WO2017010212A1 - Système de manipulation d'engin de chantier, et engin de chantier équipé dudit système de manipulation d'engin de chantier - Google Patents

Système de manipulation d'engin de chantier, et engin de chantier équipé dudit système de manipulation d'engin de chantier Download PDF

Info

Publication number
WO2017010212A1
WO2017010212A1 PCT/JP2016/067717 JP2016067717W WO2017010212A1 WO 2017010212 A1 WO2017010212 A1 WO 2017010212A1 JP 2016067717 W JP2016067717 W JP 2016067717W WO 2017010212 A1 WO2017010212 A1 WO 2017010212A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
bucket
loading
shape
work machine
Prior art date
Application number
PCT/JP2016/067717
Other languages
English (en)
Japanese (ja)
Inventor
弘幸 山田
柄川 索
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017528337A priority Critical patent/JPWO2017010212A1/ja
Priority to US15/577,202 priority patent/US20180171582A1/en
Publication of WO2017010212A1 publication Critical patent/WO2017010212A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path

Definitions

  • the present invention relates to a work machine operating system and a work machine including the work machine operating system.
  • Patent Document 1 describes as follows. A loading map showing an ideal loading configuration in the container is divided into grid-like portions, and a value indicating the height of an ideal level of material in the grid-like portion is calculated.
  • the shape of the load spilling onto the load may change, so there is a way to achieve the target load shape. It is necessary to grasp the shape of the load at the time and estimate how the load falls from the container that the work machine, such as a bucket of a hydraulic excavator, carries the load.
  • Patent Document 1 since the environment of the load is not considered, it is difficult to accurately plan the load operation of the load by the work machine so that the load after the load has a target shape.
  • the object of the present invention is to accurately plan the loading operation of the load by the work machine so that the load after loading has a target shape.
  • a work machine operating system 100 comprising: a loading operation calculating unit 54 that calculates a loading operation based on the target shape 42.
  • the loading operation of the load by the work machine can be accurately planned so that the load after loading has a target shape.
  • the side view of a hydraulic excavator and a dump truck in one embodiment of the present invention The block diagram of the structure around the arithmetic unit in one Embodiment of this invention
  • the block diagram of the structure of the arithmetic unit in one Embodiment of this invention The side view of loading operation of a hydraulic excavator in one embodiment of the present invention
  • the plurality of procedures of the operation system of the present invention are not limited to being executed at different timings. For this reason, it is allowed that another procedure occurs during the execution of a certain procedure, and that part or all of the execution timing of a certain procedure and the execution timing of another procedure overlap.
  • FIG. 1 is a side view of a hydraulic excavator and a dump truck provided with an operation system in an embodiment of the present invention.
  • an operation system will be described with reference to FIGS. 1 to 6 by taking a hydraulic excavator having a bucket as an example of a working machine having a container.
  • the work machine in the present invention is not limited to a hydraulic excavator, and can be applied to other work machines such as a wheel loader.
  • the hydraulic excavator 1 includes an upper swing body 11, a lower traveling body 12 including a crawler, a boom 13, an arm 14, a bucket 15, and a boom 13 that constitute a front portion for performing excavation and the like, as in a general excavator.
  • a boom cylinder 16 for driving, an arm cylinder 17 for driving the arm 14, a bucket cylinder 18 for driving the bucket 15, and the like are included.
  • the upper swing body 11 is rotatably supported by the lower travel body 12, and the upper swing body 11 is rotationally driven relative to the lower travel body 12 by a swing motor (not shown).
  • One end of the boom 13 is rotatably supported by the upper swing body 11, and the boom 13 is driven to rotate relative to the upper swing body 11 according to the expansion and contraction of the boom cylinder 16.
  • the hydraulic excavator 1 having such a configuration can control the bucket 15 to an arbitrary position and posture by appropriately driving the boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18, and can perform a desired work. .
  • the excavator 1 has a boom tilt sensor 21 that acquires the rotational posture of the boom 13, an arm tilt sensor 22 that acquires the rotational posture of the arm 14, and a bucket tilt sensor that acquires the rotational posture of the bucket 15.
  • the stereo camera 25 which acquires the shape of the load 42 which is arrange
  • the boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18 are controlled by an arithmetic device 26.
  • the stereo camera 25 is composed of two or more cameras, and is a device that measures the distance from the subject to the stereo camera 25 based on images taken by the cameras. Instead of the stereo camera 25, one or more sensors that exhibit the same effect as the stereo camera 25 may be provided.
  • the stereo camera 25 can be replaced with a laser sensor, a distance image camera of TOF (Time of Flight) system, or the like.
  • the loading object is a loading platform 41 of the dump truck 4 and the loading object 42 is an excavation loaded on the loading platform 41.
  • the loading object is not limited to the loading platform 41 of the dump truck 4, and may be, for example, the ground. In this case, the load 42 is an excavation loaded on the ground.
  • FIG. 2 is a block diagram of a configuration around the arithmetic device.
