WO2017014562A1 - 수소 발생 장치 - Google Patents

수소 발생 장치 Download PDF

Info

Publication number
WO2017014562A1
WO2017014562A1 PCT/KR2016/007915 KR2016007915W WO2017014562A1 WO 2017014562 A1 WO2017014562 A1 WO 2017014562A1 KR 2016007915 W KR2016007915 W KR 2016007915W WO 2017014562 A1 WO2017014562 A1 WO 2017014562A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
hydrogen
electrolysis
power supply
Prior art date
Application number
PCT/KR2016/007915
Other languages
English (en)
French (fr)
Inventor
탁승호
백광성
Original Assignee
탁승호
백광성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 탁승호, 백광성 filed Critical 탁승호
Priority to US15/746,562 priority Critical patent/US20180209050A1/en
Priority to CN201680054985.3A priority patent/CN108138337A/zh
Priority to JP2018523722A priority patent/JP2018532518A/ja
Publication of WO2017014562A1 publication Critical patent/WO2017014562A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/587Lighting arrangements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/02Location of water treatment or water treatment device as part of a bottle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a technique for generating hydrogen and hydrogen water using an electrode, and more particularly, to an electrolytic hydrogen water generating technique for generating hydrogen gas by applying a voltage to an electrode plate contained in water.
  • Free radicals also called harmful oxygen
  • Free radicals are produced by overproduction of oxygen due to chemicals, ultraviolet rays, stress, and blood circulation disorders. These free radicals oxidize in the human body, damaging cell membranes, DNA, and cells. It also oxidizes several amino acids in the body, leading to reduced protein function. The effects of free radicals cause a decrease in physiological function, and may cause various diseases and aging. About 90% of modern diseases are known to be related to free radicals.
  • Hydrogen may be utilized to remove such active oxygen. Hydrogen chemically combines with activated oxygen to achieve antioxidant effects. Therefore, when a person drinks dissolved hydrogen water in which hydrogen is dissolved in water, comes into contact with skin, or breathes hydrogen itself, an antioxidant effect can be obtained. Recently, producing and drinking hydrogen water has come into the spotlight.
  • Electrolysis of water to produce hydrogen requires an electrolyte in the water. Distilled water can not be electrolyzed because there is no electrolyte and no current flows. However, when water is electrolyzed, the electrolyte itself may cause electrochemical reactions depending on the dissolved concentrations, so that the electrolyte itself may be electrolyzed. Specifically, the electrolyte may be reduced to the extent that the electrolyte is to be dissolved in water and remain as ions, that is, due to reactivity, or hydrogen may be generated by reducing water.
  • K + , Ca 2+, Mg 2+, Al +, etc. are highly reactive and are reduced to ions to generate H 2, and those such as Au, Pt, Ag, Hg, and Cu are less reactive than hydrogen ions, thereby reducing the electrolyte.
  • ions such as F, NO3, CO3, and SO4 have a high reactivity, so the ions are strong to remain as ions, and water is oxidized to generate O2, and Cl is less reactive than oxygen ions to oxidize the electrolyte.
  • the electrolyte that can be used in the electrolysis of water is an electrolyte composed of a highly reactive cation and a highly reactive anion, which is the reason why it is not possible to electrolyze a small reactive cation and anion, that is, distilled water.
  • Brine can be divided into electrolysis of sodium chloride (NaCl) solution and electrolysis of sodium chloride (NaCl) solution according to the concentration of salt dissolved in water. Electrolysis of pure salt (NaCl) Formula is
  • Cl- [ion state] becomes a gaseous gas while emitting electrons
  • Na + [ion state] becomes electrons and becomes a solid state. If Na is precipitated in aqueous NaCl solution, Na and water in Group 1 meet and explode, but Na is not precipitated and hydrogen gas is released.
  • the hydrogen generating device electrolysis of the water, the electrolysis electrode unit in which the porous ceramic catalyst to prevent the generation of ozone by combining with the oxygen generated during the electrolysis, measuring the resistance value of the water, Resistance value measuring unit for measuring the change according to the type of dissolved electrolyte and the concentration of the electrolyte, a power supply for applying a voltage isolated from the power supply to the electrolysis electrode, voltage according to the resistance value measured in the resistance value measuring unit It may include a control unit for controlling the power supply to apply a variable, the relay unit is controlled to apply a voltage while changing the direction of the current at a predetermined time interval to the electrolysis electrode.
  • the hydrogen generating device may further include a light emitting diode that blinks or illuminates to alert the operation and interruption of electrolysis in a combination of red, blue or green.
  • the control unit may control the relay unit to stop the electrolysis by cutting off the power supply when the resistance value of the water when the salinity is 10% or more in the resistance value measurement unit, it can notify the interruption by controlling the light emitting diode.
  • control unit lowers the applied voltage when the resistance value of the water when the salinity is less than 4% ⁇ less than 10% in the resistance value measurement unit, by adding a voltage application time corresponding to the lowered voltage
  • the relay unit may be controlled to electrolyze.
  • control unit may control the power supply unit and the relay unit to electrolyze the water for a predetermined time at a maximum voltage when the resistance value of the water when the salinity is less than 3% in the resistance measurement unit.
  • the resistance measuring unit measures the amount of change in the resistance value according to the amount of water
  • the control unit controls the relay unit to vary the time to electrolyze the water by supplying power in accordance with the measured amount of change in the resistance value can do.
  • control unit may control the voltage supply unit to apply a voltage lower than the initial voltage when an excessive current flows through the electrode by applying an initial voltage isolated from the power supply voltage without measuring a resistance value across the electrolysis electrode. Can be.
  • the hydrogen generator further comprises a gyro sensor for detecting the inclination of the bucket
  • the control unit may control the power supply to stop the power supply when the inclination of the bucket measured by the gyro sensor is more than a certain angle.
  • the hydrogen generating device further comprises a water level sensing electrode for detecting whether the water contact
  • the control unit may control the power supply to stop the power supply when the water level sensing electrode detects the contact of the water.
  • the hydrogen generating device further comprises a pressure sensor for detecting the pressure of the hydrogen generated by the electrolysis
  • the control unit may control the power supply to stop the electrolysis when the pressure detected by the pressure sensor is above a certain pressure. have.
  • the hydrogen generating device further comprises a use management unit for managing the user's use information according to the control content of the control unit, the use management unit may store the use information, but may further include a storage unit that can not be modified after storage. have.
  • the hydrogen generation device may further include a communication unit for accessing the device use expert system to transmit the use information or to receive a guide regarding the use information.
  • the hydrogen generating device may include a first magnetic sensitive power supply isolating switch that operates by magnetic force of the magnet without physical contact with the magnet to regulate the on-off power of the hydrogen generating device.
  • the hydrogen generating device may further include a waterproof space which is separated from the electrolysis electrode unit and sealed to prevent water from contacting.
  • the waterproof space is connected to the secondary battery by the second magnetic sensitive power insulated switch that is controlled by the magnetic force of the magnet without physical contact with the magnet and the magnetic sensitive power insulated switch protrudes out of the waterproof space to connect the secondary battery. It may further include a quick charge exposure unit including a quick charge exposure electrode for charging.
  • the hydrogen generating device includes a body including the waterproof space therein, the body is a water bottle coupling portion, the first magnet-sensitized power insulated switch is formed with a female thread at the bottom of the body to couple the body and the bucket;
  • a fixed groove capable of engaging the electrolytic electrode rod with the main body by inserting a cylindrical electrolysis electrode rod and a protrusion including a rotary switch, a rotary switch which rotates to operate, an electrolysis electrode unit, a power supply unit, and a protrusion formed on the top. It includes, the electrolytic electrode rod is protruded in the lower direction of the main body after the combination of the protrusion and the fixing groove can enter into the bucket when the main body and the water bottle coupling.
  • the main body may further include a vertical passage through which water can pass, and a lid coupling portion in which a male screw is formed so that a cover for opening and closing the passage is coupled to the top.
  • the body or cover may further comprise a nozzle connected with the hose of the hydrogen breather.
  • the hydrogen-generating device of the electronic cigarette model is a power supply unit including a charging circuit, a secondary battery and an insulated DC-DC converter, a hydrogen generation unit that can be separated from one side and separated from the power supply unit, the opposite side
  • One side may include a suction unit coupled with the hydrogen generating unit, the hydrogen generating unit is a porous ceramic catalyst to prevent the generation of ozone by combining with the oxygen generated when water is electrolyzed, the cylindrical electric having a vertical passage
  • a portion of the electrolysis electrode may include a bucket including a liquid absorbent material in which a part of the electrolysis electrode is embedded at one side of the decomposition electrode and the suction port.
  • the suction unit may include a suction port through which the user can inhale hydrogen, a micro hole through which external air to be mixed with hydrogen when the user sucks into the suction port, and a control unit that rotates to open and close the micro hole.
  • the dependence on the water improves by adjusting the voltage to be applied according to the components dissolved in the water to allow for proper electrolysis.
  • the hydrogen issuing device is coupled to a water bottle and the like easily provided in daily life to increase the accessibility of hydrogen water to the general public.
  • 1 is a block diagram showing the configuration of an internal circuit of a hydrogen generator.
  • 2 is a graph showing the magnitude of the voltage, current, and measured resistance values applied with time when the hydrogen generator is operating.
  • Figure 3 shows an algorithm for varying the size of the power applied according to the value measured by the resistance measurement unit of the hydrogen generator.
  • FIG. 4 is a view showing the configuration of a hydrogen generator comprising a water tank and a main body.
  • the hydrogen generating device consists of a body that can be coupled to a regular bottle of mineral water.
  • Figure 6 shows an embodiment of a hydrogen generating device having a nozzle on the lid, and a person breathing by mounting a hydrogen respirator to the nozzle.
  • FIG. 7 is a diagram of one embodiment showing an electric electrode rod.
  • FIG. 8 is a configuration diagram of a hydrogen generator in the form of an electronic cigarette model.
  • 9, 10, 11, and 12 are views showing a hydrogen generator that can be used in water.
  • FIG. 13 is an embodiment illustrating the decomposition of a hydrogen generator used to soak in water.
  • the hydrogen generating apparatus may include an electrolysis electrode unit 3, a resistance value measuring unit 10, a power supply unit 11, a control unit 12, and a relay unit 9.
  • the electrolysis electrode part 3 comprises a + electrode and a-electrode, which are arranged to be in contact with the water 1.
  • the water 1 in contact is electrolyzed.
  • the porous ceramic catalyst (4) is located in the electrolysis electrode unit 3 can be combined with oxygen generated when the catalyst electrolyzes water to prevent the generation of ozone.
  • Figure 1 shows an example of the appearance of the porous ceramic catalyst (4) located in the electrolysis electrode parts (3-1, 3-2).
  • the porous ceramic catalyst 4 is a ceramic made by synthesizing various minerals such as magnesium, iron oxide, and tourmaline. Ozone may occur when water (1) is electrolyzed and decomposed into two hydrogens and one oxygen. If the catalyst (4) is placed on the electrolysis electrode part (3), oxygen and ceramic catalyst ( 4) can be combined to prevent the generation of ozone.
  • the hydrogen production formula is 2H 2 0 + Mg-> Mg (0H) 2 + H 2
  • magnesium is 2 electrons in the K electron shell, 8 electrons in the L electron shell, 2 electrons in the M electron shell
  • the two outermost electrons of these electrons have a reducing power because electrons can be easily released in an unstable state.
  • magnesium reacts with water one molecule of magnesium reacts with two molecules of water, where magnesium is not free and magnesium hydroxide is formed. In this process, some of the electrons from magnesium are used to form hydrogen gas and the rest of the electrons Will remain in the water.
  • Magnesium hydroxide is ionized hydroxyl group (OH -) are formed, wherein a single atom of oxygen and combined with the ozone (O 3) instead of molecular oxygen, in which case the ozone is destroyed, while changes to the normal oxygen.
  • O 3 ozone
  • magnesium is oxidized and water is reduced to become hydrogen water.
  • H 2 O will have an antioxidant effect. These antioxidants have a negative redox potential value and are excellent in reducing power and have a value ranging from -100 mV to 1989 mV.
  • the resistance value measuring unit 10 measures the resistance value of the water (1), it can measure the change depending on the type of electrolyte and the concentration of the electrolyte dissolved in water. In one embodiment, the resistance measurement unit 10 is an analog-to-digital converter.
  • the resistance value measuring unit 10 measures the resistance value of water for a predetermined time while the power supply is cut off. At this time, as will be described later, the relay unit 9 can cut off the power supply.
  • the resistance value of the water measured by the resistance measuring unit 10 may be measured in consideration of the type of electrolyte dissolved in the water and the concentration of the electrolyte. For example, when the concentration of salt, that is, salinity, which has the greatest influence on the electrical resistance value among various electrolytes dissolved in water, the resistance value measuring unit 10 measures the current resistance value, and measures the measured value. Based on the current salinity can be measured. Alternatively, the resistance measurement unit 10 may know a change in salinity dissolved in water based on the change in the electrical resistance value of the water. In addition to salinity, other electrolytes may be considered, in which a chemical reaction may occur during electrolysis to become a harmful gas to the human body.
  • the power supply 11 may apply a voltage insulated from the power supply to the electrolysis electrode 3.
  • the power supply 11 is a DC-DC converter.
  • the power supply unit 11 applies a voltage to the electrolysis electrode with a step-up DC-DC conversion circuit that completely insulates the primary side and the secondary side in order to completely supply the electrode part in contact with water and the power supply device completely independently.
  • the power supply unit 11 supplies power to the control unit 12 to be described later to enable the operation of the hydrogen generator.
  • control unit 12 controls the power supply unit 11 to vary and apply a voltage according to the resistance value measured by the resistance value measuring unit 10.
  • the measured resistance value makes it possible to know the type and concentration of the electrolyte, as described above, and thus has the same meaning as changing the voltage according to the type and concentration of the electrolyte.
