WO2017010005A1 - 木質積層板及びその製造方法 - Google Patents

木質積層板及びその製造方法 Download PDF

Info

Publication number
WO2017010005A1
WO2017010005A1 PCT/JP2015/070439 JP2015070439W WO2017010005A1 WO 2017010005 A1 WO2017010005 A1 WO 2017010005A1 JP 2015070439 W JP2015070439 W JP 2015070439W WO 2017010005 A1 WO2017010005 A1 WO 2017010005A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
wood
oil palm
laminated
veneer
Prior art date
Application number
PCT/JP2015/070439
Other languages
English (en)
French (fr)
Inventor
昌男 福山
隆行 伊藤
高志 青野
Original Assignee
株式会社パームホルツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パームホルツ filed Critical 株式会社パームホルツ
Priority to CN201580080498.XA priority Critical patent/CN107614221B/zh
Priority to JP2017528260A priority patent/JPWO2017010005A1/ja
Priority to PCT/JP2015/070439 priority patent/WO2017010005A1/ja
Priority to MYPI2017704126A priority patent/MY192141A/en
Publication of WO2017010005A1 publication Critical patent/WO2017010005A1/ja
Priority to CONC2017/0011990A priority patent/CO2017011990A2/es

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets

Definitions

  • the present invention relates to a wood laminate obtained by laminating and joining only oil palm veneers, a wood laminate obtained by laminating and joining oil palm veneers and veneers made of other tree species, and these wood laminates. It relates to a manufacturing method.
  • a veneer laminate is a veneer in which raw wood is cut with a rotary lace, slicer or other cutting machine and the fiber directions are mainly parallel to each other. An adhesive is applied and joined to form a single plate.
  • plywood is made by laminating three or more veneers obtained by cutting raw wood with a rotary lace, slicer or other cutting machine, mainly with their fiber directions being substantially perpendicular to each other, and applying an adhesive between them to bond them together. It is like a single plate.
  • veneer laminates and plywood are structural materials used for structures such as houses, concrete mold materials (companies) used for concrete molds, container materials and packaging materials for cargo transportation, or building interiors. It is also widely used in applications such as wood and furniture, as well as decorative plywood substrates.
  • oil palm is also cultivated on a large scale as a commercial crop mainly in Malaysia and Indonesia.
  • the cultivation of this oil palm is aimed at collecting fats and oils, and only the pulp and seeds are used.
  • Oil palm is replanted approximately every 25 years after the end of its economic life due to a decrease in the yield of fruits 25 to 30 years after planting.
  • the trunk of the cut oil palm contains many free sugars in addition to cellulose and hemicellulose, unlike other tree species. These free sugars are mainly composed of sucrose, glucose, fructose and the like and contain about 10% of the trunk material. Furthermore, the trunk material of oil palm is said to contain about 25% of starch (Non-patent Document 1 below).
  • the trunk material of oil palm is squeezed and separated into a squeezed solution containing free sugar and a squeezed culm (squeezed culm). Furthermore, this pressed rice bran is subjected to an enzyme treatment (amylase treatment) to obtain a treatment liquid containing a monosaccharide, and a mixture of this treatment liquid and the compression liquid is fermented to obtain ethanol.
  • an enzyme treatment asmylase treatment
  • a “water-absorbing material” is proposed in which the trunk material of oil palm is not decomposed but is used as a raw material.
  • This water-absorbing material is a highly water-absorbing material mainly composed of soft tissue obtained from oil palm trunk (which is considered to be “soft cells” that store starch and the like).
  • the water absorbing material of the said patent document 2 is utilization as industrial material, complicated processes, such as isolation
  • soft tissue which is a water-absorbing material, is about 50-60% of the solid residue produced by pressing, and will generate new industrial waste such as pressing liquid and disposal of vascular bundles that are unnecessary solids. .
  • the veneer obtained from the trunk material of oil palm is characterized by low density and low strength, unlike the veneer such as lauan conventionally used for veneer laminates and plywood. With respect to this strength, if it has some physical properties, it can be used practically in applications where high strength is not required. However, even in this application, since the density of the single plates is low, when the single plates are joined to each other, a large amount of adhesive penetrates into the single plates, and the amount of adhesive used is high and the cost is high. is there.
  • the present invention addresses the above-described problems and effectively utilizes oil palm trunks that have been left without being used so far as the original woody material, thereby creating new industrial waste. It is an object of the present invention to provide a wood laminate that can be produced at low cost without producing it, and a method for producing the same. Furthermore, an object of the present invention is to provide a wood laminate that can also be used as a preform for a consolidated laminate and a method for producing the same.
  • the present inventors In solving the above-mentioned problems, the present inventors, as a result of earnest research, laminated single veneers formed from oil palm trunks and applied a predetermined temperature and pressure to firmly join the oil palm veneers. And found that a wood laminate is formed. In addition, when joining, it can be joined without applying other joining material to the surface of the veneer, and by applying a smaller amount of joining material than when joining conventional wooden materials only to the surface of the veneer As a result, the present invention has been completed. Furthermore, the inventors of the present invention have formed a wood laminate by directly joining oil palm veneers with veneers made of other tree species without applying other bonding materials or with a small amount of bonding materials. As a result, the present invention has been completed.
  • the wood laminate according to the present invention Two or more wood veneers are laminated to form a laminate, and at least one wood veneer forming the laminated surface of the laminate is made of oil palm material, and the laminate is heated to a predetermined temperature.
  • the oil palm material is joined only by the joining component contained therein
  • a test piece is prepared from the wood laminate in the air dry density range of 0.5 g / cm 3 to 1.0 g / cm 3 and in an air dry state. (JAS)
  • the length of the non-peeled portion of the joint appearing on the side surface of the test piece is determined by measuring in accordance with “Class 2 immersion peel test” prescribed in (3) of Appendix 3 The length of the joint portion is 67% or more.
  • the wood laminate according to the present invention Two or more wood veneers are laminated to form a laminate, and at least one wood veneer forming the laminated surface of the laminate is made of oil palm material, and the laminate is heated to a predetermined temperature.
  • a test piece is prepared from the wood laminate in the air dry density range of 0.5 g / cm 3 to 1.0 g / cm 3 and in an air dry state. (JAS)
  • the length of the non-peeled portion of the joint appearing on the side surface of the test piece is determined by measuring in accordance with “Class 2 immersion peel test” prescribed in (3) of Appendix 3 The length of the joint portion is 67% or more.
  • the present invention is the wood laminate according to claim 2,
  • a test piece is prepared from the wood laminate in the air-dried state, and conforms to the standard of “Class 1 immersion peeling test” defined in Japanese Agricultural and Forestry Standard (JAS) Appendix 3 (3) of plywood. .
  • the present invention is the wood laminate according to claim 2 or 3,
  • the amount of the bonding material applied to each laminated surface is 120 g / m 2 or less, with the total amount for one laminated surface being a solid content.
  • the present invention is the wood laminate according to any one of claims 1 to 4, A wood veneer made of oil palm material is laminated between two or more wood veneers made of tree species other than oil palm material.
  • the present invention is the wood laminate according to any one of claims 1 to 5,
  • the wood veneer made of the oil palm material is a wood veneer obtained by cutting an oil palm trunk material by a cutting means such as a rotary race or a slicer.
  • the wood laminate according to the present invention Use the wood laminate according to any one of claims 1 to 6 as an intermediate material, While performing the 2nd heat processing which heats up the said intermediate material to the temperature higher than the temperature of the said heat processing, a higher pressure than the said press process is applied with respect to the said intermediate material from the direction perpendicular
  • the air-dry density after consolidation is in the range of 1.0 g / cm 3 to 1.5 g / cm 3 .
  • the manufacturing method of the wood laminate according to the present invention A lamination process in which two or more wood veneers are combined to form a laminate, and at least one of the laminate surfaces of the laminate is a wood veneer made of oil palm material; and The laminated body after the lamination step is heated to a predetermined temperature and heat treated, and the laminated body is pressed by applying a predetermined pressure to the laminated body from a direction perpendicular to the laminated surface of each wood veneer.
  • a bonding step of bonding the surfaces, A value of an air dry density after the joining step is set in a range of 0.5 g / cm 3 to 1.0 g / cm 3 .
  • this invention is the manufacturing method of the wooden laminated board of Claim 8, Comprising: Before the laminating step, it has an application step of applying a bonding material to the surface of one or both wood veneers forming each laminated surface of the laminate, The amount of the bonding material applied to the laminated surface is 120 g / m 2 or less, where the total amount for one laminated surface is a solid content.
  • this invention is the manufacturing method of the wooden laminated board of Claim 8 or 9, Comprising:
  • the heat treatment in the joining step is a dry heat treatment at a temperature of 80 ° C. to 180 ° C. for 1 minute to 60 minutes.
  • the present invention is a method for producing a wood laminate according to any one of claims 8 to 10, After the joining step, the pressure treatment is decompressed without passing through a cooling step of cooling the laminate that has been heated by the heat treatment.
  • the wood laminate according to the present invention comprises a laminate in which two or more wood single plates are laminated.
  • at least one which forms the laminated surface of each wood veneer is a wood veneer made of oil palm material.
  • stacked may be parallel, or may be a right angle.
  • the trunk material of oil palm that has been left without being used can be effectively used as an original wood material. Furthermore, since most of the oil palm trunk can be used as it is, no new industrial waste is generated in the intermediate process.
  • the said structure joins to a laminated body by apply
  • the air dry density value of the wood laminate is in the range of 0.5 g / cm 3 to 1.0 g / cm 3 .
  • the length of the non-peeled portion of the joint portion appearing on the side surface of the test piece of the wood laminate is the length of the joint portion. Of 67% or more. Out of the joint part of the test piece, the length of the part that is not peeled off is 67% or more, so even if the joint material (adhesive) is not used, it has excellent joint strength and should be used for wide applications. Can do. Therefore, in addition to the above-described effects, a wood laminate having excellent joint strength at the joint portion can be obtained.
  • the amount of bonding material applied to each laminated surface is 120 g / m 2 or less, with the total amount for one laminated surface being the solid content. It is preferable that As a result, the wood laminate can be provided that has practical physical properties and can be produced at low cost without a large amount of bonding material used and high manufacturing costs.
  • the wood veneer made of oil palm material may be a wood veneer obtained by cutting a trunk material of oil palm by a cutting means such as a rotary race or a slicer.
  • a cutting means such as a rotary race or a slicer
  • a single plate having a predetermined thickness can be stably formed in large quantities.
  • the trunk material of oil palm can be completely utilized from a sapwood to a core material.
  • the above-mentioned wood laminate is used as an intermediate material (preform), and further compacted by high-temperature heat treatment and high-pressure pressing to increase the density of the wood laminate and increase the surface hardness and wear strength. It is possible to obtain a consolidated wood laminate excellent in the above.
  • the value of the air dry density after consolidation is preferably in the range of 1.0 g / cm 3 to 1.5 g / cm 3 .
  • the transport volume can be reduced and the transport cost can be reduced compared to transporting the oil palm single plate as it is.
  • the manufacturing method of the wooden laminated board which concerns on this invention has a lamination process and a joining process. This makes it possible to effectively use the trunk material of oil palm that has been left without being used so far as the original woody material. Furthermore, since most of the oil palm trunk can be used as it is, no new industrial waste is generated in the intermediate process.
  • At least one wood veneer that forms each laminated surface by combining the wood veneers is laminated as an oil palm material to constitute a laminate.
  • the fiber directions of the laminated wood veneers may be parallel or perpendicular.
  • the laminated body after the coating process is heated to a predetermined temperature and heat-treated, and a predetermined pressure is applied to the laminated body from a direction perpendicular to the laminated surface of each wood veneer.
  • the air dry density value of the wood laminate after this joining step is in the range of 0.5 g / cm 3 to 1.0 g / cm 3 .
  • a bonding material (adhesive) is applied to the surface of one or both wood veneers that form a laminated surface of a laminate composed of two or more wood veneers.
  • the application amount of the bonding material (adhesive) applied to the surface of the wood veneer is preferably 120 g / m 2 or less, with the total amount for one laminated surface as a solid content.
  • the heat treatment in the joining step is preferably a dry heat treatment at a temperature of 80 ° C. to 180 ° C. for 1 minute to 60 minutes.
  • a conventional heat treatment apparatus for plywood can be used as it is without requiring a wet heat treatment using a special apparatus such as a steam treatment.
  • the pressing treatment may be decompressed without going through a cooling step of cooling the laminated body heated by the heat treatment.
  • the oil palm trunk material that has been left unutilized until now is effectively used as the original wood material, and no new industrial waste is produced. It is possible to provide a wood laminate that has both physical properties and can be produced at low cost, and a method for producing the same. Furthermore, according to the present invention, it is possible to provide a wood laminate that can also be used as a preform for a consolidated laminate and a method for producing the same.
  • 1st Embodiment it is a flowchart which shows the outline
  • the cutting process of 1st Embodiment it is the schematic which shows the process of making the trunk material of an oil palm into a single plate by a rotary race.
  • the lamination process of a 1st embodiment it is the schematic showing the combination at the time of laminating a plurality of oil palm single boards.
  • the lamination process of 1st Embodiment it is the schematic which shows the structure before joining of the wood laminated board which consists of a some oil palm single board. It is the schematic which shows the woody laminated board after the joining process of 1st Embodiment.
  • the wood laminate refers to a wood material formed by laminating and joining veneers of the same or different tree species, for example, in addition to a veneer laminate and plywood according to the Japanese Agricultural Standards (JAS), Examples thereof include a plate material or a laminated material having other laminated structures.
  • the wood laminate according to the present invention can also be used as a preform as an intermediate material in producing a consolidated wood laminate having high density and excellent strength by a consolidation process.
  • oil palm is also referred to as oil palm (oil palm) and is a general term for monocotyledonous plants classified into the genus Palmia, which is native to West Africa. It is cultivated on a large scale mainly in Indonesia. An adult tree consists of a single trunk and reaches a height of 20m. The leaves are wing-shaped and about 3 to 5 meters long, 20 to 30 new leaves grow every year.
  • oil palm has been replanted every 25 years after the end of its economic life due to a decrease in fruit yield 25 to 30 years after planting.
  • pulp and seeds are used for the purpose of collecting fats and oils, so that the trunk material is not used effectively so far and is disposed as industrial waste or left on the farm.
  • Non-Patent Document 1 In addition, in the cross section of the trunk material of oil palm, there are vascular bundles having a diameter of about 0.4 to 1.2 mm and parenchymal cells for storing starch and the like around them. These cell walls are formed of resin components such as cellulose, hemicellulose, and lignin. In addition, about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch are contained in the trunk material. (Non-Patent Document 1).
  • FIG. 1 is a flowchart showing an outline of a manufacturing process of a wood laminate in the first embodiment.
  • the manufacturing process of the wood laminate includes a cutting process S1, a drying process S2, a laminating process S3, a joining process S4, and a decompression process S5.
  • the wood laminate and the manufacturing method thereof according to the first embodiment will be described along each step.
  • ⁇ Cutting process S1 a single board is formed from the trunk material of oil palm.
  • the method for forming a single plate is not particularly limited, and a lumbering method using a ground plate or a peeling plate method using a cutting device such as a continuous rotary race or slicer can be used.
  • a method using a rotary race that is excellent in productivity and can continuously form a single plate is adopted.
  • FIG. 2 is a schematic view showing a process of making the oil palm trunk material into a single plate by a rotary race.
  • an oil palm trunk material WD having a predetermined length is cut from the felled oil palm trunk.
  • This oil palm trunk WD is set on a rotary race (device) (device details are omitted in FIG. 2).
  • the oil palm trunk material WD is rotated with the center of the trunk as a rotation axis, and the blade CT is used to peel the circumferential direction in the same manner as the radish wig peeling.
  • the oil palm continuous release plate UWD having a predetermined thickness is obtained from the periphery (side material) of the oil palm trunk material WD toward the center (core material).
  • the oil palm trunk material WD has no annual rings in its cross section, and a uniform oil palm continuous peeling plate UWD can be obtained. Moreover, since there are no annual rings, a grid appears on the surface of the oil palm continuous peeling plate UWD.
  • the density of the oil palm continuous release plate UWD gradually decreases.
  • This oil palm continuous release plate UWD is cut into a predetermined length to obtain an oil palm single plate W.
  • the cutting of the oil palm veneer W is continuously performed.
  • the density of the oil palm single plate W gradually changes.
  • a substantially uniform density is obtained by the limited length and the wig peeling process.
  • the oil palm veneer W having an arbitrary density can be selectively procured by using this fact.
  • the required thickness (thickness before lamination joining) and density (lamination joining) The required number of oil palm veneers W of the previous density) can be procured.
  • Drying Step S2 the oil palm veneer W cut in the cutting step S1 is dried.
  • the oil palm veneer W can be dried by a normal apparatus and process for drying a wood veneer.
  • Lamination process S3 a plurality of dried oil palm veneers W (an odd number in a normal plywood, but not limited to an odd number in the present invention) are laminated and laminated NW1 (FIG. 4). To configure).
  • the fiber direction (the direction of grain) of each veneer can be combined in arbitrary directions.
  • the oil palm veneers W are laminated so that the fiber directions are parallel to each other.
  • FIG. 3 is a schematic diagram showing a combination when a plurality of (5 in the first embodiment) oil palm single plates W are stacked.
  • FIG. 3A first, three oil palm single plates W1, W3, and W5 facing the same direction with the fiber direction as the long side are prepared.
  • FIG. 3 (b) the previous three oil palm single plates W1, W3, W5 are two oil palm single plates W2, whose short sides are in the fiber direction so that the fiber directions are orthogonal to each other, Prepare W4.
  • FIG. 4 shows the configuration of the laminate NW1 before joining, which is composed of five oil palm single plates W1, W2, W3, W4, and W5.
  • the joining of the stacked body NW1 will be described.
  • the present inventors have so far examined the consolidation and fixing of wood and the plastic processing of wood. For this reason, the present inventors have made a plurality of inventions such as a method for fixing and compacting wood (Japanese Patent No. 4787432) and plastically processed wood (Japanese Patent No. 5138080).
  • the present inventors have further evolved by utilizing these technical knowledge and devices, and have developed an oil palm veneer consolidation fixing technology (PCT / JP2012 / 76506) that does not require an adhesive.
  • the present invention further develops the technology for fixing and fixing the oil palm veneer, and the oil palm veneers or between the oil palm veneer and the other tree veneer can be joined only by dry heat treatment and a certain amount of pressing treatment. It is related to the technology.
  • a special apparatus is not required for joining the stacked body NW1, and an apparatus combining a hot plate and a press mechanism can be used. That is, it is possible to utilize a hot press machine or the like used for curing the adhesive during the production of a normal plywood.
  • the laminated body NW1 obtained by laminating a plurality of oil palm single plates W in the laminating process S3 is heat-treated at a predetermined temperature, and the heated laminated body NW1 is subjected to heat treatment.
  • a pressing process is performed by applying a predetermined pressing force in the stacking direction, that is, the direction perpendicular to the stacked surfaces to be joined.
  • the laminated surfaces of the oil palm single plates W of the laminate NW1 are joined to form the wood laminate WB1.
  • the pressing process cold pressure process
  • NW1 may be heated to a predetermined temperature for heat treatment.
  • the predetermined temperature of the heat treatment is not particularly limited, but is, for example, within a temperature range of 80 to 180 ° C., and preferably within a temperature range of 100 to 150 ° C. .
  • the predetermined temperature is preferably in the temperature range of 80 to 150 ° C, and more preferably in the temperature range of 100 to 130 ° C.
  • the time for maintaining this temperature range is appropriately selected depending on the number and thickness of the single plates to be joined, and is not particularly limited. For example, it is in the range of 1 to 60 minutes, preferably Is in the range of 5 to 30 minutes.
  • the predetermined pressure applied from the direction perpendicular to the laminated surfaces to be joined is appropriately selected according to the number and thickness of the single plates to be joined, and is not particularly limited. For example, 5 to 50 kg / cm 2 and preferably within a pressure range of 10-30 kg / cm 2 . Also, when used as a preform for a consolidated wood laminate, the predetermined pressure is preferably within a pressure range of 5 to 50 kg / cm 2 , and more preferably within a pressure range of 10 to 30 kg / cm 2. More preferred. In addition, you may make it control the value of the air dry density (density in the air dry state of water content 15 mass%) after joining by the compression thickness calculated beforehand.
  • each oil palm veneer W is strongly self-adhering without requiring an adhesive by this joining.
  • resin components and sugars contained in the trunk of oil palm that is, cellulose, hemicellulose, lignin, free sugar (mainly sucrose, glucose, fructose) Etc.), and each component of starch is firmly bonded by the combined action, and is considered to contribute to the improvement of the physical properties of the wood laminate WB1 itself.
  • cellulose constitutes the skeleton of the cell wall, and lignin acts as an adhesive component with hemicellulose interposed therebetween.
  • lignin acts as an adhesive component with hemicellulose interposed therebetween.
  • free sugars and starches that are particularly abundantly contained in oil palm act in a complex manner together with lignin to exhibit the action and effect unique to the present invention.
  • joining by the resin component contained in the trunk material of oil palm, saccharides, etc. is effective by wet heat treatment, sufficient joint strength can be expressed only by dry heat treatment without using wet heat treatment. . At this time, it is also conceivable that the moisture contained in the oil palm veneer subjected to the dry heat treatment has some effect.
  • FIG. 5 shows the wood laminate WB1 after the decompression step.
  • the thickness direction that is, the laminating direction (the vertical direction in the figure) (it is difficult to understand in the figure)
  • the density of the wood laminate WB1 is compressed by the heat treatment and the pressing process at the time of joining. It is larger than the density of the previous laminate NW1. It should be noted that good physical properties can be obtained by setting the air dry density value after the decompression step S5 within the range of 0.5 g / cm 3 to 1.0 g / cm 3 .
  • the wood laminate WB1 may be cooled by lowering the temperature while maintaining the pressure treatment pressure, and then the pressure treatment pressure may be decompressed (cooling decompression).
  • the pressure treatment pressure may be released (high temperature release) in a state where the heat treatment temperature is maintained for the wood laminate WB1 after joining, and then cooled.
  • the processing time from the joining step S4 to the decompression step S5 is shortened when the pressure treatment pressure is released (high temperature decompression) while maintaining the heat treatment temperature, compared to the cooling decompression. This is preferable because the manufacturing cost of the plate WB1 is reduced.
  • the decompression step S5 when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, the air dry density of the wood laminate WB1 (in the air dry state with a moisture content of 15% by mass) Note that the value of (density) affects the bonding strength. That is, when the air dry density value of the wood laminate WB1 after joining is increased by the pressing process in the joining step S4, partial peeling may occur on the joining surface when the pressure is released at a high temperature.
  • the oil palm material constituting the wood laminate WB1 retains moisture therein. These water
  • the high-temperature and high-pressure water is decompressed while maintaining a high temperature, it is discharged as high-pressure water vapor to the outside of the wood laminate WB1.
  • the value of the air dry density of the wood laminate WB1 is increased, the amount released through the oil palm material is reduced, and it is considered that the steam is expanded from the joint surface and is conducted. Therefore, it is considered that partial peeling occurs on the joint surface of the wood laminate WB1.
  • the air dry density value of the wood laminate WB1 after the joining step S4 is set to 1. It is preferably 0 g / cm 3 or less.
  • the wood laminate WB1 manufactured in this way has the boundary surface of the oil palm veneer W joined (self-adhering) without requiring an adhesive and has practical physical properties.
  • the physical properties of the wood laminate WB1 have sufficient bonding strength as a simple structural material or packing material, and can be used as an industrial material in this state.
  • the wood laminate WB1 is also highly useful as a preform for use in a compacted wood laminate, reduces the transport volume by improving the density, and has a transportable joint strength for transportation. It has the feature of being easy.
  • A. Preparation of oil palm veneer W (cutting process S1, drying process S2) A plurality of oil palm single plates W that were peeled off from the same oil palm trunk material WD using a rotary race and dried were prepared.
  • the dimensions of these oil palm veneers W are about 5 mm thick, about 300 mm long, and about 200 mm wide. Both the fiber direction (grain direction) is the length direction and the width direction is prepared. did.
  • the value of the air dry density of each oil palm veneer W before consolidation was about 0.35 g / cm 3 .
  • Example 2 Preparation of laminated body NW1 (lamination process S3)
  • a plurality of laminates NW1 were prepared by combining five oil palm single plates W. These laminates NW1 were made up of five layers (thickness: about 25 mm) which were laminated so that the fiber directions crossed each other (substantially orthogonal). In forming the stacked body NW1, no other component such as an adhesive was applied to each boundary surface.
  • Example 2 Heat treatment and pressing treatment of the laminate NW1 (joining step S4 / pressure releasing step S5) Each laminate NW1 thus prepared was joined by dry heat treatment and pressing treatment using a hot press machine used for curing the adhesive during the production of a normal plywood.
