WO2017009914A1 - 電力制御装置、電力制御方法及びプログラム - Google Patents

電力制御装置、電力制御方法及びプログラム Download PDF

Info

Publication number
WO2017009914A1
WO2017009914A1 PCT/JP2015/069967 JP2015069967W WO2017009914A1 WO 2017009914 A1 WO2017009914 A1 WO 2017009914A1 JP 2015069967 W JP2015069967 W JP 2015069967W WO 2017009914 A1 WO2017009914 A1 WO 2017009914A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
power generation
surplus
power consumption
Prior art date
Application number
PCT/JP2015/069967
Other languages
English (en)
French (fr)
Inventor
香 佐藤
一郎 丸山
聡司 峯澤
矢部 正明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/069967 priority Critical patent/WO2017009914A1/ja
Priority to JP2017528023A priority patent/JP6410940B2/ja
Publication of WO2017009914A1 publication Critical patent/WO2017009914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a power control device, a power control method, and a program.
  • This invention is made
  • the power control apparatus of the present invention provides: A surplus power calculation unit that calculates a transition of surplus power in a place where the power generation facility and the storage battery are installed and the device is used; An error calculation unit for calculating a transition of an error of the surplus power; Based on the transition of the surplus power and the transition of the error, a control unit that controls charging / discharging of the storage battery, Is provided.
  • the present invention in the case where the actual surplus power falls below the calculated surplus power by controlling the charge / discharge of the storage battery based on the calculated surplus power transition and the surplus power error transition. Since power purchase can be suppressed, the economic efficiency of consumers can be improved.
  • FIG. 1 is a block diagram showing a configuration of a power control system according to a first embodiment.
  • 3 is a block diagram showing a hardware configuration of the power control apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram showing a functional configuration of the power control apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart showing a control mode selection process executed by the power control apparatus according to the first embodiment. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the charge information which concerns on Embodiment 1.
  • FIG. 4 is a flowchart illustrating processing in a consumption priority mode executed by the power control apparatus according to the first embodiment.
  • (A) is a figure which shows an example of power consumption log
  • (B) is a figure which shows an example of total power consumption log
  • FIG. About Embodiment 1 (A) is a figure which shows an example of weather forecast information, (B) is a figure which shows an example of weather performance information. 4 is a flowchart illustrating a control determination process executed by the power control apparatus according to the first embodiment.
  • FIG. 6 is a state transition diagram for explaining hit rate information according to the first embodiment. It is a figure which shows an example of the electric energy corresponding to the transition of the electric power generation predicted value, the electric power consumption predicted value, the maximum total electric power consumption, the minimum electric power generation amount, and the surplus electric power according to the first embodiment.
  • FIG. 4 is a flowchart showing shift permission / inhibition determination processing executed by the power control apparatus according to Embodiment 1; 6 is a diagram showing an example of an operation schedule according to Embodiment 1.
  • FIG. It is a figure which shows an example of the apparatus electric power information which concerns on Embodiment 1.
  • FIG. 6 is a block diagram illustrating a part of a functional configuration of a power control apparatus according to Embodiment 2.
  • FIG. 10 is a flowchart illustrating processing in a consumption priority mode executed by the power control apparatus according to the second embodiment.
  • 6 is a flowchart illustrating a power purchase avoidance process executed by the power control apparatus according to the second embodiment. It is a figure which shows an example of transition of the electric power generation amount which concerns on Embodiment 2, and total power consumption.
  • the power control apparatus is a so-called HEMS controller that controls charge / discharge of a storage battery and power-controls a device in a system such as a HEMS (Home Energy Management System), and configures a power control system. Control each device.
  • HEMS Home Energy Management System
  • the power control system 1 is installed in a house H.
  • the power control system 1 includes the power control apparatus 100 described above, a power generation facility 300 that generates power using natural energy, and a power storage facility 400 that stores power using power supplied from the system power source facility CP or the power generation facility 300.
  • a device 500 that consumes power and performs its function a distribution board 600 that relays and distributes power in each device in the system, and a router 700 that relays communication between the home network N2 and the wide area network N3. Composed.
  • the power generation facility 300 and the power storage facility 400 are installed in, for example, a house.
  • the wide area network N3 is connected to a server 800 for storing daily weather forecast information and weather performance information indicating past weather conditions.
  • the power generation facility 300, the power storage facility 400, and the device 500 are connected to a common line PL connected to the system power supply facility CP.
  • Distribution board 600 and device 500 are connected to power control device 100 via home network N1.
  • the power generation facility 300 and the power storage facility 400 are connected to the power control apparatus 100 via the home network N2.
  • the router 700 and the server 800 are connected via a wide area network N3.
  • the home network N1 is a network using ECONET Lite or the like as a communication protocol.
  • the home network N2 is a network composed of a wired or wireless LAN (Local Area Network) or the like.
  • the wide area network N3 includes the Internet.
  • the power generation facility 300 includes a PV (PhotoVoltaics) panel 310 and a PVPCS (Power Conditioning System) 320.
  • the PV panel 310 converts sunlight into DC power and outputs it.
  • the PVPCS 320 includes, for example, a DC / DC converter (not shown) and an inverter circuit (not shown) that converts a direct current input from the DC / DC converter into an alternating current and outputs the alternating current, and is supplied from the PV panel 310. The power is converted into AC power and output to the line PL.
  • the PVPCS 320 maximizes the output power of the PV panel 310 by performing MPPT (maximum power point tracking) control, for example.
  • the power storage facility 400 includes a storage battery 410 and a power storage PCS 420.
  • the storage battery 410 includes, for example, a lead battery, a lithium ion battery, a nickel-cadmium battery, a nickel-hydrogen battery, a redox flow battery, a NAS battery, an electric double layer capacitor, or a Li ion capacitor.
  • the power storage PCS 420 includes a bidirectional DC / DC converter (not shown) and an inverter circuit (not shown). In the discharging operation, the DC power from the storage battery 410 is converted into AC power and output to the line PL. In the charging operation, AC power from line PL is converted to DC power and output to storage battery 410.
  • the power storage PCS 420 is connected to the power control apparatus 100 via the home network N2, and performs a charging operation when receiving a charging command from the power control apparatus 100, and performs a discharging operation when receiving a discharging command from the power control apparatus 100.
  • the device 500 is a device that operates by receiving AC power from the line PL.
  • the device 500 includes, for example, an air conditioner, a water heater, a washing machine, and a refrigerator.
  • Each device 500 periodically refers to an operation schedule stored in an operation schedule storage unit 123 described later included in the power control apparatus 100 and operates according to the operation schedule. For example, the device 500 refers to the operation schedule at intervals of one day.
  • the distribution board 600 includes a plurality (five in FIG. 1) of power meters 601, 602, 603, 604, 605 and a power data collecting device 606.
  • the wattmeter 601 measures the power supplied from the system power supply facility CP or supplied to the system power supply facility CP.
  • the wattmeter 602 measures the power supplied from the power generation facility 300.
  • the wattmeter 603 measures the power supplied from the power storage facility 400 or supplied to the power storage facility 400.
  • the wattmeters 604 and 605 measure the power supplied to the device 500.
  • the power data collection device 606 adds the identification information of the power meters 601, 602, 603, 604, 605 to the power data acquired from each of the power meters 601, 602, 603, 604, 605 and then passes through the home network N1. It transmits to the power control apparatus 100.
  • the power control apparatus 100 includes a control unit 10, a main storage unit 20, an auxiliary storage unit 30, a communication unit 40, an output unit 50, an operation unit 60, and a system bus 70 that connects each unit.
  • the control unit 10 includes a CPU (Central Processing Unit) and reads and executes a program stored in the auxiliary storage unit 30 to comprehensively control the power control apparatus 100.
  • CPU Central Processing Unit
  • the main storage unit 20 has a volatile memory such as a RAM (Random Access Memory).
  • the main storage unit 20 is used as a work area for the control unit 10.
  • the auxiliary storage unit 30 has a nonvolatile memory such as a magnetic disk or a semiconductor memory.
  • the auxiliary storage unit 30 stores a program for the control unit 10 to execute a control mode selection process, a control determination process, and a shift possibility determination process, which will be described later, other programs, and various parameters. In addition, processing results by the control unit 10 are sequentially stored.
  • the communication unit 40 includes a LAN interface, a serial interface, a parallel interface, an analog interface, and the like.
  • the communication unit 40 is connected to the home networks N1 and N2.
  • the output unit 50 includes an output device that displays information input from the control unit 10.
  • the output device includes a device that outputs information to a display device and other external devices.
  • the operation unit 60 includes an input device that inputs command information corresponding to the received operation content to the control unit 10 when an operation by a consumer is received.
  • the input device includes a touch panel, a keyboard, and the like.
  • the charge storage unit 121 stores charge information indicating an electricity charge (unit price of electricity purchase) and a purchase price of electricity (unit price of electricity sale) in each time zone of the day.
  • the charge storage unit 121 stores, for example, a plurality of types of charge information corresponding to each season.
  • the power consumption history storage unit 122 stores a past power consumption history of each device 500 and a total power consumption history of all the devices 500.
  • the operation schedule storage unit 123 stores an operation schedule of the device 500 used in a house for each device 500.
  • the device power storage unit 124 stores device power information indicating the power consumption during operation of the device 500.
  • the power generation amount history storage unit 125 stores a history of power generation amount of the power generation facility 300.
  • the meteorological information storage unit 126 separately stores weather forecast information indicating a weather forecast in each future time zone and weather performance information indicating current and past weather conditions.
  • the hit rate storage unit 127 stores the hit rate of the weather forecast information stored in the weather information storage unit 126.
  • the various storage units described above are provided in the auxiliary storage unit 30.
  • the control unit 10 functions as a charge determination unit 111, a selection unit 112, a power consumption calculation unit 113, a power generation amount calculation unit 114, a surplus power calculation unit 115, a shift determination unit 116, and a power control unit 117.
  • the fee discriminating unit 111 refers to the fee information selected from the fee storage unit 121 and discriminates the magnitude relationship between the power selling unit price and the power purchasing unit price in each time zone.
  • the selection unit 112 selects the control mode of the power control apparatus 100 according to the magnitude relationship between the power sale unit price and the power purchase unit price determined by the fee determination unit 111.
  • the control mode includes a consumption priority mode in which power generated by the power generation facility 300 is preferentially consumed in-house and a power sale priority mode in which power sale is preferentially performed.
  • the power consumption recording unit 118 acquires the power consumption of each device 500 in each time zone from the power data collection device 606 as needed via the home network N1, and individually records the power consumption history of each device 500 for each device 500. It accumulates in the power consumption history storage unit 122. Further, the power consumption recording unit 118 calculates the total power consumption of all the devices 500 and stores it in the power consumption history storage unit 122.
  • the power consumption calculation unit 113 calculates a predicted power consumption value for each time period in one day from the average value of power consumption in each time period for a plurality of past days acquired from the power consumption history storage unit 122. For example, the power consumption calculation unit 113 directly uses the average value of the power consumption in each time slot in the past month as the power consumption prediction value for each time slot.
  • the power generation amount recording unit 119 acquires the power generation amount of the power generation facility 300 at each time zone from the power data collection device 606 as needed via the home network N1, and accumulates the power generation amount history in the power generation amount history storage unit 125. Go.
  • the weather information recording unit 132 acquires the weather forecast information and the weather performance information from the server 800 via the wide area network N3, the router 700, and the home network N2, and distinguishes the weather forecast information from the weather performance information to store the weather information. Store in the unit 126.
  • the power generation amount calculation unit 114 calculates the power generation amount prediction value for each time period in one day from the average value of the power generation amount of each weather condition in each time period in the past plural days acquired from the power generation amount history storage unit 125. .
  • the power generation amount calculation unit 114 acquires, for example, the history of the power generation amount of the power generation facility 300 for the past month from the power generation amount history storage unit 125, and acquires, for example, weather performance information for the past month from the weather information storage unit 126.
  • the electric power generation amount calculation part 114 calculates the average value of the electric power generation amount for every classification
  • the surplus power calculation unit 115 predicts the transition of surplus power from the difference between the power generation amount predicted value calculated by the power generation amount calculation unit 114 and the power consumption prediction value calculated by the power consumption calculation unit 113.
  • the shift determination unit 116 determines the transition of surplus power and the transition of power consumption in the operation time zone (hereinafter referred to as “initial operation time zone”) set in the initial operation schedule of the target device 500 to be determined. Based on this, it is determined whether or not to update the operation schedule in such a manner that the initial operation time zone of the target device 500 is shifted to another operation time zone. Specifically, the shift determination unit 116 first acquires the operation schedule of the target device 500 from the operation schedule storage unit 123 and also acquires the device power information of the target device 500 from the device power storage unit 124. The transition of power consumption in the initial operating hours is calculated.
  • the shift determination unit 116 determines to update the operation schedule when the surplus power exceeds the power consumption of the target device 500 in the entire initial operation time zone of the target device 500. On the other hand, when the power consumption of the target device 500 exceeds the surplus power in at least a part of the initial operation time period, the shift determination unit 116 determines that the operation schedule is not updated.
  • the hit rate calculation unit 131 acquires past weather record information and past weather forecast information from the weather information storage unit 126, calculates the hit rate of the weather forecast, and stores it in the hit rate storage unit 127. .
  • the error calculation unit 120 calculates the error of the surplus power calculated by the surplus power calculation unit 115. In calculating the error of surplus power, the error calculation unit 120 firstly, for each time zone, from the history of the total power consumption of the entire device 500 for each hour in each day of the past several days acquired from the power consumption history storage unit 122. Extract the largest maximum total power consumption in the past few days. Next, the error calculation unit 120 specifies the weather conditions for each time zone in one day based on the weather forecast information acquired from the weather information storage unit 126 and the target rate acquired from the target rate storage unit 127. Using the weather conditions and the history of the power generation amount, the minimum minimum power generation amount among the possible power generation prediction values is calculated.
  • the error calculation unit 120 calculates an error of surplus power from the difference between the maximum power consumption for each time zone and the minimum power generation amount. In addition, when there is a time zone in which the maximum total power consumption is larger than the power generation amount, the error calculation unit 120 integrates the error of the surplus power in the time zone and calculates the power amount corresponding to the surplus power error.
  • the power control unit 117 controls the power storage PCS 420 that performs the charging / discharging operation of the storage battery 410 based on the transition of the surplus power acquired from the surplus power calculation unit 115 and the transition of the surplus power error acquired from the error calculation unit 120. . Specifically, the power control unit 117 appropriately updates the operation schedule of the device 500 based on the surplus power transition, and calculates the amount of power corresponding to the error from the surplus power error transition. Then, power control unit 117 performs charge operation or discharge operation of power storage PCS 420 by transmitting a charge command or a discharge command to power storage PCS 420 via home network N2 according to the amount of power corresponding to the calculated error. Furthermore, the power control unit 117 also has a function of updating the operation schedule of each device 500 stored in the operation schedule storage unit 123 based on the determination result of the shift determination unit 116.
  • the power control apparatus 100 first selects a control mode from either a consumption priority mode in which power generated by the power generation facility 300 is preferentially consumed by itself or a power sale priority mode in which power sale is preferentially performed.
  • the control mode selection process is executed. Thereafter, the power control apparatus 100 starts operation in the selected control mode.
  • the control mode selection process executed by the power control apparatus 100 will be described with reference to FIGS.
  • the fee determination unit 111 determines the current season based on date information indicating the current date. Season information indicating the correspondence between the date and the season is stored in advance in the auxiliary storage unit 30. Then, the fee determination unit 111 acquires fee information according to the current season from the fee storage unit 121.
  • the control mode selection process is started when the fee determination unit 111 acquires the fee information according to the season from the fee storage unit 121.
  • the charge discriminating unit 111 discriminates whether or not the power sale unit price is higher than the power purchase unit price in all time zones (step S110). Specifically, the charge discriminating unit 111 compares the power purchase unit price and the power sale unit price in each time period of the day indicated by the charge information acquired from the charge storage unit 121, and sells in all the time periods of the day. It is determined whether or not the power unit price exceeds the power purchase unit price.
  • the selection unit 112 selects the power selling priority mode (step S150).
  • the fee discrimination unit 111 indicates that the time length of the time zone in which the power sale unit price is higher than the power purchase unit price It is determined whether or not it is equal to or less than a threshold value (step S120).
  • the length of the time threshold is set to, for example, the time required to fully charge the storage battery 410 of the power storage facility 400.
  • the selection unit 112 selects the consumption priority mode (Ste S130), the control mode selection process ends. For example, when the charge information indicates a time transition of the power purchase unit price and the power sale unit price as shown in FIG. 5, there is no time zone in which the power sale unit price is higher than the power purchase unit price. In this case, the charge determination unit 111 determines that the time length of the time zone in which the power sale unit price is higher than the power purchase unit price is equal to or less than the threshold value, and the selection unit 112 selects the consumption priority mode.
  • the charge information indicates the time transition of the power purchase unit price and the power sale unit price as shown in FIG. 6, and the time threshold is set to 4 hours.
  • the time length of the time zone in which the power sale unit price is higher than the power purchase unit price is 3 hours, which is shorter than the time threshold.
  • the charge determination unit 111 determines that the time length of the time zone in which the power sale unit price is higher than the power purchase unit price is equal to or less than the time threshold, and the selection unit 112 selects the consumption priority mode.
  • the charge determining unit 111 determines that the time length of the time zone in which the power selling unit price is higher than the power purchasing unit cost is longer than the time threshold (No in step S120). In this case, the charge determination unit 111 determines whether or not the minimum value of the difference between the power sale unit price and the power purchase unit price in a time zone in which the power sale unit price is higher than the power purchase unit price is equal to or less than the difference threshold (step S140). ).
  • step S140: No When the charge determination unit 111 determines that the minimum value of the difference between the power sale unit price and the power purchase unit price is larger than the difference threshold (step S140: No), the selection unit 112 selects the power sale priority mode ( Step S150), the control mode selection process ends. On the other hand, when the charge determination unit 111 determines that the minimum value of the difference between the power selling unit price and the power purchasing unit price is equal to or less than the difference threshold (step S140: Yes), the selection unit 112 selects the consumption priority mode. (Step S130), the control mode selection process ends.
  • the charge information indicates the time transition of the power purchase unit price and the power sale unit price as shown in FIG. 7, and the time threshold is set to 4 hours and the difference threshold is set to 5 [yen / kWh].
  • the time length of the time zone in which the power sale unit price is higher than the power purchase unit price is 8 hours, which is longer than the time threshold.
  • the difference (minimum difference) between the power selling unit price and the power purchasing unit price is 1 [yen / kWh], which is smaller than the difference threshold.
  • the selection unit 112 selects the consumption priority mode.
  • the power consumption calculation unit 113 calculates a predicted power consumption value for each time zone of the day (step S210). Specifically, the power consumption calculation unit 113 refers to the power consumption history in the power consumption history storage unit 122 and calculates an average value of power consumption in each past time zone as a power consumption predicted value.