  • the magnitude of the applied voltage is changed in consideration of the effect of the concentration of the electrolyte on the human body as a result of the electrolysis according to the measured resistance value. For example, if the resistance value of the electrolyte, such as salt iron, is small, reduce the electrolysis voltage and current, and if the electrolyte resistance value is high, flow the maximum rated voltage and the appropriate current.
  • 35 and 36 of FIG. 2 show an embodiment in which the magnitudes of the voltages applied to the resistance values are changed to V1 and V2.
  • the relay unit 9 may control to apply a voltage while changing the direction of the current at a predetermined time interval to the electrolysis electrode.
  • the relay portion 9 may be a latch relay or a solid state relay circuit. The polarity of the power supplied by the relay unit 9 to the electrode is reversed at regular time intervals to prevent chemical transition of both electrodes.
  • the hydrogen generating device may include a light emitting diode 56.
  • the light emitting diode 56 may flash or illuminate to indicate the operation and interruption of electrolysis in a combination of red, blue or green.
  • the control unit 12 may control the blinking and illumination of the light emitting diodes 56.
  • the color of the light emitting diode 56 may be of a color other than the mentioned color.
  • FIG. 3 is an algorithm showing the operation of the hydrogen generator according to the measured resistance value.
  • the contents of the algorithm of FIG. 3 will be described along with the block diagram of FIG. 2.
  • control unit 12 may control the relay unit 9 to stop the electrolysis by cutting off the power supply when the resistance value of the water when the salinity of the salinity measurement unit 10 is 10% or more is measured. Can be.
  • the light emitting diode 56 may be controlled to signal the interruption. If the salinity of water is 10% or more (for example, seawater), the electrolyte content is high, so that the current flows significantly compared to the applied voltage, and as a result, the current is higher than the allowable value, and in this case, a gas other than hydrogen may be prevented. For sake.
  • control unit 12 may control the light emitting diode unit 56 to notify that the red light is blinking or illuminated to stop the electrolysis.
  • control unit 12 controls the power supply unit 11 to lower the voltage applied when the resistance value of water when the salinity of the resistance value measuring unit 10 is 4% or more and less than 10% is measured. Can be controlled. When the salinity is 4% or more and less than 10%, since the application of the voltage is reduced to prevent generation of gases other than hydrogen, electrolysis is not immediately stopped as when the salinity is 10%. In addition, by controlling the relay unit 9 so as to electrolyze by adding a voltage application time corresponding to the lowered voltage, an appropriate amount of hydrogen gas can be generated. In addition, the light emitting diode 56 may be blinked or illuminated in green to inform the user of the current electrolysis state.
  • the color is blue as described below.
  • the light emitting diodes 56 may flash or illuminate to indicate the current electrolysis state.
  • control unit 12 and the power supply unit 11 to electrolyze the water for a predetermined time at a maximum voltage when the resistance value of the water when the salinity is less than 3% in the resistance measurement unit 10 is measured
  • the relay unit 9 can be controlled.
  • 36 in FIG. 4 is a graph in which the voltage of Vmax is applied for a predetermined time. As shown in the algorithm of FIG. 3, when Vmax is applied to the electrolysis electrode unit 3 and current flows in an appropriate range, the electrolysis is performed for a predetermined time, and the blue light emitting diode 56 flashes or lights to indicate the state of electrolysis to the user. You can inform.
  • the resistance value measuring unit 10 may measure the amount of change in the resistance value according to the amount of water. In one embodiment, the resistance value measuring unit 10 may measure that the area of contact between the electrolysis electrode and water changes according to the amount of water so that the resistance value is slightly smaller or larger. When the resistance value measured by the change in the amount of water changes minutely, the resistance value measuring unit 10 transmits information on the change amount to the control unit 12 whenever it changes.
  • the control unit 12 when the resistance measurement unit 10 measures the change in the resistance value according to the change in the amount of water, the relay unit to vary the time to electrolyze the water according to the change amount Can be controlled.
  • the resistance value measuring unit 10 measures the resistance value according to the change, and the measured result is measured.
  • the control unit 12 controls the relay unit (9).
  • the contact area is increased due to the increase in the amount of water, the resistance value is slightly reduced, so that the switching of the relay unit 9 is controlled to reduce the electrolysis time, and conversely, the contact area is reduced due to the decrease in the amount of water. In this case, since the resistance value increases slightly, the switching of the relay unit 9 is controlled to increase the electrolysis time.
  • the control unit 12 applies an initial voltage insulated from the power supply voltage without measuring the resistance value across the electrolysis electrode 3 to output a voltage lower than the initial voltage when excessive current flows through the electrode.
  • the voltage supply unit 11 can be controlled to apply. After applying V3 to the electrolysis electrode 3 as shown in 38 of FIG. 4, when a transient current reaching Ip flows as shown in 39, the control unit 12 controls the voltage supply unit 11 to lower the voltage to V4 and to maintain the current. Control to lower. In this control process, as shown in 40 of FIG. 4, the resistance value is measured after lowering the current by controlling the voltage.
  • the hydrogen generator may comprise a bucket 2, a gyro sensor 6.
  • the bucket 1 is a container that can hold water to be contacted by the electrode 3 of the hydrogen generator.
  • the gyro sensor 6 is a sensor for detecting the inclination of the bucket 2, and the operation principle of the sensor is omitted as will be apparent to those skilled in the art.
  • control unit 12 may control the power supply unit 11 to stop the power supply when the inclination of the bucket measured by the gyro sensor 6 is more than a predetermined angle. If the water tank 2 is inclined at a predetermined angle or more, water may be counted, so the power supply is controlled to be cut off in advance.
  • it may further include a water level sensing electrode (7) for detecting the contact of water.
  • the water level sensing electrode 7 is located at the top of the bucket 2 so that it can be measured how full the water 1 is in the bucket 2.
  • the water level sensing electrode 7 may be placed at an appropriate position according to the size or shape of the bucket 2.
  • control unit 12 may control the power supply unit 11 to stop the power supply when the water level sensing electrode 7 detects contact with water.
  • sensing the contact of water at the water level sensing electrode 7 means that there is no extra space in the water tank 2 as the water fills or exceeds the water level sensing electrode 7. .
  • the control unit 12 immediately transmits a detection signal to the control unit 12 so that the control unit 12 controls the power supply unit 11.
  • the hydrogen generating device may further comprise a pressure sensor 5.
  • the pressure sensor 5 may detect the pressure of hydrogen generated by the electrolysis of water.
  • the pressure sensor 5 detects the pressure of the hydrogen gas in the bucket, and transmits a detection signal to the control unit 12 to control the electrolysis according to the detected pressure.
  • control unit 12 may control the power supply unit 11 so that the pressure sensor 5 stops electrolysis when the detected pressure is greater than or equal to a predetermined pressure.
  • a safety problem such as an explosion may occur when the pressure of the hydrogen gas that electrolyzes the water is higher than a certain level. Therefore, when the pressure sensor 5 detects a predetermined pressure or more, the detection signal is transmitted to the control unit 12 so that the pressure no longer reaches the dangerous level, and the control unit 12 supplies the power supply unit (according to the detection signal). 11) control to stop the power supply.
  • the hydrogen generating device may include a use management unit.
  • the usage management unit may further include a storage unit 13 and a communication unit 18.
  • the usage manager may manage the user's usage information according to the control content of the control unit 12.
  • the usage information is a user using the hydrogen decomposition device, for example, the time of the electrolysis of water or the amount of water that was electrolyzed, resistance value, electrolyte type, electrolyte concentration, hydrogen generation amount, etc. Can be.
  • information such as the magnitude of the voltage and the magnitude of the current which has been electrolyzed may be included.
  • the storage unit 13 may store usage information of a user managed by the use management unit. At this time, the storage unit 13 may make it impossible to modify the stored contents. As a result, the user can safely manage the usage information.
  • the communication unit 18 may access the device usage expert system 30 to transmit the usage information, or receive a guide regarding the usage information.
  • the communication unit 18 is a wireless communication module, and may communicate with a short-range communication module such as a Bluetooth of a smart phone or a tablet PC, or a proximity communication module such as NFC or ISO1443 PXD.
  • the device usage expert system 30 may be a system of an operator providing a hydrogen generating device or a system of a trader that professionally manages the use of the device.
  • the system may receive the user's usage information of the hydrogen generating device through the communication unit 18 and analyze the generated information, thereby generating a correct usage guide for the user based on the analysis result of the usage information. By delivering the guide information to the user, it is possible to induce the correct use of the hydrogen generator.
  • the hydrogen generation device may receive the corresponding information through the communication unit 18 and notify the user.
  • the hydrogen generator includes a watertight space.
  • the waterproof space is separated from the electrolysis electrode part 3 and is a space that is sealed and waterproof so that water does not contact.
  • the waterproof space may include a first magnetic sensitive power supply isolation switch 24.
  • the first magnetic sensitive power supply isolating switch can operate by the magnetic force of the magnet without physical contact with the magnet to regulate the on-off power of the hydrogen generator.
  • the watertight space may further include a second magnetic sensitive power source isolation switch 24 and a quick charge exposure portion 25.
  • the second magnetic sensitive power supply isolation switch 24 is regulated by the magnetic force of the magnet without physical contact with the magnet.
  • the fast charge exposing portion 25 may protrude out of the waterproof space to charge the secondary battery by connecting a magnetic sensitive power insulation switch when the magnet is in contact.
  • the first magnetic sensitive power supply isolating switch and the second magnetic sensitive power supply isolating switch is connected to the secondary battery fast charging circuit. When the magnet is in contact with the quick charge exposure portion 25, the first magnetic sensitive power supply isolating switch and the second magnetic sensitive power supply isolating switch is switched by the magnetic force so that the charging current flows inside the sealed hydrogen generator.
  • FIG. 5 shows the first and second magnet sensitive power supply isolation switches 24a and 24b, the quick charge exposing portion 25 and the quick charge electrode portion magnet 27. As shown in FIG.
  • FIG. 6 is a diagram illustrating an embodiment of a hydrogen generator including the circuit of FIG. 1.
  • FIG. 7 shows the hydrogen generator of FIG. 6 combined with a water bottle.
  • 8 is an exploded view of the hydrogen generator of FIG. 6.
  • the hydrogen generator includes a body 41.
  • the main body 41 may include the above-described waterproof space 23 therein.
  • the body 41 further includes a water tank coupling portion, the rotary switch 42, the electrolytic electrode rod 3, the fixing groove.
  • Bucket coupling portion is formed with a female screw at the bottom of the main body to couple the body 41 and the bucket (2).
  • the rotary switch 42 is a ring structure in which the magnetic sensitive power supply isolation switch rotates to operate.
  • the rotary switch 42 has a magnet 22. When the rotary switch is rotated, the magnet is also rotated, and the magnetic sensitive power supply isolation switch is operated according to the movement of the magnet.
  • the electrolysis electrode rod 3 may further include the electrolysis electrode portion 3, the power supply 11, and the protrusion.
  • the electrolysis electrode portion 3 may be a rod of cylindrical shape. 8 is a view showing a specific appearance of this electric electrode rod (3).
  • the electrolytic electrode rod (3) is projected in the lower direction of the main body after the combination of the protrusion and the fixing groove to enter into the bucket when the main body and the water bottle is coupled.
  • the protruding portion at the top of the electrolytic electrode rod 3 is fitted into a fixing flaw existing in the main body so that the electrolytic electrode rod is coupled to the main body without shaking. 6 shows that the electrolytic electrode rod 3 protrudes in the lower direction of the main body 41 after the coupling.
  • the body may further include a vertical passage, the lid coupling portion.
  • Vertical passages are vertical passages through which water can pass.
  • the lid coupling portion is formed with a male screw so that the lid for opening and closing the passage is coupled.
  • the body 41 may include a nozzle.
  • the nozzle 70 is a nozzle that can be connected to the hose of the hydrogen respirator.
  • a nozzle may be included in a cover that covers the main body 41. 6, 7, 11 show the nozzle on the lid and the hydrogen respirator 69 connected to the nozzle.
  • the user 70 may inhale hydrogen gas by connecting the hydrogen respirator 69 to the nozzle 70 and using the hydrogen respirator.
  • the hydrogen generator of the electronic cigarette model includes a power supply unit 11, a hydrogen generator and a suction unit 61.
  • the power supply 11 may include a charging circuit 15, a secondary battery and an isolated DC-DC converter.
  • the hydrogen generation unit is coupled to the power supply unit on one side, may be separated.
  • the suction unit 61 may be coupled to the hydrogen generator in one side of the opposite direction to the one side of the hydrogen generator coupled to the power supply (11).
  • the hydrogen generating unit is a porous ceramic catalyst (4) is coupled to the oxygen generated when the electrolysis of water to prevent the generation of ozone
  • the water tank (2) of the hydrogen generating device has a vertical passage
  • One side of the cylindrical electrolysis electrode 3 and the suction port 61 includes a liquid absorbing material 65 in which a part of the electrolysis electrode 3 is embedded.
  • the electrolysis electrode is cylindrical and concentric with a central opening (3). Therefore, the area of the electrode with which water contacts can be enlarged.
  • the liquid absorbent 65 may isolate the water with a porous sponge to prevent the water from leaking so that only the hydrogen bubbles 66 pass through the liquid absorbent 65.
  • the suction part 61 may further include a suction port, a microhole 63, and an adjusting part 62.
  • the inlet port is a hole through which the user can inhale hydrogen
  • the fine hole 63 is a hole through which external air to be mixed with hydrogen when the user inhales into the corresponding inlet port.
  • the adjusting unit 62 may rotate to open and close the micro holes 63. In one embodiment, when opening the micro-pores by turning the adjuster 62, hydrogen and air are mixed to allow the user to drink air mixed hydrogen when the user inhales the mouth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