  • the heat treatment temperature of the dry heat treatment is set to three levels of 80 ° C., 100 ° C., and 120 ° C., and after each laminated body NW1 reaches the heat treatment temperature, a press pressure is applied (press treatment), The holding time after pressing was set to four levels of 0 minutes, 5 minutes, 10 minutes, and 15 minutes.
  • the wood laminate WB1 after the press treatment was decompressed without cooling and then naturally cooled.
  • Example 1 the value of the air dry density after bonding was controlled by the compression thickness calculated in advance. In this way, a two-level wood laminate WB1 having an air-dry density after bonding of 0.6 g / cm 3 and 0.8 g / cm 3 was obtained.
  • Bonding strength peeling of bonded part by immersion
  • the bonding strength was measured in accordance with “Class 2 immersion peel test” defined in Japanese Agricultural Standards (JAS) Appendix 3 (3) of plywood.
  • a test piece having a length direction of 75 mm ⁇ a width direction of 75 mm was prepared from each wooden laminate WB1, and the test piece was immersed in warm water at 70 ° C. for 2 hours. Then, the test piece taken out from warm water was dried for 3 hours in 60 degreeC atmosphere.
  • the bonding strength is insufficient when the holding time after pressing is 5 minutes or less at any heat treatment temperature of 80 ° C. to 120 ° C. there were.
  • the bonding strength was good after 10 minutes after pressing, and at 80 ° C., the bonding strength was good after 15 minutes after pressing.
  • the bonding strength was good when the holding time after pressing was 5 minutes at the heat treatment temperatures of 100 ° C. and 120 ° C. Further, at a heat treatment temperature of 80 ° C., the holding strength after pressing was 10 minutes, and the bonding strength was good.
  • each of the wood laminates WB1 of Example 1 has a practical bonding strength and can be used as an industrial material such as a simple structural material or packing material.
  • the “Class 2 immersion peel test” prescribed in (3) of the Japanese Agricultural Standards (JAS) Appendix 3 It is also possible to obtain a wood laminate that is compatible and excellent in wet strength. When this wood laminate is used as a preform for a consolidated wood laminate, it is not necessary to comply with the “Class 2 immersion peel test”.
  • the second embodiment relates to a wood laminate comprising an oil palm veneer and a veneer of another tree type and a method for producing the same, and describes a method without using another bonding material (adhesive).
  • the manufacturing process will be described with reference to the drawings.
  • the outline of the manufacturing process of the wood laminate according to the second embodiment is the same as that of the first embodiment (see FIG. 1).
  • the wooden laminate and the manufacturing method thereof according to the second embodiment will be described along each step.
  • ⁇ Cutting process S1 a single board is formed from the trunk material of oil palm. Further, a veneer is formed from a trunk material of another tree species (in the second embodiment, acacia mangium is used). In the second embodiment, both the oil palm veneer and the acacia mangium veneer are excellent in productivity and are continuously uniform veneer as in the first embodiment.
  • the method by the rotary race that can form is adopted. In the second embodiment, the method for forming a single plate by a rotary race is the same as that in the first embodiment, and the description thereof is omitted (see FIGS. 2 and 3).
  • Drying Step S2 the oil palm veneer W and the acacia mangium veneer AW cut in the cutting step S1 are dried.
  • the oil palm veneer W and the acacia mangium veneer AW can be dried by a normal apparatus and process for drying a wood veneer, as in the first embodiment.
  • Lamination process S3 >> Next, in the stacking step S3, the dried acacia mangium single plate AW and oil palm single plate W are alternately stacked to form a stacked body NW2 (see FIG. 6). In the combination when laminating these oil palm veneers W and acacia mangium veneers AW, the fiber direction (grain direction) of each veneer can be combined in any direction.
  • the oil palm veneer W and the acacia mangium veneer AW may be laminated so that the fiber directions thereof are parallel to each other, or the fiber directions of the oil palm veneer W and the acacia mangium veneer AW are You may laminate
  • a plate W6 (not subjected to the coating process) is inserted.
  • These three single plates AW1, W6, and AW2 are stacked so as to cross each other in the fiber direction to form a stacked body NW2 (see FIG. 6) having three layers.
  • ⁇ Joint process S4 the stacked surfaces of the stacked body NW2 configured in the stacking step S3 are bonded.
  • the joining of the stacked body NW2 will be described.
  • a special apparatus is not required for joining the stacked body NW2, and an apparatus combining a hot plate and a press mechanism can be used. That is, it is possible to utilize a hot press machine or the like used in normal plywood production.
  • a laminated body NW2 obtained by inserting and laminating one oil palm single plate W6 between the two acacia mangium single plates AW1 and AW2 in the coating step S3 is predetermined.
  • a heat treatment is performed at a temperature, and a pressing process is performed on the heated stacked body NW2 by applying a predetermined pressing force in the stacking direction, that is, in a direction perpendicular to the stacked surfaces to be bonded.
  • the laminated surfaces of the oil palm single plates W and the acacia mangium single plates AW of the laminate NW2 are joined to form a wood laminate WB2.
  • the pressing process before the heating (cold pressure process) is performed, and then this cold pressure is applied.
  • the laminated body NW2 may be heat-treated by heating to a predetermined temperature. Note that the bonding conditions (the heat treatment temperature, the time for maintaining the temperature range, and the pressure applied to the laminated surface) in the second embodiment are the same as those in the first embodiment.
  • this bonding causes the boundary surface between the oil palm veneer W and the acacia mangium veneer AW to be strongly self-adhering without requiring an adhesive.
  • the reason why the oil palm veneer W and the acacia mangium veneer AW are self-adhered is considered as in the first embodiment. That is, the resin components and saccharides contained in the trunk material of oil palm, that is, cellulose, hemicellulose, lignin, free sugar (mainly sucrose, glucose, fructose, etc.) and starch components It is thought that while adhering firmly, it contributes to the improvement of the physical property of wood laminated board WB2 itself.
  • FIG. 7 shows the wood laminate WB2 after the decompression step.
  • the thickness direction that is, the laminating direction (the vertical direction in the figure) (it is difficult to understand in the figure)
  • the density of the wood laminate WB2 is joined by the heat treatment and the pressing process during the joining. It is larger than the density of the previous laminate NW2.
  • the wood laminate WB2 may be cooled by lowering the temperature while maintaining the pressure treatment pressure, and then the pressure treatment pressure may be decompressed (cooling decompression).
  • the pressure treatment pressure may be released (high temperature release) in a state where the heat treatment temperature is maintained for the wood laminate WB2 after joining, and then cooled.
  • the processing time from the joining step S4 to the decompression step S5 is shortened when the pressure treatment pressure is released (high temperature decompression) while maintaining the heat treatment temperature, compared to the cooling decompression. This is preferable because the manufacturing cost of the plate WB2 is reduced.
  • the decompression step S5 when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, the air dry density of the wood laminate WB2 (in the air dry state with a moisture content of 15% by mass) Note that the value of (density) affects the bonding strength. That is, when the air dry density value of the wood laminate WB2 after joining is increased by the pressing process in the joining step S4, partial peeling may occur on the joining surface when the pressure is released at a high temperature.
  • the oil palm material and the acacia mangium material constituting the wood laminate WB2 retain moisture therein. These water
  • the high-temperature and high-pressure moisture is decompressed while maintaining the high temperature, it is discharged as high-pressure steam to the outside of the wood laminate WB2.
  • the value of the air dry density of the wood laminate WB2 is increased, the amount released through the oil palm material and the acacia mangium material is reduced, and it is considered that the steam is expanded from the joint surface and is conducted.
  • the air dry density value of the wood laminate WB2 after the joining step S4 is set to 1. It is preferably 0 g / cm 3 or less.
  • the wood laminate WB2 manufactured in this way is bonded (self-adhesive) without requiring an adhesive at the boundary between the oil palm veneer W and the acacia mangium veneer AW, and has practical physical properties. have.
  • the physical properties of the wood laminate WB2 have sufficient bonding strength as a simple structural material or packaging material, and can be used as an industrial material in this state.
  • this wood laminate WB2 is also highly useful as a preform for use in a compacted wood laminate, reduces the transport volume by improving the density, and has a transportable joint strength for transportation. It has the feature of being easy.
  • the dimensions of these oil palm single plates W were about 5 mm in thickness, about 300 mm in length, and about 200 mm in width, and prepared with the fiber direction (grain direction) as the width direction.
  • the value of the air dry density of each oil palm veneer W before consolidation was about 0.35 g / cm 3 .
  • a plurality of Acacia mangium single plates AW were prepared by peeling off the wig from the same acacia mangium trunk material using a rotary lace and drying it.
  • the acacia mangium veneer AW had a thickness of about 3 mm, a length of about 300 mm, a width of about 200 mm, and a fiber direction (wood grain direction) in the length direction.
  • the value of the air dry density of each Acacia mangium veneer AW before consolidation was about 0.7 g / cm 3 .
  • Example 2 Preparation of laminated body NW2 (lamination process S3)
  • a plurality of laminates NW2 were prepared by combining one oil palm veneer W between two acacia mangium veneers AW.
  • These laminated bodies NW2 were laminated so that the fiber directions crossed each other (substantially orthogonal), and consisted of three layers.
  • no other component such as an adhesive was applied to each boundary surface.
  • Example 2 Heat treatment and pressing treatment of the laminate NW2 (joining step S4 / pressure releasing step S5) Each laminate NW2 thus prepared was joined by dry heat treatment and pressing treatment using a hot press machine used for curing the adhesive during the production of ordinary plywood.
  • the heat treatment temperature of the dry heat treatment was set to three levels of 80 ° C., 100 ° C., and 120 ° C. as in Example 1 above, and the press pressure after each laminated body NW2 reached the heat treatment temperature. (Pressing treatment), and the holding time after pressing was set to four levels of 0 minutes, 5 minutes, 10 minutes, and 15 minutes.
  • the wood laminate WB2 after the press treatment was decompressed without cooling and then naturally cooled.
  • Example 2 a two-level woody laminate WB2 having an air-dry density after bonding of 0.8 g / cm 3 and 1.0 g / cm 3 was obtained.
  • the bonding strength was good at a heat treatment temperature of 100 ° C. and 120 ° C. and a holding time after pressing of 5 minutes. Further, at a heat treatment temperature of 80 ° C., the holding strength after pressing was 15 minutes, and the bonding strength was good.
  • each of the wood laminates WB2 of Example 2 has a practical bonding strength and can be used as an industrial material such as a simple structural material or packing material.
  • the “Class 2 immersion peel test” prescribed in (3) of the Japanese Agricultural Standards (JAS) Appendix 3 It is also possible to obtain a wood laminate that is compatible and excellent in wet strength. When this wood laminate is used as a preform for a consolidated wood laminate, it is not necessary to comply with the “Class 2 immersion peel test”.
  • FIG. 8 is a flowchart showing an outline of the manufacturing process of the wood laminate in the third embodiment.
  • the manufacturing process of the wood laminate includes a cutting process S11, a drying process S12, a coating process S13, a laminating process S14, a joining process S15, and a decompression process S16.
  • the wood laminate and the manufacturing method thereof according to the third embodiment will be described along the respective steps.
  • Cutting process S11 a single board is formed from the trunk material of oil palm.
  • a method using a rotary race is adopted that is excellent in productivity and can form a continuous single plate.
  • the method of forming a single board by a rotary race in this 3rd Embodiment it is the same as that of the said 1st Embodiment, and abbreviate
  • omits description (refer FIG.2 and FIG.3).
  • Drying Step S12 the oil palm veneer W cut in the cutting step S11 is dried.
  • the oil palm veneer W can be dried by an ordinary apparatus and process for drying a wood veneer, as in the first embodiment.
  • the joining material refers to all materials that can be used for joining and bonding of wood.
  • various resin compounds as the bonding material.
  • these resin compounds include compounds obtained by condensation reaction of urea, melamine, phenol, furan or combinations thereof with formaldehyde, or precondensates thereof. These resin compounds are generally called urea resin, melamine resin, phenol resin, furan resin and the like.
  • resin compounds that have recently been used include urethane resins and epoxy resins that do not contain formaldehyde.
  • phenol resin is used as the bonding material.
  • a catalyst may be used in combination with the bonding material.
  • the catalyst may be appropriately selected depending on the type of bonding material used and the reaction temperature.
  • a formaldehyde condensation type resin such as a urea resin, a melamine resin, a phenol resin, or a furan resin
  • an acid catalyst is generally used.
  • the heat treatment temperature can be lowered by using an acid catalyst in combination.
  • the heat treatment temperature may be increased without using an acid catalyst in combination.
  • a method in which heat treatment is performed at a high temperature without using an acid catalyst in combination with the phenol resin is employed.
  • the phenol resin can be applied to the surface of the oil palm veneer W by any method, but the amount of the phenol resin applied to the surface of the oil palm veneer W is bonded to the conventional woody materials. Less than sometimes. Furthermore, it is necessary to apply a phenol resin only to the surface of the oil palm veneer W and not to penetrate inside.
  • a sufficient amount for example, 400 g / m 2 to 500 g / m 2 in terms of solid content, is provided on both surfaces of the two single plates to be joined. In this range, or more phenol resin is applied.
  • a method of applying a phenol resin only to the surface of the oil palm veneer W is adopted.
  • Application of the phenol resin to the surface of the oil palm veneer W is preferably performed by a method such as brushing, roller, spraying, or printing. Further, the viscosity of the phenol resin to be applied may be increased so that it does not easily penetrate from the surface of the oil palm veneer W.
  • the phenol resin in the wood laminate after joining, the phenol resin is present only in the vicinity of the laminate surface and does not penetrate into the central portion with respect to the thickness direction of the oil palm veneer W. State is secured. As a result, strong bonding strength can be obtained with a small amount of phenolic resin, and the manufacturing cost of the wood laminate can be reduced.
  • the application amount of the bonding material (phenol resin in the third embodiment) capable of obtaining a practical bonding strength is 120 g / m as the solid content of the bonding material with respect to one laminated surface. It is preferable that it is 2 or less. Specifically, preferably within the range of 10g / m 2 ⁇ 120g / m 2, further more preferably in a range of 50g / m 2 ⁇ 120g / m 2.
  • the bonding material may be applied to only one surface of the oil palm single plate W to be bonded to each other, or may be applied to both surfaces.
  • a sufficient bonding strength can be obtained with an amount of 120 g / m 2 or less as a solid content in the total amount of the bonding material for one laminated surface.
  • partial application such as a lattice shape or a dot shape may be used.
  • Lamination process S14 a plurality of oil palm veneers W in which phenolic resin is applied to the laminating surface in the applying step S13 (an odd number in a normal plywood, but not limited to an odd number in the present invention). ) To form a laminate NW3 similar to that in the first embodiment (see FIG. 4). In the combination at the time of laminating
  • the oil palm veneers W are laminated so that the fiber directions are parallel to each other.
  • the fiber direction is set between the three oil palm single plates W1, W3, and W5 (all after the coating process) having the fiber direction as the long side in the same manner as in the first embodiment.
  • Two oil palm single plates W2 and W4 (both after the coating step) to be short sides are inserted.
  • These five oil palm single plates W1, W2, W3, W4, and W5 are laminated so as to cross each other in the fiber direction to constitute a laminate NW3 having five layers (see FIGS. 3 and 4).
  • each lamination surface of layered product NW3 constituted by lamination process S14 is joined.
  • the joining of the stacked body NW3 will be described.
  • a special apparatus is not required as in the first embodiment, and an apparatus combining a hot plate and a press mechanism can be used. That is, it is possible to utilize a hot press machine or the like used in normal plywood production.
  • a laminated body NW3 obtained by laminating a plurality of oil palm single plates W coated with a phenolic resin on the laminated surface is heat-treated at a predetermined temperature, and the heated laminated body NW3.
  • a pressing process is performed by applying a predetermined pressing force from the stacking direction, that is, the direction perpendicular to the stacked surfaces to be joined.
  • the laminated surfaces of the individual oil palm single plates W of the laminate NW3 are joined to form a wood laminate WB3 (see FIG. 5).
  • the pressing treatment cold pressure treatment
  • NW3 may be heated to a predetermined temperature and heat-treated.
  • the predetermined temperature of the heat treatment is not particularly limited, but is preferably higher than the reaction temperature of the joining material.
  • the predetermined temperature of the heat treatment is, for example, in the temperature range of 80 to 180 ° C., and preferably in the temperature range of 130 to 160 ° C.
  • the time for maintaining this temperature range is appropriately selected depending on the number and thickness of the single plates to be joined, and is not particularly limited. For example, it is in the range of 1 to 60 minutes, preferably Is in the range of 5 to 30 minutes.
  • the predetermined pressure applied from the direction perpendicular to the laminated surfaces to be joined is appropriately selected according to the number and thickness of the single plates to be joined, and is not particularly limited. For example, 5 to 50 kg / cm 2 and preferably within a pressure range of 10-30 kg / cm 2 . In addition, you may make it control the value of the air dry density (density in the air dry state of water content 15 mass%) after joining by the compression thickness calculated beforehand.
  • each oil palm veneer W is firmly joined by the reaction of the phenol resin by this joining step S15.
  • the reason why oil palm veneer W is joined with a small amount of phenolic resin as described above is not certain, but resin components and saccharides contained in the trunk of oil palm, that is, cellulose, hemicellulose, lignin, free sugar ( Mainly sucrose, glucose, fructose, etc.) and starch components react strongly with the phenolic resin methylol group (formalin) and contribute to improving the physical properties of the wood laminate WB3 itself It is thought that there is.
  • ⁇ Pressure Release Step S16 After the laminated surfaces of the multilayer body NW3 are joined in the joining step S15, the pressure treatment pressure is decompressed to obtain the wood laminate WB3.
  • the wood laminate WB1 after the decompression step has the same shape as that of the first embodiment (see FIG. 5). Here, there is no significant change in the length and width dimensions of the laminate NW3 (FIG. 4) before joining and the wood laminate WB3 (FIG. 5) after joining.
  • the thickness direction that is, the laminating direction (the vertical direction in the figure) (it is difficult to understand in the figure)
  • the density of the wood laminate WB3 is joined by being compressed by heat treatment and pressing treatment at the time of joining. It is larger than the density of the previous laminate NW3. It should be noted that good physical properties can be obtained by setting the air dry density value after the decompression step S16 within the range of 0.5 g / cm 3 to 1.0 g / cm 3 .
  • the wood laminate WB3 may be cooled by lowering the temperature while maintaining the pressure treatment pressure, and then the pressure treatment pressure may be decompressed (cooling decompression).
  • the pressure treatment pressure may be released (high temperature release) in a state where the heat treatment temperature is maintained for the wood laminate WB3 after joining, and then cooled.
  • the processing time from the joining step S15 to the decompression step S16 is shortened when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, compared to the cooling decompression. This is preferable because the manufacturing cost of the plate WB3 is reduced.
  • the decompression step S16 when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, the air dry density of the wood laminate WB3 (in the air dry state with a moisture content of 15% by mass) Note that the value of (density) affects the bonding strength. That is, when the air-dry density value of the wood laminate WB3 after joining is increased by the pressing process in the joining step S15, partial peeling may occur on the joining surface when the pressure is released at a high temperature.
  • the oil palm material constituting the wood laminate WB3 retains moisture therein.
  • a bonding material such as a phenol resin also retains moisture.
  • the formalin condensation reaction of phenol resin or the like is a dehydration reaction, and moisture is also generated at that time. These water
  • moisture contents are hold
  • the air dry density value of the wood laminate WB3 after the joining step S5 is set to 1. By setting it to 0 g / cm 3 or less, good physical properties can be obtained.
  • A. Preparation of oil palm veneer W (cutting process S11 / drying process S12) A plurality of oil palm single plates W that were peeled off from the same oil palm trunk material WD using a rotary race and dried were prepared. The dimensions of these oil palm veneers W are about 5 mm thick, about 300 mm long, and about 200 mm wide. Both the fiber direction (grain direction) is the length direction and the width direction is prepared. did. In addition, the value of the air dry density of each oil palm veneer W before consolidation was about 0.35 g / cm 3 .
  • phenol resin HP3000A made by Asahi Organic Materials Co., Ltd.
  • the solid content (resin component) of this phenol resin HP3000A was about 70% by weight, and its viscosity was 115 mPa ⁇ s / 25 ° C.
  • Example 3 the phenol resin HP3000A was not used in combination with a catalyst, and was applied to only one surface of the oil palm veneer W by brush coating while maintaining the initial viscosity without dilution.
  • the coating amount of the phenolic resin HP3000A is 160 g / m 2, in terms of solid content (resin component) was 112 g / m 2.
  • coating was fully cured.
  • Example 3 Preparation of laminated body NW3 (lamination process S14) In Example 3, a plurality of laminates NW3 were prepared by combining five oil palm single plates W after the application of the phenol resin HP3000A. These laminated bodies NW3 were laminated so that the fiber directions crossed each other (substantially orthogonal) and consisted of 5 layers (thickness: about 25 mm).
  • each laminated body NW3 prepared was dry-heat-treated and pressed using the hot press machine used in the case of manufacture of a normal plywood.
  • a three-level / three-group wood laminate in which the values of air-dry density after bonding are 0.9 g / cm 3 , 0.7 g / cm 3 , and 0.5 g / cm 3. WB3 was created.
  • the value of the air dry density of each wooden laminated board WB3 was controlled by the compression thickness calculated beforehand.
  • the heat treatment temperature of the dry heat treatment is set to three levels of 140 ° C., 150 ° C., and 160 ° C., and the press pressure is applied after each laminate NW3 reaches the heat treatment temperature.
  • the holding time after pressing (pressing treatment) and pressing was set to four levels of 5 minutes, 10 minutes, 15 minutes, and 20 minutes.
  • the reason why the heat treatment temperature is set to 140 ° C. or higher is that a high temperature treatment is required because the catalyst is not used in combination with the phenol resin HP3000A.
  • the bonding strength is insufficient when the holding time after pressing is 5 minutes or less at the heat treatment temperatures of 140 ° C. and 150 ° C. The bonding strength became good after 10 minutes or more. On the other hand, at a heat treatment temperature of 160 ° C., the bonding strength was good when the holding time after pressing was 5 minutes or more.
  • the fourth embodiment relates to a wood laminate comprising an oil palm veneer and a veneer of another tree type and a method for producing the same, and a method of using a small amount of other bonding material (adhesive) will be described.
  • the manufacturing process will be described with reference to the drawings.
  • the outline of the manufacturing process of the wood laminate according to the fourth embodiment is the same as that of the third embodiment (see FIG. 8).
  • the wood laminate and the manufacturing method thereof according to the fourth embodiment will be described along the respective steps.
  • ⁇ Cutting process S11 a single board is formed from the trunk material of oil palm. Furthermore, a veneer is also formed from the trunk material of other tree species (in this fourth embodiment, acacia mangium was used). In the fourth embodiment, both the oil palm veneer and the acacia mangium veneer are excellent in productivity and have a continuous and uniform veneer as in the first embodiment.
  • the method by the rotary race that can form is adopted. In the fourth embodiment, the method for forming a single plate by a rotary race is the same as in the first embodiment, and the description thereof is omitted (see FIGS. 2 and 3).
  • Drying Step S12 the oil palm veneer W and the acacia mangium veneer AW cut in the cutting step S11 are dried.
  • the oil palm veneer W and the acacia mangium veneer AW can be dried by a normal apparatus and process for drying a wood veneer, as in the first embodiment.
  • a laminated surface (two oil palm veneers to be joined) when the wood laminate is configured by combining the oil palm veneer W and the acacia mangium veneer AW dried in the drying step S12.
  • a bonding material is applied to the boundary surface between W and the acacia mangium single plate AW.
  • the bonding material used in the fourth embodiment refers to all materials that can be used for bonding and adhesion of wood, and in particular, various resin compounds are used. Is preferred. Examples of these resin compounds are the same as those in the third embodiment.
  • a phenol resin is used as the bonding material.
  • a method of performing a heat treatment at a high temperature without using an acid catalyst in combination with the phenol resin is employed.
  • the phenol resin may be applied only to one surface of the oil palm veneer W or the acacia mangium veneer AW. Or you may make it apply
  • coating a phenol resin only to the surface of the acacia mangium veneer AW with less penetration of the phenol resin to the inside compared with the oil palm veneer W is adopted.
  • the phenol resin to the surface of the Acacia mangium veneer AW by a method such as brush coating, roller, spray, or printing.
  • coat may be made high, and you may make it hard to osmose
  • the phenol resin in the laminated wood board after joining, with respect to the thickness direction of the oil palm veneer W, the phenol resin is present only in the vicinity of the laminated surface and does not penetrate into the central portion. State is secured. As a result, strong bonding strength can be obtained with a small amount of phenolic resin, and the manufacturing cost of the wood laminate can be reduced.
  • the application amount of the bonding material (phenol resin in the fourth embodiment) capable of obtaining a practical bonding strength is the same as that of the third embodiment with respect to one laminated surface.
  • the total amount is preferably 120 g / m 2 or less in terms of solid content. Specifically, preferably within the range of 10g / m 2 ⁇ 120g / m 2, further more preferably in a range of 50g / m 2 ⁇ 120g / m 2.
  • Lamination process S14 >> Next, in the laminating step S14, the acacia mangium veneer AW coated with phenol resin on the laminating surface in the coating step S13 and the oil palm veneer W not coated with phenol resin are alternately laminated to form a laminated body NW4. Configure (see FIG. 6). In the combination when laminating these oil palm veneers W and acacia mangium veneers AW, the fiber direction (grain direction) of each veneer can be combined in any direction.
