WO2017008441A1 - 绝缘栅双极型晶体管驱动电路 - Google Patents

绝缘栅双极型晶体管驱动电路 Download PDF

Info

Publication number
WO2017008441A1
WO2017008441A1 PCT/CN2015/098214 CN2015098214W WO2017008441A1 WO 2017008441 A1 WO2017008441 A1 WO 2017008441A1 CN 2015098214 W CN2015098214 W CN 2015098214W WO 2017008441 A1 WO2017008441 A1 WO 2017008441A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
collector
optocoupler chip
gate
transistor
Prior art date
Application number
PCT/CN2015/098214
Other languages
English (en)
French (fr)
Inventor
王青猛
韩晓艳
Original Assignee
京东方科技集团股份有限公司
北京京东方能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方能源科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/108,593 priority Critical patent/US9960766B2/en
Publication of WO2017008441A1 publication Critical patent/WO2017008441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/26Push-pull amplifiers; Phase-splitters therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3069Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the emitters of complementary power transistors being connected to the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/603Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with coupled emitters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching

Definitions

  • the present disclosure relates to the field of IGBT driving, and more particularly to an IGBT driving circuit.
  • IGBT Insulated Gate Bipolar Transistor
  • the IGBT driving circuit is an interface circuit between an IGBT and a DSP (digital signal processing) chip, and its function is to convert a control signal from a digital signal processor into a driving signal with sufficient power to realize safe opening of the IGBT. And turn off to provide electrical isolation between the processor and the IGBT.
  • the IGBT drive circuit In order to obtain correct and effective protection of the IGBT in the event of a system failure, the IGBT drive circuit also needs to provide corresponding fault protection functions such as overcurrent, overvoltage, and short circuit.
  • the main purpose of the present disclosure is to provide an IGBT driving circuit to solve the problem that the IGBT can not be safely turned on and off in the prior art, provide electrical isolation between the processor and the IGBT, and cannot provide overcurrent and overvoltage of the IGBT. Problems with fault protection functions such as short circuit.
  • an IGBT driving circuit including an optocoupler chip and a power amplifying circuit;
  • the optocoupler chip includes an isolation amplifying unit and a fault protection unit;
  • the fault protection unit includes a desaturation module and fault feedback Module
  • the isolation amplifying unit is configured to optically isolate and amplify an external driving signal input by an external controller to obtain an IGBT driving signal;
  • the power amplifying circuit is configured to perform power amplification on the IGBT driving signal, and output the power amplified IGBT driving signal to a gate of the IGBT;
  • the desaturation module is configured to detect that the potential of the collector of the IGBT is too high or Sending a warning signal to the fault feedback module when the potential of the collector of the IGBT changes too fast;
  • the fault feedback module is configured to send a fault control signal to the external controller after receiving the alert signal, thereby controlling an external driving signal output by the external controller such that the isolated amplifying unit outputs and controls the IGBT Turn off the IGBT drive signal.
  • the fault protection unit further includes: a voltage clamping module, configured to: when detecting that the potential of the collector of the IGBT is too high or the potential of the collector of the IGBT changes too fast
  • the feedback module sends an alert signal or controls clamping of the potential of the collector of the IGBT.
  • the power amplifying circuit comprises a push-pull power amplifying unit.
  • the push-pull power amplifying unit comprises:
  • the gate is connected to the IGBT driving signal, the first pole is connected to the first voltage, and the second pole is connected to the gate of the IGBT;
  • the second transistor has a gate connected to the IGBT driving signal, a first pole connected to the second voltage, and a second pole connected to the gate of the IGBT.
  • the push-pull power amplifying unit further includes:
  • the power amplifying circuit further includes:
  • a voltage stabilizing unit connected between the gate of the IGBT and the ground for regulating the power amplified IGBT driving signal
  • the first filtering unit is connected between the gate of the IGBT and the ground end for filtering the power amplified IGBT driving signal.
  • the voltage stabilizing unit includes:
  • the anode is connected to the anode of the first Zener diode, and the cathode is grounded.
  • the first filtering unit includes: a fifth resistor and a second capacitor connected in parallel with each other;
  • a first end of the fifth resistor is connected to a gate of the IGBT, and a second end of the fifth resistor is connected to a ground end;
  • the emitter of the IGBT is connected to the ground.
  • the type of the optocoupler chip is FOD8332.
  • the IGBT driving circuit of the present disclosure further includes: a collector potential detecting unit connected to the collector of the IGBT, and further connected to the desaturation module through a DESAT pin of the optocoupler chip;
  • the desaturation module detects whether the potential of the collector of the IGBT is too high by the collector potential detecting unit, and whether the potential change of the collector of the IGBT is too fast;
  • the fault feedback module included in the optocoupler chip passes A pin transmits the fault control signal to the external controller.
  • the collector potential detecting unit includes:
  • the first end is connected to the VE pin of the optocoupler chip, and the second end is connected to the DESAT pin of the optocoupler chip;
  • the third Zener diode has a cathode connected to the VE pin of the optocoupler chip through a third capacitor, and the anode is connected to the ground end.
  • the optocoupler chip stops working.
  • the IGBT driving circuit of the present disclosure further includes:
  • a fourth capacitor the first end is connected to the VCLAMP pin of the optocoupler chip, and the second end is connected to the VDD pin of the optocoupler chip;
  • the second filtering unit is connected between the VDD pin of the optocoupler chip and the VE pin of the optocoupler chip.
  • the second filtering unit includes a fifth capacitor and a seventh resistor connected in parallel with each other.
  • the optocoupler chip is connected to an external driving signal input by the external controller through a VLED-pin, and the optocoupler chip outputs the IGBT driving signal through a VO pin.
  • the IGBT driving circuit of the present disclosure uses an optocoupler chip for IGBT driving, and can optically isolate and amplify an external driving signal input by an external controller to obtain an IGBT driving signal, and the IGBT driving signal After power amplification, it is output to the gate of the IGBT to drive the IGBT, and has a function of detecting faults such as overvoltage, overcurrent, and short circuit of the IGBT.