  • the computing device 26 acquires the rotation postures of the boom 13, the arm 14, and the bucket 15 from the boom tilt sensor 21, the arm tilt sensor 22, and the bucket tilt sensor 23.
  • the arithmetic unit 26 acquires the shape of the loading platform 41 or the load 42 from the stereo camera 25.
  • the calculation device 26 performs a calculation for obtaining a correlation such as the acquired rotation posture and shape, plans a loading operation of the excavated material based on the correlation, and gives an instruction to each cylinder 20.
  • FIG. 3 is a block diagram of the configuration of the arithmetic unit 26.
  • the arithmetic device 26 includes an automatic controller 24 that generates an operation signal for automatically operating the excavator 1 and a vehicle body controller 19.
  • the automatic controller 24 includes an operation system 100 and a loading operation instruction unit 55.
  • the operation system 100 includes an operation recording unit 51, a shape acquisition unit 52, a correlation calculation unit 53, and a loading operation calculation unit 54.
  • the operation recording unit 51 acquires the rotation posture described above. Then, based on the acquired rotation posture, the horizontal position of the bucket toe, the horizontal speed of the bucket toe, and the bucket rotation posture which is the rotation posture of the bucket 15 are obtained and recorded. That is, the operation recording unit 51 stores the loading operation of the excavator 1 when the excavated material is loaded from the bucket 15 onto the loading platform 41.
  • the shape acquisition unit 52 acquires the shape of the load 42 loaded on the loading platform 41 after performing the loading operation.
  • the correlation calculation unit 53 performs the loading based on the horizontal position of the bucket toe that performs the loading operation, the horizontal speed of the bucket toe, the bucket rotation posture, and the shape of the load 42 acquired by the shape acquisition unit 52. The correlation between the loading operation and the load shape is calculated.
  • the shape acquisition unit 52 determines the loading shape before the loading operation and the loading shape after the loading operation.
  • the correlation calculation unit 53 may obtain the correlation based on the loading operation, the loading shape before the loading operation, and the loading shape after the loading operation. By using this correlation, a more optimal loading operation can be planned.
  • the shape acquisition unit 52 acquires two load shapes, that is, the load shape before the load operation and the load shape after the load operation, and based on the load shape. Thus, the correlation may be obtained.
  • the shape acquisition unit 52 acquires two load shapes, that is, a load shape before the loading operation and a load shape after the loading operation.
  • the loading operation calculation unit 54 calculates the loading operation of the excavator 1 based on the correlation calculated by the correlation calculation unit 53 and the target shape of the load 42 loaded on the loading platform 41. Based on the target shape in addition to the correlation calculated by the correlation calculation unit 53, a loading operation that achieves the target shape can be calculated. Then, the loading operation instruction unit 55 sends to the vehicle body controller 19 an operation signal that results in the loading operation calculated by the loading operation calculation unit 54.
  • the vehicle body controller 19 gives an instruction to the boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18 based on the operation signal sent from the loading operation instruction unit 55.
  • the boom 13, the arm 14, and the bucket 15 can be controlled to arbitrary rotation attitude
  • the arithmetic unit 26 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and other peripheral circuits.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • each unit such as the operation recording unit 51 and the correlation calculation unit 54 is provided. It is conceivable that the program is stored in the ROM and executed by the CPU using the RAM.
  • FIG. 4 is a view as seen from the side of the bucket 15 focusing on the operation of the bucket 15 in the loading operation of the excavator 1.
  • the loading platform 41 of the dump truck 4 shows only the outline.
  • the bucket 15 during the loading operation is illustrated as being extracted as a bucket posture 15a, a bucket posture 15b, a bucket posture 15c, and a bucket posture 15d in chronological order.
  • the bucket toe moves along the bucket toe movement locus 31 and discharges the excavated material to the loading platform 41.
  • the plane in which the boom 13, the arm 14, and the bucket 15 of the excavator 1 can be operated is an XZ plane, and the horizontal direction is the X axis and the vertical direction is the Z axis as shown in FIG.
  • the hydraulic excavator 1 performs a loading operation that sequentially changes the bucket rotation posture while the bucket 15 advances in the X-axis direction on the loading platform 41 as shown from the bucket posture 15a to the bucket posture 15d. That is, the operation of sequentially changing the bucket rotation posture is performed while the operation of sequentially changing the rotation posture of the boom 13 and the arm 14 is performed.
  • the bucket rotation postures from the bucket posture 15a to the bucket posture 15d acquired by the operation recording unit 51 are referred to as bucket rotation posture 33a to bucket rotation posture 33d, respectively.
  • the bucket rotation posture when the opening surface of the bucket 15 and the X axis are parallel is set to 0 °.
  • the bucket rotation posture 33a is set to 0 °. Assuming that the clockwise direction in FIG. 4 is the positive direction, the bucket rotation posture changes from around 0 ° to the positive direction during the loading operation, and the excavated material in the bucket 15 is discharged to the loading platform 41.