  • the oil palm veneer W and the acacia mangium veneer AW may be laminated so that the fiber directions thereof are parallel to each other, or the fiber directions of the oil palm veneer W and the acacia mangium veneer AW are You may laminate
  • a plate W6 (not subjected to the coating process) is inserted.
  • These three single plates AW1, W6, and AW2 are stacked so as to cross each other in the fiber direction to form a stacked body NW4 (see FIG. 6) having three layers.
  • each lamination surface of laminated body NW4 comprised by lamination process S14 is joined.
  • the joining of the stacked body NW4 will be described.
  • a special apparatus is not required for joining the stacked body NW4, and an apparatus combining a hot plate and a press mechanism can be used. That is, it is possible to utilize a hot press machine or the like used in normal plywood production.
  • the NW 4 is heat-treated at a predetermined temperature, and a pressing process is performed on the heated stacked body NW 4 by applying a predetermined pressing force in the stacking direction, that is, in a direction perpendicular to the stacked surfaces to be joined.
  • the laminated surfaces of the oil palm single plates W and the acacia mangi single plates AW of the laminate NW4 are joined to form a wood laminate WB4 (FIG. 7). reference).
  • the pressing treatment cold pressure treatment
  • NW4 may be heated to a predetermined temperature for heat treatment.
  • the bonding conditions and the heat treatment temperature, the time for maintaining the temperature range, and the pressure applied to the laminated surface) in the fourth embodiment are the same as those in the third embodiment.
  • stacking surface of each oil palm veneer W and the acacia mangium veneer AW is firmly joined by reaction of a phenol resin by this joining process S15.
  • the reason why the oil palm veneer W and the acacia mangium veneer AW are joined with a small amount of phenolic resin as described above is considered in the same manner as in the third embodiment. That is, resin components and sugars contained in the trunk material of oil palm, that is, cellulose, hemicellulose, lignin, free sugar (mainly sucrose, glucose, fructose, etc.), and starch components are phenolic methylol groups. It is considered that it strongly joins by reacting with (formalin) and contributes to improvement of physical properties of the wood laminate WB4 itself.
  • FIG. 7 shows the wood laminate WB4 after the decompression step.
  • the thickness direction that is, the laminating direction (the vertical direction in the figure) (it is difficult to understand in the figure)
  • the density of the wood laminate WB4 is compressed by the heat treatment and pressing process at the time of joining. It is larger than the density of the previous laminate NW4.
  • the wood laminate WB4 may be cooled by lowering the temperature while maintaining the pressure treatment pressure, and then the pressure treatment pressure may be decompressed (cooling decompression). Alternatively, the pressure treatment pressure may be released (high temperature release) with the heat treatment temperature maintained for the wood laminate WB4 after joining, and then cooled. In these cases, the processing time from the joining step S15 to the decompression step S16 is shortened when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, compared to the cooling decompression. This is preferable because the manufacturing cost of the plate WB4 is reduced.
  • the decompression step S16 when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, the air dry density of the wood laminate WB4 (in the air dry state with a moisture content of 15% by mass) Note that the value of (density) affects the bonding strength. That is, when the air-dry density value of the wood laminate WB4 after joining is increased by the pressing process in the joining step S15, partial peeling may occur on the joining surface when the temperature is decompressed.
  • the oil palm material and the acacia mangium material constituting the wood laminate WB4 retain moisture therein.
  • a bonding material such as a phenol resin also retains moisture.
  • the formalin condensation reaction of phenol resin or the like is a dehydration reaction, and moisture is also generated at that time. These water
  • moisture contents are hold
  • the high-temperature and high-pressure water When the high-temperature and high-pressure water is decompressed while maintaining a high temperature, it is discharged as high-pressure water vapor to the outside of the wood laminate WB4. At that time, if the value of the air dry density of the wood laminate WB4 is increased, the amount released through the oil palm material and the acacia mangium material is reduced, and it is considered that the steam is expanded from the joint surface and is conducted. Therefore, it is considered that partial peeling occurs on the joint surface of the wood laminate WB4. Therefore, in the decompression step S16, when the pressure treatment pressure is decompressed (high temperature decompression) while maintaining the heat treatment temperature, the air dry density value of the wood laminate WB4 after the joining step S5 is set to 1. By setting it to 0 g / cm 3 or less, good physical properties can be obtained.
  • A. Preparation of oil palm veneer W and acacia mangium veneer AW (cutting step S11, drying step S12) A plurality of oil palm single plates W that were peeled off from the same oil palm trunk material WD using a rotary race and dried were prepared.
  • the dimensions of these oil palm single plates W were about 5 mm in thickness, about 300 mm in length, and about 200 mm in width, and prepared with the fiber direction (grain direction) as the width direction.
  • the value of the air dry density of each oil palm veneer W before consolidation was about 0.35 g / cm 3 .
  • a plurality of Acacia mangium single plates AW were prepared by peeling off the wig from the same acacia mangium trunk material using a rotary lace and drying it.
  • the acacia mangium veneer AW had a thickness of about 3 mm, a length of about 300 mm, a width of about 200 mm, and a fiber direction (wood grain direction) in the length direction.
  • the value of the air dry density of each Acacia mangium veneer AW before consolidation was about 0.7 g / cm 3 .
  • Example 4 As in Example 3 above, no catalyst was used in combination with this phenol resin HP3000A, and one of the Acacia mangium veneers AW was applied by brush coating while maintaining the initial viscosity without dilution. It was applied only to the surface.
  • the coating amount of the phenolic resin HP3000A is 160 g / m 2, in terms of solid content (resin component) was 112 g / m 2.
  • coating was fully cured.
  • Example 4 Preparation of laminated body NW4 (lamination process S14) In Example 4, a plurality of laminates NW4 were prepared by combining one oil palm veneer W between two acacia mangium veneers AW after the application of the phenol resin HP3000A. These laminated bodies NW4 were laminated so that the fiber directions crossed each other (substantially orthogonal) and consisted of three layers (thickness: about 11 mm).
  • Example 4 Heat treatment and pressing treatment of the laminate NW4 (joining step S15 / pressure releasing step S16)
  • the dry heat processing and the press process were performed using the hot press machine used in the case of manufacture of a normal plywood.
  • Example 4 a three-level / three-group wood laminate in which values of air-dry density after bonding are 0.9 g / cm 3 , 0.7 g / cm 3 , and 0.5 g / cm 3. WB4 was created.
  • the value of the air dry density of each wood laminate WB4 was controlled by the compression thickness calculated in advance.
  • the heat treatment temperature of the dry heat treatment is set to three levels of 140 ° C., 150 ° C., and 160 ° C., and the press pressure is applied after each laminate NW4 reaches the heat treatment temperature.
  • the holding time after pressing (pressing treatment) and pressing was set to four levels of 5 minutes, 10 minutes, 15 minutes, and 20 minutes.
  • the reason why the heat treatment temperature is set to 140 ° C. or higher is that a high temperature treatment is required because the catalyst is not used in combination with the phenol resin HP3000A.
  • Bonding strength peeling of bonded part by immersion
  • the plywood is defined in (3) of the Japanese Agricultural Standards (JAS) Appendix 3 as in the first embodiment.
  • the bonding strength was measured according to “Class 2 immersion peel test”. First, a test piece having a length direction of 75 mm ⁇ a width direction of 75 mm was prepared from each wooden laminate WB4, and this test piece was immersed in warm water at 70 ° C. for 2 hours. Then, the test piece taken out from warm water was dried for 3 hours in 60 degreeC atmosphere.
  • the bonding strength is insufficient when the holding time after pressing is 5 minutes or less at the heat treatment temperatures of 140 ° C. and 150 ° C. The bonding strength became good after 10 minutes or more. On the other hand, at a heat treatment temperature of 160 ° C., the bonding strength was good when the holding time after pressing was 5 minutes or more.
  • each wood laminate WB4 in which a good bonding state ( ⁇ ) was confirmed was performed in the same manner as in the third embodiment. Evaluation was performed according to “Class 1 immersion peeling test” defined in Japanese Agricultural and Forestry Standard (JAS) Appendix 3 (3). As a result, any wood laminate WB4 conformed to this standard.
  • the fifth embodiment relates to a wood laminate (consolidated wood laminate) obtained by further compacting a wood laminate made of only an oil palm single plate.
  • the wood laminate produced in the first embodiment is used as a preform which is an intermediate material when producing a consolidated wood laminate.
  • it demonstrates using drawing along the manufacturing process of the consolidated wooden laminated board.
  • a single plate is formed from the trunk material of oil palm, and these oil palm single plates W are stacked to form a stacked body NW1 (see FIG. 4).
  • the laminated body NW1 is subjected to heat treatment and pressing treatment under predetermined conditions (described later) to join the boundary surfaces of the oil palm single plates W to produce the wood laminate WB1 (see FIG. 5).
  • the respective steps from the production of the oil palm trunk to the production of the wood laminate WB1 are the same as those in the first embodiment, and the description thereof is omitted (see FIGS. 1 to 5).
  • FIG. 9 is a schematic view showing the wood laminate (a) before consolidation and the wood laminate (b) after consolidation in the consolidation of the fifth embodiment.
  • a wood laminate PW (see FIG. 9B) is manufactured by compacting a wood laminate WB1 (see FIG. 9A) produced in the same manner as the first embodiment. Used as a preform as an intermediate material.
  • the advantages of using the wood laminate WB1 as a preform when manufacturing the consolidated wood laminate PW made of oil palm material will be described again.
  • the veneer obtained from the trunk material of oil palm is characterized by low density and low strength unlike the veneer such as lauan conventionally used for veneer laminates and plywood. Therefore, in applications that require high strength, it is necessary to increase the density by consolidation in the case of laminating and joining as a single plate laminate or plywood.
  • large-scale cultivation areas where oil palm is cultivated as commercial crops are often far away from industrial areas and consumption areas where veneer laminates and plywood are produced.
  • a special apparatus is not required, and a hot press machine used for curing an adhesive in manufacturing a normal plywood is utilized. Can do.
  • a special apparatus may be used when manufacturing the wood laminated board PW which consolidated the oil palm single board and consolidated.
  • a wet heat treatment apparatus as described later is required.
  • the preform is transported to an industrial area close to the consumption area, and the preform is further consolidated by using a special apparatus to produce a consolidated wood laminate PW.
  • a special apparatus to produce a consolidated wood laminate PW.
  • FIG. 10 is a cross-sectional view showing an outline of a consolidation apparatus MC used in the fifth embodiment.
  • the compacting device MC is composed of a press board 10 (upper press board 10A and lower press board 10B) that is divided into two parts in the vertical direction.
  • the upper press board 10A and the lower press board 10B are divided into upper and lower parts to form an internal space IS and a positioning hole 18.
  • the positioning hole 18 determines and regulates the position of the preform WB1 before consolidation, and is formed in the lower press board 10B so that the peripheral edge part 10b faces the peripheral edge part 10a of the upper press board 10A. Yes.
  • a seal member 11 for sealing the internal space IS and the positioning hole 18 in the range of vertical movement of the press board 10 is formed on the peripheral edge 10a of the upper press board 10A.
  • the upper press panel 10A is provided with a pipe 12 having a pipe port 12a that communicates with the internal space IS from the upper surface side and supplies steam into the internal space IS and the positioning hole 18.
  • the pipe 12 is provided with a valve V4 on the downstream side thereof.
  • the lower press panel 10 ⁇ / b> B is provided with a pipe 13 having a pipe port 13 a that communicates from the side surface into the internal space IS and the positioning hole 18 and discharges water vapor from the internal space IS.
  • the pipe 13 is provided with a pressure gauge P2 for detecting the internal vapor pressure, a downstream valve V5, and a drain pipe 14 connected to the valve V5.
  • the upper press board 10A and the lower press board 10B are formed with piping paths 15 and 16 for raising the temperature to a predetermined temperature by passing high-temperature steam through them.
  • the pipes ST2 and ST3 branched from the steam supply side pipe ST1 and the steam discharge side pipes ET1 and ET2 are respectively connected to.
  • valves V1, V2, V3, and a pressure gauge P1 for detecting the vapor pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 14 via a valve V6.
  • the boiler apparatus which supplies water vapor
  • the hydraulic mechanism for raising / lowering and pressurizing the upper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are included.
  • the press lifting device is omitted.
  • the pipes 15 and 16 formed in the upper press board 10A and the lower press board 10B are branched from the cooling water supply side pipe ST11 which cools to a desired temperature by passing low temperature cooling water instead of water vapor.
  • the pipes ST12 and ST13 are connected to the pipes ST2 and ST3, respectively.
  • valves V11, V12, and V13 are disposed in the middle of the pipes ST11, ST12, and ST13 on the cooling water supply side.
  • the cooling water supply apparatus which supplies cooling water to piping ST11 is abbreviate
  • FIG. 11A the upper press board 10A is raised with respect to the lower press board 10B on the fixed side in the compacting device MC, and the preform WB1 is formed by the upper press board 10A and the lower press board 10B. It is placed in the space IS and the positioning hole 18.
  • the preform WB1 which is a material of the consolidated wood laminate PW is formed to have a predetermined size (thickness, width, length), and five oils Laminated surfaces of the palm single plates W1, W2, W3, W4, and W5 (parallel to the boundary surfaces) face the press surfaces of the upper press plate 10A and the lower press plate 10B, and are placed in the positioning holes 18 of the lower press plate 10B. To do.
  • the upper press disk 10A is lowered with respect to the preform WB1 placed on the positioning hole 18 of the fixed-side lower press disk 10B, and the upper surface of the preform WB1, that is, the laminated surface It is made to contact
  • water vapor of a predetermined temperature for example, 110 ° C. to 180 ° C.
  • a predetermined temperature for example, 110 ° C. to 180 ° C.
  • the compression force of the upper press board 10A is set to a predetermined pressure (for example, 5 to 70 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the preform WB1 is moved to the upper press board 10A and the lower press board 10B.
  • a predetermined pressure for example, 5 to 70 kg / cm 2
  • the preform WB1 is moved to the upper press board 10A and the lower press board 10B.
  • a predetermined time for example, 5 to 40 minutes.
  • the time for heat compression is preferably set in consideration of the time required for heat conduction. In this state, the space constituted by the internal space IS and the positioning hole 18 is not yet sealed.
  • the internal space IS and the positioning hole 18 when the internal space IS and the positioning hole 18 formed by the upper press board 10 ⁇ / b> A and the lower press board 10 ⁇ / b> B are sealed through the seal member 11.
  • the dimension interval in the vertical direction is set to the finished dimension (compression ratio) in the thickness direction so that the air-dry density value after consolidation becomes a preset value. Therefore, the compression ratio of the entire thickness of the preform WB1, that is, the change in the plate thickness due to the compression of the preform WB1, is caused by the peripheral edge portion 10a of the upper press board 10A coming into contact with the peripheral edge part 10b of the lower press board 10B. It will be decided.
  • the compression force of the upper press board 10A and the lower press board 10B is maintained in the sealed state of the internal space IS and the positioning hole 18 shown in FIG. 11C, and the internal space IS and the positioning hole 18 are predetermined.
  • the temperature for example, 150 to 210 ° C.
  • it is maintained for a predetermined time (for example, 30 to 120 minutes), and when the subsequent cooling and compression is released, the consolidated wood does not return (expand)
  • a heat treatment for forming the laminated plate PW is performed.
  • high-temperature and high-pressure vapor pressure can freely enter and exit the peripheral surface of the preform WB1 and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press board 10A and the lower press board 10B. It has become.
  • the upper press board 10A and the lower press board 10B are in surface contact with the front and back surfaces of the preform WB1, and are held in the sealed internal space IS and the positioning holes 18.
  • the entire thickness of the preform WB1 is sufficiently heated and is efficiently compressed and deformed.
  • FIG. 11D when the heat compression process is performed with the internal space IS and the positioning hole 18 sealed, the steam in the internal space IS and the positioning hole 18 is measured by the pressure gauge P2 as a vapor pressure control process.
  • the pressure is detected, and the valve V5 is appropriately opened and closed.
  • high-temperature and high-pressure water vapor is discharged from the internal space IS and the positioning hole 18 to the drain pipe 14 side through the pipe port 13a and the pipe 13, and in particular, extra space based on the moisture content of the outer layer portion of the preform WB1.
  • the internal space IS and the water in the positioning hole 18 are removed, and the internal space IS and the positioning hole 18 are adjusted to have a predetermined vapor pressure.
  • a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 8) connected to the valve V4. As a result, the fixing of the heat compression treatment of the wood, that is, the fixing of the wood is further promoted.
  • valve V5 is opened as a vapor pressure control process, so that the internal space passes through the piping port 13a and the piping 13. High-temperature and high-pressure steam is discharged from the IS and positioning hole 18 to the drain pipe 14 side.
  • normal temperature cooling water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B, so that the upper press panel 10A and the lower press panel 10B are at room temperature. It is cooled to the front and back and held for a predetermined time (for example, 10 minutes to 120 minutes) that varies depending on the material. At this time, the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at the same predetermined pressure (for example, 5 to 70 kg / cm 2 ) as the pressure at the time of heat compression. The board 10A and the lower press board 10B are cooled.
  • A. Preparation of Oil Palm Veneer W A plurality of oil palm veneers W were prepared from the same oil palm trunk WD using a rotary race and peeled off and dried. The dimensions of these oil palm veneers W are about 5 mm thick, about 300 mm long, and about 200 mm wide. Both the fiber direction (grain direction) is the length direction and the width direction is prepared. did. In addition, the value of each oil palm single board W air dry density before consolidation was about 0.35 (g / cm 3 ).
  • Preform WB1 a wood laminate WB1 produced in the same manner as in the first embodiment was used as the preform WB1. Specifically, first, a laminate NW1 having a thickness of about 25 mm before joining was prepared by combining five oil palm single plates W. As in the first embodiment, this laminate NW1 is made up of five layers that are laminated so that the fiber directions cross each other (substantially orthogonal). In forming the stacked body NW1, no other component such as an adhesive was applied to each boundary surface.
  • this laminated body NW1 was subjected to a dry heat treatment and a pressure treatment in the same manner as in the first embodiment, and the respective boundary surfaces were joined.
  • the bonding strength measured in Example 1 above peeling of the bonded portion by dipping
  • the bonding conditions were such that the bonded portion did not peel off during transportation.
  • the heat treatment temperature of the dry heat treatment was 120 ° C.
  • the pressurization pressure was applied after the laminated body NW1 reached the heat treatment temperature (press treatment), and the post-press holding time was 5 minutes.
  • Example 5 a preform WB1 (see FIG. 9A) having an air-dry density after bonding of 0.5 (g / cm 3 ) was obtained.
  • Example 5 after raising the temperature to the set temperature, steam at the same temperature was used in combination, and the treatment time (maintenance time) was 30 minutes.
  • the press pressure after raising the temperature to the set temperature was 50 kg / cm 2 .
  • the temperature was cooled to room temperature, and then the press pressure was released to complete the consolidation.
  • the value of the air dry density after consolidation was controlled by the compression thickness (about 7 mm) calculated in advance.
  • a consolidated wood laminate PW (see FIG. 9B) having an air-dry density after consolidation of 1.3 g / cm 3 was obtained.
  • Evaluation of Physical Properties various physical properties of the consolidated wood laminate PW manufactured in Example 5 were evaluated. Evaluation items include “surface hardness”, “wear depth”, “thickness change by dipping (recovery rate)”, and “peeling of joints due to dipping” of the consolidated wood laminate PW. There were 4 items. In addition, each surface was measured after finishing the surface of the manufactured consolidated wooden laminated board PW smoothly using the sander (polishing apparatus). Hereinafter, each evaluation item and evaluation result will be described.
  • the hardness of the surface was measured in accordance with the “Brinell hardness test” defined in JIS Z 2101: 1994 (wood testing method) for the consolidated wood laminate PW.
  • a test piece was prepared from the consolidated wood laminate PW, and a steel ball having a diameter of 10 mm was pressed into the surface of the test piece to a depth of 1 / ⁇ mm (about 0.32 mm) using a Brinell hardness tester.
  • the value of the hardness H (N / mm 2 ) of the surface of the test piece was determined. Table 9 shows the value of the surface hardness H obtained for the consolidated wood laminate PW.
  • the above-mentioned consolidated wood laminate PW was measured in accordance with the “wear test” defined in JIS Z 2101: 1994 (wood testing method).
  • a test piece was prepared from the consolidated wood laminate PW, and the surface of the test piece was worn using a wear test apparatus specified in JIS. Specifically, the test piece was horizontally fixed on a rotating disk of an abrasion test apparatus, and two wear wheels wound with abrasive paper were rotated 500 times on the surface of the test piece. At this time, the mass corresponding to the total load applied to the surface of the test piece was 5.2 N ⁇ 0.05 N including the mass of the wear wheel.
  • the thickness wear amount (wear depth) of the surface of the test piece after 500 rotations was determined as follows.
  • the mass before the measurement of the test piece is m1 (mg)
  • the mass of the test piece after the test is m2 (mg)
  • the area of the part subjected to wear by the wear ring of the wear test apparatus is A (mm 2 )
  • the density of the test piece Is ⁇ (g / cm 3 )
  • D (m1-m2) / A ⁇ ⁇ (2)
  • the value of the wear depth D (mm) on the surface of the test piece was determined.
  • Table 9 shows the values of the wear depth D obtained for the consolidated wood laminate PW.
  • the thickness in the stacking direction of the test piece in an air-dried state where the moisture content before immersion is 15% by mass is A (mm), and the moisture content after immersion / drying is 0% by mass.
  • the thickness in the stacking direction of the test piece in a completely dry state is B (mm)
  • the following equation (3): C (%) [(BA) / A] ⁇ 100 (3)
  • the value of thickness recovery rate C (%) by immersion of the test piece was determined.
  • Table 9 shows values of the thickness recovery rate C obtained for the consolidated wood laminate PW.
  • Bonding strength peeling of bonded part by immersion
  • the same test as in Example 1 and Example 2 was performed. That is, the measurement was performed on the consolidated wood laminate PW in accordance with “Class 2 immersion peeling test” defined in Japanese agricultural and forestry standard (JAS) Appendix 3 (3) of plywood.
  • a test piece having a length of 75 mm and a width of 75 mm was prepared from the consolidated wood laminate PW, and the test piece was immersed in warm water at 70 ° C. for 2 hours. Then, the test piece taken out from warm water was dried for 3 hours in 60 degreeC atmosphere.
  • the physical property values of the consolidated wood laminate PW according to Example 5 are all good values, and the above-mentioned wood laminate WB1 is further densified to be consolidated. By doing so, it can be used for a wide range of applications such as structural materials and building interior materials.
  • a new industrial waste can be generated by effectively using the trunk material of oil palm that has been left without being used as the original wood material.
  • a wood laminate that has practical physical properties and can be produced at low cost, and a method for manufacturing the same.
  • a rotary race is used when forming a veneer from an oil palm trunk material or the like, but the invention is not limited to this.
  • lumber may be used to make lumber.
  • the laminated body is configured by laminating the fiber directions of the single plates to be joined so as to intersect (substantially orthogonal) to each other. You may make it laminate
  • the laminated material is configured by laminating so that the fiber directions of the single plates to be joined cross each other (substantially orthogonal). Only the vicinity of the surface layer may be crossed (substantially orthogonal). For example, in the case of constituting a laminated material composed of 7 layers, the fiber directions of only 2 layers may be crossed from both the front and back surfaces, and the internal 3 layers may be laminated in parallel.
  • the fiber directions of only 2 layers may be crossed from both the front and back surfaces, and the internal 3 layers may be laminated in parallel.
  • five oil palm single plates are laminated, but the present invention is not limited to this. Six or more oil palm single plates may be laminated to produce a wood laminate or a consolidated wood laminate.
  • acacia mangium veneers and one oil palm veneer are laminated, but the present invention is not limited to this, and many more A wood laminate may be manufactured by laminating a single plate. Moreover, you may make it use the single board
  • a wood-consolidated laminated board made only of an oil palm veneer is manufactured, but the present invention is not limited to this, and the oil palm veneer as in the second embodiment. You may make it manufacture the compacted wooden laminated board which consists of another tree seed single board.
  • a wood laminate is produced by compacting a wood laminate that does not use a bonding material as a preform.
  • the present invention is not limited to this, and the third embodiment and You may make it manufacture the wood laminated board which consolidated as a preform the wood laminated board which uses joining material like 4th Embodiment.
  • high temperature water vapor is introduced into the press board using piping to heat the oil palm veneer in the processing space (internal space IS).
  • the present invention is not limited to this, and the wood laminate may be heated as a preform using high-frequency heating, microwave heating, or the like.
  • high-temperature steam is used in combination when processing a wood laminate as a preform at a predetermined temperature, but the present invention is not limited to this.
  • Liquid water may be supplied into the internal space IS), and may be consolidated by water vapor generated from the water, or may be consolidated by moisture contained in the wood laminate in the heat and pressure treatment. Also good.
  • a phenol resin is used as a joining material of each single board, it is not restricted to this, Oil palm single boards or oil palm single boards and What is necessary is just to use the material which can join other tree species veneer.
  • the bonding material other than the phenol resin include urea resin, melamine resin, furan resin, urethane resin, and epoxy resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Veneer Processing And Manufacture Of Plywood (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Manufacture Of Wood Veneers (AREA)

