WO2017008685A1 - 一种具有印刷电路板绕组的定子结构 - Google Patents

一种具有印刷电路板绕组的定子结构 Download PDF

Info

Publication number
WO2017008685A1
WO2017008685A1 PCT/CN2016/089291 CN2016089291W WO2017008685A1 WO 2017008685 A1 WO2017008685 A1 WO 2017008685A1 CN 2016089291 W CN2016089291 W CN 2016089291W WO 2017008685 A1 WO2017008685 A1 WO 2017008685A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
winding
series
printed circuit
circuit board
Prior art date
Application number
PCT/CN2016/089291
Other languages
English (en)
French (fr)
Inventor
易旭
Original Assignee
擎声自动化科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 擎声自动化科技(上海)有限公司 filed Critical 擎声自动化科技(上海)有限公司
Priority to DE112016003201.3T priority Critical patent/DE112016003201T5/de
Publication of WO2017008685A1 publication Critical patent/WO2017008685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the present invention relates to a stator structure having printed circuit board windings.
  • the stator is the stationary part of the motor, and the stator is used in conjunction with the rotor.
  • the stator is generally composed of a stator core, a stator winding and a base.
  • the main function of the stator is to generate a rotating magnetic field, and the main function of the rotor is to output torque.
  • Chinese Patent Application No. CN200480009416.4 discloses a conductor-optimized axial field rotational energy device which is mainly composed of a rotor and a stator.
  • the radial conductor involved in the stator extends from the inner diameter through hole to the outer diameter through hole.
  • the technical problem to be solved by the present invention is to provide a stator structure with printed circuit board windings which is high in efficiency, easy to dissipate heat, and widely used, to overcome the above-mentioned drawbacks of the prior art.
  • a stator structure having printed circuit board windings comprising a stator composed of at least three-phase windings of the same structure, each winding comprising a pair of winding units of the same structure,
  • the winding unit comprises an upper conductive layer and a lower conductive layer made of a printed circuit board, and the upper and lower conductive layers are respectively provided with a plurality of frame-shaped rotary coils corresponding to positions in the circumferential direction, and two positions corresponding to the positions
  • the rotating coil forms a rotating coil group
  • the frame-shaped rotating coil includes a plurality of alternately connected power guiding rods and connecting guiding rods, and two ends of the frame-shaped rotating coil are an inner connecting end and an outer connecting end, respectively, the power guiding One end of the rod faces the central portion of the circumference, and the two inner connecting ends of the corresponding frame-shaped rotating coils are respectively connected in series through the vertical conductive rods, and the two outer connecting ends of the adjacent
  • the rods are connected in series, and the upper conductive layer and the lower conductive layer of the winding unit form a passage, and the two winding units of each phase winding are arranged in the up and down direction, two Two outer set of cells connected in series by a second end connected in series to form a conductive rod passage; when a plurality of identical-phase winding, connected in series or in parallel.
  • the width of the power guiding rod on the frame-shaped rotating coil is smaller than the width of the connecting guide rod.
  • the upper conductive layer and the lower conductive layer of each winding unit are respectively provided with three frame-shaped rotary coils, and the three frame-shaped rotary coils are evenly distributed on the circumference.
  • the upper and lower conductive layers are all copper foil layers.
  • the connecting guides on the frame-shaped rotary coil are outwardly curved structures.
  • frame-shaped rotary coils are all in the shape of a sector.
  • the group of rotating coils of the respective phase windings are alternately arranged in the circumferential direction.
  • the present invention has a stator structure having printed circuit board windings having the following advantageous effects:
  • the winding of the present invention is a frame-shaped rotary coil structure (helical structure), so that more turns (number of turns) can be obtained, which is advantageous for increasing the back electromotive force and reducing the current in the winding; further, since the present invention will The number of turns of the phase winding is maximized, and the resistance of each phase winding is effectively reduced, and the eddy current loss is effectively reduced by optimizing the layout of the frame-shaped rotary coil;
  • the flat structure of the device of the invention has a radial dimension larger than the axial length and is easy to be directly mounted on the related equipment.
  • the winding of the invention has high reliability and good consistency;
  • the invention has the advantages of light weight, good heat dissipation performance and good durability, and is suitable for driving motors of many vehicles, such as electric vehicles, electric bicycles and helicopter engines;
  • the invention can be applied to an electric motor or an engine, and can directly drive an external device without using a gear box or an intermediate transmission member, or can be directly dragged by an external device; because the magnetic field generated by the winding is an axial structure, an electric motor or a generator The bearing is not affected by any magnetic field force in the radial direction, which prolongs the service life of the bearing;
  • the present invention has low electrical resistance, small volume, and large torque, so it has high efficiency, high power density, and high overload energy.
  • Figure 1 is a schematic view showing the structure of a stator three-phase winding used in the present invention.
  • Figure 2 is a schematic view showing the structure of the one-phase winding removed in Figure 1.
  • Figure 3 is a schematic view showing the structure of the two-phase winding removed in Figure 1.
  • Figure 4 is a first structural view of a rotary coil group in the present invention.
  • Fig. 5 is a perspective view of Fig. 4;
  • Fig. 6 is a view showing a second configuration of the rotary coil unit of the present invention.
  • Figure 7 is a perspective view of Figure 6.
  • Figure 8 is a first structural view of a frame-shaped rotary coil in the present invention.
  • Figure 9 is a view showing a second configuration of a frame-shaped rotary coil in the present invention.
  • Figure 10 is a view showing the material structure of the upper and lower conductive layers in the present invention.
  • Figure 11 is a schematic view of a first embodiment of a power guide in the present invention.
  • Figure 12 is a schematic view of a second embodiment of the power guide of the present invention.
  • Figure 13 is a schematic view of a third embodiment of the power guide of the present invention.
  • Figure 14 is a first application structural split diagram of the present invention.
  • Figure 15 is a schematic view showing the structure of the present invention in Figure 14;
  • Figure 16 is a schematic view showing the structure of the rotor of Figure 14.
  • Figure 17 is a cross-sectional view of Figure 14 assembled.
  • Figure 18 is a developed view of the stator and rotor of Figure 17;
  • Figure 19 is a cross-sectional view showing a second application structure of the present invention.
  • Figure 20 is a schematic view showing the structure of the present invention in Figure 19.
  • stator 11 stator 11
  • signal connection point 12 temperature sensor
  • double-sided copper clad plate 231 copper foil layer 232, core layer
  • Rotor 54 Rotor 541, rigid support member 542, permanent magnet
  • a printed circuit board winding stator structure includes a stator 1 composed of at least three-phase windings having the same structure, each winding 2 including a pair of winding units having the same structure,
  • the winding unit comprises an upper conductive layer 21 and a lower conductive layer 22 made of a printed circuit board, and the upper and lower conductive layers 21, 22 are respectively provided with a plurality of frame-shaped rotary coils 211, 221 corresponding to positions in the circumferential direction, at a position
  • the corresponding two frame-shaped rotary coils 211, 221 form a rotary coil group, and the frame-shaped rotary coils 211, 221 include a plurality of alternately connected power guides 2111, 2211 and connection guides 2112, 2212, the frame shape
  • the two ends of the turning coils 211 and 221 are the inner connecting ends 2113 and 2213 and the outer connecting ends 2114 and 2214, respectively, that is, the frame-shaped turning coils 211 and 221
  • One end of the power guiding rods 2111, 2211 is directed toward a central portion of the circumference, that is, one end of the power guiding rods 2111, 2211 may be toward the center or substantially toward the center, and the purpose is to make an alternating current
  • a rotating magnetic field can be formed when flowing through the power guiding rods 2111 and 2211.
