WO2017008740A1 - 曝光装置及方法 - Google Patents

曝光装置及方法 Download PDF

Info

Publication number
WO2017008740A1
WO2017008740A1 PCT/CN2016/089881 CN2016089881W WO2017008740A1 WO 2017008740 A1 WO2017008740 A1 WO 2017008740A1 CN 2016089881 W CN2016089881 W CN 2016089881W WO 2017008740 A1 WO2017008740 A1 WO 2017008740A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
unit
wafer
exposing
exposure apparatus
Prior art date
Application number
PCT/CN2016/089881
Other languages
English (en)
French (fr)
Inventor
谢仁飚
杨志勇
白昂力
王健
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to SG11201800301PA priority Critical patent/SG11201800301PA/en
Priority to US15/744,577 priority patent/US10423072B2/en
Priority to EP16823887.1A priority patent/EP3324238B1/en
Priority to JP2018500916A priority patent/JP6494151B2/ja
Priority to KR1020187003616A priority patent/KR102100119B1/ko
Publication of WO2017008740A1 publication Critical patent/WO2017008740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a lithographic apparatus, and more particularly to an exposure apparatus and method.
  • a lithographic apparatus is a machine that applies a desired pattern onto a substrate, typically a target portion of the substrate.
  • lithographic apparatus can be used in the fabrication of integrated circuits.
  • a pattern forming device which can be considered as a mask or a reticle is used to generate a circuit pattern corresponding to a single layer of the integrated circuit.
  • the pattern can be imaged onto a target portion (eg, including a portion of the die, one or more dies) on a substrate (eg, a silicon wafer).
  • a target portion eg, including a portion of the die, one or more dies
  • a substrate eg, a silicon wafer.
  • the imaging of dense holes or dense cylinders is much more difficult, and the actual depth of focus is greatly reduced. Therefore, for lithography, the control requirements of the focal plane are very high; on the other hand, Compared with silicon wafers, the graphical sapphire substrate itself is characterized by a relatively hard material and a large warp shape, which further reduces the actual Depth Of Focus (UDOF), which can be used in practice. If the depth of focus is not enough, the defocus amount caused by the focal plane control error of the lithography system will cause the consistency of the pattern on the substrate to exceed the acceptable range. The macroscopic effect shows that the area of different graphics on the substrate is bright and dark under the same illumination conditions.
  • the degree is different, forming a "Not Consistent” or “Color Difference” phenomenon that can be observed by the naked eye.
  • visual inspection is an important indicator.
  • the naked eye is very sensitive to the phenomenon of “inconsistency” or “color difference”. Therefore, the control of various process parameters, especially the control of focal plane, is very high.
  • the shimming design of the prior art illumination system uses a quadrilateral homogenizing rod 10.
  • the prior art mask 20 adopts a quadrangular shape, and the mask can be square-spliced.
  • the illumination system and the mask of this structure are mainly used in the field of laser annealing, and cannot be used in the field of LED lithography.
  • the lithography machine that exposes the patterned sapphire substrate pattern is affected by factors such as lens design cost or control system design. These machines have low yield and poor adaptability, and it is difficult to meet the production requirements of large quantities.
  • the technical problem to be solved by the present invention is to provide an exposure apparatus capable of effectively reducing the influence of the focus depth of the objective field curvature in the case of the same exposure field of view, and improving the actually usable depth of focus; the same depth of focus in the projection objective lens In the case of the exposure field, the exposure area of the exposure field is expanded.
  • an exposure apparatus including an exposure unit for exposing a wafer; the exposure unit includes an illumination system and a mask, and the illumination system includes a light homogenizing unit,
  • the light homogenizing unit includes a uniform light quartz rod having a regular hexagonal cross section.
  • the shape of the mask is a regular hexagon matching the cross section of the uniformized quartz rod.
  • the above exposure apparatus of the present invention further includes a pan exposure unit for performing flood exposure on the exposed wafer.
  • the pan exposure unit includes a material supporting structure for carrying the exposed wafer, a flood exposure source for providing a flood exposure energy, and a pan exposure control unit for controlling the pan. The opening or closing of the exposure source and the time during which the pan exposure source is turned on or off.
  • the flood exposure source is hermetically disposed under the material supporting structure to prevent an external light source from entering the pan exposure unit.
  • the material support structure is downwardly compatible for carrying wafers of 4 inch, 8 inch, 10 inch, 16 inch or larger size.
  • the above exposure apparatus of the present invention further includes: a wafer cassette unit for storing the wafer; an extracting unit for extracting the wafer; and a pre-aligning unit for aligning the extracted wafer; Exposure unit, aligned wafers through a uniform hexagonal cross-section of quartz rods and masks Exposure.
  • the extraction unit is a rotary robot.
  • the wafer is a sapphire substrate or a silicon substrate or a germanium silicon substrate.
  • the illumination system further includes a light source, a concentrating unit, and a relay unit, and the light concentrating unit is located between the concentrating unit and the relay unit.
  • the illumination system further includes a movable knife edge disposed between the light homogenizing unit and the relay unit, for turning on or off the light source and adjusting the light source through the concentrating unit The size of the field of view.
  • the present invention also provides a method for exposing a wafer, comprising the steps of: providing an illumination system, the illumination system comprising a light homogenizing unit, the light homogenizing unit comprising a cross-section having a regular hexagonal shape a homogenizing quartz rod; providing a mask having a shape of a regular hexagon matching the cross section of the homogenizing quartz rod; and exposing the wafer through the exposure unit to form an exposure pattern.
  • the exposure method of the present invention after the exposing step, further comprises the step of overexposure, exposing the exposure pattern to a flood exposure pattern to form the overexposed flood exposure pattern into a regular cylindrical shape.
  • the method before the exposing the wafer, the method further comprises the steps of: extracting the wafer; and pre-aligning the wafer.
  • exposing the wafer includes the steps of performing a full measurement of the surface topography of the wafer and then exposing the wafer at a time.
  • the specific step of the measuring is: continuously measuring the surface topography of the wafer by using a vertical measuring device, and performing the measurement results of the moving table and the vertical measuring device. Match, fit and calculate the slope of each field of view relative to the best focal plane.
  • the specific step of the exposure is: controlling the optimal focal plane of the wafer through the vertical sensor of the slide motion table, and performing stepwise exposure at one time.
  • the exposure apparatus and method of the present invention improves the uniformized quartz rod of the leveling unit in the illumination system from a quadrilateral to a regular hexagon, and designs the mask to be a regular hexagon.
  • the diagonal length of the regular hexagon is smaller than the length of the diagonal of the quadrilateral, which reduces the influence of the depth of focus of the projection objective and improves the practically useful depth of focus of the projection objective;
  • the regular hexagonal uniformized quartz rod reflects the normal hexagonal exposure field of view, which expands the technical effect of exposing the exposure field of the field of view.
  • the invention improves the practical depth of focus of the projection objective lens, and therefore can overcome the defect that the defocus amount caused by the focal plane control error of the lithography system causes the consistency of the pattern on the substrate to exceed the acceptable range; the macroscopic observation can be overcome. "Inconsistent” or "color difference” phenomenon.
  • the matching design of the homogenizing quartz rod and the mask of the invention, and the formation of the regular hexagonal splicing, are particularly suitable for the imaging process of dense holes or collecting cylinders in the field of LED manufacturing.