  • FIG. 1 is a block diagram showing the structure of an IGBT driving circuit according to an embodiment of the present disclosure
  • FIG. 2A is a circuit diagram of a push-pull power amplifying unit included in a power amplifying circuit of an IGBT driving circuit according to some embodiments of the present disclosure
  • 2B is a circuit diagram of a push-pull power amplifying unit included in a power amplifying circuit of an IGBT driving circuit according to some embodiments of the present disclosure
  • 2C is a circuit diagram of a power amplifying circuit included in the IGBT driving circuit according to some embodiments of the present disclosure
  • 2D is a circuit diagram of a power amplifying circuit included in an IGBT driving circuit according to some embodiments of the present disclosure
  • 3A is a circuit diagram of a driving circuit of an IGBT according to some embodiments of the present disclosure.
  • 3B is a connection circuit diagram between the +5V power supply and the ground GND;
  • 3C is a connection circuit diagram between a high voltage output terminal that outputs a high voltage VCC and a low voltage output terminal that outputs a low voltage VEE.
  • the IGBT driving circuit of the embodiment of the present disclosure includes an optocoupler chip 1 and a power amplifying circuit 2 ;
  • the optocoupler chip 1 includes an isolation amplifying unit 11 and a fault protection unit 12 ;
  • the desaturation module 121 and the fault feedback module 122 are included;
  • the isolation amplifying unit 11 is configured to optically isolate and amplify the external driving signal DRIVER input from the external controller 10 to obtain an IGBT driving signal;
  • the power amplifier circuit 2 is configured to perform power amplification on the IGBT drive signal, and output the power amplified IGBT drive signal to the gate G of the IGBT;
  • the desaturation module 121 is configured to send an alert signal to the fault feedback module 122 when detecting that the potential of the collector C of the IGBT is too high or the potential of the collector C of the IGBT changes too fast;
  • the fault feedback module 122 is configured to send a fault control signal FAULT to the external controller 10 after receiving the alert signal, thereby controlling an external driving signal DRIVER output by the external controller 10 to cause the isolation amplifying unit 11 output controls the IGBT drive signal that the IGBT is turned off.
  • the IGBT driving circuit uses an optocoupler chip to perform IGBT driving, and can electrically isolate and amplify an external driving signal input by an external controller to obtain an IGBT driving signal, and power-amplify the IGBT driving signal. It goes to the gate of the IGBT to drive the IGBT, and has the function of detecting faults such as overvoltage, overcurrent, and short circuit of the IGBT.
  • the fault protection unit further includes: a voltage clamping module, configured to: when detecting that the potential of the collector of the IGBT is too high or the potential of the collector of the IGBT changes too fast
  • the feedback module sends an alert signal or controls clamping the potential of the collector of the IGBT to clamp the potential of the collector of the IGBT with the desaturation module.
  • the power amplifying circuit comprises a push-pull power amplifying unit.
  • the push-pull power amplifying unit adopts two power BJT (Bipolar Junction Transistor) MOSFET (metal oxide semiconductor field effect-transistor) tubes with the same parameters in a push-pull manner. Exist in the circuit, each responsible for the positive and negative half-cycle waveform amplification task. When the circuit is working, two symmetrical power switches have only one conduction at a time, so the conduction loss is small and efficient.
  • BJT Bipolar Junction Transistor
  • MOSFET metal oxide semiconductor field effect-transistor
  • the transistors employed in all embodiments of the present disclosure may each be a thin film transistor or a field effect transistor or other device having the same characteristics.
  • the first pole may be the source or the drain
  • the second pole may be the drain or the source.
  • the transistor can be classified into an n-type transistor or a p-type transistor according to the characteristics of the transistor.
  • all transistors are described by taking an n-type or p-type transistor as an example. It is conceivable that those skilled in the art can implement without using a p-type or n-type transistor. It is easily conceivable under the premise of making creative work, and thus is also within the scope of the embodiments of the present disclosure.
  • the push-pull power amplifying unit may include:
  • a first transistor Q1 the gate is connected to the IGBT driving signal, the first pole is connected to the first voltage V1, and the second pole is connected to the gate G of the IGBT;
  • the second transistor Q2 has a gate connected to the IGBT driving signal, a first pole connected to the second voltage V2, and a second pole connected to the gate G of the IGBT.
  • the first transistor Q1 is an n-type transistor
  • the second transistor Q2 is a p-type transistor
  • the first voltage V1 may be a high voltage VCC
  • the second voltage V2 may be a low voltage. VEE.
  • the push-pull power amplifying unit may further include:
  • a first resistor R1 connected between the gate of the first transistor Q1 and the second pole of the first transistor Q1;
  • the first capacitor C1 is connected between the gate of the second transistor Q2 and the first pole of the second transistor Q2.
  • the power amplifying circuit may further include:
  • a second resistor R2 connected between the IGBT drive signal output end of the optocoupler chip and the gate of the first transistor Q1;
  • a fourth resistor R4 connected between the first pole of the second transistor Q2 and the second pole of the second transistor Q2;
  • the voltage stabilizing unit 21 is connected between the gate G of the IGBT and the ground terminal AGND for regulating the power amplified IGBT driving signal;
  • the first filtering unit 22 is connected between the gate G of the IGBT and the ground terminal AGND for filtering the power amplified IGBT driving signal.
  • the voltage stabilizing unit 21 may include:
  • a first Zener diode Z1 a cathode connected to a gate G of the IGBT;
  • the second Zener diode Z2 has an anode connected to the anode of the first Zener diode Z1 and a cathode grounded.