Abstract

これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用して、新たな産業廃棄物を生み出すことがなく、且つ、実用的な物性を有すると共に低コストで生産することのできる木質積層板及びその製造方法を提供する。 2枚以上の木質単板が積層された積層体からなり、当該積層体の各積層面を形成する少なくとも一方がオイルパーム材からなる木質単板である。この積層体を熱処理及び押圧処理することにより、オイルパーム材が内部に含有する接合成分の作用によって接合される。このとき、少量の接合材料を付加するようにしてもよい。

Description

木質積層板及びその製造方法
 本発明は、オイルパーム単板のみを積層接合してなる木質積層板、オイルパーム単板と他の樹種からなる単板とを積層接合してなる木質積層板、及び、これらの木質積層板の製造方法に関するものである。
 日本農林規格(JAS)によれば、単板積層材とは、原木をロータリーレース、スライサーその他の切削機械により切削した単板を主としてその繊維方向を互いにほぼ平行にして積層し、これらの間に接着剤を塗布して接合して1枚の板材のようにしたものである。一方、合板とは、原木をロータリーレース、スライサーその他の切削機械により切削した単板3枚以上を主としてその繊維方向を互いにほぼ直角にして積層し、これらの間に接着剤を塗布して接合して1枚の板材のようにしたものである。
 これらの単板積層材や合板は、住宅などの構造用に用いられる構造材、コンクリートの型枠に用いられるコンクリート型枠材(コンパネ)、貨物の搬送用のコンテナ用材や梱包材、或いは建築内装材や家具など、更には化粧合板の基板などの用途にも広く使用されている。
 特に、日本のような高温・多湿の環境にも順応する木材の優れた特性を備え、更に、木材の持つ幾つかの欠点を製造技術で補整し、木材より強く、幅広で、しかも伸び縮みの少ない優れた材料として、単板積層材や合板の利用価値は高い。また、木材の単材(製材)としては用途の限られる樹種を使用することができるので、資源の有効利用にも寄与している。これらの単板積層材や合板には、一般に海外で大規模に栽培され大量に入手できる、ラワンやメランチなどの広葉樹、カラマツ、ラジアータパインなどの針葉樹が使用されている。
 一方、オイルパーム(アブラヤシ)も商業作物としてマレーシア、インドネシアを中心に大規模に栽培されている。このオイルパームの栽培は、油脂の採取を目的としており、果肉と種子だけが利用されている。また、オイルパームは、植え付け後25~30年で果実の収穫量が減少して経済寿命を終え、約25年毎に再植林されている。
 この再植林の際に生じる大量のオイルパームの幹材は、木材用途としては狂いが大きく製材化には適さないとされている。そこで、伐採されたオイルパームの幹材は、有効に利用されることなく、産業廃棄物として廃棄処分或いは農場に放置されているのが現状である。
 そこで、このオイルパームの幹材を資源として有効に利用すべく、種々の試みがなされている。近年においては、バイオマス資源としてカーボンニュートラルな燃料の原料として検討されている。例えば、下記特許文献1において、「バイオエタノールの原料としてのオイルパーム材の利用」が提案されている。
 伐採したオイルパームの幹材には、他の樹種と異なり、セルロース、ヘミセルロース以外に多くの遊離糖が含有されている。これらの遊離糖は、主にショ糖、グルコース、フルクトースなどからなり幹材の約10%も含有される。更に、オイルパームの幹材は、デンプンを約25%も含有すると言われている(下記非特許文献1)。
 そこで、下記特許文献1においては、オイルパームの幹材を圧搾して遊離糖を含む圧搾液と絞り粕(圧搾粕)とに分離する。更に、この圧搾粕を酵素処理(アミラーゼ処理)して単糖を含む処理液とし、この処理液と圧搾液とを混合したものを発酵処理してエタノールを得るというものである。
 また、下記特許文献2においては、オイルパームの幹材を分解するのではなく、これを原料とする「吸水性素材」が提案されている。この吸水性素材は、オイルパームの幹材から得られる柔組織(デンプンなどを貯蔵する「柔細胞」と思われる)を主成分とする高吸水性素材である。
特開2009-112246号公報 特開2011-224479号公報
松田敏誉,富村洋一;熱帯林業,No.24(1992)37-46
 ところで、上記特許文献1のバイオエタノールの原料としての利用は、カーボンニュートラルな燃料の製造として素晴らしいものであるが、オイルパームの幹材を圧搾し、酵素処理し、更に発酵処理する必要があり、複雑な工程と大掛かりな設備を必要とする。
 また、上記特許文献2の吸水性素材は、産業資材としての利用であるが、圧搾、固形残渣の乾燥、粉砕、篩分による柔組織と維管束との分離などの複雑な工程が必要である。また、吸水性素材となる柔組織は、圧搾による固形残渣の約50~60%であり、圧搾液や不必要な固形分である維管束の処分など、新たな産業廃棄物を生み出すことになる。
 これらに対して、オイルパームの幹材を切削、製材、乾燥して得られた単板をそのまま単板積層材や合板として利用することができれば、オイルパームの幹材の殆どの部分を利用することができるので、新たな産業廃棄物を生み出すこともない。
 ところが、オイルパームの幹材から得られる単板は、単板積層材や合板に従来使用されているラワンなどの単板と異なり密度が低く強度が弱いという特徴がある。この強度の点に関しては、ある程度の物性を有していれば、高い強度を要求されない用途において実用的に使用することができる。しかし、この用途においても、単板の密度が低いことから単板同士を接合する際に単板の内部に接着剤が多量に浸透し、接着剤の使用量が多くコストが高くなるという問題がある。
 一方、高い強度を要求される用途においては、単板積層材や合板として積層接合する場合に圧密化して密度を高くすることが考えられる。しかし、オイルパームを商業作物として栽培する大規模な栽培地と、単板積層材や合板を製造する工業地との距離が遠く離れている場合には、オイルパーム単板の密度が小さく容積が大きいことから輸送コストが高くなるという問題がある。
 そこで、本発明は、以上のようなことに対処して、これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用して、新たな産業廃棄物を生み出すことがなく、且つ、実用的な物性を有すると共に低コストで生産することができる木質積層板及びその製造方法を提供することを目的とする。更に、本発明は、圧密積層板のプリフォームとしても利用することができる木質積層板及びその製造方法を提供することを目的とする。
 上記課題の解決にあたり、本発明者らは、鋭意研究の結果、オイルパームの幹材から形成した単板を積層し、所定の温度と圧力を掛けることにより、オイルパーム単板同士が強固に接合して木質積層板が形成されることを見出した。また、接合に当たり、単板の表面に他の接合材料を塗布することなく接合できること、また、単板の表面のみに従来の木質材料同士を接合するときよりも少量の接合材料を塗布することにより、より強固に接合できることを見出し本発明の完成に至った。更に、本発明者らは、オイルパーム単板は、他の樹種からなる単板とも、他の接合材料を塗布することなく、又は、少量の接合材料で強固に接合して木質積層板が形成されることを見出し本発明の完成に至った。
 即ち、本発明に係る木質積層板は、請求項1の記載によると、
 2枚以上の木質単板を積層して積層体を構成し、当該積層体の積層面を形成する少なくとも一方の木質単板がオイルパーム材からなり、前記積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより接合してなる木質積層板であって、
 前記積層面の接合には、前記木質単板以外の接合材料を付加することなく、前記オイルパーム材が内部に含有する接合成分のみによって接合され、
 その気乾密度の値が、0.5g/cm~1.0g/cmの範囲内にあり、且つ、気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して測定することにより、当該試験片の側面に現れている接合部分において、はく離していない部分の長さが、当該接合部分の長さの67%以上であることを特徴とする。
 また、本発明に係る木質積層板は、請求項2の記載によると、
 2枚以上の木質単板を積層して積層体を構成し、当該積層体の積層面を形成する少なくとも一方の木質単板がオイルパーム材からなり、前記積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより接合してなる木質積層板であって、
 前記積層面の接合には、前記オイルパーム材が内部に含有する接合成分に加え各積層面に塗布された接合材料の作用により接合され、
 その気乾密度の値が、0.5g/cm~1.0g/cmの範囲内にあり、且つ、気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して測定することにより、当該試験片の側面に現れている接合部分において、はく離していない部分の長さが、当該接合部分の長さの67%以上であることを特徴とする。
 また、本発明は、請求項3の記載によると、請求項2に記載の木質積層板であって、
 気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「1類浸せきはく離試験」の基準に適合することを特徴とする。
 また、本発明は、請求項4の記載によると、請求項2又は3に記載の木質積層板であって、
 前記各積層面に対する前記接合材料の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下であることを特徴とする。
 また、本発明は、請求項5の記載によると、請求項1~4のいずれか1つに記載の木質積層板であって、
 オイルパーム材以外の樹種からなる2枚以上の木質単板の間に、それぞれ、オイルパーム材からなる木質単板を積層することを特徴とする。
 また、本発明は、請求項6の記載によると、請求項1~5のいずれか1つに記載の木質積層板であって、
 前記オイルパーム材からなる木質単板は、オイルパームの幹材をロータリーレース又はスライサーなどの切削手段により切削した木質単板であることを特徴とする。
 また、本発明に係る木質積層板は、請求項7の記載によると、
 請求項1~6のいずれか1つに記載の木質積層板を中間材として使用し、
 当該中間材を前記熱処理の温度よりも高温に昇温する第2の熱処理を行うと共に、前記中間材に対して各木質単板の境界面に垂直な方向から前記押圧処理よりも高い圧力をかける第2の押圧処理を行うことにより圧密化され、
 圧密化後の気乾密度の値が、1.0g/cm~1.5g/cmの範囲内にあることを特徴とする。
 また、本発明に係る木質積層板の製造方法は、請求項8の記載によると、
 2枚以上の木質単板を組み合わせて積層体を形成し、当該積層体の各積層面を形成する少なくとも一方をオイルパーム材からなる木質単板とする積層工程と、
 当該積層工程後の積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより前記積層面を接合する接合工程とを有し、
 前記接合工程後の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内とすることを特徴とする。
 また、本発明は、請求項9の記載によると、請求項8に記載の木質積層板の製造方法であって、
 前記積層工程の前に、前記積層体の各積層面を形成する一方又は両方の木質単板の表面に接合材料を塗布する塗布工程を有し、
 前記積層面に塗布する前記接合材料の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下であることを特徴とする。
 また、本発明は、請求項10の記載によると、請求項8又は9に記載の木質積層板の製造方法であって、
 前記接合工程における前記熱処理は、80℃~180℃の温度で1分~60分の乾熱処理であることを特徴とする。
 また、本発明は、請求項11の記載によると、請求項8~10のいずれか1つに記載の木質積層板の製造方法であって、
 前記接合工程後において、前記熱処理で昇温した前記積層体を冷却する冷却工程を経ることなく、前記押圧処理を解圧することを特徴とする。
 上記構成によれば、本発明に係る木質積層板は、2枚以上の木質単板が積層された積層体からなる。ここで、各木質単板の積層面(接合する2枚の木質単板の境界面)を形成する少なくとも一方がオイルパーム材からなる木質単板である。なお、積層する各木質単板の繊維方向は並行であってもよく、或いは直角であってもよい。また、任意の角度で積層されていてもよい。
 このように、上記構成によれば、これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用することができる。更に、オイルパームの幹材の殆どの部分をそのまま利用することができるので、中間工程における新たな産業廃棄物を生み出すことがない。
 また、上記構成によれば、積層体には、オイルパーム材が内部に含有する接合成分のみによって接合された木質積層板、及び、当該接合成分に加え接合材料(接着剤)を塗布して接合された木質積層板の両方を含む。また、接合材料(接着剤)を塗布する場合であっても、その使用量は少量であり製造コストが高くなるということがない。このことにより、実用的な物性を有すると共に低コストで生産することができる木質積層板を提供することができる。
 また、上記構成によれば、この木質積層板の気乾密度の値は、0.5g/cm~1.0g/cmの範囲内にある。このことにより、気乾密度の値が小さいオイルパーム材を使用した場合でも、実用的な物性を有する木質積層板を提供することができる。
 また、上記構成によれば、オイルパーム材が内部に含有する接合成分のみによって接合された木質積層板の場合であっても、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に適合することができる。
 具体的には、「2類浸せきはく離試験」に準拠した測定において、木質積層板の試験片の側面に現れている接合部分において、はく離していない部分の長さが、当該接合部分の長さの67%以上となる。試験片の接合部分のうち、はく離していない部分の長さが67%以上であることにより、接合材料(接着剤)を使用しない場合であっても、接合強度に優れ広い用途に使用することができる。よって、上記各作用効果に加え、接合部分の接合強度に優れた木質積層板を得ることができる。
 また、上記構成によれば、接合材料(接着剤)を少量使用した木質積層板の場合においても、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に適合することができる。更に、接合材料(接着剤)を少量使用した木質積層板の場合には、合板の日本農林規格(JAS)別記3の(3)に規定する「1類浸せきはく離試験」の基準に適合することができる。このことにより、接合部分の接合強度が更に向上した木質積層板を得ることができる。
 また、上記構成によれば、接合材料(接着剤)を少量の使用する場合において、各積層面に対する接合材料の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下とすることが好ましい。このことにより、接合材料の使用量が多く製造コストが高くなるということがなく、実用的な物性を有すると共に低コストで生産することができる木質積層板を提供することができる。
 また、上記構成によれば、オイルパーム材以外の樹種からなる2枚以上の木質単板の間に、それぞれ、オイルパーム材からなる木質単板を積層するようにしてもよい。この場合においても、各木質単板の境界面には必ずオイルパーム単板が存在することとなり、各木質単板どうしの接合に接合材料(接着剤)を使用せず、或いは、少量の接合材料(接着剤)を使用することにより、オイルパーム材が内部に含有する樹脂成分及び/又は糖類の接合能力によって、各木質単板どうしが接合した木質積層板を得ることができる。
 また、上記構成によれば、オイルパーム材からなる木質単板は、オイルパームの幹材をロータリーレース又はスライサーなどの切削手段により切削した木質単板であってもよい。このように、ロータリーレース又はスライサーなどの切削手段により単板を形成することにより、所定の厚さの単板を安定して大量に形成することができる。また、オイルパームの幹材を辺材から芯材まで完全に利用することができる。
 なお、上述の木質積層板を中間材(プリフォーム)として使用し、更に高温の熱処理及び高圧の押圧処理を行って圧密化することにより、木質積層板の密度を大きくして表面硬度や摩耗強度に優れた圧密化した木質積層板とすることができる。このとき、圧密化後の気乾密度の値が、1.0g/cm~1.5g/cmの範囲内にあることが好ましい。なお、圧密化前の木質積層板を中間材(プリフォーム)として輸送することにより、オイルパーム単板をそのまま輸送することに比べ、輸送容積を小さくして輸送コストを抑えることができる。
 また、上記構成によれば、本発明に係る木質積層板の製造方法は、積層工程と接合工程とを有している。このことにより、これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用することができる。更に、オイルパームの幹材の殆どの部分をそのまま利用することができるので、中間工程における新たな産業廃棄物を生み出すことがない。
 また、上記構成によれば、まず、積層工程において、各木質単板を組み合わせて各積層面を形成する少なくとも一方の木質単板をオイルパーム材として積層して積層体を構成する。ここで、積層する各木質単板の繊維方向は並行であってもよく、或いは直角であってもよい。また、任意の角度で積層するようにしてもよい。
 次に、接合工程において、塗布工程後の積層体を所定温度に昇温して熱処理すると共に、積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理する。なお、この接合工程後の木質積層板の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内する。このことにより、各木質単板の積層面が強固に接合した木質積層板を得ることができる。
 また、上記構成によれば、積層工程の前に塗布工程を行うようにしてもよい。この塗布工程においては、2枚以上の木質単板からなる積層体の積層面を形成する一方又は両方の木質単板の表面に接合材料(接着剤)を塗布する。ここで、木質単板の表面に塗布する接合材料(接着剤)の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下であることが好ましい。このことにより、接合材料(接着剤)の使用量が多くコストが高くなるということがなく、実用的な物性を有すると共に低コストで生産することができる木質積層板の製造方法を提供することができる。
 また、上記構成によれば、接合工程における熱処理は、80℃~180℃の温度で1分~60分の乾熱処理であることが好ましい。このように、熱処理を乾熱処理とすることにより、スチーム処理など特殊な装置を使用する湿熱処理を必要とせず、従来から使用している一般の合板用熱処理装置をそのまま使用することができる。
 また、上記構成によれば、接合工程後において、熱処理で昇温した積層体を冷却する冷却工程を経ることなく、押圧処理を解圧するようにしてもよい。このことにより、木質積層板の製造時間を短縮することができ、実用的な物性を有すると共に低コストで生産することができる木質積層板の製造方法を提供することができる。
 よって、本発明によれば、これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用して、新たな産業廃棄物を生み出すことがなく、且つ、実用的な物性を有すると共に低コストで生産することができる木質積層板及びその製造方法を提供することができる。更に、本発明によれば、圧密積層板のプリフォームとしても利用することができる木質積層板及びその製造方法を提供することができる。
第1実施形態において、木質積層板の製造工程の概要を示すフローチャートである。 第1実施形態の切削工程において、オイルパームの幹材をロータリーレースにより単板化する工程を示す概略図である。 第1実施形態の積層工程において、複数のオイルパーム単板を積層する際の組合せを示す概略図である。 第1実施形態の積層工程において、複数のオイルパーム単板からなる木質積層板の接合前の構成を示す概略図である。 第1実施形態の接合工程後の木質積層板を示す概略図である。 第2実施形態の積層工程において、オイルパーム単板と他樹種単板とからなる木質積層板の接合前の構成を示す概略図である。 第2実施形態の接合工程後の木質積層板を示す概略図である。 第3実施形態において、木質積層板の製造工程の概要を示すフローチャートである。 第5実施形態の圧密化において、圧密化前の木質積層板(a)と圧密化後の木質積層板(b)を示す概略図である。 第5実施形態において、圧密化した木質積層板を製造する圧密化装置の概要を示す断面図である。 第5実施形態において、木質積層板の圧密化工程の概要を示す工程図である。
 本発明において、木質積層板とは、同一又は異なる樹種の単板を積層接合してなる木質材料をいうものであって、例えば、日本農林規格(JAS)による単板積層材及び合板に加え、その他の積層構造を有する板材或いは集成材などを挙げることができる。また、本発明に係る木質積層板は、圧密化工程によって密度を高くして強度に優れた圧密化した木質積層板を製造する際の中間材であるプリフォームとして使用することもできる。
 また、本発明において、オイルパームとは、アブラヤシ(油椰子)ともいわれ、西アフリカ原産のヤシ科アブラヤシ属に分類される単子葉植物の総称であって、油脂の採取を目的とする商業作物としてマレーシア、インドネシアを中心に大規模に栽培されている。成木は単一の幹からなり、高さ20mに達する。葉は羽状で長さ3~5mほどのものが、毎年20~30枚新しく生える。
 また、上述のように、オイルパームは、植え付け後25~30年で果実の収穫量が減少して経済寿命を終え、約25年毎に再植林されている。オイルパームの栽培は油脂の採取を目的として果肉と種子だけが利用されるので、その幹材はこれまで有効に利用されることなく、産業廃棄物として廃棄処分或いは農場に放置されている。
 オイルパームの幹材の成分は産地によって若干の差があるとされるが、一般に、セルロース30.6%、ヘミセルロース33.2%、リグニン(総リグニン28.5%=クラーソンリグニン24.7%+酸可溶性リグニン3.8%)、抽出成分3.6%、灰分4.1%といわれている(Characterization in Chemical Composition of the Oil Palm; Journal of the Japan Institute of Energy,87(2008)383-388)。
 また、オイルパームの幹材の断面には、視認できる直径0.4~1.2mm程度の維管束とその周りにデンプンなどを貯蔵する柔細胞などが存在する。これらの細胞壁は、セルロース、ヘミセルロース、及び、リグニン等の樹脂成分で形成され、その他、幹材には約10%の遊離糖(主にショ糖、グルコース、フルクトースなど)や約25%のデンプンが含有されている(上記非特許文献1)。
 以下、本発明に係る木質積層板の各実施形態を図面に従って説明する。なお、本発明は、下記に示す各実施形態に限定されるものではない。
 第1実施形態:
 本第1実施形態は、オイルパーム単板のみからなる木質積層板及びその製造方法に関するものであり、他の接合材料(接着剤)を用いることのない方法を説明する。ここでは、その製造工程に沿って図面を用いて説明する。図1は、本第1実施形態において、木質積層板の製造工程の概要を示すフローチャートである。図1において、木質積層板の製造工程は、切削工程S1、乾燥工程S2、積層工程S3、接合工程S4、及び、解圧工程S5を有している。以下、各工程に沿って本第1実施形態に係る木質積層板及びその製造方法を説明する。
 《切削工程S1》