수소 발생 장치에 있어서, 전기 분해 전극부가 물을 전기분해 하되, 다공질 세라믹 촉매가 있어서 전기 분해 시 발생하는 산소와 결합하여 오존의 발생을 방지할 수 있다. 또한 물의 저항 값을 측정하되, 물에 녹아 있는 전해질의 종류 및 해당 전해질의 농도에 따른 변화를 측정하여 측정된 저항 값에 따라 전압을 가변시켜 인가함으로써, 물에 녹아있는 성분에 따라 최적량으로 물을 전기 분해하여 인체에 유해한 성분이 발생하는 것을 예방한다.

Description

수소 발생 장치
전극을 이용한 수소 및 수소수 생성 기술에 관한 것으로, 보다 상세하게는 물에 담긴 전극판에 전압을 인가하여 수소 기체를 발생시키는 전해식 수소수 생성 기술에 관한 것이다.
유해산소라고도 불리는 활성 산소는 화학물질, 자외선, 스트레스, 혈액순환장애 등으로 산소가 과잉 생산되어 발생하는데, 이러한 활성산소는 사람 몸 속에서 산화 작용을 일으켜 세포막, DNA, 세포를 손상시킨다. 또한, 몸 속의 여러 아미노산을 산화시켜 단백질의 기능 저하를 가져온다. 이러한 활성산소의 영향은 생리적 기능이 저하를 유발하고, 각종 질병과 노화의 원인이 되기도 한다. 현대인의 질병 중 약 90%가 활성 산소와 관련이 있다고 알려져 있다.
이러한 활성 산소를 제거하기 위해서는 수소를 활용할 수 있다. 수소는 활성화 산소와 화학적으로 결합하여 항산화 효과를 얻게 한다. 따라서, 사람이 수소가 물에 녹아있는 용존 수소수를 마시거나, 피부에 접촉하거나 수소 자체를 호흡하면 항산화 효과를 얻을 수 있다. 최근에는 수소수를 제조하여 마시는 것이 각광받기에 이르고 있다.
2013. 07. 03 에 공개된 공개번호 10-2013-0073831 의 수소수 제조 장치에는 물을 전기분해 시켜 수소수를 제조하는 장치가 개시된다.
물을 전기 분해하여 수소를 만들려면 물에 전해질이 있어야 한다. 증류수의 경우 전해질이 없어 전류가 흐르지 않으므로 전기 분해할 수 없다. 그러나 물이 전기 분해 될 때 전해질은 녹아 있는 농도 따라 전기화학적 반응을 일으키기 때문에 전해질 자체가 전기 분해될 수 있다. 구체적으로, 전해질이 물에 녹아서 이온으로 남아있으려는 정도, 즉, 반응성 때문에 용해시킨 전해질이 환원될 수도 있고, 물이 환원되어 수소가 발생할 수도 있다.
전해질의 양이온 중 K+, Ca2+, Mg2+, Al+ 등과 같은 것들은 반응성이 커서 이온으로 환원되어 H2가 발생하고, Au, Pt, Ag, Hg, Cu 같은 것들은 수소이온보다 반응성이 작아서 전해질이 환원된다. 전해질의 음이온 중 F, NO3, CO3, SO4 등과 같은 이온들은 반응성이 커서 이온으로 남아있으려는 성질이 강해서 물이 산화되어 O2가 발생하고, Cl같은 것은 반응성이 산소이온보다 작아 전해질이 산화된다. 결국 물의 전기 분해에서 사용할 수 있는 전해질은 반응성이 큰 양이온과 반응성이 큰 음이온으로 이루어진 전해질이고 반응성이 작은 양이온과 음이온 즉 증류수를 전기 분해할 수 없는 이유가 된다.
소금물의 경우 물에 녹아있는 소금의 농도에 따라 염화나트륨(NaCl)수용액 전기분해와 염화나트륨(NaCl)용융액 전기분해로 구분될 수 있는데, 순수한 소금(NaCl)이 용융되어 있는 소금물 용융액 상태 전기분해 화학식은
+극: 2Cl- → Cl2(g) + 2e-
-극: 2Na+ +2e- → 2Na(s)
Cl- [이온상태]는 전자를 배출하면서 기체상태의 가스가 되고 Na+[이온상태]는 전자를 얻고 고체상태로 된다. NaCl 수용액에서 만약 Na가 석출된다면 1족인 Na와 물이 만나서 폭발하게 되지만 Na가 석출되지 않고 수소기체가 나오게 된다.
소금이 물에 녹아 있는 농도에 따라 염도가 높은 경우, 소금물이 전기 분해되어 NaCl + H2O → Na+ + Cl- +H2O
즉 소금물을 전기 분해하면
+극에는(산화) : 2Cl-(Ag)→ Cl2(g) + 2e-
-극에는(환원) : 2H2O(l) + 2e- → H2(g)+2OH-
전체반응은 Cl-(Ag)+ H2O(l) → Cl2(g)+H2(g)+2OH-(Ag)
즉 염소가스와 수소가스가 생성되고 용액은 NaOH알칼리가 된다.
시중에 다양하게 상용화된 물을 전기 분해하여 수소를 발생시키는 장치들이 상기한 바와 같이 물에 녹아있는 전해질에 따라 다양한 화학 반응을 일으키기 때문에 전기분해 하고자 하는 물이 어떤 종류 즉 염분이 얼마나 섞여있느냐에 따라 본래의 목적에 위배되는 상황을 가질 수 있다.
일 양상에 있어서, 수소 발생 장치는 물을 전기분해 하되, 전기 분해 시 발생하는 산소와 결합하여 오존의 발생을 방지하는 다공질 세라믹 촉매가 위치하는 전기 분해 전극부, 물의 저항 값을 측정하되, 물에 녹아 있는 전해질의 종류 및 해당 전해질의 농도에 따른 변화를 측정하는 저항값 측정부, 전기 분해 전극에 전원장치로부터 절연된 전압을 인가하는 전원공급부, 상기 저항값 측정부에서 측정된 저항 값에 따라 전압을 가변시켜 인가하도록 상기 전원공급부를 제어하는 컨트롤부, 전기 분해 전극에 전류의 방향을 일정시간 간격으로 바꿔가며 전압을 인가하도록 제어되는 릴레이부를 포함할 수 있다.
일 양상에 있어서, 수소 발생 장치는 전기 분해의 동작과 중단을 적색, 청색 또는 녹색의 조합으로 알리도록 점멸 또는 조명하는 발광 다이오드를 더 포함할 수 있다. 또한 컨트롤부는 저항값 측정부에서 염도가 10% 이상일 때의 물의 저항 값이 측정 된 경우 전원 공급을 차단하여 전기 분해를 중단 하도록 릴레이부를 제어하되, 발광 다이오드를 제어하여 중단을 알릴 수 있다.
일 양상에 있어서, 컨트롤부는 저항값 측정부에서 염도가 4 % 이상 ~10 % 미만일 때의 물의 저항 값이 측정 된 경우 상기 인가되는 전압을 낮추되, 낮춘 전압에 상응하는 만큼 전압인가 시간을 추가하여 전기 분해 하도록 상기 릴레이부를 제어할 수 있다.
일 양상에 있어서, 컨트롤부는 저항값 측정부에서 염도가 3% 미만일 때의 물의 저항 값이 측정 된 경우 최대 전압으로 일정 시간 동안 물을 전기 분해하도록 상기 전원공급부와 상기 릴레이부를 제어할 수 있다.
일 양상에 있어서, 저항값측정부는 물의 양에 따른 저항 값의 변화 량을 측정하고, 컨트롤부는 측정된 저항 값의 변화 량에 따라 전원을 공급하여 물을 전기 분해하는 시간을 가변 시키도록 릴레이부를 제어할 수 있다.
일 양상에 있어서, 컨트롤부는 전기분해전극 양단의 저항값을 측정하지 않고 전원전압으로부터 절연된 초기전압을 인가하여 전극 양단에 과도한 전류가 흐르는 경우, 초기전압보다 낮은 전압을 인가하도록 전압공급부를 제어할 수 있다.
일 양상에 있어서, 수소발생장치는 물통의 기울기를 감지하는 자이로센서를 더 포함하고, 컨트롤부는 자이로센서에서 측정한 물통의 기울기가 일정 각도 이상인 경우 전원공급을 중단하도록 전원공급부를 제어할 수 있다.
일 양상에 있어서, 수소 발생 장치는 물의 접촉 여부를 감지하는 수위 감지 전극을 더 포함하고, 컨트롤부는 수위 감지 전극이 물의 접촉을 감지한 경우 전원 공급을 중단하도록 전원공급부를 제어할 수 있다.
일 양상에 있어서, 수소 발생 장치는 전기 분해로 발생한 수소의 압력을 감지하는 압력센서를 더 포함하고, 컨트롤부는 압력 센서에서 감지한 압력이 일정 압력 이상인 경우 전기분해를 중단하도록 전원공급부를 제어할 수 있다.
일 양상에 있어서, 수소 발생 장치는 컨트롤부의 제어 내용에 따른 사용자의 사용정보를 관리하는 사용 관리부를 더 포함하되, 사용관리부는 사용 정보를 저장하되, 저장 후에는 수정이 불가능한 저장부를 더 포함할 수 있다.
일 양상에 있어서, 수소 발생 장치는 장치사용전문가시스템에 접속하여 상기 사용정보를 전송하거나, 사용정보에 관한 가이드를 수신하는 통신부를 더 포함할 수 있다.
일 양상에 있어서, 수소 발생 장치는 자석과 물리적인 접촉 없이 자석의 자력에 의해 작동하여 수소 발생 장치의 on-off 전원을 조절하는 제 1 자석 감응 전원 절연 스위치를 포함할 수 있다.
일 양상에 있어서, 수소 발생 장치는 전기 분해 전극부와 구분되어, 물이 접촉하지 않도록 밀폐되어 방수 되는 방수 공간을 더 포함할 수 있다.