  • the invention increases the steps of the overexposure unit and the overexposure to improve the sidewall steepness of the pattern of the exposure step, so that the overexposed pattern becomes a regular cylindrical shape to improve the exposure product yield.
  • the exposure method of the present invention by continuously measuring the surface topography characteristics of the wafer, fitting and calculating the inclination of each field of view with respect to the optimal focal plane, and then exposing the wafer at one time, and Compared with the cycle step of measuring one exposure once used in the prior art, the sensitivity of the wafer material is lowered, and the adaptability to a substrate having a higher hardness such as a sapphire substrate or a warped wafer is improved.
  • the invention adopts the step of single exposure, which has the effect of saving the working time of exposure and reducing the manufacturing cost.
  • FIG. 1 is a schematic structural view of a prior art homogenizing rod
  • FIG. 2 is a schematic view showing a splicing structure of a prior art mask
  • Figure 3 is a schematic structural view of an exposure apparatus of the present invention.
  • Figure 4 is a schematic structural view of an exposure unit of the present invention.
  • Figure 5 is a schematic view showing the structure of a homogenizing quartz rod of the present invention.
  • Figure 6 is a schematic view showing the splicing structure of the mask of the present invention.
  • 7-8 is an effect diagram of the relationship between the field of view of the objective lens and the field of view of the exposure
  • FIGS. 9-10 are schematic structural views of an illumination system of the present invention.
  • FIG. 11 is a schematic structural view of a wafer transfer system
  • FIG. 12 is a schematic structural view of an exposure apparatus for adding a general exposure unit according to the present invention.
  • Figure 13 is a conventional exposure effect diagram without the addition of a flood exposure
  • Figure 14 is an effect diagram of adding a flood exposure
  • Figure 15 is a schematic structural view of a pan exposure unit of the present invention.
  • Figure 16 is a schematic view showing the structure relationship between the material supporting structure and the flood exposure source of the present invention.
  • Figure 17 is a schematic diagram showing the matching of the position of the wafer table and the measurement results of the vertical measuring device
  • Figure 18 is a schematic diagram of fitting and calculating the slope of each field of view relative to the best focal plane.
  • the invention shows: 100, exposure unit, 110, illumination system, 111, light source, 112, concentrating unit, 113, leveling unit, 1131, uniform light quartz rod, 114, relay unit, 115, movable knife edge, 120, mask, 200, wafer, 201, exposure graphic, 202, pan exposure graphic, 300, pan exposure unit, 301, material support structure, 302, pan exposure source, 303, pan exposure control unit, 304, extraction unit , 305, wafer cassette unit, 306, pre-aligned unit, 401, objective field of view, 402, regular hexagonal exposure field of view, 403, quadrilateral exposure field of view.
  • the present embodiment provides an exposure apparatus including an exposure unit 100 for exposing a wafer 200; the exposure unit 100 includes an illumination system 110 and a mask 120, and the illumination system 110 includes a light homogenizing unit 113, the light homogenizing unit 113 includes a uniform light quartz rod 1131 having a regular hexagonal cross section, and the mask 120 has a shape of a regular hexagon matching the cross section of the light homogenizing quartz rod 1131. .
  • the exposure apparatus of the present invention improves the cross section of the uniformized quartz rod 1131 of the leveling unit 113 in the illumination system 110 from a quadrilateral to a regular hexagon.
  • FIG. 6 the exposure of the present invention.
  • the device designs the mask 120 as a regular hexagon that matches the regular hexagon of the cross-section of the homogenized quartz rod 1131, and the mask 120 can be spliced in a regular hexagon.
  • Figures 7 and 8 are diagrams showing the relationship between the field of view of the objective lens and the field of view of the exposure. Please refer to Figure 7, where 401 is the field of view of the objective lens. In the case of the same exposure field of view, the uniformized quartz rod 1131 with a regular hexagonal cross section is reflected.
  • the diagonal length of the positive hexagonal exposure field of view 402 is shorter than the diagonal length of the quadrilateral exposure field of view 403, thereby reducing the effect of the focal depth of the projection objective and improving the practically useful depth of focus of the projection objective;
  • 401' is an objective field of view.
  • the uniform hexagonal exposure field 402' reflected by the uniform hexagonal cross-section quartz rod 1131 is larger than the quadrilateral cross-section.
  • the exposure field 403' of the homogenized quartz rod expands the exposure area of the exposure field of view.
  • the invention improves the practical depth of focus of the projection objective lens, and therefore can overcome the defect that the defocus amount caused by the focal plane control error of the lithography system causes the consistency of the pattern on the substrate to exceed the acceptable range; the macroscopic observation can be overcome. "Inconsistent” or "color difference” phenomenon.
  • the cross-section of the uniformized quartz rod 1131 of the present invention and the matching design of the mask 120, as well as the formed hexagonal spliced mask 120, are particularly suitable for imaging processes such as dense holes or cylindrical columns in the field of LED manufacturing.
  • the wafer 200 is a sapphire substrate or a silicon substrate or a germanium silicon substrate.
  • the illumination system 110 of the present invention further includes a light source 111 such as a mercury lamp or an LED, a concentrating unit 112, and a relay unit 114.
  • the light concentrating unit 113 is located in the concentrating unit 112 and the middle thereof. Between units 114.
  • the exposure apparatus of the present invention further includes a movable knife edge 115 disposed between the light-sharing unit 113 and the relay unit 114 for turning on or off the light source 111 and adjusting the light source 111 through the concentrating unit 112.
  • the size of the field of view That is, the present invention can adjust the exposure field of view according to the movable knife edge 115 and the mask 120 of different sizes to adapt to the exposure process of the wafer 200 of various sizes.
  • the exposure apparatus of the present invention further includes a wafer cassette unit 305 for storing crystals. a circle 200; an extracting unit 304 for extracting the wafer 200; a pre-aligning unit 306 for aligning the extracted wafer 200; and an exposing unit 100 for passing the uniformized quartz rod 1131 having a regular hexagonal cross section and The mask 120 exposes the aligned wafer 200.
  • the pre-alignment unit 306 and the exposure unit 100 of the present invention may be designed separately or in an integrated manner.
  • the extraction unit 304, the pre-alignment exposure unit 100 and the flood exposure unit 300 of the present invention constitute a wafer transfer system for realizing the transfer of the wafer 200 before and after exposure and before and after exposure.
  • the extraction unit 304 functions to extract the wafer 200 in the wafer cassette unit 305, the pre-alignment unit 306, and the exposure unit 100.
  • the rotating robot can be used as the extracting unit 304, and the wafer 200 of the wafer cassette unit 305 can be extracted into the pre-aligned unit 306, or the wafer 200 of the pre-aligned unit 306 can be placed in the exposure unit 100 for exposure.
  • the wafer 200 of the exposure unit 100 can also be extracted and recovered.
  • the exposure apparatus of the present invention further includes a flood exposure unit 300 for performing over-exposure on the exposed wafer 200.
  • the wafer transfer system is composed of an extraction unit 304, a wafer cassette unit 305, a pre-alignment unit 306, an exposure unit 100, and a flood exposure unit 300.
  • the present invention adds a flood exposure unit 300 that can improve the sidewall steepness of the pattern of the exposure step, and the over-exposed pattern becomes a regular cylindrical shape to improve the exposure product yield. As shown in FIG. 13, FIG.
  • FIG. 13 is a conventional exposure effect diagram in which the over-exposure is not added; the side wall of the exposure pattern 201 is steep, and the illustration illustrates the trapezoidal structure in which the side wall steepness of the exposure pattern 201 is regular, and the trapezoidal structure
