WO2017013818A1 - アンテナ、無線機、装着装置、および充電装置 - Google Patents

アンテナ、無線機、装着装置、および充電装置 Download PDF

Info

Publication number
WO2017013818A1
WO2017013818A1 PCT/JP2016/001659 JP2016001659W WO2017013818A1 WO 2017013818 A1 WO2017013818 A1 WO 2017013818A1 JP 2016001659 W JP2016001659 W JP 2016001659W WO 2017013818 A1 WO2017013818 A1 WO 2017013818A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
linear conductor
antenna
linear
conductor plate
Prior art date
Application number
PCT/JP2016/001659
Other languages
English (en)
French (fr)
Inventor
雅樹 鈴木
Original Assignee
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necプラットフォームズ株式会社 filed Critical Necプラットフォームズ株式会社
Priority to US15/738,709 priority Critical patent/US10734707B2/en
Priority to CN201680041888.0A priority patent/CN107851905B/zh
Publication of WO2017013818A1 publication Critical patent/WO2017013818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction

Definitions

  • the present invention relates to an antenna, a radio device, a mounting device, and a charging device.
  • the dimensions of the antenna element may be shortened from the wavelength corresponding to the resonance frequency, and the antenna performance may be degraded due to the shortening. .
  • antenna performance using an external antenna that does not shorten the length for the wavelength corresponding to the resonance frequency instead of the shortened built-in antenna May improve performance.
  • FIG. 36 shows an example of a table 160 on which an external antenna 161 is installed and a radio device 150 placed on the table.
  • Patent Documents 2 to 6 disclose techniques for improving antenna performance.
  • the wireless device 150 shown in FIG. 36 can be wirelessly communicated alone without being placed on the pedestal 160, and if not placed on the pedestal, the switch 153 connects the wireless circuit 152 and the built-in antenna 151 to enable wireless communication. Become. A transmission line 154 and a connector 155 are connected to the opposite side of the switch 153 to which the built-in antenna is connected.
  • the mounting table 160 includes a connector 162 that can be connected to the connector 155, a transmission line 163 is connected to the connector 162, and an external antenna 161 is connected to the tip of the transmission line 163.
  • the switch 153 is switched, the wireless circuit 152 and the transmission line 154 are connected, and the built-in antenna 151 is disconnected.
  • the switching of the switch 153 may be performed by switching the mechanical contact of the connector 155, but the connection of the connector 155 is electrically detected, and a control unit (not shown) may switch the switch.
  • the wireless device 150 when the wireless device 150 is placed on the pedestal 160, the wireless device 150 is disconnected from the built-in antenna 151 and connected to the external antenna 161.
  • the radio device 150 and the mounting table 160 shown in FIG. 36 use a plurality of components such as a switch, a transmission line, and a connector, so that the configuration is complicated, and these components are components corresponding to high frequencies. Therefore, it is expensive. Therefore, it is desired that the connection between the wireless device and the external antenna be realized with a simpler configuration as compared with the configuration example of the wireless device 150 and the mounting table 160 illustrated in FIG.
  • the radio of the present invention aims to realize the external antenna of the radio with a simple configuration.
  • the antenna of the present invention has a conductor plate and a portion disposed substantially parallel to the edge of the conductor plate, and is connected to the conductor plate with a bending gap in the middle.
  • a second linear conductor that is connected to the conductor plate across a line extending from the end opposite to the connection end of the first linear conductor and the conductor plate of the first linear conductor.
  • a third linear conductor connected to an end opposite to the end connected to the conductor plate of the second linear conductor and disposed substantially parallel to the first linear conductor;
  • a fourth linear conductor disposed in a direction away from the conductor plate is provided at an end of the third linear conductor opposite to the end connected to the second linear conductor.
  • the external antenna of the radio can be realized with a simple configuration.
  • FIG. 1 shows the configuration of the first embodiment.
  • the wireless device 10 includes a wireless device 100 and a table 200.
  • the wireless device 100 is assumed to be a portable wireless device such as a smartphone or a mobile router.
  • the pedestal 200 is a pedestal for placing these wireless devices 100 at fixed positions, and is sometimes called a cradle or a desktop holder.
  • the table 200 is often prepared for each wireless device model.
  • the radio device 100 includes a conductor plate 101, an antenna 110, a power feeding unit 102, and a terminal 103, and is generally covered with a synthetic resin case.
  • the conductor plate 101 is a ground conductor of a mounting portion of an electric circuit such as a transmission / reception circuit or a signal processing circuit.
  • the antenna 110 is an antenna for performing wireless communication, and is formed of a linear or elongated plate-like conductor such as copper, brass, or aluminum. Alternatively, the antenna 110 may be formed as a conductor pattern of a printed wiring board.
  • the antenna 110 is normally disposed at the end of the radio device 100, like the radio device 100 of FIG. Further, the length of the antenna 110 is, for example, about 1/4 of the wavelength corresponding to the communication frequency, and the wire diameter or the width of the plate-like conductor is sufficiently small with respect to the wavelength, for example, about 1/100 of the wavelength. . The length of the antenna 110 does not affect the essential effect of the present invention even if it is not about 1 ⁇ 4 of the wavelength corresponding to the communication frequency.
  • the power feeding unit 102 is an input / output terminal for a high-frequency signal to which the antenna 110 and a radio circuit are connected.
  • the power supply unit 102 has two terminals, one terminal is connected to the antenna 110, and the other terminal is connected to the conductor plate 101. Both terminals are usually arranged as close as possible. Further, when the wireless device 100 is placed on the mounting table 200 as shown in FIG. 1, the power supply unit 102 moves away from the surface of the wireless device 100 that contacts the mounting table 200 (the surface below the wireless device 100 shown in FIG. 1). Placed in position.
  • the terminal 103 is connected to the conductor plate 101 and is a conductor terminal provided so as to come into contact with the connection portion 201 of the mounting table 200 when the wireless device 100 is placed on the mounting table 200.
  • the terminal 103 is a surface that contacts the mounting base 200 of the wireless device 100 when the wireless device 100 is placed on the mounting base 200 as shown in FIG. It is desirable to arrange them as close as possible.
  • a hole may be formed in a part of the housing so that the conductive plate 101 is exposed so that the connecting portion 201 of the mounting table 200 directly contacts the conductive plate 101 of the wireless device 100. good.
  • the mounting base 200 is a mounting base for placing the radio device 100 at a fixed position, and is usually covered with a synthetic resin, and includes an antenna 210 and a connection portion 201.
  • the connection unit 201 is a conductor contact member for electrically connecting the antenna 210 and the terminal 103 of the wireless device 100 when the wireless device 100 is placed on the mounting table 200, and is configured by, for example, a metal spring. .
  • connection part 201 and the terminal 103 are places where the conductor (antenna 210) is connected to the ground conductor. Therefore, the connection part 201 and the terminal 103 do not need to be high-frequency components, and it is almost sufficient if the contact resistance is as small as a direct current electrical contact.
  • the antenna 210 is further configured by three elements, an element 211, an element 212, and an element 213 shown in FIG. Each of these elements is formed of a linear or elongated plate-like conductor such as copper, brass or aluminum. Alternatively, the antenna 210 may be formed as a conductor pattern of a printed wiring board. In addition, each element of the antenna 210 may be integrally formed.
  • the element 211 electrically connects the connection unit 201 and the element 212, is separated from the antenna 110 of the wireless device 100 by a certain distance, and if the arrangement condition of the element 212 described later is satisfied, the element 211
  • the length is configured to be as short as possible.
  • the fixed interval is, for example, 0.01 times or more of the communication frequency, and 4 mm or more if the frequency is 800 MHz.
  • the element 212 is arranged so as to be parallel to the straight line portion including the tip of the antenna 110 when the radio device 100 is placed on the mounting table 200.
  • the distance between the parallel portions of the element 212 and the antenna 110 is too close, the spatial coupling between the element 212 and the antenna 110 becomes too strong.
  • the resonance frequency of the antenna 110 is deviated compared to before placing, and the reflection of the antenna 110 at the power feeding unit 102 is increased, so that the high frequency characteristics are deteriorated.
  • the distance between the element 212 and the antenna 110 is too long, the spatial coupling between the antenna 110 and the antenna 210 is weakened, and the effect of improving the high frequency characteristics of the antenna 210 as an external antenna is reduced.
  • the distance between the parallel portions of the element 212 and the antenna 110 is determined to be an appropriate value by confirming the effect caused by the above-described spatial coupling at the time of design by calculation or experiment.
  • a preferable example of the interval between the parallel portions of the element 212 and the antenna 110 is 0.01 to 0.03 times the wavelength corresponding to the communication frequency. For example, if the frequency is 800 MHz, it is about 4 mm to 11 mm. However, even if the distance between the parallel portions of the element 212 and the antenna 110 is other values, the essential effect of the present invention is not affected.
  • the antenna efficiency is increased by setting the length of the element 212 to be approximately half the length of the portion parallel to the element 212 including the open tip of the antenna 110 (the length in the vertical direction of the antenna 110 in FIG. 2). This is confirmed by calculation. However, even if the portion where the element 212 and the antenna 110 are parallel is of other length, the essential effect of the present invention is not affected.
  • one end of the element 213 is connected to the end of the element 212 that is not connected to the element 211, and is arranged at a right angle to the element 212 in a direction away from the radio device 100.
  • the element 213 may be bent in the middle as described later to reduce the size.
  • an inductor 202 may be inserted between the antenna 110 of the wireless device 100 and the power supply unit 102 for matching the impedance of the power supply unit and the impedance of the antenna 110.
  • the inductor 104 may be inserted in the middle of the antenna 210 such as between the connection portion 201 and the element 211 of the mounting table 200 or between the element 212 and the element 213.
  • the inductor 104 is inserted to adjust the resonance frequency when the antenna 210 cannot be formed to have a required length due to restrictions on mounting.
  • FIG. 3 shows a state in which the wireless device 100 is placed on the table 200. Further, the element 213 is not a straight line but is bent at a right angle in the middle for mounting reasons of the mounting table 200.
  • a 26 nH inductor 202 is inserted between the antenna 110 and the power supply unit 102 and a 20 nH inductor 104 is inserted between the element 212 and the element 213 for impedance matching and adjustment of the resonance frequency.
  • the high-frequency current distribution and high-frequency characteristics in this explanation are the calculation results by electromagnetic field numerical analysis.
  • FIG. 4 and FIG. 5 show the high frequency characteristics of the model of the radio device 10 shown in FIG.
  • FIG. 4 shows the reflection loss of the antenna 110 observed from the power supply unit 102.
  • the horizontal axis indicates the frequency in megahertz, and the vertical axis indicates the value obtained by adding a negative sign to the reflection loss expressed in decibels. Yes.
  • the display of the axis of the reflection loss graph is the same.
  • FIG. 5 shows the antenna efficiency, which is the ratio of the total power of the radio waves radiated from the radio device 10 to the power supplied to the power feeding unit 102.
  • the total power of radio waves radiated from the radio device 10 is the total value of the power of radio waves radiated from all conductors of the radio device 10 including the antenna portion.
  • the horizontal axis in FIG. 5 represents the frequency in megahertz, and the vertical axis represents the antenna efficiency in decibels.
  • the display of the axes of the antenna efficiency graphs is the same.
  • FIG. 6 shows a numerical analysis model of the wireless device 100.
  • the size of this model is assumed to communicate in the vicinity of 800 MHz.
  • FIG. 7 shows the reflection loss of the antenna 110 observed from the power supply unit 102
  • FIG. 8 shows the antenna efficiency.
  • the antenna efficiency indicates a ratio between the total power of radio waves radiated from all the conductors of the radio device 100, that is, both the antenna 110 and the conductor plate 101, and the power supplied to the power supply unit 102.
  • the left diagram in FIG. 10 shows the 800 MHz current distribution of the model in FIG.
  • the size of the arrow indicates the magnitude of the current at each location, and the direction of the arrow indicates the direction of the current.
  • the meanings of the arrows are the same. According to the diagram on the left of FIG. 10, it can be seen that an arrow indicating a large current value exists near the edge of the conductor plate 101.
  • FIG. 9 a simplified model as shown in FIG. 9 is assumed in which the center of the conductor plate 101 of the wireless device 100 of FIG. 6 is cut out and the conductor plate 101 is replaced with a frame-shaped conductor. If analysis is possible with such a simple model, the distribution of high-frequency current (hereinafter referred to as current) can be separated into only two directions, ie, the vertical direction and the horizontal direction in the figure, so that the operation can be easily understood.
  • current high-frequency current
  • the right figure of FIG. 10 shows the 800 MHz current distribution of the simplified model of FIG.
  • the direction of the arrow indicating a large value of current has a similar tendency on the left and right in FIG.
  • the resonance frequency that can be read from the graph showing the reflection loss is approximately the same at about 820 MHz in FIG. 7 showing the reflection loss of the model of FIG. 6 and about 810 MHz in FIG. 11 showing the reflection loss of the simplified model of FIG. Is also a single resonance. Further, the value of the reflection loss at the resonance frequency is about 5 dB in FIG. 7 and about 6 dB in FIG. 11, which are close to each other.
  • the frequency value at which the antenna efficiency is maximum is between 800 MHz and 850 MHz