  • the two inner connecting ends 2113, 2213 of the frame-shaped rotating coils 211, 221 corresponding to the upper and lower conductive layers 21, 22 are respectively connected in series by the vertical conductive rod 31, and the two outer connecting ends of the adjacent rotating coil group
  • the ends 2114, 2214 are connected in series by the first series conductive rod 32, the upper conductive layer 21 and the lower conductive layer 22 of the winding unit form a path, and the two winding units of each winding 2 are arranged in the up and down direction, and the two winding units
  • the two outer connecting ends form a passage in series through the second series conductive rod 33. At this time, the two ends of the passage have an outer connecting end which is not connected in series or in parallel.
  • the in-phase winding 2 When the in-phase winding 2 is provided in plurality, parallel or in series, when connected in parallel, as shown in FIG. 3, the outer connecting ends of one end of each path formed by each winding 2 are respectively connected in parallel through the parallel conductive rods 34;
  • the second series guide 33 connects the plurality of windings end to end to form a passage.
  • the in-phase windings 2 are correspondingly positioned in the up-and-down direction to facilitate connection of the parallel conductive rods 34, and the structure of the in-phase windings 2
  • the connection method is the same.
  • the rotating coil sets of the three-phase windings are alternately arranged in the circumferential direction, that is, the windings in the three-phase windings are 120° electrical angles in space, and the windings of each phase are up and down.
  • the in-phase windings 2 are pressed together in the axial direction (up and down direction), that is, the corresponding conductive layers (including all of the upper and lower conductive layers of the plurality of windings) are pressed together.
  • two ends of the second series guiding rod 33 may be respectively connected with an intermediate guiding rod 331, and are connected to the relevant outer connecting end through the intermediate guiding rod 331 to meet the actual working position requirement.
  • the positions of the frame-shaped rotary coils 211 and 221 in the rotary coil group of the present invention may be the same or different, and the frame-shaped rotary coils 211 and 221 may be multi-turn as long as the positional correspondence is satisfied and the shape is a rotary shape.
  • Form, such as 4 to 7 show two structures of two frame-shaped rotary coils 211 and 221 corresponding to the upper and lower conductive layers 21 and 22; as shown in FIGS. 4 and 5, the rotary coil group is formed.
  • the two outer connecting ends 2114, 2214 are all on the inner side; as shown in FIG. 6 and FIG.
  • FIG. 4 is an example in which the direction of the arrow is the current direction. Referring to FIG. 3, the current flows from the frame-shaped rotary coil 211 on the upper conductive layer 21, and a frame is formed by the upper conductive layer 21.
  • the outer ring of the slewing coil 211 starts to flow through the respective power guiding rods 2111 and the connecting guide rods 2112 from the outside to the inside, that is, from the outside to the inside in the form of a spiral, and the current passes when entering the inner connecting end 2113 of the last turn.
  • the vertical conductive rod 31 flows into the inner connecting end 2213 of the lower conductive layer 22.
  • the current starts from the inner ring of the lower conductive layer 22, and flows through the respective power guiding rods 2211 and the connecting guide rods 2212 from the inside to the outside, and the current is still in the form of a spiral.
  • the widths of the power guiding bars 2111, 2211 on the frame-shaped turning coils 211, 221 of the upper and lower conductive layers 21, 22 are smaller than the widths of the connecting guides 2112, 2212.
  • the reason is: in order to reduce the resistance of the winding 2, thereby reducing the copper loss of the winding; in addition, the smaller power guiding rod width enables the parallel winding to achieve a similar Litz wire effect, which is beneficial to reduce the eddy current loss of the winding.
  • the width of the power guide can be designed to be as small as possible while meeting the work requirements and physical properties. Further, taking a frame-shaped rotary coil 211 as an example, as shown in FIGS.
  • the power guiding rod 2111 is subjected to a magnetic field in a magnetic field surrounded by the inner circular arc 41 and the outer circular arc 42 (the magnetic field range is determined according to the test), and all the connecting guides 2112 except the power guiding rod 2111 They are not affected by the magnetic field.
  • the inner end of the power guide 2111 is connected to the connecting guide 2112 by a straight section 43, and the outer end is connected to the connecting guide 2112 by a straight section 44.
  • the widths of the two straight segments 43, 44 are denoted as d1 and d2, respectively, and the width of the power guide 2111 is d3.
  • the width d3 of the power guiding rod 2111 is smaller than d1 and d2, respectively; in order to increase the number of turns of the coil, the width of the inner straight line segment 43 is similar to the width of the power guiding rod 2111;
  • the width of the connecting guide 2112 connected to the inner straight section 43 is greater than the width d1 of the straight section 43, and the width of the connecting guide 2112 connected to the outer straight section 44 is greater than the width d2 of the straight section 44.
  • the second structure is shown in Fig. 12.
  • the power guiding rod 2111 includes two parallel conductor portions a1 and a2, and the width of each conductor portion is minimized to reduce the eddy current loss, and is further reduced.
  • the resistor is used to facilitate heat dissipation.
  • only one conductor portion has two conductor portions as an example. Specifically, more conductor portions may be used to form the power guiding rod.
  • the third structure is shown in Figure 13, the power guiding rod 2111 is in the form of a branch, starting from the inner side, the power guiding rod 2111 is firstly the conductor portion b1 in the longitudinal direction, then divided into the conductor portions b2 and b3 by b1, and then further divided into the conductor portions b4, b5 and b6,
  • the structural form can also effectively reduce eddy current loss, reduce electrical resistance, and facilitate heat dissipation; in this embodiment, only the power guiding rod is branched twice, and in particular, multiple branches can be performed.
  • the upper conductive layer 21 and the lower conductive layer 22 of each winding unit are respectively provided with three frame-shaped rotary coils 211, 221, and three frame-shaped rotary coils 211, 221 are Evenly distributed on the circumference.
  • the frame-shaped rotary coils 211, 221 on each phase winding 2 are evenly distributed over the entire circumference, that is, when there are N-phase windings, The frame-shaped rotary coil on the phase winding 2 occupies N times of the entire circumference, thereby meeting the setting requirements, saving space and making the overall structure more compact.
  • the number of the frame-shaped rotary coils on the upper and lower conductive layers 21, 22 in this embodiment is only used to exemplify the structural principle. In actual use, the number is determined according to the specific number of motor poles. According to the actual structural requirements, the connecting guides 2112 and 2212 on the frame-shaped rotating coils 211 and 221 of the upper and lower conductive layers 21 and 22 are outwardly curved, and the inner connecting guide arc length is smaller than The arc length of the outer connecting guide rods further causes the frame-shaped rotating coils 211 and 221 to have a fan shape; as shown in FIGS. 8 and 9, the frame-shaped rotating coil 211 of the above conductive layer 21 is taken as an example.
  • the arrangement of the frame-shaped rotary coils in the shape of a sector can also make full use of the space in the circumference when the three-phase winding is provided.
  • the angle of the power guides of the two most edge positions is ⁇ 1.
  • the actual clamping angle of the power guiding rod should be slightly smaller than ⁇ 1, so that the adjacent frame-shaped rotating coil has a suitable matching clearance, that is, the frame-shaped rotating coils of different phases can be contacted in the same horizontal plane; by adjusting each intermediate power guiding
  • the angle ⁇ 2 between the rods and the angle ⁇ 3 between the inner power guides can optimize the harmonics inside the coil winding and make the back electromotive force waveform of the windings closest to the sine wave waveform, so the structure of Fig. 8 is suitable for the motor.
  • the structural form in Fig. 9 can increase the amplitude of the electromotive force waveform, so it is suitable for a generator.