일 양상에 있어서, 방수 공간은 자석과 물리적인 접촉 없이 자석의 자력에 의해 조절되는 제 2 자석 감응 전원 절연 스위치 및 방수 공간 밖으로 돌출되어 자석이 닿는 경우 상기 자석 감응 전원 절연 스위치를 연결하여 2차 전지를 충전시키는 급속충전노출전극을 포함하는 급속 충전 노출부를 더 포함할 수 있다.
일 양상에 있어서, 수소 발생 장치는 내부에 상기 방수공간을 포함하는 본체를 포함하고, 해당 본체는 본체와 물통을 결합하도록 본체 하단에 암나사가 형성되는 물통결합부, 제 1 자석 감응 전원 절연 스위치가 회전하여 작동하는 링 구조인 회전스위치, 전기 분해 전극부, 전원공급부 및 상단에 형성되는 돌출부를 포함하는 원통형의 전기 분해 전극 봉 및 돌출부를 끼워 상기 전기 분해 전극 봉을 본체와 결합할 수 있는 고정 홈을 포함하고, 전기 분해 전극 봉은 돌출부와 고정 홈의 결합 후 본체의 하단 방향으로 돌출되어 본체와 물통 결합 시 물통 안에 들어갈 수 있다.
일 양상에 있어서, 본체는 물이 통과할 수 있는 수직통로, 상단에 통로를 개폐하는 덮개가 결합되도록 수나사가 형성되는 뚜껑결합부를 더 포함할 수 있다.
일 양상에 있어서, 본체 또는 덮개는 수소호흡기의 호스와 연결되는 노즐을 더 포함할 수 있다.
일 양상에 있어서, 전자 담배 모형의 수소 발생 장치는 충전회로, 2차 전지 및 절연 DC-DC 변환기를 포함하는 전원공급부, 전원공급부와 일측에서 결합하되 분리가 가능한 수소발생부, 일측과 반대 방향의 일측에서 상기 수소발생부와 결합한 흡입부를 포함 할 수 있되, 수소발생부는 물을 전기 분해 할 때 발생하는 산소와 결합하여 오존의 발생을 방지하는 다공질 세라믹 촉매가 위치하되, 수직통로를 갖는 원통형의 전기 분해 전극과 흡입구가 결합되는 일측에서 상기 전기 분해 전극의 일부가 매립된 액체흡수재를 포함하는 물통을 포함할 수 있다.
일 양상에 있어서, 흡입부는 사용자가 수소를 흡입할 수 있는 흡입구, 사용자가 상기 흡입구로 흡입 시에 수소와 혼합될 외부 공기가 들어오는 미세구멍 및 회전하여 상기 미세구멍을 여닫는 조절부를 포함할 수 있다.
물에 녹아 있는 성분에 따라 인가될 전압을 조절하여 적절한 전기분해를 함으로써 물에 대한 의존도를 개선한다. 또한, 수소 발행 장치를 일상 생활에서 쉽게 구비하고 있는 물병 등에 결합하게 하여 일반인들에게 수소수의 접근성을 높인다.
도 1은 수소 발생 장치의 내부 회로의 구성을 나타낸 블록도이다.
도 2는 수소 발생 장치가 작동 할 때 시간에 따라 인가되는 전압, 전류, 측정된 저항값의 크기를 그래프로 나타낸 모습이다.
도 3은 수소 발생 장치의 저항값 측정부에서 측정한 값에 따라 인가하는 전원의 크기를 달리하는 알고리즘을 보여준다.
도 4는 물통과 본체로 이루어지는 수소 발생 장치의 구성을 나타낸 모습이다.
도 5는 수소 발생 장치가 일반 생수병 물통에 결합될 수 있는 본체로 이루어진 일 실시예를 보여준다.
도 6은 뚜껑에 노즐이 있는 수소 발생 장치의 일 실시예와, 해당 노즐에 수소 호흡기를 장착하여 사람이 호흡하는 모습을 보여준다.
도 7은 전기 전극 봉을 나타낸 일 실시예의 그림이다.
도 8은 전자 담배 모형을 한 수소 발생 장치의 구성도이다.
도 9, 10, 11, 12는 물에 담가 쓸 수 있는 수소 발생 장치를 나타낸 그림이다.
도 13은 물 속에 담가 사용하는 수소 발생 장치를 분해하여 나타낸 일 실시예이다.
전술한 그리고 추가적인 본 발명의 양상들은 후술하는 실시 예들을 통해 더욱 명확해 질 것이다. 이하에서는 첨부된 도면을 참조하여 기술되는 실시 예들을 통해 본 발명을 당업자가 용이하게 이해하고 재현할 수 있을 정도로 상세히 설명하기로 한다.
도 1은 본 발명에 따른 수소 발생 장치의 내부회로의 구성을 나타낸 블록도이다. 도 2는 도1의 도면의 구성을 간략화한 블록도이다. 도 1에 도시된 바와 같이 수소 발생 장치는 전기 분해 전극부(3), 저항값 측정부(10), 전원공급부(11), 컨트롤부(12), 릴레이부(9)를 포함할 수 있다.
일 실시예에 있어서, 전기 분해 전극부(3)는 +전극과 -전극을 포함하며, 해당 전극들이 물(1)과 접촉 할 수 있도록 배치된다. 해당 전극들에 전원이 공급되면 접촉하고 있는 물(1)은 전기 분해된다.
일 양상에 있어서, 전기 분해 전극부(3)에는 다공질 세라믹 촉매(4)가 위치하여 해당 촉매가 물을 전기 분해 할 때 발생하는 산소와 결합하여 오존의 발생을 방지할 수 있다. 도1에서 전기분해전극부(3-1,3-2)에 위치하는 다공질 세라믹 촉매(4) 모습의 예시를 보여준다. 다공질 세라믹 촉매(4)란, 마그네슘, 산화철, 토르마린 등 다양한 광물질을 합성하여 만든 세라믹이다. 물(1)이 전기 분해 되어 두 개의 수소와 한 개의 산소로 분해 될 때 오존이 발생할 수 있는데, 전기 분해 전극부(3)에 해당 촉매(4)를 두면 오존이 발생하기 전에 산소와 세라믹 촉매(4)가 결합하여 오존이 생성되는 것을 방지할 수 있다. 일 실시예에 있어서, 수소 생성 화학식은 2H20 + Mg -> Mg(0H)2 + H2 이고, 마그네슘은 K 전자껍질에 2개, L 전자껍질에 8개, M 전자껍질에 2개의 전자를 보유하고 있으며, 이 전자 중 최외각 전자 2개는 불안정한 상태로 전자가 쉽게 방출될 수 있으므로 환원력이 있다. 마그네슘이 물과 반응할 경우, 마그네슘 한 분자와 물 2분자가 반응을 하게 되며, 이때 마그네슘은 유리되지 않고 수산화마그네슘이 형성되며, 이 과정에서 마그네슘에서 나온 전자의 일부는 수소기체 형성에 사용되고 나머지 전자는 물속에 남아있게 된다. 수산화마그네슘은 이온화되어 수산화기(OH-)가 형성 되며, 이때의 단원자 산소가 산소분자 대신 오존(O3)과 결합하며, 그 경우 일반 산소로 변하면서 오존이 소멸된다. 즉 마그네슘은 산화되고 대신 물은 환원되어 수소수가 되고, 전기분해수소기체와 세라믹을 구성하는 광물을 마그네슘, 산화철, 토르마린(전기석) 등으로 합성하여 나온 수소수의 음용과 수소기체를 호흡 하면 활성산소 중 가장 흉폭한 하이드록시래디칼만을 선택적으로 결합, H2O가 되어 항산화 효과를 갖게 된다. 이러한 항산화 물은 마이너스(-)의 산화 환원 전위 값을 가지고 환원력이 뛰어나 -100mV - 1989mV 범위의 값을 가진다.
일 양상에 있어서, 저항값 측정부(10)는 물(1)의 저항 값을 측정하되, 물에 녹아있는 전해질의 종류 및 해당 전해질의 농도에 따른 변화를 측정할 수 있다. 일 실시예에 있어서, 저항값 측정부(10)는 아날로그 디지털 변환기이다.
저항값 측정부(10)는 전원공급이 차단된 상태로 일정시간 동안 물의 저항값을 측정한다. 이 때, 후술하겠지만, 릴레이부(9)가 전원공급을 차단할 수 있다.
일 실시예에 있어서, 저항값 측정부(10)가 측정한 물의 저항 값을 물에 녹아있는 전해질의 종류와 전해질의 농도를 고려하여 측정할 수 있다. 예를 들어, 물에 녹아 있는 다양한 전해질 중 전기적인 저항 값에 가장 큰 영향을 주는 것이 소금의 농도, 즉, 염도인 경우 저항값 측정부(10)는 현재 저항값을 측정하고, 그 측정값을 토대로 현재 염도를 측정할 수 있다. 또는, 저항값 측정부(10)는 물의 전기적 저항 값의 변화를 토대로 물에 녹아 있는 염도의 변화를 알 수 있다. 여기서 염도 외에도 전기분해 시 화학적 반응이 일어나 인체해 유해한 기체가 될 수 있는 다른 전해질이 고려될 수 있다.
일 양상에 있어서, 전원공급부(11)는 전기 분해 전극(3)에 전원장치로부터 절연된 전압을 인가할 수 있다. 일 실시예에 있어서, 전원 공급부(11)는 DC-DC변환기이다. 이러한 전원공급부(11)는 물에 접촉되어 있는 전극 부분과 전원장치를 완전히 독립시켜 공급하기 위하여 1차측과 2차측을 완전히 절연시킨 스텝 업 DC-DC 변환회로로 전압을 전기 분해 전극에 인가한다. 또한, 전원공급부(11)는 후술하는 컨트롤부(12) 등에 전원을 공급하여 수소 발생 장치의 동작이 가능하게 한다.