  • FIG. 12 showing the antenna efficiency of the simplified model of FIG. Is approximately the same between 800 MHz and 850 MHz.
  • the efficiency at the frequency at which the antenna efficiency is maximum is about ⁇ 3.2 dB in FIG. 8 and about ⁇ 2.7 dB in FIG. 12, which are close to each other.
  • FIG. 13 shows the position of the current at resonance considered by connecting the small arrows obtained by the 800 MHz current distribution calculation (the right diagram in FIG. 10) in the model of FIG.
  • the direction of current at a certain point is indicated by the direction of a large arrow.
  • the large arrow is drawn at a position slightly shifted from the position of the small arrow for easy viewing, and the same applies to other drawings.
  • a current 15 indicates a current flowing through the antenna 110
  • a current 16 and a current 17 indicate currents flowing through the conductor plate 101.
  • the conductor plate 101 can be considered as a linear conductor branched into two like the equivalent conductor 18 shown in FIG. 14 at 800 MHz.
  • an equivalent conductor refers to a conductor when it can be considered that the structure of the analysis model is composed of virtual linear conductors, as judged from the analysis results. Further, the position of the line of the equivalent conductor is drawn at a position shifted from the position of the structure for easy viewing, and the same applies to other drawings.
  • An antenna 110 having a reduced physical length but having an electrical length of about 1 ⁇ 4 wavelength is connected to one side of the power supply unit 102, and an equivalent conductor 18 is connected to the opposite side of the power supply unit 102. It is considered a state.
  • the linear conductor of the equivalent conductor 18 is one linear conductor having a length of about 1 ⁇ 4 wavelength, the operation of a general dipole antenna is performed.
  • the equivalent conductor 18 in FIG. 14 has a configuration in which two linear conductors are connected in parallel. Since the two linear conductors of the equivalent conductor 18 both have a current distribution at which the current is maximum at the power feeding portion 102 and is almost zero at the opposite end of the linear conductor, the length is about 1 ⁇ 4 wavelength, respectively. It is. That is, the equivalent conductor 18 is formed by connecting two linear elements having a length of about 1 ⁇ 4 wavelength in parallel at the power feeding unit 102.
  • the impedance at the feeding point 102 of the radio device 100 shown in FIG. 14 is about half that of a general dipole antenna.
  • the impedance of a general dipole antenna is matched with the impedance of a wireless circuit or the like (not shown) connected to the power feeding unit in the power feeding unit.
  • impedance matching at the power feeding unit 102 is difficult compared to a general dipole antenna.
  • the radio device 100 has a large reflection at the power feeding unit 102, which causes a reduction in reflection loss.
  • the radio device 100 further improves the high frequency characteristics.
  • the high frequency characteristics of the radio device 100 alone not placed on the mounting table 200 is a reflection loss around 800 MHz with the best characteristics of about 5 dB, and the antenna efficiency is about -3.2 dB.
  • the high frequency characteristics when the radio device 100 is placed on the pedestal 200 and operated as the radio devices 10 connected to each other is about ⁇ 12 dB.
  • the antenna efficiency is about -1 dB.
  • FIG. 15 is a simplified model in which the conductor plate 101 in the model of the wireless device 10 shown in FIG. 3 is replaced with a frame-shaped conductor.
  • FIG. 16 and FIG. 17 show the high frequency characteristics of the simplified model of FIG. 16 shows the reflection loss of the antenna 110, and FIG. 17 shows the antenna efficiency.
  • the resonance frequency determined from the graph showing the reflection loss is about 580 MHz and about 820 MHz in FIG. 4 showing the reflection loss of the model of FIG. 3, and about 570 MHz and about 810 MHz in FIG. 16 showing the reflection loss of the simplified model of FIG. They are almost identical and both have two resonances. Further, the reflection loss values at the resonance frequency near 800 MHz appear to be different from each other at about 12 dB in FIG. 4 and about 18 dB in FIG. However, the passage loss obtained by calculation from the reflection loss is about 0.3 dB and about 0.1 dB, which are sufficiently small values, and the difference between the small error levels when measured further. It can be said that it shows the characteristics of
  • the frequency value at which the antenna efficiency becomes maximum is 800 MHz to 850 MHz.
  • the value of the frequency at which the antenna efficiency becomes maximum is substantially the same between 800 MHz and 850 MHz.
  • the efficiency at the frequency at which the antenna efficiency is maximum is about ⁇ 1.0 dB in FIG. 5 and about ⁇ 0.9 dB in FIG.
  • FIG. 18 shows the current distribution of the model of FIG. In FIG. 18, the position of the standing wave and the direction of the current assumed from the current distribution are indicated by long arrows.
  • Figure 18 is understood as follows.
  • the antenna 110 is excited by the power feeding unit 102 and a current 19 and a current 20 are generated.
  • the current 19 and the current 20 are considered to be a series of currents because the directions of the arrows are connected (not reversed).
  • the current 21 and the current 22 having the opposite phase to the current 19 are induced by the spatial coupling with the element 212 positioned in parallel with the antenna 110.
  • the current 21 and the current 22 are considered to be a series of currents because the directions of the arrows are connected.
  • FIG. 19 shows an equivalent conductor by assuming that a series of currents 19 and 20 and a series of currents 21 and 22 are the main currents of the radio device 10.
  • the equivalent conductor 18 of the wireless device 100 shown in FIG. 14 is not a single linear conductor, but two linear conductors are connected in parallel. Had an adverse effect.
  • the element connected to the lower side of the power feeding unit 102 is not a two-branched linear conductor like the equivalent conductor 18 shown in FIG. It is thought that it is moving closer to the conductor.
  • the impedance observed from the power feeding unit 102 of the radio device 10 shown in FIG. 19 is higher than the impedance observed from the power feeding unit 102 of the radio device 100 shown in FIG. Get closer to.
  • the wireless device 10 has improved reflection loss compared to the wireless device 100.
  • the position where the current is relatively small in the series of currents 21 and 22 is a position corresponding to the terminal 103 in FIG. Therefore, it is considered that the operation is similar to that of the parasitic virtual dipole antenna 25 in which two elements are separated by the terminal 103 in FIG.
  • the wireless device 10 has improved reflection loss and antenna efficiency compared to the wireless device 100.
  • the element 213 of the antenna 210 will be described as a straight element that is not bent.
  • FIG. 24 shows specific dimensions of each component of the wireless device 10.
  • the model shown in FIG. 24 is designed so that the resonance frequency is 800 MHz.
  • FIG. 25 shows the reflection loss of this model.
  • FIG. 26 shows the current distribution of the model of the radio device 10 shown in FIG.
  • the thick solid line shown in FIG. 26 is an equivalent conductor estimated from the current distribution. In the same manner as the virtual dipole antenna 24 and the virtual dipole antenna 25 in FIG. Can be interpreted as operating.
  • the antenna 110 which is an element on one side of the virtual dipole antenna 39 on the power supply side, is shortened from about 95 (mm), which is a quarter of the wavelength corresponding to 800 MHz, due to mounting reasons and the like to 50 mm (see FIG. 3 the same length as the antenna 110). Further, the virtual element on the conductor plate side of the virtual dipole antenna 39 resonates at about 95 (mm) which is a quarter of the wavelength corresponding to 800 MHz. Therefore, the total length of the virtual dipole antenna 39 is about 45 mm shorter than about 190 mm which is 1 ⁇ 2 of the wavelength corresponding to the resonance frequency of 800 MHz.
  • the overall length of the parasitic dipole antenna 40 on the parasitic side resonates at about 190 (mm), which is 1 ⁇ 2 times the wavelength corresponding to 800 MHz, like a general dipole antenna.
  • the length of the antenna 210 (the total length of the elements 211, 212, and 213) is A and the length of the virtual element on the conductor plate side is B, it can be expressed as Equation 1.
  • R is a wavelength corresponding to the resonance frequency (here, 800 MHz).
  • a + B R / 2 (Formula 1)
  • the lengths of the side a, the side b, and the side c of the conductor plate in FIG. 24 are La, Lb, and Lc, respectively.
  • B can also be expressed by a length obtained by subtracting the length of the virtual element on the conductor plate side of the virtual dipole antenna on the power supply side from (La + Lb + Lc).
  • B (La + Lb + Lc) ⁇ R / 4 (Formula 2)
  • A R / 2-B
  • Equation 3 is obtained.
  • A R / 2 ⁇ (La + Lb + Lc ⁇ R / 4) (Formula 3)
  • formula 3 is rearranged to obtain formula 4.
  • A 3R / 4 ⁇ (La + Lb + Lc) (Formula 4) Substituting the numerical values of La, Lb, and Lc shown in the model of FIG. 24 into Equation 4 to obtain the length A of the antenna 210, the following value is obtained.
  • the dimensions of the antenna 210 shown in FIG. 24 are optimized so that the resonance frequency is 800 MHz by performing electromagnetic field numerical analysis, and the length A of the antenna 210 has the following value. .
  • the value shown in Equation 6 is slightly different from the 91 mm obtained in Equation 5, but this is because the antenna 210 is not completely straight and is bent at two points, I think this is due to the approaching effect.
  • the value of (La + Lb + Lc) is often about 1/2 times the wavelength corresponding to the frequency of 800 MHz.
  • the dimensions of the antenna 210 can be optimized, but other lengths do not affect the essential effects of the present invention.
  • FIG. 27 shows a current distribution at a frequency of 650 MHz and an equivalent conductor estimated from the current distribution.
  • FIG. 26 and FIG. 27 described above have the same structure, the current distribution at a frequency of 800 MHz is different from the current distribution at a frequency of 650 MHz. In other words, there are two resonance routes with a frequency of 800 MHz and a frequency of 650 MHz. Therefore, the 800 MHz equivalent conductor shown in FIG. 26 is different from the 650 MHz equivalent conductor shown in FIG.
  • the equivalent conductor in the frequency of 650 MHz shown in FIG. 27 forms the virtual dipole antenna 41 which has an element in the both ends of the electric power feeding part 102.
  • FIG. The total length of the virtual dipole antenna 41 is the sum of the lengths of the antenna 110, the upper side d of the conductive plate (see FIG. 24), and the elements 211, 212, and 213.
  • the electrical length of the antenna 110 corresponds to about R / 4 at 800 MHz.
  • the total length of the elements 211, 212, and 213, that is, the length of the antenna 210 is approximately R / 800 at 800 MHz according to the above-described equation 7 in the case of a mobile terminal having a screen size of about 4 to 5 inches. 4.
  • the electrical length of the virtual dipole antenna of FIG. 27 can be expressed by the following equation, where Ld is the length of the side d and R is the wavelength corresponding to 800 MHz.
  • the resonance frequency is 800 MHz. Therefore, referring to Expression 8, the virtual dipole antenna 41 has one element that is longer by the length of Ld, and the total length of the virtual dipole antenna 41 is longer than R / 2 of 800 MHz. Therefore, the resonance frequency of the virtual dipole antenna is lower than 800 MHz.
  • the frequency at which 240 mm corresponds to R / 2 is about 630 MHz. This substantially coincides with 650 MHz, which is the second resonance frequency recognized in FIG.
  • the model shown in FIG. 28 is a model in which the antenna 210 extends straight toward the top of the figure and there is no space coupling portion (corresponding to the element 212) with the antenna 110.
  • FIG. 21 is a graph of reflection loss when the value of the inductor 202 is changed. As can be seen from FIG. 21, the resonance point near 800 MHz changes by about 20 MHz every time the value of the inductor changes by 10 nH.
  • the inductor 202 is disposed between the element 211 and the conductor plate 101 as shown in FIG. In FIG. 22, the connecting portion 201 and the terminal 103 are both negligibly small compared to the size of the element 211 and the conductor plate 101, and are omitted in the calculation model. Actually, the inductor 202 is disposed between the element 211 of the pedestal 200 shown in FIG. 3 and the connection portion 201, or is disposed between the terminal 103 of the wireless device 100 and the conductor plate 101.
  • FIG. 23 shows a reflection loss graph of the model shown in FIG.
  • the resonance point near 800 MHz changes by about 7 MHz every time the inductor changes by 10 nH.
  • the amount of change is smaller than when the inductor 202 is arranged between the element 212 and the element 213 as shown in FIG. Get smaller.
  • the inductor 202 in order to adjust the resonance frequency with the inductor 202, it is more effective to arrange the inductor 202 between the element 212 and the element 213 than to arrange the inductor 202 between the element 212 and the conductor plate 101. large.
  • the inductor 202 can be arranged at any position between the element 212 and the conductor plate 101, between the element 212 and the element 213, or at any position of the antenna 210. Has no effect.
  • the element 211 of the antenna 210 built in the mounting table 200 is connected to the conductor plate 101 of the wireless device 100. Further, an element 212 connected to an end portion of the element 211 that is not connected to the conductor plate 101 is disposed in parallel with the antenna 110 built in the wireless device 100. In addition, the element 213 connected to the end of the element 212 not connected to the element 211 is disposed in a direction away from the conductor plate 101.
  • the element 212 is electromagnetically spatially coupled to the antenna 110, and a current is induced in the element 212.
  • the current induced in the element 212 flows through the entire antenna 210, so that the antenna 210 can operate as an external antenna.
  • the switch 153, the transmission line 154, the transmission line 163, the connector 155, and the connector 162 are connected. Parts were needed. However, as shown in FIGS. 2 and 3, in the wireless device 10 according to the present embodiment, only the terminal 103 and the connection unit 201 are necessary for connecting the wireless device 100 and the antenna 210.
  • the wireless device 10 of the present embodiment can be realized with a simple configuration in which the external antenna of the wireless device 100 has a smaller number of parts compared to the configuration according to the related art shown in FIG. [Second Embodiment]
  • a second embodiment will be described in detail with reference to the drawings.
  • FIG. 30 shows the configuration of the radio device 50 of the second embodiment.
  • the radio device 50 includes a radio device 100 and a charging stand 300.
  • the charging stand 300 is often used as an accessory of a smartphone or a mobile router for the purpose of charging a storage battery built in the wireless device 100.
  • the charging stand 300 includes a connector 301, a printed board 302, and an antenna 310.