  • the outline 42a and the outline 42b of the load 42 loaded on the loading platform 41 are illustrated.
  • the outline 42a is a load shape on the XZ plane of the load 42 loaded by a certain loading operation
  • the outline 42b is the XZ plane of the load 42 loaded by the next loading operation. It is the top load shape.
  • the outline on the XZ plane of the load 42 may be an average of three-dimensional shapes projected on the XZ plane, or may be an outline on an arbitrary plane parallel to the XZ plane.
  • the loading operation of the hydraulic excavator 1 is performed a plurality of times on the same dump truck 4, so that there are a plurality of load shapes of the load 42.
  • the operation recording unit 51 acquires from the stereo camera 25 the three-dimensional shape of the load 42 loaded on the loading platform 41 before the loading operation. Next, an outline (for example, 42a) on the XZ plane of the load 42 is extracted from the acquired three-dimensional shape. Further, after the loading operation, the three-dimensional shape of the load 42 is acquired by the stereo camera 25 in the same manner as before the loading operation, and the contour (for example, 42b) on the XZ plane is extracted.
  • the speed vector of the bucket toe from the bucket attitude 15a to the bucket attitude 15d is referred to as a speed vector 32a to a speed vector 32d, respectively.
  • the shape acquisition unit 52 performs the rotation posture of the bucket 15 during the loading operation (for example, the bucket rotation posture 33b), the horizontal speed of the bucket toe (for example, the X-axis direction component of the speed vector 32b), and the horizontal direction of the bucket toe. Record the position.
  • the bucket rotation attitude is obtained from the bucket inclination sensor 23.
  • the horizontal position of the bucket toe is determined by the boom tilt sensor 21, arm tilt sensor 22, bucket tilt sensor 23 obtained from the boom 13, arm 14, and bucket 15 rotation postures, and the boom 13 and arm 14 that are held in advance. , Based on the geometrical relationship of the bucket 15.
  • the horizontal speed of the bucket toe is obtained based on the horizontal position of the bucket toe at different times.
  • the automatic controller 24 determines the shape of the load before the loading operation, the time-series bucket rotation posture, the horizontal position of the time-series bucket toe, and the speed in the horizontal direction of the time-series bucket toe. And five pieces of information on the shape of the load after the loading operation are acquired for each loading operation. By calculating the correlation between the loading operation and the load shape based on these pieces of information, it is possible to plan an optimum loading operation in consideration of the load environment so as to obtain the target load shape. Examples of the environment of the load include the type and viscosity of the load. For example, depending on whether the excavated material contains a large amount of moisture or not, if the same loading operation is performed in both cases, the shape of the loaded object becomes different. Therefore, by obtaining the correlation between the load shape and the loading operation and planning the loading operation based on the correlation, the target shape can be realized with high accuracy.
  • the bucket rotation attitude with respect to the horizontal position is calculated from the time series bucket rotation attitude and the horizontal position of the bucket toe, and the bucket rotation attitude is approximated to a cubic function of the horizontal position.
  • the horizontal position of the bucket toe is X
  • the bucket rotation posture is ⁇ k .
  • the horizontal speed of the bucket toe is approximated as a cubic function of the horizontal position X.
  • the horizontal velocity of the bucket toe in this case a V k.
  • the load shape is approximated as a cubic function of the horizontal position X, and the load shape resulting from the Kth loading is Z k , and the load shape resulting from the K + 1th loading is Z k + 1 .
  • These four cubic functions are expressed as the following formula (1).
  • a 11 to a 14 are parameters representing the bucket rotation posture ⁇ k
  • a 21 to a 24 are parameters representing the horizontal speed V k of the bucket toe
  • a 31 to a 34 are loading Parameters a 41 to a 44 represent the object shape Z k + 1, and parameters a 41 to a 44 represent the load shape Z k .
  • a method for learning the correlation of 16 parameters will be described with reference to FIG.
  • learning is performed using a three-layer neural network.
  • correlation learning methods There are various correlation learning methods, and any method may be used.
  • the number of neurons in the intermediate layer is N.
  • Each neuron has a weight and a threshold, and learning is performed by the following calculation, as in a general error propagation neural network.
  • the operation system 100 learns the environment by repeating the loading operation, so that it is possible to plan the loading operation so as to obtain a target load shape with higher accuracy even in different environments.
  • control lines and information lines are those that are considered preferable for the explanation, and not all the control lines and information lines are necessarily shown.
  • the operation recording unit 51, the shape acquisition unit 52, the correlation calculation unit 53, and the loading operation calculation unit 54 are described as part of the operation system 100.
  • each part of the operation system 100 is not limited to one place where each part is provided or where each part is processed, for example, the processing of the correlation calculation unit 53 is performed outside the calculation device 26.
  • a device for centrally managing the work machine may be provided separately from the work machine, and the operation system 100 may be provided in the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

