WO2017010223A1 - Wide-bandgap semiconductor device production method, wide-bandgap semiconductor wafer, and wide-bandgap semiconductor chip - Google Patents

Wide-bandgap semiconductor device production method, wide-bandgap semiconductor wafer, and wide-bandgap semiconductor chip Download PDF

Info

Publication number
WO2017010223A1
WO2017010223A1 PCT/JP2016/067898 JP2016067898W WO2017010223A1 WO 2017010223 A1 WO2017010223 A1 WO 2017010223A1 JP 2016067898 W JP2016067898 W JP 2016067898W WO 2017010223 A1 WO2017010223 A1 WO 2017010223A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
band gap
wide band
gap semiconductor
alignment mark
Prior art date
Application number
PCT/JP2016/067898
Other languages
French (fr)
Japanese (ja)
Inventor
拓 堀井
透 日吉
光亮 内田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017010223A1 publication Critical patent/WO2017010223A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a method for manufacturing a wide band gap semiconductor device, a wide band gap semiconductor wafer, and a wide band gap semiconductor chip.
  • This application claims priority based on Japanese Patent Application No. 2015-138585, a Japanese patent application filed on July 10, 2015, and incorporates all the content described in the Japanese patent application. .
  • Patent Document 1 describes a method for manufacturing a silicon carbide semiconductor device including a step of performing alignment using alignment marks provided on a silicon carbide substrate.
  • the manufacturing method of a wide band gap semiconductor device includes the following steps.
  • a wide band gap semiconductor wafer including a main surface and having an n-type conductivity is prepared.
  • a dicing region is formed on the main surface.
  • An alignment mark region is formed on the main surface.
  • the wide band gap semiconductor wafer and the photomask are aligned using the alignment mark region.
  • a p-type region is formed so as to overlap the alignment mark region.
  • a plurality of chips are formed by cutting the wide band gap semiconductor wafer along the dicing region. There is no p-type region in the portion of the dicing region left on the plurality of chips.
  • the wide band gap semiconductor wafer according to one embodiment of the present invention is a wide band gap semiconductor wafer in which a dicing region is formed on a main surface.
  • the wide band gap semiconductor wafer includes an alignment mark region located in the dicing region and a p-type region located in the alignment mark region.
  • the value obtained by dividing the width of the p-type region by the width of the dicing region in the direction perpendicular to the extending direction of the dicing region is 1/12 or more and 2/3 or less, and in the direction perpendicular to the extending direction.
  • the width of the p-type region satisfies at least one of 10 ⁇ m or more and 80 ⁇ m or less.
  • the wide band gap semiconductor wafer according to one embodiment of the present invention is a wide band gap semiconductor wafer in which a dicing region is formed on a main surface.
  • the wide band gap semiconductor wafer includes an alignment mark region located in a region surrounded by a dicing region and a p-type region located in the alignment mark region. The p-type region does not exist in the dicing region.
  • FIG. 5 is an enlarged view of a shot area 1 in FIG. 4.
  • FIG. 6 is an enlarged view of a region VI in FIG. 5.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. 6.
  • FIG. 7 is a schematic sectional view taken along line VIII-VIII in FIG. 6. It is a cross-sectional schematic diagram which shows the 2nd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. It is a cross-sectional schematic diagram which shows the 3rd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. It is a cross-sectional schematic diagram which shows the 4th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. It is a cross-sectional schematic diagram which shows the 5th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment.
  • FIG. 30 is an enlarged view of a region XXX in FIG. 29. It is a plane schematic diagram which shows the modification of the 15th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. It is a plane schematic diagram which shows the modification of the 20th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. It is a figure which shows the relationship between drain leakage current and application time.
  • the wafer is divided into a plurality of chips by cutting the wafer along a dicing line. After being divided into a plurality of chips, the drain leakage current of each chip is evaluated. Chips having a drain leakage current value higher than the reference value are screened as defective. The drain leak defect rate is calculated by dividing the number of chips determined to be defective by the number of all chips for which the drain leak current has been measured.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a wide band gap semiconductor device, a wide band gap semiconductor wafer, and a wide band gap semiconductor chip that can reduce a drain leak defect rate.
  • a chip in which a drain leak defect occurs is a chip at a specific position in the wafer surface. Furthermore, as a result of a detailed comparison between the structure of the chip where the drain leak failure has occurred and the structure of the chip where the drain leak failure has not occurred, the portion of the dicing region of the chip where the drain leak failure has occurred It has been found that the p-type region is not formed in the portion of the dicing region of the chip where the p-type region is formed and the drain leak defect does not occur.
  • alignment is performed in order to reduce relative positional deviation between different processes.
  • an ion implantation mask having an opening on the body region is formed.
  • patterning of the ion implantation mask is performed.
  • the patterning of the ion implantation mask is performed by a photolithography process.
  • a photomask such as a reticle and a wafer are aligned using alignment marks. Specifically, the alignment between the photomask and the wafer is performed such that the alignment mark provided on the photomask and the alignment mark provided on the wafer are overlapped.
  • the alignment mark formed on the photomask is formed by the translucent part, alignment is performed so that the translucent part overlaps the alignment mark of the wafer.
  • exposure is performed in this state, exposure is performed not only on the resist portion on the region where the body region is formed but also on the resist portion on the alignment mark of the wafer.
  • the exposed resist portion is removed. As a result, an opening is formed in the portion of the resist on the region where the body region is formed, and an opening is also formed in the portion of the resist on the alignment mark on the wafer.
  • the ion implantation mask is patterned using the resist pattern as a mask.
  • an opening is formed above both the body region and the alignment mark.
  • ion implantation is performed on the wafer using the ion implantation mask. As a result, a body region is formed on the wafer and a p-type region is also formed on the alignment mark.
  • the alignment mark is formed in the dicing area on the wafer surface. Therefore, when a plurality of chips are formed by cutting the wafer along the dicing area, most of the p-type area is removed together with the alignment mark. However, a part of the p-type region may be left around the chip. If the p-type region remains around the chip, a depletion layer spreads in the p-type region when a voltage is applied between the source electrode and the drain electrode. It is considered that drain leakage current is generated by the concentration of the electric field in the p-type region.
  • the manufacturing method of the wide band gap semiconductor device 100 includes the following steps.
  • a wide band gap semiconductor wafer 10 including a main surface 10a and having an n-type conductivity is prepared.
  • Dicing region DR is formed on main surface 10a.
  • Alignment mark region 30 is formed on main surface 10a.
  • the alignment between the wide band gap semiconductor wafer 10 and the photomask 61 is performed using the alignment mark region 30.
  • a p-type region 71 is formed so as to overlap the alignment mark region 30.
  • the plurality of chips 5 are formed by cutting the wide band gap semiconductor wafer 10 along the dicing region DR.
  • the p-type region 71 does not exist in the portion of the dicing region DR left on the plurality of chips 5.
  • the “wide band gap semiconductor” is a semiconductor having a larger band gap than silicon (Si), and includes, for example, silicon carbide (SiC), gallium nitride (GaN) and diamond.
  • the p-type region 71 does not exist in the portion of the dicing region DR remaining on the plurality of chips 5. Therefore, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71. As a result, the drain leak defect rate can be reduced.
  • the alignment mark region 30 may be formed in the dicing region DR.
  • the p-type region 71 may be removed. Thereby, since it is not necessary to form an alignment mark in the element region 2, a large area of the element region 2 can be secured.
  • the width W2 of the p-type region 71 is divided by the width W1 of the dicing region DR in a direction perpendicular to the extending direction of the dicing region DR.
  • the value obtained is not less than 1/12 and not more than 2/3, and the width W2 of the p-type region 71 in the direction perpendicular to the stretching direction satisfies at least one of not less than 10 ⁇ m and not more than 80 ⁇ m. Good.
  • the cutting width W3 of the wide band gap semiconductor wafer 10 in the step of forming the plurality of chips 5 is extended to the dicing region DR.
  • the value divided by the width W1 of the dicing region DR in the direction perpendicular to the direction satisfies at least one of 1 ⁇ 4 to 5/6 and the cutting width W3 of 30 ⁇ m to 100 ⁇ m. It may be. As a result, even if the position of the p-type region 71 varies, the p-type region 71 can be effectively removed.
  • the dicing region DR and the alignment mark region 30 may be formed simultaneously. Thereby, the manufacturing process of the wide band gap semiconductor device 100 can be simplified.
  • the wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Also good. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
  • the maximum diameter of the main surface 10a may be 100 mm or more.
  • the manufacturing method of the wide band gap semiconductor device 100 according to the present embodiment can be suitably used for a large-diameter wafer having a large number of alignment marks because the number of shots is large.
  • the alignment mark region 30 is formed in a region surrounded by the dicing region DR on the main surface 10a. It may be formed. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
  • the wide band gap semiconductor wafer 10 is a wide band gap semiconductor wafer 10 in which a dicing region DR is formed on the main surface 10a.
  • the wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region and a p-type region 71 located in the alignment mark region 30.
  • the value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and
  • the width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 ⁇ m or more and 80 ⁇ m or less.
  • the wide band gap semiconductor wafer 10 is a wide band gap semiconductor wafer in which a dicing region is formed on the main surface 10a.
  • Wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by dicing region DR, and a p-type region 71 located in alignment mark region 30.
  • the p-type region 71 does not exist in the dicing region DR. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
  • the wide band gap semiconductor wafer 10 may include at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
  • the maximum diameter of the main surface 10a may be 100 mm or more.
  • the manufacturing method of the wide band gap semiconductor device 100 according to this embodiment can be suitably used for a large diameter wafer having a large number of shots and a large number of alignment marks.
  • the wide band gap semiconductor chip 5 is manufactured by cutting the wide band gap semiconductor wafer 10 according to any one of (9) to (12) along the dicing region DR. Is done. Thereby, the drain leakage current of the wide band gap semiconductor chip 5 can be reduced.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MOSFET 100 includes silicon carbide substrate 10, gate electrode 27, gate insulating film 15, interlayer insulating film 22, source electrode 16, surface protection electrode 19, drain electrode 21, and back surface protection.
  • the electrode 23 is mainly included.
  • Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a.
  • Silicon carbide substrate 10 mainly includes a silicon carbide single crystal substrate 11 and a silicon carbide epitaxial layer 24 provided on silicon carbide single crystal substrate 11.
  • Silicon carbide single crystal substrate 11 is made of, for example, polytype 4H hexagonal silicon carbide.
  • the maximum diameter S of the first major surface 10a is, for example, 50 mm (about 2 inches) or more, preferably 75 mm (about 3 inches) or more, more preferably 100 mm (about 4 inches) or more, and further preferably 150 mm (about 6 inches) or more.
  • the first major surface 10a is, for example, a surface that is off by 4 ° or less from the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • the first main surface 10a is, for example, a surface that is off by about 4 ° or less from the (0001) surface or the (0001) surface.
  • the second major surface 10b is, for example, a (000-1) plane or a plane off from the (000-1) plane by about 4 ° or less.
  • Silicon carbide epitaxial layer 24 includes drift region 12, body region 13, source region 14, contact region 18, and guard ring region 17.
  • Drift region 12 includes an n-type impurity such as nitrogen and has an n-type (first conductivity type) conductivity type. The concentration of the n-type impurity contained in drift region 12 is, for example, about 5.0 ⁇ 10 15 cm ⁇ 3 .
  • Body region 13 includes a p-type impurity such as Al (aluminum) or B (boron), for example, and has a p-type (second conductivity type) conductivity type. The concentration of the p-type impurity contained in body region 13 is, for example, about 1 ⁇ 10 17 cm ⁇ 3 .
  • Source region 14 includes an n-type impurity such as phosphorus and has n-type conductivity.
  • the source region 14 is formed so as to be surrounded by the body region 13 in a visual field (plan view) viewed along a direction perpendicular to the first main surface 10a.
  • the concentration of the n-type impurity included in the source region 14 may be higher than the concentration of the n-type impurity included in the drift region 12.
  • the concentration of the n-type impurity contained in the source region 14 is, for example, 1 ⁇ 10 19 cm ⁇ 3 .
  • Source region 14 is separated from drift region 12 by body region 13.
  • Contact region 18 includes a p-type impurity such as aluminum and has p-type conductivity.
  • the contact region 18 is provided so as to be surrounded by the source region 14 in plan view. Contact region 18 is in contact with body region 13.
  • the concentration of the p-type impurity included in the contact region 18 may be higher than the concentration of the p-type impurity included in the body region 13.
  • the concentration of the p-type impurity contained in contact region 18 is, for example, 1 ⁇ 10 19 cm ⁇ 3 .
  • Guard ring region 17 includes a p-type impurity such as aluminum and has p-type conductivity.
  • the dose amount of the guard ring region 17 is, for example, 1 ⁇ 10 13 cm ⁇ 2 .
  • the guard ring region 17 is in contact with the drift region 12.
  • the guard ring region 17 is annular.
  • Each of the plurality of guard ring regions 17 may be provided concentrically.
  • Each of the plurality of guard ring regions 17 may be provided so as to surround the body region 13, the source region 14, and the contact region 18 in plan view.
  • the gate insulating film 15 is provided on the first main surface 10a. Gate insulating film 15 is in contact with source region 14, body region 13, and drift region 12 on first main surface 10 a. The gate insulating film 15 may be in contact with the guard ring region 17 on the first main surface 10a. Gate insulating film 15 is made of, for example, silicon dioxide. The thickness of the gate insulating film 15 is, for example, not less than 40 nm and not more than 60 nm.
  • the gate electrode 27 is provided on the gate insulating film 15. Gate insulating film 15 is sandwiched between gate electrode 27 and silicon carbide substrate 10. Gate electrode 27 is provided to face source region 14, body region 13, and drift region 12.
  • the gate electrode 27 is made of a conductor such as polysilicon doped with impurities.
  • the source electrode 16 is in contact with the source region 14 and the contact region 18 on the first main surface 10a.
  • the source electrode 16 includes, for example, TiAlSi.
  • source electrode 16 is in ohmic contact with each of source region 14 and contact region 18.
  • the surface protective electrode 19 is in contact with the source electrode 16.
  • the surface protection electrode 19 is provided so as to cover the interlayer insulating film 22.
  • the surface protection electrode 19 is electrically connected to the source region 14 through the source electrode 16.
  • the interlayer insulating film 22 covers the gate electrode 27.
  • the interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15.
  • the interlayer insulating film 22 electrically insulates the gate electrode 27 and the source electrode 16 from each other.
  • Interlayer insulating film 22 is made of, for example, silicon dioxide.
  • the drain electrode 21 is provided in contact with the second main surface 10b.
  • Drain electrode 21 is made of, for example, a material such as NiSi (nickel silicide) capable of ohmic contact with n-type silicon carbide single crystal substrate 11.
  • the back surface protective electrode 23 is electrically connected to the drain electrode 21.
  • the back surface protective electrode 23 is made of, for example, a material containing aluminum.
  • MOSFET 100 as the silicon carbide semiconductor device according to the present embodiment will be described.
  • the voltage applied to the gate electrode 27 is less than the threshold voltage, that is, in the off state, even if a voltage is applied between the source electrode 16 and the drain electrode 21, it is formed between the body region 13 and the drift region 12.
  • the pn junction is reverse-biased and becomes non-conductive.
  • a voltage higher than the threshold voltage is applied to the gate electrode 27, a channel is formed in the body region 13.
  • the source region 14 and the drift region 12 are electrically connected, and a current flows between the source electrode 16 and the drain electrode 21.
  • the MOSFET 100 operates.
  • a step of preparing a semiconductor wafer (S10: FIG. 2) is performed.
  • an ingot (not shown) made of polytype 4H hexagonal silicon carbide is sliced to prepare n-type (first conductivity type) silicon carbide single crystal substrate 11.
  • n type drift region 12 is formed on silicon carbide single crystal substrate 11 by epitaxial growth.
  • a silicon carbide single crystal substrate 11 in an atmospheric gas containing hydrogen (H 2 ) as a carrier gas and monosilane (SiH 4 ), propane (C 3 H 8 ) and nitrogen (N 2 ) as source gases. Is heated at a temperature of 1500 ° to 1700 °, for example.
  • a wide band gap semiconductor wafer 10 including the first main surface 10a and the second main surface 10b opposite to the first main surface 10a and having the n-type conductivity is prepared (see FIG. 3).
  • Drift region 12 constitutes first main surface 10a.
  • Silicon carbide single crystal substrate 11 constitutes second main surface 10b (see FIG. 3).
  • the wide band gap semiconductor wafer 10 may contain at least one of silicon carbide, gallium nitride, and diamond.
  • a gallium nitride substrate or a diamond substrate may be used instead of the silicon carbide single crystal substrate 11.
  • Silicon carbide single crystal substrate 11 is made of, for example, polytype 4H hexagonal silicon carbide.
  • the maximum diameter S (see FIG. 4) of the first main surface 10a is, for example, 50 mm (about 2 inches) or more, preferably 75 mm (about 3 inches) or more, more preferably 100 mm (about 4 inches) or more. More preferably 150 mm (about 6 inches) or more.
  • the first major surface 10a is, for example, a surface that is off by 4 ° or less from the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • the first main surface 10a is, for example, a surface that is off by about 4 ° or less from the (0001) surface or the (0001) surface.
  • the second major surface 10b is, for example, a (000-1) plane or a plane off from the (000-1) plane by about 4 ° or less.
  • a step of forming a dicing region (S20: FIG. 2) is performed.
  • an etching mask (not shown) having an opening is formed on a region where dicing region DR is to be formed on first main surface 10a.
  • the etching mask is made of a material containing, for example, silicon dioxide.
  • the first major surface 10a is etched using the etching mask.
  • reactive ion etching may be performed on silicon carbide wafer 10 using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas.
  • a rectangular area 1 surrounded by a broken line is a shot area when exposed in an exposure process described later. That is, in the exposure process, reduced projection exposure is performed, the first main surface 10a is divided into a plurality of shot areas, and exposure is performed in each shot area.
  • dicing region DR is formed on first main surface 10 a.
  • the dicing region DR has a lattice shape when viewed from a direction perpendicular to the first main surface 10a.
  • the dicing region DR may be formed so as to extend along the ⁇ 11-20> direction, or may be formed so as to extend along the ⁇ 1-100> direction.
  • the ⁇ 11-20> direction or the ⁇ 1-100> direction is the extending direction of the dicing region DR.
  • the dicing region DR may be formed in a lattice shape extending along the ⁇ 11-20> direction and extending along the ⁇ 1-100> direction.
  • the element region 2 surrounded by the dicing region DR is a region where a semiconductor element such as a MOSFET is to be formed.
  • the dicing region DR may be a groove defined by the side surface SW3 and the bottom surface BT3 provided continuously with the side surface SW3.
  • a step of forming alignment mark regions (S30: FIG. 2) is performed.
  • an area where the alignment mark 31 is to be formed on the first main surface 10a is covered, and an etching mask (not shown) having an opening around the area is formed.
  • the etching mask is made of a material containing, for example, silicon dioxide.
  • the first major surface 10a is etched using the etching mask.
  • reactive ion etching may be performed on silicon carbide substrate 10 using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas.
  • the alignment mark 31 is formed in the 1st main surface 10a (refer FIG. 6).
  • the alignment mark 31 may be convex or concave.
  • the alignment mark region 30 includes, for example, a convex alignment mark 31 and a first recess TR1 and a second recess TR2 formed around the alignment mark 31.
  • First recess TR1 is defined by side surface SW1 and bottom surface BT1.
  • the second recess TR2 is defined by the side surface SW2 and the bottom surface BT2.
  • the alignment mark region 30 may be formed in the dicing region DL.
  • the convex alignment mark 31 may be a region formed between the first recess TR1 and the second recess TR2.
  • the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 are formed simultaneously.
  • the first alignment mark 31, the second alignment mark 32, the third alignment mark 33, the first recess TR1, and the second recess TR2 constitute an alignment mark region 30.
  • the number of alignment mark regions 30 in the shot region 1 may be smaller than the number of element regions 2.
  • the alignment mark region 30 is provided adjacent to one element region 2, but may not be provided around another element region 2.
  • the step of forming the dicing region (S20: FIG. 2) and the step of forming the alignment mark region (S30: FIG. 2) are performed simultaneously.
  • the first alignment mark 31, the second alignment mark 32, the third alignment mark 33, and the region where the element region 2 is to be formed are covered on the first main surface 10a, and the first alignment mark 31 and the second alignment mark are formed.
  • An etching mask (not shown) having an opening in a region other than the mark 32, the third alignment mark 33, and the element region 2 is formed.
  • the first main surface 10a is etched using the etching mask as a mask.
  • the dicing region DR, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 may be formed simultaneously.
  • the region VIII, the region IXA, the region IXB, and the region IXC in FIG. 9 correspond to the region VIII, the region IXA, the region IXB, and the region IXC in FIG.
  • a first alignment mark 31 used in the alignment process of the body region 13 (see FIG. 1) is formed in the region VIII.
  • a second alignment mark 32 used in the alignment process of the contact region 18 (see FIG. 1) is formed in the region IXB.
  • a third alignment mark 33 used in the alignment process of the guard ring region 17 (see FIG. 1) is formed.
  • the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 may be positioned on a straight line on the dicing region DR.
  • a step of forming an ion implantation mask (S40: FIG. 2) is performed.
  • the ion implantation mask 41 is formed on the first major surface 10a.
  • TEOS Tetraethylorthosilicate
  • Ion implantation mask 41 is made of a material containing, for example, silicon dioxide.
  • the thickness of the ion implantation mask 41 is, for example, 1.8 ⁇ m.
  • the ion implantation mask 41 may be formed on the entire first main surface 10a.
  • the ion implantation mask 41 is formed in the element region 2, the alignment mark region 30, and the dicing region DR. That is, the ion implantation mask 41 is formed in contact with the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33.
  • the ion implantation mask 41 may be formed so as to fill the first recess TR1 and the second recess TR2.
  • a step of forming a mask layer (S50: FIG. 2) is performed.
  • a mask layer 51 made of a material including a resist is formed on the ion implantation mask 41.
  • the thickness of mask layer 51 is, for example, 3 ⁇ m.
  • the mask layer 51 is formed in the element region 2, the alignment mark region 30, and the dicing region DR.
  • the mask layer 51 is formed at a position facing the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 (see FIG. 10).
  • mask layer 51 is formed on first main surface 10a.
  • the mask layer 51 is formed on the first major surface 10 a via the ion implantation mask 41.
  • an alignment step (S60: FIG. 2) is performed. Specifically, the alignment mark region 30 formed on the wide band gap semiconductor wafer 10 and the alignment mark formed on the photomask 61 are overlapped in a direction perpendicular to the first main surface 10a. The alignment of the wide band gap semiconductor wafer 10 and the photomask 61 is performed. More specifically, the wide band gap semiconductor wafer 10 and the photomask 61 are aligned using the first alignment mark 31 in the alignment mark region 30.
  • the photomask 61 has translucent parts 61a and 61b and a light shielding part 61c.
  • the translucent part 61a is an alignment mark formed on a photomask, for example. For example, when viewed from a direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the translucent portion 61 a of the photomask 61 overlaps the first alignment mark 31 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 61 is performed.
  • the wide band gap semiconductor wafer 10 and the photomask 61 are aligned so that the translucent portion 61a is surrounded by the outer edge of the first alignment mark 31 when viewed from the direction perpendicular to the first major surface 10a. Is done.
  • the recognition method of the alignment mark 31 may be an LSA (Laser Step Alignment) method or an FIA (Field Image Alignment) method.
  • the LSA method is an optical alignment method in which a laser is applied to an alignment mark and the reflected light of the laser is analyzed for alignment.
  • the FIA method is an image recognition method and is a method for performing alignment by recognizing an edge of an image recognized by a camera.
  • a step of forming an opening in the mask layer is performed.
  • the mask layer 51 is exposed using the photomask 61.
  • exposure is performed using a light source (not shown) disposed on the side opposite to the wide band gap semiconductor wafer 10 when viewed from the photomask 61.
  • the light used for exposure is, for example, ultraviolet light.
  • the light used for exposure may be g-line, h-line, i-line or electron beam.
  • Light from the light source is irradiated in a direction substantially perpendicular to the first main surface 10a (the direction of the arrow in FIG. 12). As shown in FIG. 12, the light passes through the light transmitting portions 61 a and 61 b of the photomask 61 and is applied to the mask layer 51.
  • the portion of the mask layer 51 that faces the light shielding portion 61c is not irradiated with light.
  • the exposure of the wide band gap semiconductor wafer 10 is performed by, for example, a step-and-repeat method. As shown in FIG. 4, after exposure is performed in a certain shot region 1, the wide band gap semiconductor wafer 10 moves in a direction parallel to the first main surface 10a. Next, exposure is performed in another shot region 1. Thus, the exposure and the movement of the wide band gap semiconductor wafer 10 are repeatedly performed.
  • the mask layer 51 is etched.
  • the mask layer 51 is a positive photoresist
  • the portions 51 a and 51 b irradiated with light are etched, and the portion 51 c not irradiated with light remains on the ion implantation mask 41 without being etched.
  • the mask layer 51 is a negative photoresist
  • the portion 51c not irradiated with light is etched, and the portions 51a and 51b irradiated with light remain on the ion implantation mask 41 without being etched.
  • the openings O11 and O12 are formed in the mask layer 51. Specifically, the opening O11 is formed at a position facing the first alignment mark 31, and the opening O12 is formed at a position facing the region where the body region 13 is to be formed in the element region 2 (FIG. 13).
  • the ion implantation mask is etched.
  • the mask layer 51c in which the openings O11 and O12 are formed is used as a mask, and the ion implantation mask 41 is dry-etched with a gas containing CF 4 .
  • the portions 41a and 41b of the ion implantation mask 41 corresponding to the openings O11 and O12 are etched.
  • openings O21 and O22 are formed in the ion implantation mask 41.
  • the opening O21 is formed at a position facing the first alignment mark 31, and the opening O22 is formed at a position facing the region where the body region 13 is to be formed in the element region 2.
  • the mask layer 51c is removed from the ion implantation mask 41 (see FIG. 14).
  • the step of forming the first p-type region (S80: FIG. 2) is performed.
  • a p-type impurity such as aluminum is applied to the first main surface 10a with respect to the first main surface 10a.
  • the first p-type region 71 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O11 and O21. That is, the first p-type region 71 is formed so as to overlap with the alignment region 30.
  • the first p-type region 71 is formed in the dicing region DR.
  • a first p-type region 71 is formed in the first alignment mark 31.
  • the depth of the first p-type region 71 may be larger, smaller, or the same as the depth of the first recess TR1 and the second recess TR2.
  • the body region 13 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O12 and O22.
  • the body region 13 is formed in the element region 2.
  • First p-type region 71 and body region 13 are formed simultaneously. The depth of the first p-type region 71 and the depth of the body region 13 are substantially the same.
  • the ion implantation mask 41c is removed from the first main surface 10a.
  • a step of forming a source region is performed. First, an ion implantation mask having an opening is formed on a region where the source region 14 is formed. Next, an n-type impurity such as phosphorus or nitrogen is ion-implanted into the body region 13. Thereby, the source region 14 in contact with the body region 13 is formed.
  • the step of forming the second p-type region (S90: FIG. 2) is performed.
  • ion implantation mask 42 made of, for example, a material containing silicon dioxide is formed on first main surface 10a.
  • the alignment of the wide band gap semiconductor wafer 10 and the photomask 62 is performed using the second alignment mark 32 in the alignment mark region 30. For example, when viewed from a direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the translucent portion 62 a of the photomask 62 overlaps with the second alignment mark 32 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 62 is performed.
  • the mask layer 52 is exposed using the photomask 62.
  • Light from the light source is irradiated in a direction substantially perpendicular to the first major surface 10a (the direction of the arrow in FIG. 16). As shown in FIG. 16, the light passes through the light transmitting portions 62 a and 62 b of the photomask 62 and is applied to the mask layer 52.
  • the portion of the mask layer 52 that faces the light shielding portion 62c is not irradiated with light.
  • the portions 52a and 52b irradiated with light are etched, and the portion 52c not irradiated with light remains on the ion implantation mask 42 without being etched.
  • openings O31 and O32 are formed in the mask layer 52c. Specifically, the opening O31 is formed at a position facing the second alignment mark 32, and the opening O32 is formed at a position facing the region where the contact region 18 is to be formed in the element region 2 (FIG. 17).
  • the ion implantation mask is etched.
  • the mask layer 52c in which the openings O31 and O32 are formed is used as a mask, and the ion implantation mask 42 is dry-etched with a gas containing CF 4 . Thereby, openings O41 and O42 are formed in the ion implantation mask. Next, the mask layer 52 c is removed from the ion implantation mask 42.
  • a p-type impurity such as aluminum is introduced into the first main surface 10a with respect to the first main surface 10a.
  • a p-type impurity such as aluminum is introduced into the first main surface 10a with respect to the first main surface 10a.
  • the second p-type region 72 is formed in the region of the wide band gap semiconductor wafer 10 overlapping the openings O31 and O41. That is, the second p-type region 72 is formed so as to overlap with the alignment region 30.
  • Second p-type region 72 is formed in dicing region DR.
  • the second p-type region 72 is formed in the second alignment mark 32.
  • the depth of the second p-type region 72 may be smaller than the depth of the first p-type region 71.
  • the contact region 18 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O32 and O42.
  • the contact region 18 is formed in the element region 2.
  • Second p-type region 72 and contact region 18 are formed simultaneously. The depth of the second p-type region 72 and the depth of the contact region 18 are substantially the same.
  • the ion implantation mask 42c is removed from the first main surface 10a.
  • a step of forming a third p-type region (S100: FIG. 2) is performed.
  • ion implantation mask 43 made of, for example, a material containing silicon dioxide is formed on first main surface 10a.
  • a mask layer 53 made of, for example, a material containing a resist is formed on the ion implantation mask 43.
  • alignment of the wide band gap semiconductor wafer 10 and the photomask 63 is performed using the third alignment mark 33 in the alignment mark region 30. For example, when viewed from the direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the light transmitting portion 63 a of the photomask 63 overlaps with the third alignment mark 33 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 63 is performed.
  • the mask layer 53 is exposed using the photomask 63.
  • Light from the light source is irradiated in a direction substantially perpendicular to the first major surface 10a (the direction of the arrow in FIG. 19). As shown in FIG. 19, the light passes through the light transmitting parts 63 a and 63 b of the photomask 63 and is applied to the mask layer 53.
  • the portion 53c of the mask layer 53 that faces the light shielding portion 63c is not irradiated with light.
  • the ion implantation mask 43 is etched.
  • the mask layer 53c in which the openings O51 and O52 are formed is used as a mask, and the ion implantation mask 43 is dry-etched with a gas containing CF 4 .
  • openings O61 and O62 are formed in the ion implantation mask 43.
  • the mask layer 53 c is removed from the ion implantation mask 43.
  • a p-type impurity such as aluminum is introduced into the first main surface 10a with respect to the first main surface 10a.
  • a third p-type region 73 is formed in the region of the wide band gap semiconductor wafer 10 overlapping the openings O51 and O61. That is, the third p-type region 73 is formed so as to overlap with the alignment region 30.
  • the third p-type region 73 is formed in the dicing region DR.
  • a third p-type region 73 is formed in the third alignment mark 33.
  • the depth of the third p-type region 73 may be smaller than the depth of the first p-type region 71.
  • the guard ring region 17 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O52 and O62.
  • the guard ring region 17 is formed in the element region 2.
  • Third p-type region 73 and guard ring region 17 are formed simultaneously. The depth of the third p-type region 73 and the depth of the guard ring region 17 are substantially the same.
  • the ion implantation mask 43c is removed from the first main surface 10a (see FIG. 22).
  • region XXA, region XXB, region XXC, and region XXD correspond to region XXA, region XXB, region XXC, and region XXD of FIG. 23, respectively.
  • the first p-type region 71 is formed so as to be surrounded by the first alignment mark 31 when viewed from the direction perpendicular to the first major surface 10a.
  • the second p-type region 72 is formed so as to be surrounded by the second alignment mark 32 when viewed from the direction perpendicular to the first major surface 10a.
  • the third p-type region 73 is formed so as to be surrounded by the third alignment mark 33 when viewed from the direction perpendicular to the first major surface 10a.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 may be positioned on a straight line.
  • an activation annealing step is performed.
  • the wide band gap semiconductor wafer 10 is heated to about 1800 ° C. in an argon atmosphere.
  • the p-type impurity introduced into the body region 13, the contact region 18 and the guard ring region 17 and the n-type impurity introduced into the source region 14 are activated.
  • desired carriers are generated in the body region 13, the source region 14, the contact region 18, and the guard ring region 17.
  • a step of forming a gate insulating film (S110: FIG. 2) is performed.
  • the wide band gap semiconductor wafer 10 is heated to about 1300 ° C. in an atmosphere containing oxygen.
  • the first main surface 10a of the wide band gap semiconductor wafer 10 is thermally oxidized, and the gate insulating film 15 made of a material containing silicon dioxide is formed on the first main surface 10a.
  • Gate insulating film 15 is provided in contact with drift region 12, body region 13, source region 14, contact region 18, and guard ring region 17 on first main surface 10a (see FIG. 24).
  • gate electrode 27 made of polysilicon containing an impurity such as phosphorus is formed on gate insulating film 15 by low-pressure CVD.
  • the gate electrode 27 is formed at a position facing the source region 14, the body region 13, and the drift region 12.
  • interlayer insulating film 22 is formed so as to cover gate electrode 27 by, for example, plasma CVD.
  • the interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15.
  • Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide.
  • the interlayer insulating film 22 may be provided at a position facing the guard ring region 17.
  • a step of forming a source electrode (S130: FIG. 2) is performed. For example, parts of gate insulating film 15 and interlayer insulating film 22 are removed by, for example, dry etching, so that contact region 18 and source region 14 are exposed from gate insulating film 15 and interlayer insulating film 22 (see FIG. 25). ).
  • the source electrode 16 is formed in contact with the contact region 18 and the source region 14 by, for example, sputtering.
  • the source electrode 16 is made of a material containing, for example, Ti, Al, and Si.
  • silicon carbide substrate 10 provided with source electrode 16 is heated to about 1000 ° C., for example.
  • the source electrode 16 is silicided, and the source electrode 16 that is in ohmic contact with the source region 14 is formed.
  • the source electrode 16 is in ohmic contact with the contact region 18.
  • a surface protective electrode 19 in contact with the source electrode 16 is formed.
  • the surface protection electrode 19 is made of a material containing aluminum, for example.
  • the surface protective electrode 19 is formed so as to cover the interlayer insulating film 22 (see FIG. 26).
  • a step of forming a drain electrode (S140: FIG. 2) is performed.
  • the drain electrode 21 made of a material containing NiSi is formed so as to be in contact with the second main surface 10b.
  • the back surface protective electrode 23 in contact with the drain electrode 21 is formed.
  • the back surface protective electrode 23 is made of, for example, a material containing aluminum.
  • a step of forming a plurality of chips (S150: FIG. 2) is performed.
  • a plurality of chips 5 are formed by cutting the wide band gap semiconductor wafer 10 along the dicing region DR.
  • the wide band gap semiconductor wafer 10 is cut by, for example, a blade. Specifically, a part of the dicing area DR is removed by the blade.
  • the width of the region BR to be removed (in other words, the cutting width W3) is smaller than the width W1 of the dicing region DR.
  • the cutting width W3 may be substantially the same as the width of the blade.
  • the value obtained by dividing the cutting width W3 of the wide band gap semiconductor wafer 10 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is not less than 1/4 and not more than 5/6.
  • the width W3 may satisfy at least one of 30 ⁇ m or more and 100 ⁇ m or less.
  • a value obtained by dividing the cutting width W3 of the wide band gap semiconductor wafer 10 by the width W1 of the dicing region DR is not less than 1/4 and not more than 2/3.
  • the cutting width W3 is not less than 30 ⁇ m and not more than 80 ⁇ m.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 are removed.
  • a value obtained by dividing the width W2 of the first p-type region 71 by the width W1 of the dicing region DR in a direction perpendicular to the extending direction of the dicing region DR is not less than 1/12 and not more than 2/3.
  • the width W2 of the first p-type region 71 in the direction perpendicular to the direction may satisfy at least one of not less than 10 ⁇ m and not more than 80 ⁇ m.
  • a value obtained by dividing the width W2 of the first p-type region 71 by the width W1 of the dicing region DR is not less than 1/12 and not more than 1/2.
  • the width W2 of the first p-type region 71 is not less than 10 ⁇ m and not more than 60 ⁇ m.
  • the width W2 of the first p-type region 71 may be the same as or different from the width of the second p-type region 72.
  • the width W2 of the first p-type region 71 may be the same as or different from the width of the third p-type region 73.
  • the cutting width W3 is larger than the maximum value among the width W2 of the first p-type region 71, the width of the second p-type region 72, and the width of the third p-type region 73.
  • the width W2 of the first p-type region 71, the width of the second p-type region 72, and the third p-type region 73 are completely removed by the blade.
  • FIG. 1 is a schematic cross-sectional view taken along the line II of FIG.
  • the manufacturing method of MOSFET 100 according to the modification differs from the manufacturing method of MOSFET 100 according to the above-described embodiment in that the alignment region is not formed on the dicing region DR but in a region surrounded by the dicing region DR.
  • the other points are almost the same as the method for manufacturing MOSFET 100 according to the above embodiment.
  • points different from the method of manufacturing MOSFET 100 according to the above embodiment will be mainly described.
  • the alignment mark region 30 may be formed in a region other than the dicing region DR.
  • alignment mark region 30 may be formed in a region surrounded by dicing region DR on first main surface 10a. That is, the first p-type region 71, the second p-type region 72, and the third p-type region 73 may be formed in a region surrounded by the dicing region DR in the first main surface 10a.
  • the alignment mark region 30 may be formed so as to be surrounded by the element region 2 when viewed from a direction perpendicular to the first major surface 10a.
  • the alignment mark region 30 is formed so as to be surrounded by a certain element region 2 and may not be formed in the other element region 2. As shown in FIG. 29, when, for example, 16 element regions 2 exist in the shot region 1, the alignment mark region 30 is formed only in the two element regions 2, and the other 14 elements It does not need to be formed in the element region 2.
  • the first p-type region 71 As shown in FIG. 31, after the step of forming the third p-type region (S100: FIG. 2), the first p-type region 71 as viewed from the direction perpendicular to the first main surface 10a, The second p-type region 72 and the third p-type region 73 are provided so as to be surrounded by the element region 2.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 are surrounded by the dicing region DR when viewed from the direction perpendicular to the first major surface 10a. May be provided.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 may be positioned on a straight line or may not be positioned on a straight line.
  • a dicing region DR is formed on the first main surface 10 a of the wide band gap semiconductor wafer 10.
  • the wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region DR, a first p-type region 71, a second p-type region 72, and a third p-type region 73.
  • First p-type region 71, second p-type region 72, and third p-type region 73 are located in alignment mark region 30.
  • the alignment mark region 30 includes the convex region (that is, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33) and the concave region that surrounds the convex region (that is, the first alignment mark 31). 1 recess TR1 and second recess TR2).
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 may be located in the convex region of the alignment mark region 30 or the concave shape of the alignment mark region 30. It may be located in the area.
  • the number of alignment mark regions 30 in the shot region 1 may be smaller than the number of element regions 2.
  • the number of first p-type regions 71, second p-type regions 72, and third p-type regions 73 in the shot region 1 may be smaller than the number of element regions 2.
  • the value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and The width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 ⁇ m to 80 ⁇ m.
  • a value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR is not less than 1/12 and not more than 1/2.
  • the width W2 of the p-type region 71 is not less than 10 ⁇ m and not more than 60 ⁇ m.
  • the wide band gap semiconductor wafer 10 may include at least one of silicon carbide, gallium nitride, and diamond.
  • the maximum diameter S (see FIG. 4) of the first major surface 10a is, for example, 100 mm (about 4 inches) or more, and preferably 150 mm (about 6 inches) or more.
  • the wide band gap semiconductor wafer 10 according to the modification has the wide band gap semiconductor wafer according to the above embodiment in that the alignment region is not formed on the dicing region DR but in a region surrounded by the dicing region DR. 10 is substantially the same as the wide band gap semiconductor wafer 10 according to the above embodiment in other points.
  • the points different from the wide band gap semiconductor wafer 10 according to the above embodiment will be mainly described.
  • the wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by the dicing region DR, a first p-type region 71, and a second p-type region 72. And the third p-type region 73 may be included. First p-type region 71, second p-type region 72, and third p-type region 73 are located in alignment mark region 30. The first p-type region 71, the second p-type region 72, and the third p-type region 73 do not exist in the dicing region DR.
  • the wide band gap semiconductor chip 5 is manufactured by cutting the wide band gap semiconductor wafer 10 along the dicing region DR.
  • the alignment mark region 30 may be positioned in the dicing region DR as shown in FIG. 27, or the alignment mark region 30 is surrounded by the dicing region DR as shown in FIG. It may be located in the designated area.
  • the wide band gap semiconductor chip 5 shown in FIG. 28 is manufactured by cutting the wide band gap semiconductor wafer 10 shown in FIG. 27 along the dicing region DR.
  • the wide band gap semiconductor chip 5 shown in FIG. 32 is manufactured by cutting the wide band gap semiconductor wafer 10 shown in FIG. 31 along the dicing region DR.
  • the wide band gap semiconductor chip 5 has an element region 2 and a portion 4 of a dicing region DR.
  • the element region 2 is provided with a semiconductor element such as a MOSFET 100, for example.
  • the portion 4 of the dicing region DR is provided so as to surround the element region 2 in a direction perpendicular to the first main surface 10a.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 do not exist. Therefore, the drain leakage current can be reduced.
  • the current density of the drain leakage current when a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21 of the MOSFET 100 is 10 ⁇ A / cm 2 or less.
  • the portion 4 of the dicing region DR may not be present.
  • the wide band gap semiconductor chip 5 may have an alignment mark region 30 surrounded by the portion 4 of the dicing region DR. As shown in FIG. 28, the wide band gap semiconductor chip 5 may not have the alignment mark region 30.
  • silicon carbide semiconductor device 100 is a planar MOSFET
  • silicon carbide semiconductor device 100 is not limited to a planar MOSFET.
  • Silicon carbide semiconductor device 100 may be, for example, a trench MOSFET, Schottky barrier diode, IGBT (Insulated Gate Bipolar Transistor), or JFET (Junction Field Effect Transistor).
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. There may be.
  • the p-type region 71 does not exist in the portion of the dicing region DR remaining on the plurality of chips 5. Therefore, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71. As a result, the drain leak defect rate can be reduced.
  • alignment mark region 30 is formed in dicing region DR.
  • the p-type region 71 is removed. Thereby, since it is not necessary to form the alignment mark 31 in the element region 2, a large area of the element region 2 can be secured.
  • width W2 of p-type region 71 is divided by width W1 of dicing region DR.
  • the measured value satisfies at least one of 1/12 or more and 2/3 or less and the width W2 of the p-type region 71 in the direction perpendicular to the stretching direction is 10 ⁇ m or more and 80 ⁇ m or less.
  • the cutting width W3 of wide band gap semiconductor wafer 10 in the step of forming a plurality of chips 5 is set with respect to the extending direction of dicing region DR.
  • the value divided by the width W1 of the dicing region DR in the vertical direction satisfies at least one of 1 ⁇ 4 to 5/6 and the cutting width W3 of 30 ⁇ m to 100 ⁇ m.
  • dicing region DR and alignment mark region 30 are formed simultaneously. Thereby, the manufacturing process of the wide band gap semiconductor device 100 can be simplified.
  • wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
  • the maximum diameter of main surface 10a is 100 mm or more.
  • the manufacturing method of the wide band gap semiconductor device 100 according to the present embodiment can be suitably used for a large-diameter wafer having a large number of alignment marks because the number of shots is large.
  • alignment mark region 30 is formed in a region surrounded by dicing region DR on main surface 10a.
  • the wide band gap semiconductor wafer 10 is a wide band gap semiconductor wafer 10 in which a dicing region DR is formed on the main surface 10a.
  • the wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region and a p-type region 71 located in the alignment mark region 30.
  • the value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and
  • the width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 ⁇ m or more and 80 ⁇ m or less.
  • the wide band gap semiconductor wafer 10 is a wide band gap semiconductor wafer in which a dicing region is formed on the main surface 10a.
  • Wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by dicing region DR, and a p-type region 71 located in alignment mark region 30.
  • the p-type region 71 does not exist in the dicing region DR. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
  • the wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
  • the maximum diameter of the main surface 10a is 100 mm or more.
  • the manufacturing method of the wide band gap semiconductor device 100 according to this embodiment can be suitably used for a large diameter wafer having a large number of shots and a large number of alignment marks.
  • the wide band gap semiconductor chip 5 according to the present embodiment is manufactured by cutting the wide band gap semiconductor wafer 10 along the dicing region DR. Thereby, the drain leakage current of the wide band gap semiconductor chip 5 can be reduced.
  • the wide band gap semiconductor chip 5 includes a MOSFET 100 (FIG. 1) having a breakdown voltage specification of 1700V.
  • the wide band gap semiconductor chip 5 of the first group is a wide band gap semiconductor chip 5 in which no p-type region exists in the portion 4 of the dicing region DR.
  • the wide band gap semiconductor chip 5 of the second group is a wide band gap semiconductor chip 5 in which the p-type region remains in the portion 4 of the dicing region DR.
  • the first group of wide band gap semiconductor chips 5 includes a first p-type region 71, a second p-type region 72, and a third p-type region 73 formed in the dicing region DR,
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 are manufactured by being completely removed.
  • the second group of wide band gap semiconductor chips 5 is formed.
  • the first p-type region 71, the second p-type region 72, and the third p-type region 73 are manufactured so as to remain in the portion 4 of the dicing region DR.
  • the wide band gap semiconductor chip 5 including the MOSFET 100 is disposed at a temperature of 150 ° C. With the gate closed, a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21 for 10 hours. In a state where a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21, the drain leakage current is measured at regular intervals.
  • the second group of wide bandgap semiconductor chips 5 having the p-type region in the portion 4 of the dicing region DR has an application time of about 0.5 hours to about 1 hour.
  • the drain leakage current increases, and after about 3 hours of application time, the drain leakage current becomes substantially constant.
  • the drain leakage current of the second group of wide band gap semiconductor chips 5 after the application time of 10 hours is greater than 1 ⁇ 10 ⁇ 7 A.
  • the drain leakage current is kept low until the application time of 10 hours elapses.
  • the drain leakage current of the first group of wide band gap semiconductor chips 5 after the application time of 10 hours is less than 1 ⁇ 10 ⁇ 7 A.
  • the drain leak defect rate can be reduced by forming the wide band gap semiconductor chip 5 so that the p-type region does not exist in the portion 4 of the dicing region DR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Dicing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