  • the charging stand 300 of the present embodiment is characterized in that a connector 301 is used instead of the connection portion 201 that is a component of the mounting base shown in the first embodiment.
  • the radio device 100 When the radio device 100 is a terminal equipped with Android (registered trademark), the main body of the radio device 100 is usually equipped with a female side of a micro USB connector as standard.
  • the female ground terminal of the micro USB connector is connected to the conductor plate 101 of the wireless device 100.
  • the connector 301 is the male side of the micro USB connector.
  • ground terminal of the connector 301 of the charging stand 300 is connected to a ground conductor of a printed board 302 described later.
  • the printed circuit board 302 is a printed circuit board on which a charging circuit for converting a commercial AC power source to a DC power source for charging is mounted in order to charge a storage battery built in the wireless device 100.
  • the charging stand 300 does not have a built-in charging circuit, and includes a connector for connecting to another charger.
  • the printed circuit board 302 is mounted with this connector and the connector 301, and a wiring pattern for connecting both connectors is provided. It may be formed.
  • the antenna 310 is connected to the ground conductor of the printed board 302.
  • the basic configuration of the antenna 310 is the same as that of the antenna 210 shown in the first embodiment. Furthermore, it is desirable that the connection position between the printed circuit board 302 and the antenna 310 and the connection position between the printed circuit board 302 and the connector 301 are as close as possible.
  • FIG. 33 shows a configuration example of the present embodiment for the purpose of communicating in the vicinity of 800 MHz. [Description of operation] Next, the mechanical operation of this embodiment will be described.
  • the conductor plate 101 of the wireless device 100 and the ground conductor of the printed board 302 of the charging base 300 are connected via the connector 301. Is done. Since the antenna 310 is connected to the ground conductor of the printed board 302, the antenna of the conductor board 101 and the charging base 300 can be provided without providing the terminal 103 as in the wireless device 100 shown in the first embodiment. 310 is connected.
  • FIG. 31 and FIG. 32 show the high-frequency characteristics of the radio device 50 having the configuration shown in FIG.
  • FIG. 31 shows the reflection loss of the antenna 110 observed from the power supply unit 102
  • FIG. 32 shows the antenna efficiency which is the ratio of the total power of the radio waves radiated from the radio device 50 to the power supplied to the power supply unit 102.
  • the high frequency characteristics of the wireless device 100 that is not placed on the charging stand 300 is about 6 dB in reflection loss around 800 MHz with the best characteristics.
  • the efficiency was about -2.7 dB.
  • the high frequency characteristics of the radio 50 in which the radio 100 is connected to each other in the charging base 300 of the present embodiment have a reflection loss of about 15 dB or more near 800 MHz with the best characteristics.
  • the antenna efficiency is about -0.6 dB.
  • the wireless device 100 when the wireless device 100 is connected to each other by being placed on the charging base 300 and operates as the wireless device 50, the high frequency characteristics are significantly improved as compared with the characteristics of the wireless device 100 alone.
  • the connector that the wireless device 100 generally includes has a ground terminal, and the ground terminal is connected to the conductor plate 101. Then, the ground terminal of the connector included in the wireless device 100 functions instead of the terminal 103 shown in the first embodiment.
  • the ground terminal of the connector 301 is connected to the antenna 210 via the ground conductor of the printed board 302, the ground terminal of the connector 301 is shown in the first embodiment. It functions instead of the connecting unit 201.
  • the antenna 60 of the present embodiment has a conductor plate 401 and a portion arranged substantially parallel to the edge of the conductor plate 401, and is connected to the conductor plate 401 with a bending gap in the middle.
  • the conductor 410 is provided. Further, the antenna 60 is connected to the conductor plate 401 across the line extending the end opposite to the connection end of the first linear conductor 410 with the conductor plate 401.
  • a conductor 511 is provided.
  • the antenna 60 is connected to the end of the second linear conductor 511 opposite to the end connected to the conductor plate 401, and is arranged substantially parallel to the first linear conductor 410.
  • the linear conductor 512 is provided. Further, the antenna 60 is a fourth line arranged in a direction away from the conductor plate at an end of the third linear conductor 512 opposite to the end connected to the second linear conductor 511. And a conductor 513.
  • the antenna 60 of the present embodiment can be realized with a simple configuration of an external antenna.
  • the conductor plate 101 of the wireless device is rectangular, but may have other shapes.
  • the conductor plate 601 has a shape close to a circle as in the wireless device 80 shown in FIG. 35, it is as follows when compared with each component shown in FIG. 2 described in the first embodiment.
  • the antenna 110 corresponds to the antenna 610
  • the element 211 corresponds to the element 711
  • the element 212 corresponds to the element 712
  • the element 213 corresponds to the element 713.
  • the length corresponding to (La + Lb + Lc) in Expression 4 is the longer length around the conductor plate 601 connecting the position where the antenna 610 is connected to the conductor plate 601 and the position where the element 711 is connected to the conductor plate 601. It is.
  • the antenna 610 can also be designed for the wireless device 80 using Expression 4. Thus, even if the conductor plate is not rectangular, the wireless device of the present invention can be realized.
  • the inconvenience when the space between the element 212 and the antenna 110 becomes too strong due to the distance between the parallel portions of the element 212 and the antenna 110 being too close has been described. This is an inconvenience regarding the difference in resonance frequency between when the wireless device 100 is used alone without being placed on the table 200 and when it is placed on the table 200.
  • the wireless device 10 is an integral configuration that is not separated into the wireless device 100 and the mounting table 200, the wireless device 100 does not need to operate independently.
  • the interval between the parallel portions of the element 212 and the antenna 110 may be a value smaller than 0.01 times exemplified as the wavelength corresponding to the communication frequency that is the interval described above.
  • a conductor plate A conductor plate; A first linear conductor having a portion arranged substantially parallel to an edge of the conductor plate and connected to the conductor plate with a bend gap in the middle; A second linear conductor connected to the conductor plate across a line extending from the end opposite to the connection end of the first linear conductor with the conductor plate; A third linear conductor connected to an end opposite to the end connected to the conductor plate of the second linear conductor and disposed substantially parallel to the first linear conductor; A fourth linear conductor disposed in a direction away from the conductor plate is provided at an end of the third linear conductor opposite to an end connected to the second linear conductor. And antenna.
  • (Appendix 2) A conductor plate; A first antenna having a portion arranged substantially parallel to an edge of the conductor plate and having a first linear conductor connected to the conductor plate with a bend gap in the middle; A second linear conductor that crosses a line extending an end opposite to the connection end of the first linear conductor with the conductor plate and is connected to the conductor plate with a detachable connection; A third linear conductor connected to the opposite end of the second linear conductor and disposed substantially parallel to the first linear conductor; A second linear conductor disposed on the end of the third linear conductor opposite to the end connected to the second linear conductor, the fourth linear conductor being disposed away from the conductor plate; An antenna comprising an antenna.
  • Appendix 4 The antenna according to any one of appendix 1 to appendix 3, wherein the first linear conductor has a length that is approximately a quarter of a wavelength corresponding to a frequency used for communication.
  • the total length of the second linear conductor, the third linear conductor, and the fourth linear conductor is approximately three times as long as the wavelength corresponding to the frequency used for communication.
  • the conductor plate is rectangular, the first linear conductor is connected in the vicinity of one end of the conductor plate, and the second linear conductor is connected in the vicinity of the opposite end of the one side.
  • the antenna according to any one of appendix 1 to appendix 6, characterized in that.
  • Appendix 8 The antenna according to appendix 1, A wireless device comprising a wireless circuit.
  • a conductor plate A conductor plate; A first linear conductor having a portion arranged substantially parallel to an edge of the conductor plate and connected to the conductor plate with a bend gap in the middle; A first device having a radio circuit; A second linear conductor that crosses a line extending an end opposite to the connection end of the first linear conductor with the conductor plate and is connected to the conductor plate with a detachable connection; A third linear conductor connected to the opposite end of the second linear conductor and disposed substantially parallel to the first linear conductor; A second linear conductor disposed on the end of the third linear conductor opposite to the end connected to the second linear conductor, the fourth linear conductor being disposed away from the conductor plate; And a wireless device.
  • Appendix 10 The wireless device according to appendix 9, wherein the second device is incorporated in a mounting device of the first device.
  • the second device is incorporated in a charging device that charges by placing the first device, and the connecting portion is at least one terminal of a charging terminal that connects the first device and the second device.
  • Item 11 The radio device according to appendix 9, wherein
  • Appendix 12 The wireless device according to any one of appendix 8 to appendix 11, wherein the first linear conductor has a length that is approximately a quarter of a wavelength corresponding to a frequency used for communication.
  • the total length of the second linear conductor, the third linear conductor, and the fourth linear conductor is approximately three times as long as the wavelength corresponding to the frequency used for communication. The value obtained by subtracting the longer distance around the conductor plate connecting the connection point between the first linear conductor and the conductor plate and the connection point between the second linear conductor and the conductor plate. 14.
  • the conductor plate is rectangular, the first linear conductor is connected in the vicinity of one end of the conductor plate, and the second linear conductor is connected in the vicinity of the opposite end of the one side.
  • the wireless device according to any one of appendix 8 to appendix 14, wherein
  • a radio apparatus comprising: a conductor plate; a first linear conductor having a portion disposed substantially parallel to an edge of the conductor plate; and a first linear conductor connected to the conductor plate with a gap interposed therebetween; and a radio circuit A connecting portion connectable to the conductor plate; A second linear conductor that intersects the line extending the end opposite to the connection end of the first linear conductor with the conductor plate and is connected to the conductor plate at the connection; A third linear conductor connected to the opposite end of the second linear conductor and disposed substantially parallel to the first linear conductor; A fourth linear conductor disposed in a direction away from the conductor plate at an end of the third linear conductor opposite to an end connected to the second linear conductor.
  • Appendix 17 The mounting apparatus according to appendix 16, wherein the first linear conductor has a length that is approximately a quarter of a wavelength corresponding to a frequency used for communication.
  • the total length of the second linear conductor, the third linear conductor, and the fourth linear conductor is approximately three times as long as the wavelength corresponding to the frequency used for communication.
  • the conductor plate is rectangular, the first linear conductor is connected in the vicinity of one end of the conductor plate, and the second linear conductor is connected in the vicinity of the opposite end of the one side.
  • the mounting device according to any one of appendix 16 to appendix 19, characterized in that.
  • Appendix 22 The wireless device according to appendix 21, wherein the first linear conductor has a length that is approximately a quarter of a wavelength corresponding to a frequency used for communication.
  • the total length of the second linear conductor, the third linear conductor, and the fourth linear conductor is approximately three times as long as the wavelength corresponding to the frequency used for communication. The value obtained by subtracting the longer distance around the conductor plate connecting the connection point between the first linear conductor and the conductor plate and the connection point between the second linear conductor and the conductor plate. 24.
  • a radio apparatus comprising: a conductor plate; a first linear conductor having a portion disposed substantially parallel to an edge of the conductor plate; and a first linear conductor connected to the conductor plate with a gap interposed therebetween; and a radio circuit
  • a charging terminal having at least one terminal connectable to the conductor plate;
  • a second linear conductor that intersects the line extending the end opposite to the connection end of the first linear conductor with the conductor plate and is connected to the conductor plate with the at least one terminal;
  • a third linear conductor connected to an end opposite to the at least one terminal of the second linear conductor and disposed substantially parallel to the first linear conductor;
  • a fourth linear conductor disposed in a direction away from the conductor plate at an end of the third linear conductor opposite to an end connected to the second linear conductor.
  • (Appendix 27) 27 The charging device according to appendix 26, wherein the first linear conductor has a length that is approximately a quarter of a wavelength corresponding to a frequency used for communication.
  • the total length of the second linear conductor, the third linear conductor, and the fourth linear conductor is approximately three times as long as the wavelength corresponding to the frequency used for communication.
  • the conductor plate is rectangular, the first linear conductor is connected in the vicinity of one end of the conductor plate, and the second linear conductor is connected in the vicinity of the opposite end of the one side. 30.
  • the charging device according to any one of appendix 26 to appendix 29, wherein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