  • the first filtering unit 22 may include: a fifth resistor R5 and a second capacitor C2 connected in parallel with each other;
  • a first end of the fifth resistor R5 is connected to the gate G of the IGBT, and a second end of the fifth resistor R5 is connected to the ground end AGND;
  • the emitter E of the IGBT is connected to the ground terminal AGND.
  • the type of the optocoupler chip may be FOD8332.
  • the optocoupler chip can be any optocoupler chip having the function of detecting faults such as overvoltage, overcurrent, short circuit, etc. of the IGBT.
  • the IGBT driving circuit of the embodiment of the present disclosure further includes: a collector potential detecting unit connected to the collector of the IGBT, and further connected to the desaturation module through a DESAT pin of the optocoupler chip ;
  • the desaturation module detects whether the potential of the collector of the IGBT is too high by the collector potential detecting unit, and whether the potential change of the collector of the IGBT is too fast;
  • the faulty feedback module included in the optocoupler chip passes the Optocoupler chip Transmitting the fault control signal to the external controller;
  • the IGBT drive circuit has a collector potential detecting unit added thereto. It can be conveniently detected whether the potential of the collector of the IGBT is too high, and whether the potential change of the collector of the IGBT is too fast, so as to conveniently detect the occurrence of faults such as overcurrent, overvoltage, and short circuit of the IGBT.
  • the collector potential detecting unit may include:
  • the first end is connected to the VE pin of the optocoupler chip, and the second end is connected to the DESAT pin of the optocoupler chip;
  • the third Zener diode has a cathode connected to the VE pin of the optocoupler chip through C3, and the anode is connected to the ground end.
  • the optocoupler chip stops working to have an undervoltage protection function.
  • the IGBT driving circuit of the embodiment of the present disclosure further includes:
  • a fourth capacitor the first end is connected to the VCLAMP pin of the optocoupler chip, and the second end is connected to the VDD pin of the optocoupler chip;
  • the second filtering unit is connected between the VDD pin of the optocoupler chip and the VE pin of the optocoupler chip.
  • the second filtering unit includes a fifth capacitor and a seventh resistor connected in parallel with each other.
  • the optocoupler chip is connected to an external driving signal input by the external controller through a VLED-pin, and the optocoupler chip outputs the IGBT driving signal through a VO pin.
  • the IGBT drive circuit of the present disclosure will be described below by way of a specific embodiment.
  • the type of the optocoupler chip is FOD8332;
  • the desaturation module (not shown in FIG. 3A) included in the optocoupler chip U1 is connected to the collector C of the IGBT through the collector potential detecting unit through the DESAT pin;
  • the desaturation module detects whether the potential of the collector C of the IGBT is too high by the collector potential detecting unit, and whether the potential change of the collector C of the IGBT is too fast;
  • the optocoupler chip U1 When the desaturation module included in the optocoupler chip U1 detects that the potential of the collector C of the IGBT is too high or the potential of the collector of the IGBT changes too fast, the optocoupler chip U1 includes a fault feedback module. (not shown in FIG. 3A) passing through the optocoupler chip U1 The pin sends a low level fault control signal FAULT to an external DSP chip (not shown in FIG. 3A);
  • the power amplifying circuit includes a push-pull power amplifying unit
  • the push-pull power amplifying unit includes:
  • a first transistor Q1 a gate is connected to the IGBT driving signal, a first pole is connected to a high voltage VCC, and a second pole is connected to a gate of the IGBT;
  • the gate is connected to the IGBT driving signal, the first pole is connected to the low voltage VEE, and the second pole is connected to the gate of the IGBT;
  • Q1 is an n-type transistor, and Q2 is a p-type transistor;
  • the push-pull power amplifying unit further includes:
  • the power amplifying circuit further includes:
  • a second resistor R2 connected between the IGBT drive signal output terminal VO of the optocoupler chip and the gate of the first transistor Q1;
  • a fourth resistor R4 connected between the first pole of the second transistor Q2 and the second pole of the second transistor Q2;
  • a voltage stabilizing unit connected between the gate G of the IGBT and the ground terminal AGND for regulating the power amplified IGBT driving signal
  • a first filtering unit is connected between the gate G of the IGBT and the ground terminal AGND for filtering the power amplified IGBT driving signal
  • the voltage stabilizing unit includes:
  • a first Zener diode Z1 a cathode connected to a gate G of the IGBT;
  • a second Zener diode Z3 the anode is connected to the anode of the first Zener diode Z1, and the cathode is grounded;
  • the filtering unit includes: a fifth resistor R5 and a second capacitor C2 connected in parallel with each other;
  • a first end of the fifth resistor R5 is connected to the gate G of the IGBT, and a second end of the fifth resistor R5 is connected to the ground end AGND;
  • the emitter E of the IGBT is connected to the ground terminal AGND;
  • the collector potential detecting unit specifically includes: a third capacitor C3, the first end is connected to the VE pin of the optocoupler chip U1, and the second end is connected to the DESAT pin of the optocoupler chip;
  • a sixth resistor R6 the first end is connected to the first end of the third capacitor C3;
  • a first diode D1 an anode connected to a second end of the sixth resistor R6, and a cathode connected to a collector C of the IGBT;
  • the third Zener diode Z3 has a cathode connected to the VE pin of the optocoupler chip, and an anode connected to the ground terminal AGND.
  • the specific embodiment of the IGBT driving circuit shown in FIG. 3A of the present disclosure further includes:
  • a fourth capacitor C4 the first end is respectively connected to the VCLAMP pin of the optocoupler chip U1, and the second end is connected to the VDD pin of the optocoupler chip U1;
  • a second filtering unit is connected between the VDD pin of the optocoupler chip U1 and the VE pin of the optocoupler chip U1;
  • the VSS pin of the optocoupler chip U1 is connected to the VCLAMP pin of the optocoupler chip U1;
  • the second filtering unit includes a fifth capacitor C5 and a seventh resistor R7 connected in parallel with each other;
  • the optocoupler chip U1 is connected to an external driving signal DRIVER input by an external DSP chip through a VLED-pin, and the optocoupler chip U1 outputs the IGBT driving signal through a VO pin.
