例えば、容器に収容された高分子分散体に巻回体を浸漬させる方法が簡易で好ましい。浸漬時間は、巻回体のサイズにもよるが、例えば1秒~5時間、好ましくは1分~30分である。また、含浸は、減圧下、例えば10~100kPa、好ましくは40~100kPaの雰囲気で行うことが好ましい。また、高分子分散体に浸漬させながら、巻回体または高分子分散体に超音波振動を付与してもよい。高分子分散体から巻回体を引上げた後の乾燥は、例えば50~300℃で行うことが好ましく、100~200℃で行うことがより好ましい。
 高分子分散体を誘電体層の表面に付与する工程と、巻回体を乾燥させる工程とは、2回
以上繰り返してもよい。これらの工程を複数回行うことにより、誘電体層に対する固体電解質層の被覆率を高めることができる。このとき、誘電体層の表面だけでなく、陰極体22、セパレータ23の表面にも固体電解質層が形成されてもよい。
 以上により、陽極体21と陰極体22との間に固体電解質層が形成され、コンデンサ素子10が作製される。なお、誘電体層の表面に形成された固体電解質層は、事実上の陰極材料として機能する。
(v)コンデンサ素子10に電解液を含浸させる工程
 次に、コンデンサ素子10に、電解液を含浸させる。これにより、誘電体層の修復機能に優れた電解コンデンサが得られる。コンデンサ素子10に電解液を含浸させる方法は特に限定されない。例えば、容器に収容された電解液にコンデンサ素子10を浸漬させる方法が簡易で好ましい。浸漬時間は、コンデンサ素子10のサイズにもよるが、例えば1秒~5分である。含浸は、減圧下、例えば10~100kPa、好ましくは40~100kPaの雰囲気で行うことが好ましい。
(vi)コンデンサ素子を封止する工程
 次に、コンデンサ素子10を封止する。具体的には、まず、リード線14A、14Bが有底ケース11の開口する上面に位置するように、コンデンサ素子10を有底ケース11に収納する。有底ケース11の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金を用いることができる。
 次に、リード線14A、14Bが貫通するように形成された封止部材12を、コンデンサ素子10の上方に配置し、コンデンサ素子10を有底ケース11内に封止する。次に、有底ケース11の開口端近傍に、横絞り加工を施し、開口端を封止部材12に加締めてカール加工する。そして、カール部分に座板13を配置することによって、図1に示すような電解コンデンサが完成する。その後、定格電圧を印加しながら、エージング処理を行ってもよい。
 上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極体として金属の焼結体を用いるチップ型の電解コンデンサや、金属板を陽極体として用いる積層型の電解コンデンサにも適用することができる。
[実施例]
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
《実施例1》
 本実施例では、定格電圧80V、定格静電容量38μFの巻回型の電解コンデンサ(Φ10.0mm×L(長さ)10.0mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
(陽極体の準備)
 厚さ100μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に、化成処理により、誘電体層を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに150Vの電圧を印加することにより行った。その後、アルミニウム箔を、縦×横が6mm×120mmとなるように裁断して、陽極体を準備した。
(陰極体の準備)
 厚さ50μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔を、縦×横が6mm×120mmとなるように裁断して、陰極体を準備した。
(巻回体の作製)
 陽極体および陰極体に陽極リードタブおよび陰極リードタブを接続し、陽極体と陰極体とを、リードタブを巻き込みながら、セパレータを介して巻回した。巻回体から突出する各リードタブの端部には、陽極リード線および陰極リード線をそれぞれ接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。
(高分子分散体の調製)
 3,4-エチレンジオキシチオフェンと、高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)とを、イオン交換水(液状成分)に溶かし、混合溶液を調製した。混合溶液を撹拌しながら、イオン交換水に溶かした硫酸鉄(III)(酸
化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析し、未反応モノマーおよび過剰な酸化剤を除去し、約5質量%のPSSがドープされたポリエチレンジオキシチオフェン(PEDOT/PSS)を含む高分子分散体を得た。
(固体電解質層の形成)
 減圧雰囲気(40kPa)中で、所定容器に収容された高分子分散体に巻回体を5分間浸漬し、その後、高分子分散体から巻回体を引き上げた。次に、高分子分散体を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、誘電体層の少なくとも一部を被覆する固体電解質層を形成した。
(電解液の含浸)
 グリコール化合物としてエチレングリコール(EG)と、平均分子量約300のポリエチレングリコール(PEG)とを含む下記表Aの組成の電解液を調製し、減圧雰囲気(40kPa)中で、電解液にコンデンサ素子を5分間浸漬した。
 なお、カルボン酸成分の一部と塩基成分(トリエチルアミン)は、フタル酸トリエチルアミン(塩)として添加した。
Figure JPOXMLDOC01-appb-T000001
(コンデンサ素子の封止)
 電解液を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。具体的には、有底ケースの開口側にリード線が位置するようにコンデンサ素子を有底ケースに収納し、リード線が貫通するように形成された封止部材(ゴム成分としてブチルゴムを含む弾性材料)をコンデンサ素子の上方に配置して、コンデンサ素子を有底ケース内に封止した。そして、有底ケースの開口端近傍に絞り加工を施し、更に開口端をカール加工し、カール部分に座板を配置することによって、図1に示すような電解コンデンサ(A1)を完成させた。その後、定格電圧を印加しながら、130℃で2時間エージング処理を行った。
《実施例2》
 下記表Bの組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA2を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000002
《実施例3》
 下記表C組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA3を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000003
《比較例1》
 下記表D組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサB1を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000004
[評価]
 得られた電解コンデンサについて、静電容量、ESR、破壊耐電圧(BDV)を測定した。破壊耐電圧(BDV)は、1.0V/秒のレートで昇圧しながら電圧を印加し、0.5Aの過電流が流れるときの電圧を測定した。
 更に、長期信頼性を評価するために、定格電圧を印加しながら125℃で5000時間保持し、ESRの増加率(ΔESR)を確認した。ΔESRは、初期値(X0)に対する
5000時間保持後のESR(X)の比(X/X0)で示した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
《実施例4》
 下記表E組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA4を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000006
《実施例5》
 下記表F組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA5を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000007
《実施例6》
 下記表G組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA6を作製し、同様に評価した。なお、カルボン酸成分(ピロメリット酸)の一部と塩基成分(トリエチルアミン)は、ピロメリット酸ジトリエチルアミン(塩)として添加した。
Figure JPOXMLDOC01-appb-T000008
《実施例7》
 下記表H組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA7を作製し、同様に評価した。
《実施例8》
 下記表I組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA8を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000010
《実施例9》
 下記表J組成の電解液を用いたこと以外、実施例1と同様に電解コンデンサA9を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000011
 実施例4~9の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 本発明は、誘電体層の少なくとも一部を被覆する固体電解質層と、電解液とを具備する、電解コンデンサに利用することができる。
 10:コンデンサ素子、11:有底ケース、12:封止部材、13:座板、14A,14B:リード線、15A,15B:リードタブ、21:陽極体、22:陰極体、23:セパレータ、24:巻止めテープ