  • the line segment of the difference between the upper middle and the lower base and the side wall portion of the triangle formed by the waist line are redundant portions, and the actual conventional exposure image 201 may also be a non-isosceles trapezoidal structure.
  • FIG. 14 FIG.
  • FIG. 14 is an effect diagram of adding a flood exposure; after the overexposure of the exposure pattern 201, a flood exposure pattern 202 is formed, and the over-exposure pattern 202 removes excess portions of the sidewalls to make the pattern a cylindrical shape or close to Cylindrical shape. It can be seen from the above that after the general exposure unit of the present invention is added, the exposure yield of the product can be improved.
  • the pan exposure unit 300 includes a material supporting structure 301 for carrying the exposed wafer 200, a flood exposure source 302 for providing flood exposure energy, and a flood exposure control unit 303 for controlling the pan. The opening or closing of the exposure source 302 and the timing of controlling the pan exposure source 302 to open or close.
  • the flood exposure source 302 is disposed under the material support structure 301 to prevent an external light source from entering the flood exposure unit 300.
  • the advantage of such a structure is that the external scattered light source is prevented from being irradiated onto the wafer 200 carried by the flood exposure unit 300 through the material supporting structure 301, thereby avoiding the influence of the external scattered light source on the pan exposure of the wafer 200, so as to improve the yield of the flood exposure.
  • the material support structure 301 is downwardly compatible for carrying wafers 200 of all sizes.
  • the advantage of this configuration is that it can be adapted to wafers 200 of all sizes, such as 4 inches, 8 inches, 10 inches, 16 inches, etc., with good compatibility.
  • the second embodiment provides an exposure method.
  • the second embodiment is based on the exposure apparatus of the first embodiment, and includes at least the following steps: designing a cross section of the uniform light quartz rod in the light homogenizing unit of the illumination system into a regular hexagonal shape.
  • the step of designing the shape of the mask to a regular hexagon matching the cross section of the homogenized quartz rod is exposed.
  • the length of the diagonal of the positive hexagonal exposure field of view reflected by the uniform hexagonal cross-section quartz rod is shorter than the length of the diagonal of the quadrilateral exposure field of view, thereby reducing
  • the depth of focus of the projection objective increases the practical depth of focus of the projection objective; in the case of the same focal depth of the projection objective, the uniform hexagonal cross-section of the hexagonal uniformized quartz rod reflects the positive hexagonal field of view larger than the cross section.
  • the exposure field of the quadrilateral uniformized quartz rod expands the exposure area of the exposure field of view.
  • the exposure method of the present invention after the exposure step, a step of overexposure is further added to improve the sidewall steepness of the pattern of the exposure step, so that the overexposed pattern becomes a regular column shape. Shape to increase the yield of the exposed graphic.
  • the invention can increase the exposure yield of the product after the step of increasing the exposure, facilitate the processing and manufacturing of the subsequent process, and effectively improve the yield of the product.
  • the exposure method of the present invention specifically includes the following steps: an extraction step for extracting a wafer; a pre-alignment step; aligning the wafer; and an exposure step of passing a uniformed quartz rod and a mask having a regular hexagonal cross section
  • the aligned wafer is exposed; a flood exposure step is used to perform a flood exposure of the exposed wafer.
  • the specific step of the wafer exposure process can be streamlined, easy to manufacture and management.
  • a step of continuously measuring the surface topography of the wafer and then exposing the wafer at a time is employed.
  • the specific steps of the measurement are: using a vertical measuring device to continuously measure the surface topography of the wafer, matching the moving table of the slide with the measurement result of the vertical measuring device, fitting and calculating each The slope of the field of view relative to the best focal plane.
  • the advantage of this step is that the measurement has multiple continuity steps, without waiting for the steps of re-measurement after exposure in the conventional exposure method, saving the measurement man-hour.
  • the specific step of the exposure is: controlling the optimal focal plane of the wafer through the vertical sensor of the slide motion table, and performing step exposure at one time.
  • the advantage of this step is that the exposure of the wafer is more accurate by stepping the one-time exposure, which saves the working hours of exposure, reduces the manufacturing cost, and improves the quality of the product.
  • the wafer table is directly controlled by the vertical measuring device. Since the vertical measuring device generally has a slow response speed, the direct control efficiency is low. And direct control with a limited number of leveling to represent the face of the audience, the wafer surface requirements are higher, especially the edge of the film, the requirements are higher, once the material situation is slightly worse, the depth of focus is slightly smaller, it will Bringing inconsistencies between the fields and affecting the exposure rate.
  • Step S1 transferring the silicon wafer to the wafer workpiece stage
  • Step S2 the silicon wafer workpiece stage performs global alignment
  • step S3 the wafer workpiece stage maintains the vertical posture unchanged, and the vertical sensor of the silicon wafer workpiece stage, such as a grating scale, is scanned back and forth at a high speed in the full field of view, and the wafer workpiece stage records the real-time position and transmits it to the upper computer. ;
  • the vertical sensor of the silicon wafer workpiece stage such as a grating scale
  • Step S4 the vertical measuring device continuously measures while scanning the silicon wafer workpiece table, records each measurement result and transmits it to the upper computer;
  • step S5 the host computer matches the position of the silicon wafer table and the measurement result of the vertical measuring device. As shown in Fig. 17, the inclination of each field of view with respect to the optimal focal plane is fitted and calculated as shown in Fig. 18.
  • step S6 the silicon wafer is controlled by the vertical sensor of the wafer workpiece stage to the optimal focal plane for step exposure.
  • Step S7 transferring the exposed silicon wafer to the pan exposure unit
  • Step S8 performing a pan exposure
  • step S9 the film is removed from the pan exposure unit.
  • the surface profile of the wafer can be fully considered, the exposure result is consistent, and the yield is improved. Even if it takes a certain time to scan and measure, the overall time is still superior to the conventional exposure process; in the present invention, since the vertical measuring device does not participate in direct control, the wafer workpiece stage can be moved at a high speed in a horizontal or vertical direction. Compensate to accommodate wafers with higher hardness or warpage.
  • the exposure method of the present invention by continuously measuring the surface topography characteristics of the wafer, fitting and calculating the inclination of each field of view with respect to the optimal focal plane, and then exposing the wafer at one time, and Compared with the cycle step of measuring one exposure once used in the prior art, the sensitivity of the wafer material is lowered, and the adaptability to a substrate having a higher hardness such as a sapphire substrate or a warped wafer is improved.
  • the invention adopts the step of single exposure, which has the effect of saving the working time of exposure and reducing the manufacturing cost.
  • the hexagon in the present embodiment refers to a regular hexagon; the quadrilateral refers to a regular quadrangle, that is, a square.
  • the present invention is not limited to the above specific embodiments, and the exposure apparatus and method of the present invention are equally applicable to the fields of integrated photovoltaic systems, magnetic domain memory guiding and detecting patterns, flat panel displays, liquid crystal displays, thin film magnetic heads, and the like. Any changes made within the spirit and scope of the claims of the invention are within the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种曝光装置,包括曝光单元(100),用于对晶圆(200)进行曝光;所述曝光单元(100)包括照明系统(110)和掩模(120),所述照明系统(110)包括匀光单元(113),所述匀光单元(113)包括横截面为正六边形的匀光石英棒(1131),所述掩模(120)的形状为与所述匀光石英棒(1131)的横截面相匹配的正六边形。在相同曝光视场的情况下能够有效降低物镜场曲对焦深的影响,提高实际可使用的焦深;在投影物镜相同的焦深得情况下,扩大了曝光视场的曝光面积。