  • the inside of the frame-shaped rotary coil in the present invention is hollow, and the hollow portion has no conductor structure, and the hollow portion is on the premise of ensuring mechanical strength. It is advantageous for the reduction of the overall weight, and on the other hand, the heat dissipation of the winding 2 is also facilitated.
  • the upper and lower conductive layers 21, 22 are both copper foil layers 231.
  • the upper and lower conductive layers 21, 22 are pressed together, and when pressed, A core layer 232 is provided between the copper foil layers 231.
  • the pressed upper and lower conductive layers 21, 22 form a printed circuit board having a double copper foil layer.
  • the core layer 232 and the prepreg 24 described in this embodiment may generally be composed of a high temperature resin (such as a thermosetting toughened modified polyimide) material having high temperature resistance, moist heat resistance, low thermal expansion coefficient, and good Mechanical properties Capable of excellent thermal stability, it plays a role in mechanical support and electrical insulation in printed circuit boards.
  • a high temperature resin such as a thermosetting toughened modified polyimide
  • the number of windings per phase is determined as needed, as long as the printed circuit board and the prepreg 24 are alternately pressed. It has been experimentally verified that the thickness of the copper foil layer 231 is preferably in the range of 0.5 ounces to 2 ounces, and the conductivity of the copper foil layer 231 in this range can be ensured without occupying too much space and causing waste of use.
  • the printed circuit board formed by the upper and lower conductive layers 21, 22 of the present invention is made of a double-sided copper clad laminate 23, and the power guiding rod and the connecting guiding rod are both expressed as copper foil during the manufacturing process.
  • the vertical conductive rod 31, the first series conductive rod 32, the second series conductive rod 33, and the parallel conductive rod 34 appear as via holes.
  • the pattern on the printed circuit board can be drawn by the printed circuit board PCB automation design software, and then the light drawing file (commonly known as the Gaber file) is produced.
  • the copper foil is usually expressed as a straight line and an arc, and the lithographic files are drawn through lines, arcs and vias, and then the printed circuit board manufacturer provides each PCB process flow according to the lithography file.
  • the data is applied to the double-sided copper clad laminate 23 by processes such as etching, drilling, plating, cutting, and pressing to form a desired printed circuit board, and finally a printed circuit board including upper and lower conductive layers is formed.
  • Two rotors 54 are located on both sides of the stator 1.
  • a permanent magnet 542 is arranged circumferentially in the rigid support 541 of the rotor 54.
  • the permanent magnet 542 is composed of a wide hysteresis loop, high coercivity, and high remanence.
  • a magnetic material such as a rare earth cobalt permanent magnet material and a neodymium iron boron permanent magnet material, which is made of a magnetic material, a light alloy containing magnesium and aluminum, or a carbon fiber composite material.
  • the rigid support member 541 When the rigid support member 541 is made of a magnetic material, it can be used as a yoke of the permanent magnet 542 to form a magnetic line loop.
  • the intermediate position of the rigid support 541 is coupled to the rotating shaft 55 by a spline.
  • the circlip 53 on the outer side of the rotor 54 is fixed to the catching groove 551 on the rotating shaft 55, preventing the axial movement of the rotor 54.
  • the outer sides of the two rotors 54 respectively have bearings 52.
  • the outer rings of the bearings 52 are respectively fixed in the outer casings 51 on both sides, and the inner rings of the bearings 52 are matched with the two ends of the rotating shaft 55.
  • the stator 1 is provided with a positioning hole that cooperates with the positioning pin on the outer casing 51 to facilitate the installation and positioning of the stator 1.
  • the control cover 58 is coupled to a housing 51 for protecting the electronic control board 56.
  • the temperature sensor 12 is mounted on the stator 1 for detecting the temperature of each phase winding 2. Further, the stator 1 of the present invention has a signal connection point 11 which is connected to the signal connector 57 to transmit power signals and control signals to the electronic control board 56, and the electronic control board 56 is connected to an external power source.
  • an encoder can be mounted on the rotating shaft 55 when position control is required.
  • the shaft 55 in this embodiment has a connection key 552 for connection to an external device for energy conversion.
  • the two outer connecting ends 2114, 2214 of the plurality of rotating coil sets of each phase winding are one inside and one outside, that is, the structure shown in FIG. 6 and FIG. 7, the inner side of each rotating coil group
  • the outer connection end is used in series with the adjacent rotary coil group, and the outer connection is external
  • the terminal is led outward from the edge of the stator 1, so that the signal connection point 11 is located at the edge of the stator 1.
  • each permanent magnet 542 has a Halbach array.
  • the structure that is, as shown in Fig. 16, each permanent magnet 542 is staggered in a radial direction and a tangential array, such that the magnetic field on one side is enhanced and the magnetic field on the other side is weakened.
  • Fig. 18 shows the structure in which the Halbach array of the rotor 54 is spatially expanded in a circle, and the arrows in the figure indicate the magnetization direction of the permanent magnet 542.
  • the portions of the power guiding rods 2111 and 2211 of the three-phase windings pass through the connecting guides 2112 and 2212, and the magnetic lines of force are perpendicular to the power guide.
  • a force is generated perpendicular to the direction of the power guiding rods 2111 and 2211.
  • the direction of the force can be determined by the left-hand rule, when all the windings 2 pass.
  • the rotating magnetic field acts on the permanent magnet 542 to form an electromagnetic force rotating torque, thereby driving the rotor 54 to rotate. Since the rotor 54 is fixed to the rotating shaft 55, the rotating shaft 55 is rotated by the rotor 54.
  • the device is an electric motor.
  • the rotating shaft 55 is rotated by the external device, the rotor 54 fixed on the rotating shaft 55 rotates together, and the permanent magnet 542 causes the power guiding rods 2111 and 2211 on the three-phase windings on the stator 1 to perform the cutting magnetic line motion, and An induced electromotive force is generated in the winding to generate a current, and the device is a generator.
  • FIG. 19 is a cross-sectional view showing another application structure of the present invention.
  • the structure shown in the drawing is an outer rotor device.
  • the stator 1 is provided with a signal connection point 11, a temperature sensor 12 and the like.
  • the rotating shaft 61 and the stator 1 are fixed together by a connection such as a spline, and the left and right ends of the stator 1 are respectively fixed by a snap spring 62 to prevent axial movement, and the rotors 63 on the left and right sides of the stator 1 are respectively composed of the outer casing 64 and the outer casing 64.
  • the permanent magnet 65 is composed of.
  • the two rotors 63 are supported on the rotating shaft 61 by bearings 66, respectively, and the outer ring of the right bearing 66 also has a wave washer 67 for axial clearance adjustment.
  • the two rotors 63 are connected together by a connecting member such as a bolt; at the same time, the inner side of the stator 1 is provided with a hole, and the signal connection point 11 is located at a position where the hole is located so that the wire drawn from the hole can be directly connected to the signal connection point 11;
  • the shaft 61 is internally provided with a cavity 611 in the axial direction through which the signal is led out to the external motor driver.
  • the rotary coil group structure shown in FIG. 4 and FIG. 5 is mainly used, and the two outer connecting ends 2114 and 2214 of the rotary coil group are both inside, thereby realizing the inner lead, which is the embodiment and the above. The main difference of the embodiments.
  • the present invention has a stator structure with printed circuit board windings, which can be applied to electric motors and generators, and can be applied to a higher voltage range, and has a wide application range. Therefore, the present invention effectively overcomes some practical problems in the prior art and has high utilization value and use significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种具有印刷电路板绕组的定子结构(1),包括至少三相绕组(2),每相绕组包括一对结构相同的绕组单元,每个绕组单元包括上、下导电层(21, 22),上、下导电层在圆周方向上分别设有多个位置相对应的、形成回转线圈组的框形回转线圈(211, 221)。框形回转线圈包括多个交替连接的动力导杆(2111, 2211)和连接导杆(2112, 2212)。框形回转线圈的两端分别为内连接端(2113, 2213)、外连接端(2114, 2214),回转线圈组的两个内连接端分别通过竖导电杆(31)串联,相邻回转线圈组的两个外连接端通过第一串联导电杆(32)串联,两个绕组单元的两个外连接端通过第二串联导电杆(33)串联,每个绕组单元的上、下导电层形成一条通路。该定子结构具有盘式扁平结构,径向尺寸比轴向长度大,重量轻,有效增加了绕组的圈数,减小了电阻和涡流损耗。