  • the power consumption history storage unit 122 associates the power consumption history of the device 500 and the total power consumption history of the entire device 500 with the date and time zone. I remember it.
  • the power consumption calculation unit 113 calculates the total power consumption from the power consumption history of each device 500 for each time zone for the past maximum one month, and stores it in the power consumption history storage unit 122 as the total power consumption history.
  • the power consumption calculation part 113 calculates the average value of the total power consumption of each time slot
  • the power generation amount calculation unit 114 calculates a power generation amount prediction value in the power generation facility 300 in each time zone of the day (step S220). As described above, the power generation amount calculation unit 114 calculates the power generation amount in each time zone in one day from the average value of the power generation amount in each weather condition in each time zone in the past plural days acquired from the power generation amount history storage unit 125. Calculate the predicted value.
  • the power generation amount history storage unit 125 stores the power generation amount in each time zone as shown in FIG. 10, for example. Further, as shown in FIGS. 11A and 11B, for example, the weather information storage unit 126 includes weather forecast information indicating a weather forecast in each time zone and weather performance information indicating current and past weather conditions. I remember it. Here, the weather information storage unit 126 stores weather forecast information and weather performance information in advance before at least the power control apparatus 100 operates in the consumption priority mode.
  • the power generation amount calculation unit 114 classifies the power generation amount based on the time zone and the weather conditions based on the weather result information, and then calculates an average value of the power generation amount for each classification. And the electric power generation amount calculation part 114 makes the average value of the electric power generation amount of the classification
  • the surplus power calculation unit 115 calculates surplus power in each time zone of the day (step S230). Specifically, the surplus power calculation unit 115 surpluses the difference between the predicted power generation amount in each time zone calculated by the power generation amount calculation unit 114 and the predicted power consumption value in each time zone calculated by the power consumption calculation unit 113. Calculated as power.
  • a control determination process for determining the control content is executed (step S240).
  • a process for determining the control content of each device 500 is executed based on the calculated transition of surplus power and the transition of the predicted power consumption value of each device 500.
  • the operation in the consumption priority mode ends.
  • the shift determination unit 116 determines whether or not the operation schedule can be updated in the form of shifting the initial operation time period for the target device 500 that is the target of determining whether or not the operation schedule can be updated.
  • a discrimination process is executed (step S2401). In this shift availability determination process, the shift determination unit 116 selects, as the target device 500, the device 500 whose initial operation time zone is set to a time zone in which the calculated surplus power is negative. The time zone in which the calculated surplus power is negative corresponds to a time zone in which the power generation amount predicted value is lower than the power consumption amount predicted value.
  • the shift determination unit 116 determines whether or not the operation schedule of the target device 500 can be updated in such a manner that the initial operation time period is shifted to another time period in which the calculated surplus power is positive. Determine.
  • the time zone in which the calculated surplus power is negative is equivalent to the time zone in which the predicted power generation amount is lower than the predicted power consumption value, and the time zone in which the surplus power calculated is positive. This corresponds to a time period in which the predicted power generation value is equal to or greater than the predicted power consumption value.
  • the operation schedule is configured such that the initial operation time zone ST1 of the target device 500 existing in the time zone where the power generation amount prediction value is lower than the power consumption prediction value is shifted to another time zone ST2.
  • the time zone ST2 is included in a time zone in which the predicted power generation amount is equal to or greater than the predicted power consumption value.
  • the shift determination unit 116 determines that the operation schedule can be updated.
  • the magnitude relationship between the total power consumption predicted value L22 before the update and the power generation predicted value L21, and the updated total power consumption predicted value L23 The magnitude relationship with the predicted power generation value L22 is reversed.
  • the shift determination unit 116 determines that the operation schedule cannot be updated.
  • the shift determination unit 116 sets shift enable / disable information corresponding to each schedule ID in the operation schedule storage unit 123 by executing a shift enable / disable determination process.
  • the power control unit 117 refers to the operation schedule and determines whether or not the shift availability information of the target device 500 is set to “possible (shiftable)” (step S2402). That is, the power control unit 117 determines whether or not the operation schedule can be updated by shifting the initial operation time zone of the target device 500 to another operation time zone. It is assumed that the power control unit 117 determines that the shift enable / disable information of the target device 500 is set to “impossible” (step S2402: No). In this case, the power control unit 117 avoids updating the operation schedule, refers to the operation schedule and fee information, and surplus power is negative in a time zone where the power purchase unit price is higher than the power purchase threshold (a state where power is insufficient). It is determined whether or not the transition is made (step S2411). The power purchase threshold value can be set to a value desired by the consumer.
  • step S2411: No If the shift determination unit 116 determines that there is a time zone in which the surplus power is positive in a time zone in which the power purchase unit price is higher than the power purchase threshold (step S2411: No), the process of step S2410 is executed as it is. On the other hand, it is assumed that the shift determination unit 116 determines that surplus power is negative (in a state where power is insufficient) in a time zone in which the power purchase unit price is higher than the power purchase threshold (step S2411: Yes). In this case, the power control unit 117 refers to the power purchase unit price of each time slot acquired from the charge storage unit 121, and issues a charge command to charge the storage battery 410 in a time slot where the power purchase price is equal to or less than the power purchase threshold value.
  • step S2412 It transmits to the electricity storage PCS 420 (step S2412). That is, the power control unit 117 controls the power storage PCS 420 to charge the storage battery 410 in a time zone in which the power purchase unit price is equal to or less than the power purchase threshold. Thereafter, the process of step S2410 is executed.
  • the error calculation unit 120 predicts a possible power generation amount.
  • the minimum power generation amount that is the smallest among the values is calculated (step S2403). Specifically, the error calculation unit 120 selects a weather condition having a target hit rate equal to or higher than a target hit threshold from a plurality of weather conditions corresponding to the weather forecast information, and generates power corresponding to each selected weather condition. The smallest of the quantity prediction values is the minimum power generation amount.
  • the error calculation unit 120 acquires the hit rate of each of a plurality of weather conditions corresponding to the weather forecast information from the hit rate storage unit 127.
  • the hit rate storage unit 127 stores hit rate information as shown in FIG.
  • the numbers shown in FIG. 15 indicate the accuracy of each actual weather condition when each weather condition is given as a forecast.
  • the error calculation unit 120 identifies a power generation amount prediction value under a weather condition in which the hit rate is larger than the hit rate threshold as a candidate. For example, as shown in FIG. 15, when the weather forecast is “sunny”, the probability of being “sunny” is actually 80%, the probability of being “rainy” is 7%, and is actually “cloudy”. Assume that the probability is 13%. In this case, the error calculation unit 120 selects “sunny” and “cloudy” when the hit ratio threshold is set to 10%.
  • the error calculation unit 120 acquires the history of the power generation amount from the power generation amount history storage unit 125 and the weather performance information from the weather information storage unit 126, and classifies the power generation amount based on the time zone and the weather conditions. Calculate the average value of power generation for each classification. Then, the error calculation unit 120 specifies the average value of the power generation amount of the classification corresponding to each of “sunny” and “cloudy” in the time zone in which the power generation predicted value is calculated. After that, the error calculation unit 120 sets the average value of the minimum power generation amount among the average values of the power generation amounts corresponding to the identified “sunny” and “cloudy” as the minimum power generation amount.
  • the error calculation unit 120 determines the average value of the power generation amount corresponding to “cloudy”. Is the minimum power generation.
  • the error calculation unit 120 calculates the maximum total power that is the maximum total power consumption in each time zone from the total power consumption of all the devices 500 in each time zone of each of the past multiple days.
  • the power consumption is specified (step S2404). Specifically, the error calculation unit 120 obtains from the power consumption history storage unit 122 from the history of the total power consumption consumed by all the devices 500 in each time zone of the past plural days.
  • the maximum total power consumption that is the maximum total power consumption in the past is specified.
  • step S2405 when it is assumed that the shift determination unit 116 has updated the operation schedule in such a manner that the initial operation time zone of the target device 500 is shifted to another time zone in which the surplus power is included in the positive time zone, It is determined whether or not the minimum power generation amount is larger than the maximum total power consumption in the operation time zone (step S2405).
  • step S2405 When the shift determination unit 116 determines that the minimum power generation amount is larger than the maximum total power consumption in the entire shift destination time zone (step S2405: Yes), the power control unit 117 shifts the initial operating time zone of the target device 500.
  • the operation schedule is updated in such a manner (step S2409).
  • the shift determination unit 116 determines whether or not there is another target device 500 that has not performed the determination as to whether or not the operation schedule can be shifted (step S2410). If the shift determination unit 116 determines that there is no other target device 500 that has not performed the determination of whether or not the shift is possible (step S2410: No), the process returns to the processing in the consumption priority mode of FIG.
  • step S2410 when there is another target device 500 that has not performed the determination as to whether the shift is possible (step S2410: Yes), the shift determination unit 116 identifies another target device 500 that has not performed the determination as to whether the shift is possible. (Step S2413). Then, the process of step S2401 is executed again.
  • the shift determination unit 116 determines that there is a time period in which the minimum power generation amount is smaller than the maximum total power consumption in the entire operating time period after the update (step S2405: No). For example, as illustrated in FIG. 16, when the updated operating time zone ST3 includes a time zone in which the minimum power generation amount L31 is greater than the maximum total power consumption L33, the shift determination unit 116 determines whether the updated operating time zone is the entire operating time zone. It is determined that there is a time period in which the minimum power generation amount is smaller than the maximum total power consumption. In this case, the error calculation unit 120 calculates the amount of power corresponding to the error of surplus power in the time period in which the minimum power generation amount is smaller than the maximum total power consumption (step S2406).
  • the error calculation unit 120 calculates a transition of an error in surplus power that is a difference between the minimum power generation amount and the maximum total power consumption in a time zone in which the minimum power generation amount is smaller than the maximum total power consumption.
  • the amount of power obtained by integrating the calculated transition of error is set as the amount of power corresponding to the error of surplus power.
  • the error calculation unit 120 calculates the amount of power G1 corresponding to an error in surplus power in a time period in which the minimum power generation amount L31 is smaller than the maximum total power consumption L33.
  • the power control unit 117 determines whether or not the storage battery 410 can be charged by the operation start time of the target device 500 (step S2407). Specifically, the power control unit 117 first refers to the operation schedule of the target device 500 in the operation schedule storage unit 123 and acquires the operation start time at which the target device 500 starts operating. Then, the power control unit 117 determines whether or not the time until the operation start time is equal to or longer than the time required to charge the storage battery 410 until the remaining amount of the storage battery 410 reaches the power amount G1 corresponding to at least the surplus power error. Is determined.
  • the power control unit 117 acquires the amount of charge per unit time of the storage battery 410 from the power storage PCS 420, and calculates the amount of charge corresponding to the amount of power G1 corresponding to the surplus power error per unit time of the storage battery 410. The time obtained by dividing by the amount of charge is compared with the time until the operation start time.
  • the power control unit 117 determines that the storage battery 410 cannot be charged by the operation start time of the target device 500 (step S2407: No)
  • the power control unit 117 purchases the power purchase unit price for each time period acquired from the charge storage unit 121.
  • a charge command for charging in a time zone in which the power purchase unit price is equal to or less than the power purchase threshold value is transmitted to power storage PCS 420 (step S2412).
  • step S2407 when the power control unit 117 determines that the storage battery 410 can be charged by the operation start time of the target device 500 (step S2407: Yes), the power control unit 117 immediately transmits a charge command to the power storage PCS 420 (step S2407). S2408). Thereafter, the power control unit 117 updates the operation schedule of the target device 500 (step S2409). Thereafter, the process of step S2410 is executed.
  • step S2401 shown in FIG. 12 the shift possibility determination process executed by the shift determination unit 116 at the beginning of the control determination process will be described in more detail with reference to FIG.
  • the shift discriminating unit 116 uses the updated operating time zone. Whether or not the operation schedule can be updated is determined based on whether or not the surplus power changes to negative (a state where power is insufficient).
  • the shift determination unit 116 identifies a time zone in which the surplus power calculated by the surplus power calculation unit 115 is positive (step S2451).
  • the shift determination unit 116 refers to the operation schedule storage unit 123 and the device power storage unit 124, and calculates the transition of power consumption in the initial operation time zone of the target device 500 (step S2452).
  • the operation schedule storage unit 123 stores a schedule ID, device information, operation information, availability of shift of the operation time zone, operation start time, and operation end time in association with each other.
  • “Device dependent” at the operation end time in FIG. 18 means that the device changes according to the setting of the target device 500.
  • the device power storage unit 124 stores a device ID, device information, operation information, power consumption, and required time in association with each other.
  • “N / A” in the required time in FIG. 19 means that the required time is not fixed.
  • the shift determination unit 116 identifies the time period between the operation start time and the operation end time corresponding to the schedule ID “01” in FIG. 18 as the operation time period.
  • the shift determination unit 116 specifies that the target device 500 is an air-conditioning device and performs a cooling operation during an operation time period from the device information and operation information corresponding to the schedule ID “01” in FIG. Then, the shift determination unit 116 sets the power consumption 250 [W] corresponding to the operation information “cooling” of the device ID 510 corresponding to the air conditioning device in FIG. 19 as the predicted power consumption value in the operation time zone of the target device 500. In this way, the shift determination unit 116 obtains a predicted power consumption value of the target device 500 in each time zone from 0:00 to 24:00 for each schedule ID.
  • the shift determination unit 116 determines whether or not the initial operation time period can be shifted to another time period in the operation schedule of the target device 500 (Ste S2453). Specifically, the shift determination unit 116 first determines whether or not the time length of the time zone in which the surplus power is positive is shorter than the time length of the initial operation time zone. Determine. In addition, when the shift determination unit 116 determines that the time length of the surplus power is a positive time period is greater than or equal to the time length of the initial operation time period, the shift power shifts the initial operation time period from the time period when the surplus power is positive. Select the previous time zone.
  • the shift determination unit 116 updates the operation schedule in such a manner that the initial operation time zone ST1 is shifted to another selected time zone ST2 as shown in FIG. 13, the surplus in the updated operation time zone ST2 If the power does not change to negative (a state where power is insufficient), it is determined that the operation schedule can be updated. On the other hand, when the shift determination unit 116 updates the operation schedule in such a manner that the initial operation time period ST1 is shifted to another selected time period ST2 as shown in FIG. 14, the surplus power is increased in the updated operation time period ST2. When it changes to negative (power is insufficient), it is determined that the operation schedule cannot be updated.
  • the shift discriminating unit 116 shifts the time zone of the shift destination to be selected from the first time zone in which the surplus power is positive toward the last time zone, while surplus in the operating time zone ST2 after the shift. It is repeatedly determined whether or not the power changes to negative (power is insufficient). Then, the shift determination unit 116 determines that the operation schedule can be updated when it is determined that the surplus power does not change negatively in the operation time period ST2 after the shift.
  • step S2453 No.
  • the power control unit 117 sets the shift availability information of the target schedule ID in the operation schedule to “impossible (non-shiftable)” (step S2456). Thereafter, the process returns to the control determination process shown in FIG.
  • step S2453 Yes
  • step S2454 the shift determination unit 116 determines whether the operating time zone overlaps with the operating time zone corresponding to the other schedule ID for the same target device 500 after the schedule update.
  • step S2454 Yes
  • the power control unit 117 displays the shift availability information of the target schedule ID in the operation schedule as “impossible (shift Impossible) ”(step S2456).
  • step S2454 determines that the operating time zone for the same target device 500 does not overlap with the operating time zone corresponding to another schedule ID after the schedule update (step S2454: No).
  • the power control unit 117 sets the shift availability information of the target schedule ID in the operation schedule to “possible (shift possible)” (step S2455). Thereafter, the process returns to the control determination process shown in FIG.
  • the power control apparatus 100 actually controls charging / discharging of the storage battery 410 based on the predicted transition of surplus power and the transition of surplus power error. It is possible to suppress power purchase when the surplus power is less than the calculated surplus power. Accordingly, it is possible to improve the economy of the consumer.
  • the power generation amount calculation unit 114 calculates a power generation amount prediction value from the past power generation amount history acquired from the power generation amount history storage unit 125. Further, the power consumption calculation unit 113 calculates a predicted power consumption value from the past power consumption history acquired from the power consumption history storage unit 122. Then, the surplus power calculation unit 115 predicts the transition of surplus power from the difference between the calculated power generation amount prediction value and the power consumption prediction value. Thereby, since the power control unit 117 can update the operation schedule according to the transition of surplus power, for example, the power purchase ratio by collecting the operation time zones of the respective devices 500 in the time zone where the surplus power is relatively large Can be reduced.
  • the error calculation unit 120 extracts the maximum power consumption in each time slot in a day from the past power consumption history, and calculates the maximum power consumption in each time slot and the past power generation history.
  • An error in surplus power is calculated from the difference from the predicted power generation amount.
  • the storage battery 410 stores electricity enough to compensate for the amount of power corresponding to the surplus power error, so that even if the power generation amount of the power generation facility 300 varies as much as the surplus power error, the storage battery 410 The power supplied to the line PL can be stabilized by the discharge of.
  • the shift determination unit 116 updates the operation schedule in such a manner as to shift the initial operation time zone of the device 500
  • the surplus power is distributed over the entire initial operation time zone of the device 500.
  • the power consumption of the device 500 is exceeded, it is determined that the operation schedule is updated.
  • the error calculation unit 120 integrates the error of the surplus power in that time zone.
  • the amount of power corresponding to the error of surplus power is calculated.
  • the electric power control part 117 is more than the time required until the storage battery 410 is charged until the time until the operation start time of the device 500 reaches the amount of power corresponding to at least the error of the surplus power.
  • the storage battery 410 is controlled to be charged. As a result, the storage battery 410 can reliably store electricity that can compensate for the amount of power corresponding to the error in surplus power.
  • the storage battery 410 is charged until the time until the operation start time of the device 500 reaches the amount of power corresponding to at least the error of the surplus power. It is assumed that it is less than the time required for.
  • the power control unit 117 controls the storage battery 410 to be charged in a time zone in which the power purchase unit price is equal to or less than the power purchase threshold with reference to the power purchase unit price in each time zone of the charge storage unit 121. As a result, it is possible to prevent the device 500 from starting operation in a state where the storage battery 410 is not sufficiently charged, and thus the operation of the device 500 can be stabilized.