Description

曝光装置及方法 技术领域
本发明涉及一种光刻设备,特别涉及一种曝光装置及方法。
背景技术
光刻设备是一种将所需图案应用到衬底上,通常是衬底的目标部分上的机器。例如,可以将光刻设备用在集成电路的制造中。在这种情况下,可认为是掩模或掩模版的图案形成装置用于生成对应于所述集成电路的单层的电路图案。可以将该图案成像到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。特殊的,在LED制造领域,首先需要将密集孔的图案成像到图形化蓝宝石衬底。
和线条的成像相比,密集孔或密集圆柱的成像会困难得多,其实际的焦深也会大大减少,因此,对光刻而言,焦面的控制要求就非常高;另一方面,相较于硅片,图形化蓝宝石衬底本身的特点在于材质比较硬,面型翘曲较大,这又进一步降低了实际可使用的焦深(Useful Depth Of Focus,UDOF),在实际可使用的焦深不够的情况下,光刻系统焦面控制误差导致的离焦量会造成基底上图形的一致性超出可接收范围,宏观效果显示为在相同光照条件下,基底上不同图形的区域明暗程度不同,形成肉眼可观测到的“不一致(Not Consistent)”或“色差(Color Difference)”现象。在产线上,肉眼观察是一个重要指标,肉眼对“不一致”或“色差”现象非常敏感,因此,对各种工艺参数的控制,尤其是焦面控制的要求就非常高。
请参考图1,现有技术中的照明系统的匀光设计,采用四边形的匀光棒10。请参考图2,现有技术的掩模20采用四边形形状,掩模可以进行方形拼接,此种结构的照明系统和掩模主要用于激光退火领域,无法用于LED光刻领域。
目前,曝光图形化蓝宝石衬底图形的光刻机,受镜头设计成本或控制系统设计等因素的影响,这些机器良率低,适应性差,难以满足大批量的生产需求。
发明内容
本发明所要解决的技术问题是,提供一种曝光装置,以在相同曝光视场的情况下能够有效降低物镜场曲对焦深的影响,提高实际可使用的焦深;在投影物镜相同的焦深的情况下,扩大了曝光视场的曝光面积。
为了解决上述技术问题,本发明的技术方案是:一种曝光装置,包括曝光单元,用于对晶圆进行曝光;所述曝光单元包括照明系统和掩模,所述照明系统包括匀光单元,所述匀光单元包括横截面为正六边形的匀光石英棒。
进一步的,本发明的上述曝光装置,所述掩模的形状为与所述匀光石英棒的横截面相匹配的正六边形。
进一步的,本发明的上述曝光装置,还包括泛曝光单元,用于对曝光后的晶圆进行泛曝光。
进一步的,本发明的上述曝光装置,所述泛曝光单元,包括物料支撑结构,用于承载曝光后的晶圆;泛曝光源,提供泛曝光能量;泛曝光控制单元,用于控制所述泛曝光源的打开或闭合,以及控制所述泛曝光源打开或闭合的时间。
进一步的,本发明的上述曝光装置,所述泛曝光源密闭设置在所述物料支撑结构的下方,以阻止外部光源进入泛曝光单元。
进一步的,本发明的上述曝光装置,所述物料支撑结构向下兼容设置,以用于承载4英寸、8英寸、10英寸、16英寸或更大规格尺寸的晶圆。
进一步的,本发明的上述曝光装置,还包括:晶圆盒单元,用于存放晶圆;提取单元,用于提取晶圆;预对准单元,用于将提取的晶圆进行对位;以及曝光单元,通过横截面为正六边形的匀光石英棒和掩模将对准后的晶圆 进行曝光。
进一步的,本发明的上述曝光装置,所述提取单元为旋转机械手。
进一步的,本发明的上述曝光装置,所述晶圆为蓝宝石衬底或硅衬底或锗硅衬底。
进一步的,本发明的上述曝光装置,所述照明系统,还依次包括光源、聚光单元、中继单元,所述匀光单元位于所述聚光单元与所述中继单元之间。
进一步的,本发明的上述曝光装置,所述照明系统,还包括设置在所述匀光单元与所述中继单元之间的可动刀口,用于开启或关闭光源以及调节光源经聚光单元的照射视场大小。
为了解决上述技术问题,本发明还提供一种对晶圆进行曝光方法,包括以下步骤:提供照明系统,所述照明系统包括匀光单元,所述匀光单元包括横截面为正六边形形状的匀光石英棒;提供掩模,所述掩模的形状为与所述匀光石英棒的横截面相匹配的正六边形;以及通过曝光单元对晶圆进行曝光以形成曝光图形。
进一步的,本发明的曝光方法,在曝光步骤之后,还包括泛曝光的步骤,将曝光图形进行泛曝光以形成泛曝光图形,使经过泛曝光的泛曝光图形变成规则的柱形形状。
进一步的,本发明的曝光方法,所述对晶圆进行曝光之前还包括以下步骤:提取晶圆;以及将晶圆进行预对准。
进一步的,本发明的曝光方法,对晶圆进行曝光包括采用对晶圆的表面形貌特征进行全部测量后,然后一次性对晶圆进行曝光的步骤。
进一步的,本发明的曝光方法,所述测量的具体步骤为:采用垂向测量装置连续多次测量晶圆的表面形貌特征,将载片运动台与所述垂向测量装置的测量结果进行匹配,拟合并计算出每一个视场相对于最佳焦面的倾斜度。
进一步的,本发明的曝光方法,所述曝光的具体步骤为:通过载片运动台的垂向传感器控制晶圆的最佳焦面,一次性的进行步进曝光。
与现有技术相比,本发明的曝光装置及方法,将照明系统中匀光单元的匀光石英棒由四边形改进为正六边形,并将掩模匹配设计为正六边形。具有在相同曝光视场的情况下,正六边形的对角线长度要比四边形的对角线的长度要小,降低了投影物镜对焦深的影响,提高了投影物镜实际有用的焦深;在投影物镜相同的焦深的情况下,正六边形的匀光石英棒反映的正六边形曝光视场,扩大了曝光视场的曝光面积的技术效果。本发明由于提高了投影物镜实际有用的焦深,因此,能够克服光刻系统焦面控制误差导致的离焦量会造成基底上图形的一致性超出可接收范围的缺陷;能够克服肉眼观测到的“不一致”或“色差”的现象。本发明的匀光石英棒和掩模的匹配设计,以及形成的正六边形拼接,特别适应于LED制造领域等密集孔或集圆柱的成像工艺。本发明增加了泛曝光单元及泛曝光的步骤,以改善曝光步骤的图形的侧壁陡度,使经过泛曝光的图形变成规则的柱形形状,以提高曝光产品良率。本发明的曝光方法,通过连续多次测量晶圆的表面形貌特征,拟合并计算出每一个视场相对于最佳焦面的倾斜度,然后一次性对晶圆进行曝光的步骤,与现有技术中采用的测量一次曝光一次的循环步骤相比,具有降低了晶圆物料的敏感度,提高了对硬度较高的衬底例如蓝宝石衬底或者翘曲的晶圆的适应能力。本发明采用一次性曝光的步骤,具有节省了曝光的工时,降低制造成本的效果。