In the present invention, a dicing region and an alignment mark region are formed on a main surface. A wide-bandgap semiconductor wafer and a photomask are aligned using the alignment mark region. After the step for performing the alignment, a p-type region is formed so as to overlap the alignment mark region. By cutting the wide-bandgap semiconductor wafer along the dicing region, a plurality of chips are formed. The p-type region does not exist on parts of the dicing region which have been left on the plurality of chips.

Description

ワイドバンドギャップ半導体装置の製造方法、ワイドバンドギャップ半導体ウエハおよびワイドバンドギャップ半導体チップWide band gap semiconductor device manufacturing method, wide band gap semiconductor wafer, and wide band gap semiconductor chip
 本発明は、ワイドバンドギャップ半導体装置の製造方法、ワイドバンドギャップ半導体ウエハおよびワイドバンドギャップ半導体チップに関する。本出願は、2015年7月10日に出願した日本特許出願である特願2015-138685号に基づく優先権を主張し、当該日本特許出願に記載された全ての記載内容を援用するものである。 The present invention relates to a method for manufacturing a wide band gap semiconductor device, a wide band gap semiconductor wafer, and a wide band gap semiconductor chip. This application claims priority based on Japanese Patent Application No. 2015-138585, a Japanese patent application filed on July 10, 2015, and incorporates all the content described in the Japanese patent application. .
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。たとえば、特開2015-2198号公報(特許文献1)には、炭化珪素基板に設けられたアライメントマークを用いてアライメントを行う工程を有する炭化珪素半導体装置の製造方法が記載されている。 In recent years, silicon carbide has been increasingly adopted as a material constituting semiconductor devices in order to enable higher breakdown voltage, lower loss, and use in high-temperature environments. For example, Japanese Patent Laying-Open No. 2015-2198 (Patent Document 1) describes a method for manufacturing a silicon carbide semiconductor device including a step of performing alignment using alignment marks provided on a silicon carbide substrate.
特開2015-2198号公報Japanese Patent Laid-Open No. 2015-2198
 本発明の一態様に係るワイドバンドギャップ半導体装置の製造方法は以下の工程を備えている。主面を含み、かつn型の導電型を有するワイドバンドギャップ半導体ウエハが準備される。主面にダイシング領域が形成される。主面にアライメントマーク領域が形成される。アライメントマーク領域を用いてワイドバンドギャップ半導体ウエハとフォトマスクとのアライメントが行われる。アライメントを行う工程後、アライメントマーク領域と重なるようにp型領域が形成される。p型領域が形成された後、ダイシング領域に沿ってワイドバンドギャップ半導体ウエハを切断することにより、複数のチップが形成される。複数のチップに残されたダイシング領域の部分には、p型領域が存在しない。 The manufacturing method of a wide band gap semiconductor device according to an aspect of the present invention includes the following steps. A wide band gap semiconductor wafer including a main surface and having an n-type conductivity is prepared. A dicing region is formed on the main surface. An alignment mark region is formed on the main surface. The wide band gap semiconductor wafer and the photomask are aligned using the alignment mark region. After the alignment process, a p-type region is formed so as to overlap the alignment mark region. After the p-type region is formed, a plurality of chips are formed by cutting the wide band gap semiconductor wafer along the dicing region. There is no p-type region in the portion of the dicing region left on the plurality of chips.
 本発明の一態様に係るワイドバンドギャップ半導体ウエハは、主面にダイシング領域が形成されたワイドバンドギャップ半導体ウエハである。ワイドバンドギャップ半導体ウエハは、ダイシング領域に位置するアライメントマーク領域と、アライメントマーク領域に位置するp型領域とを含んでいる。ダイシング領域の延伸方向に対して垂直な方向において、p型領域の幅をダイシング領域の幅で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域の幅は、10μm以上80μm以下であることの少なくともいずれかを満たしている。 The wide band gap semiconductor wafer according to one embodiment of the present invention is a wide band gap semiconductor wafer in which a dicing region is formed on a main surface. The wide band gap semiconductor wafer includes an alignment mark region located in the dicing region and a p-type region located in the alignment mark region. The value obtained by dividing the width of the p-type region by the width of the dicing region in the direction perpendicular to the extending direction of the dicing region is 1/12 or more and 2/3 or less, and in the direction perpendicular to the extending direction. The width of the p-type region satisfies at least one of 10 μm or more and 80 μm or less.
 本発明の一態様に係るワイドバンドギャップ半導体ウエハは、主面にダイシング領域が形成されたワイドバンドギャップ半導体ウエハである。ワイドバンドギャップ半導体ウエハは、ダイシング領域に囲まれた領域に位置するアライメントマーク領域と、アライメントマーク領域に位置するp型領域とを含んでいる。p型領域は、ダイシング領域に存在しない。 The wide band gap semiconductor wafer according to one embodiment of the present invention is a wide band gap semiconductor wafer in which a dicing region is formed on a main surface. The wide band gap semiconductor wafer includes an alignment mark region located in a region surrounded by a dicing region and a p-type region located in the alignment mark region. The p-type region does not exist in the dicing region.
本実施の形態に係るワイドバンドギャップ半導体装置の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法を概略的に示すフロー図である。It is a flowchart which shows schematically the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第1工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第2工程を示す平面模式図である。It is a plane schematic diagram which shows the 2nd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 図4のショット領域1の拡大図である。FIG. 5 is an enlarged view of a shot area 1 in FIG. 4. 図5の領域VIの拡大図である。FIG. 6 is an enlarged view of a region VI in FIG. 5. 図6のVII-VII線に沿った断面模式図である。FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. 6. 図6のVIII-VIII線に沿った断面模式図である。FIG. 7 is a schematic sectional view taken along line VIII-VIII in FIG. 6. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第2工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第3工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 3rd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第4工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 4th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第5工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 5th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第6工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 6th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第7工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 7th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第8工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 8th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第9工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 9th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第10工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 10th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第11工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 11th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第12工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 12th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第13工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 13th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第14工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 14th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第15工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 15th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第15工程を示す平面模式図である。It is a plane schematic diagram which shows the 15th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第16工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 16th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第17工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 17th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第18工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 18th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第19工程を示す平面模式図である。It is a plane schematic diagram which shows the 19th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第20工程を示す平面模式図である。It is a plane schematic diagram which shows the 20th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第2工程の変形例を示す平面模式図である。It is a plane schematic diagram which shows the modification of the 2nd process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 図29の領域XXXの拡大図である。FIG. 30 is an enlarged view of a region XXX in FIG. 29. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第15工程の変形例を示す平面模式図である。It is a plane schematic diagram which shows the modification of the 15th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. 本実施の形態に係るワイドバンドギャップ半導体装置の製造方法の第20工程の変形例を示す平面模式図である。It is a plane schematic diagram which shows the modification of the 20th process of the manufacturing method of the wide band gap semiconductor device which concerns on this Embodiment. ドレインリーク電流と印加時間との関係を示す図である。It is a figure which shows the relationship between drain leakage current and application time.
 [本開示が解決しようとする課題]
 通常、ウエハプロセスが完了した後、ダイシングラインに沿ってウエハを切断することにより、ウエハが複数のチップに分割される。複数のチップに分割された後、各々のチップのドレインリーク電流が評価される。ドレインリーク電流の値が基準値よりも高いチップが不良としてスクリーニングされる。不良と判断されたチップの数を、ドレインリーク電流が測定された全てのチップの数で除することで、ドレインリーク不良率が計算される。
[Problems to be solved by the present disclosure]
Usually, after the wafer process is completed, the wafer is divided into a plurality of chips by cutting the wafer along a dicing line. After being divided into a plurality of chips, the drain leakage current of each chip is evaluated. Chips having a drain leakage current value higher than the reference value are screened as defective. The drain leak defect rate is calculated by dividing the number of chips determined to be defective by the number of all chips for which the drain leak current has been measured.
 本発明の一態様の目的は、ドレインリーク不良率を低減可能なワイドバンドギャップ半導体装置の製造方法、ワイドバンドギャップ半導体ウエハおよびワイドバンドギャップ半導体チップを提供することである。
[本開示の効果]
 本発明の一態様によれば、ドレインリーク不良率を低減可能なワイドバンドギャップ半導体装置の製造方法、ワイドバンドギャップ半導体ウエハおよびワイドバンドギャップ半導体チップを提供することができる。
An object of one embodiment of the present invention is to provide a method for manufacturing a wide band gap semiconductor device, a wide band gap semiconductor wafer, and a wide band gap semiconductor chip that can reduce a drain leak defect rate.
[Effects of the present disclosure]
According to one embodiment of the present invention, it is possible to provide a method for manufacturing a wide band gap semiconductor device, a wide band gap semiconductor wafer, and a wide band gap semiconductor chip that can reduce the drain leak defect rate.
 発明者らは、ドレインリーク電流の不良が発生する原因について鋭意研究の結果、以下の知見を得て本発明の一態様を見出した。まず、発明者らは、異なる複数のウエハを比較した結果、ドレインリーク不良が発生するチップは、ウエハ面内のある特定の位置のチップであることに注目した。さらにドレインリーク不良が発生しているチップの構造と、ドレインリーク不良が発生していないチップの構造とを詳細に比較した結果、ドレインリーク不良が発生しているチップのダイシング領域の部分には、p型領域が形成されており、ドレインリーク不良が発生していないチップのダイシング領域の部分には、p型領域が形成されていないことが判明した。 As a result of intensive studies on the cause of the occurrence of a drain leakage current defect, the inventors have obtained the following knowledge and found one embodiment of the present invention. First, as a result of comparing a plurality of different wafers, the inventors have noted that a chip in which a drain leak defect occurs is a chip at a specific position in the wafer surface. Furthermore, as a result of a detailed comparison between the structure of the chip where the drain leak failure has occurred and the structure of the chip where the drain leak failure has not occurred, the portion of the dicing region of the chip where the drain leak failure has occurred It has been found that the p-type region is not formed in the portion of the dicing region of the chip where the p-type region is formed and the drain leak defect does not occur.
 通常、ウエハ工程においては、異なる工程間における相対的な位置ずれを小さくするためにアライメントが行われる。たとえば、ボディ領域をイオン注入により形成する際、ボディ領域上に開口部を有するイオン注入マスクが形成される。当該イオン注入マスクを形成するために、イオン注入マスクのパターニングが行われる。イオン注入マスクのパターニングは、フォトリソグラフィ―工程により行われる。 Usually, in the wafer process, alignment is performed in order to reduce relative positional deviation between different processes. For example, when the body region is formed by ion implantation, an ion implantation mask having an opening on the body region is formed. In order to form the ion implantation mask, patterning of the ion implantation mask is performed. The patterning of the ion implantation mask is performed by a photolithography process.
 フォトリソグラフィ―工程において、たとえばレチクルなどのフォトマスクと、ウエハとがアライメントマークを用いてアライメントされる。具体的には、フォトマスクに設けられたアライメントマークと、ウエハに設けられたアライメントマークとを重ねるようにして、フォトマスクとウエハのアライメントが行われる。フォトマスクに形成されたアライメントマークが透光部により形成されている場合、透光部がウエハのアライメントマークに重なるようにアライメントされる。この状態で露光が行われると、ボディ領域が形成される領域上のレジストの部分だけでなく、ウエハのアライメントマーク上のレジストの部分に対しても露光が行われる。次に、現像工程において、露光されたレジストの部分が除去される。結果として、ボディ領域が形成される領域上のレジストの部分に開口部が形成されるとともに、ウエハのアライメントマーク上のレジストの部分にも開口部が形成される。 In a photolithography process, for example, a photomask such as a reticle and a wafer are aligned using alignment marks. Specifically, the alignment between the photomask and the wafer is performed such that the alignment mark provided on the photomask and the alignment mark provided on the wafer are overlapped. When the alignment mark formed on the photomask is formed by the translucent part, alignment is performed so that the translucent part overlaps the alignment mark of the wafer. When exposure is performed in this state, exposure is performed not only on the resist portion on the region where the body region is formed but also on the resist portion on the alignment mark of the wafer. Next, in the developing process, the exposed resist portion is removed. As a result, an opening is formed in the portion of the resist on the region where the body region is formed, and an opening is also formed in the portion of the resist on the alignment mark on the wafer.
 次に、当該レジストパターンをマスクとして用いてイオン注入マスクのパターニングが行われる。パターニングされたイオン注入マスクには、ボディ領域およびアライメントマークの双方の上方に開口部が形成される。次に、当該イオン注入マスクを用いて、ウエハに対してイオン注入が行われる。結果として、ウエハにボディ領域が形成されるとともに、アライメントマークにもp型領域が形成される。 Next, the ion implantation mask is patterned using the resist pattern as a mask. In the patterned ion implantation mask, an opening is formed above both the body region and the alignment mark. Next, ion implantation is performed on the wafer using the ion implantation mask. As a result, a body region is formed on the wafer and a p-type region is also formed on the alignment mark.
 通常、アライメントマークは、ウエハ表面のダイシング領域に形成される。そのため、ダイシング領域に沿ってウエハを切断することにより複数のチップを形成する際、アライメントマークとともにp型領域の多くは除去される。しかしながら、p型領域の一部がチップの周囲に残されている場合がある。チップの周囲にp型領域が残っていると、ソース電極およびドレイン電極の間に電圧が印加される際、p型領域に空乏層が拡がる。当該p型領域に電界が集中することでドレインリーク電流が発生すると考えられる。 Usually, the alignment mark is formed in the dicing area on the wafer surface. Therefore, when a plurality of chips are formed by cutting the wafer along the dicing area, most of the p-type area is removed together with the alignment mark. However, a part of the p-type region may be left around the chip. If the p-type region remains around the chip, a depletion layer spreads in the p-type region when a voltage is applied between the source electrode and the drain electrode. It is considered that drain leakage current is generated by the concentration of the electric field in the p-type region.
 [実施形態の説明]
 (1)本発明の一態様に係るワイドバンドギャップ半導体装置100の製造方法は以下の工程を備えている。主面10aを含み、かつn型の導電型を有するワイドバンドギャップ半導体ウエハ10が準備される。主面10aにダイシング領域DRが形成される。主面10aにアライメントマーク領域30が形成される。アライメントマーク領域30を用いてワイドバンドギャップ半導体ウエハ10とフォトマスク61とのアライメントが行われる。アライメントを行う工程後、アライメントマーク領域30と重なるようにp型領域71が形成される。p型領域71が形成された後、ダイシング領域DRに沿ってワイドバンドギャップ半導体ウエハ10を切断することにより、複数のチップ5が形成される。複数のチップ5に残されたダイシング領域DRの部分には、p型領域71が存在しない。
[Description of Embodiment]
(1) The manufacturing method of the wide band gap semiconductor device 100 according to one aspect of the present invention includes the following steps. A wide band gap semiconductor wafer 10 including a main surface 10a and having an n-type conductivity is prepared. Dicing region DR is formed on main surface 10a. Alignment mark region 30 is formed on main surface 10a. The alignment between the wide band gap semiconductor wafer 10 and the photomask 61 is performed using the alignment mark region 30. After the alignment process, a p-type region 71 is formed so as to overlap the alignment mark region 30. After the p-type region 71 is formed, the plurality of chips 5 are formed by cutting the wide band gap semiconductor wafer 10 along the dicing region DR. The p-type region 71 does not exist in the portion of the dicing region DR left on the plurality of chips 5.
 ここで、「ワイドバンドギャップ半導体」とは、シリコン(Si)よりもバンドギャップが大きい半導体であり、たとえば炭化珪素(SiC)、窒化ガリウム(GaN)およびダイヤモンドなどが含まれる。 Here, the “wide band gap semiconductor” is a semiconductor having a larger band gap than silicon (Si), and includes, for example, silicon carbide (SiC), gallium nitride (GaN) and diamond.
 上記(1)に係るワイドバンドギャップ半導体装置100の製造方法によれば、複数のチップ5に残されたダイシング領域DRの部分には、p型領域71が存在しない。そのため、p型領域71に電界が集中することにより、ドレインリーク電流が発生することを抑制することができる。結果として、ドレインリーク不良率を低減可能である。 According to the method for manufacturing the wide band gap semiconductor device 100 according to the above (1), the p-type region 71 does not exist in the portion of the dicing region DR remaining on the plurality of chips 5. Therefore, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71. As a result, the drain leak defect rate can be reduced.
 (2)上記(1)に係るワイドバンドギャップ半導体装置100の製造方法において、アライメントマーク領域30を形成する工程において、アライメントマーク領域30は、ダイシング領域DRに形成されてもよい。複数のチップ5を形成する工程において、p型領域71が除去されてもよい。これにより、素子領域2内にアライメントマークを形成する必要がないため、素子領域2の面積を広く確保することができる。 (2) In the method of manufacturing the wide band gap semiconductor device 100 according to the above (1), in the step of forming the alignment mark region 30, the alignment mark region 30 may be formed in the dicing region DR. In the step of forming the plurality of chips 5, the p-type region 71 may be removed. Thereby, since it is not necessary to form an alignment mark in the element region 2, a large area of the element region 2 can be secured.
 (3)上記(2)に係るワイドバンドギャップ半導体装置100の製造方法において、ダイシング領域DRの延伸方向に対して垂直な方向において、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしていてもよい。p型領域71の幅を広く確保することにより、アライメント精度を高く維持しつつドレインリーク不良率を低減可能である。 (3) In the method of manufacturing the wide band gap semiconductor device 100 according to (2), the width W2 of the p-type region 71 is divided by the width W1 of the dicing region DR in a direction perpendicular to the extending direction of the dicing region DR. The value obtained is not less than 1/12 and not more than 2/3, and the width W2 of the p-type region 71 in the direction perpendicular to the stretching direction satisfies at least one of not less than 10 μm and not more than 80 μm. Good. By ensuring a wide width of the p-type region 71, it is possible to reduce the drain leak defect rate while maintaining high alignment accuracy.
 (4)上記(2)または(3)に係るワイドバンドギャップ半導体装置100の製造方法において、複数のチップ5を形成する工程におけるワイドバンドギャップ半導体ウエハ10の切断幅W3を、ダイシング領域DRの延伸方向に対して垂直な方向におけるダイシング領域DRの幅W1で除した値は、1/4以上5/6以下であることおよび切断幅W3は、30μm以上100μm以下であることの少なくともいずれかを満たしていてもよい。これにより、p型領域71の位置がばらついている場合であっても、効果的にp型領域71を除去することができる。 (4) In the method of manufacturing the wide band gap semiconductor device 100 according to (2) or (3), the cutting width W3 of the wide band gap semiconductor wafer 10 in the step of forming the plurality of chips 5 is extended to the dicing region DR. The value divided by the width W1 of the dicing region DR in the direction perpendicular to the direction satisfies at least one of ¼ to 5/6 and the cutting width W3 of 30 μm to 100 μm. It may be. As a result, even if the position of the p-type region 71 varies, the p-type region 71 can be effectively removed.
 (5)上記(1)~(4)のいずれかに係るワイドバンドギャップ半導体装置100の製造方法において、ダイシング領域DRとアライメントマーク領域30とは同時に形成されてもよい。これにより、ワイドバンドギャップ半導体装置100の製造工程を簡略化することができる。 (5) In the method of manufacturing the wide band gap semiconductor device 100 according to any one of the above (1) to (4), the dicing region DR and the alignment mark region 30 may be formed simultaneously. Thereby, the manufacturing process of the wide band gap semiconductor device 100 can be simplified.
 (6)上記(1)~(5)のいずれかに係るワイドバンドギャップ半導体装置100の製造方法において、ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいてもよい。炭化珪素、窒化ガリウムおよびダイヤモンドは、たとえば大電流を制御するパワー半導体装置に対して好適に利用可能である。 (6) In the method of manufacturing the wide band gap semiconductor device 100 according to any one of (1) to (5), the wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Also good. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
 (7)上記(1)~(6)のいずれかに係るワイドバンドギャップ半導体装置100の製造方法において、主面10aの最大径は、100mm以上であってもよい。本実施態様に係るワイドバンドギャップ半導体装置100の製造方法は、ショットの数が多いためにアライメントマークの数が多い大口径ウエハにおいて好適に利用することができる。 (7) In the method of manufacturing the wide band gap semiconductor device 100 according to any one of (1) to (6) above, the maximum diameter of the main surface 10a may be 100 mm or more. The manufacturing method of the wide band gap semiconductor device 100 according to the present embodiment can be suitably used for a large-diameter wafer having a large number of alignment marks because the number of shots is large.