Description

一种具有印刷电路板绕组的定子结构 技术领域
本发明涉及一种具有印刷电路板绕组的定子结构。
背景技术
定子是电动机静止不动的部分,定子与转子配合使用。定子一般由定子铁芯、定子绕组和机座三部分组成。定子的主要作用是产生旋转磁场,而转子的主要作用是输出转矩。申请号是CN200480009416.4的中国专利公开了一种导体优化的轴向场转动能装置,其主要由转子和定子组成,定子中所涉及的径向导体从内径通孔延伸到外径通孔,由于通孔的直径较径向导体的宽度大得多,造成每相绕组的匝数少,相同功率下绕组相间电压低,电流大,在较高电压的场合难以适用,这样限制了此专利的使用范围。因此,如何解决上述技术问题是本领域技术人员需要解决的技术问题。
发明内容
本发明要解决的技术问题在于提供一种效率高、易散热、使用范围广的具有印刷电路板绕组的定子结构,以克服现有技术的上述缺陷。
为了解决上述技术问题,本发明采用如下技术方案:一种具有印刷电路板绕组的定子结构,包括由结构相同的至少三相绕组组成的定子,每个绕组包括一对结构相同的绕组单元,所述绕组单元包括由印刷电路板制成的上导电层和下导电层,上、下导电层在圆周方向上分别设有多个位置相对应的框形回转线圈,位置相对应的两个框形回转线圈形成回转线圈组,所述框形回转线圈包括多个交替连接的动力导杆和连接导杆,所述框形回转线圈的两端分别为内连接端和外连接端,所述动力导杆的一端均朝向所述圆周的中心部分,位置相对应的框形回转线圈的两个内连接端分别通过竖导电杆串联,相邻的回转线圈组的两个外连接端通过第一串联导电杆串联,所述绕组单元的上导电层和下导电层形成一条通路,每相绕组的两个绕组单元均沿上下方向设置,两个绕组单元的两个外连接端通过第二串联导电杆串联形成一条通路;当同相绕组设有多个时,并联或串联在一起。
优选地,所述框形回转线圈上的动力导杆的宽度小于连接导杆的宽度。
优选地,每个绕组单元的上导电层和下导电层分别设有三个框形回转线圈,三个框形回转线圈在圆周上均匀分布。
优选地,所述上、下导电层均为铜箔层。
优选地,所述框形回转线圈上的连接导杆均为向外的弧形结构。
进一步地,所述框形回转线圈均为扇面形状。
优选地,各相绕组的回转线圈组沿圆周方向交替布置。
如上所述,本发明一种具有印刷电路板绕组的定子结构,具有以下有益效果:
1)本发明的绕组为框形回转线圈结构(螺旋线结构),因此可以得到更多的圈数(匝数),有利于提高反电动势,减低绕组中的电流;此外,因为本发明将每相绕组的圈数实现了最大化,并且有效降低每相绕组的电阻,通过优化框形回转线圈布局进而有效减小了涡流损耗;
2)本发明装置扁平结构,径向尺寸比轴向长度大,易于直接安装在相关设备上,本发明的绕组的可靠性高,一致性好;
3)本发明整体重量轻,散热性能好,耐用性好,适用于许多交通工具的驱动电机,如电动汽车、电动自行车和直升飞机机引擎;
4)本发明可应用在电动机或发动机中,可以不用齿轮箱或中间传动件,而直接驱动外部设备,或直接被外部设备拖动;因为绕组产生的磁场为轴向结构,电动机或发电机中的轴承在径向上不受任何磁场力的作用,延长了轴承的使用寿命;
5)本发明在实际使用时,电阻小、体积小、扭矩大,因此其具有高效率、高功率密度和高过载能。
附图说明
图1是以本发明使用的定子三相绕组的结构示意图。
图2是图1中拆去一相绕组的结构示意图。
图3是图1中拆去两相绕组的结构示意图。
图4是本发明中回转线圈组的第一种结构图。
图5是图4的立体图。
图6是本发明中回转线圈组的第二种结构图。
图7是图6的立体图。
图8是本发明中框形回转线圈的第一种结构图。
图9是本发明中框形回转线圈的第二种结构图。
图10是本发明中上、下导电层的材料结构图。
图11是本发明中动力导杆的第一种实施方式示意图。
图12是本发明中动力导杆的第二种实施方式示意图。
图13是本发明中动力导杆的第三种实施方式示意图。
图14是本发明第一种应用结构拆分图。
图15是本发明在图14中的结构示意图。
图16是图14中的转子结构示意图。
图17是图14组装后的剖视图。
图18是图17中定子和转子的展开图。
图19是本发明第二种应用结构的剖视图。
图20是本发明在图19中的结构示意图。
图中:1、定子               11、信号连接点            12、温度传感器
      13、空气气隙          2、绕组                   21、上导电层
      22、下导电层          211/221、框形回转线圈     2111/2211、动力导杆
      2112/2212、连接导杆   2113/2213、内连接端       2114/2214、外连接端
      23、双面覆铜板        231、铜箔层               232、芯板层
      24、半固化板          31、竖导电杆              32、第一串联导电杆
      33、第二串联导电杆    331、中间导杆             34、并联导电杆
      41、内侧弧线          42、外侧弧线              43/44、直线段
      51、外壳              52、轴承                  53、卡簧
      54、转子              541、刚性支撑件           542、永磁体
      55、转轴              551、卡槽                 552、连接键
      56、电子控制板        57、信号连接器            58、控制盖
      61、转轴              611、空腔                 62、卡簧
      63、转子              64、外壳                  65、永磁体
      66、轴承              67、波形垫圈
具体实施方式