附图说明
图1是现有技术的匀光棒的结构示意图;
图2是现有技术的掩模的拼接结构示意图;
图3是本发明的曝光装置的结构示意图;
图4是本发明的曝光单元的结构示意图;
图5是本发明的匀光石英棒的结构示意图;
图6是本发明的掩模的拼接结构示意图;
图7-8是物镜视场与曝光视场关系的效果图;
图9-10是本发明的照明系统的结构示意图;
图11是晶圆传输系统的结构示意图;
图12是本发明增加泛曝光单元的曝光装置的结构示意图;
图13是未加入泛曝光的传统曝光效果图;
图14是加入泛曝光的效果图;
图15是本发明泛曝光单元的结构示意图;
图16是本发明的物料支撑结构与泛曝光源的结构关系示意图;
图17是硅片工作台位置和垂向测量装置的测量结果进行匹配的示意图;
图18是拟合并计算出每一个视场相对于最佳焦面的倾斜度的示意图。
现有技术图示:10、匀光棒,20、掩模。
本发明图示:100、曝光单元,110、照明系统,111、光源,112、聚光单元,113、匀光单元,1131、匀光石英棒,114、中继单元,115、可动刀口,120、掩模,200、晶圆,201、曝光图形,202、泛曝光图形,300、泛曝光单元,301、物料支撑结构,302、泛曝光源,303、泛曝光控制单元,304、提取单元,305、晶圆盒单元,306、预对准单元,401、物镜视场、402、正六边形曝光视场,403、四边形曝光视场。
具体实施方式
下面结合附图对本发明作详细描述:
实施例一
请参考图3至6,本实施方式提供一种曝光装置,包括曝光单元100,用于对晶圆200进行曝光;所述曝光单元100包括照明系统110和掩模120,所述照明系统110包括匀光单元113,所述匀光单元113包括横截面为正六边形的匀光石英棒1131,所述掩模120的形状为与所述匀光石英棒1131的横截面相匹配的正六边形。
具体地,如图5所示,本发明的曝光装置,将照明系统110中匀光单元113的匀光石英棒1131的横截面由四边形改进为正六边形,请参考图6,本发明的曝光装置将掩模120设计为正六边形,与所述匀光石英棒1131的横截面的正六边形相匹配,掩模120可以进行正六边形拼接。图7和8是物镜视场与曝光视场关系的效果图,请参考图7,401为物镜视场,在相同曝光视场的情况下,横截面为正六边形的匀光石英棒1131反映的正六边形曝光视场402的对角线长度要比四边形曝光视场403的对角线的长度要短,从而降低了投影物镜对焦深的影响,提高了投影物镜实际有用的焦深;请参考图8,401’为物镜视场,在投影物镜相同的焦深的情况下,横截面为正六边形的匀光石英棒1131反映的正六边形曝光视场402’大于横截面为四边形的匀光石英棒的曝光视场403’,从而扩大了曝光视场的曝光面积。本发明由于提高了投影物镜实际有用的焦深,因此,能够克服光刻系统焦面控制误差导致的离焦量会造成基底上图形的一致性超出可接收范围的缺陷;能够克服肉眼观测到的“不一致”或“色差”的现象。本发明的匀光石英棒1131的横截面和掩模120的匹配设计,以及形成的六边形拼接的掩模120,特别适应于LED制造领域等密集孔或集圆柱的成像工艺。
其中,晶圆200为蓝宝石衬底或硅衬底或锗硅衬底等。
请参考图9,本发明的照明系统110,还依次包括汞灯或LED等光源111、聚光单元112、中继单元114,所述匀光单元113位于所述聚光单元112与所述中继单元114之间。
请参考图10,本发明的曝光装置,还包括设置在匀光单元113与所述中继单元114之间的可动刀口115,用于开启或关闭光源111以及调节光源111经聚光单元112的照射视场大小。即本发明可以根据可动刀口115配合不同尺寸大小的掩模120进行调节曝光视场的大小,以适应于各种尺寸晶圆200的曝光工艺。
请参考图11,本发明的曝光装置,还包括晶圆盒单元305,用于存放晶 圆200;提取单元304,用于提取晶圆200;预对准单元306,用于将提取的晶圆200进行对位;曝光单元100,通过横截面为正六边形的匀光石英棒1131和掩模120将对准后的晶圆200进行曝光。本发明的预对准单元306和曝光单元100可分体设计,也可以一体式设计。本发明的提取单元304、预对准曝光单元100与泛曝光单元300构成晶圆传输系统,以用于实现曝光前后以及泛曝光前后对晶圆200的传输。提取单元304在晶圆盒单元305、预对准单元306、曝光单元100中均起到对晶圆200提取的作用。例如可以采用旋转机械手为提取单元304,将晶圆盒单元305的晶圆200提取放入预对准单元306,也可以将预对准单元306的晶圆200放入到曝光单元100进行曝光,还可以将曝光单元100的晶圆200提取回收。