 (8)上記(1)に係るワイドバンドギャップ半導体装置100の製造方法において、アライメントマーク領域30を形成する工程において、アライメントマーク領域30は、主面10aにおいて前記ダイシング領域DRに囲まれた領域に形成されてもよい。これにより、p型領域71をダイシング領域DRに形成する必要がないので、p型領域71に電界が集中することで、ドレインリーク電流が発生することを抑制することができる。 (8) In the method of manufacturing the wide band gap semiconductor device 100 according to the above (1), in the step of forming the alignment mark region 30, the alignment mark region 30 is formed in a region surrounded by the dicing region DR on the main surface 10a. It may be formed. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
 (9)本発明の一態様に係るワイドバンドギャップ半導体ウエハ10は、主面10aにダイシング領域DRが形成されたワイドバンドギャップ半導体ウエハ10である。ワイドバンドギャップ半導体ウエハ10は、ダイシング領域に位置するアライメントマーク領域30と、アライメントマーク領域30に位置するp型領域71とを含んでいる。ダイシング領域DRの延伸方向に対して垂直な方向において、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしている。p型領域71の幅を広く確保することにより、アライメント精度を高く維持しつつドレインリーク不良率を低減可能である。 (9) The wide band gap semiconductor wafer 10 according to an aspect of the present invention is a wide band gap semiconductor wafer 10 in which a dicing region DR is formed on the main surface 10a. The wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region and a p-type region 71 located in the alignment mark region 30. The value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and The width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 μm or more and 80 μm or less. By ensuring a wide width of the p-type region 71, it is possible to reduce the drain leak defect rate while maintaining high alignment accuracy.
 (10)本発明の一態様に係るワイドバンドギャップ半導体ウエハ10は、主面10aにダイシング領域が形成されたワイドバンドギャップ半導体ウエハである。ワイドバンドギャップ半導体ウエハ10は、ダイシング領域DRに囲まれた領域に位置するアライメントマーク領域30と、アライメントマーク領域30に位置するp型領域71とを含んでいる。p型領域71は、ダイシング領域DRに存在しない。これにより、p型領域71をダイシング領域DRに形成する必要がないので、p型領域71に電界が集中することで、ドレインリーク電流が発生することを抑制することができる。 (10) The wide band gap semiconductor wafer 10 according to one aspect of the present invention is a wide band gap semiconductor wafer in which a dicing region is formed on the main surface 10a. Wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by dicing region DR, and a p-type region 71 located in alignment mark region 30. The p-type region 71 does not exist in the dicing region DR. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
 (11)上記(9)または(10)に係るワイドバンドギャップ半導体ウエハ10において、ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいてもよい。炭化珪素、窒化ガリウムおよびダイヤモンドは、たとえば大電流を制御するパワー半導体装置に対して好適に利用可能である。 (11) In the wide band gap semiconductor wafer 10 according to the above (9) or (10), the wide band gap semiconductor wafer 10 may include at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
 (12)上記(9)~(11)のいずれかに係るワイドバンドギャップ半導体ウエハ10において、主面10aの最大径は、100mm以上であってもよい。本実施態様に係るワイドバンドギャップ半導体装置100の製造方法は、ショットの数が多くアライメントマークの数が多い大口径ウエハにおいて好適に利用することができる。 (12) In the wide band gap semiconductor wafer 10 according to any one of (9) to (11) above, the maximum diameter of the main surface 10a may be 100 mm or more. The manufacturing method of the wide band gap semiconductor device 100 according to this embodiment can be suitably used for a large diameter wafer having a large number of shots and a large number of alignment marks.
 (13)本発明の一態様に係るワイドバンドギャップ半導体チップ5は、上記(9)~(12)のいずれかに記載のワイドバンドギャップ半導体ウエハ10をダイシング領域DRに沿って切断することにより製造される。これにより、ワイドバンドギャップ半導体チップ5のドレインリーク電流を低減することができる。 (13) The wide band gap semiconductor chip 5 according to one aspect of the present invention is manufactured by cutting the wide band gap semiconductor wafer 10 according to any one of (9) to (12) along the dicing region DR. Is done. Thereby, the drain leakage current of the wide band gap semiconductor chip 5 can be reduced.
 [実施形態の詳細]
 以下、本実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
[Details of the embodiment]
Hereinafter, the present embodiment will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. In the crystallographic description in this specification, the individual orientation is indicated by [], the collective orientation is indicated by <>, the individual plane is indicated by (), and the collective plane is indicated by {}. In addition, a negative crystallographic index is usually expressed by adding “-” (bar) above a number. In this specification, a negative sign is added before the number. Yes.
 まず、本実施の形態に係る炭化珪素半導体装置の一例としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の構成について説明する。 First, the configuration of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) as an example of a silicon carbide semiconductor device according to the present embodiment will be described.
 本実施の形態に係るMOSFET100は、炭化珪素基板10と、ゲート電極27と、ゲート絶縁膜15と、層間絶縁膜22と、ソース電極16と、表面保護電極19と、ドレイン電極21と、裏面保護電極23とを主に有している。炭化珪素基板10は、第1主面10aと、第1主面10aと反対側の第2主面10bとを有する。炭化珪素基板10は、炭化珪素単結晶基板11と、炭化珪素単結晶基板11上に設けられた炭化珪素エピタキシャル層24とを主に含む。 MOSFET 100 according to the present embodiment includes silicon carbide substrate 10, gate electrode 27, gate insulating film 15, interlayer insulating film 22, source electrode 16, surface protection electrode 19, drain electrode 21, and back surface protection. The electrode 23 is mainly included. Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a. Silicon carbide substrate 10 mainly includes a silicon carbide single crystal substrate 11 and a silicon carbide epitaxial layer 24 provided on silicon carbide single crystal substrate 11.
 炭化珪素単結晶基板11は、たとえばポリタイプ4Hの六方晶炭化珪素から構成されている。第1主面10aの最大径Sは、たとえば50mm(約2インチ)以上であり、好ましくは75mm(約3インチ)以上であり、より好ましくは100mm(約4インチ)以上であり、さらに好ましくは150mm(約6インチ)以上である。第1主面10aは、たとえば{0001}面または{0001}面から4°以下オフした面である。第1主面10aは、たとえば(0001)面または(0001)面から4°以下程度オフした面である。第2主面10bは、たとえば(000-1)面または(000-1)面から4°以下程度オフした面である。 Silicon carbide single crystal substrate 11 is made of, for example, polytype 4H hexagonal silicon carbide. The maximum diameter S of the first major surface 10a is, for example, 50 mm (about 2 inches) or more, preferably 75 mm (about 3 inches) or more, more preferably 100 mm (about 4 inches) or more, and further preferably 150 mm (about 6 inches) or more. The first major surface 10a is, for example, a surface that is off by 4 ° or less from the {0001} plane or the {0001} plane. The first main surface 10a is, for example, a surface that is off by about 4 ° or less from the (0001) surface or the (0001) surface. The second major surface 10b is, for example, a (000-1) plane or a plane off from the (000-1) plane by about 4 ° or less.
 炭化珪素エピタキシャル層24は、ドリフト領域12と、ボディ領域13と、ソース領域14と、コンタクト領域18と、ガードリング領域17とを有している。ドリフト領域12は、たとえば窒素などのn型不純物を含み、n型(第1導電型)の導電型を有する。ドリフト領域12に含まれるn型不純物の濃度は、たとえば5.0×1015cm-3程度である。ボディ領域13は、たとえばAl(アルミニウム)またはB(ホウ素)などのp型不純物を含み、p型(第2導電型)の導電型を有する。ボディ領域13に含まれるp型不純物の濃度は、たとえば1×1017cm-3程度である。 Silicon carbide epitaxial layer 24 includes drift region 12, body region 13, source region 14, contact region 18, and guard ring region 17. Drift region 12 includes an n-type impurity such as nitrogen and has an n-type (first conductivity type) conductivity type. The concentration of the n-type impurity contained in drift region 12 is, for example, about 5.0 × 10 15 cm −3 . Body region 13 includes a p-type impurity such as Al (aluminum) or B (boron), for example, and has a p-type (second conductivity type) conductivity type. The concentration of the p-type impurity contained in body region 13 is, for example, about 1 × 10 17 cm −3 .
 ソース領域14は、たとえばリンなどのn型不純物を含み、n型の導電型を有する。ソース領域14は、第1主面10aに対して垂直な方向に沿って見た視野(平面視)において、ボディ領域13に取り囲まれるように形成されている。ソース領域14が含むn型不純物の濃度は、ドリフト領域12が含むn型不純物の濃度よりも高くてもよい。ソース領域14が含むn型不純物の濃度は、たとえば1×1019cm-3である。ソース領域14は、ボディ領域13によりドリフト領域12と隔てられている。 Source region 14 includes an n-type impurity such as phosphorus and has n-type conductivity. The source region 14 is formed so as to be surrounded by the body region 13 in a visual field (plan view) viewed along a direction perpendicular to the first main surface 10a. The concentration of the n-type impurity included in the source region 14 may be higher than the concentration of the n-type impurity included in the drift region 12. The concentration of the n-type impurity contained in the source region 14 is, for example, 1 × 10 19 cm −3 . Source region 14 is separated from drift region 12 by body region 13.
 コンタクト領域18は、たとえばアルミニウムなどのp型不純物を含み、p型の導電型を有する。コンタクト領域18は、平面視においてソース領域14に囲まれて設けられている。コンタクト領域18は、ボディ領域13に接している。コンタクト領域18が含むp型不純物の濃度は、ボディ領域13が含むp型不純物の濃度よりも高くてもよい。コンタクト領域18が含むp型不純物の濃度は、たとえば1×1019cm-3である。 Contact region 18 includes a p-type impurity such as aluminum and has p-type conductivity. The contact region 18 is provided so as to be surrounded by the source region 14 in plan view. Contact region 18 is in contact with body region 13. The concentration of the p-type impurity included in the contact region 18 may be higher than the concentration of the p-type impurity included in the body region 13. The concentration of the p-type impurity contained in contact region 18 is, for example, 1 × 10 19 cm −3 .
 ガードリング領域17は、たとえばアルミニウムなどのp型不純物を含み、p型の導電型を有する。ガードリング領域17のドーズ量は、たとえば1×1013cm-2である。ガードリング領域17は、ドリフト領域12に接している。ガードリング領域17は、環状である。複数のガードリング領域17の各々は、同心円状に設けられていてもよい。複数のガードリング領域17の各々は、平面視において、ボディ領域13と、ソース領域14と、コンタクト領域18とを取り囲むように設けられていてもよい。 Guard ring region 17 includes a p-type impurity such as aluminum and has p-type conductivity. The dose amount of the guard ring region 17 is, for example, 1 × 10 13 cm −2 . The guard ring region 17 is in contact with the drift region 12. The guard ring region 17 is annular. Each of the plurality of guard ring regions 17 may be provided concentrically. Each of the plurality of guard ring regions 17 may be provided so as to surround the body region 13, the source region 14, and the contact region 18 in plan view.
 ゲート絶縁膜15は、第1主面10a上に設けられている。ゲート絶縁膜15は、第1主面10aにおいてソース領域14、ボディ領域13およびドリフト領域12に接している。ゲート絶縁膜15は、第1主面10aにおいて、ガードリング領域17に接していてもよい。ゲート絶縁膜15は、たとえば二酸化珪素から構成されている。ゲート絶縁膜15の厚みは、たとえば40nm以上60nm以下である。 The gate insulating film 15 is provided on the first main surface 10a. Gate insulating film 15 is in contact with source region 14, body region 13, and drift region 12 on first main surface 10 a. The gate insulating film 15 may be in contact with the guard ring region 17 on the first main surface 10a. Gate insulating film 15 is made of, for example, silicon dioxide. The thickness of the gate insulating film 15 is, for example, not less than 40 nm and not more than 60 nm.
 ゲート電極27は、ゲート絶縁膜15上に設けられている。ゲート絶縁膜15は、ゲート電極27と炭化珪素基板10との間に挟まれている。ゲート電極27は、ソース領域14、ボディ領域13およびドリフト領域12に対向するように設けられている。ゲート電極27は、たとえば不純物がドーピングされたポリシリコンなどの導電体から構成されている。 The gate electrode 27 is provided on the gate insulating film 15. Gate insulating film 15 is sandwiched between gate electrode 27 and silicon carbide substrate 10. Gate electrode 27 is provided to face source region 14, body region 13, and drift region 12. The gate electrode 27 is made of a conductor such as polysilicon doped with impurities.
 ソース電極16は、第1主面10aにおいてソース領域14およびコンタクト領域18と接する。ソース電極16は、たとえばTiAlSiを含む。好ましくは、ソース電極16は、ソース領域14およびコンタクト領域18の各々とオーミック接合している。表面保護電極19は、ソース電極16と接触している。表面保護電極19は、層間絶縁膜22を覆うように設けられている。表面保護電極19は、ソース電極16を介してソース領域14と電気的に接続されている。 The source electrode 16 is in contact with the source region 14 and the contact region 18 on the first main surface 10a. The source electrode 16 includes, for example, TiAlSi. Preferably, source electrode 16 is in ohmic contact with each of source region 14 and contact region 18. The surface protective electrode 19 is in contact with the source electrode 16. The surface protection electrode 19 is provided so as to cover the interlayer insulating film 22. The surface protection electrode 19 is electrically connected to the source region 14 through the source electrode 16.
 層間絶縁膜22は、ゲート電極27を覆っている。層間絶縁膜22は、ゲート電極27およびゲート絶縁膜15に接して設けられている。層間絶縁膜22は、ゲート電極27とソース電極16とを電気的に絶縁している。層間絶縁膜22は、たとえば二酸化珪素を含むにより構成されている。 The interlayer insulating film 22 covers the gate electrode 27. The interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15. The interlayer insulating film 22 electrically insulates the gate electrode 27 and the source electrode 16 from each other. Interlayer insulating film 22 is made of, for example, silicon dioxide.
 ドレイン電極21は、第2主面10bに接して設けられている。ドレイン電極21は、たとえばn型の炭化珪素単結晶基板11とオーミック接合可能であるNiSi(ニッケルシリサイド)などの材料から構成されている。裏面保護電極23は、ドレイン電極21と電気的に接続されている。裏面保護電極23は、たとえばアルミニウムを含む材料により構成されている。 The drain electrode 21 is provided in contact with the second main surface 10b. Drain electrode 21 is made of, for example, a material such as NiSi (nickel silicide) capable of ohmic contact with n-type silicon carbide single crystal substrate 11. The back surface protective electrode 23 is electrically connected to the drain electrode 21. The back surface protective electrode 23 is made of, for example, a material containing aluminum.
 次に、本実施の形態に係る炭化珪素半導体装置としてのMOSFET100の動作について説明する。ゲート電極27に印加された電圧が閾値電圧未満の状態、すなわちオフ状態では、ソース電極16とドレイン電極21との間に電圧が印加されても、ボディ領域13とドリフト領域12との間に形成されるpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極27に閾値電圧以上の電圧が印加されると、ボディ領域13にチャネルが形成される。その結果、ソース領域14とドリフト領域12とが電気的に接続され、ソース電極16とドレイン電極21との間に電流が流れる。以上のようにして、MOSFET100は動作する。 Next, the operation of MOSFET 100 as the silicon carbide semiconductor device according to the present embodiment will be described. In a state where the voltage applied to the gate electrode 27 is less than the threshold voltage, that is, in the off state, even if a voltage is applied between the source electrode 16 and the drain electrode 21, it is formed between the body region 13 and the drift region 12. The pn junction is reverse-biased and becomes non-conductive. On the other hand, when a voltage higher than the threshold voltage is applied to the gate electrode 27, a channel is formed in the body region 13. As a result, the source region 14 and the drift region 12 are electrically connected, and a current flows between the source electrode 16 and the drain electrode 21. As described above, the MOSFET 100 operates.
 次に、本実施の形態に係るMOSFET100の製造方法について説明する。
 まず、半導体ウエハを準備する工程(S10:図2)が実施される。たとえばポリタイプ4Hの六方晶炭化珪素からなるインゴット(図示しない)がスライスされることにより、導電型がn型(第1導電型)の炭化珪素単結晶基板11が準備される。次に、エピタキシャル成長により、炭化珪素単結晶基板11上に導電型がn型のドリフト領域12が形成される。たとえば、キャリアガスとしての水素(H)と、原料ガスとしてのモノシラン(SiH)、プロパン(C)および窒素(N)とを含む雰囲気ガス中において、炭化珪素単結晶基板11がたとえば1500°以上1700°以下の温度で加熱される。これにより、第1主面10aと、第1主面10aと反対側の第2主面10bを含み、n型の導電型を有するワイドバンドギャップ半導体ウエハ10が準備される(図3参照)。ドリフト領域12が第1主面10aを構成する。炭化珪素単結晶基板11が第2主面10bを構成する(図3参照)。ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいてもよい。たとえば、炭化珪素単結晶基板11の代わりに、窒化ガリウム基板またはダイヤモンド基板が用いられてもよい。
Next, a method for manufacturing MOSFET 100 according to the present embodiment will be described.
First, a step of preparing a semiconductor wafer (S10: FIG. 2) is performed. For example, an ingot (not shown) made of polytype 4H hexagonal silicon carbide is sliced to prepare n-type (first conductivity type) silicon carbide single crystal substrate 11. Next, n type drift region 12 is formed on silicon carbide single crystal substrate 11 by epitaxial growth. For example, a silicon carbide single crystal substrate 11 in an atmospheric gas containing hydrogen (H 2 ) as a carrier gas and monosilane (SiH 4 ), propane (C 3 H 8 ) and nitrogen (N 2 ) as source gases. Is heated at a temperature of 1500 ° to 1700 °, for example. Thus, a wide band gap semiconductor wafer 10 including the first main surface 10a and the second main surface 10b opposite to the first main surface 10a and having the n-type conductivity is prepared (see FIG. 3). Drift region 12 constitutes first main surface 10a. Silicon carbide single crystal substrate 11 constitutes second main surface 10b (see FIG. 3). The wide band gap semiconductor wafer 10 may contain at least one of silicon carbide, gallium nitride, and diamond. For example, a gallium nitride substrate or a diamond substrate may be used instead of the silicon carbide single crystal substrate 11.
 炭化珪素単結晶基板11は、たとえばポリタイプ4Hの六方晶炭化珪素から構成されている。第1主面10aの最大径S(図4参照)は、たとえば50mm(約2インチ)以上であり、好ましくは75mm(約3インチ)以上であり、より好ましくは100mm(約4インチ)以上であり、さらに好ましくは150mm(約6インチ)以上である。第1主面10aは、たとえば{0001}面または{0001}面から4°以下オフした面である。第1主面10aは、たとえば(0001)面または(0001)面から4°以下程度オフした面である。第2主面10bは、たとえば(000-1)面または(000-1)面から4°以下程度オフした面である。 Silicon carbide single crystal substrate 11 is made of, for example, polytype 4H hexagonal silicon carbide. The maximum diameter S (see FIG. 4) of the first main surface 10a is, for example, 50 mm (about 2 inches) or more, preferably 75 mm (about 3 inches) or more, more preferably 100 mm (about 4 inches) or more. More preferably 150 mm (about 6 inches) or more. The first major surface 10a is, for example, a surface that is off by 4 ° or less from the {0001} plane or the {0001} plane. The first main surface 10a is, for example, a surface that is off by about 4 ° or less from the (0001) surface or the (0001) surface. The second major surface 10b is, for example, a (000-1) plane or a plane off from the (000-1) plane by about 4 ° or less.
 次に、ダイシング領域を形成する工程(S20:図2)が実施される。たとえば、第1主面10aにおいてダイシング領域DRが形成される予定の領域上に開口を有するエッチングマスク(図示せず)が形成される。エッチングマスクは、たとえば二酸化珪素を含む材料から構成されている。次に、エッチングマスクを用いて、第1主面10aがエッチングされる。たとえば、反応ガスとしてSF6またはSF6とO2との混合ガスを用いて、炭化珪素ウエハ10に対して反応性イオンエッチングが行われてもよい。 Next, a step of forming a dicing region (S20: FIG. 2) is performed. For example, an etching mask (not shown) having an opening is formed on a region where dicing region DR is to be formed on first main surface 10a. The etching mask is made of a material containing, for example, silicon dioxide. Next, the first major surface 10a is etched using the etching mask. For example, reactive ion etching may be performed on silicon carbide wafer 10 using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas.
 図4において、破線で囲まれる四角形の領域1は、後述する露光工程において露光される際のショット領域である。つまり、露光工程においては、縮小投影露光が行われ、第1主面10aが複数のショット領域に分割され、各ショット領域において露光が行われる。図5および図6に示されるように、第1主面10aに、ダイシング領域DRが形成される。第1主面10aに対して垂直な方向から見て、ダイシング領域DRは格子状である。ダイシング領域DRは、<11-20>方向に沿って延在するように形成されてもよいし、<1-100>方向に沿って延在するように形成されてもよい。言い換えれば、<11-20>方向または<1-100>方向が、ダイシング領域DRの延伸方向である。ダイシング領域DRは、<11-20>方向に沿って延在し、かつ<1-100>方向に沿って延在するよう格子状に形成されてもよい。ダイシング領域DRに取り囲まれる素子領域2は、MOSFETなどの半導体素子が形成される予定の領域である。図7に示されるように、ダイシング領域DRは、側面SW3と、側面SW3と連続的に設けられる底面BT3とにより規定される溝であってもよい。 In FIG. 4, a rectangular area 1 surrounded by a broken line is a shot area when exposed in an exposure process described later. That is, in the exposure process, reduced projection exposure is performed, the first main surface 10a is divided into a plurality of shot areas, and exposure is performed in each shot area. As shown in FIGS. 5 and 6, dicing region DR is formed on first main surface 10 a. The dicing region DR has a lattice shape when viewed from a direction perpendicular to the first main surface 10a. The dicing region DR may be formed so as to extend along the <11-20> direction, or may be formed so as to extend along the <1-100> direction. In other words, the <11-20> direction or the <1-100> direction is the extending direction of the dicing region DR. The dicing region DR may be formed in a lattice shape extending along the <11-20> direction and extending along the <1-100> direction. The element region 2 surrounded by the dicing region DR is a region where a semiconductor element such as a MOSFET is to be formed. As shown in FIG. 7, the dicing region DR may be a groove defined by the side surface SW3 and the bottom surface BT3 provided continuously with the side surface SW3.
 次に、アライメントマーク領域を形成する工程(S30:図2)が実施される。たとえば、第1主面10aにおいてアライメントマーク31が形成される予定の領域が覆われ、かつ当該領域の周りに開口を有するエッチングマスク(図示せず)が形成される。エッチングマスクは、たとえば二酸化珪素を含む材料から構成されている。次に、エッチングマスクを用いて、第1主面10aがエッチングされる。たとえば、反応ガスとしてSF6またはSF6とO2との混合ガスを用いて、炭化珪素基板10に対して反応性イオンエッチングが行われてもよい。これにより、第1主面10aにアライメントマーク31が形成される(図6参照)。 Next, a step of forming alignment mark regions (S30: FIG. 2) is performed. For example, an area where the alignment mark 31 is to be formed on the first main surface 10a is covered, and an etching mask (not shown) having an opening around the area is formed. The etching mask is made of a material containing, for example, silicon dioxide. Next, the first major surface 10a is etched using the etching mask. For example, reactive ion etching may be performed on silicon carbide substrate 10 using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas. Thereby, the alignment mark 31 is formed in the 1st main surface 10a (refer FIG. 6).
 アライメントマーク31は、凸状であってもよいし、凹状であってもよい。図8に示されるように、アライメントマーク領域30は、たとえば凸状のアライメントマーク31と、アライメントマーク31の周囲に形成された第1凹部TR1および第2凹部TR2とより構成される。第1凹部TR1は、側面SW1と、底面BT1とにより規定される。第2凹部TR2は、側面SW2と、底面BT2とにより規定される。図6に示されるように、アライメントマーク領域30は、ダイシング領域DLに形成されてもよい。凸状のアライメントマーク31は、第1凹部TR1および第2凹部TR2に挟まれて形成された領域であってもよい。 The alignment mark 31 may be convex or concave. As shown in FIG. 8, the alignment mark region 30 includes, for example, a convex alignment mark 31 and a first recess TR1 and a second recess TR2 formed around the alignment mark 31. First recess TR1 is defined by side surface SW1 and bottom surface BT1. The second recess TR2 is defined by the side surface SW2 and the bottom surface BT2. As shown in FIG. 6, the alignment mark region 30 may be formed in the dicing region DL. The convex alignment mark 31 may be a region formed between the first recess TR1 and the second recess TR2.