簡易な構成の無線機の外部アンテナを実現するため、本発明のアンテナは、導体板と、前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板に接続される第2の線状導体と、前記第2の線状導体の前記導体板と接続される端部の反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを備える。

Description

アンテナ、無線機、装着装置、および充電装置
 本発明は、アンテナ、無線機、装着装置、および充電装置に関するものである。
 携帯電話、スマートフォン、モバイルルータなどの携帯無線機は、外観の小型化が重要である。これらの携帯無線機の多くは、通信用アンテナを筐体に内蔵している。
 これらのアンテナは、筐体の寸法内にアンテナを内蔵するために、アンテナエレメントの寸法が共振周波数に対応する波長より短縮されている場合があり、短縮したことによるアンテナ性能低下が起きる場合がある。
 そこで、特に電波環境が良好でない場所等での通信性能の確保のために、短縮した内蔵アンテナに代えて、共振周波数に対応する波長に対して長さを短縮しない外部アンテナを使用してアンテナ性能を高性能化する場合がある。
 そして、特許文献1に示される構成のように、外部アンテナが無線機の置台(卓上ホルダ、クレードルとも呼ばれ、充電台を兼ねる場合もある)に設置されているものがある。
 図36は、外部アンテナ161が設置されている置台160と、それに置かれた無線機150の例を示している。
 尚、特許文献2乃至特許文献6には、アンテナの性能向上のための技術が開示されている。
特開2007-318595号公報 特開2012-213231号公報 特開2010-119002号公報 特開2010-109769号公報 特開2007-288561号公報 特開2006-050496号公報
 図36に示す無線機150は置台160に置かれずに単独でも無線通信が可能であり、置台に置かれないと、スイッチ153は無線回路152と内蔵アンテナ151を接続して、無線通信が可能となる。スイッチ153の内蔵アンテナが接続される側と反対側には伝送線路154とコネクタ155が接続されている。
 また、置台160は、コネクタ155と接続可能なコネクタ162を備え、コネクタ162には伝送線路163が接続され、伝送線路163の先に外部アンテナ161が接続されている。
 そして、無線機150が置台160に置かれて、コネクタ155が置台160のコネクタ162と接続するとスイッチ153が切り替わって、無線回路152と伝送線路154を接続して、内蔵アンテナ151を切り離す。このスイッチ153の切り替えは、コネクタ155の機械式接点の切り替えで行われる場合もあるが、コネクタ155の接続を電気的に検知し、図示しない制御部がスイッチを切り替える場合もある。
 このようにして、無線機150が置台160に置かれると、無線機150は内蔵アンテナ151を切り離して外部アンテナ161と接続される。
 以上のように、図36に示す無線機150および置台160は、スイッチ、伝送線路、コネクタなどの複数の部品を用いているため構成が複雑である上、これらの部品は高周波に対応する部品のため高価である。そこで、無線機と外部アンテナとの接続を、図36に示す無線機150および置台160の構成例と比べて、より簡易な構成で実現されることが望まれる。
 本発明の無線機は、無線機の外部アンテナを簡易な構成で実現することを目的とする。
 上記の目的を達成するために、本発明のアンテナは、導体板と、前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板に接続される第2の線状導体と、前記第2の線状導体の前記導体板と接続される端部の反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを備える。
 本発明によれば、無線機の外部アンテナを簡易な構成で実現することが可能となる。
第1の実施形態の構成例を示す図である。 第1の実施形態の構成例を示す図である。 第1の実施形態の構成例を示す図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の構成例を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第2の実施形態の構成例を示す図である。 第2の実施形態の動作を説明する図である。 第2の実施形態の動作を説明する図である。 第2の実施形態の構成例を説明する図である。 第3の実施形態の構成例を説明する図である。 変形例を示す図である。 関連技術の構成例を示す図である。
[第1の実施形態]
 次に、本発明の実施の形態について図面を参照して詳細に説明する。
[構成の説明]
 図1に第1の実施形態の構成を示す。
 本実施形態の無線機10は、無線機100と置台200とで構成される。無線機100は、スマートフォンやモバイルルータなどの携帯無線機を想定している。そして、置台200は、これらの無線機100を決まった位置に置くための置台で、クレードル、或いは卓上ホルダなどと呼ばれることもある。通常、無線機100の外形は機種毎に異なるので、置台200は無線機の機種毎に用意される場合が多い。
 無線機100は、導体板101と、アンテナ110と、給電部102、端子103によって構成され、通常、外観は合成樹脂のケースで覆われている。そして、導体板101は、送受信回路や信号処理回路などの電気回路の搭載部のアース導体である。また、アンテナ110は無線通信を行うためのアンテナであり、銅、真ちゅう、アルミニウム等の線状、または細長い板状の導電体で形成される。或いは、アンテナ110は、プリント配線基板の導体パターンとして形成されても良い。
 アンテナ110は通常、図1の無線機100のように、無線機100の端部に配置される。更に、アンテナ110の長さは、例えば通信周波数に対応する波長の約1/4程度であり、線径または板状導体の幅は波長に対して十分小さく、例えば波長の1/100程度である。尚、アンテナ110の長さは、通信周波数に対応する波長の約1/4程度でなくても、本発明の本質的効果に影響を及ぼさない。
 また、給電部102は、アンテナ110と無線回路が接続される高周波信号の入出力端である。この給電部102は、2端子であり片方の端子はアンテナ110に接続され、もう片方の端子は導体板101に接続されていて、両方の端子同士は通常、極力近くに配置される。また、給電部102は、図1のように無線機100を置台200に置いた時に、無線機100の置台200との接触する面(図1に示される無線機100の下の面)から遠ざかる位置に配置される。
 更に、端子103は、導体板101と接続され、無線機100を置台200に置くと、置台200の接続部201と接触するように設けられている導電体の端子である。端子103は、図1のように無線機100を置台200に置いた時に無線機100の置台200との接触する面(図1に示される無線機100の下の面)で、かつアンテナ110になるべく近い位置に配置されることが望ましい。尚、端子103の代わりに、置台200の接続部201が無線機100の導体板101に直接接触するように、筐体の一部に穴があいていて導体板101が露出するようにしても良い。
 次に置台200は、無線機100を決まった位置に置くための置台であり、通常、外観は合成樹脂で覆われていて、アンテナ210と接続部201で構成される。
 接続部201は無線機100を置台200に置いた時に、アンテナ210と無線機100の端子103とを電気的に接続するための導電体の接触部材であり、例えば金属のバネなどで構成される。
 ここで、接続部201および端子103は、アース導体に導体(アンテナ210)を接続する箇所である。そのため、接続部201および端子103は高周波用の部品である必要は無く、直流の電気的接点程度に接触抵抗が小さければほぼ事足りる。
 そして、アンテナ210は更に、図2に示す素子211、素子212、および素子213の3つの素子によって構成される。これらの各素子は、銅、真ちゅう、アルミニウム等の線状、または細長い板状の導電体で形成される。或いは、アンテナ210は、プリント配線基板の導体パターンとして形成されても良い。また、アンテナ210の各素子は一体に形成されても良い。
 次に、素子211は、接続部201と素子212を電気的に接続し、無線機100のアンテナ110から一定の間隔以上離れ、かつ後述の素子212の配置条件が満足されれば、素子211の長さは極力短くなるように構成される。ここで、一定の間隔とは例えば通信周波数の0.01倍以上、周波数が800MHzであれば4mm以上である。
 また、素子212は、無線機100を置台200に置いた時に、アンテナ110の先端を含む直線部分と平行になるように配置されている。ここで、素子212とアンテナ110の平行部分の間隔が近すぎると、素子212とアンテナ110との空間結合が強くなりすぎる。その結果、無線機100を置台200に置くと、置く前と比べてアンテナ110の共振周波数がずれて、給電部102におけるアンテナ110の反射が大きくなるので高周波特性が劣化する。
 一方、素子212とアンテナ110の間隔が遠すぎると、アンテナ110とアンテナ210の空間結合が弱まって、アンテナ210の外部アンテナとしての高周波特性の改善効果が小さくなってしまう。
 このように、素子212とアンテナ110の平行部分の間隔は、設計時点で上記の空間結合に起因する効果について計算や実験で確認して、適切な値に決定される。
 この素子212とアンテナ110の平行部分の間隔の好適な例は、通信周波数に対応する波長の0.01倍~0.03倍であることを計算により確認している。例えば周波数が800MHzであれば、4mm~11mm程度である。しかし、素子212とアンテナ110の平行部分の間隔が他の値であっても、本発明の本質的な効果に影響を与えない。
 また、素子212の長さは、アンテナ110の開放先端を含む素子212と平行部分の長さ(図2におけるアンテナ110の縦方向の長さ)の約半分にすることで、アンテナ効率が高くなることを計算により確認している。しかし、素子212とアンテナ110が平行となる部分が他の長さであっても、本発明の本質的な効果に影響を与えない。
 次に、素子213は、図2に示すように素子212の素子211と接続しない端部に一端が接続され、無線機100から遠ざかる方向へ素子212に対して直角に配置される。尚、素子213は後述のように途中で屈曲する形状にして、小型化しても良い。
 尚、図3に示すように、無線機100のアンテナ110と給電部102の間に、給電部のインピーダンスとアンテナ110のインピーダンスの整合のためにインダクタ202を挿入する場合がある。
 また、置台200の接続部201と素子211の間、または素子212と素子213の間など、アンテナ210の中間にインダクタ104を挿入することがある。このインダクタ104は、アンテナ210が実装上の制約などから本来必要な長さに出来ない場合に挿入して、共振周波数の調整を行うためのものである。
 以上の要件に基づいて、800MHz近辺で通信する無線機10の構成例を図3に示す。図3は、無線機100が置台200に置かれた状態である。また、素子213は置台200の実装上の理由から直線ではなく、途中を直角に屈曲されている。
 また、前述の様にインピーダンス整合および共振周波数の調整のために、アンテナ110と給電部102の間には26nHのインダクタ202を、素子212と素子213の間には、20nHのインダクタ104を挿入する。
[動作の説明]
 次に本実施形態の動作について説明する。
 本説明における、高周波電流分布および高周波特性は、電磁界数値解析による計算結果である。
 図3に示した無線機10のモデルについて、高周波特性を図4と図5に示す。図4は給電部102から観測したアンテナ110の反射損失を示し、横軸は周波数をメガヘルツで表示し、縦軸にデシベルで表した反射損失に負号(マイナス)が付いた値を表示している。以降の図においても、反射損失のグラフの軸の表示は同様である。
 また、図5は無線機10から放射される電波の総電力と給電部102に供給される電力との比であるアンテナ効率を示す。ここで、無線機10から放射される電波の総電力とは、アンテナ部分を含む無線機10の全部の導体から放射される電波の電力の合計値である。