请参考图12,本发明的曝光装置,还包括泛曝光单元300,用于对曝光后的晶圆200进行泛曝光。增加泛曝光单元300后,晶圆传输系统则由提取单元304、晶圆盒单元305、预对准单元306、曝光单元100、泛曝光单元300构成。本发明增加了泛曝光单元300,能够改善曝光步骤的图形的侧壁陡度,使经过泛曝光的图形变成规则的柱形形状,以提高曝光产品良率。如图13所示,图13是未加入泛曝光的传统曝光效果图;曝光图形201的侧壁出现陡度,本图示示例了曝光图形201的侧壁陡度为规则的梯形结构,梯形结构中上底与下底之差的线段与腰线围合成的三角形的侧壁部分均为多余的部分,实际传统曝光后曝光图形201也可能是非等腰梯形结构。如图14所示,图14是加入泛曝光的效果图;对曝光图形201进行泛曝光后形成泛曝光图形202,泛曝光图形202去除了侧壁的多余部分,使图形为柱形形状或接近柱形形状。由此可知,本发明增加泛曝光单元后,能够提高产品的曝光良率。
请参考图15,所述泛曝光单元300,包括物料支撑结构301,用于承载曝光后的晶圆200;泛曝光源302,提供泛曝光能量;泛曝光控制单元303,用于控制所述泛曝光源302的打开或闭合,以及控制所述泛曝光源302打开或闭合的时间。
请参考图16,所述泛曝光源302密闭设置在所述物料支撑结构301的下方,以阻止外部光源进入泛曝光单元300。此种结构的优点在于,防止外部散射光源通过物料支撑结构301照射到泛曝光单元300承载的晶圆200上,避免外部散射光源对晶圆200泛曝光的影响,以提高泛曝光的良率。
作为较佳的实施方式,所述物料支撑结构301向下兼容设置,以用于承载所有规格尺寸的晶圆200。此种结构的优点在于,能够适应于4英寸、8英寸、10英寸、16英寸等所有尺寸的晶圆200,兼容性较好。
实施例二
本实施例二提供一种曝光方法,本实施例二是基于实施例一的曝光装置,至少包括以下步骤:将照明系统的匀光单元中的匀光石英棒的横截面设计成正六边形形状,将掩模的形状设计成与所述匀光石英棒的横截面相匹配的正六边形的步骤进行曝光。在相同曝光视场的情况下,横截面为正六边形的匀光石英棒反映的正六边形曝光视场的对角线长度要比四边形曝光视场的对角线的长度要短,从而降低了投影物镜的焦深,提高了投影物镜实际有用的焦深;在投影物镜相同的焦深的情况下,横截面为正六边形的匀光石英棒反映的正六边形曝光视场大于横截面为四边形的匀光石英棒的曝光视场,从而扩大了曝光视场的曝光面积。
作为较佳的实施方式,本发明的曝光方法,在曝光步骤之后,还增加了泛曝光的步骤,以改善曝光步骤的图形的侧壁陡度,使经过泛曝光的图形变成规则的柱形形状,以提高曝光图形的良率。结合实施例一的泛曝光单元可知,本发明增加泛曝光步骤后,能够提高产品的曝光良率,便于后续工艺的加工和制造,有效提高产品的合格率。
本发明的曝光方法具体包括以下步骤:提取步骤,用于提取晶圆;预对准步骤;将晶圆进行对位;曝光步骤,通过横截面为正六边形的匀光石英棒和掩模将对准后的晶圆进行曝光;泛曝光步骤,用于将曝光后的晶圆进行泛曝光。该具体步骤对晶圆的曝光工艺处理可以进行流水化作业,便于制造和 管理。
作为较佳的实施方式,本发明的曝光方法,在曝光时,采用对晶圆的表面形貌特征进行连续多次测量后,然后一次性对晶圆进行曝光的步骤。其中,测量的具体步骤为:采用垂向测量装置连续多次测量晶圆的表面形貌特征,将载片运动台与所述垂向测量装置的测量结果进行匹配,拟合并计算出每一个视场相对于最佳焦面的倾斜度。此步骤的优点在于,测量具有多次连续性,无需等待传统曝光方法中曝光后再次测量的步骤,节约了测量的工时。其中,曝光的具体步骤为:通过载片运动台的垂向传感器控制晶圆的最佳焦面,一次性的进行步进曝光。此步骤的优点在于,通过步进一次性曝光,使晶圆的曝光更加精确,具有节省了曝光的工时,降低制造成本,提高产品的质量的效果。
由于传统的曝光流程,直接用垂向测量装置控制硅片工件台,由于垂向测量装置通常响应速度较慢,因此直接控制的效率较低。且直接控制用有限的点进行调平代表全场的面型,对晶圆的面型要求较高,尤其是片子的边缘,要求更高,一旦物料情况稍差,焦深稍小,就会带来场场间的不一致情况,影响曝光良率。
采用本发明的曝光方法后,可以克服传统曝光流程的上述缺陷。下面以硅片为例给出以下具体实施例来说明本发明的曝光过程及其效果。
步骤S1,将硅片传输到硅片工件台;
步骤S2,硅片工件台执行全局对准;
步骤S3,硅片工件台保持垂向姿态不变,采用硅片工件台的垂向传感器,例如光栅尺,在全视场范围内高速来回扫描,硅片工件台记录实时位置并传到上位机;
步骤S4,垂向测量装置在硅片工件台扫描的同时,连续测量,记录每次测量结果并传到上位机;
步骤S5,上位机将硅片工作台位置和垂向测量装置的测量结果进行匹配, 如图17所示,拟合并计算出每一个视场相对于最佳焦面的倾斜度,如图18所示。
步骤S6,硅片由硅片工件台的垂向传感器控制到最佳焦面,进行步进曝光
步骤S7,将曝光后的硅片传输到泛曝光单元;
步骤S8,执行泛曝光;
步骤S9,从泛曝光单元下片。
采用本发明的上述步骤的曝光方法,通过连续多次测量,精确定位最佳焦面,能够充分考虑晶圆的面型分布,曝光结果一致性良好,良率提高。即使在扫描测量时需要一定的时间,但整体时间仍优于传统的曝光流程;本发明由于垂向测量装置不参与直接控制,因此硅片工件台水平向或垂向都能以高速运动的方式进行补偿,以适应硬度较高或者翘曲的晶圆。
本发明的曝光方法,通过连续多次测量晶圆的表面形貌特征,拟合并计算出每一个视场相对于最佳焦面的倾斜度,然后一次性对晶圆进行曝光的步骤,与现有技术中采用的测量一次曝光一次的循环步骤相比,具有降低了晶圆物料的敏感度,提高了对硬度较高的衬底例如蓝宝石衬底或者翘曲的晶圆的适应能力。本发明采用一次性曝光的步骤,具有节省了曝光的工时,降低制造成本的效果。
本实施方式中的六边形指正六边形;四边形是指正四边形,即正方形。
本发明不限于上述具体实施方式,本发明的曝光装置及方法,同样适用于集成光电系统、磁畴存储器的引导和检测图案,平板显示器、液晶显示器、薄膜磁头等领域。凡在本发明的权利要求书的精神和范围内所作出的任何变化,均在本发明的保护范围之内。