 好ましくは、第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33とが同時に形成される。第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33と、第1凹部TR1と、第2凹部TR2とは、アライメントマーク領域30を構成する。図6に示されるように、ショット領域1内におけるアライメントマーク領域30の数は、素子領域2の数よりも少なくてもよい。アライメントマーク領域30は、ある素子領域2に隣接して設けられるが、別の素子領域2の周囲には設けられていなくてもよい。 Preferably, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 are formed simultaneously. The first alignment mark 31, the second alignment mark 32, the third alignment mark 33, the first recess TR1, and the second recess TR2 constitute an alignment mark region 30. As shown in FIG. 6, the number of alignment mark regions 30 in the shot region 1 may be smaller than the number of element regions 2. The alignment mark region 30 is provided adjacent to one element region 2, but may not be provided around another element region 2.
 好ましくは、ダイシング領域を形成する工程(S20:図2)およびアライメントマーク領域を形成する工程(S30:図2)は、同時に実施される。たとえば、第1主面10aにおいて、第1アライメントマーク31、第2アライメントマーク32、第3アライメントマーク33および素子領域2が形成される予定の領域が覆われ、第1アライメントマーク31、第2アライメントマーク32、第3アライメントマーク33および素子領域2以外の領域に開口を有するエッチングマスク(図示せず)が形成される。次に、当該エッチングマスクをマスクとして、第1主面10aがエッチングされる。これにより、ダイシング領域DRと、第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33とが同時に形成されてもよい。 Preferably, the step of forming the dicing region (S20: FIG. 2) and the step of forming the alignment mark region (S30: FIG. 2) are performed simultaneously. For example, the first alignment mark 31, the second alignment mark 32, the third alignment mark 33, and the region where the element region 2 is to be formed are covered on the first main surface 10a, and the first alignment mark 31 and the second alignment mark are formed. An etching mask (not shown) having an opening in a region other than the mark 32, the third alignment mark 33, and the element region 2 is formed. Next, the first main surface 10a is etched using the etching mask as a mask. Thereby, the dicing region DR, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 may be formed simultaneously.
 図9における領域VIII、領域IXA、領域IXBおよび領域IXCは、それぞれ図6の領域VIII、領域IXA、領域IXBおよび領域IXCに対応する。図6および図9に示されるように、領域VIIIには、ボディ領域13(図1参照)のアライメント工程において使用される第1アライメントマーク31が形成されている。領域IXAには、コンタクト領域18(図1参照)のアライメント工程において使用される第2アライメントマーク32が形成されている。領域IXBには、ガードリング領域17(図1参照)のアライメント工程において使用される第3アライメントマーク33が形成されている。図6に示されるように、第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33とは、ダイシング領域DR上において、一直線上に位置していてもよい。 The region VIII, the region IXA, the region IXB, and the region IXC in FIG. 9 correspond to the region VIII, the region IXA, the region IXB, and the region IXC in FIG. As shown in FIGS. 6 and 9, a first alignment mark 31 used in the alignment process of the body region 13 (see FIG. 1) is formed in the region VIII. In the region IXA, a second alignment mark 32 used in the alignment process of the contact region 18 (see FIG. 1) is formed. In the region IXB, a third alignment mark 33 used in the alignment process of the guard ring region 17 (see FIG. 1) is formed. As shown in FIG. 6, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 may be positioned on a straight line on the dicing region DR.
 次に、イオン注入マスクを形成する工程(S40:図2)が実施される。イオン注入マスク41は、第1主面10a上に形成される。たとえば600℃以上800℃以下の温度下において、TEOS(Tetraethylorthosilicate)ガスが第1主面10a上に導入されることにより、イオン注入マスク41が形成される。イオン注入マスク41は、たとえば二酸化珪素を含む材料からなる。イオン注入マスク41の厚みは、たとえば1.8μmである。イオン注入マスク41は、第1主面10a全面に形成されてもよい。具体的には、イオン注入マスク41は、素子領域2と、アライメントマーク領域30と、ダイシング領域DRとに形成される。つまり、イオン注入マスク41は、第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33とに接して形成される。イオン注入マスク41は、第1凹部TR1および第2凹部TR2を埋めるように形成されてもよい。 Next, a step of forming an ion implantation mask (S40: FIG. 2) is performed. The ion implantation mask 41 is formed on the first major surface 10a. For example, at a temperature of 600 ° C. or higher and 800 ° C. or lower, TEOS (Tetraethylorthosilicate) gas is introduced onto the first main surface 10a, whereby the ion implantation mask 41 is formed. Ion implantation mask 41 is made of a material containing, for example, silicon dioxide. The thickness of the ion implantation mask 41 is, for example, 1.8 μm. The ion implantation mask 41 may be formed on the entire first main surface 10a. Specifically, the ion implantation mask 41 is formed in the element region 2, the alignment mark region 30, and the dicing region DR. That is, the ion implantation mask 41 is formed in contact with the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33. The ion implantation mask 41 may be formed so as to fill the first recess TR1 and the second recess TR2.
 次に、マスク層を形成する工程(S50:図2)が実施される。たとえばイオン注入マスク41上に、レジストを含む材料から構成されたマスク層51が形成される。マスク層51の厚みは、たとえば3μmである。具体的には、マスク層51は、素子領域2と、アライメントマーク領域30と、ダイシング領域DRとに形成される。マスク層51は、第1アライメントマーク31と、第2アライメントマーク32と、第3アライメントマーク33と対面する位置に形成される(図10参照)。以上のようにして、第1主面10a上にマスク層51が形成される。図10に示されるように、マスク層51は、イオン注入マスク41を介して、第1主面10a上に形成される。 Next, a step of forming a mask layer (S50: FIG. 2) is performed. For example, a mask layer 51 made of a material including a resist is formed on the ion implantation mask 41. The thickness of mask layer 51 is, for example, 3 μm. Specifically, the mask layer 51 is formed in the element region 2, the alignment mark region 30, and the dicing region DR. The mask layer 51 is formed at a position facing the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33 (see FIG. 10). As described above, mask layer 51 is formed on first main surface 10a. As shown in FIG. 10, the mask layer 51 is formed on the first major surface 10 a via the ion implantation mask 41.
 次に、アライメントを行う工程(S60:図2)が実施される。具体的には、第1主面10aに対して垂直な方向において、ワイドバンドギャップ半導体ウエハ10に形成されたアライメントマーク領域30と、フォトマスク61に形成されたアライメントマークとを重ね合わせるように、ワイドバンドギャップ半導体ウエハ10とフォトマスク61とのアライメントが行われる。より具体的には、アライメントマーク領域30内の第1アライメントマーク31を用いてワイドバンドギャップ半導体ウエハ10とフォトマスク61とのアライメントが行われる。 Next, an alignment step (S60: FIG. 2) is performed. Specifically, the alignment mark region 30 formed on the wide band gap semiconductor wafer 10 and the alignment mark formed on the photomask 61 are overlapped in a direction perpendicular to the first main surface 10a. The alignment of the wide band gap semiconductor wafer 10 and the photomask 61 is performed. More specifically, the wide band gap semiconductor wafer 10 and the photomask 61 are aligned using the first alignment mark 31 in the alignment mark region 30.
 図11に示されるように、フォトマスク61は、透光部61a、61bと、遮光部61cとを有している。透光部61aは、たとえばフォトマスクに形成されたアライメントマークである。たとえば第1主面10aに対して垂直な方向から見て、フォトマスク61の透光部61aが、ワイドバンドギャップ半導体ウエハ10に形成された第1アライメントマーク31と重なるように、ワイドバンドギャップ半導体ウエハ10とフォトマスク61とのアライメントが行われる。好ましくは、第1主面10aに対して垂直な方向から見て、透光部61aが、第1アライメントマーク31の外縁に取り囲まれるように、ワイドバンドギャップ半導体ウエハ10とフォトマスク61とのアライメントが行われる。 As shown in FIG. 11, the photomask 61 has translucent parts 61a and 61b and a light shielding part 61c. The translucent part 61a is an alignment mark formed on a photomask, for example. For example, when viewed from a direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the translucent portion 61 a of the photomask 61 overlaps the first alignment mark 31 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 61 is performed. Preferably, the wide band gap semiconductor wafer 10 and the photomask 61 are aligned so that the translucent portion 61a is surrounded by the outer edge of the first alignment mark 31 when viewed from the direction perpendicular to the first major surface 10a. Is done.
 アライメントマーク31の認識方式は、LSA(Laser Step Alignment)方式であってもよいし、FIA(Field Image Alignment)方式であってもよい。LSA方式は、レーザーをアライメントマークにあて、レーザーの反射光を分析して位置合わせを行う光学式アライメント方式である。FIA方式は、画像認識方式であり、カメラで認識した画像のエッジを認識してアライメントを行う方式である。 The recognition method of the alignment mark 31 may be an LSA (Laser Step Alignment) method or an FIA (Field Image Alignment) method. The LSA method is an optical alignment method in which a laser is applied to an alignment mark and the reflected light of the laser is analyzed for alignment. The FIA method is an image recognition method and is a method for performing alignment by recognizing an edge of an image recognized by a camera.
 次に、マスク層に開口部を形成する工程(S70:図2)が実施される。アライメントを行う工程(S60:図2)後、フォトマスク61を用いてマスク層51に対して露光が行われる。たとえば、フォトマスク61から見て、ワイドバンドギャップ半導体ウエハ10と反対側に配置された光源(図示せず)を用いて露光される。露光に用いられる光は、たとえば紫外線である。露光に用いられる光は、g線、h線、i線または電子線であってもよい。光源からの光は、第1主面10aに対してほぼ垂直な方向(図12における矢印の方向)に照射される。図12に示されるように、光は、フォトマスク61の透光部61a、61bを通過して、マスク層51に照射される。遮光部61cに対面するマスク層51の部分には、光が照射されない。 Next, a step of forming an opening in the mask layer (S70: FIG. 2) is performed. After the alignment step (S60: FIG. 2), the mask layer 51 is exposed using the photomask 61. For example, exposure is performed using a light source (not shown) disposed on the side opposite to the wide band gap semiconductor wafer 10 when viewed from the photomask 61. The light used for exposure is, for example, ultraviolet light. The light used for exposure may be g-line, h-line, i-line or electron beam. Light from the light source is irradiated in a direction substantially perpendicular to the first main surface 10a (the direction of the arrow in FIG. 12). As shown in FIG. 12, the light passes through the light transmitting portions 61 a and 61 b of the photomask 61 and is applied to the mask layer 51. The portion of the mask layer 51 that faces the light shielding portion 61c is not irradiated with light.
 ワイドバンドギャップ半導体ウエハ10の露光は、たとえばステップアンドリピート方式により行われる。図4に示されるように、あるショット領域1において露光が行われた後、ワイドバンドギャップ半導体ウエハ10が第1主面10aと平行な方向に移動する。次に、別のショット領域1において露光が行われる。このように、露光と、ワイドバンドギャップ半導体ウエハ10の移動とが繰り返し行われる。 The exposure of the wide band gap semiconductor wafer 10 is performed by, for example, a step-and-repeat method. As shown in FIG. 4, after exposure is performed in a certain shot region 1, the wide band gap semiconductor wafer 10 moves in a direction parallel to the first main surface 10a. Next, exposure is performed in another shot region 1. Thus, the exposure and the movement of the wide band gap semiconductor wafer 10 are repeatedly performed.
 次に、マスク層51の現像が行われる。たとえば、マスク層51が形成されたワイドバンドギャップ半導体ウエハ10を現像液に浸漬させることにより、マスク層51の一部がエッチングにされる。マスク層51が、ポジ型フォトレジストの場合、光に照射された部分51a、51bがエッチングされ、光に照射されなかった部分51cはエッチングされずにイオン注入マスク41上に残る。反対に、マスク層51が、ネガ型フォトレジストの場合、光に照射されなかった部分51cがエッチングされ、光に照射された部分51a、51bはエッチングされずにイオン注入マスク41上に残る。以上のようにして、マスク層51に開口部O11、O12が形成される。具体的には、第1アライメントマーク31と対向する位置に開口部O11が形成され、素子領域2においてボディ領域13が形成される予定の領域に対向する位置に開口部O12が形成される(図13参照)。 Next, development of the mask layer 51 is performed. For example, by immersing the wide band gap semiconductor wafer 10 on which the mask layer 51 is formed in a developing solution, a part of the mask layer 51 is etched. When the mask layer 51 is a positive photoresist, the portions 51 a and 51 b irradiated with light are etched, and the portion 51 c not irradiated with light remains on the ion implantation mask 41 without being etched. On the other hand, when the mask layer 51 is a negative photoresist, the portion 51c not irradiated with light is etched, and the portions 51a and 51b irradiated with light remain on the ion implantation mask 41 without being etched. As described above, the openings O11 and O12 are formed in the mask layer 51. Specifically, the opening O11 is formed at a position facing the first alignment mark 31, and the opening O12 is formed at a position facing the region where the body region 13 is to be formed in the element region 2 (FIG. 13).
 次に、イオン注入マスクがエッチングされる。たとえば開口部O11、O12が形成されたマスク層51cをマスクとして用い、CFを含むガスでイオン注入マスク41がドライエッチングされる。具体的には、開口部O11、O12に対応する部分のイオン注入マスク41の部分41a、41bがエッチングされる。これにより、イオン注入マスク41に開口部O21、O22が形成される。具体的には、第1アライメントマーク31と対向する位置に開口部O21が形成され、素子領域2においてボディ領域13が形成される予定の領域に対向する位置に開口部O22が形成される。次に、マスク層51cが、イオン注入マスク41上から除去される(図14参照)。 Next, the ion implantation mask is etched. For example, the mask layer 51c in which the openings O11 and O12 are formed is used as a mask, and the ion implantation mask 41 is dry-etched with a gas containing CF 4 . Specifically, the portions 41a and 41b of the ion implantation mask 41 corresponding to the openings O11 and O12 are etched. Thus, openings O21 and O22 are formed in the ion implantation mask 41. Specifically, the opening O21 is formed at a position facing the first alignment mark 31, and the opening O22 is formed at a position facing the region where the body region 13 is to be formed in the element region 2. Next, the mask layer 51c is removed from the ion implantation mask 41 (see FIG. 14).
 次に、第1のp型領域を形成する工程(S80:図2)が実施される。図15に示されるように、開口部O21、O22が形成されたイオン注入マスク41cをマスクとして用いて、第1主面10aに対して、たとえばアルミニウムなどのp型不純物が、第1主面10aに対してほぼ垂直な方向(図15における矢印の方向)に沿ってイオン注入される。これにより、開口部O11、O21と重なるワイドバンドギャップ半導体ウエハ10の領域において第1のp型領域71が形成される。つまり、アライメント領域30と重なるように第1のp型領域71が形成される。第1のp型領域71はダイシング領域DRに形成される。 Next, the step of forming the first p-type region (S80: FIG. 2) is performed. As shown in FIG. 15, using the ion implantation mask 41c in which the openings O21 and O22 are formed as a mask, a p-type impurity such as aluminum is applied to the first main surface 10a with respect to the first main surface 10a. Are implanted along a direction substantially perpendicular to the direction (the direction of the arrow in FIG. 15). Thereby, the first p-type region 71 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O11 and O21. That is, the first p-type region 71 is formed so as to overlap with the alignment region 30. The first p-type region 71 is formed in the dicing region DR.
 具体的には、第1アライメントマーク31内に第1のp型領域71が形成される。第1のp型領域71の深さは、第1凹部TR1および第2凹部TR2の深さよりも大きくてもよいし、小さくてもよいし、同じであってもよい。同様に、開口部O12、O22と重なるワイドバンドギャップ半導体ウエハ10の領域においてボディ領域13が形成される。ボディ領域13は、素子領域2内に形成される。第1のp型領域71と、ボディ領域13とは、同時に形成される。第1のp型領域71の深さと、ボディ領域13の深さとは、ほぼ同じである。次に、イオン注入マスク41cが、第1主面10a上から除去される。 Specifically, a first p-type region 71 is formed in the first alignment mark 31. The depth of the first p-type region 71 may be larger, smaller, or the same as the depth of the first recess TR1 and the second recess TR2. Similarly, the body region 13 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O12 and O22. The body region 13 is formed in the element region 2. First p-type region 71 and body region 13 are formed simultaneously. The depth of the first p-type region 71 and the depth of the body region 13 are substantially the same. Next, the ion implantation mask 41c is removed from the first main surface 10a.
 次に、ソース領域を形成する工程が実施される。まず、ソース領域14が形成される領域上に開口部を有するイオン注入マスクが形成される。次に、たとえばリンまたは窒素などのn型不純物が、ボディ領域13内にイオン注入される。これにより、ボディ領域13に接するソース領域14が形成される。 Next, a step of forming a source region is performed. First, an ion implantation mask having an opening is formed on a region where the source region 14 is formed. Next, an n-type impurity such as phosphorus or nitrogen is ion-implanted into the body region 13. Thereby, the source region 14 in contact with the body region 13 is formed.
 次に、第2のp型領域を形成する工程(S90:図2)が実施される。まず、第1主面10a上に、たとえば二酸化珪素を含む材料からなるイオン注入マスク42が形成される。次に、イオン注入マスク42上に、たとえばレジストを含む材料からなるマスク層52が形成される。次に、アライメントマーク領域30内の第2アライメントマーク32を用いてワイドバンドギャップ半導体ウエハ10とフォトマスク62とのアライメントが行われる。たとえば第1主面10aに対して垂直な方向から見て、フォトマスク62の透光部62aが、ワイドバンドギャップ半導体ウエハ10に形成された第2アライメントマーク32と重なるように、ワイドバンドギャップ半導体ウエハ10とフォトマスク62とのアライメントが行われる。 Next, the step of forming the second p-type region (S90: FIG. 2) is performed. First, ion implantation mask 42 made of, for example, a material containing silicon dioxide is formed on first main surface 10a. Next, a mask layer 52 made of a material including a resist, for example, is formed on the ion implantation mask 42. Next, the alignment of the wide band gap semiconductor wafer 10 and the photomask 62 is performed using the second alignment mark 32 in the alignment mark region 30. For example, when viewed from a direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the translucent portion 62 a of the photomask 62 overlaps with the second alignment mark 32 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 62 is performed.
 次に、フォトマスク62を用いてマスク層52に対して露光が行われる。光源からの光は、第1主面10aに対してほぼ垂直な方向(図16における矢印の方向)に照射される。図16に示されるように、光は、フォトマスク62の透光部62a、62bを通過して、マスク層52に照射される。遮光部62cに対面するマスク層52の部分には、光が照射されない。 Next, the mask layer 52 is exposed using the photomask 62. Light from the light source is irradiated in a direction substantially perpendicular to the first major surface 10a (the direction of the arrow in FIG. 16). As shown in FIG. 16, the light passes through the light transmitting portions 62 a and 62 b of the photomask 62 and is applied to the mask layer 52. The portion of the mask layer 52 that faces the light shielding portion 62c is not irradiated with light.
 次に、マスク層52の現像が行われる。マスク層52が、ポジ型フォトレジストの場合、光に照射された部分52a、52bがエッチングされ、光に照射されなかった部分52cはエッチングされずにイオン注入マスク42上に残る。これにより、マスク層52cに開口部O31、O32が形成される。具体的には、第2アライメントマーク32と対向する位置に開口部O31が形成され、素子領域2においてコンタクト領域18が形成される予定の領域に対向する位置に開口部O32が形成される(図17参照)。次に、イオン注入マスクがエッチングされる。たとえば開口部O31、O32が形成されたマスク層52cをマスクとして用い、CFを含むガスでイオン注入マスク42がドライエッチングされる。これにより、イオン注入マスク42に開口部O41、O42が形成される。次に、マスク層52cが、イオン注入マスク42上から除去される。 Next, development of the mask layer 52 is performed. When the mask layer 52 is a positive photoresist, the portions 52a and 52b irradiated with light are etched, and the portion 52c not irradiated with light remains on the ion implantation mask 42 without being etched. Thereby, openings O31 and O32 are formed in the mask layer 52c. Specifically, the opening O31 is formed at a position facing the second alignment mark 32, and the opening O32 is formed at a position facing the region where the contact region 18 is to be formed in the element region 2 (FIG. 17). Next, the ion implantation mask is etched. For example, the mask layer 52c in which the openings O31 and O32 are formed is used as a mask, and the ion implantation mask 42 is dry-etched with a gas containing CF 4 . Thereby, openings O41 and O42 are formed in the ion implantation mask. Next, the mask layer 52 c is removed from the ion implantation mask 42.
 図18に示されるように、開口部O41、O42が形成されたイオン注入マスク42cをマスクとして用いて、第1主面10aに対して、たとえばアルミニウムなどのp型不純物が、第1主面10aに対してほぼ垂直な方向(図18における矢印の方向)に沿ってイオン注入される。これにより、開口部O31、O41と重なるワイドバンドギャップ半導体ウエハ10の領域において第2のp型領域72が形成される。つまり、アライメント領域30と重なるように第2のp型領域72が形成される。第2のp型領域72はダイシング領域DRに形成される。 As shown in FIG. 18, using the ion implantation mask 42c in which the openings O41 and O42 are formed as a mask, a p-type impurity such as aluminum is introduced into the first main surface 10a with respect to the first main surface 10a. Are implanted along a direction substantially perpendicular to the direction (the direction of the arrow in FIG. 18). As a result, the second p-type region 72 is formed in the region of the wide band gap semiconductor wafer 10 overlapping the openings O31 and O41. That is, the second p-type region 72 is formed so as to overlap with the alignment region 30. Second p-type region 72 is formed in dicing region DR.
 具体的には、第2アライメントマーク32内に第2のp型領域72が形成される。第2のp型領域72の深さは、第1のp型領域71の深さよりも小さくてもよい。同様に、開口部O32、O42と重なるワイドバンドギャップ半導体ウエハ10の領域においてコンタクト領域18が形成される。コンタクト領域18は、素子領域2内に形成される。第2のp型領域72と、コンタクト領域18とは、同時に形成される。第2のp型領域72の深さと、コンタクト領域18の深さとは、ほぼ同じである。次に、イオン注入マスク42cが、第1主面10a上から除去される。 Specifically, the second p-type region 72 is formed in the second alignment mark 32. The depth of the second p-type region 72 may be smaller than the depth of the first p-type region 71. Similarly, the contact region 18 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O32 and O42. The contact region 18 is formed in the element region 2. Second p-type region 72 and contact region 18 are formed simultaneously. The depth of the second p-type region 72 and the depth of the contact region 18 are substantially the same. Next, the ion implantation mask 42c is removed from the first main surface 10a.
 次に、第3のp型領域を形成する工程(S100:図2)が実施される。まず、第1主面10a上に、たとえば二酸化珪素を含む材料からなるイオン注入マスク43が形成される。次に、イオン注入マスク43上に、たとえばレジストを含む材料からなるマスク層53が形成される。次に、アライメントマーク領域30内の第3アライメントマーク33を用いてワイドバンドギャップ半導体ウエハ10とフォトマスク63とのアライメントが行われる。たとえば第1主面10aに対して垂直な方向から見て、フォトマスク63の透光部63aが、ワイドバンドギャップ半導体ウエハ10に形成された第3アライメントマーク33と重なるように、ワイドバンドギャップ半導体ウエハ10とフォトマスク63とのアライメントが行われる。 Next, a step of forming a third p-type region (S100: FIG. 2) is performed. First, ion implantation mask 43 made of, for example, a material containing silicon dioxide is formed on first main surface 10a. Next, a mask layer 53 made of, for example, a material containing a resist is formed on the ion implantation mask 43. Next, alignment of the wide band gap semiconductor wafer 10 and the photomask 63 is performed using the third alignment mark 33 in the alignment mark region 30. For example, when viewed from the direction perpendicular to the first main surface 10 a, the wide band gap semiconductor so that the light transmitting portion 63 a of the photomask 63 overlaps with the third alignment mark 33 formed on the wide band gap semiconductor wafer 10. The alignment between the wafer 10 and the photomask 63 is performed.