  • the specific embodiment of the IGBT driving circuit shown in FIG. 3A of the present disclosure further includes:
  • a fourth voltage stabilizing transistor Z4 an anode is connected to a VSS pin of the optocoupler chip U1, and a cathode is connected to a ground end AGND;
  • a seventh capacitor connected to the optocoupler chip U1 Between the pin and the ground GND of the front end of the optocoupler chip U1;
  • VCLAMP pin of the optocoupler chip U1 and the VSS pin of the optocoupler chip U1 are both connected to a low level VEE;
  • the GND pin of the optocoupler chip U1 is connected to the ground GND of the front end of the optocoupler chip U1.
  • an eighth capacitor C8 is connected between the +5V power supply and the ground GND;
  • a ninth capacitor C9 and a tenth capacitor C10 are connected in series between the high voltage output terminal of the output high voltage VCC and the low voltage output terminal of the output low voltage VEE;
  • One end of the ninth capacitor C9 connected to the tenth capacitor C10 is connected to the ground terminal AGND.
  • the capacitance values of C1 and C2 may be 10 Nf
  • the capacitance value of C3 may be 100 pF
  • the capacitance values of C4, C5, C6, C7, and C8 may be 0.1 uF.
  • the capacitance values of C9 and C10 can be 47uF.
  • the type of the optocoupler chip U1 is FOD8332, which has an isolation fault detection feedback function, an undervoltage protection function, and an active Miller clamp function;
  • the optocoupler chip U1 can also adopt other different types of chips which also have the above functions.
  • the type of the optocoupler chip U1 can also be ACPL332J.
  • the input end and the output end of the optocoupler chip U1 are powered by an isolated power supply, the input end is a single power supply, and the output end is a dual power supply;
  • the external driving signal DRIVER given by the external DSP chip is connected to the VLED1-pin of the optocoupler chip U1, and the VLED+ pin of the optocoupler chip U1 is connected to the +5V power supply;
  • the external driving signal is a DC square wave signal, and the potential of the external driving signal may be a high level or a low level. According to a specific embodiment, the potential of the external driving signal may be +15V or -5V; When the potential of the external driving signal is -5V, the optocoupler chip U1 outputs an IGBT driving signal that controls the IGBT to be turned on through its VO pin; when the potential of the external driving signal is +15V, the light The coupling chip U1 outputs an IGBT driving signal for controlling the IGBT to be turned off through its VO pin output, thereby ensuring the reliability of turning on and off the IGBT and preventing false triggering;
  • the optocoupler chip U1 has an undervoltage protection function. When the potential of the voltage connected to the VDD pin of the optocoupler chip U1 is less than 13V, the output pulse of the optocoupler chip U1 will be blocked.