Claims (17)

  1. 一种曝光装置,包括曝光单元,用于对晶圆进行曝光;所述曝光单元包括照明系统和掩模,所述照明系统包括匀光单元,其特征在于,所述匀光单元包括横截面为正六边形的匀光石英棒。
  2. 如权利要求1所述的曝光装置,其特征在于,所述掩模的形状为与所述匀光石英棒的横截面相匹配的正六边形。
  3. 如权利要求2所述的曝光装置,其特征在于,还包括泛曝光单元,用于对曝光后的晶圆进行泛曝光。
  4. 如权利要求3所述的曝光装置,其特征在于,所述泛曝光单元,包括物料支撑结构,用于承载曝光后的晶圆;泛曝光源,提供泛曝光能量;泛曝光控制单元,用于控制所述泛曝光源的打开或闭合,以及控制所述泛曝光源打开或闭合的时间。
  5. 如权利要求4所述的曝光装置,其特征在于,所述泛曝光源密闭设置在所述物料支撑结构的下方,以阻止外部光源进入泛曝光单元。
  6. 如权利要求4所述的曝光装置,其特征在于,所述物料支撑结构向下兼容设置,以用于承载4英寸、8英寸、10英寸、16英寸或更大规格尺寸的晶圆。
  7. 如权利要求3至6中任一项所述的曝光装置,其特征在于,还包括:
    晶圆盒单元,用于存放晶圆;
    提取单元,用于提取晶圆;
    预对准单元,用于将提取的晶圆进行对位;以及
    曝光单元,通过横截面为正六边形的匀光石英棒和掩模将对准后的晶圆进行曝光。
  8. 如权利要求7所述的曝光装置,其特征在于,所述提取单元为旋转机械手。
  9. 如权利要求1所述的曝光装置,其特征在于,所述晶圆为蓝宝石衬底或硅衬底或锗硅衬底。
  10. 如权利要求1所述的曝光装置,其特征在于,所述照明系统,还依次包括光源、聚光单元、中继单元,所述匀光单元位于所述聚光单元与所述中继单元之间。
  11. 如权利要求10所述的曝光装置,其特征在于,所述照明系统,还包括设置在所述匀光单元与所述中继单元之间的可动刀口,用于开启或关闭光源以及调节光源经聚光单元的照射视场大小。
  12. 一种对晶圆进行曝光方法,其特征在于,包括以下步骤:
    提供照明系统,所述照明系统包括匀光单元,所述匀光单元包括横截面为正六边形形状的匀光石英棒;
    提供掩模,所述掩模的形状为与所述匀光石英棒的横截面相匹配的正六边形;以及
    通过曝光单元对晶圆进行曝光以形成曝光图形。
  13. 如权利要求12所述的曝光方法,其特征在于,在曝光步骤之后,还包括泛曝光的步骤,将曝光图形进行泛曝光以形成泛曝光图形,使经过泛曝光的泛曝光图形变成规则的柱形形状。
  14. 如权利要求12所述的曝光方法,其特征在于,所述对晶圆进行曝光之前还包括以下步骤:
    提取晶圆;以及
    将晶圆进行预对准。
  15. 如权利要求12所述的曝光方法,其特征在于,对晶圆进行曝光包括 采用对晶圆的表面形貌特征进行连续多次测量后,然后一次性对晶圆进行曝光的步骤。
  16. 如权利要求15所述的曝光方法,其特征在于,所述测量的具体步骤为:采用垂向测量装置连续多次测量晶圆的表面形貌特征,将载片运动台与所述垂向测量装置的测量结果进行匹配,拟合并计算出每一个视场相对于最佳焦面的倾斜度。
  17. 如权利要求15所述的曝光方法,其特征在于,所述曝光的具体步骤为:通过载片运动台的垂向传感器控制晶圆的最佳焦面,一次性的进行步进曝光。
PCT/CN2016/089881 2015-07-15 2016-07-13 曝光装置及方法 WO2017008740A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201800301PA SG11201800301PA (en) 2015-07-15 2016-07-13 Exposure apparatus and method
US15/744,577 US10423072B2 (en) 2015-07-15 2016-07-13 Exposure apparatus and method
EP16823887.1A EP3324238B1 (en) 2015-07-15 2016-07-13 Exposure apparatus and method
JP2018500916A JP6494151B2 (ja) 2015-07-15 2016-07-13 露光装置および方法
KR1020187003616A KR102100119B1 (ko) 2015-07-15 2016-07-13 노광 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510416093.0 2015-07-15
CN201510416093.0A CN106707691B (zh) 2015-07-15 2015-07-15 曝光装置及方法

Publications (1)

Publication Number Publication Date
WO2017008740A1 true WO2017008740A1 (zh) 2017-01-19

Family

ID=57756862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089881 WO2017008740A1 (zh) 2015-07-15 2016-07-13 曝光装置及方法

Country Status (8)

Country Link
US (1) US10423072B2 (zh)
EP (1) EP3324238B1 (zh)
JP (1) JP6494151B2 (zh)
KR (1) KR102100119B1 (zh)
CN (1) CN106707691B (zh)
SG (1) SG11201800301PA (zh)
TW (1) TWI612395B (zh)
WO (1) WO2017008740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731534B (zh) * 2018-12-29 2021-06-21 大陸商上海微電子裝備(集團)股份有限公司 預對準系統、預對準方法及光刻設備