Claims (12)

  1.  誘電体層を有する陽極体と、前記陽極体の前記誘電体層に接触した固体電解質層と、電解液と、を備え、
     前記電解液は、溶媒および溶質を含み、
     前記溶媒は、グリコール化合物を含み、
     前記溶質は、カルボン酸成分と、塩基成分とを含み、
     前記溶質は、前記塩基成分100質量部に対して、前記カルボン酸成分を200質量部以上含む、電解コンデンサ。
  2.  前記電解液のpHが4以下である、請求項1に記載の電解コンデンサ。
  3.  前記溶媒に含まれる前記グリコール化合物の割合が、50質量%以上である、請求項1または2に記載の電解コンデンサ。
  4.  前記グリコール化合物は、エチレングリコールを含む、請求項1~3のいずれか1項に記載の電解コンデンサ。
  5.  前記電解液に含まれる前記溶質の割合が、2~30質量%である、請求項1~4のいずれか1項に記載の電解コンデンサ。
  6.  前記カルボン酸成分の一部が、前記塩基成分との塩に由来する、請求項1~5のいずれか1項に記載の電解コンデンサ。
  7.  前記塩基成分は、第1級アミン、第2級アミンおよび第3級アミンよりなる群から選択される少なくとも1種である、請求項1~6のいずれか1項に記載の電解コンデンサ。
  8.  前記溶質が、更に、ヒドロキシル基を2個以上含む第1芳香族化合物を含む、請求項1~7のいずれか1項に記載の電解コンデンサ。
  9.  前記第1芳香族化合物が、カテコールおよびピロガロールよりなる群から選択される少なくとも1種である、請求項8に記載の電解コンデンサ。
  10.  前記カルボン酸が、カルボキシル基を2個以上有する第2芳香族化合物を含む、請求項1~9のいずれか1項に記載の電解コンデンサ。
  11.  前記第2芳香族化合物が、o-フタル酸およびピロメリット酸よりなる群から選択される少なくとも1種である、請求項10に記載の電解コンデンサ。
  12.  前記固体電解質層は、液状成分と、前記液状成分に分散する導電性高分子と、を含む高分子分散体を、前記誘電体層に含浸させ、前記誘電体層の少なくとも一部を覆う膜を形成した後、前記膜から前記液状成分を揮発させることにより形成されたものである、請求項1~11のいずれか1項に記載の電解コンデンサ。
PCT/JP2016/003443 2015-07-29 2016-07-25 電解コンデンサ WO2017017947A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017531015A JP6883735B2 (ja) 2015-07-29 2016-07-25 電解コンデンサ
CN201680043408.4A CN107851519B (zh) 2015-07-29 2016-07-25 电解电容器
US15/872,948 US10373763B2 (en) 2015-07-29 2018-01-16 Electrolytic Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-149120 2015-07-29
JP2015149120 2015-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/872,948 Continuation US10373763B2 (en) 2015-07-29 2018-01-16 Electrolytic Capacitor