  • the DESAT pin of the optocoupler chip U1 The pin and the desaturation module and fault feedback module included in U1 are used for fault protection of overcurrent, overvoltage and short circuit of IGBT.
  • the potential of the third capacitor C3 connected to the VE pin of the optocoupler chip U1 is relatively low, and when the IGBT has an overcurrent, short circuit, overvoltage, etc. (ie, When the rate of change of the potential of the collector C of the IGBT is too fast, or when the potential of the collector C of the IGBT is too high, the potential of the end of the third capacitor C3 connected to the VE pin of the optocoupler chip U1 may pass.
  • the desaturation module included in the optocoupler chip U1 detects that the potential of the collector C of the IGBT is too high or the potential of the collector C of the IGBT changes too fast through the DESAT pin of U1.
  • the faulty feedback module (not shown in FIG. 3A) included in the coupling chip U1 passes through the optocoupler chip U1.
  • the pin sends a low level fault control signal FAULT to the external DSP chip (not shown in FIG. 3A), and the external DSP chip sends the potential to the optocoupler chip U1 after receiving the fault control signal FAULT.
  • 15V external drive signal DRIVER to control the optocoupler chip U1 through its VO pin output to control the IGBT off IGBT drive signal to complete the protection function;
  • the optocoupler chip U1 of the model FOD8332 has an active Miller clamp function, and the photocoupler chip U1 detects that the potential of the collector C of the IGBT is too high or the potential of the collector C of the IGBT through its VCLAMP pin. When the change is too fast, an alert signal is sent to the fault feedback module or the potential of the collector of the IGBT is clamped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

本公开提供了一种IGBT驱动电路,包括光耦芯片和功率放大电路;所述光耦芯片包括隔离放大单元和故障保护单元;故障保护单元包括去饱和模块和故障反馈模块;所述去饱和模块,用于在检测到IGBT的集电极的电位过高或者IGBT的集电极的电位变化过快时向故障反馈模块发送警示信号所述;故障反馈模块,用于在接收到警示信号后向外部控制器发送故障控制信号,从而控制外部控制器输出的外部驱动信号使得隔离放大单元输出控制IGBT关断的IGBT驱动信号。

Description

绝缘栅双极型晶体管驱动电路
相关申请的交叉引用
本申请主张在2015年7月15日在中国提交的中国专利申请号No.201510415519.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及IGBT驱动领域,尤其涉及一种IGBT驱动电路。
背景技术
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)是新型的复合器件,它既有易驱动的特点,又具有管电压低、电流容量大等优点。IGBT的工作频率在几十kHz频率范围内,因此在较高频率的大、中功率电力电子设备用中占据了主要的应用地位。
IGBT驱动电路是IGBT和DSP(digital signal processing,数字信号处理)芯片之间的接口电路,其功能是将来自数字信号处理器的控制信号转换成具有足够功率的驱动信号,来实现IGBT安全的开通与关断,为处理器和IGBT之间提供电气隔离。为了在系统出现故障时IGBT得到正确和有效的保护,IGBT驱动电路还需要提供相应的过流、过压、短路等故障保护功能。
发明内容
本公开的主要目的在于提供一种IGBT驱动电路,以解决现有技术中不能实现IGBT安全的开通与关断,为处理器和IGBT之间提供电气隔离,以及不能提供IGBT过流、过压、短路等故障保护功能的问题。
为了达到上述目的,本公开提供了一种IGBT驱动电路,包括光耦芯片和功率放大电路;所述光耦芯片包括隔离放大单元和故障保护单元;所述故障保护单元包括去饱和模块和故障反馈模块;
所述隔离放大单元,用于对外部控制器输入的外部驱动信号进行光电隔离并放大而得到IGBT驱动信号;
所述功率放大电路,用于对所述IGBT驱动信号进行功率放大,将功率放大后的IGBT驱动信号输出至IGBT的栅极;
所述去饱和模块,用于在检测到所述IGBT的集电极的电位过高或者所 述IGBT的集电极的电位变化过快时向所述故障反馈模块发送警示信号;
所述故障反馈模块,用于在接收到所述警示信号后向所述外部控制器发送故障控制信号,从而控制所述外部控制器输出的外部驱动信号使得所述隔离放大单元输出控制所述IGBT关断的IGBT驱动信号。