일 양상에 있어서, 컨트롤부(12)는 저항값 측정부(10)에서 측정된 저항 값에 따라 전압을 가변시켜 인가하도록 전원공급부(11)를 제어한다. 즉, 측정된 저항 값은 전술한 바와 같이 전해질의 종류와 농도를 알 수 있게 하므로, 결국 해당 전해질의 종류와 농도에 따라 전압을 가변 시키는 것과 동일한 의미이다. 후술하겠지만, 측정된 저항 값에 따라 전해질의 농도가 전기 분해 결과 인체에 미칠 수 있는 결과를 고려하여 인가되는 전압의 크기를 변화시킨다. 예를 들어, 염분 철분 등 전해질의 저항값이 작으면 전기 분해 전압과 전류를 줄여서 공급하고, 전해질 저항값이 높은 경우 최대 정격전압과 적정전류를 흘리도록 한다. 도 2의 35, 36 그래프는 저항값에 따라 인가하는 전압의 크기를 V1, V2로 달리하는 실시 예를 보여준다.
일 양상에 있어서, 릴레이부(9)는 전기 분해 전극에 전류의 방향을 일정시간 간격으로 바꿔가며 전압을 인가하도록 제어할 수 있다. 일 실시예에 있어서, 릴레이부(9)는 래치릴레이 또는 솔리드스테이트릴레이 회로일 수 있다. 릴레이부(9)가 전극에 공급하는 전원의 극성을 일정 시간 간격으로 반전시켜 양 전극의 화학적인 이행현상을 방지하게 한다.
일 양상에 있어서, 수소 발생 장치는 발광 다이오드(56)를 포함할 수 있다. 발광 다이오드(56)는 전기 분해의 동작과 중단을 적색, 청색 또는 녹색의 조합으로 알리도록 점멸 또는 조명할 수 있다. 컨트롤부(12)가 이러한 발광 다이오드(56)의 점멸과 조명을 제어할 수 있다. 일 실시예에 있어서, 발광 다이오드(56)의 색은 언급된 색 이외의 색으로 구성될 수 있다.
도 3은 측정된 저항 값에 따른 수소발생장치의 동작을 나타낸 알고리즘이다. 이하 도 3의 알고리즘 내용을 도2의 블럭도와 함께 설명한다.
일 양상에 있어서 컨트롤부(12)는 저항값 측정부(10)에서 염도가 10% 이상일 때의 물의 저항 값이 측정 된 경우 전원 공급을 차단하여 전기 분해를 중단 하도록 릴레이부(9)를 제어할 수 있다. 동시에 발광 다이오드(56)를 제어하여 중단을 알릴 수 있다. 물의 염도가 10% 이상일 경우(예를 들어 바닷물), 전해질 함량이 높아 인가한 전압에 비하여 전류가 크게 흐르게 되고, 결과적으로 전류가 허용치보다 높아져 이 경우 수소 이외의 기체가 발생할 수 있기 때문에 이를 방지하기 위함이다.
또한, 전술한 바와 같이 컨트롤부(12)는 발광 다이오드부(56)를 제어하여 적색 불이 점멸 또는 조명되어 전기분해가 중단 됨을 알릴 수 있다.
또 다른 양상에 있어서, 컨트롤부(12)는 저항값 측정부(10)에서 염도가 4 % 이상 ~10 % 미만일 때의 물의 저항 값이 측정 된 경우 인가되는 전압을 낮추도록 전원공급부(11)를 제어할 수 있다. 염도가 4 % 이상 ~10 % 미만인 경우에는, 전압을 낮추어 인가하는 것으로 수소 이외의 기체가 발생하는 것을 방지할 수 있으므로 염도가 10%일 때와 같이 곧바로 전기 분해를 중단하지는 않는다. 또한, 낮춘 전압에 상응하는 만큼 전압인가 시간을 추가하여 전기 분해 하도록 릴레이부(9)를 제어함으로써 적정량의 수소기체가 발생하도록 할 수 있다. 그리고 녹색으로 발광 다이오드(56)를 점멸 또는 조명하여 현재 전기분해 상태를 사용자에게 알릴 수 있다. 일 실시예에 있어서, 염도가 4 % 이상 ~10 % 미만이어서 전압을 낮추어 인가하였더니 전류가 염도가 3% 미만인 경우의 저항값이 측정 되었을 때의 범위 값으로 흐르는 경우에는 후술하는 경우와 같이 청색 발광다이오드(56)를 점멸 또는 조명하여 현재 전기 분해 상태를 알릴 수 있다.
일 양상에 있어서, 컨트롤부(12)는 저항값 측정부(10)에서 염도가 3% 미만일 때의 물의 저항 값이 측정 된 경우 최대 전압으로 일정 시간 동안 물을 전기 분해하도록 전원공급부(11)와 릴레이부(9)를 제어할 수 있다. 이 경우, 염도의 비율이 낮아 전압을 최대로 인가하여도 전류가 허용치 이상으로 흐르기 어렵다. 도 4의 36은 Vmax의 전압을 일정시간 동안 인가하는 그래프이다. 도 3의 알고리즘에서 보는 바와 같이 Vmax로 전기 분해 전극부(3)에 인가하여 전류가 적정 범위로 흐르면 일정 시간동안 전기분해 하며 청색 발광 다이오드(56)를 점멸 또는 조명하여 사용자에게 전기분해의 상태를 알릴 수 있다.
일 양상에 있어서, 저항값측정부(10)는 물의 양에 따른 상기 저항 값의 변화 량을 측정할 수 있다. 일 실시예에 있어서, 저항값 측정부(10)는 물의 양에 따라 전기 분해 전극과 물이 접촉하는 면적이 변화하여 저항값이 미세하게 작아지거나 커지는 것을 측정할 수 있다. 저항값 측정부(10)는 물의 양의 변화에 의해 측정되는 저항값이 미세하게 변화하면 변화할 때마다 그 변화량에 대한 정보를 컨트롤부(12)로 전달한다.
일 양상에 있어서, 컨트롤부(12)는 저항값 측정부(10)가 물의 양의 변화에 따른 저항값의 변화를 측정한 경우, 그 변화량에 따라 물을 전기 분해 하는 시간을 가변 시키도록 릴레이부를 제어할 수 있다. 전술한 바와 같이, 용기에 담긴 물의 양이 변화하여 전기 분해 전극(3)과 물이 접촉하는 면적이 변화하면 그 변화에 따른 저항값을 저항값 측정부(10)가 측정하고, 측정된 결과를 즉각적으로 컨트롤부(12)로 전달하여 컨트롤부(12)가 릴레이부(9)를 제어한다. 일 실시예에 있어서, 물의 양의 증가로 접촉 면적이 증가하면 저항값이 미세하게 작아지므로 전기 분해 시간을 줄이도록 릴레이부(9)의 스위칭을 제어하고, 반대로 물의 양의 감소로 접촉면적이 감소하면 저항값이 미세하게 커지므로 전기 분해 시간을 늘리도록 릴레이부(9)의 스위칭을 제어한다.
일 양상에 있어서, 컨트롤부(12)는 전기분해전극(3) 양단의 저항값을 측정하지 않고 전원전압으로부터 절연된 초기전압을 인가하여 전극 양단에 과도한 전류가 흐르는 경우, 초기전압보다 낮은 전압을 인가하도록 전압 공급부(11)를 제어할 수 있다. 도 4의 38과 같이 V3를 전기 분해 전극(3)에 인가한 후에 39와 같이 Ip 에 이르는 과도전류가 흐르는 경우, 컨트롤부(12)가 전압 공급부(11)를 제어하여 전압을 V4로 낮추고 전류가 낮아지도록 제어한다. 이러한 제어 과정에서는 도4의 40과 같이 저항값을 측정하지 않고, 전압을 제어하여 전류를 낮춘 후에 저항 값을 측정한다.
일 양상에 있어서, 수소 발생장치는 물통(2), 자이로센서(6)를 포함할 수 있다. 물통(1)은 수소 발생 장치의 전극(3)이 접촉하게 될 물을 담을 수 있는 용기이다. 자이로센서(6)는 해당 물통(2)의 기울기를 감지하는 센서로 이 센서의 동작 원리는 당해 분야의 통상의 기술자에게 자명한 바 설명을 생략한다.
일 양상에 있어서 컨트롤부(12)는 자이로센서(6)에서 측정한 물통의 기울기가 일정 각도 이상인 경우 전원공급을 중단하도록 전원공급부(11)를 제어 할 수 있다. 물통(2)이 일정 각도 이상으로 기울어지면 물이 세는 일이 발생할 수 있으므로 전원 공급을 미리 차단하도록 제어한다.
일 양상에 있어서, 물의 접촉 여부를 감지하는 수위 감지 전극(7)을 더 포함할 수 있다. 수위 감지 전극(7)은 물통(2)의 상단에 위치하여 물(1)이 물통(2)에 얼만큼 가득 찼는지 가늠할 수 있게 한다. 수위 감지 전극(7)은 물통(2)의 크기나 모양에 따라 적정한 위치에 놓일 수 있다.
일 양상에 있어서, 컨트롤부(12)는 수위 감지 전극(7)이 물의 접촉을 감지한 경우 전원 공급을 중단하도록 전원공급부(11)를 제어할 수 있다. 일 실시예에 있어서, 수위 감지 전극(7)에서 물의 접촉을 감지하면 물통에 물이 수위 감지 전극(7)까지 차거나 그 이상으로 존재하는 것으로 물통(2)에 여분의 공간이 많지 않다는 것을 의미한다. 이러한 경우 전기 분해를 계속 진행하여 수소 기체가 지속적으로 발생하면 물통(2) 내부의 압력이 과도하게 높아질 수 있다. 따라서 수위 감지 전극(7)이 물의 접촉을 감지하면 즉각적으로 컨트롤부(12)에 감지 신호를 전달하여 컨트롤부(12)가 전원공급부(11)를 제어하도록 한다.
일 양상에 있어서, 수소 발생 장치는 압력 센서(5)를 더 포함할 수 있다. 압력센서(5)는 물의 전기 분해로 발생한 수소의 압력을 감지할 수 있다. 압력 센서(5)는 물통 내에서 수소 기체의 압력을 감지하고, 감지 신호를 컨트롤부(12)로 전달하여 감지한 압력에 따라 전기분해를 제어할 수 있도록 한다.