  • the power control unit 117 causes the shift determination unit 116 to change the surplus power to be negative (in a state where the power is insufficient) in a time zone in which the power purchase unit price is higher than the power purchase threshold. If it is determined that there is a power purchase unit, control is performed so that the storage battery 410 is charged in a time zone where the power purchase unit price is equal to or less than the power purchase threshold. Thereby, since the storage battery 410 can be charged in the time zone with a low power purchase unit price, the charge cost of the storage battery 410 can be reduced.
  • the error calculation unit 120 determines each day in the day from the weather forecast information acquired from the weather information storage unit 126 and the target rate acquired from the target rate storage unit 127. Identify the weather conditions of the time zone. Then, the error calculation unit 120 calculates a power generation prediction value using the identified weather conditions and the past power generation history, and calculates an error of surplus power from the difference between the maximum power consumption and the minimum power generation. Thereby, since the accuracy of the power generation amount prediction value is improved, the power purchase amount can be suppressed.
  • the error calculation unit 120 selects a weather condition having a hit rate equal to or higher than the hit rate threshold value from a plurality of weather conditions corresponding to the weather forecast information, The minimum power generation amount among the power generation amounts corresponding to each selected weather condition is set as the power generation amount prediction value. Thereby, the error of the surplus power can be largely estimated, and the amount of charge of the storage battery 410 can be shifted by a corresponding amount, so that the power supplied to the line PL can be stabilized.
  • the power generation amount calculation unit 114 determines the power generation amount in each time zone in one day from the average value of the power generation amount in each weather condition in each time zone in the past multiple days. Calculate the predicted value.
  • the power consumption calculation unit 113 calculates a predicted power consumption value for each time slot for one day from the average value of power consumption for each time slot for a plurality of past days. Thereby, even if a sudden abnormal value is included in the past power generation amount or power consumption amount, the error of the power generation prediction value or the power consumption prediction value can be suppressed to a relatively low level.
  • the power control apparatus monitors the magnitude relationship between the power generation amount of the power generation facility and the total power consumption of the device in real time, and according to the magnitude relationship. It has a function to avoid power purchase as much as possible by appropriately stopping each device.
  • power control apparatus 2100 stops device 500 based on the determination result of stop determination unit 2113 that determines whether or not to stop device 500 and stop determination unit 2113.
  • the power control apparatus 2100 has all the configurations shown in FIG. 3, and FIG. 20 shows only the configuration different from that of the first embodiment, and a part of the configuration that overlaps with the first embodiment is omitted.
  • a configuration similar to that in Embodiment 1 will be described using the same reference numerals as those illustrated in FIG. 1 or FIG.
  • each device 500 has a function of stopping its operation when it receives a stop command from the device control unit 2114.
  • the auxiliary storage unit 30 includes a device setting information storage unit 2119 that stores setting information regarding each device 500.
  • the device setting information storage unit 2119 stores, for example, setting information and the like for the water injection washing time and the dewatering time of the washing machine.
  • the stop determination unit 2113 acquires the history of the total power consumption from the power consumption history storage unit 122, acquires the history of the power generation amount from the power generation amount history storage unit 125, and the magnitude relationship between the current total power consumption and the power generation amount Is determined. Then, the stop determination unit 2113 selects the currently operating device 500 with reference to the operation schedule according to the determination result of the current total power consumption and the power generation amount, and from among the selected devices 500 The stop candidate device 500 is specified. The stop determination unit 2113 refers to the operation schedule, acquires the device type and current operation status of the stop candidate device 500 from the device information and operation information of the specified stop candidate device 500, and stops the stop candidate device 500. It is determined whether or not.
  • the device control unit 2114 transmits a stop command to the stop candidate device 500 to each device 500 via the home network N1 according to the determination result of the stop determination unit 2113.
  • the device control unit 2114 updates the operation schedule of the stop candidate device 500 by specifying the operation resumption timing of the stopped stop candidate device 500 based on the charge information acquired from the charge storage unit 121. Then, when the device control unit 2114 updates the operation schedule, the device control unit 2114 transmits an update notification to that effect to the stopped candidate device 500 that has been stopped.
  • Step S250 the same processes as those in the first embodiment are denoted by the same reference numerals as those in FIG.
  • the stop determination unit 2113 determines whether or not the total power consumption of the device 500 exceeds the power generation amount of the power generation facility 300 (step S2501).
  • the stop determination unit 2113 maintains the standby state as long as the total power consumption is equal to or less than the power generation amount (step S2501: No).
  • step S2501: Yes when the total power consumption exceeds the power generation amount (step S2501: Yes), the stop determination unit 2113 refers to the charge information acquired from the charge storage unit 121, and there is a time zone in which the power purchase unit price is lower than the present time. Is determined (step S2502).
  • step S2502: No the process of step S2514 is executed as it is.
  • step S2503 when determining that there is a time zone in which the power purchase unit price is lower than the current time (step S2502: Yes), the stop determination unit 2113 identifies one stop candidate device 500 (step S2503).
  • the stop determination unit 2113 determines whether or not the specified stop candidate device 500 is a water heater (step S2504). Specifically, the stop determination unit 2113 determines whether or not the specified stop candidate device 500 is a water heater based on the device information included in the operation schedule of the stop candidate device 500 acquired from the operation schedule storage unit 123. Determine.
  • the stop determination unit 2113 determines that the specified stop candidate device 500 is a hot water heater (step S2504: Yes)
  • the hot water amount threshold can be set to a value desired by the consumer, and is set to 0.9 (90%), for example.
  • the stop determination unit 2113 refers to the operation schedule of the stop target device 500, calculates the ratio between the elapsed time from the operation start time of the current time and the time from the operation start time to the operation end time, and calculates The amount of hot water boiled to date is estimated from the ratio.
  • the stop determination unit 2113 determines that the ratio of the amount of hot water that the stop candidate device 500 has boiled with respect to the required hot water amount is equal to or greater than the hot water threshold (step S2510: Yes).
  • the device control unit 2114 transmits a stop command to the stop candidate device 500 (step S2506).
  • the stop candidate device 500 receives a stop command from the device control unit 2114, the stop candidate device 500 stops its operation. Therefore, the consumer can obtain the amount of hot water equal to or greater than the ratio defined by the hot water threshold with respect to the required amount, for example, 90% or more of the required amount.
  • step S2510 determines that the ratio of the amount of hot water that the stop candidate device 500 has boiled with respect to the required hot water amount is less than the hot water amount threshold value (step S2510: No)
  • the stop determination unit 2113 refers to the operation schedule and stops other operations. It is determined whether or not the candidate device 500 exists (step S2512). When determining that there is another stop candidate device 500 (step S2512: Yes), the stop determination unit 2113 identifies another stop candidate device 500 (step S2513). Thereafter, the process of step S2504 is executed. On the other hand, when the stop determination unit 2113 determines that there is no other stop candidate device 500 (step S2512: No), the process of step S2514 is executed.
  • the stop determination unit 2113 determines whether or not the specified stop candidate device 500 is a washing machine (step S2505). The stop determination unit 2113 determines whether or not the specified stop candidate device 500 is a washing machine based on device information included in the operation schedule of the stop candidate device 500. When determining that the identified stop candidate device 500 is a washing machine (step S2505: Yes), the stop determination unit 2113 determines whether the operation stage of the washing machine is a dehydration stage (step S2511).
  • the stop determination unit 2113 calculates the ratio of the elapsed time from the operation start time of the current time to the time from the operation start time to the operation end time with reference to the operation schedule of the stop candidate device 500. Then, it is determined from the calculated ratio whether or not the operation stage of the washing machine is the dehydration stage. For example, it is assumed that the length of the entire operation time of the washing machine is 30 minutes, the first 20 minutes is set as the water injection washing time, and the remaining 10 minutes is set as the dewatering time.
  • the stop determination unit 2113 acquires the setting of the water washing time and the dehydration time from the device setting information storage unit 2119. In this case, when the calculated ratio is 0.2, the stop determination unit 2113 determines that the operation stage of the washing machine is not the dehydration stage.
  • step S2511: No If it is determined that the stop candidate device (washing machine) 500 specified by the stop determination unit 2113 is not in the dehydration stage (step S2511: No), the device control unit 2114 transmits a stop command to the stop candidate device 500 (step S2506).
  • the stop candidate device 500 receives a stop command from the device control unit 2114, the stop candidate device 500 stops its operation. Thereby, since the washing machine stops in an operation stage other than the dehydration stage, for example, in a state where water is poured into the tub of the washing machine, it is possible to prevent wrinkles and odors from adhering to the clothes being washed.
  • step S2511: YES the process of step S2512 is executed.
  • the device control unit 2114 specifies the operation resumption timing of the stop candidate device 500 after executing the process of step S2506 (step S2507). Specifically, the device control unit 2114 refers to the charge information acquired from the charge storage unit 121, and sets the start time of the time zone in which the power purchase unit price is lower than the current time as the operation restart time of the stop candidate device 500. Identify. For example, it is assumed that the charge information indicates the time transition of the power purchase unit price shown in FIG. 5, and the power generation amount and the total power consumption indicate the time transition as shown in FIG.
  • T2 is specified as the operation resumption time of the stop candidate device 500.
  • the device control unit 2114 updates the operation schedule of the stopped candidate device 500 that has been stopped based on the identified operation resumption time (step S2508). Specifically, the device control unit 2114 first calculates the time length of the remaining operation period of the stop candidate device 500 at the time when the stop command is transmitted to the stop candidate device 500. And the apparatus control part 2114 updates an operation schedule so that it may operate
  • the device control unit 2114 transmits an update notification for notifying that the operation schedule of the stopped candidate device 500 has been updated to the stopped candidate device 500 (step S2509).
  • the stop candidate device 500 acquires the updated operation schedule from the operation schedule storage unit 123 via the home network N1.
  • the stop determination unit 2113 determines whether or not there has been an end instruction to end the power purchase avoidance process via the operation unit 60 (step S2514). As long as it is determined by the stop determination unit 2113 that there is no termination command (step S2514: No), a series of processing from step S2501 to step S2513 is repeatedly executed. On the other hand, when it is determined by the stop determination unit 2113 that there is an end command (step S2514: Yes), the process returns to the consumption priority mode process shown in FIG.
  • the power control apparatus 2100 appropriately stops the device 500 according to the magnitude relationship between the power generation amount of the power generation facility 300 and the total power consumption of the device 500. Thereby, since electric power purchase can be suppressed, a consumer's economical efficiency can be improved.
  • the power consumption calculation unit 113 may calculate the predicted power consumption value in each time slot with reference to the past operation schedule storage unit 3123 that stores the past operation schedule and the device power storage unit 124.
  • the past operation schedule storage unit 3123 records a schedule ID, device information, operation information, an operation start time, and an operation end time in association with each other.
  • the power consumption calculation unit 113 calculates the time from 6 o'clock to 8 o'clock from the start time and end time corresponding to the schedule ID “101” in FIG. 25 and the power consumption corresponding to the operation information “cooling” in the device ID 510 in FIG.
  • the power consumption prediction value 250 [Wh] of the air conditioner of the belt is calculated. In this way, the power consumption calculation unit 113 calculates the power consumption of each target device 500 in each time zone from 0:00 to 24:00 for each schedule ID.
  • the power consumption calculation part 113 calculates the sum total of the power consumption of each object apparatus 500 in each time slot
  • the power consumption calculation unit 113 calculates the total power consumption prediction value in a form in which the influence on the total power consumption of devices not stored in the past operation schedule storage unit 3123 is removed. Thereby, a power consumption prediction value can be calculated in a form reflecting the past power consumption performance of each device 500.
  • the shift determination unit 116 updates the operation schedule in such a manner that the initial operation time zone of the target device 500 is shifted to another time zone, the surplus power is negative (the power is reduced in the updated operation time zone).
  • the configuration has been described in which whether or not the operation schedule can be updated is determined based on whether or not the state changes to an insufficient state.
  • the determination criterion for the operation schedule update of the shift determination 116 is not limited to this.
  • the shift determination unit 116 may determine whether or not the operation schedule can be updated according to weather conditions in a time zone in which the surplus power indicated by the weather forecast information acquired from the weather information storage unit 126 is positive.
  • the shift determination unit 116 may determine that the operation schedule cannot be updated unconditionally when the weather forecast for the time when the surplus power is positive is “cloudy” or “rainy”.
  • the shift determination unit 116 may determine whether or not the operation schedule can be updated based on the target rate acquired from the target rate storage unit 127 together with the weather forecast information acquired from the weather information storage unit 126. For example, when the target ratio of “cloudiness” or “rain” in the positive time zone is equal to or higher than the target ratio threshold value, the shift determination unit 116 determines that the operation schedule cannot be updated unconditionally. You may do it.
  • This configuration avoids updating the operation schedule by shifting the initial operation time zone of the target device 500 to another time zone in which the power generation amount at the power generation facility 300 is difficult to predict. Thereby, the increase in the power purchase resulting from the dispersion
  • the surplus power calculated by the calculated surplus power is set as the threshold.
  • the operation schedule may be updated in such a manner as to shift to a higher time zone.
  • the shift determination unit 116 determines whether or not there is a time zone in which the transition of surplus power input from the surplus power calculation unit 115 transitions with a magnitude equal to or greater than the surplus power threshold (step S5451).
  • the surplus power threshold is set to 900 kW, for example.
  • step S5451 determines that there is no time zone during which the surplus power changes with a magnitude equal to or greater than the surplus power threshold (step S5451: No).
  • the power control unit 117 sets the shift availability information of the target schedule ID in the operation schedule to “impossible (non-shiftable)” (step S5455). Thereafter, the process returns to the control determination process shown in FIG.
  • step S5451 Yes.
  • the shift determination unit 116 determines whether or not the time length of the time zone in which the surplus power is equal to or greater than the surplus power threshold is shorter than the time length of the initial operation time zone (step S5452).
  • the shift determination unit 116 determines that the time length of the time zone in which the surplus power is equal to or greater than the surplus power threshold is shorter than the time length of the initial operation time zone (step S5452: Yes).
  • the shift enable / disable information of the target schedule ID is set to “impossible (non-shiftable)” (step S5455).
  • the shift determination unit 116 determines that the time length of the time zone in which the surplus power is greater than or equal to the surplus power threshold is greater than or equal to the time length of the initial operation time zone (step S5452: No). In this case, the shift determination unit 116 determines whether or not the operating time zone overlaps with the operating time zone corresponding to another schedule ID for the same target device 500 after the schedule update (step S5453).
  • step S5453: Yes the power control unit 117 sets the shift availability information of the target schedule ID in the operation schedule to “impossible (shift Impossible) ”(step S5455).
  • step S5453: No the shift determination unit 116 determines that the operating time zone for the same target device 500 does not overlap with the operating time zone corresponding to another schedule ID after the schedule update.
  • step S5454: No the power control unit 117 sets the shift availability information of the target schedule ID in the operation schedule to “permitted (shift possible)” (step S5454). Thereafter, the process returns to the control determination process shown in FIG.
  • the power consumption calculation unit 113 uses the average value of power consumption in each time zone on a plurality of past days as a predicted power consumption value in each future time zone.
  • the power consumption calculation unit 113 may be configured to use the median, maximum value, or minimum value of power consumption in each time zone in the past multiple days as the power consumption prediction value in each future time zone.
  • the power generation amount calculation unit 114 calculates the predicted power generation amount for each time period in one day from the average value of the power generation amount for each weather condition in each time period for the past multiple days. explained.
  • the power generation amount calculation unit 114 classifies the power generation amounts in the past multiple days based on time zones and weather conditions, and then calculates an average value of the power generation amount for each classification.
  • the power generation amount calculation unit 114 is configured to calculate the median, the maximum value, or the minimum value for each classification after classifying the power generation amount in a plurality of past days based on time zones and weather conditions. There may be.
  • the power control device may be disposed outside the house H.
  • a power control server connected to the wide area network N3 may function as a power control device.
  • the power control device 5100 is disposed outside the house H.
  • the same reference numerals as those in FIG. The power control device 5100 executes control of the power storage equipment 400 via the router 700 installed in the house H.
  • the shift determination unit 116 controls charging / discharging of the storage battery 410 of the power storage facility 400 based on the calculated surplus power and the error of the surplus power.
  • the operating time period of the target device 500 is determined as the calculated surplus.
  • the configuration may be such that the operation schedule is updated in such a manner that the power is shifted to a time zone higher than the threshold value.
  • the power control apparatus 4100 includes a shift determination unit 4116 that identifies a stop candidate device for an operation schedule based on the transition of surplus power input from the surplus power calculation unit 115. .
  • the shift determination unit 4116 determines whether or not there is a time zone in which the transition of surplus power input from the surplus power calculation unit 115 transitions with a magnitude equal to or greater than the surplus power threshold (step S4241).
  • the surplus power threshold is set to 900 kW, for example.
  • step S4241 When it is determined by the shift determination unit 4116 that there is no time zone during which the surplus power changes with a magnitude equal to or greater than the surplus power threshold (step S4241: No), the power control unit 117 has a power purchase unit price equal to or less than the power purchase threshold. A command to charge in the time zone is transmitted to power storage PCS 420 (step S4243).
  • the power control unit 117 shifts the operation schedule of the target device 500.
  • the shift determination unit 4116 first refers to the operation schedule storage unit 123 and the device power storage unit 124 to calculate the power consumption in the operation time zone of each device 500. Then, the shift determination unit 4116 is a time period in which the power consumption is less than the surplus power threshold and the operation time is larger than the surplus power threshold and the surplus power transitions among the target devices 500 for which the power consumption is calculated. The target device 500 shorter than the length is specified. Then, the power control unit 117 updates the operation schedule in such a manner that the initial operation time zone of the target device 500 specified by the shift determination unit 4116 is shifted to another time zone.
  • This configuration simplifies the content of the process executed by the power control apparatus 4100, and thus reduces the processing load on the power control apparatus 4100.
  • the installation location is not limited to a house.
  • the device 500 such as a public facility is used, it may be installed in a place other than the house. Good.
  • the power storage facility 400 is not limited to a so-called stationary power storage facility, and may be, for example, an electric vehicle.
  • the power control apparatus can be realized by using a normal computer system without depending on a dedicated system.
  • a program for executing the above operation is stored in a non-transitory recording medium (CD-ROM or the like) that can be read by a computer system and distributed.
  • You may comprise the power control apparatus which performs the above-mentioned process by installing in a system.
  • the method of providing the program to the computer is arbitrary.
  • the program may be uploaded to a bulletin board (BBS) on a communication line and distributed to a computer via the communication line.
  • BSS bulletin board
  • the computer activates this program and executes it like other applications under the control of the OS.
  • the computer functions as a power control device that executes the above-described processing.
  • the present invention is suitable for a power control system including a power generation facility and a power storage facility and performing system linkage.