L'objet de la présente invention est de concevoir avec précision l'action d'un engin de chantier pour le chargement d'une charge, de sorte que la charge, après avoir été chargée, présente une forme standard. L'invention concerne un système de manipulation 100 d'engin de chantier qui comporte un godet 15, le système de manipulation 100 d'engin de chantier étant équipé : d'une unité d'enregistrement d'action 51 permettant d'enregistrer une action de chargement par une pelle hydraulique 1 lorsqu'une charge 42 est chargée sur une palette 41 depuis le godet 15 ; d'une unité d'acquisition de forme 52 permettant d'acquérir une forme post-chargement de la charge 42 qui a été chargée sur la palette 41 ; d'une unité de calcul de relation de corrélation 53 permettant de calculer une relation de corrélation entre l'action de chargement et la forme post-chargement de la charge ; et d'une unité de calcul d'action de chargement 54 permettant de calculer une action de chargement sur la base de la relation de corrélation et d'une forme standard de la charge 42.
PCT/JP2016/067717 2015-07-15 2016-06-15 Système de manipulation d'engin de chantier, et engin de chantier équipé dudit système de manipulation d'engin de chantier WO2017010212A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017528337A JPWO2017010212A1 (ja) 2015-07-15 2016-06-15 作業機械の操作システムおよび作業機械の操作システムを備えた作業機械
US15/577,202 US20180171582A1 (en) 2015-07-15 2016-06-15 Working Machine Operation System and Working Machine with Working Machine Operation System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140950 2015-07-15
JP2015140950 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010212A1 true WO2017010212A1 (fr) 2017-01-19