 まず、切削工程S1において、オイルパームの幹材から単板を形成する。本発明においては、単板の形成方法について特に限定するものではなく、挽板による製材法、或いは連続したロータリーレースやスライサーなどの切削装置による剥き板法を使用することができる。なお、本第1実施形態においては、生産性に優れ、且つ、連続して均一な単板を形成することのできるロータリーレースによる方法を採用した。
 そこで、本第1実施形態においては、ロータリーレースにより単板を形成する方法について説明する。図2は、オイルパームの幹材をロータリーレースにより単板化する工程を示す概略図である。まず、伐採されたオイルパームの幹から所定の長さのオイルパーム幹材WDを切断する。このオイルパーム幹材WDをロータリーレース(装置)にセットする(図2において装置詳細は省略)。
 次に、オイルパーム幹材WDに対して、その幹の中心を回転軸として回転させ、刃物CTによって大根のカツラ剥きと同様にして周方向の剥きを行う。このようにして、オイルパーム幹材WDの周囲(辺材)から中心(芯材)に向かって、所定の厚さのオイルパーム連続剥離板UWDを得る。なお、オイルパーム幹材WDは、その断面に年輪がなく、均質なオイルパーム連続剥離板UWDを得ることができる。また、年輪がないことから、オイルパーム連続剥離板UWDの表面には柾目が現れる。
 このオイルパーム幹材WDにおいては、周囲(辺材)から中心(芯材)に向かって密度が徐々に小さくなる。即ち、辺材の密度が約0.6g/cm程度であるのに対して、芯材の密度は約0.2g/cm程度と小さくなる。その結果、オイルパーム連続剥離板UWDの密度が、徐々に小さく変化していく。
 このオイルパーム連続剥離板UWDを所定の長さに切断して、オイルパーム単板Wを得る。通常、オイルパーム単板Wの切断は、連続的に行われる。このオイルパーム単板Wは、上述のように、その密度が徐々に変化している。しかし、1枚のオイルパーム単板W内においては、限定された長さとカツラ剥き工程によって、ほぼ均質の密度が得られている。
 また、本第1実施形態においては、逆にこのことを利用して、任意の密度のオイルパーム単板Wを選択的に調達することができる。即ち、目的とする木質積層板の厚さ(積層接合後の厚さ)と密度(積層接合後の密度)を考慮して、必要な厚さ(積層接合前の厚さ)と密度(積層接合前の密度)のオイルパーム単板Wを必要枚数、調達することができる。
 《乾燥工程S2》
 次に、乾燥工程S2において、切削工程S1で切断されたオイルパーム単板Wを乾燥する。オイルパーム単板Wの乾燥は、木材の単板を乾燥する通常の装置、工程によって行うことができる。
 《積層工程S3》
 次に、積層工程S3において、乾燥したオイルパーム単板Wを複数枚(通常の合板では奇数枚であるが、本発明においては奇数枚に限るものではない)積層して積層体NW1(図4参照)を構成する。これらのオイルパーム単板Wを積層する際の組合せにおいては、各単板の繊維方向(木目の方向)を任意の方向で組み合わせることができる。
 例えば、単板積層材を製造する際には、各オイルパーム単板Wの繊維方向が互いに平行になるように積層する。一方、合板を製造する際には、各オイルパーム単板Wの繊維方向が互いに交差(略直交)するように交互に積層する。なお、本第1実施形態においては、各オイルパーム単板Wの繊維方向が直交方向ではない任意の角度に交差するように積層するようにしてもよい。更に、複数枚のオイルパーム単板Wのうち、表層付近のものだけが交差するように積層するようにしてもよく、或いは内層付近のものだけが交差するように積層するようにしてもよい。
 ここでは、各オイルパーム単板Wの繊維方向が交差(略直交)するように交互に積層する合板を例にして説明する。このような合板においては、接合される各オイルパーム単板Wが交差(略直交)することにより、互いに強度を補完し合って、完成した木質積層板の物性が大きく向上する。
 図3は、複数枚(本第1実施形態においては5枚)のオイルパーム単板Wを積層する際の組合せを示す概略図である。図3(a)において、まず、繊維方向を長辺として同一方向を向く3枚のオイルパーム単板W1、W3、W5を準備する。次に、図3(b)において、先の3枚のオイルパーム単板W1、W3、W5とは、繊維方向が直交するように繊維方向を短辺とする2枚のオイルパーム単板W2、W4を準備する。
 そして、繊維方向を長辺とする3枚のオイルパーム単板W1、W3、W5(いずれも塗布工程後)の間に、繊維方向を短辺とする2枚のオイルパーム単板W2、W4(いずれも塗布工程後)を挿入する。これら5枚のオイルパーム単板W1、W2、W3、W4、W5は、互いに繊維方向を交差するように積層されて、5層からなる積層体NW1(図4参照)を構成する。
 《接合工程S4》
 次に、接合工程S4において、積層工程S3で構成した積層体NW1の各積層面を接合する。ここで、積層体NW1の接合について説明する。図4は、5枚のオイルパーム単板W1、W2、W3、W4、W5からなる接合する前の積層体NW1の構成を示している。
 ここで、積層体NW1の接合について説明する。本発明者らは、これまで、木材の圧密固定化及び木材の塑性加工について検討してきた。その経緯から、本発明者らは、木材の圧密固定化方法(特許第4787432号)及び塑性加工木材(特許第5138080号)など複数の発明をなしてきた。また、本発明者らは、これらの技術的知見及び装置を活用して更に進化させ、接着剤を必要としないオイルパーム単板の圧密固定化技術(PCT/JP2012/76506)を開発した。
 本発明は、このオイルパーム単板の圧密固定化技術を更に発展させ、乾熱処理とある程度の押圧処理のみで、オイルパーム単板同士、或いはオイルパーム単板と他樹種単板との接合を可能とする技術に関するものである。なお、本発明において、積層体NW1の接合には、特殊な装置を必要とせず、熱板とプレス機構を組み合わせた装置を使用することができる。即ち、通常の合板の製造の際に接着剤の硬化に使用されるホットプレス機などを活用することができる。
 本第1実施形態の接合工程S4においては、積層工程S3において複数枚のオイルパーム単板Wを積層した積層体NW1を所定の温度で熱処理し、この加温された積層体NW1に対して、積層方向、即ち接合する積層面に垂直の方向から所定の押圧力を加えて押圧処理を行う。この熱処理温度と押圧処理圧力とを所定時間維持することにより、積層体NW1の各オイルパーム単板Wの積層面が接合して木質積層板WB1となる。なお、上述のように、加温された積層体NW1に対して押圧処理することに代えて、まず、加温前の押圧処理(冷圧処理)を行ってから、この冷圧された積層体NW1を所定温度に加温して熱処理するようにしてもよい。
 本発明における接合条件として、まず、熱処理の所定温度とは、特に限定するものではないが、例えば、80~180℃の温度範囲内であり、好ましくは、100~150℃の温度範囲内である。また、圧密化した木質積層板のプリフォームとして使用する際には、所定温度とは、80~150℃の温度範囲内が好ましく、更に、100~130℃の温度範囲内がより好ましい。一方、この温度範囲を維持する時間は、接合する単板の枚数や厚みなどにより適宜選定するものであり、特に限定するものではないが、例えば、1分~60分の範囲内であり、好ましくは、5分~30分の範囲内である。
 また、接合する積層面に垂直の方向から加える所定の圧力とは、接合する単板の枚数や厚みなどにより適宜選定するものであり、特に限定するものではないが、例えば、5~50kg/cmの圧力範囲内であり、好ましくは、10~30kg/cmの圧力範囲内である。また、圧密化した木質積層板のプリフォームとして使用する際においても、所定の圧力とは、5~50kg/cmの圧力範囲内が好ましく、更に、10~30kg/cmの圧力範囲内がより好ましい。なお、接合後の気乾密度(含水率15質量%の気乾状態における密度)の値は、予め計算した圧縮厚さにより制御するようにしてもよい。
 ここで、本第1実施形態においては、この接合によって、各オイルパーム単板Wの境界面が接着剤を必要とすることなく強固に自己接着する。オイルパーム単板Wが自己接着する理由については定かではないが、オイルパームの幹材に含まれる樹脂成分や糖類など、即ち、セルロース、ヘミセルロース、リグニン、遊離糖(主にショ糖、グルコース、フルクトースなど)、及び、デンプンの各成分が複合作用することにより強固に接着すると共に、木質積層板WB1自体の物性の向上に寄与しているものと考えられる。
 上記各成分のうち、セルロースは細胞壁の骨格を構成し、これにヘミセルロースを介在としてリグニンが接着成分として作用する。また、オイルパームに特に多く含まれる遊離糖及びデンプンが、リグニンと共に複合的に作用して、本発明固有の作用効果を発揮するものと思われる。なお、オイルパームの幹材に含まれる樹脂成分や糖類などによる接合は、湿熱処理によることが効果的ではあるが、湿熱処理によることなく乾熱処理のみによっても十分な接合強度を発現することができる。このとき、乾熱処理されたオイルパーム単板中に含まれる水分が何らかの作用をすることも考えられる。
 《解圧工程S5》
 次に、解圧工程S5において、接合工程S4で積層体NW1の各積層面が接合された後に、押圧処理圧力を解圧して木質積層板WB1を得る。図5は、解圧工程後の木質積層板WB1を示している。ここで、接合前の積層体NW1(図4)と接合後の木質積層板WB1(図5)とは、長さ方向及び幅方向の寸法に大きな変化は現れていない。これに対して、厚さ方向、即ち積層方向(図示上下方向)には変化が見られ(図では分かり辛い)、接合の際の熱処理及び押圧処理によって圧縮されて木質積層板WB1の密度が接合前の積層体NW1の密度より大きくなっている。なお、解圧工程S5後の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内とすることにより良好な物性を得ることができる。
 この解圧工程S5においては、木質積層板WB1に対して押圧処理圧力を維持した状態で温度を降下させて冷却し、その後押圧処理圧力を解圧(冷却解圧)するようにしてもよい。また、接合後の木質積層板WB1対して熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)し、その後冷却するようにしてもよい。これらの場合において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する方が冷却解圧に比べ、接合工程S4から解圧工程S5に至る処理時間が短縮され、木質積層板WB1の製造コストが削減されるので好ましい。
 但し、解圧工程S5において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、木質積層板WB1の気乾密度(含水率15質量%の気乾状態における密度)の値が接合強度に影響を及ぼすので注意を要する。すなわち、接合工程S4における押圧処理により接合後の木質積層板WB1の気乾密度の値が大きくなった場合、高温解圧したときに接合面に部分的なはく離が生じることがある。
 この理由は定かではないが、木質積層板WB1を構成するオイルパーム材は、内部に水分を保持している。これらの水分は、接合工程S4の際にオイルパーム材内部や積層面に高温高圧の状態で保持されている。この高温高圧の水分が、高温を維持したまま解圧された場合には、高圧の水蒸気として木質積層板WB1の外部に放出される。その際に、木質積層板WB1の気乾密度の値が大きくなると、オイルパーム材を通して放出される量が減り、接合面から膨張した水蒸気となって導通するものと思われる。よって、木質積層板WB1の接合面に部分的なはく離が生じるものと思われる。そこで、解圧工程S5において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、接合工程S4後の木質積層板WB1の気乾密度の値を、1.0g/cm以下とすることが好ましい。
 このようにして製造した木質積層板WB1は、オイルパーム単板Wの境界面が接着剤を必要とすることなく接合(自己接着)され、且つ、実用的な物性を有している。この木質積層板WB1の物性は、簡単な構造材や梱包材としては十分な接合強度を有しており、この状態で産業資材として使用することができる。また、この木質積層板WB1は、圧密化した木質積層板に使用するプリフォームとしての使用価値も高く、密度の向上により輸送容積を小さくし、且つ、運搬可能な接合強度を有して輸送が容易になるという特徴を有している。
 以下、本第1実施形態に係る木質積層板WB1の物性として、密度(気乾密度)の変化と接合強度について実施例1により説明する。
 A.オイルパーム単板Wの準備(切削工程S1・乾燥工程S2)
 同一のオイルパーム幹材WDからロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のオイルパーム単板Wを準備した。これらのオイルパーム単板Wの寸法は、厚さ約5mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を長さ方向とするものと、幅方向とするものの両方を準備した。なお、圧密化前の各オイルパーム単板Wの気乾密度の値は、約0.35g/cmのものを使用した。
 B.積層体NW1の準備(積層工程S3)
 本実施例1においては、いずれも、上記オイルパーム単板Wを5枚組み合わせて、複数の積層体NW1を準備した。これらの積層体NW1は、互いに繊維方向を交差(略直交)するように積層して5層(厚み約25mm)からなるものとした。なお、積層体NW1を形成するにあたり、各境界面には接着剤など他の成分を付与することがなかった。
 C.積層体NW1の熱処理及び押圧処理(接合工程S4・解圧工程S5)
 このようにして準備した各積層体NW1に対して、通常の合板の製造の際に接着剤の硬化に使用されるホットプレス機を使用して乾熱処理及び押圧処理による接合を行った。なお、本実施例1においては、乾熱処理の熱処理温度を80℃、100℃、及び、120℃の3水準とし、各積層体NW1が熱処理温度に達した後にプレス圧力をかけ(押圧処理)、プレス後保持時間を0分、5分、10分、及び、15分の4水準とした。プレス処理後の木質積層板WB1は、冷却することなくプレス圧力を解圧して、その後自然冷却した。なお、本実施例1においては、接合後の気乾密度の値は、予め計算した圧縮厚さにより制御した。このようにして、接合後の気乾密度が0.6g/cm及び0.8g/cmの2水準の木質積層板WB1を得た。
 D.接合強度(浸漬による接合部分のはく離)
 上述のようにして得られた各木質積層板WB1に対して、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して接合強度を測定した。まず、各木質積層板WB1から長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を70℃の温水中に2時間浸漬した。その後、温水中から取り出した試験片を60℃の雰囲気下で3時間乾燥した。
 この浸漬・乾燥後の試験片において、試験片の側面に現れている接合部分に、はく離が生じているか否かを目視により判断した。判断基準は、はく離していない部分の長さが、50mm以上(試験片の長さの67%以上)であるものを合格(はく離なし)とした。各木質積層板WB1に対する、はく離の有(×)無(○)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1において、気乾密度が0.6g/cmの木質積層板WB1においては、80℃~120℃のいずれの熱処理温度においても、プレス後保持時間が5分以下では接合強度が不十分であった。しかし、100℃及び120℃の熱処理温度においてはプレス後保持時間が10分で接合強度が良好となり、80℃の熱処理温度においてはプレス後保持時間が15分で接合強度が良好となった。
 一方、気乾密度が0.8g/cmの木質積層板WB1においては、100℃及び120℃の熱処理温度においてプレス後保持時間が5分において接合強度が良好であった。また、80℃の熱処理温度においてはプレス後保持時間が10分で接合強度が良好となった。
 これらのことから、本実施例1の各木質積層板WB1は、実用的な接合強度を有しており、簡単な構造材料や梱包材料などの産業資材として使用することができる。また、接合後の気乾密度の値を考慮して熱処理温度とプレス後保持時間を制御することにより、日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に適合して湿潤強度に優れた木質積層板を得ることもできる。なお、この木質積層板を圧密化した木質積層板のプリフォームとして使用する際には、「2類浸せきはく離試験」に適合することを必要としない。
 第2実施形態:
 本第2実施形態は、オイルパーム単板と他樹種の単板とからなる木質積層板及びその製造方法に関するものであり、他の接合材料(接着剤)を用いることのない方法を説明する。ここでは、その製造工程に沿って図面を用いて説明する。本第2実施形態に係る木質積層板の製造工程の概要は、上記第1実施形態と同様である(図1参照)。以下、各工程に沿って本第2実施形態に係る木質積層板及びその製造方法を説明する。
 《切削工程S1》
 まず、切削工程S1において、オイルパームの幹材から単板を形成する。更に、他樹種(本第2実施形態においては、アカシアマンギウムを使用した)の幹材からも単板を形成する。なお、本第2実施形態においては、オイルパーム単板及びアカシアマンギウム単板のいずれに対しても、上記第1実施形態と同様に、生産性に優れ、且つ、連続して均一な単板を形成することのできるロータリーレースによる方法を採用した。なお、本第2実施形態においてロータリーレースにより単板を形成する方法については、上記第1実施形態と同様であり説明を省略する(図2及び図3参照)。
 《乾燥工程S2》
 次に、乾燥工程S2において、切削工程S1で切断されたオイルパーム単板W及びアカシアマンギウム単板AWを乾燥する。オイルパーム単板W及びアカシアマンギウム単板AWの乾燥は、上記第1実施形態と同様に、木材の単板を乾燥する通常の装置、工程によって行うことができる。
 《積層工程S3》
 次に、積層工程S3において、乾燥したアカシアマンギウム単板AWとオイルパーム単板Wとを交互に積層して積層体NW2(図6参照)を構成する。これらのオイルパーム単板Wとアカシアマンギウム単板AWとを積層する際の組合せにおいては、各単板の繊維方向(木目の方向)を任意の方向で組み合わせることができる。
 例えば、オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が互いに平行になるように積層してもよく、或いは、オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が互いに交差(略直交)するように交互に積層してもよい。また、各オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が直交方向ではない任意の角度に交差するように積層するようにしてもよい。
 ここでは、各オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が交差(略直交)するように交互に積層する合板を例にして説明する。このような合板においては、接合される各オイルパーム単板Wとアカシアマンギウム単板AWとが交差(略直交)することにより、互いに強度を補完し合って、完成した木質積層板の物性が大きく向上する。
 本第2実施形態においては、繊維方向を長辺とする2枚のアカシアマンギウム単板AW1、AW2(いずれも塗布工程後)の間に、繊維方向を短辺とする1枚のオイルパーム単板W6(塗布工程を経ていない)を挿入する。これら3枚の単板AW1、W6、AW2は、互いに繊維方向を交差するように積層されて、3層からなる積層体NW2(図6参照)を構成する。
 《接合工程S4》
 次に、接合工程S4において、積層工程S3で構成した積層体NW2の各積層面を接合する。ここで、積層体NW2の接合について説明する。本第2実施形態においても、上記第1実施形態と同様に、積層体NW2の接合には、特殊な装置を必要とせず、熱板とプレス機構を組み合わせた装置を使用することができる。即ち、通常の合板の製造の際に使用されるホットプレス機などを活用することができる。
 本第2実施形態の接合工程S4においては、塗布工程S3において2枚のアカシアマンギウム単板AW1、AW2の間に1枚のオイルパーム単板W6を挿入して積層した積層体NW2を所定の温度で熱処理し、この加温された積層体NW2に対して、積層方向、即ち接合する積層面に垂直の方向から所定の押圧力を加えて押圧処理を行う。この熱処理温度と押圧処理圧力とを所定時間維持することにより、積層体NW2の各オイルパーム単板Wとアカシアマンギウム単板AWとの積層面が接合して木質積層板WB2となる。
 なお、本第2実施形態においても、加温された積層体NW2に対して押圧処理することに代えて、まず、加温前の押圧処理(冷圧処理)を行ってから、この冷圧された積層体NW2を所定温度に加温して熱処理するようにしてもよい。なお、本第2実施形態における接合条件(、熱処理温度、温度範囲を維持する時間、及び、積層面に加える圧力)は、上記第1実施形態と同様である。
 ここで、本第2実施形態においては、この接合によって、オイルパーム単板Wとアカシアマンギウム単板AWとの境界面が接着剤を必要とすることなく強固に自己接着する。オイルパーム単板Wとアカシアマンギウム単板AWとが自己接着する理由については、上記第1実施形態と同様に考えられる。すなわち、オイルパームの幹材に含まれる樹脂成分や糖類など、即ち、セルロース、ヘミセルロース、リグニン、遊離糖(主にショ糖、グルコース、フルクトースなど)、及び、デンプンの各成分が複合作用することにより強固に接着すると共に、木質積層板WB2自体の物性の向上に寄与しているものと考えられる。
 《解圧工程S5》
 次に、解圧工程S5において、接合工程S4で積層体NW2の各積層面が接合された後に、押圧処理圧力を解圧して木質積層板WB2を得る。図7は、解圧工程後の木質積層板WB2を示している。ここで、接合前の積層体NW2(図6)と接合後の木質積層板WB2(図7)とは、長さ方向及び幅方向の寸法に大きな変化は現れていない。これに対して、厚さ方向、即ち積層方向(図示上下方向)には変化が見られ(図では分かり辛い)、接合の際の熱処理及び押圧処理によって圧縮されて木質積層板WB2の密度が接合前の積層体NW2の密度より大きくなっている。なお、解圧工程S5後の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内とすることにより良好な物性を得ることができる。
 この解圧工程S6においては、木質積層板WB2に対して押圧処理圧力を維持した状態で温度を降下させて冷却し、その後押圧処理圧力を解圧(冷却解圧)するようにしてもよい。また、接合後の木質積層板WB2対して熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)し、その後冷却するようにしてもよい。これらの場合において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する方が冷却解圧に比べ、接合工程S4から解圧工程S5に至る処理時間が短縮され、木質積層板WB2の製造コストが削減されるので好ましい。
 但し、解圧工程S5において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、木質積層板WB2の気乾密度(含水率15質量%の気乾状態における密度)の値が接合強度に影響を及ぼすので注意を要する。すなわち、接合工程S4における押圧処理により接合後の木質積層板WB2の気乾密度の値が大きくなった場合、高温解圧したときに接合面に部分的なはく離が生じることがある。