 そして、図5の横軸は周波数をメガヘルツで表示し、縦軸にアンテナ効率をデシベルで表示している。以降の図においても、アンテナ効率のグラフの軸の表示は同様である。
 次に、以降の説明のために用いる、無線機100の簡略モデルについて説明する。
 図6に無線機100の数値解析モデルを示す。本モデルの寸法は、800MHz近辺で通信することを想定している。そして、図6に示すモデルの解析結果を図7と図8に示す。図7は給電部102から観測したアンテナ110の反射損失、図8はアンテナ効率を示す。ここで、アンテナ効率は、無線機100の全部の導体、即ちアンテナ110および導体板101の両方の導体から放射される電波の総電力と、給電部102に供給される電力との比を示す。
 また、図10の左の図は、図6のモデルの800MHzの電流分布を示す。図10において、矢印の大きさは各場所の電流の大きさを示し、矢印の向きは電流の向きを示している。他の電流分布を示す図においても、矢印の意味は同じである。図10の左の図によると、大きい値の電流を示す矢印は、導体板101の縁付近に存在していることがわかる。
 そこで、図6の無線機100の導体板101の中央をくり抜き、導体板101を枠状の導体に代えた図9に示すような簡略モデルを仮定する。このような簡略モデルで解析が可能であれば、高周波電流(以下、電流)の分布を図の縦方向と横方向の2方向のみに分離できるため、動作の理解が容易になる。
 図10の右の図は図9の簡略モデルの800MHzの電流分布を示す。大きな値の電流を示す矢印の向きは図10の左右で類似の傾向が見られる。
 次に、図6のモデルと図9の簡略モデルの高周波特性を比較する。図9に示すモデルにおいて、給電部102から観測したアンテナ110の反射損失を図11に、アンテナ効率を図12に示す。
 そして、反射損失を示す図から読みとれる共振周波数は、図6のモデルの反射損失を示す図7で約820MHz、図9の簡略モデルの反射損失を示す図11で約810MHzでほぼ一致し、いずれも単共振である。また、共振周波数における反射損失の値は、図7で約5dB、図11で約6dBで互いに近い値である。
 また、図6のモデルのアンテナ効率を示す図8ではアンテナ効率最大となる周波数の値は800MHz~850MHzの間、図9の簡略モデルのアンテナ効率を示す図12ではアンテナ効率最大となる周波数の値は800MHz~850MHzの間でほぼ一致する。更にアンテナ効率最大となる周波数における効率は、図8で約-3.2dB、図12でも約-2.7dBで互いに近い値である。
 このように、図6のモデルを図9の簡略モデルに置き換えても、電流分布の傾向および高周波特性は類似していることが確認された。そこで、これから述べる無線機100のアンテナ放射メカニズムの説明では、無線機100のモデルは図9の簡略モデルを用いる。
 図13は、図9のモデルにおける800MHzの電流分布計算(図10の右の図)で得られた小さな矢印を繋いで考えられる共振時の電流の位置を、大きな矢印の線の部分で示し、ある時点の電流の向きを大きな矢印の向きで示したものである。尚、大きな矢印は見易くするため、小さい矢印の位置から少しずらした位置に描いていて、他の図でも同様である。
 そして、図13において電流15はアンテナ110を流れる電流を示し、電流16と電流17は導体板101に流れる電流を示す。図13に示す電流から判断して、導体板101は、800MHzにおいては図14に示す等価導体18のように2本に分岐する線状導体として考えることが可能である。尚、等価導体とは、解析結果から判断して、解析モデルの構造物を仮想的な線状導体で構成されていると考えて良い場合の導体のことを指す。また、等価導体の線の位置は、見やすくするために構造物の位置からずらした位置に描いていて、他の図でも同様である。
 そして、給電部102の片側には物理的長さは短縮されているが電気長は約1/4波長であるアンテナ110が接続され、給電部102の反対側には等価導体18が接続された状態と考えられる。ここで、等価導体18の線状導体が約1/4波長の長さの1本の線状導体であれば、一般的なダイポールアンテナの動作となる。
 しかし、図14の等価導体18は、2本の線状導体が並列に接続されている構成である。そして、等価導体18の2本の線状導体は、どちらも給電部102で電流最大で線状導体の反対端部でほぼゼロになる電流分布であるから、長さはそれぞれ約1/4波長である。つまり、等価導体18は給電部102で約1/4波長の長さの線状素子が2本並列に接続されたものである。
 ここで、給電部の片端に1/4波長の素子1本を接続し、給電部反対の端部に1/4波長の素子2本を並列に接続した構成の場合の、給電部で観測するインピーダンスについて、別途計算した。そして、この構成におけるインピーダンスは、給電部に対称に1本ずつの1/4波長の素子が接続される一般的なダイポールアンテナのインピーダンスに対して約1/2の値であることを確認している。従って、図14に示す無線機100の給電点102におけるインピーダンスは、一般的なダイポールアンテナのインピーダンスと比べて、約半分の値となる。
 通常、一般的なダイポールアンテナのインピーダンスは給電部において、給電部に接続される図示しない無線回路等とのインピーダンスと整合する。しかし、上述のように無線機100のアンテナのインピーダンスが一般的なダイポールアンテナのインピーダンスの約半分の値であるので、一般的なダイポールアンテナと比べて給電部102でのインピーダンス整合がしづらい。その結果、無線機100は給電部102での反射が大きくなり、反射損失が小さくなる原因となっている。
 しかし、以上の説明から明らかなように、等価導体18が1本の線状素子と等価となるような電流分布が実現されれば、無線機100は更に高周波特性が向上する。
 以上が、無線機100の放射メカニズムの説明である。
 ここで、置台200に置かない無線機100単独の高周波特性は図7と図8に示すように、特性の最も良い800MHz近辺の反射損失が約5dB、アンテナ効率は約-3.2dBであった。一方、無線機100を置台200に置いて互いに接続された無線機10として動作した時の高周波特性は図4と図5に示したように、特性の最も良い800MHz近辺の反射損失は約-12dB、アンテナ効率は約-1dBである。このように、無線機100が置台200に置かれることで互いに接続されて無線機10として動作すると、無線機100の単独動作と比べて、高周波特性が大幅に改善される。
 以下、無線機10の高周波特性が、無線機100の単独の高周波特性より改善されるメカニズムを説明する。
 図15のモデルは、前に示した図3の無線機10のモデルにおける導体板101を枠状の導体に置き換えた簡略モデルである。そして、図15の簡略モデルの高周波特性を図16と図17に示す。図16はアンテナ110の反射損失、図17はアンテナ効率を示す。
 そして、反射損失を示す図から判断する共振周波数は、図3モデルの反射損失を示す図4で約580MHzと約820MHz、図15の簡略モデルの反射損失を示す図16で約570MHzと約810MHzでほぼ一致し、いずれも2共振である。また、800MHz付近の共振周波数における反射損失の値は、図4で約12dB、図16で約18dBで互いに異なる値に見える。しかし、反射損失から計算で求めた通過損失はそれぞれ約0.3dBと約0.1dBで十分小さい値であり、更に測定した場合の誤差レベルの小さい値の差であるので、本質的には同様の特性を示していると言える。
 また、図3のモデルのアンテナ効率を示す図5ではアンテナ効率最大となる周波数の値は800MHz~850MHzである。また、図15の簡略モデルのアンテナ効率を示す図17では、アンテナ効率最大となる周波数の値は800MHz~850MHzの間でほぼ一致する。更にアンテナ効率最大となる周波数における効率は、図5で約-1.0dB、図17でも約-0.9dBで近い値である。
 このように、図3の無線機10のモデルを図15の簡略モデルに置き換えても、電流分布の傾向および高周波特性は類似していることが確認されたので、以降の無線機10のアンテナ放射メカニズムの説明では無線機10のモデルは図15の簡略モデルを用いる。
 図15のモデルの電流分布を示したものが図18である。図18では更に、電流分布から想定される定在波の位置と電流の向きを長い矢印で示している。
 図18は次のように理解される。アンテナ110が給電部102によって励振され、電流19と電流20が生じる。電流19と電流20は矢印の向きがつながる(逆向きでない)ので一連の電流と考えられる。
 一方、アンテナ110と平行に位置する素子212との空間結合により、電流19と逆位相の電流21と電流22が誘起される。電流21と電流22は矢印の向きがつながるので一連の電流と考えられる。
 また、電流23の大きさは、図14の同位置の電流と比べると小さくなっている。そこで、電流19と電流20の一連の電流と、電流21と電流22の一連の電流が無線機10の主な電流であるとして等価導体を示したものが、図19である。
 先に述べたように、図14に示した無線機100の等価導体18は、1本の線状導体ではなく2本の線状導体が並列に接続されていたために、無線機100の反射損失に悪影響を与えていた。しかし、図19に示す無線機10の等価導体では、給電部102の下側に接続される素子は、図14に示す等価導体18のように2分岐した線状導体ではなく、1本の線状導体に近づいた動作をしていると考えられる。
 そのため、図19に示す無線機10の給電部102からアンテナを観測したインピーダンスは、図14に示す無線機100の給電部102からアンテナを観測したインピーダンスと比べて高くなり、一般のダイポールアンテナのインピーダンスに近づく。その結果、無線機10は無線機100に比べて反射損失が改善される。
 また、図18において、電流21と電流22の一連の電流の中で比較的電流が小さい位置は、図19の端子103に相当する位置である。そこで、図19における端子103で2つの素子が分離される、無給電の仮想ダイポールアンテナ25に近い動作をしていると考えられる。
 そして、図19において、仮想ダイポールアンテナ24と仮想ダイポールアンテナ25に流れる電流は、どちらも図の上から下に向かって流れていることから判断して、両方の仮想ダイポールアンテナは同位相で動作している。そして、両方の仮想ダイポールアンテナが同位相で動作するので、無線機10から放射される電磁界は互いに強めあう。この同位相で動作する仮想ダイポールアンテナは無線機100には存在しないものであるので、無線機10は無線機100と比べてアンテナ効率が改善される。
 このように、無線機10は無線機100と比べて、反射損失とアンテナ効率が改善される。
 次に、アンテナ210の長さについて説明する。
 ここでは、理解し易くするため、図1で示したように、アンテナ210の素子213を折り曲げられていない直線の素子として説明する。
 図24に無線機10の各構成要素の具体的な寸法を示す。図24に示すモデルは、共振周波数が800MHzとなるように設計されている。図25に本モデルの反射損失を示す。
 また、図24に示す無線機10のモデルの電流分布を図26に示す。図26に示す太い実線は、電流分布から推定される等価導体である。そして、前述の図19の仮想ダイポールアンテナ24および仮想ダイポールアンテナ25と同様に、無線機10は、給電部側の仮想ダイポールアンテナ39と、無給電側の仮想ダイポールアンテナ40が存在するかのように動作していると解釈できる。
 この2つのアンテナの長さについて、図26を参照して説明する。
 給電側の仮想ダイポールアンテナ39の片側の素子であるアンテナ110は、実装上の理由などで800MHzに対応する波長の1/4倍である約95(mm)より短縮されて、50mmである(図3のアンテナ110と同じ長さ)。また、仮想ダイポールアンテナ39の導体板側の仮想的な素子は、800MHzに対応する波長の1/4倍である約95(mm)で共振している。その為、仮想ダイポールアンテナ39の全長は共振周波数である800MHzに対応する波長の1/2である約190mmよりも約45mm短くなっている。
 一方、無給電側の仮想ダイポールアンテナ40の全長は、一般的なダイポールアンテナと同様に、800MHzに対応する波長の1/2倍である約190(mm)で共振する。そこで、アンテナ210の長さ(素子211、素子212および素子213の長さの合計)をAとして、導体板側の仮想的な素子の長さをBとすると、式1のように表せる。ここで、Rは共振周波数(ここでは800MHz)に対応する波長である。