可选地,所述故障保护单元还包括:电压钳位模块,用于当检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时,向所述故障反馈模块发送警示信号或者控制对所述IGBT的集电极的电位进行钳位。
可选地,所述功率放大电路包括推挽功率放大单元。
可选地,所述推挽功率放大单元包括:
第一晶体管,栅极接入所述IGBT驱动信号,第一极接入第一电压,第二极与所述IGBT的栅极连接;以及,
第二晶体管,栅极接入所述IGBT驱动信号,第一极接入第二电压,第二极与所述IGBT的栅极连接。
可选地,所述推挽功率放大单元还包括:
第一电阻,连接于所述第一晶体管的栅极和所述第一晶体管的第二极之间;以及,
第一电容,连接于所述第二晶体管的栅极和所述第二晶体管的第一极之间;
所述功率放大电路还包括:
第二电阻,连接于所述光耦芯片的IGBT驱动信号输出端和所述第一晶体管的栅极之间;
第三电阻,连接于所述第一晶体管的第二极与所述IGBT的栅极之间;
第四电阻,连接于所述第二晶体管的第一极和所述第二晶体管的第二极之间;
稳压单元,连接于所述IGBT的栅极和地端之间,用于对功率放大后的IGBT驱动信号进行稳压;以及,
第一滤波单元,连接于所述IGBT的栅极和地端之间,用于对功率放大后的IGBT驱动信号进行滤波。
可选地,所述稳压单元包括:
第一稳压二极管,阴极与所述IGBT的栅极连接;以及,
第二稳压二极管,阳极与所述第一稳压二极管的阳极连接,阴极接地。
可选地,所述第一滤波单元包括:相互并联的第五电阻和第二电容;
所述第五电阻的第一端与所述IGBT的栅极连接,所述第五电阻的第二端与地端连接;
所述IGBT的发射极与地端连接。
可选地,所述光耦芯片的型号为FOD8332。
可选地,本公开所述的IGBT驱动电路还包括:集电极电位检测单元,与所述IGBT的集电极连接,还通过所述光耦芯片的DESAT引脚与所述去饱和模块连接;
所述去饱和模块通过所述集电极电位检测单元检测所述IGBT的集电极的电位是否过高,所述IGBT的集电极的电位变化是否过快;
当所述光耦芯片包括的去饱和模块检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时,所述光耦芯片包括的故障反馈模块通过
Figure PCTCN2015098214-appb-000001
引脚向所述外部控制器发送所述故障控制信号。
可选地,所述集电极电位检测单元包括:
第三电容,第一端与所述光耦芯片的VE引脚连接,第二端与所述光耦芯片的DESAT引脚连接;
第六电阻,第一端与所述第三电容的第一端连接;
第一二极管,阳极与所述第六电阻的第二端连接,阴极与所述IGBT的集电极连接;以及,
第三稳压二极管,阴极通过第三电容与所述光耦芯片的VE引脚连接,阳极与地端连接。
可选地,当所述光耦芯片的VDD端接入的电压小于预定电压时,所述光耦芯片停止工作。
可选地,本公开所述的IGBT驱动电路还包括:
第四电容,第一端与所述光耦芯片的VCLAMP引脚连接,第二端与所述光耦芯片的VDD引脚连接;以及,
第二滤波单元,连接于所述光耦芯片的VDD引脚和所述光耦芯片的VE引脚之间。
可选地,所述第二滤波单元包括相互并联的第五电容和第七电阻。
可选地,所述光耦芯片通过VLED-引脚接入所述外部控制器输入的外部驱动信号,所述光耦芯片通过VO引脚输出所述IGBT驱动信号。
与现有技术相比,本公开所述的IGBT驱动电路采用光耦芯片来进行IGBT驱动,可以对外部控制器输入的外部驱动信号进行光电隔离、放大而得到IGBT驱动信号,对该IGBT驱动信号进行功率放大后输出至IGBT的栅极从而驱动IGBT,并且具有对IGBT过压、过流、短路等故障检测的功能。
附图说明
图1是本公开实施例所述的IGBT驱动电路的结构框图;
图2A是本公开一些实施例所述的IGBT驱动电路的功率放大电路包括的推挽功率放大单元的电路图;
图2B是本公开一些实施例所述的IGBT驱动电路的功率放大电路包括的推挽功率放大单元的电路图;
图2C是本公开一些实施例所述的IGBT驱动电路包括的功率放大电路的电路图;
图2D是本公开一些实施例所述的IGBT驱动电路包括的功率放大电路的电路图;
图3A是本公开一些实施例所述的IGBT的驱动电路的电路图;
图3B是+5V电源和地端GND之间的连接电路图;
图3C是输出高电压VCC的高电压输出端和输出低电压VEE的低电压输出端之间的连接电路图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
如图1所示,本公开实施例所述的IGBT驱动电路包括光耦芯片1和功率放大电路2;所述光耦芯片1包括隔离放大单元11和故障保护单元12;所述故障保护单元12包括去饱和模块121和故障反馈模块122;
所述隔离放大单元11,用于对外部控制器10输入的外部驱动信号DRIVER进行光电隔离并放大而得到IGBT驱动信号;
所述功率放大电路2,用于对所述IGBT驱动信号进行功率放大,将功率放大后的IGBT驱动信号输出至IGBT的栅极G;
所述去饱和模块121,用于在检测到所述IGBT的集电极C的电位过高或者所述IGBT的集电极C的电位变化过快时向所述故障反馈模块122发送警示信号;
所述故障反馈模块122,用于在接收到所述警示信号后向所述外部控制器10发送故障控制信号FAULT,从而控制所述外部控制器10输出的外部驱动信号DRIVER使得所述隔离放大单元11输出控制所述IGBT关断的IGBT驱动信号。
本公开实施例所述的IGBT驱动电路采用光耦芯片来进行IGBT驱动,可以对外部控制器输入的外部驱动信号进行光电隔离、放大而得到IGBT驱动信号,对该IGBT驱动信号进行功率放大后输出至IGBT的栅极从而驱动IGBT,并且具有对IGBT过压、过流、短路等故障检测的功能。
可选地,所述故障保护单元还包括:电压钳位模块,用于当检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时,向所述故障反馈模块发送警示信号或者控制对所述IGBT的集电极的电位进行钳位,以与去饱和模块一起对IGBT的集电极的电位进行钳位。
可选地,所述功率放大电路包括推挽功率放大单元。所述推挽功率放大单元采用两个参数相同的功率BJT(双极结型晶体管,Bipolar Junction Transistor)MOSFET(metallic oxide semiconductor field effect-transistor,金属氧化物半导体场效应晶体管)管,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。
本公开所有实施例中采用的晶体管均可以为薄膜晶体管或场效应管或其他特性相同的器件。在本公开实施例中,为区分晶体管除栅极之外的两极,将其中第一极可以为源极或漏极,第二极可以为漏极或源极。此外,按照晶体管的特性区分可以将晶体管分为n型晶体管或p型晶体管。在本公开实施例提供的驱动电路中,所有晶体管均是以n型或p型晶体管为例进行的说明,可以想到的是在采用p型或n型晶体管实现时是本领域技术人员可在没有做出创造性劳动前提下轻易想到的,因此也是在本公开的实施例保护范围内的。