 次に、フォトマスク63を用いてマスク層53に対して露光が行われる。光源からの光は、第1主面10aに対してほぼ垂直な方向(図19における矢印の方向)に照射される。図19に示されるように、光は、フォトマスク63の透光部63a、63bを通過して、マスク層53に照射される。遮光部63cに対面するマスク層53の部分53cには、光が照射されない。 Next, the mask layer 53 is exposed using the photomask 63. Light from the light source is irradiated in a direction substantially perpendicular to the first major surface 10a (the direction of the arrow in FIG. 19). As shown in FIG. 19, the light passes through the light transmitting parts 63 a and 63 b of the photomask 63 and is applied to the mask layer 53. The portion 53c of the mask layer 53 that faces the light shielding portion 63c is not irradiated with light.
 次に、マスク層53の現像が行われる。マスク層53が、ポジ型フォトレジストの場合、光に照射された部分53a、53bがエッチングされ、光に照射されなかった部分53cはエッチングされずにイオン注入マスク43上に残る。これにより、マスク層53に開口部O51、O52が形成される。具体的には、第3アライメントマーク33と対向する位置に開口部O51が形成され、素子領域2においてガードリング領域17が形成される予定の領域に対向する位置に開口部O52が形成される(図20参照)。次に、イオン注入マスク43がエッチングされる。たとえば開口部O51、O52が形成されたマスク層53cをマスクとして用い、CFを含むガスでイオン注入マスク43がドライエッチングされる。これにより、イオン注入マスク43に開口部O61、O62が形成される。次に、マスク層53cが、イオン注入マスク43上から除去される。 Next, development of the mask layer 53 is performed. When the mask layer 53 is a positive photoresist, the portions 53 a and 53 b irradiated with light are etched, and the portion 53 c not irradiated with light remains on the ion implantation mask 43 without being etched. Thereby, openings O51 and O52 are formed in the mask layer 53. Specifically, the opening O51 is formed at a position facing the third alignment mark 33, and the opening O52 is formed at a position facing the region where the guard ring region 17 is to be formed in the element region 2 ( FIG. 20). Next, the ion implantation mask 43 is etched. For example, the mask layer 53c in which the openings O51 and O52 are formed is used as a mask, and the ion implantation mask 43 is dry-etched with a gas containing CF 4 . Thus, openings O61 and O62 are formed in the ion implantation mask 43. Next, the mask layer 53 c is removed from the ion implantation mask 43.
 図21に示されるように、開口部O61、O62が形成されたイオン注入マスク43をマスクとして用いて、第1主面10aに対して、たとえばアルミニウムなどのp型不純物が、第1主面10aに対してほぼ垂直な方向(図21における矢印の方向)に沿ってイオン注入される。これにより、開口部O51、O61と重なるワイドバンドギャップ半導体ウエハ10の領域において第3のp型領域73が形成される。つまり、アライメント領域30と重なるように第3のp型領域73が形成される。第3のp型領域73はダイシング領域DRに形成される。 As shown in FIG. 21, using the ion implantation mask 43 in which the openings O61 and O62 are formed as a mask, a p-type impurity such as aluminum is introduced into the first main surface 10a with respect to the first main surface 10a. Are implanted along a direction substantially perpendicular to the direction (the direction of the arrow in FIG. 21). As a result, a third p-type region 73 is formed in the region of the wide band gap semiconductor wafer 10 overlapping the openings O51 and O61. That is, the third p-type region 73 is formed so as to overlap with the alignment region 30. The third p-type region 73 is formed in the dicing region DR.
 具体的には、第3アライメントマーク33内に第3のp型領域73が形成される。第3のp型領域73の深さは、第1のp型領域71の深さよりも小さくてもよい。同様に、開口部O52、O62と重なるワイドバンドギャップ半導体ウエハ10の領域においてガードリング領域17が形成される。ガードリング領域17は、素子領域2内に形成される。第3のp型領域73と、ガードリング領域17とは、同時に形成される。第3のp型領域73の深さと、ガードリング領域17の深さとは、ほぼ同じである。次に、イオン注入マスク43cが、第1主面10a上から除去される(図22参照)。 Specifically, a third p-type region 73 is formed in the third alignment mark 33. The depth of the third p-type region 73 may be smaller than the depth of the first p-type region 71. Similarly, the guard ring region 17 is formed in the region of the wide band gap semiconductor wafer 10 that overlaps the openings O52 and O62. The guard ring region 17 is formed in the element region 2. Third p-type region 73 and guard ring region 17 are formed simultaneously. The depth of the third p-type region 73 and the depth of the guard ring region 17 are substantially the same. Next, the ion implantation mask 43c is removed from the first main surface 10a (see FIG. 22).
 図22における領域XXA、領域XXB、領域XXCおよび領域XXDは、それぞれ図23の領域XXA、領域XXB、領域XXCおよび領域XXDに対応する。図23に示されるように、第1主面10aに対して垂直な方向から見て、第1のp型領域71は、第1アライメントマーク31に取り囲まれるように形成される。同様に、第1主面10aに対して垂直な方向から見て、第2のp型領域72は、第2アライメントマーク32に取り囲まれるように形成される。同様に、第1主面10aに対して垂直な方向から見て、第3のp型領域73は、第3アライメントマーク33に取り囲まれるように形成される。第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、一直線上に位置していてもよい。 22, region XXA, region XXB, region XXC, and region XXD correspond to region XXA, region XXB, region XXC, and region XXD of FIG. 23, respectively. As shown in FIG. 23, the first p-type region 71 is formed so as to be surrounded by the first alignment mark 31 when viewed from the direction perpendicular to the first major surface 10a. Similarly, the second p-type region 72 is formed so as to be surrounded by the second alignment mark 32 when viewed from the direction perpendicular to the first major surface 10a. Similarly, the third p-type region 73 is formed so as to be surrounded by the third alignment mark 33 when viewed from the direction perpendicular to the first major surface 10a. The first p-type region 71, the second p-type region 72, and the third p-type region 73 may be positioned on a straight line.
 次に、活性化アニール工程が実施される。たとえばアルゴン雰囲気下において、ワイドバンドギャップ半導体ウエハ10が1800℃程度に加熱される。これにより、ボディ領域13、コンタクト領域18およびガードリング領域17に導入されたp型不純物と、ソース領域14に導入されたn型不純物とが活性化される。結果として、ボディ領域13と、ソース領域14と、コンタクト領域18と、ガードリング領域17とにおいて所望のキャリアが生成する。 Next, an activation annealing step is performed. For example, the wide band gap semiconductor wafer 10 is heated to about 1800 ° C. in an argon atmosphere. As a result, the p-type impurity introduced into the body region 13, the contact region 18 and the guard ring region 17 and the n-type impurity introduced into the source region 14 are activated. As a result, desired carriers are generated in the body region 13, the source region 14, the contact region 18, and the guard ring region 17.
 次に、ゲート絶縁膜を形成する工程(S110:図2)が実施される。たとえば、酸素を含む雰囲気中において、ワイドバンドギャップ半導体ウエハ10が1300℃程度に加熱される。これにより、ワイドバンドギャップ半導体ウエハ10の第1主面10aが熱酸化され、第1主面10a上に二酸化珪素を含む材料からなるゲート絶縁膜15が形成される。ゲート絶縁膜15は、第1主面10aにおいて、ドリフト領域12と、ボディ領域13と、ソース領域14と、コンタクト領域18と、ガードリング領域17とに接して設けられる(図24参照)。 Next, a step of forming a gate insulating film (S110: FIG. 2) is performed. For example, the wide band gap semiconductor wafer 10 is heated to about 1300 ° C. in an atmosphere containing oxygen. Thus, the first main surface 10a of the wide band gap semiconductor wafer 10 is thermally oxidized, and the gate insulating film 15 made of a material containing silicon dioxide is formed on the first main surface 10a. Gate insulating film 15 is provided in contact with drift region 12, body region 13, source region 14, contact region 18, and guard ring region 17 on first main surface 10a (see FIG. 24).
 次に、ゲート電極を形成する工程(S120:図2)が実施される。たとえば、低圧CVD法により、たとえばリンなどの不純物を含むポリシリコンからなるゲート電極27がゲート絶縁膜15上に形成される。ゲート電極27は、ソース領域14と、ボディ領域13と、ドリフト領域12とに対面する位置に形成される。次に、たとえばプラズマCVD法により、層間絶縁膜22が、ゲート電極27を覆うように形成される。層間絶縁膜22は、ゲート電極27およびゲート絶縁膜15に接して設けられる。層間絶縁膜22は、たとえば二酸化珪素を含む材料からなる。層間絶縁膜22は、ガードリング領域17と対面する位置に設けられてもよい。 Next, a step of forming a gate electrode (S120: FIG. 2) is performed. For example, gate electrode 27 made of polysilicon containing an impurity such as phosphorus is formed on gate insulating film 15 by low-pressure CVD. The gate electrode 27 is formed at a position facing the source region 14, the body region 13, and the drift region 12. Next, interlayer insulating film 22 is formed so as to cover gate electrode 27 by, for example, plasma CVD. The interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15. Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide. The interlayer insulating film 22 may be provided at a position facing the guard ring region 17.
 次に、ソース電極を形成する工程(S130:図2)が実施される。たとえば、ゲート絶縁膜15および層間絶縁膜22の一部が、たとえばドライエッチングにより除去されることにより、コンタクト領域18およびソース領域14がゲート絶縁膜15および層間絶縁膜22から露出する(図25参照)。次に、たとえばスパッタリングにより、ソース電極16が、コンタクト領域18およびソース領域14に接して形成される。ソース電極16は、たとえばTi、AlおよびSiを含む材料から構成されている。 Next, a step of forming a source electrode (S130: FIG. 2) is performed. For example, parts of gate insulating film 15 and interlayer insulating film 22 are removed by, for example, dry etching, so that contact region 18 and source region 14 are exposed from gate insulating film 15 and interlayer insulating film 22 (see FIG. 25). ). Next, the source electrode 16 is formed in contact with the contact region 18 and the source region 14 by, for example, sputtering. The source electrode 16 is made of a material containing, for example, Ti, Al, and Si.
 次に、ソース電極16が設けられた炭化珪素基板10が、たとえば1000℃程度に加熱される。これにより、ソース電極16がシリサイド化され、ソース領域14とオーミック接合するソース電極16が形成される。好ましくは、ソース電極16は、コンタクト領域18とオーミック接合する。次に、ソース電極16と接する表面保護電極19が形成される。表面保護電極19はたとえばアルミニウムを含む材料から構成されている。表面保護電極19は、層間絶縁膜22を覆うように形成される(図26参照)。 Next, silicon carbide substrate 10 provided with source electrode 16 is heated to about 1000 ° C., for example. As a result, the source electrode 16 is silicided, and the source electrode 16 that is in ohmic contact with the source region 14 is formed. Preferably, the source electrode 16 is in ohmic contact with the contact region 18. Next, a surface protective electrode 19 in contact with the source electrode 16 is formed. The surface protection electrode 19 is made of a material containing aluminum, for example. The surface protective electrode 19 is formed so as to cover the interlayer insulating film 22 (see FIG. 26).
 次に、ドレイン電極を形成する工程(S140:図2)が実施される。たとえば、NiSiを含む材料からなるドレイン電極21が第2主面10bに接するように形成される。次に、ドレイン電極21に接する裏面保護電極23が形成される。裏面保護電極23は、たとえばアルミニウムを含む材料により構成されている。 Next, a step of forming a drain electrode (S140: FIG. 2) is performed. For example, the drain electrode 21 made of a material containing NiSi is formed so as to be in contact with the second main surface 10b. Next, the back surface protective electrode 23 in contact with the drain electrode 21 is formed. The back surface protective electrode 23 is made of, for example, a material containing aluminum.
 次に、複数のチップを形成する工程(S150:図2)が実施される。p型領域71が形成された後、ダイシング領域DRに沿ってワイドバンドギャップ半導体ウエハ10を切断することにより、複数のチップ5が形成される。ワイドバンドギャップ半導体ウエハ10は、たとえばブレードにより切断される。具体的には、ダイシング領域DRの一部の領域が、ブレードにより除去される。除去される領域BRの幅(言い得れば切断幅W3)は、ダイシング領域DRの幅W1よりも小さい。切断幅W3は、ブレードの幅とほぼ同じであってもよい。 Next, a step of forming a plurality of chips (S150: FIG. 2) is performed. After the p-type region 71 is formed, a plurality of chips 5 are formed by cutting the wide band gap semiconductor wafer 10 along the dicing region DR. The wide band gap semiconductor wafer 10 is cut by, for example, a blade. Specifically, a part of the dicing area DR is removed by the blade. The width of the region BR to be removed (in other words, the cutting width W3) is smaller than the width W1 of the dicing region DR. The cutting width W3 may be substantially the same as the width of the blade.
 ワイドバンドギャップ半導体ウエハ10の切断幅W3を、ダイシング領域DRの延伸方向に対して垂直な方向におけるダイシング領域DRの幅W1で除した値は、1/4以上5/6以下であることおよび切断幅W3は、30μm以上100μm以下であることの少なくともいずれかを満たしていてもよい。好ましくは、ワイドバンドギャップ半導体ウエハ10の切断幅W3を、ダイシング領域DRの幅W1で除した値は、1/4以上2/3以下である。好ましくは、切断幅W3は、30μm以上80μm以下である。 The value obtained by dividing the cutting width W3 of the wide band gap semiconductor wafer 10 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is not less than 1/4 and not more than 5/6. The width W3 may satisfy at least one of 30 μm or more and 100 μm or less. Preferably, a value obtained by dividing the cutting width W3 of the wide band gap semiconductor wafer 10 by the width W1 of the dicing region DR is not less than 1/4 and not more than 2/3. Preferably, the cutting width W3 is not less than 30 μm and not more than 80 μm.
 ワイドバンドギャップ半導体ウエハ10を切断することにより、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とが除去される。ダイシング領域DRの延伸方向に対して垂直な方向において、第1のp型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向における第1のp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしていてもよい。好ましくは、第1のp型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上1/2以下である。好ましくは、第1のp型領域71の幅W2は、10μm以上60μm以下である。 By cutting the wide band gap semiconductor wafer 10, the first p-type region 71, the second p-type region 72, and the third p-type region 73 are removed. A value obtained by dividing the width W2 of the first p-type region 71 by the width W1 of the dicing region DR in a direction perpendicular to the extending direction of the dicing region DR is not less than 1/12 and not more than 2/3. The width W2 of the first p-type region 71 in the direction perpendicular to the direction may satisfy at least one of not less than 10 μm and not more than 80 μm. Preferably, a value obtained by dividing the width W2 of the first p-type region 71 by the width W1 of the dicing region DR is not less than 1/12 and not more than 1/2. Preferably, the width W2 of the first p-type region 71 is not less than 10 μm and not more than 60 μm.
 第1のp型領域71の幅W2は、第2のp型領域72の幅と同じであってもよいし、異なっていてもよい。同様に、第1のp型領域71の幅W2は、第3のp型領域73の幅と同じであってもよいし、異なっていてもよい。好ましくは、切断幅W3は、第1のp型領域71の幅W2、第2のp型領域72の幅および第3のp型領域73の幅の中の最大値よりも大きい。これにより、第1のp型領域71の幅W2、第2のp型領域72の幅および第3のp型領域73が、ブレードにより完全に除去される。 The width W2 of the first p-type region 71 may be the same as or different from the width of the second p-type region 72. Similarly, the width W2 of the first p-type region 71 may be the same as or different from the width of the third p-type region 73. Preferably, the cutting width W3 is larger than the maximum value among the width W2 of the first p-type region 71, the width of the second p-type region 72, and the width of the third p-type region 73. Thereby, the width W2 of the first p-type region 71, the width of the second p-type region 72, and the third p-type region 73 are completely removed by the blade.
 図28に示されるように、ダイシング領域DRに沿ってワイドバンドギャップ半導体ウエハ10が切断された後、チップ5の素子領域2の周囲にはダイシング領域DRの部分4が残されていてもよい。ダイシング領域DRの部分4は、第1主面10aに対して垂直な方向において、素子領域2を取り囲むように設けられている。チップ5に残されたダイシング領域DRの部分には、第1のp型領域71、第2のp型領域72および第3のp型領域73が存在しない。なお、図1は、図28のI-I線に沿った断面模式図である。 28, after the wide band gap semiconductor wafer 10 is cut along the dicing region DR, the portion 4 of the dicing region DR may be left around the element region 2 of the chip 5. The portion 4 of the dicing region DR is provided so as to surround the element region 2 in a direction perpendicular to the first main surface 10a. The first p-type region 71, the second p-type region 72, and the third p-type region 73 do not exist in the portion of the dicing region DR left on the chip 5. FIG. 1 is a schematic cross-sectional view taken along the line II of FIG.
 次に、本実施の形態の変形例に係るMOSFET100の製造方法について説明する。変形例に係るMOSFET100の製造方法は、アライメント領域がダイシング領域DR上ではなく、ダイシング領域DRに囲まれた領域に形成されている点において、上記実施の形態に係るMOSFET100の製造方法と異なっており、他の点においては、上記実施の形態に係るMOSFET100の製造方法とほぼ同じである。以下、主に、上記実施の形態に係るMOSFET100の製造方法と異なっている点について説明する。 Next, a method for manufacturing MOSFET 100 according to a modification of the present embodiment will be described. The manufacturing method of MOSFET 100 according to the modification differs from the manufacturing method of MOSFET 100 according to the above-described embodiment in that the alignment region is not formed on the dicing region DR but in a region surrounded by the dicing region DR. The other points are almost the same as the method for manufacturing MOSFET 100 according to the above embodiment. Hereinafter, points different from the method of manufacturing MOSFET 100 according to the above embodiment will be mainly described.
 図29および図30に示されるように、アライメントマーク領域を形成する工程(S30:図2)において、アライメントマーク領域30は、ダイシング領域DR以外の領域に形成されてもよい。たとえばアライメントマーク領域30は、第1主面10aにおいてダイシング領域DRに囲まれた領域に形成されてもよい。つまり、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、第1主面10aにおいてダイシング領域DRに囲まれた領域に形成されてもよい。第1主面10aに対して垂直な方向から見て、アライメントマーク領域30は、素子領域2に取り囲まれるように形成されてもよい。アライメントマーク領域30は、ある素子領域2に取り囲まれるように形成されており、他の素子領域2には形成されていなくてもよい。図29に示されるように、ショット領域1内にたとえば16個の素子領域2が存在する場合において、アライメントマーク領域30は、2個の素子領域2にのみ形成されており、他の14個の素子領域2には形成されていなくてもよい。 29 and FIG. 30, in the step of forming the alignment mark region (S30: FIG. 2), the alignment mark region 30 may be formed in a region other than the dicing region DR. For example, alignment mark region 30 may be formed in a region surrounded by dicing region DR on first main surface 10a. That is, the first p-type region 71, the second p-type region 72, and the third p-type region 73 may be formed in a region surrounded by the dicing region DR in the first main surface 10a. . The alignment mark region 30 may be formed so as to be surrounded by the element region 2 when viewed from a direction perpendicular to the first major surface 10a. The alignment mark region 30 is formed so as to be surrounded by a certain element region 2 and may not be formed in the other element region 2. As shown in FIG. 29, when, for example, 16 element regions 2 exist in the shot region 1, the alignment mark region 30 is formed only in the two element regions 2, and the other 14 elements It does not need to be formed in the element region 2.
 図31に示されるように、第3のp型領域を形成する工程(S100:図2)後、第1主面10aに対して垂直な方向から見て、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、素子領域2に取り囲まれるように設けられている。第1主面10aに対して垂直な方向から見て、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、ダイシング領域DRに取り囲まれるように設けられていてもよい。第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、一直線上に位置していてもよいし、一直線上に位置していなくてもよい。 As shown in FIG. 31, after the step of forming the third p-type region (S100: FIG. 2), the first p-type region 71 as viewed from the direction perpendicular to the first main surface 10a, The second p-type region 72 and the third p-type region 73 are provided so as to be surrounded by the element region 2. The first p-type region 71, the second p-type region 72, and the third p-type region 73 are surrounded by the dicing region DR when viewed from the direction perpendicular to the first major surface 10a. May be provided. The first p-type region 71, the second p-type region 72, and the third p-type region 73 may be positioned on a straight line or may not be positioned on a straight line.
 次に、本実施の形態に係るワイドバンドギャップ半導体ウエハ10の構成について説明する。 Next, the configuration of the wide band gap semiconductor wafer 10 according to the present embodiment will be described.
 図23に示されるように、ワイドバンドギャップ半導体ウエハ10の第1主面10aには、ダイシング領域DRが形成されている。ワイドバンドギャップ半導体ウエハ10は、ダイシング領域DRに位置するアライメントマーク領域30と、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とを含んでいる。第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、アライメントマーク領域30に位置する。 As shown in FIG. 23, a dicing region DR is formed on the first main surface 10 a of the wide band gap semiconductor wafer 10. The wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region DR, a first p-type region 71, a second p-type region 72, and a third p-type region 73. . First p-type region 71, second p-type region 72, and third p-type region 73 are located in alignment mark region 30.
 上述の通り、アライメントマーク領域30は、凸状の領域(つまり、第1アライメントマーク31、第2アライメントマーク32および第3アライメントマーク33)と、凸状の領域を取り囲む凹状の領域(つまり、第1凹部TR1および第2凹部TR2)とにより構成されている。第1のp型領域71、第2のp型領域72および第3のp型領域73は、アライメントマーク領域30の凸状の領域に位置していてもよいし、アライメントマーク領域30の凹状の領域に位置していてもよい。図23に示されるように、ショット領域1内におけるアライメントマーク領域30の数は、素子領域2の数よりも少なくてもよい。同様に、ショット領域1内における第1のp型領域71と、第2のp型領域72と、第3のp型領域73の数は、素子領域2の数よりも少なくてもよい。 As described above, the alignment mark region 30 includes the convex region (that is, the first alignment mark 31, the second alignment mark 32, and the third alignment mark 33) and the concave region that surrounds the convex region (that is, the first alignment mark 31). 1 recess TR1 and second recess TR2). The first p-type region 71, the second p-type region 72, and the third p-type region 73 may be located in the convex region of the alignment mark region 30 or the concave shape of the alignment mark region 30. It may be located in the area. As shown in FIG. 23, the number of alignment mark regions 30 in the shot region 1 may be smaller than the number of element regions 2. Similarly, the number of first p-type regions 71, second p-type regions 72, and third p-type regions 73 in the shot region 1 may be smaller than the number of element regions 2.
 ダイシング領域DRの延伸方向に対して垂直な方向において、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしていている。好ましくは、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上1/2以下である。好ましくは、p型領域71の幅W2は、10μm以上60μm以下である。上述の通り、ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいてもよい。第1主面10aの最大径S(図4参照)は、たとえば100mm(約4インチ)以上であり、好ましくは150mm(約6インチ)以上である。 The value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and The width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 μm to 80 μm. Preferably, a value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR is not less than 1/12 and not more than 1/2. Preferably, the width W2 of the p-type region 71 is not less than 10 μm and not more than 60 μm. As described above, the wide band gap semiconductor wafer 10 may include at least one of silicon carbide, gallium nitride, and diamond. The maximum diameter S (see FIG. 4) of the first major surface 10a is, for example, 100 mm (about 4 inches) or more, and preferably 150 mm (about 6 inches) or more.