 この理由は定かではないが、木質積層板WB2を構成するオイルパーム材とアカシアマンギウム材はその内部に水分を保持している。これらの水分は、接合工程S4の際にオイルパーム材内部やアカシアマンギウム材内部及び積層面に高温高圧の状態で保持されている。この高温高圧の水分が、高温を維持したまま解圧された場合には、高圧の水蒸気として木質積層板WB2の外部に放出される。その際に、木質積層板WB2の気乾密度の値が大きくなると、オイルパーム材とアカシアマンギウム材を通して放出される量が減り、接合面から膨張した水蒸気となって導通するものと思われる。よって、木質積層板WB2の接合面に部分的なはく離が生じるものと思われる。そこで、解圧工程S5において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、接合工程S4後の木質積層板WB2の気乾密度の値を、1.0g/cm以下とすることが好ましい。
 このようにして製造した木質積層板WB2は、オイルパーム単板Wとアカシアマンギウム単板AWとの境界面が接着剤を必要とすることなく接合(自己接着)され、且つ、実用的な物性を有している。この木質積層板WB2の物性は、簡単な構造材や梱包材としては十分な接合強度を有しており、この状態で産業資材として使用することができる。また、この木質積層板WB2は、圧密化した木質積層板に使用するプリフォームとしての使用価値も高く、密度の向上により輸送容積を小さくし、且つ、運搬可能な接合強度を有して輸送が容易になるという特徴を有している。
 以下、本第2実施形態に係る木質積層板WB2の物性として、密度(気乾密度)の変化と接合強度について実施例2により説明する。
 A.オイルパーム単板W及びアカシアマンギウム単板AWの準備(切削工程S1・乾燥工程S2)
 同一のオイルパーム幹材WDからロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のオイルパーム単板Wを準備した。これらのオイルパーム単板Wの寸法は、厚さ約5mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を幅方向とするものを準備した。なお、圧密化前の各オイルパーム単板Wの気乾密度の値は、約0.35g/cmのものを使用した。
 一方、同一のアカシアマンギウム幹材からロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のアカシアマンギウム単板AWを準備した。これらのアカシアマンギウム単板AWの寸法は、厚さ約3mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を長さ方向とするものを準備した。なお、圧密化前の各アカシアマンギウム単板AWの気乾密度の値は、約0.7g/cmのものを使用した。
 B.積層体NW2の準備(積層工程S3)
 本実施例2においては、いずれも、2枚のアカシアマンギウム単板AWの間に1枚のオイルパーム単板Wを組み合わせて、複数の積層体NW2を準備した。これらの積層体NW2は、互いに繊維方向を交差(略直交)するように積層して3層からなるものとした。なお、積層体NW2を形成するにあたり、各境界面には接着剤など他の成分を付与することがなかった。
 C.積層体NW2の熱処理及び押圧処理(接合工程S4・解圧工程S5)
 このようにして準備した各積層体NW2に対して、通常の合板の製造の際に接着剤の硬化に使用されるホットプレス機を使用して乾熱処理及び押圧処理による接合を行った。なお、本実施例2においては、上記実施例1と同様に乾熱処理の熱処理温度を80℃、100℃、及び、120℃の3水準とし、各積層体NW2が熱処理温度に達した後にプレス圧力をかけ(押圧処理)、プレス後保持時間を0分、5分、10分、及び、15分の4水準とした。プレス処理後の木質積層板WB2は、冷却することなくプレス圧力を解圧して、その後自然冷却した。なお、接合後の気乾密度の値は、予め計算した圧縮厚さにより制御した。本実施例2においては、接合後の気乾密度が、0.8g/cm及び1.0g/cmの2水準の木質積層板WB2を得た。
 D.接合強度(浸漬による接合部分のはく離)
 上述のようにして得られた各木質積層板WB2に対して、上記実施例1と同様に合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して接合強度を測定した。まず、各木質積層板WB2から長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を70℃の温水中に2時間浸漬した。その後、温水中から取り出した試験片を60℃の雰囲気下で3時間乾燥した。
 この浸漬・乾燥後の試験片において、試験片の側面に現れている接合部分に、はく離が生じているか否かを目視により判断した。判断基準は、はく離していない部分の長さが、50mm以上(試験片の長さの67%以上)であるものを合格(はく離なし)とした。各木質積層板WB2に対する、はく離の有(×)無(○)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2において、気乾密度が0.8g/cmの木質積層板WB2においては、80℃~120℃のいずれの熱処理温度においてもプレス後保持時間が5分以下では接合強度が不十分であった。しかし、120℃の熱処理温度においてはプレス後保持時間が10分で接合強度が良好となり、100℃の熱処理温度においてはプレス後保持時間が15分で接合強度が良好となった。
 一方、気乾密度が1.0g/cmの木質積層板WB2においては、100℃及び120℃の熱処理温度においてプレス後保持時間が5分においてで接合強度が良好であった。また、80℃の熱処理温度においてはプレス後保持時間が15分で接合強度が良好となった。
 これらのことから、本実施例2の各木質積層板WB2は、実用的な接合強度を有しており、簡単な構造材料や梱包材料などの産業資材として使用することができる。また、接合後の気乾密度の値を考慮して熱処理温度とプレス後保持時間を制御することにより、日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に適合して湿潤強度に優れた木質積層板を得ることもできる。なお、この木質積層板を圧密化した木質積層板のプリフォームとして使用する際には、「2類浸せきはく離試験」に適合することを必要としない。
 第3実施形態:
 本第3実施形態は、オイルパーム単板のみからなる木質積層板及びその製造方法に関するものであり、他の接合材料(接着剤)を少量用いる方法を説明する。ここでは、その製造工程に沿って図面を用いて説明する。図8は、本第3実施形態において、木質積層板の製造工程の概要を示すフローチャートである。図8において、木質積層板の製造工程は、切削工程S11、乾燥工程S12、塗布工程S13、積層工程S14、接合工程S15、及び、解圧工程S16を有している。以下、各工程に沿って本第3実施形態に係る木質積層板及びその製造方法を説明する。
 《切削工程S11》
 まず、切削工程S11において、オイルパームの幹材から単板を形成する。なお、本第3実施形態においては、上記第1実施形態と同様に、生産性に優れ、且つ、連続して均一な単板を形成することのできるロータリーレースによる方法を採用した。なお、本第3実施形態においてロータリーレースにより単板を形成する方法については、上記第1実施形態と同様であり説明を省略する(図2及び図3参照)。
 《乾燥工程S12》
 次に、乾燥工程S12において、切削工程S11で切断されたオイルパーム単板Wを乾燥する。オイルパーム単板Wの乾燥は、上記第1実施形態と同様に、木材の単板を乾燥する通常の装置、工程によって行うことができる。
 《塗布工程S13》
 次に、塗布工程S13において、乾燥工程S12で乾燥されたオイルパーム単板Wを組み合わせて木質積層板を構成する際の積層面(接合する2枚のオイルパーム単板Wの境界面)に接合材料を塗布する。
 ここで、接合材料とは、木材の接合、接着に使用することのできる全ての材料をいうものである。特に、本発明においては、接合材料として各種樹脂化合物を使用することが好ましい。これらの樹脂化合物としては、例えば、尿素、メラミン、フェノール、フラン或いはこれらの組合せとホルムアルデヒドとの縮合反応によって得られる化合物或いはその予備縮合物が挙げられる。これらの樹脂化合物は、一般にユリア樹脂、メラミン樹脂、フェノール樹脂、フラン樹脂などと呼ばれており。更に、近年使用されるようになった樹脂化合物としては、ホルムアルデヒドを含まないウレタン樹脂、エポキシ樹脂などを挙げることができる。なお、本第3実施形態においては、接合材料としてフェノール樹脂を使用した。
 また、これらの接合材料を反応させるために、接合材料に触媒を併用するようにしてもよい。この触媒は、使用する接合材料の種類と反応温度とにより適宜選定すればよい。ユリア樹脂、メラミン樹脂、フェノール樹脂、フラン樹脂などのホルムアルデヒド縮合型樹脂の場合には、一般に酸触媒を使用する。本第3実施形態において使用するフェノール樹脂の場合には、酸触媒を併用することにより熱処理温度を低くして処理することができる。一方、フェノール樹脂の場合にも、酸触媒を併用することなく熱処理温度を高くして処理するようにしてもよい。なお、本第3実施形態においては、フェノール樹脂に酸触媒を併用することなく、高温で熱処理する方法を採用した。
 オイルパーム単板Wの表面へのフェノール樹脂の塗布は、どのような方法で行ってもよいが、オイルパーム単板Wの表面に塗布するフェノール樹脂の量は、従来の木質材料同士を接合するときよりも少なくする。更に、オイルパーム単板Wの表面のみにフェノール樹脂を塗布し、内部に浸透させないことを必要とする。従来から使用されている一般の樹種から合板を製造する際には、接合する2枚の単板の両方の表面に十分な量、例えば、固形分にして、400g/m~500g/mの範囲内、或いは、それ以上のフェノール樹脂を塗布している。
 これに対して、オイルパーム材は密度が小さく組織が粗いため、他の樹種に比べフェノール樹脂の内部への浸透が非常に大きくなる。従って、従来と同程度の量のフェノール樹脂を塗布したのでは、浸透する量が多量となり製造コストが大きくなるだけでなく、接合面のフェノール樹脂の量が少なくなり接合強度が低くなる。一方、積層面の接合に関与するのは、主に表面近傍の樹脂化合物であり、内部に浸透した樹脂化合物は接合強度に効果を及ぼさない。
 そこで、本第3実施形態においては、オイルパーム単板Wの表面のみにフェノール樹脂を塗布するという方法を採用する。オイルパーム単板Wの表面へのフェノール樹脂の塗布は、例えば、刷毛塗り、ローラー、スプレー、印捺などの方法で行うことが好ましい。また、塗布するフェノール樹脂の粘度を高くして、オイルパーム単板Wの表面から内部に浸透しにくくするようにしてもよい。
 このように、本第3実施形態においては、接合後の木質積層板において、オイルパーム単板Wの厚み方向に対して、積層面近傍にのみフェノール樹脂が存在し中央部には浸透していない状態が確保される。このことにより、少ないフェノール樹脂の量で強い接合強度を得ることができ、また、木質積層板の製造コストが低減できる。
 ここで、実用的な接合強度を得ることのできる接合材料(本第3実施形態においてはフェノール樹脂)の塗布量は、1つの積層面に対して、接合材料の固形分にして、120g/m以下であることが好ましい。具体的には、10g/m~120g/mの範囲内にあることが好ましく、更に、50g/m~120g/mの範囲内にあることがより好ましい。また、接合材料の塗布は、互いに接合されるオイルパーム単板Wの一方の表面のみに塗布するようにしてもよく、或いは、両方の表面に塗布するようにしてもよい。いずれにしても、1つの積層面に対して、接合材料の総量で、固形分にして、120g/m以下の量で充分な接合強度を得ることができる。更に、接合材料をオイルパーム単板Wの表面全体に塗布するのではなく、格子状、ドット状など部分的な塗布であってもよい。
 《積層工程S14》
 次に、積層工程S14において、塗布工程S13で積層面にフェノール樹脂を塗布したオイルパーム単板Wを複数枚(通常の合板では奇数枚であるが、本発明においては奇数枚に限るものではない)積層して、上記第1実施形態と同様の積層体NW3を構成する(図4参照)。これらのオイルパーム単板Wを積層する際の組合せにおいては、各単板の繊維方向(木目の方向)を任意の方向で組み合わせることができる。
 例えば、単板積層材を製造する際には、各オイルパーム単板Wの繊維方向が互いに平行になるように積層する。一方、合板を製造する際には、各オイルパーム単板Wの繊維方向が互いに交差(略直交)するように交互に積層する。なお、本第3実施形態においては、各オイルパーム単板Wの繊維方向が直交方向ではない任意の角度に交差するように積層するようにしてもよい。更に、複数枚のオイルパーム単板Wのうち、表層付近のものだけが交差するように積層するようにしてもよく、或いは内層付近のものだけが交差するように積層するようにしてもよい。
 ここでは、各オイルパーム単板Wの繊維方向が交差(略直交)するように交互に積層する合板を例にして説明する。このような合板においては、接合される各オイルパーム単板Wが交差(略直交)することにより、互いに強度を補完し合って、完成した木質積層板の物性が大きく向上する。
 本第3実施形態においては、上記第1実施形態と同様にして繊維方向を長辺とする3枚のオイルパーム単板W1、W3、W5(いずれも塗布工程後)の間に、繊維方向を短辺とする2枚のオイルパーム単板W2、W4(いずれも塗布工程後)を挿入する。これら5枚のオイルパーム単板W1、W2、W3、W4、W5は、互いに繊維方向を交差するように積層されて、5層からなる積層体NW3を構成する(図3及び図4参照)。
 《接合工程S15》
 次に、接合工程S15において、積層工程S14で構成した積層体NW3の各積層面を接合する。ここで、積層体NW3の接合について説明する。本第3実施形態においては、上記第1実施形態と同様に特殊な装置を必要とせず、熱板とプレス機構を組み合わせた装置を使用することができる。即ち、通常の合板の製造の際に使用されるホットプレス機などを活用することができる。
 本第3実施形態においては、塗布工程S13において積層面にフェノール樹脂を塗布した複数枚のオイルパーム単板Wを積層した積層体NW3を所定の温度で熱処理し、この加温された積層体NW3に対して、積層方向、即ち接合する積層面に垂直の方向から所定の押圧力を加えて押圧処理を行う。この熱処理温度と押圧処理圧力とを所定時間維持することにより、積層体NW3の各オイルパーム単板Wの積層面が接合して木質積層板WB3となる(図5参照)。なお、上述のように、加温された積層体NW3に対して押圧処理することに代えて、まず、加温前の押圧処理(冷圧処理)を行ってから、この冷圧された積層体NW3を所定温度に加温して熱処理するようにしてもよい。
 本第3実施形態における接合条件として、まず、熱処理の所定温度とは、特に限定するものではないが、接合材料の反応温度より高温であることが好ましい。一般に、熱処理の所定温度としては、例えば、80~180℃の温度範囲内であり、好ましくは、130~160℃の温度範囲内である。なお、本第3実施形態においては、上述のように、フェノール樹脂に酸触媒を併用することなく使用したので、熱処理温度としては、140~160℃の温度範囲内で熱処理することが好ましい。一方、この温度範囲を維持する時間は、接合する単板の枚数や厚みなどにより適宜選定するものであり、特に限定するものではないが、例えば、1分~60分の範囲内であり、好ましくは、5分~30分の範囲内である。
 また、接合する積層面に垂直の方向から加える所定の圧力とは、接合する単板の枚数や厚みなどにより適宜選定するものであり、特に限定するものではないが、例えば、5~50kg/cmの圧力範囲内であり、好ましくは、10~30kg/cmの圧力範囲内である。なお、接合後の気乾密度(含水率15質量%の気乾状態における密度)の値は、予め計算した圧縮厚さにより制御するようにしてもよい。
 ここで、本第3実施形態においては、この接合工程S15によって、各オイルパーム単板Wの積層面がフェノール樹脂の反応により強固に接合する。オイルパーム単板Wが上述のように少量のフェノール樹脂で接合する理由については定かではないが、オイルパームの幹材に含まれる樹脂成分や糖類など、即ち、セルロース、ヘミセルロース、リグニン、遊離糖(主にショ糖、グルコース、フルクトースなど)、及び、デンプンの各成分がフェノール樹脂のメチロール基(ホルマリン)と反応することにより強固に接合すると共に、木質積層板WB3自体の物性の向上に寄与しているものと考えられる。
 《解圧工程S16》
 次に、解圧工程S16において、接合工程S15で積層体NW3の各積層面が接合された後に、押圧処理圧力を解圧して木質積層板WB3を得る。解圧工程後の木質積層板WB1は、上記第1実施形態と同様の形状をしている(図5参照)。ここで、接合前の積層体NW3(図4)と接合後の木質積層板WB3(図5)とは、長さ方向及び幅方向の寸法に大きな変化は現れていない。これに対して、厚さ方向、即ち積層方向(図示上下方向)には変化が見られ(図では分かり辛い)、接合の際の熱処理及び押圧処理によって圧縮されて木質積層板WB3の密度が接合前の積層体NW3の密度より大きくなっている。なお、解圧工程S16後の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内とすることにより良好な物性を得ることができる。
 この解圧工程S16においては、木質積層板WB3に対して押圧処理圧力を維持した状態で温度を降下させて冷却し、その後押圧処理圧力を解圧(冷却解圧)するようにしてもよい。また、接合後の木質積層板WB3対して熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)し、その後冷却するようにしてもよい。これらの場合において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する方が冷却解圧に比べ、接合工程S15から解圧工程S16に至る処理時間が短縮され、木質積層板WB3の製造コストが削減されるので好ましい。
 但し、解圧工程S16において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、木質積層板WB3の気乾密度(含水率15質量%の気乾状態における密度)の値が接合強度に影響を及ぼすので注意を要する。すなわち、接合工程S15における押圧処理により接合後の木質積層板WB3の気乾密度の値が大きくなった場合、高温解圧したときに接合面に部分的なはく離が生じることがある。
 この理由は定かではないが、木質積層板WB3を構成するオイルパーム材は、内部に水分を保持している。また、フェノール樹脂などの接合材料も水分を保有している。更に、フェノール樹脂などのホルマリン縮合反応は脱水反応であり、その際にも水分が発生する。これらの水分は、接合工程S15の際にオイルパーム材内部や積層面に高温高圧の状態で保持されている。
 この高温高圧の水分が、高温を維持したまま解圧された場合には、高圧の水蒸気として木質積層板WB3の外部に放出される。その際に、木質積層板WB3の気乾密度の値が大きくなると、オイルパーム材を通して放出される量が減り、接合面から膨張した水蒸気となって導通するものと思われる。よって、木質積層板WB3の接合面に部分的なはく離が生じるものと思われる。そこで、解圧工程S16において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、接合工程S5後の木質積層板WB3の気乾密度の値を、1.0g/cm以下とすることにより良好な物性を得ることができる。
 以下、本第3実施形態に係る木質積層板WB3の物性として、気乾密度の変化と接合強度について実施例3により説明する。
 A.オイルパーム単板Wの準備(切削工程S11・乾燥工程S12)
 同一のオイルパーム幹材WDからロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のオイルパーム単板Wを準備した。これらのオイルパーム単板Wの寸法は、厚さ約5mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を長さ方向とするものと、幅方向とするものの両方を準備した。なお、圧密化前の各オイルパーム単板Wの気乾密度の値は、約0.35g/cmのものを使用した。
 B.オイルパーム単板Wの表面へのフェノール樹脂の塗布(塗布工程S13)
 本実施例3においては、接合材料として、フェノール樹脂HP3000A(旭有機材工業株式会社製)を使用した。このフェノール樹脂HP3000Aの固形分(樹脂成分)は、約70重量%であり、その粘度は115mPa・s/25℃であった。
 本実施例3においては、このフェノール樹脂HP3000Aに触媒を併用せず、また、希釈することなく初期粘度を維持したまま、刷毛塗りによりオイルパーム単板Wの一方の表面のみに塗布した。フェノール樹脂HP3000Aの塗布量は、160g/mであり、固形分(樹脂成分)に換算すると、112g/mであった。なお、塗布後の各オイルパーム単板Wは、十分に養生した。
 C.積層体NW3の準備(積層工程S14)
 本実施例3においては、フェノール樹脂HP3000Aを塗布した後のオイルパーム単板Wを5枚組み合わせて、複数の積層体NW3を準備した。これらの積層体NW3は、互いに繊維方向を交差(略直交)するように積層して5層(厚み約25mm)からなるものとした。
 D.積層体NW3の熱処理及び押圧処理(接合工程S15・解圧工程S16)
 このようにして準備した各積層体NW3に対して、通常の合板の製造の際に使用されるホットプレス機を使用して乾熱処理及び押圧処理を行った。本実施例3においては、接合後の気乾密度の値が、0.9g/cm、0.7g/cm、及び、0.5g/cmとなる3水準/3群の木質積層板WB3を作成した。なお、各木質積層板WB3の気乾密度の値は、予め計算した圧縮厚さにより制御した。
 また、3群の木質積層板WB3のそれぞれに対して、乾熱処理の熱処理温度を140℃、150℃、及び、160℃の3水準とし、各積層体NW3が熱処理温度に達した後にプレス圧力をかけ(押圧処理)、プレス後保持時間を5分、10分、15分、及び、20分の4水準とした。ここで、熱処理温度を140℃以上としたのは、フェノール樹脂HP3000Aに触媒を併用していないことから高温処理を必要とするからである。
 次に、所定のプレス後保持時間を維持した木質積層板WB3に対して、冷却することなくプレス圧力を解圧(高温解圧)して、その後自然冷却した。このようにして、接合後の気乾密度が0.9g/cm、0.7g/cm、及び、0.5g/cmの3群に属する各一連の木質積層板WB3を得た。
 このようにして得られた木質積層板WB3の各積層面においては、いずれも、フェノール樹脂がオイルパーム単板Wの厚み方向に対して、積層面近傍にのみ存在し中央部には浸透していないことを確認した。
 E.接合強度(浸漬による接合部分のはく離)
 上述のようにして得られた気乾密度3群に属する各一連の木質積層板WB3に対して、上記実施例1と同様に合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して接合強度を測定した。まず、各木質積層板WB3から長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を70℃の温水中に2時間浸漬した。その後、温水中から取り出した試験片を60℃の雰囲気下で3時間乾燥した。
 この浸漬・乾燥後の試験片において、試験片の側面に現れている接合部分に、はく離が生じているか否かを目視により判断した。判断基準は、はく離していない部分の長さが、50mm以上(試験片の長さの67%以上)であるものを合格(はく離なし)とした。気乾密度3群に属する各一連の木質積層板WB3に対する、はく離の有(×)無(○)を表3(気乾密度:0.9)、表4(気乾密度:0.7)、及び、表5(気乾密度:0.5)に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表3において、気乾密度が0.9g/cmの木質積層板WB3に対して、140℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、150℃及び160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
Figure JPOXMLDOC01-appb-T000004
 