可选地,如图2A所示,所述推挽功率放大单元可以包括:
第一晶体管Q1,栅极接入所述IGBT驱动信号,第一极接入第一电压V1,第二极与所述IGBT的栅极G连接;以及,
第二晶体管Q2,栅极接入所述IGBT驱动信号,第一极接入第二电压V2,第二极与所述IGBT的栅极G连接。
在如图2A所示的推挽功率放大单元中,第一晶体管Q1是n型晶体管,第二晶体管Q2是p型晶体管,第一电压V1可以是高电压VCC,第二电压V2可以是低电压VEE。
可选地,如图2B所示,所述推挽功率放大单元还可以包括:
第一电阻R1,连接于所述第一晶体管Q1的栅极和所述第一晶体管Q1的第二极之间;以及,
第一电容C1,连接于所述第二晶体管Q2的栅极和所述第二晶体管Q2的第一极之间。
可选地,如图2C所示,所述功率放大电路还可以包括:
第二电阻R2,连接于所述光耦芯片的IGBT驱动信号输出端和所述第一晶体管Q1的栅极之间;
第三电阻R3,连接于所述第一晶体管Q1的第二极与所述IGBT的栅极G之间;
第四电阻R4,连接于所述第二晶体管Q2的第一极和所述第二晶体管Q2的第二极之间;
稳压单元21,连接于所述IGBT的栅极G和地端AGND之间,用于对功率放大后的IGBT驱动信号进行稳压;以及,
第一滤波单元22,连接于所述IGBT的栅极G和地端AGND之间,用于对功率放大后的IGBT驱动信号进行滤波。
可选地,如图2D所示,所述稳压单元21可以包括:
第一稳压二极管Z1,阴极与所述IGBT的栅极G连接;以及,
第二稳压二极管Z2,阳极与所述第一稳压二极管Z1的阳极连接,阴极接地。
可选地,如图2D所示,所述第一滤波单元22可以包括:相互并联的第五电阻R5和第二电容C2;
所述第五电阻R5的第一端与所述IGBT的栅极G连接,所述第五电阻R5的第二端与地端AGND连接;
所述IGBT的发射极E与地端AGND连接。
可选地,所述光耦芯片的型号可以为FOD8332。可选地,所述光耦芯片可以为任何具有对IGBT过压、过流、短路等故障检测的功能的光耦芯片。
可选地,本公开实施例所述的IGBT驱动电路还包括:集电极电位检测单元,与所述IGBT的集电极连接,还通过所述光耦芯片的DESAT引脚与所述去饱和模块连接;
所述去饱和模块通过所述集电极电位检测单元检测所述IGBT的集电极的电位是否过高,所述IGBT的集电极的电位变化是否过快;
当所述光耦芯片包括的去饱和模块检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时,所述光耦芯片包括的故障反馈模块通过所述光耦芯片的
Figure PCTCN2015098214-appb-000002
引脚向所述外部控制器发送所述故障控制信号;
本公开实施例所述的IGBT驱动电路由于添加了集电极电位检测单元, 可以方便的检测所述IGBT的集电极的电位是否过高,所述IGBT的集电极的电位变化是否过快,以方便的检测到IGBT过流、过压、短路等故障情况的发生。
可选地,所述集电极电位检测单元可以包括:
第三电容,第一端与所述光耦芯片的VE引脚连接,第二端与所述光耦芯片的DESAT引脚连接;
第六电阻,第一端与所述第三电容的第一端连接;
第一二极管,阳极与所述第六电阻的第二端连接,阴极与所述IGBT的集电极连接;以及,
第三稳压二极管,阴极通过C3与所述光耦芯片的VE引脚连接,阳极与地端连接。
可选地,当所述光耦芯片的VDD端接入的电压小于预定电压时,所述光耦芯片停止工作,以具有欠压保护功能。
可选地,本公开实施例所述的IGBT驱动电路还包括:
第四电容,第一端与所述光耦芯片的VCLAMP引脚连接,第二端与所述光耦芯片的VDD引脚连接;以及,
第二滤波单元,连接于所述光耦芯片的VDD引脚和所述光耦芯片的VE引脚之间。
可选地,所述第二滤波单元包括相互并联的第五电容和第七电阻。
可选地,所述光耦芯片通过VLED-引脚接入所述外部控制器输入的外部驱动信号,所述光耦芯片通过VO引脚输出所述IGBT驱动信号。
下面通过一具体实施例来说明本公开所述的IGBT驱动电路。
在如图3A所示的本公开所述的IGBT驱动电路的具体实施例中,所述光耦芯片的型号为FOD8332;
如图3A所示,光耦芯片U1包括的去饱和模块(图3A中未示)通过DESAT引脚通过集电极电位检测单元与IGBT的集电极C连接;
所述去饱和模块通过所述集电极电位检测单元检测所述IGBT的集电极C的电位是否过高,所述IGBT的集电极C的电位变化是否过快;
当所述光耦芯片U1包括的去饱和模块检测到所述IGBT的集电极C的 电位过高或者所述IGBT的集电极的电位变化过快时,所述光耦芯片U1包括的故障反馈模块(图3A中未示)通过所述光耦芯片U1的
Figure PCTCN2015098214-appb-000003
引脚向外部的DSP芯片(图3A中未示)发送为低电平的故障控制信号FAULT;
在本公开如图3A所示的IGBT驱动电路的具体实施例中,所述功率放大电路包括推挽功率放大单元;
所述推挽功率放大单元包括:
第一晶体管Q1,栅极接入所述IGBT驱动信号,第一极接入高电压VCC,第二极与所述IGBT的栅极连接;以及,
第二晶体管Q2,栅极接入所述IGBT驱动信号,第一极接入低电压VEE,第二极与所述IGBT的栅极连接;
Q1为n型晶体管,Q2为p型晶体管;
所述推挽功率放大单元还包括:
第一电阻R1,连接于所述第一晶体管Q1的栅极和所述第一晶体管Q2的第二极之间;以及,
第一电容C1,连接于所述第二晶体管Q2的栅极和所述第二晶体管Q2的第一极之间;
所述功率放大电路还包括:
第二电阻R2,连接于所述光耦芯片的IGBT驱动信号输出端VO和所述第一晶体管Q1的栅极之间;
第三电阻R3,连接于所述第一晶体管Q1的第二极与所述IGBT的栅极G之间;
第四电阻R4,连接于所述第二晶体管Q2的第一极和所述第二晶体管Q2的第二极之间;
稳压单元,连接于所述IGBT的栅极G和地端AGND之间,用于对功率放大后的IGBT驱动信号进行稳压;以及,
第一滤波单元,连接于所述IGBT的栅极G和地端AGND之间,用于对功率放大后的IGBT驱动信号进行滤波;
所述稳压单元包括:
第一稳压二极管Z1,阴极与所述IGBT的栅极G连接;以及,
第二稳压二极管Z3,阳极与所述第一稳压二极管Z1的阳极连接,阴极接地;
所述滤波单元包括:相互并联的第五电阻R5和第二电容C2;
所述第五电阻R5的第一端与所述IGBT的栅极G连接,所述第五电阻R5的第二端与地端AGND连接;
所述IGBT的发射极E与地端AGND连接;
所述集电极电位检测单元具体包括:第三电容C3,第一端与所述光耦芯片U1的VE引脚连接,第二端与所述光耦芯片的DESAT引脚连接;
第六电阻R6,第一端与所述第三电容C3的第一端连接;
第一二极管D1,阳极与所述第六电阻R6的第二端连接,阴极与所述IGBT的集电极C连接;以及,