 次に、本実施の形態の変形例に係るワイドバンドギャップ半導体ウエハ10の構成について説明する。変形例に係るワイドバンドギャップ半導体ウエハ10のは、アライメント領域がダイシング領域DR上ではなく、ダイシング領域DRに囲まれた領域に形成されている点において、上記実施の形態に係るワイドバンドギャップ半導体ウエハ10と異なっており、他の点においては、上記実施の形態に係るワイドバンドギャップ半導体ウエハ10とほぼ同じである。以下、主に、上記実施の形態に係るワイドバンドギャップ半導体ウエハ10と異なっている点について説明する。 Next, the configuration of the wide band gap semiconductor wafer 10 according to a modification of the present embodiment will be described. The wide band gap semiconductor wafer 10 according to the modification has the wide band gap semiconductor wafer according to the above embodiment in that the alignment region is not formed on the dicing region DR but in a region surrounded by the dicing region DR. 10 is substantially the same as the wide band gap semiconductor wafer 10 according to the above embodiment in other points. Hereinafter, the points different from the wide band gap semiconductor wafer 10 according to the above embodiment will be mainly described.
 図31に示されるように、ワイドバンドギャップ半導体ウエハ10は、ダイシング領域DRに囲まれた領域に位置するアライメントマーク領域30と、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とを含んでいてもよい。第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、アライメントマーク領域30に位置する。第1のp型領域71と、第2のp型領域72と、第3のp型領域73とは、ダイシング領域DRに存在しない。 As shown in FIG. 31, the wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by the dicing region DR, a first p-type region 71, and a second p-type region 72. And the third p-type region 73 may be included. First p-type region 71, second p-type region 72, and third p-type region 73 are located in alignment mark region 30. The first p-type region 71, the second p-type region 72, and the third p-type region 73 do not exist in the dicing region DR.
 次に、本実施の形態に係るワイドバンドギャップ半導体チップ5の構成について説明する。 Next, the configuration of the wide band gap semiconductor chip 5 according to the present embodiment will be described.
 図27および図28に示されるように、ワイドバンドギャップ半導体チップ5は、ワイドバンドギャップ半導体ウエハ10をダイシング領域DRに沿って切断することにより製造される。ワイドバンドギャップ半導体ウエハ10は、図27に示されるように、アライメントマーク領域30がダイシング領域DRに位置してもよいし、図31に示されるように、アライメントマーク領域30がダイシング領域DRに囲まれた領域に位置していてもよい。図28に示されるワイドバンドギャップ半導体チップ5は、図27に示すワイドバンドギャップ半導体ウエハ10をダイシング領域DRに沿って切断することにより製造される。同様に、図32に示されるワイドバンドギャップ半導体チップ5は、図31に示すワイドバンドギャップ半導体ウエハ10をダイシング領域DRに沿って切断することにより製造される。 27 and 28, the wide band gap semiconductor chip 5 is manufactured by cutting the wide band gap semiconductor wafer 10 along the dicing region DR. In the wide band gap semiconductor wafer 10, the alignment mark region 30 may be positioned in the dicing region DR as shown in FIG. 27, or the alignment mark region 30 is surrounded by the dicing region DR as shown in FIG. It may be located in the designated area. The wide band gap semiconductor chip 5 shown in FIG. 28 is manufactured by cutting the wide band gap semiconductor wafer 10 shown in FIG. 27 along the dicing region DR. Similarly, the wide band gap semiconductor chip 5 shown in FIG. 32 is manufactured by cutting the wide band gap semiconductor wafer 10 shown in FIG. 31 along the dicing region DR.
 図28および図32に示されるように、ワイドバンドギャップ半導体チップ5は、素子領域2と、ダイシング領域DRの部分4とを有している。図1に示されるように、素子領域2には、たとえばMOSFET100などの半導体素子が設けられている。ダイシング領域DRの部分4は、第1主面10aに対して垂直な方向において、素子領域2を取り囲むように設けられている。ダイシング領域DRの部分4には、第1のp型領域71、第2のp型領域72および第3のp型領域73が存在しない。そのため、ドレインリーク電流を低減することができる。たとえば、MOSFET100のソース電極16およびドレイン電極21の間に1700Vの電圧を印加した場合におけるドレインリーク電流の電流密度は、10μA/cm以下である。ダイシング領域DRが全て除去されることにより、ダイシング領域DRの部分4が存在しなくてもよい。 As shown in FIGS. 28 and 32, the wide band gap semiconductor chip 5 has an element region 2 and a portion 4 of a dicing region DR. As shown in FIG. 1, the element region 2 is provided with a semiconductor element such as a MOSFET 100, for example. The portion 4 of the dicing region DR is provided so as to surround the element region 2 in a direction perpendicular to the first main surface 10a. In the portion 4 of the dicing region DR, the first p-type region 71, the second p-type region 72, and the third p-type region 73 do not exist. Therefore, the drain leakage current can be reduced. For example, the current density of the drain leakage current when a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21 of the MOSFET 100 is 10 μA / cm 2 or less. By removing all the dicing region DR, the portion 4 of the dicing region DR may not be present.
 図32に示されるように、ワイドバンドギャップ半導体チップ5は、ダイシング領域DRの部分4に囲まれるアライメントマーク領域30を有していてもよい。図28に示されるように、ワイドバンドギャップ半導体チップ5は、アライメントマーク領域30を有していなくてもよい。 32, the wide band gap semiconductor chip 5 may have an alignment mark region 30 surrounded by the portion 4 of the dicing region DR. As shown in FIG. 28, the wide band gap semiconductor chip 5 may not have the alignment mark region 30.
 なお、上記実施の形態において、炭化珪素半導体装置100が平面型MOSFETである場合について説明したが、炭化珪素半導体装置100は平面型MOSFETに限定されない。炭化珪素半導体装置100は、たとえばトレンチ型MOSFET、ショットキーバリアダイオード、IGBT(Insulated Gate Bipolar Transistor)またはJFET(Junction Field Effect Transistor)などであってもよい。上記実施の形態において、第1導電型はn型であり、かつ第2導電型はp型であるとして説明したが、第1導電型はp型であり、かつ第2導電型はn型であってもよい。 In the above embodiment, the case where silicon carbide semiconductor device 100 is a planar MOSFET has been described, but silicon carbide semiconductor device 100 is not limited to a planar MOSFET. Silicon carbide semiconductor device 100 may be, for example, a trench MOSFET, Schottky barrier diode, IGBT (Insulated Gate Bipolar Transistor), or JFET (Junction Field Effect Transistor). In the above embodiment, the first conductivity type is n-type and the second conductivity type is p-type. However, the first conductivity type is p-type and the second conductivity type is n-type. There may be.
 次に、本実施の形態に係るワイドバンドギャップ半導体装置の製造方法、ワイドバンドギャップ半導体ウエハおよびワイドバンドギャップ半導体チップの作用効果について説明する。 Next, the operation and effect of the wide band gap semiconductor device manufacturing method, the wide band gap semiconductor wafer, and the wide band gap semiconductor chip according to the present embodiment will be described.
 本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、複数のチップ5に残されたダイシング領域DRの部分には、p型領域71が存在しない。そのため、p型領域71に電界が集中することにより、ドレインリーク電流が発生することを抑制することができる。結果として、ドレインリーク不良率を低減可能である。 According to the method for manufacturing the wide band gap semiconductor device 100 according to the present embodiment, the p-type region 71 does not exist in the portion of the dicing region DR remaining on the plurality of chips 5. Therefore, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71. As a result, the drain leak defect rate can be reduced.
 また本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、アライメントマーク領域30は、ダイシング領域DRに形成される。複数のチップ5を形成する工程において、p型領域71が除去される。これにより、素子領域2内にアライメントマーク31を形成する必要がないため、素子領域2の面積を広く確保することができる。 Further, according to the method of manufacturing wide band gap semiconductor device 100 according to the present embodiment, alignment mark region 30 is formed in dicing region DR. In the step of forming the plurality of chips 5, the p-type region 71 is removed. Thereby, since it is not necessary to form the alignment mark 31 in the element region 2, a large area of the element region 2 can be secured.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、ダイシング領域DRの延伸方向に対して垂直な方向において、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしている。p型領域71の幅を広く確保することにより、アライメント精度を高く維持しつつドレインリーク不良率を低減可能である。 Furthermore, according to the method for manufacturing wide band gap semiconductor device 100 according to the present embodiment, in the direction perpendicular to the extending direction of dicing region DR, width W2 of p-type region 71 is divided by width W1 of dicing region DR. The measured value satisfies at least one of 1/12 or more and 2/3 or less and the width W2 of the p-type region 71 in the direction perpendicular to the stretching direction is 10 μm or more and 80 μm or less. By ensuring a wide width of the p-type region 71, it is possible to reduce the drain leak defect rate while maintaining high alignment accuracy.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、複数のチップ5を形成する工程におけるワイドバンドギャップ半導体ウエハ10の切断幅W3を、ダイシング領域DRの延伸方向に対して垂直な方向におけるダイシング領域DRの幅W1で除した値は、1/4以上5/6以下であることおよび切断幅W3は、30μm以上100μm以下であることの少なくともいずれかを満たしている。これにより、p型領域71の位置がばらついている場合であっても、効果的にp型領域71を除去することができる。 Furthermore, according to the manufacturing method of wide band gap semiconductor device 100 according to the present embodiment, the cutting width W3 of wide band gap semiconductor wafer 10 in the step of forming a plurality of chips 5 is set with respect to the extending direction of dicing region DR. The value divided by the width W1 of the dicing region DR in the vertical direction satisfies at least one of ¼ to 5/6 and the cutting width W3 of 30 μm to 100 μm. As a result, even if the position of the p-type region 71 varies, the p-type region 71 can be effectively removed.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、ダイシング領域DRとアライメントマーク領域30とは同時に形成される。これにより、ワイドバンドギャップ半導体装置100の製造工程を簡略化することができる。 Furthermore, according to the method for manufacturing wide band gap semiconductor device 100 according to the present embodiment, dicing region DR and alignment mark region 30 are formed simultaneously. Thereby, the manufacturing process of the wide band gap semiconductor device 100 can be simplified.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいる。炭化珪素、窒化ガリウムおよびダイヤモンドは、たとえば大電流を制御するパワー半導体装置に対して好適に利用可能である。 Furthermore, according to the method for manufacturing wide band gap semiconductor device 100 according to the present embodiment, wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、主面10aの最大径は、100mm以上である。本実施態様に係るワイドバンドギャップ半導体装置100の製造方法は、ショットの数が多いためにアライメントマークの数が多い大口径ウエハにおいて好適に利用することができる。 Furthermore, according to the method for manufacturing wide band gap semiconductor device 100 according to the present embodiment, the maximum diameter of main surface 10a is 100 mm or more. The manufacturing method of the wide band gap semiconductor device 100 according to the present embodiment can be suitably used for a large-diameter wafer having a large number of alignment marks because the number of shots is large.
 さらに本実施の形態に係るワイドバンドギャップ半導体装置100の製造方法によれば、アライメントマーク領域30は、主面10aにおいてダイシング領域DRに囲まれた領域に形成される。これにより、p型領域71をダイシング領域DRに形成する必要がないので、p型領域71に電界が集中することで、ドレインリーク電流が発生することを抑制することができる。 Furthermore, according to the method for manufacturing wide band gap semiconductor device 100 according to the present embodiment, alignment mark region 30 is formed in a region surrounded by dicing region DR on main surface 10a. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
 本実施の形態に係るワイドバンドギャップ半導体ウエハ10は、主面10aにダイシング領域DRが形成されたワイドバンドギャップ半導体ウエハ10である。ワイドバンドギャップ半導体ウエハ10は、ダイシング領域に位置するアライメントマーク領域30と、アライメントマーク領域30に位置するp型領域71とを含んでいる。ダイシング領域DRの延伸方向に対して垂直な方向において、p型領域71の幅W2をダイシング領域DRの幅W1で除した値は、1/12以上2/3以下であることおよび延伸方向に対して垂直な方向におけるp型領域71の幅W2は、10μm以上80μm以下であることの少なくともいずれかを満たしている。p型領域71の幅を広く確保することにより、アライメント精度を高く維持しつつドレインリーク不良率を低減可能である。 The wide band gap semiconductor wafer 10 according to the present embodiment is a wide band gap semiconductor wafer 10 in which a dicing region DR is formed on the main surface 10a. The wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in the dicing region and a p-type region 71 located in the alignment mark region 30. The value obtained by dividing the width W2 of the p-type region 71 by the width W1 of the dicing region DR in the direction perpendicular to the extending direction of the dicing region DR is 1/12 or more and 2/3 or less and The width W2 of the p-type region 71 in the vertical direction satisfies at least one of 10 μm or more and 80 μm or less. By ensuring a wide width of the p-type region 71, it is possible to reduce the drain leak defect rate while maintaining high alignment accuracy.
 本実施の形態に係るワイドバンドギャップ半導体ウエハ10は、主面10aにダイシング領域が形成されたワイドバンドギャップ半導体ウエハである。ワイドバンドギャップ半導体ウエハ10は、ダイシング領域DRに囲まれた領域に位置するアライメントマーク領域30と、アライメントマーク領域30に位置するp型領域71とを含んでいる。p型領域71は、ダイシング領域DRに存在しない。これにより、p型領域71をダイシング領域DRに形成する必要がないので、p型領域71に電界が集中することで、ドレインリーク電流が発生することを抑制することができる。 The wide band gap semiconductor wafer 10 according to the present embodiment is a wide band gap semiconductor wafer in which a dicing region is formed on the main surface 10a. Wide band gap semiconductor wafer 10 includes an alignment mark region 30 located in a region surrounded by dicing region DR, and a p-type region 71 located in alignment mark region 30. The p-type region 71 does not exist in the dicing region DR. Thereby, since it is not necessary to form the p-type region 71 in the dicing region DR, it is possible to suppress the occurrence of drain leakage current due to the concentration of the electric field in the p-type region 71.
 また本実施の形態に係るワイドバンドギャップ半導体ウエハ10によれば、ワイドバンドギャップ半導体ウエハ10は、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含んでいる。炭化珪素、窒化ガリウムおよびダイヤモンドは、たとえば大電流を制御するパワー半導体装置に対して好適に利用可能である。 Further, according to the wide band gap semiconductor wafer 10 according to the present embodiment, the wide band gap semiconductor wafer 10 contains at least one of silicon carbide, gallium nitride, and diamond. Silicon carbide, gallium nitride, and diamond can be suitably used for, for example, a power semiconductor device that controls a large current.
 さらに本実施の形態に係るワイドバンドギャップ半導体ウエハ10によれば、主面10aの最大径は、100mm以上である。本実施態様に係るワイドバンドギャップ半導体装置100の製造方法は、ショットの数が多くアライメントマークの数が多い大口径ウエハにおいて好適に利用することができる。 Furthermore, according to the wide band gap semiconductor wafer 10 according to the present embodiment, the maximum diameter of the main surface 10a is 100 mm or more. The manufacturing method of the wide band gap semiconductor device 100 according to this embodiment can be suitably used for a large diameter wafer having a large number of shots and a large number of alignment marks.
 本実施の形態に係るワイドバンドギャップ半導体チップ5は、上記ワイドバンドギャップ半導体ウエハ10をダイシング領域DRに沿って切断することにより製造される。これにより、ワイドバンドギャップ半導体チップ5のドレインリーク電流を低減することができる。 The wide band gap semiconductor chip 5 according to the present embodiment is manufactured by cutting the wide band gap semiconductor wafer 10 along the dicing region DR. Thereby, the drain leakage current of the wide band gap semiconductor chip 5 can be reduced.
 (サンプル準備)
 まず、2種類のグループのワイドバンドギャップ半導体チップ5が準備される。ワイドバンドギャップ半導体チップ5は、耐圧が1700V仕様のMOSFET100(図1)を含んでいる。第1のグループのワイドバンドギャップ半導体チップ5は、ダイシング領域DRの部分4にp型領域が存在しないワイドバンドギャップ半導体チップ5である。第2のグループのワイドバンドギャップ半導体チップ5は、ダイシング領域DRの部分4にp型領域が残存するワイドバンドギャップ半導体チップ5である。
(Sample preparation)
First, two types of groups of wide band gap semiconductor chips 5 are prepared. The wide band gap semiconductor chip 5 includes a MOSFET 100 (FIG. 1) having a breakdown voltage specification of 1700V. The wide band gap semiconductor chip 5 of the first group is a wide band gap semiconductor chip 5 in which no p-type region exists in the portion 4 of the dicing region DR. The wide band gap semiconductor chip 5 of the second group is a wide band gap semiconductor chip 5 in which the p-type region remains in the portion 4 of the dicing region DR.
 第1のグループのワイドバンドギャップ半導体チップ5は、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とがダイシング領域DRに形成された後、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とが、完全に除去されることにより製造される。一方、第2のグループのワイドバンドギャップ半導体チップ5は、第1のp型領域71と、第2のp型領域72と、第3のp型領域73とがダイシング領域DRに形成された後、第1のp型領域71、第2のp型領域72および第3のp型領域73の少なくとも一部が、ダイシング領域DRの部分4に残るように製造される。 The first group of wide band gap semiconductor chips 5 includes a first p-type region 71, a second p-type region 72, and a third p-type region 73 formed in the dicing region DR, The first p-type region 71, the second p-type region 72, and the third p-type region 73 are manufactured by being completely removed. On the other hand, after the first p-type region 71, the second p-type region 72, and the third p-type region 73 are formed in the dicing region DR, the second group of wide band gap semiconductor chips 5 is formed. The first p-type region 71, the second p-type region 72, and the third p-type region 73 are manufactured so as to remain in the portion 4 of the dicing region DR.
 (実験)
 MOSFET100を含むワイドバンドギャップ半導体チップ5が、150℃の温度下に配置される。ゲートが閉じた状態でソース電極16およびドレイン電極21の間に1700Vの電圧が10時間印加される。ソース電極16およびドレイン電極21の間に1700Vの電圧が印加された状態で、一定の時間毎にドレインリーク電流が測定される。
(Experiment)
The wide band gap semiconductor chip 5 including the MOSFET 100 is disposed at a temperature of 150 ° C. With the gate closed, a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21 for 10 hours. In a state where a voltage of 1700 V is applied between the source electrode 16 and the drain electrode 21, the drain leakage current is measured at regular intervals.
 (結果)
 図33に示されるように、ダイシング領域DRの部分4にp型領域がある第2のグループのワイドバンドギャップ半導体チップ5は、印加時間が約0.5時間~約1時間を経過するくらいから、ドレインリーク電流が大きくなり、印加時間が約3時間を経過した後は、ドレインリーク電流はほぼ一定になる。印加時間が10時間を経過した後における第2のグループのワイドバンドギャップ半導体チップ5のドレインリーク電流は、1×10-7Aより大きい。
(result)
As shown in FIG. 33, the second group of wide bandgap semiconductor chips 5 having the p-type region in the portion 4 of the dicing region DR has an application time of about 0.5 hours to about 1 hour. The drain leakage current increases, and after about 3 hours of application time, the drain leakage current becomes substantially constant. The drain leakage current of the second group of wide band gap semiconductor chips 5 after the application time of 10 hours is greater than 1 × 10 −7 A.
 一方、ダイシング領域DRの部分4にp型領域がない第1のグループのワイドバンドギャップ半導体チップ5は、印加時間が10時間を経過するまで、ドレインリーク電流は低い値を維持する。印加時間が10時間を経過した後における第1のグループのワイドバンドギャップ半導体チップ5のドレインリーク電流は、1×10-7A未満である。 On the other hand, in the first group of wide band gap semiconductor chips 5 in which the p-type region is not present in the portion 4 of the dicing region DR, the drain leakage current is kept low until the application time of 10 hours elapses. The drain leakage current of the first group of wide band gap semiconductor chips 5 after the application time of 10 hours is less than 1 × 10 −7 A.
 たとえばドレインリーク電流が1×10-7A未満であるワイドバンドギャップ半導体チップ5を良品とし、ドレインリーク電流が1×10-7A以上のワイドバンドギャップ半導体チップ5を不良品とすると、第1のグループのワイドバンドギャップ半導体チップ5は全て良品であると判断され、第2のグループのワイドバンドギャップ半導体チップ5は全て不良品であると判断される。以上の結果より、ダイシング領域DRの部分4にp型領域が存在しないようにワイドバンドギャップ半導体チップ5を形成することにより、ドレインリーク不良率を低減可能であることが分かる。 For example, if a wide band gap semiconductor chip 5 having a drain leakage current of less than 1 × 10 −7 A is a good product and a wide band gap semiconductor chip 5 having a drain leakage current of 1 × 10 −7 A or more is a defective product, The wide band gap semiconductor chips 5 in the second group are all judged to be non-defective products, and all the wide band gap semiconductor chips 5 in the second group are judged to be defective. From the above results, it can be seen that the drain leak defect rate can be reduced by forming the wide band gap semiconductor chip 5 so that the p-type region does not exist in the portion 4 of the dicing region DR.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ショット領域、2 素子領域、4 ダイシング領域の部分、5 ワイドバンドギャップ半導体チップ(チップ)、10 ワイドバンドギャップ半導体ウエハ(炭化珪素ウエハ、炭化珪素基板)、10a 第1主面(主面)、10b 第2主面、11 炭化珪素単結晶基板、12 ドリフト領域、13 ボディ領域、14 ソース領域、15 ゲート絶縁膜、16 ソース電極、17 ガードリング領域、18 コンタクト領域、19 表面保護電極、21 ドレイン電極、22 層間絶縁膜、23 裏面保護電極、24 炭化珪素エピタキシャル層、27 ゲート電極、30 アライメントマーク領域、31 第1アライメントマーク(アライメントマーク)、32 第2アライメントマーク、33 第3アライメントマーク、41,41c,42,42c,43,43c イオン注入マスク、51,51c,52,52c,53,53c マスク層、61,62,63 フォトマスク、61a,62a,63a 透光部、61c,62c,63c 遮光部、71 第1のp型領域(p型領域)、72 第2のp型領域、73 第3のp型領域、100 ワイドバンドギャップ半導体装置(炭化珪素半導体装置、MOSFET)、BT1,BT2,BT3 底面、DR ダイシング領域、O11,O12,O21,O22,O31,O32,O41,O42,O51,O52,O61,O42 開口部、S 最大径、SW1,SW2,SW3 側面、TR1 第1凹部、TR2 第2凹部、W1,W2 幅、W3 切断幅。 1 shot area, 2 element area, 4 dicing area, 5 wide band gap semiconductor chip (chip), 10 wide band gap semiconductor wafer (silicon carbide wafer, silicon carbide substrate), 10a first main surface (main surface), 10b 2nd main surface, 11 silicon carbide single crystal substrate, 12 drift region, 13 body region, 14 source region, 15 gate insulating film, 16 source electrode, 17 guard ring region, 18 contact region, 19 surface protective electrode, 21 drain Electrode, 22 interlayer insulating film, 23 back surface protective electrode, 24 silicon carbide epitaxial layer, 27 gate electrode, 30 alignment mark region, 31 first alignment mark (alignment mark), 32 second alignment mark, 33 third alignment mark, 41 , 1c, 42, 42c, 43, 43c ion implantation mask, 51, 51c, 52, 52c, 53, 53c mask layer, 61, 62, 63 photomask, 61a, 62a, 63a translucent part, 61c, 62c, 63c light shielding Part 71 first p-type region (p-type region) 72 second p-type region 73 third p-type region 100 wide band gap semiconductor device (silicon carbide semiconductor device, MOSFET), BT1, BT2, BT3 bottom surface, DR dicing area, O11, O12, O21, O22, O31, O32, O41, O42, O51, O52, O61, O42 opening, S maximum diameter, SW1, SW2, SW3 side surface, TR1 first recess, TR2 Second recess, W1, W2 width, W3 cutting width.