Abstract

電力制御装置(100)は、発電設備と蓄電池を設置した住宅における余剰電力の推移を算出する余剰電力算出部(115)と、余剰電力算出部(115)により算出された余剰電力の誤差の推移を算出する誤差算出部(120)と、余剰電力の推移と、余剰電力の誤差の推移とに基づいて、蓄電池の充放電を制御する電力制御部(117)と、を備える。また、余剰電力算出部(115)は、算出した発電量予測値と消費電力予測値との差分から余剰電力の推移を算出する。誤差算出部(120)は、過去の消費電力の履歴から、1日における時間帯毎の最大消費電力を抽出し、時間帯毎の前記最大消費電力と発電量予測値とに基づいて余剰電力の誤差を算出する。

Description

電力制御装置、電力制御方法及びプログラム
 本発明は、電力制御装置、電力制御方法及びプログラムに関する。
 住宅に発電設備が備えられている場合に、発電設備が発電する電力を積極的に消費し、電気事業者からの買電を抑制することにより、経済性の向上を図った技術が知られている。このような買電を抑制する技術としては、将来の太陽光発電装置の発電量、電力使用量の予測値を算出し、発電量の予測値が電力使用量の予測値を超える時間に、宅内に設置されている機器の稼働時刻を変更する技術が挙げられる(例えば特許文献1参照)。
特開2011-092002号公報
 しかしながら、機器の稼働時刻を変更した後、天気が急に曇りになる等の理由で実際の発電量が予測値を下回り電気使用量よりも少なくなる場合には、不足する電力を電気事業者から買電せざるを得なくなる。この場合、却って需要家に経済的な負担がかかってしまうことになる。
 本発明は、このような実情に鑑みてなされたものであり、買電機会を低減することにより需要家の経済性を向上させることができる電力制御装置等を提供すること目的とする。
 上記目的を達成するため、本発明の電力制御装置は、
 発電設備と蓄電池とが設置され機器が使用される場所における余剰電力の推移を算出する余剰電力算出部と、
 前記余剰電力の誤差の推移を算出する誤差算出部と、
 前記余剰電力の推移と前記誤差の推移とに基づいて、前記蓄電池の充放電を制御する制御部と、
 を備える。
 本発明によれば、算出された余剰電力の推移と、余剰電力の誤差の推移とに基づいて、蓄電池の充放電を制御することにより、実際の余剰電力が算出した余剰電力を下回った場合における買電を抑制することができるので、需要家の経済性を向上させることができる。
実施の形態1に係る電力制御システムの構成を示すブロック図である。 実施の形態1に係る電力制御装置のハードウェア構成を示すブロック図である。 実施の形態1に係る電力制御装置の機能構成を示すブロック図である。 実施の形態1に係る電力制御装置が実行する制御モード選択処理を示すフローチャートである。 実施の形態1に係る料金情報の一例を示す図である。 実施の形態1に係る料金情報の一例を示す図である。 実施の形態1に係る料金情報の一例を示す図である。 実施の形態1に係る電力制御装置が実行する消費優先モードでの処理を示すフローチャートである。 実施の形態1について、(A)は消費電力履歴情報の一例を示す図であり、(B)は総消費電力履歴情報の一例を示す図である。 実施の形態1に係る発電量履歴情報の一例を示す図である。 実施の形態1について、(A)は気象予報情報の一例を示す図であり、(B)は気象実績情報の一例を示す図である。 実施の形態1に係る電力制御装置が実行する制御決定処理を示すフローチャートである。 実施の形態1に係る発電量予測値、消費電力量予測値の推移の一例を示す図である。 実施の形態1に係る発電量予測値、消費電力量予測値の推移の一例を示す図である。 実施の形態1に係る的中率情報を説明するための状態遷移図である。 実施の形態1に係る発電量予測値、消費電力量予測値、最大総消費電力量、最小発電量の推移並びに余剰電力の誤差に対応する電力量の一例を示す図である。 実施の形態1に係る電力制御装置が実行するシフト可否判別処理を示すフローチャートである。 実施の形態1に係る稼働スケジュールの一例を示す図である。 実施の形態1に係る機器電力情報の一例を示す図である。 実施の形態2に係る電力制御装置の機能構成の一部を示すブロック図である。 実施の形態2に係る電力制御装置が実行する消費優先モードでの処理を示すフローチャートである。 実施の形態2に係る電力制御装置が実行する買電回避処理を示すフローチャートである。 実施の形態2に係る発電量、総消費電力量の推移の一例を示す図である。 変形例に係る電力制御装置の機能構成を示すブロック図である。 変形例に係る過去の稼働スケジュールの一例を示す図である。 変形例に係る電力制御装置が実行するシフト可否判別処理を示すフローチャートである。 変形例に係る電力制御システムの構成を示すブロック図である。 変形例に係る電力制御装置の機能構成を示すブロック図である。 変形例に係る電力制御装置が実行する制御決定処理を示すフローチャートである。
 以下、本発明の実施の形態に係る電力制御装置について、図面を参照して詳細に説明する。
(実施の形態1)
 実施の形態1に係る電力制御装置は、例えば、HEMS(Home Energy Management System)等のシステムにおいて、蓄電池を充放電制御し、機器を電力制御する、いわゆるHEMSコントローラであり、電力制御システムを構成する各機器を制御する。
 図1に示すように、電力制御システム1は、住宅H内に設置される。電力制御システム1は、上述した電力制御装置100と、自然エネルギー等を利用して発電する発電設備300と、系統電源設備CPまたは発電設備300から供給される電力を利用して蓄電する蓄電設備400と、電力を消費し機能を発揮する機器500と、システム内の各機器を中継し電力を分配する分電盤600と、宅内ネットワークN2と広域ネットワークN3との通信を中継するルータ700と、から構成される。発電設備300と蓄電設備400とは、例えば住宅に設置されるものである。また、広域ネットワークN3には、日々の気象予報情報や過去の気象条件を示す気象実績情報を記憶するサーバ800が接続されている。発電設備300、蓄電設備400及び機器500は、系統電源設備CPに接続された共通の線路PLに接続されている。
 分電盤600と機器500とは、電力制御装置100と宅内ネットワークN1を介して接続されている。発電設備300と蓄電設備400は、電力制御装置100と宅内ネットワークN2を介して接続されている。ルータ700とサーバ800は、広域ネットワークN3を介して接続されている。
 ここで、宅内ネットワークN1は、ECONET Lite等を通信プロトコルとしたネットワークである。宅内ネットワークN2は、有線または無線のLAN(Local Area Network)等からなるネットワークである。広域ネットワークN3はインターネット等からなる。
 発電設備300は、PV(PhotoVoltaics)パネル310とPVPCS(Power Conditioning System)320とを備える。PVパネル310は、太陽光を直流電力に変換して出力する。PVPCS320は、例えばDC/DCコンバータ(図示せず)とDC/DCコンバータから入力される直流を交流に変換して出力するインバータ回路(図示せず)とを備え、PVパネル310から供給される直流電力を交流電力に変換して線路PLへ出力する。PVPCS320は、例えばMPPT(最大電力点追従)制御を行なうことにより、PVパネル310の出力電力の最大化を図る。
 蓄電設備400は、蓄電池410と蓄電PCS420とを備える。蓄電池410は、例えば鉛電池、リチウムイオン電池、ニッケル-カドミウム電池、ニッケル-水素電池、レドックスフロー電池、NAS電池、電気二重層キャパシタまたはLiイオンキャパシタ等から構成される。
 蓄電PCS420は、双方向DC/DCコンバータ(図示せず)とインバータ回路(図示せず)とを備え、放電動作において、蓄電池410からの直流電力を交流電力に変換して線路PLへ出力し、充電動作において、線路PLからの交流電力を直流電力に変換して蓄電池410へ出力する。蓄電PCS420は、電力制御装置100に宅内ネットワークN2を介して接続され、電力制御装置100から充電指令を受信すると充電動作を行い、電力制御装置100から放電指令を受信すると放電動作を行う。
 機器500は、線路PLから交流電力の供給を受けて動作する機器である。機器500は、例えば空調機器や給湯機、洗濯機、冷蔵庫から構成される。各機器500は、電力制御装置100が備える後述の稼働スケジュール記憶部123が記憶する稼働スケジュールを定期的に参照して、この稼働スケジュールに従って稼働する。機器500は、例えば1日間隔で稼働スケジュールを参照する。
 分電盤600は、複数(図1では5つ)の電力計601、602、603、604、605と電力データ収集装置606とを備える。電力計601は、系統電源設備CPから供給されるまたは系統電源設備CPへ供給する電力を計測する。電力計602は、発電設備300から供給される電力を計測する。電力計603は、蓄電設備400から供給されるまたは蓄電設備400へ供給される電力を計測する。電力計604、605は、機器500へ供給される電力を計測する。電力データ収集装置606は、各電力計601、602、603、604、605から取得した電力データに電力計601、602、603、604、605の識別情報を付与してから宅内ネットワークN1を介して電力制御装置100へ送信する。
 電力制御装置100は、図2に示すように、制御部10と主記憶部20と補助記憶部30と通信部40と出力部50と操作部60と各部を接続するシステムバス70とを備える。制御部10は、CPU(Central Processing Unit)から構成され、補助記憶部30に記憶されたプログラムを読み出して実行することにより、電力制御装置100を統括的に制御する。
 主記憶部20は、RAM(Random Access Memory)等の揮発性メモリを有している。主記憶部20は、制御部10の作業領域として用いられる。補助記憶部30は、磁気ディスク、半導体メモリなどの不揮発性メモリを有している。補助記憶部30は、制御部10が後述の制御モード選択処理、制御決定処理及びシフト可否判別処理を実行するためのプログラムや他のプログラム、各種パラメータを記憶している。また、制御部10による処理結果などを順次記憶する。
 通信部40は、LANインタフェース、シリアルインタフェース、パラレルインタフェース、アナログインタフェースなどを備えている。通信部40は、宅内ネットワークN1、N2に接続されている。出力部50は、制御部10から入力される情報を表示する出力デバイスを有する。出力デバイスは、表示装置や他の外部機器へ情報を出力する装置等から構成される。操作部60は、需要家による操作を受け付けると、受け付けた操作内容に応じた指令情報を制御部10へ入力する入力デバイスを有する。入力デバイスは、タッチパネル、キーボード等から構成される。
 次に、電力制御装置100の機能構成について図3を参照しながら説明する。料金記憶部121は、1日の各時間帯における電気料金(買電単価)と電気の買い取り価格(売電単価)とを示す料金情報を記憶する。料金記憶部121は、例えば各季節に応じた複数種類の料金情報を記憶する。
 消費電力履歴記憶部122は、機器500それぞれの過去の消費電力の履歴と全機器500の総消費電力の履歴とを記憶している。稼働スケジュール記憶部123は、住宅で使用される機器500の稼働スケジュールを機器500毎に区別して記憶している。機器電力記憶部124は、機器500の稼働中の消費電力を示す機器電力情報を記憶している。発電量履歴記憶部125は、発電設備300の発電量の履歴を記憶している。気象情報記憶部126は、将来の各時間帯における気象予報を示す気象予報情報と、現在及び過去の気象条件を示す気象実績情報と、を区別して記憶している。的中率記憶部127は、気象情報記憶部126に記憶される気象予報情報の的中率を記憶している。以上説明した各種記憶部は、補助記憶部30に設けられる。
 制御部10は、料金判別部111、選択部112、消費電力算出部113、発電量算出部114、余剰電力算出部115、シフト判別部116、電力制御部117として機能する。料金判別部111は、料金記憶部121から選出した料金情報を参照して、各時間帯における売電単価と買電単価との大小関係を判別する。
 選択部112は、料金判別部111が判別した売電単価と買電単価との大小関係に応じて、電力制御装置100の制御モードを選択する。制御モードには、発電設備300での発電電力を自家で優先的に消費する消費優先モードと、売電を優先的に行う売電優先モードと、がある。
 消費電力記録部118は、電力データ収集装置606から随時宅内ネットワークN1を介して各時間帯での各機器500の消費電力を取得し、機器500それぞれの消費電力の履歴を機器500毎に個別に消費電力履歴記憶部122に蓄積していく。また、消費電力記録部118は、全機器500の総消費電力を算出して消費電力履歴記憶部122に記憶させる。
 消費電力算出部113は、消費電力履歴記憶部122から取得した過去の複数日における各時間帯の消費電力の平均値から、1日における時間帯毎の消費電力予測値を算出する。消費電力算出部113は、例えば過去の1ヶ月間における各時間帯の消費電力の平均値をそのまま時間帯毎の消費電力予測値とする。
 発電量記録部119は、電力データ収集装置606から随時宅内ネットワークN1を介して各時間帯での発電設備300の発電量を取得し、発電量の履歴を発電量履歴記憶部125に蓄積していく。気象情報記録部132は、サーバ800から広域ネットワークN3、ルータ700及び宅内ネットワークN2を介して気象予報情報と気象実績情報とを取得して、気象予報情報と気象実績情報とを区別して気象情報記憶部126に記憶させる。
 発電量算出部114は、発電量履歴記憶部125から取得した過去の複数日における各時間帯の各気象条件の発電量の平均値から、1日における時間帯毎の発電量予測値を算出する。発電量算出部114は、発電量履歴記憶部125から例えば過去1ヶ月の発電設備300の発電量の履歴を取得するとともに、気象情報記憶部126からから例えば過去1ヶ月の気象実績情報を取得する。そして、発電量算出部114は、取得した発電量を時間帯と気象条件とに基づいて分類した後、分類毎に発電量の平均値を算出する。また、発電量算出部114は、気象情報記憶部126から気象予報情報を取得し、気象予報情報が示す各時間帯の気象条件に対応する分類の発電量の平均値を発電量予測値とする。
 余剰電力算出部115は、発電量算出部114が算出した発電量予測値と消費電力算出部113が算出した消費電力予測値との差分から余剰電力の推移を予測する。
 シフト判別部116は、余剰電力の推移と判別対象となる対象機器500の当初の稼働スケジュールで設定されていた稼働時間帯(以下、「当初稼働時間帯」と称する。)における消費電力の推移に基づいて、対象機器500の当初稼働時間帯を別の稼働時間帯にシフトさせる形で稼働スケジュールを更新するか否かを判別する。具体的には、シフト判別部116は、まず、稼働スケジュール記憶部123から対象機器500の稼働スケジュールを取得するとともに、機器電力記憶部124から対象機器500の機器電力情報を取得し、対象機器500の当初稼働時間帯における消費電力の推移を算出する。そして、シフト判別部116は、稼働スケジュールを更新した場合において、余剰電力が対象機器500の当初稼働時間帯全体で対象機器500の消費電力を上回っているとき、稼働スケジュールを更新すると判別する。一方、対象機器500の消費電力が当初稼働時間帯の少なくとも一部において余剰電力を超える場合、シフト判別部116は、稼働スケジュールを更新しないと判別する。
 的中率算出部131は、気象情報記憶部126から過去の気象実績情報と過去の気象予報情報とを取得して、気象予報の的中率を算出して的中率記憶部127に記憶させる。
 誤差算出部120は、余剰電力算出部115により算出された余剰電力の誤差を算出する。余剰電力の誤差の算出において、誤差算出部120は、まず、消費電力履歴記憶部122から取得した過去数日の各日々における時間毎の機器500全体の総消費電力の履歴から、時間帯毎に過去数日の中で最大の最大総消費電力を抽出する。次に、誤差算出部120は、気象情報記憶部126から取得した気象予報情報と的中率記憶部127から取得した的中率とから1日における各時間帯の気象条件を特定し、特定した気象条件と発電量の履歴とを用いて、可能性のある発電力予測値の中で最小の最小発電量を算出する。そして、誤差算出部120は、時間帯毎の最大消費電力と、最小発電量との差分から余剰電力の誤差を算出する。また、誤差算出部120は、最大総消費電力が発電量よりも大きい時間帯が存在する場合、当該時間帯で余剰電力の誤差を積分して余剰電力の誤差に対応する電力量を算出する。