Family

ID=57756913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067717 WO2017010212A1 (fr) 2015-07-15 2016-06-15 Système de manipulation d'engin de chantier, et engin de chantier équipé dudit système de manipulation d'engin de chantier

Country Status (3)

Country Link
US (1) US20180171582A1 (fr)
JP (1) JPWO2017010212A1 (fr)
WO (1) WO2017010212A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151335A1 (fr) * 2018-01-30 2019-08-08 住友建機株式会社 Pelle et système de gestion de pelle
JP2019214835A (ja) * 2018-06-11 2019-12-19 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、学習済みの位置推定モデルの製造方法、および学習用データ
JP2020520425A (ja) * 2017-05-05 2020-07-09 ジェイ.シー. バンフォード エクスカベターズ リミテッド 作業機械
WO2020158557A1 (fr) * 2019-01-29 2020-08-06 株式会社小松製作所 Système comprenant une machinerie de travail, procédé exécuté par ordinateur, procédé de production de modèles d'estimation de position entraînés, et données d'apprentissage
JP2020159147A (ja) * 2019-03-27 2020-10-01 株式会社フジタ 自動操縦システム
JPWO2020203596A1 (fr) * 2019-04-04 2020-10-08
JP2021017690A (ja) * 2019-07-17 2021-02-15 日本電気株式会社 制御システム、操作制御装置、操作制御方法
DE102020206371A1 (de) 2020-05-20 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines Entladevorgangs von Schüttgut auf eine Ladefläche mittels eines Baggers
WO2022070728A1 (fr) * 2020-09-29 2022-04-07 コベルコ建機株式会社 Système de nivellement automatique
WO2022215413A1 (fr) * 2021-04-06 2022-10-13 コベルコ建機株式会社 Engin de chantier
WO2024095775A1 (fr) * 2022-10-31 2024-05-10 株式会社小松製作所 Dispositif d'estimation d'état de charge et procédé d'estimation d'état de charge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078021A (ja) * 1983-10-04 1985-05-02 Hitachi Constr Mach Co Ltd 油圧作業機械の自動運転装置
JPH11124880A (ja) * 1997-10-22 1999-05-11 Hitachi Constr Mach Co Ltd 自動運転建設機械およびその運転方法
JPH11310389A (ja) * 1997-12-19 1999-11-09 Carnegie Mellon Univ 容器内における積載物質の最適位置決定方法及び装置
JPH11315556A (ja) * 1997-12-19 1999-11-16 Carnegie Mellon Univ 土工機械の自律制御を最適化する学習システムおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078021A (ja) * 1983-10-04 1985-05-02 Hitachi Constr Mach Co Ltd 油圧作業機械の自動運転装置
JPH11124880A (ja) * 1997-10-22 1999-05-11 Hitachi Constr Mach Co Ltd 自動運転建設機械およびその運転方法
JPH11310389A (ja) * 1997-12-19 1999-11-09 Carnegie Mellon Univ 容器内における積載物質の最適位置決定方法及び装置
JPH11315556A (ja) * 1997-12-19 1999-11-16 Carnegie Mellon Univ 土工機械の自律制御を最適化する学習システムおよび方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520425A (ja) * 2017-05-05 2020-07-09 ジェイ.シー. バンフォード エクスカベターズ リミテッド 作業機械
JP7240382B2 (ja) 2017-05-05 2023-03-15 ジェイ.シー. バンフォード エクスカベターズ リミテッド 作業機械
WO2019151335A1 (fr) * 2018-01-30 2019-08-08 住友建機株式会社 Pelle et système de gestion de pelle
JPWO2019151335A1 (ja) * 2018-01-30 2021-01-14 住友建機株式会社 ショベル及びショベルの管理システム
JP7177608B2 (ja) 2018-06-11 2022-11-24 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、学習済みの位置推定モデルの製造方法、および学習用データ
JP2019214835A (ja) * 2018-06-11 2019-12-19 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、学習済みの位置推定モデルの製造方法、および学習用データ
US11814817B2 (en) 2018-06-11 2023-11-14 Komatsu Ltd. System including work machine, computer implemented method, method for producing trained position estimation model, and training data
WO2020158557A1 (fr) * 2019-01-29 2020-08-06 株式会社小松製作所 Système comprenant une machinerie de travail, procédé exécuté par ordinateur, procédé de production de modèles d'estimation de position entraînés, et données d'apprentissage
JP2020122283A (ja) * 2019-01-29 2020-08-13 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、学習済みの位置推定モデルの製造方法、および学習用データ
JP7316052B2 (ja) 2019-01-29 2023-07-27 株式会社小松製作所 作業機械を含むシステム、およびコンピュータによって実行される方法
JP2020159147A (ja) * 2019-03-27 2020-10-01 株式会社フジタ 自動操縦システム
JP7236691B2 (ja) 2019-03-27 2023-03-10 株式会社フジタ 自動操縦システム
WO2020203596A1 (fr) * 2019-04-04 2020-10-08 株式会社小松製作所 Système comprenant des engins de chantier, procédé exécuté par ordinateur, procédé de production de modèles d'estimation de position entraînés, et données d'apprentissage
JPWO2020203596A1 (fr) * 2019-04-04 2020-10-08
JP7419348B2 (ja) 2019-04-04 2024-01-22 株式会社小松製作所 作業機械を含むシステム、コンピュータによって実行される方法、および学習済みの姿勢推定モデルの製造方法
JP2021017690A (ja) * 2019-07-17 2021-02-15 日本電気株式会社 制御システム、操作制御装置、操作制御方法
JP7372609B2 (ja) 2019-07-17 2023-11-01 日本電気株式会社 制御システム、操作制御装置、操作制御方法
DE102020206371A1 (de) 2020-05-20 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines Entladevorgangs von Schüttgut auf eine Ladefläche mittels eines Baggers
WO2022070728A1 (fr) * 2020-09-29 2022-04-07 コベルコ建機株式会社 Système de nivellement automatique
WO2022215413A1 (fr) * 2021-04-06 2022-10-13 コベルコ建機株式会社 Engin de chantier
WO2024095775A1 (fr) * 2022-10-31 2024-05-10 株式会社小松製作所 Dispositif d'estimation d'état de charge et procédé d'estimation d'état de charge