 表4において、気乾密度が0.7g/cmの木質積層板WB3に対して、140℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、150℃及び160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
Figure JPOXMLDOC01-appb-T000005
 
 表5において、気乾密度が0.5g/cmの木質積層板WB3に対して、140℃及び150℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
 更に、表3の気乾密度が0.5g/cmの木質積層板WB3において、良好な接合状態(○)が確認された各木質積層板WB3に対して、日本農林規格(JAS)別記3の(3)に規定する「1類浸せきはく離試験」による評価を行った。まず、各木質積層板WB3から長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を沸騰水中に4時間浸漬した後、60℃±3℃の雰囲気下で20時間乾燥した。更に、試験片を再度沸騰水中に4時間浸漬した後、60℃±3℃の雰囲気下で3時間乾燥した。その結果、いずれの木質積層板WB3も本規格に適合するものであった。
 第4実施形態:
 本第4実施形態は、オイルパーム単板と他樹種の単板とからなる木質積層板及びその製造方法に関するものであり、他の接合材料(接着剤)を少量用いる方法を説明する。ここでは、その製造工程に沿って図面を用いて説明する。本第4実施形態に係る木質積層板の製造工程の概要は、上記第3実施形態と同様である(図8参照)。以下、各工程に沿って本第4実施形態に係る木質積層板及びその製造方法を説明する。
 《切削工程S11》
 まず、切削工程S11において、オイルパームの幹材から単板を形成する。更に、他樹種(本第4実施形態においては、アカシアマンギウムを使用した)の幹材からも単板を形成する。なお、本第4実施形態においては、オイルパーム単板及びアカシアマンギウム単板のいずれに対しても、上記第1実施形態と同様に、生産性に優れ、且つ、連続して均一な単板を形成することのできるロータリーレースによる方法を採用した。なお、本第4実施形態においてロータリーレースにより単板を形成する方法については、上記第1実施形態と同様であり説明を省略する(図2及び図3参照)。
 《乾燥工程S12》
 次に、乾燥工程S12において、切削工程S11で切断されたオイルパーム単板W及びアカシアマンギウム単板AWを乾燥する。オイルパーム単板W及びアカシアマンギウム単板AWの乾燥は、上記第1実施形態と同様に、木材の単板を乾燥する通常の装置、工程によって行うことができる。
 《塗布工程S13》
 次に、塗布工程S13において、乾燥工程S12で乾燥されたオイルパーム単板W及びアカシアマンギウム単板AWを組み合わせて木質積層板を構成する際の積層面(接合する2枚のオイルパーム単板Wとアカシアマンギウム単板AWの境界面)に接合材料を塗布する。
 本第4実施形態に使用する接合材料は、上記第3実施形態と同様に、木材の接合、接着に使用することのできる全ての材料をいうものであり、特に、各種樹脂化合物を使用することが好ましい。これらの樹脂化合物の例は、上記第3実施形態と同様である。なお、本第4実施形態においても、接合材料としてフェノール樹脂を使用した。また、本第4実施形態においても、上記第3実施形態と同様に、フェノール樹脂に酸触媒を併用することなく、高温で熱処理する方法を採用した。
 本第4実施形態においては、オイルパーム単板W又はアカシアマンギウム単板AWの一方の表面のみにフェノール樹脂を塗布するようにしてもよい。或いは、オイルパーム単板W及びアカシアマンギウム単板AWの両方の表面にフェノール樹脂を塗布するようにしてもよい。本第4実施形態においては、オイルパーム単板Wに比べ内部へのフェノール樹脂の浸透が少ないアカシアマンギウム単板AWの表面のみにフェノール樹脂を塗布するという方法を採用する。
 また、アカシアマンギウム単板AWの表面へのフェノール樹脂の塗布は、例えば、刷毛塗り、ローラー、スプレー、印捺などの方法で行うことが好ましい。また、塗布するフェノール樹脂の粘度を高くして、アカシアマンギウム単板AW及びこれに接触するオイルパーム単板Wの表面から内部に浸透しにくくするようにしてもよい。
 このように、本第4実施形態においては、接合後の木質積層板において、オイルパーム単板Wの厚み方向に対して、積層面近傍にのみフェノール樹脂が存在し中央部には浸透していない状態が確保される。このことにより、少ないフェノール樹脂の量で強い接合強度を得ることができ、また、木質積層板の製造コストが低減できる。
 ここで、実用的な接合強度を得ることのできる接合材料(本第4実施形態においてはフェノール樹脂)の塗布量は、上記第3実施形態と同様に、1つの積層面に対して、接合材料の総量で、固形分にして、120g/m以下であることが好ましい。具体的には、10g/m~120g/mの範囲内にあることが好ましく、更に、50g/m~120g/mの範囲内にあることがより好ましい。
 《積層工程S14》
 次に、積層工程S14において、塗布工程S13で積層面にフェノール樹脂を塗布したアカシアマンギウム単板AWとフェノール樹脂を塗布していないオイルパーム単板Wとを交互に積層して積層体NW4を構成する(図6参照)。これらのオイルパーム単板Wとアカシアマンギウム単板AWとを積層する際の組合せにおいては、各単板の繊維方向(木目の方向)を任意の方向で組み合わせることができる。
 例えば、オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が互いに平行になるように積層してもよく、或いは、オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が互いに交差(略直交)するように交互に積層してもよい。また、各オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が直交方向ではない任意の角度に交差するように積層するようにしてもよい。
 ここでは、各オイルパーム単板Wとアカシアマンギウム単板AWとの繊維方向が交差(略直交)するように交互に積層する合板を例にして説明する。このような合板においては、接合される各オイルパーム単板Wとアカシアマンギウム単板AWとが交差(略直交)することにより、互いに強度を補完し合って、完成した木質積層板の物性が大きく向上する。
 本第4実施形態においては、繊維方向を長辺とする2枚のアカシアマンギウム単板AW1、AW2(いずれも塗布工程後)の間に、繊維方向を短辺とする1枚のオイルパーム単板W6(塗布工程を経ていない)を挿入する。これら3枚の単板AW1、W6、AW2は、互いに繊維方向を交差するように積層されて、3層からなる積層体NW4(図6参照)を構成する。
 《接合工程S15》
 次に、接合工程S15において、積層工程S14で構成した積層体NW4の各積層面を接合する。ここで、積層体NW4の接合について説明する。本第4実施形態においても、上記第1実施形態と同様に、積層体NW4の接合には、特殊な装置を必要とせず、熱板とプレス機構を組み合わせた装置を使用することができる。即ち、通常の合板の製造の際に使用されるホットプレス機などを活用することができる。
 本第4実施形態においては、塗布工程S13において積層面にフェノール樹脂を塗布した2枚のアカシアマンギウム単板AW1、AW2の間に1枚のオイルパーム単板W6を挿入して積層した積層体NW4を所定の温度で熱処理し、この加温された積層体NW4に対して、積層方向、即ち接合する積層面に垂直の方向から所定の押圧力を加えて押圧処理を行う。この熱処理温度と押圧処理圧力とを所定時間維持することにより、積層体NW4の各オイルパーム単板Wとアカシアマンギウム単板AWとの積層面が接合して木質積層板WB4となる(図7参照)。
 なお、上述のように、加温された積層体NW4に対して押圧処理することに代えて、まず、加温前の押圧処理(冷圧処理)を行ってから、この冷圧された積層体NW4を所定温度に加温して熱処理するようにしてもよい。なお、本第4実施形態における接合条件(、熱処理温度、温度範囲を維持する時間、及び、積層面に加える圧力)は、上記第3実施形態と同様である。
 ここで、本第4実施形態においては、この接合工程S15によって、各オイルパーム単板Wとアカシアマンギウム単板AWとの積層面がフェノール樹脂の反応により強固に接合する。オイルパーム単板Wとアカシアマンギウム単板AWとが上述のように少量のフェノール樹脂で接合する理由については、上記第3実施形態と同様に考えられる。すなわち、オイルパームの幹材に含まれる樹脂成分や糖類など、即ち、セルロース、ヘミセルロース、リグニン、遊離糖(主にショ糖、グルコース、フルクトースなど)、及び、デンプンの各成分がフェノール樹脂のメチロール基(ホルマリン)と反応することにより強固に接合すると共に、木質積層板WB4自体の物性の向上に寄与しているものと考えられる。
 《解圧工程S16》
 次に、解圧工程S16において、接合工程S15で積層体NW4の各積層面が接合された後に、押圧処理圧力を解圧して木質積層板WB4を得る。図7は、解圧工程後の木質積層板WB4を示している。ここで、接合前の積層体NW4(図6)と接合後の木質積層板WB4(図7)とは、長さ方向及び幅方向の寸法に大きな変化は現れていない。これに対して、厚さ方向、即ち積層方向(図示上下方向)には変化が見られ(図では分かり辛い)、接合の際の熱処理及び押圧処理によって圧縮されて木質積層板WB4の密度が接合前の積層体NW4の密度より大きくなっている。
 この解圧工程S16においては、木質積層板WB4に対して押圧処理圧力を維持した状態で温度を降下させて冷却し、その後押圧処理圧力を解圧(冷却解圧)するようにしてもよい。また、接合後の木質積層板WB4対して熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)し、その後冷却するようにしてもよい。これらの場合において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する方が冷却解圧に比べ、接合工程S15から解圧工程S16に至る処理時間が短縮され、木質積層板WB4の製造コストが削減されるので好ましい。
 但し、解圧工程S16において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、木質積層板WB4の気乾密度(含水率15質量%の気乾状態における密度)の値が接合強度に影響を及ぼすので注意を要する。すなわち、接合工程S15における押圧処理により接合後の木質積層板WB4の気乾密度の値が大きくなった場合、高温解圧したときに接合面に部分的なはく離が生じることがある。
 この理由は定かではないが、木質積層板WB4を構成するオイルパーム材とアカシアマンギウム材はその内部に水分を保持している。また、フェノール樹脂などの接合材料も水分を保有している。更に、フェノール樹脂などのホルマリン縮合反応は脱水反応であり、その際にも水分が発生する。これらの水分は、接合工程S5の際にオイルパーム材内部やアカシアマンギウム材内部及び積層面に高温高圧の状態で保持されている。
 この高温高圧の水分が、高温を維持したまま解圧された場合には、高圧の水蒸気として木質積層板WB4の外部に放出される。その際に、木質積層板WB4の気乾密度の値が大きくなると、オイルパーム材とアカシアマンギウム材を通して放出される量が減り、接合面から膨張した水蒸気となって導通するものと思われる。よって、木質積層板WB4の接合面に部分的なはく離が生じるものと思われる。そこで、解圧工程S16において、熱処理温度を維持した状態で押圧処理圧力を解圧(高温解圧)する場合には、接合工程S5後の木質積層板WB4の気乾密度の値を、1.0g/cm以下とすることにより良好な物性を得ることができる。
 以下、本第4実施形態に係る木質積層板WB4の物性として、気乾密度の変化と接合強度について実施例4により説明する。
 A.オイルパーム単板W及びアカシアマンギウム単板AWの準備(切削工程S11・乾燥工程S12)
 同一のオイルパーム幹材WDからロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のオイルパーム単板Wを準備した。これらのオイルパーム単板Wの寸法は、厚さ約5mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を幅方向とするものを準備した。なお、圧密化前の各オイルパーム単板Wの気乾密度の値は、約0.35g/cmのものを使用した。
 一方、同一のアカシアマンギウム幹材からロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のアカシアマンギウム単板AWを準備した。これらのアカシアマンギウム単板AWの寸法は、厚さ約3mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を長さ方向とするものを準備した。なお、圧密化前の各アカシアマンギウム単板AWの気乾密度の値は、約0.7g/cmのものを使用した。
 B.アカシアマンギウム単板AWの表面へのフェノール樹脂の塗布(塗布工程S13)
 本実施例4においては、接合材料として、上記実施例3と同様に、フェノール樹脂HP3000A(旭有機材工業株式会社製)を使用した。このフェノール樹脂HP3000Aの固形分(樹脂成分)は、70重量%であり、その粘度は115mPa・s/25℃であった。
 本実施例4においては、上記実施例3と同様に、このフェノール樹脂HP3000Aに触媒を併用せず、また、希釈することなく初期粘度を維持したまま、刷毛塗りによりアカシアマンギウム単板AWの一方の表面のみに塗布した。フェノール樹脂HP3000Aの塗布量は、160g/mであり、固形分(樹脂成分)に換算すると、112g/mであった。なお、塗布後の各アカシアマンギウム単板AWは、十分に養生した。
 C.積層体NW4の準備(積層工程S14)
 本実施例4においては、フェノール樹脂HP3000Aを塗布した後の2枚のアカシアマンギウム単板AWの間に1枚のオイルパーム単板Wを組み合わせて、複数の積層体NW4を準備した。これらの積層体NW4は、互いに繊維方向を交差(略直交)するように積層して3層(厚み約11mm)からなるものとした。
 D.積層体NW4の熱処理及び押圧処理(接合工程S15・解圧工程S16)
 このようにして準備した各積層体NW4に対して、通常の合板の製造の際に使用されるホットプレス機を使用して乾熱処理及び押圧処理を行った。本実施例4においては、接合後の気乾密度の値が、0.9g/cm、0.7g/cm、及び、0.5g/cmとなる3水準/3群の木質積層板WB4を作成した。なお、各木質積層板WB4の気乾密度の値は、予め計算した圧縮厚さにより制御した。
 また、3群の木質積層板WB4のそれぞれに対して、乾熱処理の熱処理温度を140℃、150℃、及び、160℃の3水準とし、各積層体NW4が熱処理温度に達した後にプレス圧力をかけ(押圧処理)、プレス後保持時間を5分、10分、15分、及び、20分の4水準とした。ここで、熱処理温度を140℃以上としたのは、フェノール樹脂HP3000Aに触媒を併用していないことから高温処理を必要とするからである。
 次に、所定のプレス後保持時間を維持した木質積層板WB4に対して、冷却することなくプレス圧力を解圧(高温解圧)して、その後自然冷却した。このようにして、接合後の気乾密度が0.9g/cm、0.7g/cm、及び、0.5g/cmの3群に属する各一連の木質積層板WB4を得た。
 このようにして得られた木質積層板WB4の各積層面においては、いずれも、フェノール樹脂がオイルパーム単板Wの厚み方向に対して、積層面近傍にのみ存在し中央部には浸透していないことを確認した。一方、アカシアマンギウム単板AWに関しても、フェノール樹脂が積層面近傍にのみ存在し中央部には浸透していないことを確認した。
 E.接合強度(浸漬による接合部分のはく離)
 上述のようにして得られた気乾密度3群に属する各一連の木質積層板WB4に対して、上記実施例1と同様に合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して接合強度を測定した。まず、各木質積層板WB4から長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を70℃の温水中に2時間浸漬した。その後、温水中から取り出した試験片を60℃の雰囲気下で3時間乾燥した。
 この浸漬・乾燥後の試験片において、試験片の側面に現れている接合部分に、はく離が生じているか否かを目視により判断した。判断基準は、はく離していない部分の長さが、50mm以上(試験片の長さの67%以上)であるものを合格(はく離なし)とした。気乾密度3群に属する各一連の木質積層板WB4に対する、はく離の有(×)無(○)を表6(気乾密度:0.9)、表7(気乾密度:0.7)、及び、表8(気乾密度:0.5)に示す。
Figure JPOXMLDOC01-appb-T000006
 
 表6において、気乾密度が0.9g/cmの木質積層板WB4に対して、140℃及び150℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
Figure JPOXMLDOC01-appb-T000007
 
 表7において、気乾密度が0.7g/cmの木質積層板WB4に対して、140℃及び150℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
Figure JPOXMLDOC01-appb-T000008
 