 電力制御部117は、余剰電力算出部115から取得した余剰電力の推移と誤差算出部120から取得した余剰電力の誤差の推移とに基づいて、蓄電池410の充放電動作を行う蓄電PCS420を制御する。具体的には、電力制御部117は、余剰電力の推移に基づいて機器500の稼働スケジュールを適宜更新し、余剰電力の誤差の推移から誤差に対応する電力量を算出する。そして、電力制御部117は、算出した誤差に対応する電力量に応じて、宅内ネットワークN2を介して蓄電PCS420へ充電指令または放電指令を送信することにより、蓄電PCS420を充電動作または放電動作させる。更に、電力制御部117は、シフト判別部116の判別結果に基づいて、稼働スケジュール記憶部123に記憶されている各機器500の稼働スケジュールを更新する機能も有する。
 次に、本実施の形態に係る電力制御装置100の動作について説明する。電力制御装置100は、まず、制御モードを、発電設備300での発電電力を自家で優先的に消費する消費優先モードか売電を優先的に行う売電優先モードとのいずれかを選択するための制御モード選択処理を実行する。その後、電力制御装置100は、選択した制御モードで動作を開始する。初めに、電力制御装置100が実行する制御モード選択処理について図4から図7を参照しながら説明する。電力制御装置100では、電源が投入されると、料金判別部111が、現在の日付を示す日付情報に基づいて現在の季節を判別する。日付と季節との対応関係を示す季節情報は、補助記憶部30に予め記憶されている。そして、料金判別部111は、現在の季節に応じた料金情報を料金記憶部121から取得する。制御モード選択処理は、料金判別部111が料金記憶部121から季節に応じた料金情報を取得したことを契機として開始される。
 まず、料金判別部111は、全ての時間帯で売電単価が買電単価よりも高いか否かを判別する(ステップS110)。具体的には、料金判別部111は、料金記憶部121から取得した料金情報が示す1日の各時間帯における買電単価と売電単価とを比較し、1日の全ての時間帯で売電単価が買電単価を上回っているか否かを判別する。
 料金判別部111が全ての時間帯で売電単価が買電単価よりも高いと判別すると(ステップS110:Yes)、選択部112は売電優先モードを選択する(ステップS150)。一方、売電単価が買電単価以下の時間帯が存在すると判別されると(ステップS110:No)、料金判別部111は、売電単価が買電単価よりも高い時間帯の時間長が時間閾値以下であるか否かを判別する(ステップS120)。時間閾値の長さは、例えば蓄電設備400の蓄電池410を満充電にするまでに要する時間に設定される。
 料金判別部111により、売電単価が買電単価よりも高い時間帯の時間長が時間閾値以下であると判別されると(ステップS120:Yes)、選択部112は消費優先モードを選択し(ステップS130)、制御モード選択処理が終了する。例えば、料金情報が、図5に示すような買電単価、売電単価の時間推移を示す場合、売電単価が買電単価よりも高い時間帯が存在しないことになる。この場合、料金判別部111は、売電単価が買電単価よりも高い時間帯の時間長が閾値以下であると判別し、選択部112は、消費優先モードを選択する。
 また、料金情報が、図6に示すような買電単価、売電単価の時間推移を示し、時間閾値が4時間に設定されているとする。この場合、売電単価が買電単価よりも高い時間帯の時間長は、3時間であり、時間閾値よりも短い。そうすると、料金判別部111は、売電単価が買電単価よりも高い時間帯の時間長が時間閾値以下であると判別し、選択部112は、消費優先モードを選択する。
 図4に戻って、料金判別部111が、売電単価が買電単価よりも高い時間帯の時間長が時間閾値よりも長いと判別したとする(ステップS120:No)。この場合、料金判別部111は、売電単価が買電単価よりも高い時間帯における売電単価と買電単価との差分の最小値が差分閾値以下であるか否かを判別する(ステップS140)。
 料金判別部111により、売電単価と買電単価との差分の最小値が差分閾値よりも大きいと判別されると(ステップS140:No)、選択部112は、売電優先モードを選択し(ステップS150)、制御モード選択処理が終了する。一方、料金判別部111により、売電単価と買電単価との差分の最小値が差分閾値以下であると判別されると(ステップS140:Yes)、選択部112は、消費優先モードを選択し(ステップS130)、制御モード選択処理が終了する。
 例えば、料金情報が、図7に示すような買電単価、売電単価の時間推移を示し、時間閾値が4時間、差分閾値が5[円/kWh]に設定されているとする。この場合、売電単価が買電単価よりも高い時間帯の時間長は、8時間であり、時間閾値よりも長い。但し、売電単価と買電単価との差分(差分の最小値)が1[円/kWh]であり、差分閾値よりも小さい。そうすると、選択部112は、消費優先モードを選択する。
<消費優先モード>
 次に、電力制御装置100の消費優先モード時における処理について図8を参照しながら説明する。
 まず、消費電力算出部113は、1日の各時間帯における消費電力予測値を算出する(ステップS210)。具体的には、消費電力算出部113は、消費電力履歴記憶部122の消費電力履歴を参照して、過去の各時間帯における消費電力の平均値を消費電力予測値として算出する。
 消費電力履歴記憶部122は、例えば図9(A)および(B)に示すように、機器500の消費電力履歴と、機器500全体の総消費電力履歴とを、日付及び時間帯と対応付けて記憶している。消費電力算出部113は、例えば過去最大1ヶ月分の各時間帯について各機器500の消費電力履歴から総消費電力を算出して総消費電力履歴として消費電力履歴記憶部122に記憶させる。そして、消費電力算出部113は、過去最大1ヶ月分の各時間帯の総消費電力の平均値を消費電力予測値として算出する。
 次に、発電量算出部114は、1日の各時間帯における発電設備300での発電量予測値を算出する(ステップS220)。発電量算出部114は、前述のように、発電量履歴記憶部125から取得した過去の複数日における各時間帯の各気象条件の発電量の平均値から、1日における各時間帯の発電量予測値を算出する。
 発電量履歴記憶部125は、例えば図10に示すように、各時間帯における発電量を記憶している。また、気象情報記憶部126は、例えば図11(A)および(B)に示すように、各時間帯における気象予報を示す気象予報情報と、現在及び過去の気象条件を示す気象実績情報とを記憶している。ここで、気象情報記憶部126は、少なくとも電力制御装置100が消費優先モードで動作する前に予め気象予報情報と気象実績情報とを記憶している。発電量算出部114は、気象実績情報に基づいて、発電量を時間帯と気象条件とに基づいて分類した後、分類毎に発電量の平均値を算出する。そして、発電量算出部114は、気象予報情報が示す各時間帯の気象条件に対応する分類の発電量の平均値を発電量予測値とする。
 続いて、余剰電力算出部115は、1日の各時間帯における余剰電力を算出する(ステップS230)。具体的には、余剰電力算出部115は、発電量算出部114が算出した各時間帯における発電量予測値と消費電力算出部113が算出した各時間帯における消費電力予測値との差分を余剰電力として算出する。
 その後、制御内容を決定するための制御決定処理が実行される(ステップS240)。この制御決定処理では、算出された余剰電力の推移と各機器500の消費電力予測値の推移とに基づいて、各機器500の制御内容を決定する処理が実行される。制御決定処理が終了すると、消費優先モードでの動作を終了する。
<制御決定処理>
 次に、電力制御装置100が実行する制御決定処理について、図12を参照しながら詳細に説明する。まず、シフト判別部116は、稼働スケジュールの更新可否を判別する対象となる対象機器500について、当初稼働時間帯をシフトする形での稼働スケジュールの更新が可能であるか否かを判別するシフト可否判別処理を実行する(ステップS2401)。このシフト可否判別処理において、シフト判別部116は、当初稼働時間帯が、算出された余剰電力が負で推移する時間帯に設定されている機器500を対象機器500として選出する。算出された余剰電力が負で推移する時間帯とは、発電量予測値が消費電力量予測値を下回る時間帯に相当する。そして、シフト判別部116は、当初稼働時間帯を、算出された余剰電力が正で推移する別の時間帯にシフトする形での対象機器500の稼働スケジュールの更新が可能であるか否かを判別する。ここで、算出された余剰電力が負で推移する時間帯とは、発電量予測値が消費電力量予測値を下回る時間帯に相当し、算出された余剰電力が正で推移する時間帯とは、発電量予測値が消費電力量予測値以上である時間帯に相当する。
 例えば図13及び図14に示すように、発電量予測値が消費電力量予測値を下回る時間帯に存在する対象機器500の当初稼働時間帯ST1を別の時間帯ST2にシフトさせる形で稼働スケジュールを更新させる場合を想定する。時間帯ST2は、発電量予測値が消費電力量予測値以上である時間帯に含まれる。図13の場合、更新後の稼働時間帯ST2において、更新前の総消費電力予測値L12と発電量予測値L11との大小関係と、更新後の総消費電力予測値L13と発電量予測値L11との大小関係とが同じである。つまり、稼働スケジュールを更新しても、更新後の稼働時間帯ST2において余剰電力が負(電力が不足した状態)に変化しない。この場合、シフト判別部116は稼働スケジュールの更新が可能と判別する。一方、図14の場合、更新後の稼働時間帯ST2の一部において、更新前の総消費電力予測値L22と発電量予測値L21との大小関係と、更新後の総消費電力予測値L23と発電量予測値L22との大小関係とが逆転する。つまり、稼働スケジュールを更新すると、更新後の時間帯ST2の一部において余剰電力が負(電力が不足した状態)に変化してしまう。この場合、シフト判別部116は稼働スケジュールの更新が不可能と判別する。シフト判別部116は、シフト可否判別処理を実行することにより、稼働スケジュール記憶部123の各スケジュールIDに対応するシフト可否情報を設定する。
 次に、電力制御部117は、稼働スケジュールを参照して、対象機器500のシフト可否情報が「可能(シフト可能)」に設定されているか否かを判別する(ステップS2402)。即ち、電力制御部117は、対象機器500の当初稼働時間帯を別の稼働時間帯にシフトさせる形で稼働スケジュールを更新することが可能か否かを判別する。電力制御部117が、対象機器500のシフト可否情報が「不可能」に設定されていると判別したとする(ステップS2402:No)。この場合、電力制御部117は、稼働スケジュールの更新を回避し、稼働スケジュール及び料金情報を参照して買電単価が買電閾値よりも高い時間帯で余剰電力が負(電力が不足した状態)で推移しているか否かを判別する(ステップS2411)。買電閾値は、需要家の所望する値に設定することができる。
 シフト判別部116が、買電単価が買電閾値よりも高い時間帯に余剰電力が正で推移する時間帯が存在すると判別すると(ステップS2411:No)、そのままステップS2410の処理が実行される。一方、シフト判別部116が、買電単価が買電閾値よりも高い時間帯で余剰電力が負(電力が不足した状態)で推移していると判別したとする(ステップS2411:Yes)。この場合、電力制御部117は、料金記憶部121から取得した各時間帯の買電単価を参照して、買電価格が買電閾値以下の時間帯で蓄電池410を充電する旨の充電指令を蓄電PCS420へ送信する(ステップS2412)。即ち、電力制御部117は、買電単価が買電閾値以下の時間帯で蓄電池410を充電するよう蓄電PCS420を制御する。その後、ステップS2410の処理が実行される。
 また、シフト判別部116が対象機器500のシフト可否情報が「可(シフト可能)」に設定されていると判別すると(ステップS2402:Yes)、誤差算出部120は、可能性のある発電量予測値の中で最小である最小発電量を算出する(ステップS2403)。具体的には、誤差算出部120は、気象予報情報に対応する複数の気象条件の中から、的中率が的中率閾値以上の気象条件を選出し、選出した気象条件それぞれに対応する発電量予測値の中で最小のものを最小発電量とする。誤差算出部120は、的中率記憶部127から気象予報情報に対応する複数の気象条件それぞれの的中率を取得する。
 的中率記憶部127は、図15で表されるような的中率情報を記憶している。図15中に示された数字は、各気象条件が予報として与えられた場合の実際の気象条件それぞれの的中率を示している。誤差算出部120は、的中率が的中率閾値よりも大きい気象条件における発電量予測値を候補として特定する。例えば図15に示すように、気象予報が「晴れ」の場合、実際に「晴れ」である確率が80%であり、「雨」である確率が7%であり、実際に「曇り」である確率が13%であるとする。この場合、誤差算出部120は、的中率閾値が10%に設定されていると、「晴れ」と「曇り」とを選出する。次に、誤差算出部120は、発電量履歴記憶部125から発電量の履歴、気象情報記憶部126から気象実績情報を取得し、発電量を時間帯と気象条件とに基づいて分類した後、分類毎に発電量の平均値を算出する。そして、誤差算出部120は、発電量予測値の算出対象の時間帯における「晴れ」と「曇り」とのそれぞれに対応する分類の発電量の平均値を特定する。その後、誤差算出部120は、特定した「晴れ」と「曇り」とに対応する発電量の平均値のうち最小の発電量の平均値を最小発電量とする。具体的には、誤差算出部120は、「曇り」に対応する発電量の平均値が「晴れ」に対応する発電量の平均値よりも小さいので、「曇り」に対応する発電量の平均値を最小発電量とする。
 図12に戻って、誤差算出部120は、過去の複数日それぞれの各時間帯に機器500全てで消費される総消費電力の中から、各時間帯における過去最大の総消費電力である最大総消費電力量を特定する(ステップS2404)。具体的には、誤差算出部120は、消費電力履歴記憶部122から取得した、過去の複数日それぞれの各時間帯に機器500全てで消費される総消費電力量の履歴から、各時間帯における過去最大の総消費電力である最大総消費電力を特定する。
 次に、シフト判別部116は、対象機器500の当初稼働時間帯を、余剰電力が正の時間帯に含まれる別の時間帯にシフトさせる形で稼働スケジュールを更新したと仮定した場合、更新後の稼働時間帯において最小発電量が最大総消費電力よりも大きいか否かを判別する(ステップS2405)。
 シフト判別部116が、シフト先の時間帯全体において最小発電量が最大総消費電力よりも大きいと判別すると(ステップS2405:Yes)、電力制御部117は、対象機器500の当初稼働時間帯をシフトさせる形で稼働スケジュールを更新する(ステップS2409)。
 続いて、シフト判別部116は、稼働スケジュールのシフトの可否の判別を実行していない対象機器500が他に存在するか否かを判別する(ステップS2410)。シフト判別部116がシフト可否の判別を実行していない対象機器500が他に存在しない場合と判別すると(ステップS2410:No)、図8の消費優先モード時の処理に戻る。
 一方、シフト判別部116は、シフト可否の判別を実行していない対象機器500が他に存在する場合(ステップS2410:Yes)、シフト可否の判別を実行していない他の対象機器500を特定する(ステップS2413)。そして、再びステップS2401の処理が実行される。
 また、シフト判別部116は、更新後の稼働時間帯全体において最小発電量が最大総消費電力よりも小さくなる時間帯が存在すると判別したとする(ステップS2405:No)。例えば図16に示すように、更新後の稼働時間帯ST3が、最小発電量L31が最大総消費電力L33よりも大きい時間帯を含む場合、シフト判別部116は、更新後の稼働時間帯全体において最小発電量が最大総消費電力よりも小さくなる時間帯が存在すると判別する。この場合、誤差算出部120は、最小発電量が最大総消費電力よりも小さくなる時間帯における余剰電力の誤差に対応する電力量を算出する(ステップS2406)。具体的には、誤差算出部120は、最小発電量が最大総消費電力よりも小さくなる時間帯において、最小発電量と最大総消費電力との差分である余剰電力の誤差の推移を算出し、算出した誤差の推移を積分して得られる電力量を余剰電力の誤差に対応する電力量とする。例えば図16の場合、誤差算出部120は、最小発電量L31が最大総消費電力L33よりも小さい時間帯における余剰電力の誤差に対応する電力量G1を算出する。
 その後、電力制御部117は、対象機器500の稼働開始時刻までに蓄電池410を充電できるか否かを判別する(ステップS2407)。具体的には、電力制御部117は、まず、稼働スケジュール記憶部123の対象機器500の稼働スケジュールを参照して、対象機器500が稼働を開始する稼働開始時刻を取得する。そして、電力制御部117は、稼働開始時刻までの時間が、蓄電池410の残量が少なくとも余剰電力の誤差に対応する電力量G1になるまで蓄電池410を充電するのに要する時間以上であるか否かを判別する。具体的には、電力制御部117は、蓄電池410の単位時間当たりの充電量を蓄電PCS420から取得し、余剰電力の誤差に対応する電力量G1に相当する充電量を蓄電池410の単位時間当たりの充電量で除して得られる時間と、稼働開始時刻までの時間とを比較する。