A+B = R/2 ・・・(式1)

 ここで、図24における導体板の辺a、辺b、および辺cの長さを、それぞれ、La、Lb、およびLcとする。すると、Bは(La+Lb+Lc)から給電側の仮想ダイポールアンテナの導体板側の仮想的な素子の長さを引いた長さで表すことも出来る。そして、前述のように、給電側の仮想ダイポールアンテナの導体板側の仮想的な素子の長さはR/4であるので、Bは式2の関係にある。

B = (La+Lb+Lc)-R/4 ・・・(式2)

 また、式1を変形すると次式を得る。

A=R/2-B

 これに式2を代入して式3を得る。

A = R/2-(La+Lb+Lc-R/4) ・・・(式3)

 更に式3を整理して、式4を得る。

A = 3R/4-(La+Lb+Lc) ・・・(式4)

 式4に、図24のモデルに示すLa、Lb、およびLcの各数値を代入して、アンテナ210の長さAを求めると、次の値を得る。

A = 281-(70+50+70) =  91(mm) ・・・(式5)

 一方、図24に示したアンテナ210の寸法は、電磁界数値解析を行って、共振周波数が800MHzになるように最適化したものであり、アンテナ210の長さAは次の値を得ている。

A = 57+28+20=105(mm) ・・・(式6)

 式6に示す値は、式5で得た91mmに対して若干の相違があるが、これはアンテナ210が完全に直線ではなく、2箇所で屈曲している影響や、アンテナ210がアンテナ110に近づいている影響によるものと考える。
 尚、画面サイズが4~5インチ程度の現行のスマートフォンやモバイルルータでは、(La+Lb+Lc)の値が、800MHzの周波数に対応する波長の約1/2倍のものが多い。
 従って、(式4)は、次式で表せる。

A ≒ 3R/4-R/2 = R/4 ・・・(式7)

 従って、現行の画面サイズが4~5インチ程度の携帯端末では、800MHzにおけるアンテナ210の最適な長さは、およそR/4である。
 以上のように、アンテナ210の寸法を最適化することが出来るが、他の長さであっても、本発明の本質的な効果に影響を与えない。
 次に、図25を参照すると、第1の共振周波数である800MHzに対し、それより低い650MHz付近に第2の共振周波数の存在を確認できる。そこで、第2の共振周波数が存在する理由を次に説明する。
 まず、図27に、周波数が650MHzでの電流分布と、電流分布から推測される等価導体を示す。前述の図26と図27は同一構造物でありながら、周波数800MHzの電流分布と周波数650MHzの電流分布が異なる。換言すれば、周波数800MHzと周波数650MHzの2つの共振ルートがある。そのため、図26に示す800MHzの等価導体と、図27に示す650MHzの等価導体は異なる。
 そして、図27に示す周波数650MHzにおける等価導体は給電部102の両端に素子を持つ仮想ダイポールアンテナ41を形成する。この仮想ダイポールアンテナ41の全長は、アンテナ110、導体板の上辺d(図24参照)、および素子211、素子212および素子213の各長さの合計である。
 ここで、アンテナ110はインピーダンス整合回路のインダクタ104によって長さが短縮されているが、アンテナ110の電気長は800MHzにおいて約R/4に相当する。
 また、素子211、素子212および素子213の長さの合計、即ちアンテナ210の長さは、画面サイズが4~5インチ程度の携帯端末の場合に、前述の式7によると800MHzにおいて約R/4である。
 以上により、図27の仮想ダイポールアンテナの電気長は、Ldを辺dの長さ、Rを800MHzに対応する波長として、次式のように表せる。

650MHz仮想ダイポールアンテナ全長 = R/4+Ld+R/4
                 = R/2+Ld       ・・・(式8)