 表8において、気乾密度が0.5g/cmの木質積層板WB4に対して、140℃及び150℃の熱処理温度においては、プレス後保持時間が5分以下では接合強度が不十分であり、10分以上で接合強度が良好となった。一方、160℃の熱処理温度においては、プレス後保持時間が5分以上で接合強度が良好となった。
 更に、表8の気乾密度が0.5g/cmの木質積層板WB4において、良好な接合状態(○)が確認された各木質積層板WB4に対して、上記実施形態3と同様にして日本農林規格(JAS)別記3の(3)に規定する「1類浸せきはく離試験」による評価を行った。その結果、いずれの木質積層板WB4も本規格に適合するものであった。
 第5実施形態:
 本第5実施形態は、オイルパーム単板のみからなる木質積層板を更に圧密化した木質積層板(圧密化した木質積層板)に関するものである。本第5実施形態においては、圧密化した木質積層板を製造する際の中間材であるプリフォームとして上記第1実施形態で製造した木質積層板を使用する。ここでは、圧密化した木質積層板の製造工程に沿って図面を用いて説明する。
 本第5実施形態においては、まず、オイルパームの幹材から単板を形成し、これらのオイルパーム単板Wを積層して積層体NW1を構成する(図4参照)。次に、この積層体NW1に対して所定の条件(後述する)による熱処理及び押圧処理を行って各オイルパーム単板Wの境界面を接合して木質積層板WB1を製造する(図5参照)。なお、本第5実施形態においてオイルパームの幹材から木質積層板WB1を作成するまでの各工程については、上記第1実施形態と同様であり説明を省略する(図1~図5参照)。
 図9は、本第5実施形態の圧密化において、圧密化前の木質積層板(a)と圧密化後の木質積層板(b)を示す概略図である。本第5実施形態においては、上記第1実施形態と同様にして作製した木質積層板WB1(図9(a)参照)を圧密化した木質積層板PW(図9(b)参照)を製造する際の中間材であるプリフォームとして使用する。ここで、オイルパーム材からなる圧密化した木質積層板PWを製造する際に、プリフォームとして木質積層板WB1を使用するメリットについて再度説明する。
 上述のように、オイルパームの幹材から得られる単板は、単板積層材や合板に従来使用されているラワンなどの単板と異なり密度が低く強度が弱いという特徴がある。従って、高い強度を要求される用途においては、単板積層材や合板として積層接合する場合に圧密化して密度を高くする必要がある。しかし、オイルパームを商業作物として栽培する大規模な栽培地は、単板積層材や合板を製造する工業地や消費地から距離が遠く離れている場合が多い。更に、オイルパームの栽培国から単板積層材や合板の製造国に輸出することも考えられる。これらの場合に、オイルパーム単板の密度が小さく容積が大きいことから輸送容積が大きくなり輸送コストが高くなる。
 また、木質積層板WB1を製造する際には、上述のように、特殊な装置を必要とせず、通常の合板の製造の際に接着剤の硬化に使用されるホットプレス機などを活用することができる。これに対して、オイルパーム単板を圧密化して圧密化した木質積層板PWを製造する際には、特殊な装置を使用することがある。特に、優れた物性を要求される圧密化した木質積層板PWを製造するには、後述するような湿熱処理装置などが必要となる。
 そこで、オイルパームの栽培地において、オイルパーム単板を製造してこれらを複数枚接合して圧密化した木質積層板PWのプリフォームとすることが考えられる。上述のように、このプリフォームの製造には、特殊な装置を必要としない。また、このプリフォームは、運搬し易く、且つ、ある程度圧縮されて密度が大きくなっているので輸送容積が小さくなり輸送コストを抑えることができる。
 次に、プリフォームを消費地に近い工業地に輸送し、ここで特殊な装置を使用してプリフォームを更に圧密化して圧密化した木質積層板PWを製造するようにする。これらのことにより、オイルパームの大規模な栽培地と圧密化した木質積層板PWを製造する工業地、更に消費地とを結んで、資源の有効な利用を図ることができる。
 ここで、本第5実施形態において、プリフォームとしての木質積層板WB1(以下「プリフォームWB1」ともいう)から圧密化した木質積層板PWを製造する圧密化装置MCについて説明する。図10は、本第5実施形態において使用する圧密化装置MCの概要を示す断面図である。図10において、圧密化装置MCは、上下に2分割されるプレス盤10(上プレス盤10A及び下プレス盤10B)から構成される。
 上プレス盤10Aと下プレス盤10Bとは、上下に分割されることにより、内部空間IS及び位置決め孔18を形成する。位置決め孔18は、圧密化前のプリフォームWB1の位置を定め規制するものであって、その周縁部10bを上プレス盤10Aの周縁部10aに対向するようにして下プレス盤10Bに形成されている。上プレス盤10Aの周縁部10aには、プレス盤10の上下動の範囲で内部空間IS及び位置決め孔18を密閉状態とするためのシール部材11が形成されている。
 また、上プレス盤10Aには、その上面側から内部空間IS内に連通され、内部空間IS及び位置決め孔18内に蒸気を供給するための配管口12aを有する配管12が設けられている。この配管12には、その下流側にバルブV4が設けられている。一方、下プレス盤10Bには、その側面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS内から水蒸気を排出するための配管口13aを有する配管13が設けられている。この配管13には、その内部の蒸気圧を検出する圧力計P2と、その下流側のバルブV5と、バルブV5に接続されたドレン配管14が設けられている。
 また、上プレス盤10A及び下プレス盤10Bには、その内部に高温の水蒸気を通すことにより所定の温度に昇温するための配管路15、16が形成されており、これら配管路15、16には蒸気供給側の配管ST1から分岐された配管ST2、ST3、蒸気排出側の配管ET1、ET2がそれぞれ接続されている。これらの蒸気供給側の配管ST1,ST2、ST3の途中にはバルブV1、V2、V3、配管ST1内の蒸気圧を検出する圧力計P1が配設されており、蒸気排出側の配管ET1、ET2は、バルブV6を介してドレン配管14に接続されている。
 なお、図10においては、配管ST1に水蒸気を供給するボイラ装置、また、プレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aを上昇/下降させ加圧するための油圧機構を含むプレス昇降装置は省略する。
 更に、上プレス盤10A及び下プレス盤10B内に形成された配管路15、16に水蒸気に換えて低温の冷却水を通すことによって所望の温度に冷却する冷却水供給側の配管ST11から分岐された配管ST12、ST13が、上記配管ST2、ST3にそれぞれ接続されている。また、冷却水供給側の配管ST11、ST12、ST13の途中にはバルブV11、V12、V13が配設されている。なお、図10においては、配管ST11に冷却水を供給する冷却水供給装置は省略する。
 次に、このように構成された圧密化装置MCを用いて、プリフォームWB1から圧密化した木質積層板PWを製造する製造工程について図11の各工程に沿って説明する。まず、図11(a)において、圧密化装置MCにおける固定側の下プレス盤10Bに対して上プレス盤10Aが上昇し、プリフォームWB1を上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内に載置する。
 ここで、本第5実施形態において、圧密化した木質積層板PWの材料となるプリフォームWB1は、所定の寸法(厚さ・幅・長さ)に形成されたものであり、5枚のオイルパーム単板W1、W2、W3、W4、W5の積層面(境界面に平行)を上プレス盤10A及び下プレス盤10Bの各プレス面に対向させ、下プレス盤10Bの位置決め孔18に載置する。
 次に、図11(b)において、固定側の下プレス盤10Bの位置決め孔18上に載置したプリフォームWB1に対して上プレス盤10Aを下降させてプリフォームWB1の上面、即ち、積層面(境界面に平行)に対して垂直方向に当接させる。この状態において、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110℃~180℃)の水蒸気を通して、内部空間IS及び位置決め孔18内を所定温度(例えば、110℃~180℃)に昇温する。この状態においては、内部空間IS及び位置決め孔18で構成される空間は、未だ密閉されていない。
 次に、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮力を所定圧力(例えば、5~70kg/cm)に設定し、プリフォームWB1を上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5分~40分)加熱圧縮する。なお、このときの圧縮力は、割れを防止するために、プリフォームWB1の温度上昇、即ち、プリフォームWB1の熱伝導(内部の温度上昇)の状態に応じて徐々に昇温することが望ましく、加熱圧縮の時間も熱伝導に要する時間を考慮して設定することが好ましい。この状態においては、内部空間IS及び位置決め孔18で構成される空間は、未だ密閉されていない。
 次に、図11(c)において、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。この状態において、内部空間IS及び位置決め孔18の密閉状態が維持されると共に、上プレス盤10A及び下プレス盤10Bによる圧縮力が維持された状態で、所定温度(例えば、150~210℃)まで昇温する。
 なお、本第5実施形態において、上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、圧密化後の気乾密度の値が予め設定された値になるように厚さ方向の仕上がり寸法(圧縮率)に設定しておく。このため、プリフォームWB1の厚さ全体の圧縮率、即ち、プリフォームWB1の圧縮による板厚の変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まる
こととなる。
 この状態において、図11(c)に示す内部空間IS及び位置決め孔18の密閉状態で、上プレス盤10A及び下プレス盤10Bの圧縮力が維持され、且つ、内部空間IS及び位置決め孔18が所定温度(例えば、150~210℃)に維持されたまま、所定時間(例えば、30分~120分)保持され、この後の冷却圧縮を解除したときに、戻り(膨張)のない圧密化した木質積層板PWを形成するための加熱処理が行われる。このとき、上プレス盤10A及び下プレス盤10Bで密閉状態とされている内部空間IS及び位置決め孔18を介して、プリフォームWB1の周囲面とその内部とでは高温高圧の蒸気圧が出入り自在となっている。
 なお、このように、本第5実施形態においては、プリフォームWB1の表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間IS及び位置決め孔18に保持されるため、プリフォームWB1は、厚さ全体が十分に加熱され、効率よく圧縮変形されることになる。
 次に、図11(d)において、内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、バルブV5が適宜、開閉される。これにより、配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出されることで、特に、プリフォームWB1の外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され、内部空間IS及び位置決め孔18内が所定の蒸気圧となるように調節される。
 また、必要に応じて、バルブV4に接続された配管12、配管口12a(図8)を介して内部空間ISに所定の蒸気圧を供給することができる。これらにより、木材の加熱圧縮処理の定着、所謂、木材の固定化がより促進されることとなる。
 更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出される。
 次に、図11(e)において、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、10分~120分)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、5~70kg/cm)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
 最後に、図11(f)において、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品である圧密化した木質積層板PWが取出されることで一連の処理工程が終了する。
 以下、本第5実施形態に係る圧密化した木質積層板PWの製造と物性について実施例5により説明する。
 A.オイルパーム単板Wの準備
 同一のオイルパーム幹材WDからロータリーレースを用いてカツラ剥きに剥いで乾燥した複数のオイルパーム単板Wを準備した。これらのオイルパーム単板Wの寸法は、厚さ約5mm、長さ約300mm、幅約200mmであり、繊維方向(木目方向)を長さ方向とするものと、幅方向とするものの両方を準備した。なお、圧密化前の各オイルパーム単板W気乾密度の値は、約0.35(g/cm)のものを使用した。
 B.プリフォームWB1の準備
 本実施例5においては、上記第1実施形態と同様にして作製した木質積層板WB1をプリフォームWB1として使用した。具体的には、まず、上記オイルパーム単板Wを5枚組み合わせて、接合前の厚さが約25mm程度となる積層体NW1を準備した。この積層体NW1は、上記第1実施形態と同様に、互いに繊維方向を交差(略直交)するように積層して5層からなるものとした。なお、積層体NW1を形成するにあたり、各境界面には接着剤など他の成分を付与することがなかった。
 次に、この積層体NW1を上記第1実施形態と同様にして乾熱処理及び押圧処理して各境界面を接合した。本実施例5においては、圧密化した木質積層板PWを製造する際のプリフォームWB1であることから、強い接合強度は要求されない。よって、上記実施例1において測定した接合強度(浸漬による接合部分のはく離)を対象とせず、運搬時に接合部分がはく離しない程度の接合条件で行った。具体的には、乾熱処理の熱処理温度を120℃とし、積層体NW1が熱処理温度に達した後にプレス圧力をかけ(押圧処理)、プレス後保持時間を5分とした。プレス処理後のプリフォームWB1は、冷却することなくプレス圧力を解圧して、その後自然冷却した。なお、接合後の気乾密度の値は、予め計算した圧縮厚さ(約18mm)により制御した。本実施例5においては、接合後の気乾密度が0.5(g/cm)のプリフォームWB1(図9(a)参照)を得た。
 C.圧密化
 このようにして準備したプリフォームWB1に対して、上述の圧密化装置MCを使用して圧密化を行った。なお、本実施例5においては、圧密化温度(設定温度)を170℃とした。
 本実施例5においては、設定温度に昇温後に同温度の水蒸気を併用し、その処理時間(維持時間)を30分とした。また、設定温度に昇温後のプレス圧力を50kg/cmとした。30分の圧密化処理後、温度を常温まで冷却した後、プレス圧力を解除して圧密化を終了した。なお、圧密化後の気乾密度の値は、予め計算した圧縮厚さ(約7mm)により制御した。本実施例5においては、圧密化後の気乾密度が1.3g/cmの圧密化した木質積層板PW(図9(b)参照)を得た。
 D.物性評価
 次に、本実施例5において製造した圧密化した木質積層板PWの各種物性を評価した。評価項目としては、圧密化した木質積層板PWの「表面の硬さ」、「摩耗深さ」、「浸漬による厚さの変化(回復率)」、及び、「浸漬による接合部分のはく離」の4項目とした。なお、製造した圧密化した木質積層板PWの表面は、サンダー(研磨装置)を用いて平滑に仕上げてから各測定を行った。以下、各評価項目及び評価結果について説明する。
 a.表面の硬さ
 上記圧密化した木質積層板PWに対して、JIS Z 2101:1994(木材の試験方法)に規定する「ブリネル硬さ試験」に準拠して測定した。圧密化した木質積層板PWから試験片を作製し、ブリネル硬さ試験機を使用して試験片の表面に直径10mmの鋼球を深さ1/πmm(約0.32mm)まで圧入した。このときの圧入荷重P(N)を測定し、下記の式(1)により、
   H=P/10  ・・・(1)
試験片の表面の硬さH(N/mm)の値を求めた。圧密化した木質積層板PWに対して求めた表面の硬さHの値を表9に示す。
 b.摩耗深さ
 上記圧密化した木質積層板PWに対して、JIS Z 2101:1994(木材の試験方法)に規定する「摩耗試験」に準拠して測定した。圧密化した木質積層板PWから試験片を作製し、JISに規定する摩耗試験装置を使用して試験片の表面を摩耗した。具体的には、試験片を摩耗試験装置の回転盤に水平に固定し、研摩紙を巻き付けた摩耗輪2個を、試験片の表面上で500回転させた。このとき、試験片の表面に加わる総荷重量に相当する質量は、摩耗輪の質量を含め5.2N±0.05Nとした。
 500回転後の試験片の表面の厚さ摩耗量(摩耗深さ)は、次のようにして求めた。試験片の測定前の質量をm1(mg)、試験片の試験後の質量をm2(mg)、摩耗試験装置の摩耗輪による摩耗を受ける部分の面積をA(mm)、試験片の密度をρ(g/cm)としたときに、下記の式(2)により、
   D=(m1-m2)/A・ρ  ・・・(2)
試験片の表面の摩耗深さD(mm)の値を求めた。圧密化した木質積層板PWに対して求めた摩耗深さDの値を表9に示す。
 c.浸漬による厚さの変化(回復率)
 上記圧密化した木質積層板PWに対して、本出願人が社内試験法として採用する「湿潤回復試験」により測定した。圧密化した木質積層板PWから試験片を作製し、この試験片を30℃の温水中に1時間浸漬した。その後、温水中から取り出した試験片を105℃の雰囲気下で含水率の値が0質量%となる全乾状態になるまで乾燥した。
 ここで、浸漬前の含水率の値が15質量%の気乾状態にある試験片の積層方向の厚さをA(mm)とし、浸漬・乾燥後の含水率の値が0質量%となる全乾状態にある試験片の積層方向の厚さをB(mm)としたときに、下記の式(3)により、
   C(%)=〔(B-A)/A〕×100  ・・・(3)
試験片の浸漬による厚さの回復率C(%)の値を求めた。圧密化した木質積層板PWに対して求めた厚さの回復率Cの値を表9に示す。
 d.接合強度(浸漬による接合部分のはく離)
 上記実施例1及び実施例2と同様の試験を行った。即ち、上記圧密化した木質積層板PWに対して、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して測定した。圧密化した木質積層板PWから長さ方向75mm×幅方向75mmの試験片を作製し、この試験片を70℃の温水中に2時間浸漬した。その後、温水中から取り出した試験片を60℃の雰囲気下で3時間乾燥した。
 この浸漬・乾燥後の試験片において、試験片の側面に現れている接合部分に、はく離が生じているか否かを目視により判断した。判断基準は、はく離していない部分の長さが、50mm以上(試験片の長さの67%以上)であるものを合格(はく離なし)とした。圧密化した木質積層板PWに対する、はく離の有(×)無(○)を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 
 表9から分かるように、本実施例5に係る圧密化した木質積層板PWの物性値は、いずれも良好な値を示しており、上述の木質積層板WB1を更に密度を高くして圧密化することにより構造材料や建築内装材など広い用途に使用することができる。
 以上、説明したように、本発明によれば、これまで利用されることなく放置されていたオイルパームの幹材を本来の木質材料として有効に利用して、新たな産業廃棄物を生み出すことがなく、且つ、実用的な物性を有すると共に低コストで生産することができる木質積層板及びその製造方法を提供することができる。更に、本発明によれば、圧密化した木質積層板のプリフォームとしても利用することができる木質積層板及びその製造方法を提供することができる。なお、本発明に係る木質積層板をプリフォームとして利用することにより、プリフォームの輸送コストを抑えることができる。
 なお、本発明の実施にあたり、上記各実施形態に限らず次のような種々の変形例が挙げられる。
(1)上記各実施形態においては、オイルパーム幹材等から単板を形成する際にロータリーレースを使用するが、これに限るものではなく、例えば、挽板により製材するようにしてもよい。
(2)上記各実施形態においては、接合する単板の繊維方向を互いに交差(略直交)するように積層して積層体を構成したが、これに限るものではなく、接合する単板の繊維方向を互いに平行にして積層するようにしてもよい。また、接合する単板の繊維方向を直交方向ではない任意の角度に交差させて積層するようにしてもよい。
(3)上記各実施形態においては、接合する単板の繊維方向を互いに交差(略直交)するように積層して積層材を構成したが、これに限るものではなく、多層からなる積層体の表層付近だけを交差(略直交)するようにしてもよい。例えば、7層からなる積層材を構成する場合に、表裏両面から2層のみの繊維方向を交差させ、内部の3層は平行にして積層するようにしてもよい。
(4)上記第1実施形態、第3実施形態及び第5実施形態においては、5枚のオイルパーム単板を積層するものであるが、これに限るものではなく、2枚~4枚、或いは6枚以上のオイルパーム単板を積層して木質積層板或いは圧密化した木質積層板を製造するようにしてもよい。
(5)上記第2実施形態及び第4実施形態においては、2枚のアカシアマンギウム単板と1枚のオイルパーム単板を積層するものであるが、これに限るものではなく、更に多くの単板を積層して木質積層板を製造するようにしてもよい。また、オイルパーム単板以外の樹種の単板は、アカシアマンギウム単板以外の単板を使用するようにしてもよい。
(6)上記第5実施形態においては、オイルパーム単板のみからなる木質圧密積層板を製造するものであるが、これに限るものではなく、上記第2実施形態のようにオイルパーム単板と他樹種単板とからなる圧密化した木質積層板を製造するようにしてもよい。
(7)上記第5実施形態においては、接合材料を使用しない木質積層板をプリフォームとして圧密化した木質積層板を製造するものであるが、これに限るものではなく、上記第3実施形態及び第4実施形態のように接合材料を使用した木質積層板をプリフォームとして圧密化した木質積層板を製造するようにしてもよい。
(8)上記第5実施形態の圧密化においては、プレス盤に対して配管を用いて高温の水蒸気を導入して処理空間(内部空間IS)内のオイルパーム単板を加熱するものであるが、これに限るものではなく、高周波加熱、マイクロ波加熱等を用いてプリフォームとして木質積層板を加熱するようにしてもよい。
(9)上記第5実施形態の圧密化においては、プリフォームとして木質積層板を所定温度で処理する際に、高温の水蒸気を併用するものであるが、これに限るものではなく、処理空間(内部空間IS)内に液体の水を供給しておき、この水から発生する水蒸気により圧密化するようにしてもよく、或いは熱圧処理において木質積層板が含有する水分によって圧密化するようにしてもよい。
(10)上記第3実施形態及び第4実施形態においては、各単板の接合材料としてフェノール樹脂を使用するが、これに限るものではなく、オイルパーム単板同士、或いは、オイルパーム単板と他樹種単板とを接合することのできる材料を使用すればよい。フェノール樹脂以外の接合材料としては、ユリア樹脂、メラミン樹脂、フラン樹脂、ウレタン樹脂、エポキシ樹脂などを挙げることができる。
S1、S11…切削工程、S2、S12…乾燥工程、S13…塗布工程、
S3、S14…積層工程、S4、S15…接合工程、S5、S16…解圧工程、
WD…オイルパーム幹材、CT…刃物、UWD…オイルパーム連続剥離板、
W、W1、W2、W3、W4、W5…オイルパーム単板、
AW、AW1、AW2…アカシアマンギウム単板、
NW1、NW2、NW3、NW4…積層体、
WB1、WB2、WB3、WB4…木質積層板、
PW…圧密化した木質積層板。

Claims (11)

  1.  2枚以上の木質単板を積層して積層体を構成し、当該積層体の積層面を形成する少なくとも一方の木質単板がオイルパーム材からなり、前記積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより接合してなる木質積層板であって、
     前記積層面の接合には、前記木質単板以外の接合材料を付加することなく、前記オイルパーム材が内部に含有する接合成分のみによって接合され、
     その気乾密度の値が、0.5g/cm~1.0g/cmの範囲内にあり、且つ、気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して測定することにより、当該試験片の側面に現れている接合部分において、はく離していない部分の長さが、当該接合部分の長さの67%以上であることを特徴とする木質積層板。
  2.  2枚以上の木質単板を積層して積層体を構成し、当該積層体の積層面を形成する少なくとも一方の木質単板がオイルパーム材からなり、前記積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより接合してなる木質積層板であって、
     前記積層面の接合には、前記オイルパーム材が内部に含有する接合成分に加え各積層面に塗布された接合材料の作用により接合され、
     その気乾密度の値が、0.5g/cm~1.0g/cmの範囲内にあり、且つ、気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「2類浸せきはく離試験」に準拠して測定することにより、当該試験片の側面に現れている接合部分において、はく離していない部分の長さが、当該接合部分の長さの67%以上であることを特徴とする木質積層板。
  3.  気乾状態にある前記木質積層板から試験片を準備し、合板の日本農林規格(JAS)別記3の(3)に規定する「1類浸せきはく離試験」の基準に適合することを特徴とする請求項2に記載の木質積層板。
  4.  前記各積層面に対する前記接合材料の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下であることを特徴とする請求項2又は3に記載の木質積層板。
  5.  オイルパーム材以外の樹種からなる2枚以上の木質単板の間に、それぞれ、オイルパーム材からなる木質単板を積層することを特徴とする請求項1~4のいずれか1つに記載の木質積層板。
  6.  前記オイルパーム材からなる木質単板は、オイルパームの幹材をロータリーレース又はスライサーなどの切削手段により切削した木質単板であることを特徴とする請求項1~5のいずれか1つに記載の木質積層板。
  7.  請求項1~6のいずれか1つに記載の木質積層板を中間材として使用し、
     当該中間材を前記熱処理の温度よりも高温に昇温する第2の熱処理を行うと共に、前記中間材に対して各木質単板の境界面に垂直な方向から前記押圧処理よりも高い圧力をかける第2の押圧処理を行うことにより圧密化され、
     圧密化後の気乾密度の値が、1.0g/cm~1.5g/cmの範囲内にあることを特徴とする圧密化された木質積層板。
  8.  2枚以上の木質単板を組み合わせて積層を形成し、当該積層体の各積層面を形成する少なくとも一方をオイルパーム材からなる木質単板とする積層工程と、
     当該積層工程後の積層体を所定温度に昇温して熱処理すると共に、前記積層体に対して各木質単板の積層面に垂直な方向から所定の圧力をかけて押圧処理することにより前記積層面を接合する接合工程とを有し、
     前記接合工程後の気乾密度の値を、0.5g/cm~1.0g/cmの範囲内とすることを特徴とする木質積層板の製造方法。
  9.  前記積層工程の前に、前記積層体の各積層面を形成する一方又は両方の木質単板の表面に接合材料を塗布する塗布工程を有し、
     前記積層面に塗布する前記接合材料の塗布量は、1つの積層面に対する総量を固形分にして、120g/m以下であることを特徴とする請求項8に記載の木質積層板の製造方法。
  10.  前記接合工程における前記熱処理は、80℃~180℃の温度で1分~60分の乾熱処理であることを特徴とする請求項8又は9に記載の木質積層板の製造方法。
  11.  前記接合工程後において、前記熱処理で昇温した前記積層体を冷却する冷却工程を経ることなく、前記押圧処理を解圧することを特徴とする請求項8~10のいずれか1つに記載の木質積層板の製造方法。
PCT/JP2015/070439 2015-07-16 2015-07-16 木質積層板及びその製造方法 WO2017010005A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580080498.XA CN107614221B (zh) 2015-07-16 2015-07-16 木质层叠板及其制造方法
JP2017528260A JPWO2017010005A1 (ja) 2015-07-16 2015-07-16 木質積層板及びその製造方法
PCT/JP2015/070439 WO2017010005A1 (ja) 2015-07-16 2015-07-16 木質積層板及びその製造方法
MYPI2017704126A MY192141A (en) 2015-07-16 2015-07-16 Woody laminated plate and method for manufacturing same
CONC2017/0011990A CO2017011990A2 (es) 2015-07-16 2017-11-27 Placa leñosa laminada y método para la fabricación de la misma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070439 WO2017010005A1 (ja) 2015-07-16 2015-07-16 木質積層板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017010005A1 true WO2017010005A1 (ja) 2017-01-19

Family

ID=57757287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070439 WO2017010005A1 (ja) 2015-07-16 2015-07-16 木質積層板及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2017010005A1 (ja)
CN (1) CN107614221B (ja)
CO (1) CO2017011990A2 (ja)
MY (1) MY192141A (ja)
WO (1) WO2017010005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143004A1 (ja) * 2017-01-31 2018-08-09 株式会社パームホルツ 複合圧密合板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666901B (zh) * 2019-09-24 2021-10-08 千年舟新材科技集团股份有限公司 环保防潮木板及其制备方法和应用
WO2021106308A1 (ja) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 木質積層板の製造方法
WO2022111835A1 (en) * 2020-11-30 2022-06-02 Swiss Wood Solutions Ag Densified hygroscopic materials and products made thereof
DE102021111193B4 (de) * 2021-04-30 2023-08-31 Moehringer Palmwood GmbH Verfahren zur Verarbeitung der Stämme von Ölpalmen zur Herstellung von Holzprodukten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298401A (ja) * 1988-10-04 1990-04-10 Shigeru Yoshihara 成形合板の製造方法
JP2014019031A (ja) * 2012-07-17 2014-02-03 Mywood 2 Kk 積層合板
JP2015000533A (ja) * 2013-06-17 2015-01-05 マイウッド・ツー株式会社 オイルパーム圧密合板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101310946A (zh) * 2007-05-22 2008-11-26 林小平 一种实木复合地板及其制造方法
CN101544003A (zh) * 2008-07-31 2009-09-30 通辽市锦秀木业有限公司 一种细木工板加工生产工艺
CN204309067U (zh) * 2014-02-28 2015-05-06 佛山市高明盈星木业有限公司 一种新型结构的油棕木大芯板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298401A (ja) * 1988-10-04 1990-04-10 Shigeru Yoshihara 成形合板の製造方法
JP2014019031A (ja) * 2012-07-17 2014-02-03 Mywood 2 Kk 積層合板
JP2015000533A (ja) * 2013-06-17 2015-01-05 マイウッド・ツー株式会社 オイルパーム圧密合板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143004A1 (ja) * 2017-01-31 2018-08-09 株式会社パームホルツ 複合圧密合板

Also Published As

Publication number Publication date
MY192141A (en) 2022-07-29
CN107614221A (zh) 2018-01-19
CO2017011990A2 (es) 2018-04-19
JPWO2017010005A1 (ja) 2018-11-01
CN107614221B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2017010005A1 (ja) 木質積層板及びその製造方法
JP7522403B2 (ja) 木質系材料及びその製造方法
JP6175926B2 (ja) オイルパーム圧密合板
WO2018143004A1 (ja) 複合圧密合板
JP6164649B2 (ja) 木質積層板、木質圧密積層板及び木質圧密積層板の製造方法
JP6083700B2 (ja) オイルパームの乾燥装置及びその乾燥方法
JP6168357B2 (ja) 木質積層板及びその製造方法、並びに、木質圧密積層板及びその製造方法
JP5963195B2 (ja) オイルパーム圧密材
WO2018061919A1 (ja) 圧密合板
JP6143046B2 (ja) 積層合板
JP2012111129A (ja) 積層材
JP6086521B2 (ja) オイルパーム薄板の接合組成物及びその接合方法
JP6086522B2 (ja) オイルパーム圧密材
CN106625909A (zh) 一种玉米秸秆皮单板层积材的制备方法
JP6083692B2 (ja) 積層合板の製造方法
JP6014396B2 (ja) 積層合板
Chawla et al. Use of lignocellulosic biomaterials for sustainable development of bamboo strand lumber for structural applications
JP6086523B2 (ja) オイルパーム圧密材
JP6083691B2 (ja) 積層合板の製造方法
WO2014057583A1 (ja) オイルパーム圧密材
JP2012111128A (ja) 積層材
WO2021167059A1 (ja) 構造用単板積層材及びその製造方法
Sumardi et al. Bamboo hybrid laminate board (Gigantochloa apus) strip with falcata veneer (Paraserianthes falcataria) in selected fiber directions
WO2014057581A1 (ja) オイルパーム圧密材、オイルパーム材の接合組成物、オイルパーム材の接合方法、積層合板及びその製造方法
Jarusombuti et al. Sandwich type panels made from rubberwood and eastern redcedar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: NC2017/0011990

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017528260

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15898317

Country of ref document: EP

Kind code of ref document: A1