 電力制御部117は、対象機器500の稼働開始時刻までに蓄電池410を充電できないと判別すると(ステップS2407:No)、電力制御部117は、料金記憶部121から取得した各時間帯の買電単価を参照して、買電単価が買電閾値以下の時間帯に充電する旨の充電指令を蓄電PCS420へ送信する(ステップS2412)。
 一方、電力制御部117は、対象機器500の稼働開始時刻までに蓄電池410の充電が可能と判別すると(ステップS2407:Yes)、電力制御部117は、直ちに充電指令を蓄電PCS420へ送信する(ステップS2408)。その後、電力制御部117は、対象機器500の稼働スケジュールを更新する(ステップS2409)。その後、ステップS2410の処理が実行される。
<シフト可否判別処理>
 次に、前述のシフト判別部116が制御決定処理の最初に実行するシフト可否判別処理(図12に示すステップS2401)について図17を参照しながらより詳細に説明する。シフト判別部116は、主として、スケジュール更新の可否を判別する対象である対象機器500について当初稼働時間帯を別の時間帯にシフトさせる形で稼働スケジュールを更新した場合、更新後の稼働時間帯で余剰電力が負(電力が不足した状態)に変化するか否かにより稼働スケジュールの更新可否を判別する。
 まず、シフト判別部116は、余剰電力算出部115により算出された余剰電力が正の時間帯を特定する(ステップS2451)。次に、シフト判別部116は、稼働スケジュール記憶部123及び機器電力記憶部124を参照して、対象機器500の当初稼働時間帯における消費電力の推移を算出する(ステップS2452)。
 稼働スケジュール記憶部123は、例えば図18に示すように、スケジュールIDと機器情報と動作情報と稼働時間帯のシフト可否と稼働開始時刻と稼働終了時刻とを対応付けて記憶している。図18の稼働終了時刻における「機器依存」とは、対象とする機器500の設定に応じて変化することを意味する。また、機器電力記憶部124は、例えば図19に示すように、機器IDと機器情報と動作情報と消費電力と所要時間とを対応付けて記憶している。図19の所要時間における「N/A」とは、所要時間が定まっていないことを意味する。ここにおいて、シフト判別部116は、図18のスケジュールID「01」に対応する稼働開始時刻及び稼働終了時刻の間の時間帯を稼働時間帯と特定する。また、シフト判別部116は、図18のスケジュールID「01」に対応する機器情報、動作情報から、対象機器500が空調機器であり稼働時間帯において冷房動作を実行すると特定する。そして、シフト判別部116は、図19の空調機器に対応する機器ID510の動作情報「冷房」に対応する消費電力250[W]を対象機器500の稼働時間帯における消費電力予測値とする。このようにして、シフト判別部116は、各スケジュールIDについて、0時から24時までの各時間帯における対象機器500の消費電力予測値を求める。
 図17に戻って、シフト判別部116は、ステップS2452の処理が実行された後、対象機器500の稼働スケジュールにおいて当初稼働時間帯の別の時間帯へのシフトが可能か否かを判別する(ステップS2453)。具体的には、シフト判別部116は、まず、余剰電力が正の時間帯の時間長が当初稼働時間帯の時間長よりも短いか否かを判別し、短いと判別した場合シフト不可能と判別する。また、シフト判別部116は、余剰電力が正の時間帯の時間長が当初稼働時間帯の時間長以上であると判別した場合、余剰電力が正の時間帯の中から当初稼働時間帯のシフト先の時間帯を選定する。そして、シフト判別部116は、図13に示すように当初稼働時間帯ST1を、選定した別の時間帯ST2にシフトさせる形で稼働スケジュールを更新しても、更新後の稼働時間帯ST2において余剰電力が負(電力が不足した状態)に変化しない場合、稼働スケジュールの更新が可能と判別する。一方、シフト判別部116は、図14に示すように当初稼働時間帯ST1を、選定した別の時間帯ST2にシフトさせる形で稼働スケジュールを更新すると、更新後の稼働時間帯ST2において余剰電力が負(電力が不足した状態)に変化する場合、稼働スケジュールの更新が不可能と判別する。ここにおいて、シフト判別部116は、選定するシフト先の時間帯を、余剰電力が正の時間帯の最初の時間帯から最後の時間帯に向かってずらしながら、シフト後の稼働時間帯ST2において余剰電力が負(電力が不足した状態)に変化するか否かを繰り返し判別する。そして、シフト判別部116は、シフト後の稼働時間帯ST2において余剰電力が負に変化しないと判別された時点で稼働スケジュールの更新が可能と判別する。
 図17に戻って、シフト判別部116が、稼働スケジュールの更新が不可能と判別したとする(ステップS2453:No)。この場合、電力制御部117は稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「不可(シフト不可)」に設定する(ステップS2456)。その後、図12に示す制御決定処理に戻る。
 一方、シフト判別部116が、稼働スケジュールの更新が可能と判別したとする(ステップS2453:Yes)。この場合、シフト判別部116は、スケジュール更新後において同一の対象機器500について、稼働時間帯が他のスケジュールIDに対応する稼働時間帯と重複するか否かを判別する(ステップS2454)。シフト判別部116が同一の対象機器500について稼働時間帯が重複すると判別した場合(ステップS2454:Yes)、電力制御部117は、稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「不可(シフト不可)」に設定する(ステップS2456)。一方、シフト判別部116がスケジュール更新後において同一の対象機器500について稼働時間帯が他のスケジュールIDに対応する稼働時間帯と重複しないと判別したとする(ステップS2454:No)。この場合、電力制御部117は稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「可(シフト可)」に設定する(ステップS2455)。その後、図12に示す制御決定処理に戻る。
 以上説明したように、本実施の形態に係る電力制御装置100は、予測された余剰電力の推移と、余剰電力の誤差の推移とに基づいて、蓄電池410の充放電を制御することにより、実際の余剰電力が算出された余剰電力を下回った場合における買電を抑制することができる。従って、需要家の経済性を向上させることができる。
 また、本実施の形態に係る電力制御装置100では、発電量算出部114が、発電量履歴記憶部125から取得した過去の発電量の履歴から発電量予測値を算出する。また、消費電力算出部113が、消費電力履歴記憶部122から取得した過去の消費電力の履歴から消費電力予測値を算出する。そして、余剰電力算出部115が、算出した発電量予測値と消費電力予測値との差分から余剰電力の推移を予測する。これにより、電力制御部117は、余剰電力の推移に応じて稼働スケジュールを更新することができるので、例えば余剰電力が比較的多い時間帯に各機器500の稼働時間帯を集めることによる買電割合の低減を図ることができる。
 更に、誤差算出部120は、過去の消費電力の履歴から、1日における各時間帯での最大消費電力を抽出し、各時間帯における最大消費電力と過去の発電量の履歴を用いて算出した発電量予測値との差分から余剰電力の誤差を算出する。これにより、例えば蓄電池410が余剰電力の誤差に対応する電力量を補償できる程度の電気を蓄えておくことで、発電設備300の発電量に余剰電力の誤差程度のばらつきが発生しても蓄電池410の放電により線路PLへの供給電力を安定させることができる。
 本実施の形態に係る電力制御装置100では、シフト判別部116が、機器500の当初稼働時間帯をシフトさせる形で稼働スケジュールを更新した場合において、余剰電力が機器500の当初稼働時間帯全体で機器500の消費電力を上回っているとき、稼働スケジュールを更新すると判別する。これにより、稼働スケジュールを更新しても機器500の消費電力を余剰電力により確実に賄うことができるので、確実に買電量を低減することができる。
 また、本実施の形態に係る電力制御装置100では、最大消費電力が発電量予測値よりも大きい時間帯が存在する場合、誤差算出部120が、その時間帯における余剰電力の誤差を積分して余剰電力の誤差に対応する電力量を算出する。そして、電力制御部117は、機器500の稼働開始時刻までの時間が、蓄電池410の残量が少なくとも余剰電力の誤差に対応する電力量になるまで蓄電池410を充電するのに要する時間以上である場合、蓄電池410を充電するよう制御する。これにより、蓄電池410に余剰電力の誤差に対応する電力量を補償できる程度の電気を確実に蓄えておくことができる。
 更に、本実施の形態に係る電力制御装置100において、機器500の稼働開始時刻までの時間が、蓄電池410の残量が少なくとも余剰電力の誤差に対応する電力量になるまで蓄電池410を充電するのに要する時間未満であるとする。この場合、電力制御部117は、料金記憶部121の各時間帯の買電単価を参照して、買電単価が買電閾値以下の時間帯で蓄電池410を充電するよう制御する。これにより、蓄電池410が十分に充電されていない状態で機器500が動作開始してしまうことを防止できるので、機器500の動作を安定させることができる。
 本実施の形態に係る電力制御装置100では、電力制御部117が、シフト判別部116により買電単価が買電閾値より高い時間帯において余剰電力が負(電力が不足した状態)で推移していると判別されると、買電単価が買電閾値以下の時間帯で蓄電池410を充電するよう制御する。これにより、買電単価の低い時間帯に蓄電池410の充電を行うことができるので、蓄電池410の充電コストの低減を図ることができる。
 また、本実施の形態に係る電力制御装置100では、誤差算出部120が、気象情報記憶部126から取得した気象予報情報と的中率記憶部127から取得した的中率とから1日における各時間帯の気象条件を特定する。そして、誤差算出部120は、特定した気象条件と過去の発電量の履歴とを用いて発電量予測値を算出し、最大消費電力と最小発電量との差分から余剰電力の誤差を算出する。これにより、発電量予測値の精度が向上するので、買電量を抑制することができる。
 更に、本実施の形態に係る電力制御装置100では、誤差算出部120が、気象予報情報に対応する複数の気象条件の中から、的中率が的中率閾値以上の気象条件を選出し、選出した気象条件それぞれに対応する発電量のうち最小の発電量を発電量予測値に設定する。これにより、余剰電力の誤差を大きく見積もることができ、その分、蓄電池410の充電量を多めに推移させることができるので、線路PLへの供給電力を安定させることができる。
 また、本実施の形態に係る電力制御装置100では、発電量算出部114が、過去の複数日における各時間帯の各気象条件の発電量の平均値から、1日における各時間帯の発電量予測値を算出する。また、消費電力算出部113は、過去の複数日における各時間帯の消費電力の平均値から、1日における各時間帯の消費電力予測値を算出する。これにより、過去の発電量や消費電力量に突発的な異常値が含まれていても、発電量予測値または消費電力量予測値の誤差を比較的低いレベルに抑えることができる。
(実施の形態2)
 本実施の形態に係る電力制御装置は、実施の形態1で説明した機能に加えて、発電設備の発電量と機器の総消費電力との大小関係をリアルタイムで監視し、その大小関係に応じて各機器を適宜停止させることにより買電をできるだけ回避する機能を有する。
 図20に示すように、本実施の形態に係る電力制御装置2100は、機器500を停止させるか否かを判別する停止判別部2113と、停止判別部2113の判別結果に基づいて機器500へ停止指令を送信する機器制御部2114と、を備える。なお、電力制御装置2100は、図3に示す構成は全て備えており、図20では実施の形態1と相違する構成のみを示し、実施の形態1と重複する構成は一部省略している。また、実施の形態1と同様の構成については、図1または図3に示した符号と同じ符号を使用して説明する。ここにおいて、各機器500は、機器制御部2114から停止指令を受信すると動作を停止する機能を有する。また、補助記憶部30は、各機器500に関する設定情報を記憶する機器設定情報記憶部2119を有する。機器設定情報記憶部2119は、例えば洗濯機の注水洗濯時間及び脱水時間の設定情報等を記憶する。
 停止判別部2113は、消費電力履歴記憶部122から総消費電力の履歴を取得し、発電量履歴記憶部125から発電量の履歴を取得して、現在の総消費電力と発電量との大小関係を判別する。そして、停止判別部2113は、現在の総消費電力と発電量との大小関係を判別結果に応じて、稼働スケジュールを参照して現在稼働中の機器500を選出し、選出した機器500の中から停止候補機器500を特定する。停止判別部2113は、稼働スケジュールを参照して、特定した停止候補機器500の機器情報及び動作情報から停止候補機器500の機器種別と現在の動作状況とを取得し、停止候補機器500を停止させるか否かを判別する。
 機器制御部2114は、停止判別部2113の判別結果に応じて、停止候補機器500へ停止指令を、宅内ネットワークN1を介して各機器500へ送信する。また、機器制御部2114は、料金記憶部121から取得した料金情報に基づいて、停止させた停止候補機器500の運転再開時期を特定して停止候補機器500の稼働スケジュールを更新する。そして、機器制御部2114は、稼働スケジュールを更新すると、その旨を通知する更新通知を、停止させた停止候補機器500へ送信する。
 次に、本実施の形態に係る電力制御装置2100の動作について説明する。電力制御装置2100は、図21に示すように、消費優先モード時において、ステップS210からステップS240までの処理を実行した後、適宜機器500を停止させることにより買電をできるだけ回避する買電回避処理(ステップS250)を実行する。なお、図21において実施の形態1と同様の処理については図8と同一の符号を付している。
 ここで、電力制御装置100が実行する買電回避処理について図22を参照しながら詳細に説明する。まず、停止判別部2113は、機器500の総消費電力が発電設備300の発電量を上回っているか否かを判別する(ステップS2501)。停止判別部2113は、総消費電力が発電量以下である限り(ステップS2501:No)、待機状態を維持する。
 一方、停止判別部2113は、総消費電力が発電量を上回ると(ステップS2501:Yes)、料金記憶部121から取得した料金情報を参照して、買電単価が現在より低い時間帯が存在するか否かを判別する(ステップS2502)。停止判別部2113が、買電単価が現在より低い時間帯が存在しないと判別すると(ステップS2502:No)、そのままステップS2514の処理が実行される。一方、停止判別部2113は、買電単価が現在より低い時間帯が存在すると判別すると(ステップS2502:Yes)、1つの停止候補機器500を特定する(ステップS2503)。
 次に、停止判別部2113は、特定した停止候補機器500が給湯器であるか否かを判別する(ステップS2504)。具体的には、停止判別部2113は、稼働スケジュール記憶部123から取得した停止候補機器500の稼働スケジュールに含まれる機器情報に基づいて、特定した停止候補機器500が給湯器であるか否かを判別する。停止判別部2113は、特定した停止候補機器500が給湯器であると判別すると(ステップS2504:Yes)、要求湯量に対する停止候補機器500が現在までに沸かした湯量の比率が湯量閾値以上であるか否かを判別する(ステップS2510)。湯量閾値は、需要家の所望する値に設定することができ、例えば0.9(90%)に設定される。また、停止判別部2113は、停止対象機器500の稼働スケジュールを参照して、現在時刻の稼働開始時刻からの経過時間と、稼働開始時刻から稼働終了時刻までの時間との比率を算出し、算出した比率から現在までに沸かした湯量を見積もる。
 停止判別部2113が、要求湯量に対する停止候補機器500が現在までに沸かした湯量の比率が湯量閾値以上であると判別したとする(ステップS2510:Yes)。この場合、機器制御部2114は、停止指令を停止候補機器500へ送信する(ステップS2506)。停止候補機器500は、機器制御部2114から停止指令を受信すると、動作を停止する。従って、需要家は、必要量に対して湯量閾値で規定される割合以上、例えば必要量の90%以上の湯量を得られることになる。
 一方、停止判別部2113は、要求湯量に対する停止候補機器500が現在までに沸かした湯量の比率が湯量閾値未満であると判別すると(ステップS2510:No)、稼働スケジュールを参照して、他に停止候補機器500が存在するか否かを判別する(ステップS2512)。停止判別部2113は、他に停止候補機器500が存在すると判別すると(ステップS2512:Yes)、他の停止候補機器500を特定する(ステップS2513)。その後、ステップS2504の処理が実行される。一方、停止判別部2113が、他に停止候補機器500が存在しないと判別すると(ステップS2512:No)、ステップS2514の処理が実行される。