 一般にダイポールアンテナ全長がR/2、即ち約190mmの時、共振周波数は800MHzとなる。そこで、式8を参照すると仮想ダイポールアンテナ41は、Ldの長さ分だけ片側の素子が長くなり、仮想ダイポールアンテナ41の全長は800MHzのR/2より長い。そのため、仮想ダイポールアンテナの共振周波数が800MHzより低くなる。
 図24においてdの長さLdは50mmであるので、仮想ダイポールアンテナ41のエレメント全長は式8から、190+50=240(mm)と計算される。240mmがR/2に相当する周波数は約630MHzである。これは、図25で認められる第2の共振周波数である650MHzとほぼ一致する。
 次に図2、図3、図15、図20、および図24に素子212として示す、空間結合部分について説明する。
 図28に示すモデルは、アンテナ210を図の上部に向けて真直ぐに伸ばし、アンテナ110との空間結合部分(素子212に相当)が無いモデルである。
 図29に示す800MHzの電流分布、及び電流分布から推測される等価導体から分かる通り、空間結合部分が無いと、図26に示したような仮想ダイポールアンテナ39、および仮想ダイポールアンテナ40は存在しない。
 そして、アンテナ210に沿って上に向かう電流に対し、給電点102から導体板101の右辺を下に向かう電流が存在する。そして、これらの互いに逆方向の電流は、それぞれの電流から生じる電波の放射を打ち消しあう。その結果、図28に示すモデルの無線機は、図6や図9に示した無線機100に比べてアンテナ効率が劣化する。
 次に、アンテナ210におけるインダクタ202の配置について説明する。
 まず、図20において、素子212と素子213の間にインダクタ202を配置する場合を説明する。インダクタ202は、アンテナ210を実装上の理由などで短縮した際に、アンテナ素子長の不足による周波数のずれを補正するためのものである。図21は、このインダクタ202の値を変更した場合の反射損失のグラフである。図21から確認できるように800MHz付近の共振点は、インダクタの値が10nH変化する毎に約20MHz変化する。
 次に、図22に示すように、インダクタ202を素子211と導体板101の間に配置した場合について説明する。尚、図22では接続部201と端子103は、どちらも素子211および導体板101の大きさと比べて無視出来るほど小さいとして、計算上のモデルでは省略した。実際には、インダクタ202は図3に示す置台200の素子211と接続部201の間に配置されるか、無線機100の端子103と導体板101の間に配置される。
 そして、図22に示したモデルの反射損失のグラフを図23に示す。図23から確認出来るように、800MHz付近の共振点は、インダクタが10nH変化する毎に約7MHz変化することがわかる。このように、図20のようにインダクタ202を素子212と素子213の間に配置する場合と比べて、図22のようにインダクタ202を素子212と導体板101の間に配置すると、変化量が小さくなる。
 以上説明した様に、インダクタ202で共振周波数を調整するには、インダクタ202を素子212と導体板101の間に配置するより、素子212と素子213の間に配置した方が、調整の効果が大きい。しかし、インダクタ202は、素子212と導体板101の間、または素子212と素子213の間のいずれの位置に配置しても、或いはアンテナ210のどの位置に配置しても本発明の本質的効果には影響を及ぼさない。
 以上が本実施形態の動作である。
 以上説明した様に、無線機100を置台200に置くことで、置台200に内蔵されるアンテナ210の素子211が、無線機100の導体板101と接続される。更に、素子211の導体板101と接続しない端部に接続される素子212が、無線機100に内蔵されるアンテナ110と平行に配置される。加えて、素子212の素子211と接続しない端部に接続される素子213が、導体板101から遠ざかる方向に配置される。
 このような構成とすることで、素子212はアンテナ110と電磁的に空間結合し、素子212には電流が誘起される。そして、素子212で誘起された電流は、アンテナ210の全体に流れることで、アンテナ210は外部アンテナとして動作することが可能である。
 ここで、関連技術として図36に示される無線機150および置台160では、無線機150と外部アンテナ161とを接続するために、スイッチ153、伝送線路154、伝送線路163、コネクタ155、およびコネクタ162の部品が必要であった。しかし、図2および図3に示すように、本実施形態の無線機10では、無線機100とアンテナ210との接続に必要な部品は、端子103、接続部201だけである。
 このように本実施形態の無線機10は、無線機100の外部アンテナを、図36に示される関連技術による構成と比べて、部品点数の少ない簡易な構成で実現可能である。
[第2の実施形態]
 次に、第2の実施の形態について図面を参照して詳細に説明する。
[構成の説明]
 図30に、第2の実施形態の無線機50の構成を示す。
 無線機50は、無線機100と充電台300とで構成される。充電台300は、無線機100に内蔵される蓄電池を充電する目的で、スマートフォンやモバイルルータの付属品として多く利用されている。
 この充電台300は、コネクタ301、プリント基板302、およびアンテナ310から構成される。本実施形態の充電台300は、第1の実施形態に示した置台の構成要素であった接続部201に代わりにコネクタ301が使用されていることを特徴とする。
 無線機100がAndroid(登録商標)を搭載する端末の場合、無線機100の本体には、通常、マイクロUSBコネクタのメス側が標準装備されている。このマイクロUSBコネクタのメス側のアース端子は、無線機100の導体板101と接続されている。そして、コネクタ301は、マイクロUSBコネクタのオス側であり、無線機100を充電台300に置くと、無線機100が備えるメス側コネクタと接続する。
 また、充電台300のコネクタ301のアース端子は後述のプリント基板302のアース導体に接続されている。
 次に、プリント基板302は無線機100に内蔵する蓄電池を充電するために、商用交流電源から充電用直流電源に変換する充電回路が搭載されたプリント基板である。尚、充電台300は充電回路を内蔵せず、他の充電器と接続するコネクタを備えることとし、プリント基板302には、このコネクタとコネクタ301が搭載され、両方のコネクタを接続する配線パターンが形成されていても良い。
 また、アンテナ310はプリント基板302のアース導体に接続されている。アンテナ310の基本構成は、第1の実施形態で示したアンテナ210と同じである。更に、プリント基板302とアンテナ310との接続位置と、プリント基板302とコネクタ301との接続位置は極力近いことが望ましい。
 図33に、800MHz近辺で通信することを目的とした本実施形態の構成例を示す。
[動作の説明]
 次に、本実施形態の機械的動作について説明する。
 本実施形態の無線機50の構成によれば、無線機100を充電台300に置くと、コネクタ301を介して、無線機100の導体板101と充電台300のプリント基板302のアース導体は接続される。プリント板302のアース導体には、アンテナ310が接続されているので、第1の実施形態に示した無線機100のように、端子103を設けなくても、導体板101と充電台300のアンテナ310は接続される。
 続いて、本実施形態の電気的動作について説明する。
 図33に示した構成による無線機50の高周波特性を、図31と図32に示す。図31は給電部102から観測したアンテナ110の反射損失、図32は無線機50から放射される電波の総電力と給電部102に供給される電力との比であるアンテナ効率を示す。
 充電台300に置かない無線機100単独の高周波特性は、第1の実施形態の説明で用いた図11と図12に示されるように、特性の最も良い800MHz近辺の反射損失が約6dB、アンテナ効率は約-2.7dBであった。一方、無線機100を本実施形態の充電台300において互いに接続された無線機50の高周波特性は、図31と図32に示されるように、特性の最も良い800MHz近辺の反射損失は約15dB以上、アンテナ効率は約-0.6dBである。
 このように、無線機100が充電台300に置かれることで互いに接続されて無線機50として動作すると、無線機100単独の特性と比べて高周波特性が大幅に改善される。
 上述のように、本実施形態の無線機50では、無線機100が一般的に備えるコネクタはアース端子を有し、アース端子は導体板101と接続されている。そして、無線機100が備えるコネクタのアース端子が、第1の実施形態に示した端子103の代わりに機能する。
 更に、本実施形態の無線機50では、コネクタ301のアース端子がプリント基板302のアース導体を介してアンテナ210に接続されているために、コネクタ301のアース端子は、第1の実施形態に示した接続部201の代わりに機能する。
 このように、本実施形態の無線機50の構成によっても、第1の実施形態の無線機10と同等の動作を行い、第1の実施形態の無線機10と同等の効果を得る外部アンテナを実現可能である。
[第3の実施形態]
 次に、第3の実施の形態について図34を参照して説明する。
 本実施形態のアンテナ60は、導体板401と、前記導体板401の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板401に接続される第1の線状導体410を備える。更に、アンテナ60は、前記第1の線状導体410の前記導体板401との接続端部の反対の端部を延長した線上を交差して前記導体板401に接続される第2の線状導体511を備える。また、アンテナ60は、前記第2の線状導体511の前記導体板401と接続される端部の反対の端部に接続され前記第1の線状導体410と略平行に配置される第3の線状導体512を備える。更に、アンテナ60は、前記第3の線状導体512の前記第2の線状導体511に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体513とを備える。
 このようにして、本実施形態のアンテナ60は外部アンテナを簡易な構成で実現可能である。
 以上、本発明の好適な実施形態を説明したが、上記実施形態に限定されるものではなく、次のように拡張または変形できる。
 上記各実施形態における、無線機の導体板101は長方形としていたが、他の形状であっても良い。例えば、図35に示す無線機80のように、導体板601が円形に近い形である場合、第1の実施形態で説明した、図2の各構成要素と対比すると次のようになる。アンテナ110はアンテナ610、素子211は素子711、素子212は素子712、素子213は素子713に相当する。
 更に、式4で(La+Lb+Lc)に相当する長さは、アンテナ610が導体板601と接続する位置と素子711が導体板601と接続する位置を結ぶ、導体板601の周囲の長い方の長さである。そして、無線機80についても式4を用いてアンテナ610を設計することが出来る。このように、導体板は長方形でなくても本発明の無線機は実現可能である。
 また、第1の実施形態において、素子212とアンテナ110の平行部分の間隔が近すぎることによって、素子212とアンテナ110との空間結合が強くなりすぎる場合の不都合について述べた。それは、無線機100を置台200に置かずに単独使用した時と、置台200に置いた時の共振周波数の違いについての不都合であった。
 しかし、無線機10が、無線機100と置台200に分離しない一体の構成であれば、無線機100が単独で動作する必要は無い。この場合、素子212とアンテナ110の平行部分の間隔は、先に述べた間隔である通信周波数に対応する波長として例示した0.01倍より、更に小さい値としても良い。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
  (付記1)
 導体板と、
 前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板に接続される第2の線状導体と、
 前記第2の線状導体の前記導体板と接続される端部の反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを備えることを特徴とするアンテナ。
  (付記2)
 導体板と、
 前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体とを有する第1のアンテナと、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と脱着可能な接続部で接続する第2の線状導体と、
 前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有する第2のアンテナとを備えることを特徴とするアンテナ。
  (付記3)
 前記第2のアンテナは前記第1のアンテナの置台に配置されることを特徴とする付記1または付記2のいずれかに記載のアンテナ。
  (付記4)
 前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする付記1乃至付記3のいずれかに記載のアンテナ。
  (付記5)
 前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする付記1乃至付記4のいずれかに記載のアンテナ。
  (付記6)
 前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする付記1乃至付記5のいずれかに記載のアンテナ。
  (付記7)
 前記導体板は長方形であり、前記第1の線状導体は前記導体板の一辺の端部近傍に接続され、前記第2の線状導体は前記一辺の反対側の端部近傍に接続されることを特徴とする付記1乃至付記6のいずれかに記載のアンテナ。
  (付記8)
 付記1に記載のアンテナと、
 無線回路とを備えることを特徴とする無線機。
  (付記9)
 導体板と、
 前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、
 無線回路とを有する第1の装置と、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と脱着可能な接続部で接続する第2の線状導体と、
 前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有する第2の装置とを備えることを特徴とする無線機。
  (付記10)
 前記第2の装置は、前記第1の装置の装着装置に組み込まれることを特徴とする付記9に記載の無線機。
  (付記11)
 前記第2の装置は、前記第1の装置を置いて充電する充電装置に組み込まれ、前記接続部は前記第1の装置と前記第2の装置を接続する充電端子の少なくとも1つの端子であることを特徴とする付記9に記載の無線機。
  (付記12)
 前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする付記8乃至付記11のいずれかに記載の無線機。
  (付記13)
 前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする付記8乃至付記12のいずれかに記載の無線機。
  (付記14)
 前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする付記8乃至付記13のいずれかに記載の無線機。
  (付記15)
 前記導体板は長方形であり、前記第1の線状導体は前記導体板の一辺の端部近傍に接続され、前記第2の線状導体は前記一辺の反対側の端部近傍に接続されることを特徴とする付記8乃至付記14のいずれかに記載の無線機。
  (付記16)
 導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機の前記導体板と接続可能な接続部と、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記接続部で接続する第2の線状導体と、
 前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有することを特徴とする前記無線機の装着装置。
  (付記17)
 前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする付記16に記載の装着装置。
  (付記18)
 前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする付記16または付記17のいずれかに記載の装着装置。
  (付記19)
 前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする付記16乃至付記18のいずれかに記載の装着装置。
  (付記20)
 前記導体板は長方形であり、前記第1の線状導体は前記導体板の一辺の端部近傍に接続され、前記第2の線状導体は前記一辺の反対側の端部近傍に接続されることを特徴とする付記16乃至付記19のいずれかに記載の装着装置。
  (付記21)
 導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機において、
 前記導体板と接続可能な接続部と、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記接続部で接続する第2の線状導体と、
 前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有する装着装置に接続されることを特徴とする無線機。
  (付記22)
 前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする付記21に記載の無線機。
  (付記23)
 前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする付記21または付記22のいずれかに記載の無線機。
  (付記24)
 前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする付記21乃至付記23のいずれかに記載の無線機。
  (付記25)
 前記導体板は長方形であり、前記第1の線状導体は前記導体板の一辺の端部近傍に接続され、前記第2の線状導体は前記一辺の反対側の端部近傍に接続されることを特徴とする付記21乃至付記24のいずれかに記載の無線機。
  (付記26)
 導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機の前記導体板と接続可能な少なくとも1つの端子を有する充電端子と、
 前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記少なくとも1つの端子で接続する第2の線状導体と、
 前記第2の線状導体の前記少なくとも1つの端子と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
 前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有することを特徴とする前記無線機の充電装置。
  (付記27)
 前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする付記26に記載の充電装置。
  (付記28)
 前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする付記26または付記27のいずれかに記載の充電装置。
  (付記29)
 前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする付記26乃至付記28のいずれかに記載の充電装置。
  (付記30)
 前記導体板は長方形であり、前記第1の線状導体は前記導体板の一辺の端部近傍に接続され、前記第2の線状導体は前記一辺の反対側の端部近傍に接続されることを特徴とする付記26乃至付記29のいずれかに記載の充電装置。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年7月17日に出願された日本出願特願2015-142796を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10 無線機
 15 電流
 16 電流
 17 電流
 18 等価導体
 19 電流
 20 電流
 21 電流
 22 電流
 23 電流
 24 仮想ダイポールアンテナ
 25 仮想ダイポールアンテナ
 39 仮想ダイポールアンテナ
 40 仮想ダイポールアンテナ
 41 仮想ダイポールアンテナ
 50 無線機
 60 アンテナ
 80 無線機
 100 無線機
 101 導体板
 102 給電部
 103 端子
 104 インダクタ
 110 アンテナ
 150 無線機
 151 内蔵アンテナ
 152 無線回路
 153 スイッチ
 154 伝送線路
 155 コネクタ
 160 置台
 161 外部アンテナ
 162 コネクタ
 163 伝送線路
 200 置台
 201 接続部
 202 インダクタ
 210 アンテナ
 211 素子
 212 素子
 213 素子
 300 充電台
 301 コネクタ
 310 アンテナ
 401 導体板
 410 第1の線状導体
 511 第2の線状導体
 512 第3の線状導体
 513 第4の線状導体
 601 導体板
 610 アンテナ
 711 素子
 712 素子
 713 素子