일 양상에 있어서, 컨트롤부(12)는 압력 센서(5)는 감지한 압력이 일정 압력 이상인 경우 전기분해를 중단하도록 전원공급부(11)를 제어할 수 있다. 일 실시예에 있어서, 전기 분해 되는 물이 플라스틱 병이나 페트병 등과 같이 밀폐된 작은 공간인 경우, 물을 전기 분해한 수소 가스의 압력이 일정 이상 높을 경우 폭발 등의 안전 문제가 발생할 수 있다. 따라서, 압력 센서(5)가 일정 이상의 압력을 감지하면 압력이 더 이상 위험수위에 도달하지 않도록 감지 신호를 컨트롤부(12)로 전달하고, 컨트롤부(12)는 그 감지신호에 따라 전원공급부(11)가 전원 공급을 중단하도록 제어한다.
일 양상에 있어서, 수소 발생 장치는 사용 관리부를 포함할 수 있다. 사용관리부는 저장부(13), 통신부(18)를 더 포함할 수 있다.
일 양상에 있어서 사용관리부는 컨트롤부(12)의 제어 내용에 따른 사용자의 사용정보를 관리할 수 있다. 일 실시예에 있어서, 사용정보는 사용자가 수소 분해 장치를 사용한 내용으로서, 예를 들어 물을 전기분해 한 시간이나 전기분해 하였던 물의 양, 저항 값, 전해질 종류, 전해질 농도, 수소 발생량 등에 관한 사항일 수 있다. 또는 전기분해 하였던 전압의 크기, 전류의 크기 등의 정보도 포함될 수 있다.
일 양상에 있어서 저장부(13)는 사용 관리부에서 관리하는 사용자의 사용정보를 저장할 수 있다. 이 때, 저장부(13)는 저장된 내용의 수정이 불가능하게 할 수 있다. 그 결과, 사용자가 사용정보를 안전하게 관리할 수 있다.
일 양상에 있어서, 통신부(18)는 장치사용전문가시스템(30)에 접속하여 사용정보를 전송하거나, 사용정보에 관한 가이드를 수신할 수 있다. 일 실시예에 있어서, 통신부(18)는 무선통신 모듈로서, 스마트 폰이나 태블릿 PC의 블루투스 등의 근거리 통신 모듈과 통신하거나 NFC, ISO1443 PXD 와 같은 근접통신 모듈과 통신할 수 있다. 장치사용전문가시스템(30)은 수소 발생 장치를 제공하는 사업자의 시스템이거나 장치의 사용을 전문적으로 관리하는 시업자의 시스템일 수 있다. 이 시스템은 사용자의 수소 발생 장치의 사용정보를 통신부(18)를 통해 전달받아 이를 분석하여, 그 사용정보에 대한 분석 결과를 토대로 사용자에게 올바른 사용 가이드를 생성할 수 있다. 그리고 그 가이드 정보를 사용자에게 전달함으로써 수소 발생 장치의 올바른 사용을 유도할 수 있다. 수소 발생 장치는 해당 정보를 통신부(18)를 통해 수신하여 사용자에게 알릴 수 있다.
일 양상에 있어서, 수소 발생 장치는 방수 공간을 포함한다. 방수 공간은 전기 분해 전극부(3)와 구분되어, 물이 접촉하지 않도록 밀폐되어 방수되는 공간이다. 방수 공간에는 제 1 자석 감응 전원 절연 스위치(24)가 포함될 수 있다. 제 1자석 감응 전원 절연 스위치는 자석과 물리적인 접촉 없이 자석의 자력에 의해 작동하여 수소 발생 장치의 on-off 전원을 조절할 수 있다.
추가적인 양상에 있어서, 상기 방수 공간은 제 2 자석 감응 전원 절연 스위치(24), 급속 충전 노출부(25)를 더 포함할 수 있다. 제 2 자석 감응 전원 절연 스위치(24)는 자석과 물리적인 접촉 없이 자석의 자력에 의해 조절된다. 급속 충전 노출부(25)는 방수 공간 밖으로 돌출되어 자석이 닿는 경우 자석 감응 전원 절연 스위치를 연결하여 2차 전지를 충전시킬 수 있다. 일 실시예에 있어서, 제 1자석 감응 전원 절연 스위치와 제 2자석 감응 전원 절연 스위치는 2차전지 고속 충전회로와 연결된다. 자석이 급속 충전 노출부(25)와 접촉하면, 자력에 의해 제 1 자석 감응 전원 절연 스위치와 제 2 자석 감응 전원 절연 스위치가 스위칭 되어 밀폐된 수소 발생 장치의 내부에 충전 전류가 흐르게 된다. 따라서 2차전지 고속 충전회로와 2차전지에도 충전 전류가 흘러 2차전지가 충전된다. 도 5는 제 1 및 제 2 자석 감응 전원 절연 스위치(24a, 24b), 급속 충전 노출부(25) 및 급속 충전 전극부 자석(27)을 나타낸 모습이다.
도 6는 도 1의 회로를 내부에 포함하는 수소 발생 장치의 일 실시 예를 나타낸 모습이다. 도 7은 도6의 수소 발생 장치가 물병과 결합된 모습을 나타낸다. 도 8은 도 6의 수소 발생 장치를 분해한 모습이다.
일 양상에 있어서, 수소 발생 장치는 본체(41)를 포함한다. 본체(41)는 전술한 방수공간(23)을 내부에 포함할 수 있다. 구체적인 양상에 있어서, 본체(41)는 물통결합부, 회전스위치(42), 전기 분해 전극 봉(3), 고정 홈을 더 포함한다.
물통결합부는 본체(41)와 물통(2)을 결합하도록 본체 하단에 암나사가 형성되어 있다. 회전스위치(42)는 자석 감응 전원 절연 스위치가 회전하여 작동하는 링 구조이다. 예를 들어, 회전 스위치(42)에는 자석(22)이 있어, 회전 스위치를 회전시키면 자석도 회전되고, 자석의 움직임에 따라 자석 감응 전원 절연 스위치가 작동하게 된다.
구체적인 양상에 있어서, 전기 분해 전극 봉(3)은 전술한 전기 분해 전극부(3), 전원공급부(11), 돌출부를 더 포함할 수 있다. 일 실시예에 있어서, 전기분해 전극부(3)는 원통형 형상의 봉일 수 있다. 도 8은 이러한 전기 전극 봉(3)에 구체적인 모습을 나타낸 그림이다.
구체적인 양상에 있어서, 전기 분해 전극 봉(3)은 돌출부와 고정 홈의 결합 후 본체의 하단 방향으로 돌출되어 본체와 물통 결합 시 물통 안에 들어가게 된다. 일 실시예에 있어서, 전기 분해 전극 봉(3)의 상단에 돌출부가 본체에 존재하는 고정 흠에 끼워져 전기 분해 전극 봉이 본체에 흔들리지 않게 결합된다. 결합 후 전기 분해 전극 봉(3)이 본체(41)의 하단 방향으로 돌출된 모습은 도6과 같다.
일 양상에 있어서, 본체는 수직통로, 뚜껑결합부를 더 포함할 수 있다. 수직통로는 물이 통과할 수 있는 수직통로이다. 본체가 도5와 같이 물통에 결합되었을 때 물통에 담긴 물이 본체 상단의 구멍으로 흐를 수 있도록 본체 내부에는 수직 통로가 존재한다. 뚜껑결합부는 통로를 개폐하는 덮개가 결합되도록 수나사가 형성된다.
일 양상에 있어서, 본체(41)는 노즐을 포함할 수 있다. 노즐(70)은 수소호흡기의 호스와 연결할 수 있는 노즐이다. 또는 본체(41)를 덮는 덮개에 노즐이 포함될 수 있다. 도6, 7, 11에서 뚜껑에 있는 노즐의 모습과 노즐과 연결된 수소 호흡기(69)를 보여준다. 사용자(70)는 노즐(70)에 수소 호흡기(69)를 연결하여 수소 호흡기를 사용함으로써 수소 기체를 흡입할 수 있다.
도 12은 전자 담배 모형의 수소 발생 장치를 나타낸 그림이다. 전자 담배모형의 수소 발생 장치는 전원공급부(11), 수소발생부, 흡입부(61)를 포함한다.
일 실시예에 있어서 전원공급부(11)는 충전회로(15), 2차 전지 및 절연 DC-DC 변환기를 포함할 수 있다.
일 양상에 있어서, 수소발생부는 전원공급부와 일측에서 결합되며, 분리할 수도 있다.
일 양상에 있어서, 흡입부(61)는 수소발생부가 전원공급부(11)와 결합한 일측과 반대 방향의 일측에서 수소발생부와 결합할 수 있다.
구체적인 양상에 있어서, 수소발생부에는 물을 전기 분해 할 때 발생하는 산소와 결합하여 오존의 발생을 방지하는 다공질 세라믹 촉매(4)가 위치하되, 수소 발생 장치의 물통(2)은 수직통로를 갖는 원통형의 전기 분해 전극(3)과 흡입구(61)가 결합되는 일측에서 해당 전기 분해 전극(3)의 일부가 매립된 액체흡수재(65)를 포함한다. 전기 분해 전극은 원통형이되 중심부가 뚫려있는 동심형이다(3). 따라서 물이 접촉하는 전극의 면적을 크게 할 수 있다. 액체흡수제(65)는 물이 새는 것을 방지하기 위한 다공질 스폰지로 물을 격리시켜 수소기포(66)만 통과하게 할 수 있다.
일 양상에 있어서, 흡입부(61)는 흡입구, 미세구멍(63), 조절부(62)를 더 포함할 수 있다. 흡입구는 사용자가 수소를 흡입할 수 있는 구멍이고, 미세구멍(63)은 사용자가 해당 흡입구로 흡입 시에 수소와 혼합될 외부 공기가 들어올 수 있는 구멍이다. 조절부(62)는 회전하여 미세구멍(63)을 여닫게 할 수 있다. 일 실시예에 있어서, 조절부(62)를 돌려 미세구멍을 열면 수소와 공기가 혼합되어 사용자가 흡입구에 입을 대고 흡입할 때 공기 혼합 수소를 마실 수 있다.