 また、停止判別部2113は、特定した停止候補機器500が給湯器でないと判別すると(ステップS2504:No)、特定した停止候補機器500が洗濯機であるか否かを判別する(ステップS2505)。停止判別部2113は、停止候補機器500の稼働スケジュールに含まれる機器情報に基づいて、特定した停止候補機器500が洗濯機であるか否かを判別する。停止判別部2113は、特定した停止候補機器500が洗濯機であると判別すると(ステップS2505:Yes)、洗濯機の動作段階が脱水段階であるか否かを判別する(ステップS2511)。具体的には、停止判別部2113は、停止候補機器500の稼働スケジュールを参照して、現在時刻の稼働開始時刻からの経過時間と、稼働開始時刻から稼働終了時刻までの時間との比率を算出し、算出した比率から洗濯機の動作段階が脱水段階であるか否かを判別する。例えば、洗濯機の稼働時間全体の長さが30分であり、初めの20分が注水洗濯時間、残りの10分が脱水時間に設定されているとする。ここで、停止判別部2113は、注水洗濯時間及び脱水時間の設定を機器設定情報記憶部2119から取得する。この場合、停止判定部2113は、算出した比率が0.2である場合、洗濯機の動作段階が脱水段階でないと判別する。
 停止判別部2113が特定した停止候補機器(洗濯機)500が脱水段階でないと判別すると(ステップS2511:No)、機器制御部2114は、停止指令を停止候補機器500へ送信する(ステップS2506)。停止候補機器500は、機器制御部2114から停止指令を受信すると、動作を停止する。これにより、洗濯機は、脱水段階以外の動作段階、例えば洗濯機の槽内に注水された状態で停止するので、洗濯中の衣類にしわがよったりにおいが付着したりすることを抑制できる。一方、停止判別部2113が、特定した停止候補機器(洗濯機)500が脱水段階であると判別すると(ステップS2511:Yes)、ステップS2512の処理が実行される。
 機器制御部2114は、ステップS2506の処理を実行した後、停止候補機器500の運転再開時期を特定する(ステップS2507)。具体的には、機器制御部2114は、料金記憶部121から取得した料金情報を参照して、直近で現在よりも買電単価が低い時間帯の開始時刻を停止候補機器500の運転再開時期と特定する。例えば料金情報が図5に示す買電単価の時間推移を示し、発電量及び総消費電力が、図23に示すような時間推移を示すとする。この場合、買電単価が35[円/kWh]である時刻T1に総消費電力が発電量を上回ると、電力制御部117は、直近で買電単価が28[円/kWh]に低下する時刻T2を停止候補機器500の運転再開時期と特定する。
 続いて、機器制御部2114は、特定した運転再開時期に基づいて、停止させた停止候補機器500の稼働スケジュールを更新する(ステップS2508)。具体的には、機器制御部2114は、まず停止候補機器500に停止指令を送信した時点における停止候補機器500の残りの稼働期間の時間長を算出する。そして、機器制御部2114は、特定した運転再開時期から算出した時間長だけ稼働するように稼働スケジュールを更新する。
 その後、機器制御部2114は、停止させた停止候補機器500の稼働スケジュールを更新した旨を通知する更新通知を、停止させた停止候補機器500へ送信する(ステップS2509)。停止候補機器500は、更新通知を受信すると、宅内ネットワークN1を介して、稼働スケジュール記憶部123から更新後の稼働スケジュールを取得する。
 次に、停止判別部2113は、操作部60を介して買電回避処理を終了する旨の終了指令が有ったか否かを判別する(ステップS2514)。停止判別部2113により終了指令が無いと判別される限り(ステップS2514:No)、ステップS2501からステップS2513までの一連の処理が繰り返し実行される。一方、停止判別部2113により終了指令が有ったと判別されると(ステップS2514:Yes)、図21に示す消費優先モード処理に戻る。
 以上説明したように、本実施の形態に係る電力制御装置2100は、発電設備300の発電量と機器500の総消費電力との大小関係に応じて適宜機器500を停止させる。これにより、買電を抑制することができるので、需要家の経済性を向上させることができる。
[変形例]
 以上、本発明の各実施の形態について説明したが、本発明は上記各実施の形態によって限定されるものではない。例えば、消費電力算出部113が、過去の稼働スケジュールを記憶する過去稼働スケジュール記憶部3123と、機器電力記憶部124とを参照して、各時間帯における消費電力予測値を算出してもよい。
 過去稼働スケジュール記憶部3123は、例えば図25に示すように、スケジュールIDと機器情報と動作情報と稼働開始時刻と稼働終了時刻とが対応付けられて記録されている。消費電力算出部113は、図25のスケジュールID「101」に対応する開始時刻、終了時刻と、図19の機器ID510の動作情報「冷房」に対応する消費電力とから6時から8時の時間帯の空調機器の消費電力予測値250[Wh]を算出する。このようにして、消費電力算出部113は、各スケジュールIDについて、0時から24時までの各時間帯での各対象機器500の消費電力を算出する。そして、消費電力算出部113は、各時間帯で各対象機器500の消費電力の総和を総消費電力として算出する。更に、消費電力算出部113は、例えば過去1ヶ月分の稼働スケジュールそれぞれについて各時間帯での総消費電力を算出する。その後、消費電力算出部113は、過去1ヶ月分の各時間帯における総消費電力の平均値を各時間帯における総消費電力予測値とする。
 本構成によれば、消費電力算出部113は、過去稼働スケジュール記憶部3123に記憶されていない機器の総消費電力への影響を除去した形で総消費電力予測値を算出する。これにより、機器500それぞれの過去の消費電力の実績を反映した形で、消費電力予測値を算出することができる。
 各実施の形態では、シフト判別部116が、対象機器500の当初稼働時間帯を別の時間帯にシフトさせる形で稼働スケジュールを更新すると、更新後の稼働時間帯で余剰電力が負(電力が不足した状態)に変化するか否かで稼働スケジュールの更新可否を判別する構成について説明した。但し、シフト判別116の稼働スケジュール更新の判別基準はこれに限定されない。例えば、シフト判別部116は、気象情報記憶部126から取得した気象予報情報が示す余剰電力が正の時間帯における気象条件に応じて、稼働スケジュールの更新可否を判別するようにしてもよい。気象予報が「曇り」や「雨」の場合、発電設備300での発電量は予測しにくい。そこで、シフト判別部116は、余剰電力が正の時間帯における気象予報が「曇り」や「雨」の場合、無条件に稼働スケジュールの更新が不可能と判別するようにしてもよい。
 また、シフト判別部116は、気象情報記憶部126から取得した気象予報情報とともに的中率記憶部127から取得した的中率に基づいて、稼働スケジュールの更新可否を判別するようにしてもよい。例えば、余剰電力が正の時間帯における「曇り」や「雨」の的中率が的中率閾値以上である場合、シフト判別部116は、無条件に稼働スケジュールの更新が不可能と判別するようにしてもよい。
 本構成によれば、対象機器500の当初稼働時間帯を、発電設備300での発電量が予測しにくい別の時間帯にシフトさせる形で稼働スケジュールを更新することを回避する。これにより、発電設備300の発電量のばらつきに起因した買電の増加を抑制することができる。
 更に、シフト判別部116が、単に算出された余剰電力が、設定された余剰電力閾値よりも高い時間帯間が存在する場合、対象機器500の当初稼働時間帯を、算出された余剰電力が閾値よりも高い時間帯にシフトする形で稼働スケジュールを更新する構成でもよい。
 この変形例に係る電力制御装置4100のシフト可否判別処理について図26を参照しながら詳細に説明する。まず、シフト判別部116は、余剰電力算出部115から入力される余剰電力の推移において余剰電力閾値以上の大きさで推移する時間帯が存在するか否かを判別する(ステップS5451)。余剰電力閾値は、例えば900kWに設定される。
 シフト判別部116が、余剰電力が余剰電力閾値以上の大きさで推移する時間帯が存在しないと判別したとする(ステップS5451:No)。この場合、電力制御部117は、稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「不可(シフト不可)」に設定する(ステップS5455)。その後、図12に示す制御決定処理に戻る。
 一方、シフト判別部116が、余剰電力が余剰電力閾値以上の時間帯が存在すると判別したとする(ステップS5451:Yes)。この場合、シフト判別部116は、余剰電力が余剰電力閾値以上の時間帯の時間長が、当初稼働時間帯の時間長よりも短いか否かを判別する(ステップS5452)。
 シフト判別部116により余剰電力が余剰電力閾値以上の時間帯の時間長が、当初稼働時間帯の時間長よりも短いと判別されると(ステップS5452:Yes)、電力制御部117は、稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「不可(シフト不可)」に設定する(ステップS5455)。一方、シフト判別部116が、余剰電力が余剰電力閾値以上の時間帯の時間長が、当初稼働時間帯の時間長以上であると判別したとする(ステップS5452:No)。この場合、シフト判別部116は、スケジュール更新後において同一の対象機器500について、稼働時間帯が他のスケジュールIDに対応する稼働時間帯と重複するか否かを判別する(ステップS5453)。
 シフト判別部116が同一の対象機器500について稼働時間帯が重複すると判別した場合(ステップS5453:Yes)、電力制御部117は、稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「不可(シフト不可)」に設定する(ステップS5455)。一方、シフト判別部116がスケジュール更新後において同一の対象機器500について稼働時間帯が他のスケジュールIDに対応する稼働時間帯と重複しないと判別したとする(ステップS5453:No)。この場合、電力制御部117は稼働スケジュールにおける対象とするスケジュールIDのシフト可否情報を「可(シフト可)」に設定する(ステップS5454)。その後、図12に示す制御決定処理に戻る。
 本構成によれば、電力制御装置4100が実行するシフト可否判別処理が簡素化されるので、電力制御装置4100の処理負担を軽減することができる。
 各実施の形態では、消費電力算出部113が過去の複数日における各時間帯の消費電力の平均値を将来の各時間帯における消費電力予測値とする例について説明した。これに限らず、例えば消費電力算出部113が、過去の複数日における各時間帯の消費電力のメジアン、最大値または最小値を将来の各時間帯における消費電力予測値とする構成であってもよい。また、各実施の形態では、発電量算出部114が過去の複数日における各時間帯の各気象条件の発電量の平均値から、1日における各時間帯の発電量予測値を算出する例について説明した。具体的には、発電量算出部114は、過去の複数日における発電量を時間帯と気象条件とに基づいて分類した後、分類毎に発電量の平均値を算出する。これに限らず、例えば、発電量算出部114は、過去の複数日における発電量を時間帯と気象条件とに基づいて分類した後、分類毎にメジアン、最大値または最小値を算出する構成であってもよい。
 各実施形態では、電力制御装置が住宅Hに配置された場合について説明したが、電力制御装置を住宅H外に配置するようにしてもよい。例えば、広域ネットワークN3に接続された電力制御用のサーバを電力制御装置として機能させてもよい。
 例えば、図27に示すように、電力制御システム5001では、電力制御装置5100が住宅H外に配置されている。なお、図27において、実施の形態1と同様の構成については図1と同一の符号を付している。電力制御装置5100は、住宅H内に設置されたルータ700を介して蓄電設備400の制御等を実行する。
 各実施の形態では、シフト判別部116が、算出された余剰電力と余剰電力の誤差とに基づいて、蓄電設備400の蓄電池410の充放電を制御する例について説明した。これに限らず、例えばシフト判別部116が、単に算出された余剰電力が、設定された余剰電力閾値よりも高い時間帯間が存在する場合、対象機器500の稼働時間帯を、算出された余剰電力が閾値よりも高い時間帯にシフトする形で稼働スケジュールを更新する構成でもよい。
 図28に示すように、この変形例に係る電力制御装置4100は、余剰電力算出部115から入力される余剰電力の推移に基づいて、稼働スケジュールの停止候補機器を特定するシフト判別部4116を備える。
 この変形例に係る電力制御装置4100の制御決定処理について図29を参照しながら詳細に説明する。まず、シフト判別部4116は、余剰電力算出部115から入力される余剰電力の推移において余剰電力閾値以上の大きさで推移する時間帯が存在するか否かを判別する(ステップS4241)。余剰電力閾値は、例えば900kWに設定される。
 シフト判別部4116により余剰電力が余剰電力閾値以上の大きさで推移する時間帯が存在しないと判別されると(ステップS4241:No)、電力制御部117は、買電単価が買電閾値以下の時間帯で充電する旨の指令を、蓄電PCS420へ送信する(ステップS4243)。
 一方、シフト判別部4116により余剰電力が余剰電力閾値以上の大きさで推移する時間帯が存在すると判別されると(ステップS4241:Yes)、電力制御部117は、対象機器500の稼働スケジュールをシフトさせる(ステップS4242)。具体的には、シフト判別部4116は、まず、稼働スケジュール記憶部123及び機器電力記憶部124を参照して、各機器500の稼働時間帯における消費電力を算出する。そして、シフト判別部4116は、消費電力を算出した対象機器500の中から、消費電力が余剰電力閾値未満であり且つ稼働時間が余剰電力閾値以上の大きさで余剰電力が推移する時間帯の時間長よりも短い対象機器500を特定する。そして、電力制御部117は、シフト判別部4116が特定した対象機器500の当初稼働時間帯を別の時間帯にシフトさせる形で稼働スケジュールを更新する。
 本構成によれば、電力制御装置4100が実行する処理の内容が簡素化されるので、電力制御装置4100の処理負担を軽減できる。
 各実施の形態では、電力制御システム1が住宅に設置される例について説明したが、設置場所は住宅に限られず、例えば公共施設等の機器500が使用される住宅以外の場所に設置されてもよい。また、蓄電設備400は、いわゆる定置型の蓄電設備に限定されるものではなく、例えば電気自動車であってもよい。
 また、本発明に係る電力制御装置は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、ネットワークに接続されているコンピュータに、上記動作を実行するためのプログラムを、コンピュータシステムが読み取り可能な非一時的な記録媒体(CD-ROM等)に格納して配布し、当該プログラムをコンピュータシステムにインストールすることにより、上述の処理を実行する電力制御装置を構成してもよい。
 また、コンピュータにプログラムを提供する方法は任意である。例えば、プログラムは、通信回線の掲示版(BBS)にアップロードされ、通信回線を介してコンピュータに配信されてもよい。そして、コンピュータは、このプログラムを起動して、OSの制御の下、他のアプリケーションと同様に実行する。これにより、コンピュータは、上述の処理を実行する電力制御装置として機能する。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。即ち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本発明は、発電設備及び蓄電設備を備え、系統連係を行う電力制御システムに好適である。
1,5001 電力制御システム、10 制御部、20 主記憶部、30 補助記憶部、40 通信部、50 出力部、60 操作部、100,2100,3100,4100 電力制御装置、111 料金判別部、112 選択部、113 消費電力算出部、114 発電量算出部、115 余剰電力算出部、116,4116 シフト判別部、117 電力制御部、118 消費電力記録部、119 発電量記録部、120 誤差算出部、121 料金記憶部、122 消費電力履歴記憶部、123 稼働スケジュール記憶部、124 機器電力記憶部、125 発電量履歴記憶部、126 気象情報記憶部、127 的中率記憶部、300 発電設備、310 PVパネル、320 PVPCS、400 蓄電設備、410 蓄電池、420 蓄電PCS、500 機器、600 分電盤、601,602,603,604,605 電力計、606 電力データ収集装置、700 ルータ、800 サーバ、2113 停止判別部、3123 過去稼働スケジュール記憶部、N1,N2 宅内ネットワーク、N3 広域ネットワーク