说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以 限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1-图13所示,为本发明一种印刷电路板绕组定子结构,包括由结构相同的至少三相绕组组成的定子1,每个绕组2包括一对结构相同的绕组单元,所述绕组单元包括由印刷电路板制成的上导电层21和下导电层22,上、下导电层21、22在圆周方向上分别设有多个位置相对应的框形回转线圈211、221,位置相对应的两个框形回转线圈211、221形成回转线圈组,所述框形回转线圈211、221包括多个交替连接的动力导杆2111、2211和连接导杆2112、2212,所述框形回转线圈211、221的两端分别为内连接端2113、2213和外连接端2114、2214,即上、下导电层21、22上的框形回转线圈211、221均为螺旋线形状。所述动力导杆2111、2211的一端均朝向所述圆周的中心部分,也就是说,所述动力导杆2111、2211的一端可以朝向中心,也可以大致朝向中心,其目的是为了使交流电流流过动力导杆2111、2211时能形成旋转磁场。本发明中上、下导电层21、22上位置相对应的框形回转线圈211、221的两个内连接端2113、2213分别通过竖导电杆31串联,相邻回转线圈组的两个外连接端2114、2214通过第一串联导电杆32串联,所述绕组单元的上导电层21和下导电层22形成一条通路,每个绕组2的两个绕组单元均沿上下方向设置,两个绕组单元的两个外连接端通过第二串联导电杆33串联形成一条通路,此时,所述通路的两端分别有一个没有串联也没有并联的外连接端。当同相绕组2设有多个时,并联或串联在一起,并联时,如图3所示,每个绕组2形成的一条通路两端的外连接端分别通过并联导电杆34并联;串联时,通过第二串联导杆33将多个绕组首尾相连形成一条通路即可。进一步地,以三相绕组为例,当三相绕组有多组并且需要并联时,同相绕组2在上下方向上位置相对应,以方便并联导电杆34对其进行连接,同相绕组2的结构和连接方式一致。以三相绕组为例,三相绕组的回转线圈组沿圆周方向交替布置,也就是说,三相绕组中的绕组在空间上两两互为120°电角度,并且每相绕组的上、下导电层21、22分别在同一平面内,进而减小定子1轴向的长度,有效地利用空间;本实施例中所述电角度需要根据绕组相数确定,即电角度=360°/绕组相数,本实施例仅作为举例。本发明中同相绕组2在轴向(上下方向)均压合在一起,也就是说,位置相对应的导电层(包括多个绕组的所有上、下导电层)均压合在一起。
如图3所示,所述第二串联导杆33的两端还可以分别连有一个中间导杆331,通过中间导杆331与相关的外连接端连接,从而满足实际工作的位置需要。
本发明回转线圈组中位置相对应框形回转线圈211、221的结构可以相同,也可以不同,只要满足位置对应,并且为回转形状即可,所述框形回转线圈211、221均为多圈的形式,如 图4-图7所示,为上、下导电层21、22相对应的两个框形回转线圈211、221的两种结构形式;如图4、图5所示,其形成的回转线圈组的两个外连接端2114、2214均在内侧;如图6、图7所示,其形成的回转线圈组的两个外连接端2114、2214一个在内侧、一个在外侧,两种结构形式的原理相同,根据实际的走线需要选择使用。所述回转线圈组的结构原理是:以图4为例,其中的箭头方向为电流方向,结合图3,电流由上导电层21上的框形回转线圈211流入,由上导电层21一个框形回转线圈211的外圈开始,由外向内依次流经各个动力导杆2111和连接导杆2112,即按螺旋线形式由外向内导通,在进入最后一圈的内连接端2113时电流通过竖导电杆31流入下导电层22的内连接端2213,此时电流由下导电层22内圈开始,由内向外依次流经各个动力导杆2211和连接导杆2212,电流依然按螺旋线形式由内向外导通,在电流经过下导电层22的框形回转线圈221的最后一圈外连接端2214时,完成了电流在一个回转线圈组的流入和流出过程;然后电流从外连接端2214流入相邻的回转线圈组,按照相同的原理流过一个绕组单元;一个绕组单元导通后,电流通过第二串联导电杆33流入另一个绕组单元,进而让电流流过一个绕组2,最终完成一个绕组2内的电流流入和流出过程。
在本发明中,上、下导电层21、22的框形回转线圈211、221上的动力导杆2111、2211的宽度小于连接导杆2112、2212的宽度。其原因是:为了减小绕组2的电阻,从而降低绕组的铜耗;此外,较小的动力导杆宽度使得并联后的绕组能达到类似利兹线的效果,有利于降低绕组的涡流损耗。进一步地,为了到达较大的线圈圈数,可以在满足工作要求和物理性能的同时将动力导杆的宽度设计的尽可能小。进一步地,以一个框形回转线圈211为例,如图11-图13所示,为三种具体结构形式,以绕组2所围成的圆周中心为原点,第一种结构如图11所示,所述动力导杆2111在以内侧圆弧41和外侧圆弧42所包围的磁场范围内受到磁场作用(所述磁场范围是根据试验确定的),动力导杆2111以外的所有连接导杆2112都不会受到磁场的作用。动力导杆2111的内侧一端与连接导杆2112通过直线段43相连,外侧一端与连接导杆2112通过直线段44相连。所述两条直线段43、44的宽度分别表示为d1和d2,动力导杆2111的宽度为d3。为减小涡流损耗,所述动力导杆2111的宽度d3分别小于d1和d2;为了增加线圈的圈数,所述内侧的直线段43宽度与动力导杆2111的宽度相近;为减小绕组2的电阻,与内侧的直线段43连接的连接导杆2112宽度大于直线段43的宽度d1,与外侧的直线段44连接的连接导杆2112宽度大于直线段44的宽度d2。第二种结构如图12所示,所述动力导杆2111包括两个相平行的导体部分a1和a2,每个导体部分的宽度都被最小化以利于减小涡流损耗,也进一步地减小了电阻,且有利于散热;本实施例仅以一个动力导杆有两个导体部分为例说明,具体还可以用更多个导体部分组成动力导杆。第三种结构如图 13所示,动力导杆2111为分支形式,从内侧开始,动力导杆2111沿长度方向首先为导体部分b1,然后由b1分成导体部分b2和b3,然后进一步分成导体部分b4、b5和b6,本结构形式也能有效减小涡流损失、减小电阻,并有利于散热;本实施例仅将动力导杆进行两次分支,具体还可以进行多次分支。
在本发明中,作为优选实施方式,参考图3,每个绕组单元的上导电层21和下导电层22分别设有三个框形回转线圈211、221,三个框形回转线圈211、221在圆周上均匀分布。此外,结合图1-图3,因为本发明可以有多于三相绕组,所以每相绕组2上的框形回转线圈211、221在整个圆周上均匀分配,即当有N相绕组时,每相绕组2上的框形回转线圈占整个圆周的N分之一,从而满足设置要求,节省空间,让整体结构更加紧凑。本实施例中上、下导电层21、22上的框形回转线圈的个数仅用于举例说明结构原理,在实际使用时其数量根据具体的电机极数来确定。根据实际的结构需要,所述上、下导电层21、22的框形回转线圈211、221上的连接导杆2112、2212均为向外的弧形结构,并且内侧的连接导杆弧长小于外侧连接导杆的弧长,进而使得框形回转线圈211、221为扇面形状;如图8、图9所示,以上导电层21的框形回转线圈211为例参考。将框形回转线圈设置成扇面形状还可以在设置三相绕组时充分利用圆周内的空间。在本实施例中,因为框形回转线圈为扇面形状,所以其中两个最边缘位置的动力导杆的夹角为α1,参考图8,在制作框形回转线圈时,两个最边缘位置的动力导杆的实际夹角度数应略小于α1,以使得相邻框形回转线圈具有合适的配合间隙,即不同相的框形回转线圈能够不接触的在同一水平面内;通过调整各中间动力导杆之间夹角α2以及内侧动力导杆之间的夹角α3,可以优化线圈绕组内部的谐波,并使得绕组的反电动势波形最接近正弦波波形,因此图8的结构形式适用于电动机。图9中的结构形式可以增大电动势波形的幅值,因此其适用于发电机。