Also Published As

Publication number Publication date
JPWO2017010212A1 (ja) 2018-02-15
US20180171582A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017010212A1 (fr) Système de manipulation d'engin de chantier, et engin de chantier équipé dudit système de manipulation d'engin de chantier
US11530920B2 (en) Controlling movement of a machine using sensor fusion
JP6707047B2 (ja) 建設機械
US10521703B2 (en) System and method for controlling machine pose using sensor fusion
JP6564739B2 (ja) 作業機械
US20180372498A1 (en) System and method for determining machine state using sensor fusion
JP5920953B2 (ja) バケットを備えた作業機械のアタック姿勢を選択する方法
US10459462B2 (en) Sensor fusion feedback for controlling fluid pressures in a machine
WO2020044852A1 (fr) Système de traitement d'image, dispositif d'affichage, procédé de traitement d'image, procédé de production de modèle entraîné et ensemble de données pour l'entrainement
JP7365122B2 (ja) 画像処理システムおよび画像処理方法
CN113605483B (zh) 一种挖掘机自动作业控制方法和装置
US20090228177A1 (en) Adaptive work cycle control system
US20140067092A1 (en) Adaptive work cycle control system
CN112424430A (zh) 控制装置、装载机械及控制方法
US9297145B2 (en) Excavation system providing linkage placement training
AU2014277669B2 (en) Terrain mapping system using virtual tracking features
WO2021002245A1 (fr) Système comprenant un engin de chantier et engin de chantier
WO2020158557A1 (fr) Système comprenant une machinerie de travail, procédé exécuté par ordinateur, procédé de production de modèles d'estimation de position entraînés, et données d'apprentissage
KR102389144B1 (ko) 작업 기계
WO2019239668A1 (fr) Système comprenant un engin de chantier, procédé exécuté par ordinateur, procédé de production pour modèle d'estimation de position appris, et données d'apprentissage
WO2021002249A1 (fr) Procédé de production d'un modèle d'estimation de classification de travail entraîné, données pour l'apprentissage, procédé exécuté par ordinateur et système comprenant un engin de chantier
JP2024514793A (ja) 機械状態を決定するための方法およびシステム
CN115680057A (zh) 用于监控和/或执行工作设备的运动的方法以及工作设备和计算机程序产品
WO2021019949A1 (fr) Système permettant de déterminer le contenu de travail effectué par un engin de chantier et procédé permettant de déterminer un travail
US10480155B2 (en) Excavator implement teeth grading offset determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528337

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15577202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824192

Country of ref document: EP

Kind code of ref document: A1