Claims (17)

  1. 물을 전기 분해하여 수소를 발생하는 장치에 있어서,
    물을 전기분해 하되, 전기 분해 시 발생하는 산소와 결합하여 오존의 발생을 방지하는 다공질 세라믹 촉매가 위치하는 전기 분해 전극부;
    물의 저항 값을 측정하되, 물에 녹아 있는 전해질의 종류 및 해당 전해질의 농도에 따른 변화를 측정하는 저항값 측정부;
    전기 분해 전극에 전원장치로부터 절연된 전압을 인가하는 전원공급부;
    상기 저항값 측정부에서 측정된 저항 값에 따라 전압을 가변시켜 인가하도록 상기 전원공급부를 제어하는 컨트롤부;
    전기 분해 전극에 전류의 방향을 일정시간 간격으로 바꿔가며 전압을 인가하도록 제어되는 릴레이부;
    를 포함하는 수소 발생 장치.
  2. 제 1항에 있어서,
    전기 분해의 동작과 중단을 적색, 청색 또는 녹색의 조합으로 알리도록 점멸 또는 조명하는 발광 다이오드를 더 포함하고,
    상기 컨트롤부는
    상기 저항값 측정부에서 염도가 10% 이상일 때의 물의 저항 값이 측정 된 경우 전원 공급을 차단하여 전기 분해를 중단 하도록 상기 릴레이부를 제어하되, 상기 발광 다이오드를 제어하여 상기 중단을 알리는 수소 발생 장치.
  3. 제 1항에 있어서, 상기 컨트롤부는
    상기 저항값 측정부에서 염도가 4 % 이상 ~10 % 미만일 때의 물의 저항 값이 측정 된 경우 상기 인가되는 전압을 낮추되, 낮춘 전압에 상응하는 만큼 전압인가 시간을 추가하여 전기 분해 하도록 상기 릴레이부를 제어하는 수소 발생 장치.
  4. 제 1항에 있어서,
    상기 저항값 측정부에서 염도가 3% 미만일 때의 물의 저항 값이 측정 된 경우 최대 전압으로 일정 시간 동안 물을 전기 분해하도록 상기 전원공급부와 상기 릴레이부를 제어하는 수소 발생 장치.
  5. 제 1항에 있어서, 상기 저항값측정부는
    물의 양에 따른 상기 저항 값의 변화 량을 측정하고,
    상기 컨트롤부는
    상기 측정된 저항 값의 변화 량에 따라 전원을 공급하여 물을 전기 분해하는 시간을 가변 시키도록 상기 릴레이부를 제어하는 수소 발생 장치.
  6. 제 1항에 있어서, 상기 컨트롤부는
    전기분해전극 양단의 저항값을 측정하지 않고 전원전압으로부터 절연된 초기전압을 인가하여 전극 양단에 과도한 전류가 흐르는 경우, 초기전압보다 낮은 전압을 인가하도록 상기 전압공급부를 제어하는 수소 발생장치.
  7. 제 1항에 있어서,
    물통의 기울기를 감지하는 자이로센서를 더 포함하고,
    상기 컨트롤부는
    상기 자이로센서에서 측정한 물통의 기울기가 일정 각도 이상인 경우 전원공급을 중단하도록 상기 전원공급부를 제어하는 수소 발생 장치.
  8. 제 1항에 있어서,
    물 접촉 여부를 감지하는 수위 감지 전극을 더 포함하고,
    상기 컨트롤부는
    상기 수위 감지 전극이 물의 접촉을 감지한 경우 전원 공급을 중단하도록 상기 전원공급부를 제어하는 수소 발생 장치.
  9. 제 1항에 있어서,
    물의 전기 분해로 발생한 수소의 압력을 감지하는 압력센서를 더 포함하고,
    상기 컨트롤부는
    상기 압력 센서에서 감지한 압력이 일정 압력 이상인 경우 전기분해를 중단하도록 상기 전원공급부를 제어하는 수소 발생 장치.
  10. 제 1항에 있어서,
    상기 컨트롤부의 제어 내용에 따른 사용자의 사용정보를 관리하는 사용 관리부를 더 포함하되,
    상기 사용관리부는
    상기 사용정보를 저장하되, 저장 후에는 수정이 불가능한 저장부;
    장치사용전문가시스템에 접속하여 상기 사용정보를 전송하거나, 사용정보에 관한 가이드를 수신하는 통신부;
    를 더 포함하는 수소 발생 장치.
  11. 제 1항에 있어서,
    자석과 물리적인 접촉 없이 자석의 자력에 의해 작동하여 수소 발생 장치의 on-off 전원을 조절하는 제 1 자석 감응 전원 절연 스위치를 포함하고 상기 전기 분해 전극부와 구분되어, 물이 접촉하지 않도록 밀폐되어 방수 되는 방수 공간;
    을 더 포함하는 수소 발생 장치.
  12. 제 11항에 있어서, 상기 방수 공간은
    자석과 물리적인 접촉 없이 자석의 자력에 의해 조절되는 제 2 자석 감응 전원 절연 스위치; 및
    방수 공간 밖으로 돌출되어 자석이 닿는 경우 상기 자석 감응 전원 절연 스위치를 연결하여 2차 전지를 충전시키는 급속충전노출전극을 포함하는 급속 충전 노출부;
    를 더 포함하는 수소 발생 장치.
  13. 제 11항에 있어서,
    내부에 상기 방수공간을 포함하는 본체;
    상기 본체는
    상기 본체와 물통을 결합하도록 상기 본체 하단에 암나사가 형성되는 물통결합부;
    상기 제 1 자석 감응 전원 절연 스위치가 회전하여 작동하는 링 구조인 회전스위치;
    상기 전기 분해 전극부, 상기 전원공급부 및 상단에 형성되는 돌출부를 포함하는 원통형의 전기 분해 전극 봉; 및
    상기 돌출부를 끼워 상기 전기 분해 전극 봉을 본체와 결합할 수 있는 고정 홈; 을 포함하고,
    상기 전기 분해 전극 봉은
    상기 돌출부와 고정 홈의 결합 후 본체의 하단 방향으로 돌출되어 상기 본체와 물통 결합 시 물통 안에 들어가는
    수소 발생 장치.
  14. 제 13항에 있어서, 상기 본체는
    물이 통과할 수 있는 수직통로;
    상단에 상기 통로를 개폐하는 덮개가 결합되도록 수나사가 형성되는 뚜껑결합부;
    를 더 포함하는 수소 발생 장치.
  15. 제 14항에 있어서, 상기 본체 또는 상기 덮개는
    수소호흡기의 호스와 연결되는 노즐;
    을 더 포함하는 수소 발생 장치.
  16. 전자 담배 모양의 수소 발생 장치에 있어서,
    충전회로, 2차 전지 및 절연 DC-DC 변환기를 포함하는 전원공급부;
    상기 전원공급부와 일측에서 결합하되 분리가 가능한 수소발생부;
    상기 일측과 반대 방향의 일측에서 상기 수소발생부와 결합한 흡입부; 를 포함하되,
    상기 수소발생부는 물을 전기 분해 할 때 발생하는 산소와 결합하여 오존의 발생을 방지하는 다공질 세라믹 촉매가 위치하되, 수직통로를 갖는 원통형의 전기 분해 전극과 상기 흡입구가 결합되는 일측에서 상기 전기 분해 전극의 일부가 매립된 액체흡수재를 포함하는 물통;
    을 포함하는 수소 발생 장치.
  17. 제 16항에 있어서, 상기 흡입부는
    사용자가 수소를 흡입할 수 있는 흡입구;
    사용자가 상기 흡입구로 흡입 시에 수소와 혼합될 외부 공기가 들어오는 미세구멍; 및
    회전하여 상기 미세구멍을 여닫는 조절부;
    을 더 포함하는 수소 발생 장치.
PCT/KR2016/007915 2015-07-21 2016-07-20 수소 발생 장치 WO2017014562A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/746,562 US20180209050A1 (en) 2015-07-21 2016-07-20 Hydrogen generation apparatus
CN201680054985.3A CN108138337A (zh) 2015-07-21 2016-07-20 氢气发生装置
JP2018523722A JP2018532518A (ja) 2015-07-21 2016-07-20 水素発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0103257 2015-07-21
KR1020150103257A KR101724631B1 (ko) 2015-07-21 2015-07-21 수소 발생 장치