Publications (1)

Publication Number Publication Date
WO2017017947A1 true WO2017017947A1 (ja) 2017-02-02

Family

ID=57884260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003443 WO2017017947A1 (ja) 2015-07-29 2016-07-25 電解コンデンサ

Country Status (4)

Country Link
US (1) US10373763B2 (ja)
JP (4) JP6883735B2 (ja)
CN (1) CN107851519B (ja)
WO (1) WO2017017947A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069537A (ja) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 電解コンデンサ
CN108806988A (zh) * 2017-05-05 2018-11-13 常州华威电子有限公司 车载用耐高温电解电容器及其制备方法
WO2022025189A1 (ja) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 電解コンデンサ
US11456120B2 (en) * 2018-12-28 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor comprising an anode body, a cathode body and a conductive polymer and a liquid component disposed between the anode body and the cathode body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019131478A1 (ja) * 2017-12-28 2020-12-17 パナソニックIpマネジメント株式会社 電解コンデンサ
CN113410058A (zh) * 2020-03-16 2021-09-17 钰邦科技股份有限公司 电容器单元及其制造方法
JP2023137006A (ja) * 2022-03-17 2023-09-29 日本ケミコン株式会社 電解コンデンサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171943A (ja) * 1995-12-19 1997-06-30 Matsushita Electric Ind Co Ltd 電解液およびそれを用いた電気化学素子
JP2007080888A (ja) * 2005-09-12 2007-03-29 Sanyo Chem Ind Ltd 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP2011114208A (ja) * 2009-11-27 2011-06-09 Kaneka Corp 導電性高分子コンデンサの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283874A (ja) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd 電解コンデンサ
JP4449305B2 (ja) * 2003-01-10 2010-04-14 パナソニック株式会社 アルミ電解コンデンサ
JP5052746B2 (ja) 2004-10-12 2012-10-17 パナソニック株式会社 電解コンデンサ
WO2011099261A1 (ja) * 2010-02-15 2011-08-18 パナソニック株式会社 電解コンデンサ
US9589734B2 (en) 2012-07-31 2017-03-07 Nippon Chemi-Con Corporation Solid electrolytic capacitor and manufacturing method thereof
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171943A (ja) * 1995-12-19 1997-06-30 Matsushita Electric Ind Co Ltd 電解液およびそれを用いた電気化学素子
JP2007080888A (ja) * 2005-09-12 2007-03-29 Sanyo Chem Ind Ltd 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP2011114208A (ja) * 2009-11-27 2011-06-09 Kaneka Corp 導電性高分子コンデンサの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069537A (ja) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 電解コンデンサ
CN108806988A (zh) * 2017-05-05 2018-11-13 常州华威电子有限公司 车载用耐高温电解电容器及其制备方法
CN108806988B (zh) * 2017-05-05 2024-02-13 常州华威电子有限公司 车载用耐高温电解电容器及其制备方法
US11456120B2 (en) * 2018-12-28 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor comprising an anode body, a cathode body and a conductive polymer and a liquid component disposed between the anode body and the cathode body
US11804334B2 (en) 2018-12-28 2023-10-31 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor comprising an anode body, a cathode body and a conductive polymer and a liquid component disposed between the anode body and the cathode body
WO2022025189A1 (ja) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 電解コンデンサ

Also Published As

Publication number Publication date
JP7113199B2 (ja) 2022-08-05
JP2021121022A (ja) 2021-08-19
JP6883735B2 (ja) 2021-06-09
JP7407372B2 (ja) 2024-01-04
US20180158619A1 (en) 2018-06-07
JP2024023561A (ja) 2024-02-21
CN107851519A (zh) 2018-03-27
CN107851519B (zh) 2020-01-07
JPWO2017017947A1 (ja) 2018-05-10
JP2022106984A (ja) 2022-07-20
US10373763B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP7462177B2 (ja) 電解コンデンサ
JP7407372B2 (ja) 電解コンデンサ
JP7289071B2 (ja) 電解コンデンサ
JP6928788B2 (ja) 電解コンデンサおよびその製造方法
WO2016103616A1 (ja) 電解コンデンサの製造方法
JP6990831B2 (ja) 電解コンデンサ
JP2011109023A (ja) 固体電解コンデンサおよびその製造方法
WO2015198547A1 (ja) 電解コンデンサの製造方法
JPWO2016103617A1 (ja) 電解コンデンサの製造方法
JP7357238B2 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP6715442B2 (ja) 電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830052

Country of ref document: EP

Kind code of ref document: A1