如图4、图6、图8或图9所示,本发明中所述个框形回转线圈内部是中空的,此中空部分不存在导体结构,中空部分在保证机械强度的前提下,一方面有利于整体重量的降低,另一方面也有利于绕组2的散热。
结合图3和图10,本发明中所述上、下导电层21、22均为铜箔层231,在实际情况下,上、下导电层21、22是压合在一起的,压合时铜箔层231之间设有芯板层232。压合后的上、下导电层21、22即形成一块具有双铜箔层的印刷电路板。当同相绕组设有多个时,上下方向位置对应的印刷电路板要压合在一起最终形成定子1;在压合时,所述印刷电路板之间均设有半固化板24。本实施例中所述的层芯板层232和半固化板24通常可由高温树脂(如热固性增韧改性聚酰亚胺)材料组成,其具有如耐高温、耐湿热、低热膨胀系数、良好的力学性 能、优异的热稳定性等特点,在印刷电路板中起到机械支撑和电气绝缘的作用。在实际使用时,每相绕组的数量根据需要确定,只要确保印刷电路板和半固化板24交替压合即可。经过试验验证,铜箔层231厚度的优选范围是0.5盎司到2盎司,这个范围内的铜箔层231的导电性可以得到保证,同时不会占用过多空间,也不会造成使用浪费。
如图10所示,本发明中上、下导电层21、22形成的印刷电路板由双面覆铜板23制成,在制作过程中,所述动力导杆和连接导杆均表现为铜箔,竖导电杆31、第一串联导电杆32、第二串联导电杆33和并联导电杆34表现为过孔。所述印刷电路板上的图案可通过印刷电路板PCB自动化设计软件绘制,然后制作光绘文件(俗称Gaber文件)。在PCB自动化设计软件中,所述铜箔通常表现为直线和圆弧,通过直线、圆弧和过孔绘制光绘文件,然后印刷电路板生产厂根据光绘文件,对每一道PCB工艺流程提供的数据,对双面覆铜板23进行诸如蚀刻、钻孔、电镀、切割和压合等工艺来制作所需的印刷电路板,最后形成包括上、下导电层的印刷电路板。
如图14-图17所示,为本发明的具体应用,其为电动机或发电机,具体包括:相配合的两个外壳51、两个轴承52、两个金属卡簧53、两个具有轴向磁场的转子54、本发明的定子1、一个转轴55、一个电子控制板56、一个信号连接器57、一个控制盖58、若干温度传感器12,以及若干连接螺栓。两个转子54位于所述定子1的两侧,转子54的刚性支撑件541中沿周向布置有永磁体542,永磁体542由宽磁滞回线、高矫顽力、高剩磁的永磁材料(如稀土钴永磁材料和钕铁硼永磁材料)制成,所述刚性支撑件541可由磁性材料、包含镁和铝的轻质合金或碳纤维复合材料制成。当刚性支撑件541采用磁性材料时,可用作永磁体542的磁轭,以形成磁力线回路。所述刚性支撑件541中间位置通过花键与所述转轴55耦合固定。同时转子54外侧的卡簧53固定于转轴55上的卡槽551,阻止转子54的轴向移动。两转子54的外侧分别有轴承52,轴承52的外圈分别固定于两侧的外壳51内,轴承52内圈与转轴55的两端相配合。定子1上设有与外壳51上定位针相配合的定位孔,以方便定子1的安装定位。控制盖58与一个外壳51连接用以保护电子控制板56。所述温度传感器12安装在定子1上用于检测各相绕组2的温度。此外,本发明的定子1上有信号连接点11,所述信号连接点11与信号连接器57连接将动力信号及控制信号传至电子控制板56,电子控制板56与外部电源相连。在实际使用时,当需要位置控制时,可在转轴55上安装编码器。本实施例中的转轴55上有连接键552,其用于与外部设备相连进行能量的转换。本实施例中每相绕组的多个回转线圈组的两个外连接端2114、2214均为一个在内侧、一个在外侧,即图6、图7所示的结构形式,每个回转线圈组内侧的外连接端用于与相邻的回转线圈组串联,外侧的外连 接端从定子1的边缘位置向外引线,因此所述信号连接点11位于定子1的边缘位置。
在上述实施例的基础上,参考图14、图17、图18,为了提高定子1和转子54之间空气气隙13的磁密(也称为磁感应强度),各永磁体542具有海尔贝克阵列结构,即如图16所示,各永磁体542在径向与切向阵列交错排列结合在一起,这种结构使得一侧的磁场增强而另一侧的磁场减弱。图18可看出该转子54的海尔贝克阵列按圆周在空间上展开后的结构,图中箭头表明永磁体542的磁化方向。当永磁体542产生的磁力线穿过三相绕组时,经过的都是三相绕组的动力导杆2111、2211部分,不会穿过连接导杆2112、2212部分,而且所述磁力线垂直于动力导杆2111、2211所在平面。根据洛伦兹力原理,当动力导杆2111、2211中通过电流时,就有一个垂直于动力导杆2111、2211方向的力产生,此力的方向可用左手定则确定,当所有绕组2通过电流时会产生旋转磁场,旋转磁场作用于永磁体542形成电磁力旋转扭矩,进而驱动转子54转动,因为转子54固定于转轴55上,因此转轴55会在转子54的带动下旋转,这时本装置为电动机。当转轴55由外部装置带动旋转时,固定于转轴55上的转子54一起旋转,这时永磁体542会使得定子1上的三相绕组上的动力导杆2111、2211做切割磁力线运动,并在绕组中产生感应电动势,进而产生电流,这时本装置为发电机。
如图19所示为本发明的另一应用结构的剖视图,图中所示结构为外转子装置,结合图20,定子1上设有信号连接点11、温度传感器12等相关结构。其转轴61与定子1通过诸如花键的连接方式固定在一起,定子1左右两端分别用卡簧62固定,以防止轴向移动,定子1左右两侧的转子63分别由外壳64以及外壳64中的永磁体65组成。两转子63分别通过轴承66支撑在转轴61上,同时右侧轴承66的外圈还有波形垫圈67用于轴向间隙调整。此外,两转子63通过螺栓等连接件连接在一起;同时,所述定子1内侧开有孔,信号连接点11位于孔所在位置以便于从孔中引出的线能直接与信号连接点11连接;所述转轴61内部设有沿轴向的空腔611,通过孔和空腔611将信号引出到外部电机驱动器。本实施例中主要是采用如图4、图5所示的回转线圈组结构,回转线圈组的两个外连接端2114、2214均在内侧,进而实现从内侧引线,这是本实施例和上述实施例的主要区别。
综上所述,本发明一种具有印刷电路板绕组的定子结构,能应用在电动机、发电机中,其能适用较高电压的场合,适用范围广。所以,本发明有效克服了现有技术中的一些实际问题从而有很高的利用价值和使用意义。
上述实施方式仅例示性说明本发明的原理及其功效,而非用于限制本发明。本发明还有许多方面可以在不违背总体思想的前提下进行改进,对于熟悉此技术的人士皆可在不违背本发明的精神及范畴下,可对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通 常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