Publications (1)

Publication Number Publication Date
WO2017014562A1 true WO2017014562A1 (ko) 2017-01-26

Family

ID=57834152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007915 WO2017014562A1 (ko) 2015-07-21 2016-07-20 수소 발생 장치

Country Status (5)

Country Link
US (1) US20180209050A1 (ko)
JP (1) JP2018532518A (ko)
KR (1) KR101724631B1 (ko)
CN (1) CN108138337A (ko)
WO (1) WO2017014562A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014848A (ja) * 2018-07-26 2020-01-30 リン, シン−ユンLin, Hsin−Yung クラウドモニタリングシステムと協働する水素発生器及びそのクラウドモニタリングシステム
EP3583970A4 (en) * 2017-02-14 2020-12-30 Aqua Bank Co., Ltd. BIOACTIVATION PROCEDURES TO IMPROVE NEURAL ACTIVITY AND BLOOD CIRCULATION ACTIVITY OF A LIVING BODY

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494055A (zh) * 2017-04-12 2019-11-22 水银行股份有限公司 电解式气体吸引装置
CN111527240B (zh) * 2018-01-09 2022-08-16 竹原隆 便携式气体供给装置
WO2020157936A1 (ja) * 2019-01-31 2020-08-06 フレンド株式会社 水素混合ガス生成装置および水素混合ガスの生成方法
KR102222625B1 (ko) * 2019-05-02 2021-03-04 주식회사 새안 수돗물 연속 전기분해장치
KR102118044B1 (ko) * 2019-12-17 2020-06-03 유인수 Iot 기반의 수소가스흡입기
JP6808256B1 (ja) * 2020-01-08 2021-01-06 株式会社健明 ポータブル水素吸引装置
DE112020007033A5 (de) * 2020-04-08 2023-01-19 Maren Ernst Eintauch-Elektrolysezelle
US20220194821A1 (en) * 2020-12-21 2022-06-23 Professional Server Certification Corporation Apparatus and method for modifying a sprayer bottle into an ozonating sprayer bottle and for making a water reservoir into an ozonated water reservoir
JP7496337B2 (ja) 2021-08-05 2024-06-06 敏春 新居 磁石付チューブ及び磁化水素エアー発生器具並びに磁化水素蒸気発生器具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130385A (ja) * 1989-10-16 1991-06-04 Permelec Electrode Ltd 電気化学反応における電圧監視方法及び装置
JP2005087257A (ja) * 2003-09-12 2005-04-07 Shinwa Kogyo Kk 水素ガスの体内吸入方法及びその装置
KR20100085336A (ko) * 2009-01-20 2010-07-29 주식회사 미트 수소 발생 장치
KR20130073831A (ko) * 2011-12-23 2013-07-03 주식회사 아루이 수소수 제조 장치
KR20140029668A (ko) * 2012-08-29 2014-03-11 서순기 이동이 용이한 다목적 소독수 생성 및 분사장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763696B2 (ja) * 1987-07-06 1995-07-12 龍夫 岡崎 連続式電解イオン水生成装置
JPH055999Y2 (ko) * 1988-02-15 1993-02-16
JPH02203989A (ja) * 1989-02-02 1990-08-13 Inax Corp イオン水生成器
KR101120942B1 (ko) * 2011-08-08 2012-03-13 주식회사 선도 기능성을 가진 수소수 제조장치
CN102328972B (zh) * 2011-10-27 2012-11-07 大连理工大学 一种废水处理同时制氢的装置和方法
CN202609991U (zh) * 2012-06-11 2012-12-19 杨小容 便携式饮水瓶电解氢水发生器
KR101250470B1 (ko) * 2012-08-10 2013-04-08 장현덕 용존 수소수 제조장치
CN203389458U (zh) * 2013-06-14 2014-01-15 肖佳林 一种高效水气分离器
EP2902365B1 (en) * 2014-01-13 2018-04-18 Solco Biomedical Co., Ltd. Portable apparatus for producing hydrogen water
JP3193833U (ja) * 2014-08-08 2014-10-23 株式会社Yosa 水素水生成器
CN104643832B (zh) * 2015-03-23 2017-03-15 淄博中旭医疗科技有限公司 一种便携式富氢水水杯
KR20160144636A (ko) * 2015-06-09 2016-12-19 탁승호 냉방장치의 결로부위에 결로된 물을 전기분해 한 수소로 결로부위 곰팡이를 살균하는 냉방 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130385A (ja) * 1989-10-16 1991-06-04 Permelec Electrode Ltd 電気化学反応における電圧監視方法及び装置
JP2005087257A (ja) * 2003-09-12 2005-04-07 Shinwa Kogyo Kk 水素ガスの体内吸入方法及びその装置
KR20100085336A (ko) * 2009-01-20 2010-07-29 주식회사 미트 수소 발생 장치
KR20130073831A (ko) * 2011-12-23 2013-07-03 주식회사 아루이 수소수 제조 장치
KR20140029668A (ko) * 2012-08-29 2014-03-11 서순기 이동이 용이한 다목적 소독수 생성 및 분사장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3583970A4 (en) * 2017-02-14 2020-12-30 Aqua Bank Co., Ltd. BIOACTIVATION PROCEDURES TO IMPROVE NEURAL ACTIVITY AND BLOOD CIRCULATION ACTIVITY OF A LIVING BODY
JP2020014848A (ja) * 2018-07-26 2020-01-30 リン, シン−ユンLin, Hsin−Yung クラウドモニタリングシステムと協働する水素発生器及びそのクラウドモニタリングシステム
JP7184709B2 (ja) 2018-07-26 2022-12-06 リン,シン-ユン クラウドモニタリングシステムと協働する水素発生器及びそのクラウドモニタリングシステム

Also Published As

Publication number Publication date
US20180209050A1 (en) 2018-07-26
KR20170011173A (ko) 2017-02-02
KR101724631B1 (ko) 2017-04-26
CN108138337A (zh) 2018-06-08
JP2018532518A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017014562A1 (ko) 수소 발생 장치
CN104379812B (zh) 生物体用高浓度氢气供给装置
WO2016047845A1 (ko) 수소수 제조장치
JP2015131295A (ja) 携帯型水素水製造装置
WO2011145805A2 (ko) 이온수기
CN205999488U (zh) 一种用于氢氧分离的水杯
CN106361099A (zh) 一种用于氢氧分离的水杯
WO2019107898A1 (ko) 수소함유수 제조 장치
TWM536542U (zh) 保健氣體產生系統
WO2017200260A1 (ko) 수소함유수 제조 장치
WO2013157701A1 (ko) 휴대용 살균장치
WO2014157871A1 (ko) 전극을 이용한 수소수 생성 장치
WO2013095024A1 (ko) 수소수 제조 장치
TWM547314U (zh) 可製造水素水之水杯
KR101748789B1 (ko) 수소함유수 제조 장치
CN108486598B (zh) 一种氢氧分离电解装置控制系统、氢氧分离电解系统和富氢设备
WO2015023126A1 (ko) 수소챔버 및 산소챔버를 구비한 물통
CN107981666B (zh) 一种新型富氢水杯
CN107815700A (zh) 一种自动清洁的氢气发生器和富氢水杯
KR20160035835A (ko) 스파용 수소수 제조장치
CN207512266U (zh) 一种安全氢气发生器和富氢水杯
CN208011537U (zh) 具有镁金属燃料空气电池的应急照明装置
CN107827206A (zh) 一种远程控制氢气发生器和富氢水杯
CN107752663A (zh) 一种远程控制的自动清洁氢气发生器和富氢水杯
CN205457837U (zh) 一种具有净化功能的富氢水杯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16828066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15746562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16828066

Country of ref document: EP

Kind code of ref document: A1