Claims (11)

  1.  発電設備と蓄電池とが設置され機器が使用される場所における余剰電力の推移を算出する余剰電力算出部と、
     前記余剰電力の誤差の推移を算出する誤差算出部と、
     前記余剰電力の推移と前記誤差の推移とに基づいて、前記蓄電池の充放電を制御する制御部と、
     を備える、
     電力制御装置。
  2.  消費電力の履歴を記憶する消費電力履歴記憶部と、
     発電量の履歴を記憶する発電量履歴記憶部と、
     前記発電量履歴記憶部から取得した前記発電量の履歴から発電量予測値を算出する発電量算出部と、
     前記消費電力履歴記憶部から取得した前記消費電力の履歴から消費電力予測値を算出する消費電力算出部と、を更に備え、
     前記余剰電力算出部は、算出した前記発電量予測値と前記消費電力予測値との差分から余剰電力の推移を算出し、
     前記誤差算出部は、
     過去の前記消費電力の履歴から、1日における時間帯毎の最大消費電力を抽出し、時間帯毎の前記最大消費電力と前記発電量予測値とに基づいて前記余剰電力の誤差を算出する、
     請求項1に記載の電力制御装置。
  3.  前記機器の稼働スケジュールを記憶する稼働スケジュール記憶部と、
     前記機器の稼働中の消費電力を示す機器消費電力情報を記憶する機器電力記憶部と、
     前記余剰電力の推移と前記機器の当初の稼働スケジュールで設定されていた当初稼働時間帯における消費電力の推移とに基づいて、前記機器の前記当初稼働時間帯を別の稼働時間帯にシフトさせる形で前記稼働スケジュールを更新するか否かを判別する判別部と、を更に備え、
     前記判別部は、前記稼働スケジュールを更新した場合において、前記余剰電力が前記機器の前記当初稼働時間帯全体で前記機器の消費電力を上回っているとき、前記稼働スケジュールを更新すると判別する、
     請求項2に記載の電力制御装置。
  4.  前記誤差算出部は、前記最大消費電力が前記発電量予測値よりも大きい時間帯が存在する場合、当該時間帯における前記余剰電力の誤差を積分して余剰電力の誤差に対応する電力量を算出し、
     前記制御部は、前記稼働スケジュールを参照して、前記機器が稼働を開始する稼働開始時刻を取得し、前記稼働開始時刻までの時間が、前記蓄電池の残量が少なくとも前記余剰電力の誤差に対応する電力量になるまで前記蓄電池を充電するのに要する時間以上である場合、前記蓄電池を充電するよう制御する、
     請求項3に記載の電力制御装置。
  5.  1日の各時間帯における買電単価を記憶する料金記憶部を更に備え、
     前記制御部は、前記稼働開始時刻までの時間が、前記蓄電池の残量が少なくとも前記余剰電力の誤差に対応する電力量になるまで前記蓄電池を充電するのに要する時間未満である場合、前記料金記憶部から取得した各時間帯の買電単価を参照して、買電単価が買電閾値以下の時間帯で前記蓄電池を充電するよう制御する、
     請求項4に記載の電力制御装置。
  6.  1日の各時間帯における買電単価を記憶する料金記憶部を更に備え、
     前記判別部は、前記稼働スケジュールの更新を回避すると判別した場合、前記料金記憶部から取得した各時間帯の買電単価を参照して、買電単価が買電閾値より高い時間帯において余剰電力が負で推移しているか否かを判別し、
     前記制御部は、前記判別部により買電単価が買電閾値より高い時間帯において余剰電力が負で推移していると判別されると、前記料金記憶部から取得した各時間帯の買電単価を参照して、買電単価が買電閾値以下の時間帯で前記蓄電池を充電するよう制御する、
     請求項3に記載の電力制御装置。
  7.  気象予報情報を記憶する気象情報記憶部と、
     前記気象予報情報の的中率を記憶する的中率記憶部と、を更に備え、
     前記誤差算出部は、
     前記気象情報記憶部から取得した前記気象予報情報と前記的中率記憶部から取得した前記的中率とから1日における各時間帯の気象条件を特定し、特定した気象条件と前記発電量の履歴とから算出される発電量予測値のうち最小の最小発電量を特定し、前記最大消費電力と前記最小発電量との差分から前記余剰電力の誤差を算出する、
     請求項2から6のいずれか1項に記載の電力制御装置。
  8.  前記誤差算出部は、
     前記気象予報情報に対応する複数の気象条件の中から、前記的中率が的中率閾値以上の気象条件を選出し、選出した気象条件それぞれについて算出した発電量予測値の中から前記最小発電量を特定する、
     請求項7に記載の電力制御装置。
  9.  前記発電量算出部は、前記発電量履歴記憶部から取得した過去の複数日における各時間帯の各気象条件の発電量の平均値から、1日における時間帯毎の前記発電量予測値を算出し、
     前記消費電力算出部は、前記消費電力履歴記憶部から取得した過去の複数日における各時間帯の消費電力の平均値から、1日における時間帯毎の前記消費電力予測値を算出する、
     請求項2に記載の電力制御装置。
  10.  発電設備と蓄電池とが設置され機器が使用される場所における余剰電力の推移を算出するステップと、
     前記機器の消費電力の履歴から、1日における時間帯毎の最大消費電力を抽出し、時間帯毎の前記最大消費電力と前記発電設備の発電量の履歴から予測された発電量予測値とから余剰電力の誤差の推移を算出するステップと、
     前記余剰電力の推移と、前記誤差の推移とに基づいて、前記蓄電池の充放電を制御するステップと、を含む、
     電力制御方法。
  11.  コンピュータを、
     発電設備と蓄電池とが設置され機器が使用される場所における余剰電力の推移を算出する余剰電力算出部、
     前記余剰電力の誤差の推移を算出する誤差算出部、
     前記余剰電力の推移と前記誤差の推移とに基づいて、前記蓄電池の充放電を制御する制御部、
     として機能させるためのプログラム。
PCT/JP2015/069967 2015-07-10 2015-07-10 電力制御装置、電力制御方法及びプログラム WO2017009914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/069967 WO2017009914A1 (ja) 2015-07-10 2015-07-10 電力制御装置、電力制御方法及びプログラム
JP2017528023A JP6410940B2 (ja) 2015-07-10 2015-07-10 電力制御装置、電力制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069967 WO2017009914A1 (ja) 2015-07-10 2015-07-10 電力制御装置、電力制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2017009914A1 true WO2017009914A1 (ja) 2017-01-19

Family

ID=57758234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069967 WO2017009914A1 (ja) 2015-07-10 2015-07-10 電力制御装置、電力制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6410940B2 (ja)
WO (1) WO2017009914A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196231A (ja) * 2017-05-17 2018-12-06 三菱電機株式会社 電力制御装置
WO2019102515A1 (ja) * 2017-11-21 2019-05-31 三菱電機株式会社 制御装置、制御システム、制御方法およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111244B2 (ja) 2019-02-28 2022-08-02 オムロン株式会社 光電センサ及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638384A (ja) * 1992-02-25 1994-02-10 Roehm Properties Bv エネルギ制御装置
JP2009284586A (ja) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 電力システムおよびその制御方法
JP2011092002A (ja) * 2006-04-24 2011-05-06 Panasonic Corp 負荷制御装置
WO2014208059A1 (ja) * 2013-06-27 2014-12-31 パナソニック株式会社 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685715B2 (ja) * 2009-09-28 2015-03-18 パナソニックIpマネジメント株式会社 系統連系形給電システム
JP5784352B2 (ja) * 2011-04-22 2015-09-24 トヨタホーム株式会社 住宅エネルギーシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638384A (ja) * 1992-02-25 1994-02-10 Roehm Properties Bv エネルギ制御装置
JP2011092002A (ja) * 2006-04-24 2011-05-06 Panasonic Corp 負荷制御装置
JP2009284586A (ja) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 電力システムおよびその制御方法
WO2014208059A1 (ja) * 2013-06-27 2014-12-31 パナソニック株式会社 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196231A (ja) * 2017-05-17 2018-12-06 三菱電機株式会社 電力制御装置
WO2019102515A1 (ja) * 2017-11-21 2019-05-31 三菱電機株式会社 制御装置、制御システム、制御方法およびプログラム
JPWO2019102515A1 (ja) * 2017-11-21 2020-04-02 三菱電機株式会社 制御装置、制御システム、制御方法およびプログラム

Also Published As

Publication number Publication date
JP6410940B2 (ja) 2018-10-24
JPWO2017009914A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
US11334036B2 (en) Power grid aware machine learning device
JP6216377B2 (ja) 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム
EP3002848B1 (en) Demand-side grid-level load balancing aggregation system
CN108292860B (zh) 电力控制装置、运转计划制定方法以及记录介质
US10797484B2 (en) Power supply and demand prediction system, power supply and demand prediction method and recording medium storing power supply and demand prediction program
EP3382298A1 (en) Water heater control system and storage-type electric water heater
JP6918456B2 (ja) 電力制御システムおよび電力制御方法
JP6410940B2 (ja) 電力制御装置、電力制御方法及びプログラム
JP2024518404A (ja) 電気車両充電電力分配のためのシステム及び方法
US20220383432A1 (en) Recommended action output system, recommended action output method, and recording medium
JP6042775B2 (ja) 制御装置、プログラム
WO2016166836A1 (ja) 機器管理装置、機器管理システム、機器管理方法及びプログラム
FI128279B (en) Method and system for dynamically grouping a group of power units to produce frequency control for a power system
JP6800592B2 (ja) 制御装置、制御方法およびプログラム
Kim et al. A multiagent system for residential DC microgrids
CN107949967B (zh) 本地存储器的运行策略的确定
JP6680606B2 (ja) 電力制御システムおよび電力制御方法
US10714968B2 (en) Power control apparatus, power control system, and power control method
JP5969365B2 (ja) 電力制御システム
JPWO2016084392A1 (ja) 電力制御装置、電力制御方法及び電力制御システム
JP7423977B2 (ja) 電力管理システム、電力管理装置、電力管理方法及びプログラム
WO2023229504A1 (en) Optimized energy delivery
Chai et al. Sustainable load scheduling algorithm for stand-alone PV-battery system
EP3024105A1 (en) Method and system for controlling reactive power in an electric distribution network
US20240086792A1 (en) Peak consumption management for resource distribution system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898230

Country of ref document: EP

Kind code of ref document: A1