Claims (13)

  1.  主面を含み、かつn型の導電型を有するワイドバンドギャップ半導体ウエハを準備する工程と、
     前記主面にダイシング領域を形成する工程と、
     前記主面にアライメントマーク領域を形成する工程と、
     前記アライメントマーク領域を用いて前記ワイドバンドギャップ半導体ウエハとフォトマスクとのアライメントを行う工程と、
     前記アライメントを行う工程後、前記アライメントマーク領域と重なるようにp型領域を形成する工程と、
     前記p型領域を形成する工程後、前記ダイシング領域に沿って前記ワイドバンドギャップ半導体ウエハを切断することにより、複数のチップを形成する工程とを備え、
     前記複数のチップに残された前記ダイシング領域の部分には、前記p型領域が存在しない、ワイドバンドギャップ半導体装置の製造方法。
    Providing a wide bandgap semiconductor wafer including a main surface and having an n-type conductivity;
    Forming a dicing region on the main surface;
    Forming an alignment mark region on the main surface;
    A step of performing alignment between the wide band gap semiconductor wafer and a photomask using the alignment mark region;
    After the alignment step, forming a p-type region so as to overlap the alignment mark region;
    And a step of forming a plurality of chips by cutting the wide band gap semiconductor wafer along the dicing region after the step of forming the p-type region,
    A method of manufacturing a wide band gap semiconductor device, wherein the p-type region does not exist in a portion of the dicing region left on the plurality of chips.
  2.  前記アライメントマーク領域を形成する工程において、前記アライメントマーク領域は、前記ダイシング領域に形成され、
     前記複数のチップを形成する工程において、前記p型領域が除去される、請求項1に記載のワイドバンドギャップ半導体装置の製造方法。
    In the step of forming the alignment mark region, the alignment mark region is formed in the dicing region,
    The method of manufacturing a wide band gap semiconductor device according to claim 1, wherein the p-type region is removed in the step of forming the plurality of chips.
  3.  前記ダイシング領域の延伸方向に対して垂直な方向において、前記p型領域の幅を前記ダイシング領域の幅で除した値は、1/12以上2/3以下であることおよび前記延伸方向に対して垂直な方向における前記p型領域の幅は、10μm以上80μm以下であることの少なくともいずれかを満たす、請求項2に記載のワイドバンドギャップ半導体装置の製造方法。 In a direction perpendicular to the extending direction of the dicing region, a value obtained by dividing the width of the p-type region by the width of the dicing region is not less than 1/12 and not more than 2/3. The method for manufacturing a wide band gap semiconductor device according to claim 2, wherein a width of the p-type region in the vertical direction satisfies at least one of 10 μm or more and 80 μm or less.
  4.  前記複数のチップを形成する工程における前記ワイドバンドギャップ半導体ウエハの切断幅を、前記ダイシング領域の延伸方向に対して垂直な方向における前記ダイシング領域の幅で除した値は、1/4以上5/6以下であることおよび前記切断幅は、30μm以上100μm以下であることの少なくともいずれかを満たす、請求項2または請求項3に記載のワイドバンドギャップ半導体装置の製造方法。 The value obtained by dividing the cutting width of the wide band gap semiconductor wafer in the step of forming the plurality of chips by the width of the dicing region in a direction perpendicular to the extending direction of the dicing region is not less than 1/4. 4. The method of manufacturing a wide band gap semiconductor device according to claim 2, wherein the width is 6 or less and the cutting width satisfies at least one of 30 μm or more and 100 μm or less. 5.
  5.  前記ダイシング領域と前記アライメントマーク領域とは同時に形成される、請求項1~請求項4のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法。 5. The method for manufacturing a wide band gap semiconductor device according to claim 1, wherein the dicing region and the alignment mark region are formed simultaneously.
  6.  前記ワイドバンドギャップ半導体ウエハは、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含む、請求項1~請求項5のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法。 6. The method of manufacturing a wide band gap semiconductor device according to claim 1, wherein the wide band gap semiconductor wafer includes at least one of silicon carbide, gallium nitride, and diamond.
  7.  前記主面の最大径は、100mm以上である、請求項1~請求項6のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法。 The method for manufacturing a wide band gap semiconductor device according to any one of claims 1 to 6, wherein a maximum diameter of the main surface is 100 mm or more.
  8.  前記アライメントマーク領域を形成する工程において、前記アライメントマーク領域は、前記主面において前記ダイシング領域に囲まれた領域に形成される、請求項1に記載のワイドバンドギャップ半導体装置の製造方法。 2. The method of manufacturing a wide band gap semiconductor device according to claim 1, wherein in the step of forming the alignment mark region, the alignment mark region is formed in a region surrounded by the dicing region on the main surface.
  9.  主面にダイシング領域が形成されたワイドバンドギャップ半導体ウエハであって、
     前記ワイドバンドギャップ半導体ウエハは、前記ダイシング領域に位置するアライメントマーク領域と、
     前記アライメントマーク領域に位置するp型領域とを含み、
     前記ダイシング領域の延伸方向に対して垂直な方向において、前記p型領域の幅を前記ダイシング領域の幅で除した値は、1/12以上2/3以下であることおよび前記延伸方向に対して垂直な方向における前記p型領域の幅は、10μm以上80μm以下であることの少なくともいずれかを満たす、ワイドバンドギャップ半導体ウエハ。
    A wide band gap semiconductor wafer having a dicing region formed on the main surface,
    The wide band gap semiconductor wafer includes an alignment mark region located in the dicing region,
    A p-type region located in the alignment mark region,
    In a direction perpendicular to the extending direction of the dicing region, a value obtained by dividing the width of the p-type region by the width of the dicing region is not less than 1/12 and not more than 2/3. A wide band gap semiconductor wafer satisfying at least one of a width of the p-type region in a vertical direction of 10 μm or more and 80 μm or less.
  10.  主面にダイシング領域が形成されたワイドバンドギャップ半導体ウエハであって、
     前記ワイドバンドギャップ半導体ウエハは、前記ダイシング領域に囲まれた領域に位置するアライメントマーク領域と、
     前記アライメントマーク領域に位置するp型領域とを含み、
     前記p型領域は、前記ダイシング領域に存在しない、ワイドバンドギャップ半導体ウエハ。
    A wide band gap semiconductor wafer having a dicing region formed on the main surface,
    The wide band gap semiconductor wafer includes an alignment mark region located in a region surrounded by the dicing region,
    A p-type region located in the alignment mark region,
    The p-type region is a wide band gap semiconductor wafer that does not exist in the dicing region.
  11.  前記ワイドバンドギャップ半導体ウエハは、炭化珪素、窒化ガリウムおよびダイヤモンドの少なくともいずれかを含む、請求項9または請求項10に記載のワイドバンドギャップ半導体ウエハ。 The wide band gap semiconductor wafer according to claim 9 or 10, wherein the wide band gap semiconductor wafer includes at least one of silicon carbide, gallium nitride, and diamond.
  12.  前記主面の最大径は、100mm以上である、請求項9~請求項11のいずれか1項に記載のワイドバンドギャップ半導体ウエハ。 The wide band gap semiconductor wafer according to any one of claims 9 to 11, wherein a maximum diameter of the main surface is 100 mm or more.
  13.  請求項9~請求項12のいずれか1項に記載のワイドバンドギャップ半導体ウエハを前記ダイシング領域に沿って切断することにより製造されたワイドバンドギャップ半導体チップ。 A wide band gap semiconductor chip manufactured by cutting the wide band gap semiconductor wafer according to any one of claims 9 to 12 along the dicing region.
PCT/JP2016/067898 2015-07-10 2016-06-16 Wide-bandgap semiconductor device production method, wide-bandgap semiconductor wafer, and wide-bandgap semiconductor chip WO2017010223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138685 2015-07-10
JP2015138685A JP6696122B2 (en) 2015-07-10 2015-07-10 Wide band gap semiconductor device manufacturing method, wide band gap semiconductor wafer, and wide band gap semiconductor chip