  1. 一种具有印刷电路板绕组的定子结构,其特征在于,包括由结构相同的至少三相绕组组成的定子(1),每个绕组(2)包括一对结构相同的绕组单元,所述绕组单元包括由印刷电路板制成的上导电层(21)和下导电层(22),上、下导电层(21、22)在圆周方向上分别设有多个位置相对应的框形回转线圈(211、221),位置相对应的两个框形回转线圈(211、221)形成回转线圈组,所述框形回转线圈(211、221)包括多个交替连接的动力导杆(2111、2211)和连接导杆(2112、2212),所述框形回转线圈(211、221)的两端分别为内连接端(2113、2213)和外连接端(2114、2214),所述动力导杆(2111、2211)的一端均朝向所述圆周的中心部分,位置相对应的框形回转线圈(211、221)的两个内连接端(2113、2213)分别通过竖导电杆(31)串联,相邻的回转线圈组的两个外连接端(2114、2214)通过第一串联导电杆(32)串联,所述绕组单元的上导电层(21)和下导电层(22)形成一条通路,每相绕组(2)的两个绕组单元均沿上下方向设置,两个绕组单元的两个外连接端通过第二串联导电杆(33)串联形成一条通路;当同相绕组(2)设有多个时,并联或串联在一起。
  2. 根据权利要求1所述的一种具有印刷电路板绕组的定子结构,其特征在于:所述框形回转线圈(211、221)上的动力导杆(2111、2211)的宽度小于连接导杆(2112、2212)的宽度。
  3. 根据权利要求1所述的一种具有印刷电路板绕组的定子结构,其特征在于:每个绕组单元的上导电层(21)和下导电层(22)分别设有三个框形回转线圈(211、221),三个框形回转线圈(211、221)在圆周上均匀分布。
  4. 根据权利要求1所述的一种具有印刷电路板绕组的定子结构,其特征在于:所述上、下导电层(21、22)均为铜箔层(231)。
  5. 根据权利要求1所述的一种具有印刷电路板绕组的定子结构,其特征在于:所述框形回转线圈(211、221)上的连接导杆(2112、2212)均为向外的弧形结构。
  6. 根据权利要求5所述的一种具有印刷电路板绕组的定子结构,其特征在于:所述框形回转线圈(211、221)均为扇面形状。
  7. 根据权利要求1所述的一种具有印刷电路板绕组的定子结构,其特征在于:各相绕组的回转线圈组沿圆周方向交替布置。
PCT/CN2016/089291 2015-07-16 2016-07-08 一种具有印刷电路板绕组的定子结构 WO2017008685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016003201.3T DE112016003201T5 (de) 2015-07-16 2016-07-08 Statorstruktur mit einer Leiterplattewicklung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510418906X 2015-07-16
CN201510418906.XA CN105071573B (zh) 2015-07-16 2015-07-16 一种具有印刷电路板绕组的定子结构