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929334B2 (en) * 2020-03-17 2024-03-12 STATS ChipPAC Pte. Ltd. Die-beam alignment for laser-assisted bonding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059013A (en) * 1988-08-29 1991-10-22 Kantilal Jain Illumination system to produce self-luminous light beam of selected cross-section, uniform intensity and selected numerical aperture
CN1782885A (zh) * 2004-11-26 2006-06-07 三荣技研股份有限公司 扫描型曝光用光源单元
TW201108300A (en) * 2009-04-27 2011-03-01 Tokyo Electron Ltd Flood exposure process for dual tone development in lithographic applications
CN103296154A (zh) * 2012-02-24 2013-09-11 丰田合成株式会社 Ⅲ族氮化物半导体发光元件的制造方法、ⅲ族氮化物半导体发光元件、灯和中间掩模
CN103676494A (zh) * 2012-09-25 2014-03-26 上海微电子装备有限公司 用于扫描光刻机的逐场调焦调平方法
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390765A (en) * 1977-01-19 1978-08-09 Mitsubishi Electric Corp Mask structure
JPS5863938A (ja) * 1981-10-13 1983-04-16 Nec Corp フオトマスク
JPS5917553A (ja) * 1982-07-21 1984-01-28 Hitachi Ltd ホトマスク
GB2171530B (en) * 1985-02-27 1989-06-28 Imtec Products Inc Method of producing reversed photoresist images by vapour diffusion
EP0302124A1 (de) * 1987-08-03 1989-02-08 Mercotrust Aktiengesellschaft Einrichtung zum Projektionskopieren von Masken auf ein Werkstück
JPH03118546A (ja) * 1989-10-02 1991-05-21 Hitachi Ltd フォトレジスト処理装置
US5473408A (en) * 1994-07-01 1995-12-05 Anvik Corporation High-efficiency, energy-recycling exposure system
CN1078358C (zh) * 1995-03-08 2002-01-23 松下电器产业株式会社 照明装置、包含它的曝光装置及曝光方法
JPH10116760A (ja) * 1996-10-08 1998-05-06 Nikon Corp 露光装置及び基板保持装置
JP2001093813A (ja) * 1999-09-22 2001-04-06 Nec Corp ステッパ式露光方法
JP3634782B2 (ja) * 2001-09-14 2005-03-30 キヤノン株式会社 照明装置、それを用いた露光装置及びデバイス製造方法
US6566274B1 (en) * 2001-11-28 2003-05-20 Unaxis Balzer Limited Lithography process for transparent substrates
JP2004014881A (ja) * 2002-06-07 2004-01-15 Advanced Lcd Technologies Development Center Co Ltd 露光装置の照明系
KR101484435B1 (ko) * 2003-04-09 2015-01-19 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
JP4344162B2 (ja) * 2003-04-11 2009-10-14 財団法人国際科学振興財団 パターン描画装置及びパターン描画方法
JP2005116831A (ja) * 2003-10-08 2005-04-28 Nikon Corp 投影露光装置、露光方法、及びデバイス製造方法
JP2006186302A (ja) * 2004-11-26 2006-07-13 Sanee Giken Kk 走査型露光用光源ユニット
CN100409102C (zh) * 2005-03-07 2008-08-06 上海微电子装备有限公司 步进扫描投影光刻机中的杂散光原位检测方法
JP2007041467A (ja) * 2005-08-05 2007-02-15 Y E Data Inc 露光装置用光源
WO2008075340A1 (en) * 2006-12-18 2008-06-26 Camtek Ltd. A chuck and a method for supporting an object
CN101477317B (zh) * 2009-02-10 2011-06-29 上海微电子装备有限公司 用于微光刻的照明光学系统
JP2012133280A (ja) * 2010-12-24 2012-07-12 Mejiro Precision:Kk 基板パターンの製造方法及び露光装置
JP5806479B2 (ja) * 2011-02-22 2015-11-10 キヤノン株式会社 照明光学系、露光装置及びデバイス製造方法
JP6293645B2 (ja) * 2013-12-27 2018-03-14 東京エレクトロン株式会社 基板処理システム
CN105527795B (zh) * 2014-09-28 2018-09-18 上海微电子装备(集团)股份有限公司 曝光装置及离焦倾斜误差补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059013A (en) * 1988-08-29 1991-10-22 Kantilal Jain Illumination system to produce self-luminous light beam of selected cross-section, uniform intensity and selected numerical aperture
CN1782885A (zh) * 2004-11-26 2006-06-07 三荣技研股份有限公司 扫描型曝光用光源单元
TW201108300A (en) * 2009-04-27 2011-03-01 Tokyo Electron Ltd Flood exposure process for dual tone development in lithographic applications
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
CN103296154A (zh) * 2012-02-24 2013-09-11 丰田合成株式会社 Ⅲ族氮化物半导体发光元件的制造方法、ⅲ族氮化物半导体发光元件、灯和中间掩模
CN103676494A (zh) * 2012-09-25 2014-03-26 上海微电子装备有限公司 用于扫描光刻机的逐场调焦调平方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731534B (zh) * 2018-12-29 2021-06-21 大陸商上海微電子裝備(集團)股份有限公司 預對準系統、預對準方法及光刻設備

Also Published As

Publication number Publication date
CN106707691A (zh) 2017-05-24
EP3324238A1 (en) 2018-05-23
TW201715313A (zh) 2017-05-01
KR102100119B1 (ko) 2020-05-15
US20180203358A1 (en) 2018-07-19
CN106707691B (zh) 2018-10-16
EP3324238B1 (en) 2020-09-02
JP2018520386A (ja) 2018-07-26
TWI612395B (zh) 2018-01-21
SG11201800301PA (en) 2018-02-27
EP3324238A4 (en) 2019-05-01
KR20180025960A (ko) 2018-03-09
JP6494151B2 (ja) 2019-04-03
US10423072B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
US10359370B2 (en) Template substrate for use in adjusting focus offset for defect detection
US8111376B2 (en) Feedforward/feedback litho process control of stress and overlay
US6673638B1 (en) Method and apparatus for the production of process sensitive lithographic features
JP2008298932A (ja) フォトマスクの検査方法、フォトマスクの製造方法、電子部品の製造方法及びテストマスク
US11698346B2 (en) Methods and apparatus for monitoring a manufacturing process, inspection apparatus, lithographic system, device manufacturing method
US11320750B2 (en) Determining an optimal operational parameter setting of a metrology system
WO2017008740A1 (zh) 曝光装置及方法
TW201721307A (zh) 控制微影設備之方法、微影設備及器件製造方法
TWI646404B (zh) 用於調整微影裝置之致動的方法
JP2011192792A (ja) パターン寸法測定方法
JP7073391B2 (ja) 基板の応力を決定する方法、リソグラフィプロセス、リソグラフィ装置、及びコンピュータプログラム製品を制御するための制御システム
CN111426701B (zh) 一种晶圆缺陷检测方法及其装置
TWI582547B (zh) 用於調整微影設備之照明裝置的校正設備以及調整方法
JPH0443408B2 (zh)
US9256703B1 (en) Method of detecting a scattering bar by simulation
JP6414399B2 (ja) レチクル及びその検査方法
TW202125588A (zh) 曝光裝置以及物品製造方法
JP2006276351A (ja) プロキシミティ露光装置のパターン位置精度の確認方法及びその装置
KR20080099989A (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500916

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15744577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201800301P

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003616

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016823887

Country of ref document: EP