Claims (10)

  1.  導体板と、
     前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、
     前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板に接続される第2の線状導体と、
     前記第2の線状導体の前記導体板と接続される端部の反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
     前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを備えることを特徴とするアンテナ。
  2.  導体板と、
     前記導体板の縁と略平行に配置される部分を有し、途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体とを有する第1のアンテナと、
     前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と脱着可能な接続部で接続する第2の線状導体と、
     前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
     前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有する第2のアンテナとを備えることを特徴とするアンテナ。
  3.  前記第2のアンテナは前記第1のアンテナの置台に配置されることを特徴とする請求項1または請求項2のいずれかに記載のアンテナ。
  4.  前記第1の線状導体は、通信に用いる周波数に対応する波長の略4分の1倍の長さであることを特徴とする請求項1乃至請求項3のいずれかに記載のアンテナ。
  5.  前記第1の線状導体と前記第3の線状導体波長の間隔は、通信に用いる周波数に対応する波長の0.01倍~0.03倍であることを特徴とする請求項1乃至請求項4のいずれかに記載のアンテナ。
  6.  前記第2の線状導体、前記第3の線状導体、および前記第4の線状導体の長さの合計が、通信に用いる周波数に対応する波長の略4分の3倍の長さから、前記第1の線状導体と前記導体板の接続点と前記第2の線状導体と前記導体板の接続点とを結ぶ前記導体板の周囲の長い方の距離を減じた値であることを特徴とする請求項1乃至請求項5のいずれかに記載のアンテナ。
  7.  請求項1に記載のアンテナと、
     無線回路とを備えることを特徴とする無線機。
  8.  導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機の前記導体板と接続可能な接続部と、
     前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記接続部で接続する第2の線状導体と、
     前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
     前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有することを特徴とする前記無線機の装着装置。
  9.  導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機において、
     前記導体板と接続可能な接続部と、
     前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記接続部で接続する第2の線状導体と、
     前記第2の線状導体の前記接続部と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
     前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有する装着装置に接続されることを特徴とする無線機。
  10.  導体板と、前記導体板の縁と略平行に配置される部分を有し途中で曲がり間隙を挟んで前記導体板に接続される第1の線状導体と、無線回路とを有する無線機の前記導体板と接続可能な少なくとも1つの端子を有する充電端子と、
     前記第1の線状導体の前記導体板との接続端部の反対の端部を延長した線上を交差して前記導体板と前記少なくとも1つの端子で接続する第2の線状導体と、
     前記第2の線状導体の前記少なくとも1つの端子と反対の端部に接続され前記第1の線状導体と略平行に配置される第3の線状導体と、
     前記第3の線状導体の前記第2の線状導体に接続される端部の反対の端部に、前記導体板から遠ざかる方向に配置される第4の線状導体とを有することを特徴とする前記無線機の充電装置。
PCT/JP2016/001659 2015-07-17 2016-03-23 アンテナ、無線機、装着装置、および充電装置 WO2017013818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/738,709 US10734707B2 (en) 2015-07-17 2016-03-23 Antenna, radio device, mounting device, and charging device
CN201680041888.0A CN107851905B (zh) 2015-07-17 2016-03-23 天线、无线电设备、安装设备和充电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142796 2015-07-17
JP2015142796A JP5965036B1 (ja) 2015-07-17 2015-07-17 アンテナ、無線機、装着装置、および充電装置

Publications (1)

Publication Number Publication Date
WO2017013818A1 true WO2017013818A1 (ja) 2017-01-26

Family

ID=56558082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001659 WO2017013818A1 (ja) 2015-07-17 2016-03-23 アンテナ、無線機、装着装置、および充電装置

Country Status (4)

Country Link
US (1) US10734707B2 (ja)
JP (1) JP5965036B1 (ja)
CN (1) CN107851905B (ja)
WO (1) WO2017013818A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820068B1 (ja) * 2019-07-25 2021-01-27 Necプラットフォームズ株式会社 無線装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060899A (ja) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd アンテナ装置とこれを用いた電子機器
JP2010232820A (ja) * 2009-03-26 2010-10-14 Nec Corp アンテナ装置
JP2013214865A (ja) * 2012-04-02 2013-10-17 Sharp Corp 無線通信機、無線通信システム、制御プログラムおよび記録媒体
JP2014140094A (ja) * 2013-01-21 2014-07-31 Ntt Docomo Inc 通信端末用放送波受信補助装置、通信端末用放送波受信補助システム
JP2014225784A (ja) * 2013-05-16 2014-12-04 株式会社Nttドコモ 受信補助装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115803B (fi) 2002-12-02 2005-07-15 Filtronic Lk Oy Järjestely lisäantennin kytkemiseksi radiolaitteeseen
JP2005286895A (ja) * 2004-03-30 2005-10-13 Nec Access Technica Ltd アンテナ装置および携帯無線装置
JP4079925B2 (ja) 2004-08-09 2008-04-23 Necアクセステクニカ株式会社 無線機
JP2007288561A (ja) 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd 携帯無線機用アンテナ
JP4516935B2 (ja) 2006-05-29 2010-08-04 Necインフロンティア株式会社 携帯通信端末のアンテナ切替えシステム
WO2008059509A2 (en) * 2006-11-16 2008-05-22 Galtronics Ltd Compact antenna
WO2009037523A2 (en) 2007-09-20 2009-03-26 Nokia Corporation An antenna arrangement, a method for manufacturing an antenna arrangement and a printed wiring board for use in an antenna arrangement
JP5306774B2 (ja) 2008-10-30 2013-10-02 京セラ株式会社 携帯端末
JP2010119002A (ja) 2008-11-14 2010-05-27 Nec Corp 携帯端末装置
JP5511089B2 (ja) * 2011-05-19 2014-06-04 パナソニック株式会社 アンテナ装置
US8970433B2 (en) * 2011-11-29 2015-03-03 Qualcomm Incorporated Antenna assembly that is operable in multiple frequencies for a computing device
JP5092066B2 (ja) 2012-07-25 2012-12-05 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
US8847828B1 (en) 2012-09-25 2014-09-30 Amazon Technologies, Inc. Antenna structure with strongly coupled parasitic grounding element
US9124003B2 (en) * 2013-02-21 2015-09-01 Qualcomm Incorporated Multiple antenna system
CN204067570U (zh) 2014-09-11 2014-12-31 深圳市六二九科技有限公司 2g、3g、4g整合多频天线及无线通讯终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060899A (ja) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd アンテナ装置とこれを用いた電子機器
JP2010232820A (ja) * 2009-03-26 2010-10-14 Nec Corp アンテナ装置
JP2013214865A (ja) * 2012-04-02 2013-10-17 Sharp Corp 無線通信機、無線通信システム、制御プログラムおよび記録媒体
JP2014140094A (ja) * 2013-01-21 2014-07-31 Ntt Docomo Inc 通信端末用放送波受信補助装置、通信端末用放送波受信補助システム
JP2014225784A (ja) * 2013-05-16 2014-12-04 株式会社Nttドコモ 受信補助装置

Also Published As

Publication number Publication date
CN107851905A (zh) 2018-03-27
CN107851905B (zh) 2021-01-12
US20180183135A1 (en) 2018-06-28
US10734707B2 (en) 2020-08-04
JP2017028392A (ja) 2017-02-02
JP5965036B1 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6256600B2 (ja) アンテナ装置および電子機器
WO2011102143A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
US20150048995A1 (en) Antenna apparatus
JP2013051644A (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
KR20120096927A (ko) 전자 장치에서 안테나들 사이에 높은 절연을 제공하는 안테나 시스템
CN103138052A (zh) 可携式通讯装置的多频天线
TW201308751A (zh) 多頻倒f型天線
US8810476B2 (en) Wireless apparatus
JP2018121293A (ja) アンテナ、アンテナモジュール、及び通信装置
US8843185B2 (en) Slide-type wireless terminal apparatus
WO2017013818A1 (ja) アンテナ、無線機、装着装置、および充電装置
WO2016186091A1 (ja) アンテナ装置および電子機器
CN104466394A (zh) 宽带天线
US9385421B2 (en) Antenna and electronic device for close proximity wireless communication
US9030365B2 (en) Wireless communication device
US20130021210A1 (en) Wireless communication apparatus
US9660329B2 (en) Directional antenna
JP5112530B2 (ja) 折り返しモノポールアンテナ
JP6183269B2 (ja) アンテナ装置およびこれを搭載した携帯無線端末
JP6461039B2 (ja) 可変特性アンテナ
JP5799247B2 (ja) 携帯無線機
TWI771641B (zh) 天線裝置以及無線通訊裝置
JP2013102257A (ja) 折り返しダイポールアンテナ
JP2007150863A (ja) 無線通信機能付き装置
CN105633549A (zh) 天线结构及应用该天线结构的无线通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827387

Country of ref document: EP

Kind code of ref document: A1