Publications (1)

Publication Number Publication Date
WO2017008685A1 true WO2017008685A1 (zh) 2017-01-19

Family

ID=54500882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089291 WO2017008685A1 (zh) 2015-07-16 2016-07-08 一种具有印刷电路板绕组的定子结构

Country Status (3)

Country Link
CN (1) CN105071573B (zh)
DE (1) DE112016003201T5 (zh)
WO (1) WO2017008685A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286285A (zh) * 2017-07-21 2019-01-29 东风汽车电气有限公司 一种电机元件成型装置的回转机构
TWI786130B (zh) * 2017-07-10 2022-12-11 美商E電路馬達股份有限公司 用於軸向磁通電動機及發電機之改良平面複合結構
GB2613701A (en) * 2018-07-10 2023-06-14 Infinitum Electric Inc System and apparatus for axial field rotary energy device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071573B (zh) * 2015-07-16 2017-05-31 擎声自动化科技(上海)有限公司 一种具有印刷电路板绕组的定子结构
CN105553216A (zh) * 2016-02-29 2016-05-04 浙江万冠电机有限公司 高压直流无刷外转子跑步机电机
CN105790480A (zh) * 2016-03-09 2016-07-20 深圳航天科技创新研究院 一种采用pcb绕组的永磁电机
WO2017167179A1 (zh) * 2016-04-01 2017-10-05 擎声自动化科技(上海)有限公司 一种印刷电路板定子
US10340760B2 (en) * 2017-01-11 2019-07-02 Infinitum Electric Inc. System and apparatus for segmented axial field rotary energy device
CN107394932A (zh) * 2017-07-10 2017-11-24 金华职业技术学院 柔性印刷电路板做定子绕组的超微直流无刷电机
CN107370256B (zh) * 2017-08-31 2023-03-31 广东美芝制冷设备有限公司 电机定子、三相永磁电机及压缩机
WO2019089076A1 (en) * 2017-11-06 2019-05-09 Core Innovation, Llc Structures and methods of manufacture of serpentine stator coils
CN108063509A (zh) * 2017-12-25 2018-05-22 北京泽世科技发展有限公司 一种印刷电路板电机
CN108847735A (zh) * 2018-06-21 2018-11-20 东南大学 一种采用pcb螺旋形绕组的飞轮高速电机
CN108964319A (zh) * 2018-06-21 2018-12-07 东南大学 一种采用pcb波形绕组的飞轮高速电机
CN108736593A (zh) * 2018-08-20 2018-11-02 上海适达动力科技股份有限公司 蛇形绕组定子及电动机
CN108988537A (zh) * 2018-08-23 2018-12-11 陈国宝 无漆包线的叠加型外转子电机
CN108711985A (zh) * 2018-08-23 2018-10-26 上海适达动力科技股份有限公司 绕组定子及电动机
CN109088485A (zh) * 2018-08-23 2018-12-25 陈国宝 外转子电机定子
CN109274189A (zh) * 2018-12-05 2019-01-25 浙江台运汽车科技有限公司 轴向磁通电机的定子绕组结构
CN109842229A (zh) * 2019-02-27 2019-06-04 上海崴崖实业有限公司 一种基于盘式永磁电机绕组的定子结构
CN109842228A (zh) * 2019-02-27 2019-06-04 上海崴崖实业有限公司 一种基于无铁心盘式电机的定子结构
CN110098681B (zh) * 2019-05-09 2022-01-07 上海大学 一种盘式电机绕组
JP7441860B2 (ja) * 2019-05-24 2024-03-01 マジック リープ, インコーポレイテッド 環状軸方向磁束モータ
CN110581630A (zh) * 2019-06-29 2019-12-17 天津大学 一种不等宽导体的pcb盘式电机绕组设计方法
WO2021056853A1 (zh) * 2019-09-25 2021-04-01 安徽威灵汽车部件有限公司 定子、电机及车辆
US11283319B2 (en) * 2019-11-11 2022-03-22 Infinitum Electric, Inc. Axial field rotary energy device with PCB stator having interleaved PCBS
DE102020115642B3 (de) * 2020-06-12 2021-10-07 Gkn Sinter Metals Engineering Gmbh Elektrischer Motor und Leiterplatte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162738A (ja) * 1983-03-07 1984-09-13 Hitachi Ltd プリントコイル
JPS61199451A (ja) * 1985-02-28 1986-09-03 Fanuc Ltd 交流電動機
US5982069A (en) * 1998-06-30 1999-11-09 Rao; Dantam K. Axial gap machine phase coil having tapered conductors with increasing width in radial direction
CN1675815A (zh) * 2002-08-07 2005-09-28 日立金属株式会社 层叠线圈和用层叠线圈的无电刷电机
CN105071573A (zh) * 2015-07-16 2015-11-18 擎声自动化科技(上海)有限公司 一种具有印刷电路板绕组的定子结构
CN204794438U (zh) * 2015-07-16 2015-11-18 擎声自动化科技(上海)有限公司 一种具有印刷电路板绕组的定子结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273142A (ja) * 1985-05-29 1986-12-03 Fanuc Ltd 同期電動機用デイスク状ステ−タ
DE4125044A1 (de) * 1991-07-29 1993-02-04 Wolfgang Hill Als scheibenlaeufer ausgebildeter elektromotor mit radial zur rotationsachse angeordnetem rotor und blechpaket
DE4411750C2 (de) * 1994-04-06 1997-06-05 Wolfgang Hill Dreiphasige elektrische Maschine mit verflochtenen Leiterschichten
KR100755556B1 (ko) * 2003-02-07 2007-09-06 코어 모션 인코포레이티드 도체 최적화된 축 방향 필드 회전 에너지 장치
CN201323481Y (zh) * 2008-12-26 2009-10-07 桂林电器科学研究所 印制绕组电枢结构
TWI440281B (zh) * 2011-08-31 2014-06-01 Sunonwealth Electr Mach Ind Co 馬達定子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162738A (ja) * 1983-03-07 1984-09-13 Hitachi Ltd プリントコイル
JPS61199451A (ja) * 1985-02-28 1986-09-03 Fanuc Ltd 交流電動機
US5982069A (en) * 1998-06-30 1999-11-09 Rao; Dantam K. Axial gap machine phase coil having tapered conductors with increasing width in radial direction
CN1675815A (zh) * 2002-08-07 2005-09-28 日立金属株式会社 层叠线圈和用层叠线圈的无电刷电机
CN105071573A (zh) * 2015-07-16 2015-11-18 擎声自动化科技(上海)有限公司 一种具有印刷电路板绕组的定子结构
CN204794438U (zh) * 2015-07-16 2015-11-18 擎声自动化科技(上海)有限公司 一种具有印刷电路板绕组的定子结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786130B (zh) * 2017-07-10 2022-12-11 美商E電路馬達股份有限公司 用於軸向磁通電動機及發電機之改良平面複合結構
CN109286285A (zh) * 2017-07-21 2019-01-29 东风汽车电气有限公司 一种电机元件成型装置的回转机构
GB2613701A (en) * 2018-07-10 2023-06-14 Infinitum Electric Inc System and apparatus for axial field rotary energy device

Also Published As

Publication number Publication date
CN105071573B (zh) 2017-05-31
DE112016003201T5 (de) 2018-04-05
CN105071573A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2017008685A1 (zh) 一种具有印刷电路板绕组的定子结构
US10355550B2 (en) Methods and apparatus for reducing machine winding circulating current losses
US8736133B1 (en) Methods and apparatus for overlapping windings
US20200091786A1 (en) Electric motor with laminated sheet windings
EP2894771B1 (en) Permanent magnet laminated motor
US9502951B2 (en) Electrical machine
US8723052B1 (en) Methods and apparatus for optimizing electrical interconnects on laminated composite assemblies
WO2015111579A1 (ja) 発電装置および発電装置用電機子構造並びに電機子の製造方法
US20140262499A1 (en) Methods and apparatus for optimizing electrically inoperative zones on laminated composite assemblies
US20160336824A1 (en) Stator Disc and Axial Flux Permanent Magnet Apparatus
CN103166402B (zh) 隔磁磁阻和短路笼条一体式转子无刷电励磁同步电机
Wang et al. Electromagnetic design and analysis of axial flux permanent magnet generator with unequal-width PCB winding
GB2456837A (en) Electromagnetic machines having air gap windings formed of laminated conductors
CN109672309A (zh) 一种同步磁阻潜油电机
CN204794438U (zh) 一种具有印刷电路板绕组的定子结构
CN106451848A (zh) 一种电动车pcb定子永磁差速电机
CN102843012B (zh) 拨动式节能型电动机
RU2436220C1 (ru) Ротор асинхронной электрической машины
US20180019629A1 (en) Radial Flux Alternator
US9755465B2 (en) Method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor
CN215870939U (zh) 一种超薄紧凑型电机、电机设备、电机系统及发电系统
Yang et al. Thermal Analysis of Stator Iron-Core-Less PMBLDC Motors Considering Both Winding Eddy and Circulating Current Losses
WO2017167179A1 (zh) 一种印刷电路板定子
CN112103024A (zh) 磁力放大机
WO2023215797A2 (en) Torque dense electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823832

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112016003201

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823832

Country of ref document: EP

Kind code of ref document: A1