Publications (1)

Publication Number Publication Date
WO2017010223A1 true WO2017010223A1 (en) 2017-01-19

Family

ID=57756990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067898 WO2017010223A1 (en) 2015-07-10 2016-06-16 Wide-bandgap semiconductor device production method, wide-bandgap semiconductor wafer, and wide-bandgap semiconductor chip

Country Status (2)

Country Link
JP (1) JP6696122B2 (en)
WO (1) WO2017010223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148559A (en) * 2017-06-28 2019-01-04 矽创电子股份有限公司 Crystal circle structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314831A (en) * 1987-06-18 1988-12-22 Sony Corp Manufacture of semiconductor device
JP2003332270A (en) * 2002-05-15 2003-11-21 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP5479616B2 (en) * 2011-01-14 2014-04-23 三菱電機株式会社 Manufacturing method of semiconductor device
JP2015019014A (en) * 2013-07-12 2015-01-29 住友電気工業株式会社 Semiconductor device and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194119A (en) * 1998-12-25 2000-07-14 Fujitsu Ltd Pattern arrangement method and manufacture of reticle and semiconductor device
JP4303917B2 (en) * 2002-06-05 2009-07-29 パナソニック株式会社 Manufacturing method of semiconductor device
JP5326282B2 (en) * 2008-01-10 2013-10-30 富士通セミコンダクター株式会社 Semiconductor device, method of manufacturing the same, and exposure mask
JP2015032611A (en) * 2013-07-31 2015-02-16 住友電気工業株式会社 Method of manufacturing silicon carbide semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314831A (en) * 1987-06-18 1988-12-22 Sony Corp Manufacture of semiconductor device
JP2003332270A (en) * 2002-05-15 2003-11-21 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP5479616B2 (en) * 2011-01-14 2014-04-23 三菱電機株式会社 Manufacturing method of semiconductor device
JP2015019014A (en) * 2013-07-12 2015-01-29 住友電気工業株式会社 Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148559A (en) * 2017-06-28 2019-01-04 矽创电子股份有限公司 Crystal circle structure

Also Published As

Publication number Publication date
JP6696122B2 (en) 2020-05-20
JP2017022263A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US8575729B2 (en) Semiconductor chip with linear expansion coefficients in direction parallel to sides of hexagonal semiconductor substrate and manufacturing method
US9620358B2 (en) Method for manufacturing silicon carbide semiconductor device
US8558244B2 (en) Semiconductor device and method for manufacturing semiconductor device
WO2018150861A1 (en) Silicon carbide laminated substrate and production method therefor
CN105826252A (en) Semiconductor device and method of manufacturing semiconductor device
US9263347B2 (en) Method of manufacturing silicon carbide semiconductor device
JP2019004078A (en) Semiconductor device and manufacturing method for semiconductor device
JP7247514B2 (en) Semiconductor device and its manufacturing method
JP2017168507A (en) Semiconductor device and manufacturing method of the same
JP2015032611A (en) Method of manufacturing silicon carbide semiconductor device
US10032724B2 (en) Silicon carbide semiconductor base, method of crystal axis alignment in silicon carbide semiconductor base, and method of manufacturing silicon carbide semiconductor device
WO2017010223A1 (en) Wide-bandgap semiconductor device production method, wide-bandgap semiconductor wafer, and wide-bandgap semiconductor chip
JP2020087954A (en) Semiconductor device and method of manufacturing the same
JP6287193B2 (en) Method for manufacturing silicon carbide semiconductor device
US11152502B2 (en) Nitride semiconductor device
JP2013021040A (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP2009032971A (en) Method of manufacturing nitride semiconductor element
US10418477B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20240339323A1 (en) Method of manufacturing silicon carbide semiconductor device
WO2022009328A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20130109200A1 (en) Method for manufacturing semiconductor device
JP2008159691A (en) Nitride semiconductor element, nitride semiconductor crystal growth substrate, and method for manufacturing same
KR20200083714A (en) Method for manufacturing sensor having structure of high electron mobility transistor and sensor using thereof
JP2012244083A (en) Semiconductor device and method of manufacturing the same
US20230402526A1 (en) Method for manufacturing high-electron-mobility transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824203

Country of ref document: EP

Kind code of ref document: A1