第三稳压二极管Z3,阴极与所述光耦芯片的VE引脚连接,阳极与地端AGND连接。
本公开如图3A所示的IGBT驱动电路的具体实施例还包括:
第四电容C4,第一端分别与所述光耦芯片U1的VCLAMP引脚连接,第二端与所述光耦芯片U1的VDD引脚连接;以及,
第二滤波单元,连接于所述光耦芯片U1的VDD引脚和所述光耦芯片U1的VE引脚之间;
所述光耦芯片U1的VSS引脚和所述光耦芯片U1的VCLAMP引脚连接;
所述第二滤波单元包括相互并联的第五电容C5和第七电阻R7;
所述光耦芯片U1通过VLED-引脚接入外部的DSP芯片输入的外部驱动信号DRIVER,所述光耦芯片U1通过VO引脚输出所述IGBT驱动信号。
本公开如图3A所示的IGBT驱动电路的具体实施例还包括:
第六电容,连接于所述光耦芯片U1的VDD引脚和地端AGND之间;
第四稳压晶体管Z4,阳极与所述光耦芯片U1的VSS引脚连接,阴极与地端AGND连接;
第八电阻,连接于所述光耦芯片U1的VLED+引脚和+5V电源之间;
第九电阻,连接于所述光耦芯片U1的
Figure PCTCN2015098214-appb-000004
引脚和+5V电源之间;以及,
第七电容,连接于所述光耦芯片U1的
Figure PCTCN2015098214-appb-000005
引脚和所述光耦芯片U1前端的地端GND之间;
所述光耦芯片U1的VCLAMP引脚和所述光耦芯片U1的VSS引脚都接入低电平VEE;
所述光耦芯片U1的GND引脚与所述光耦芯片U1前端的地端GND连接。
并且,如图3B所示,+5V电源与地端GND之间连接有第八电容C8;
如图3C所示,输出高电压VCC的高电压输出端和输出低电压VEE的低电压输出端之间串联有第九电容C9和第十电容C10;
所述第九电容C9与所述第十电容C10连接的一端与地端AGND连接。
可选地,在图3A、图3B和图3C中,C1和C2的电容值可以为10Nf,C3的电容值可以为100pF,C4、C5、C6、C7和C8的电容值可以为0.1uF,C9和C10的电容值可以为47uF。
本公开如图3A所示的IGBT驱动电路的具体实施例中,所述光耦芯片U1的型号为FOD8332,其具有隔离故障检测反馈功能、欠压保护功能,以及有源米勒钳位功能;在实际操作时,光耦芯片U1也可以采用其他同样具有以上功能的不同型号的芯片,例如,所述光耦芯片U1的型号也可以为ACPL332J。
可选地,如图3A所示的IGBT驱动电路在工作时,所述光耦芯片U1的输入端和输出端采用隔离电源供电,输入端为单电源供电,输出端为双电源供电;
外部的DSP芯片给出的外部驱动信号DRIVER接入所述光耦芯片U1的VLED1-引脚,所述光耦芯片U1的VLED+引脚接入+5V电源;
所述外部驱动信号为直流方波信号,所述外部驱动信号的电位可以为高电平或低电平,根据一种具体实施方式,所述外部驱动信号的电位可以为+15V或-5V;当所述外部驱动信号的电位为-5V时,所述光耦芯片U1通过其VO引脚输出控制IGBT导通的IGBT驱动信号;当所述外部驱动信号的电位为+15V时,所述光耦芯片U1通过其VO引脚输出控制IGBT关断的IGBT驱动信号,保证了IGBT导通和关断的可靠性,防止误触发;
并且,所述光耦芯片U1具有欠压保护功能,当所述光耦芯片U1的VDD引脚接入的电压的电位小于13V时,将封锁所述光耦芯片U1的输出脉冲;
所述光耦芯片U1的DESAT引脚、
Figure PCTCN2015098214-appb-000006
引脚以及U1内部包括的去饱和模块和故障反馈模块用于IGBT的过流、过压、短路等故障保护。可选地,当IGBT运行正常时,所述第三电容C3的与光耦芯片U1的VE引脚连接的一端的电位比较低,而当IGBT发生过流、短路、过压等故障时(即IGBT的集电极C的电位的变化速度过快时,或者IGBT的集电极C的电位过高时),所述第三电容C3的与光耦芯片U1的VE引脚连接的一端的电位会过高,从而所述光耦芯片U1内部包括的去饱和模块会通过U1的DESAT引脚检测到IGBT的集电极C的电位过高或所述IGBT的集电极C的电位变化过快,所述光耦芯片U1包括的故障反馈模块(图3A中未示)通过所述光耦芯片U1的
Figure PCTCN2015098214-appb-000007
引脚向外部的DSP芯片(图3A中未示)发送为低电平的故障控制信号FAULT,外部的DSP芯片在接收到该故障控制信号FAULT后,向所述光耦芯片U1发送电位为+15V的外部驱动信号DRIVER,以控制所述光耦芯片U1通过其VO引脚输出控制IGBT关断的IGBT驱动信号,以完成保护功能;
并且型号为FOD8332的光耦芯片U1内置有有源米勒钳位功能,在所述光耦芯片U1通过其VCLAMP引脚检测到IGBT的集电极C的电位过高或者IGBT的集电极C的电位变化过快时,向所述故障反馈模块发送警示信号或者控制对所述IGBT的集电极的电位进行钳位。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (14)

  1. 一种绝缘栅双极型晶体管IGBT驱动电路,包括光耦芯片和功率放大电路;所述光耦芯片包括隔离放大单元和故障保护单元;所述故障保护单元包括去饱和模块和故障反馈模块;
    所述隔离放大单元,用于对外部控制器输入的外部驱动信号进行光电隔离并放大而得到IGBT驱动信号;
    所述功率放大电路,用于对所述IGBT驱动信号进行功率放大,将功率放大后的IGBT驱动信号输出至IGBT的栅极;
    所述去饱和模块,用于在检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时向所述故障反馈模块发送警示信号;
    所述故障反馈模块,用于在接收到所述警示信号后向所述外部控制器发送故障控制信号,从而控制所述外部控制器输出的外部驱动信号使得所述隔离放大单元输出控制所述IGBT关断的IGBT驱动信号。
  2. 如权利要求1所述的IGBT驱动电路,其中,所述故障保护单元还包括:电压钳位模块,用于当检测到所述IGBT的集电极的电位过高或者所述IGBT的集电极的电位变化过快时,向所述故障反馈模块发送警示信号或者控制对所述IGBT的集电极的电位进行钳位。
  3. 如权利要求1所述的IGBT驱动电路,其中,所述功率放大电路包括推挽功率放大单元。
  4. 如权利要求3所述的IGBT驱动电路,其中,所述推挽功率放大单元包括:
    第一晶体管,栅极接入所述IGBT驱动信号,第一极接入第一电压,第二极与所述IGBT的栅极连接;以及,
    第二晶体管,栅极接入所述IGBT驱动信号,第一极接入第二电压,第二极与所述IGBT的栅极连接。
  5. 如权利要求4所述的IGBT驱动电路,其中,所述推挽功率放大单元还包括:
    第一电阻,连接于所述第一晶体管的栅极和所述第一晶体管的第二极之 间;以及,
    第一电容,连接于所述第二晶体管的栅极和所述第二晶体管的第一极之间;
    所述功率放大电路还包括:
    第二电阻,连接于所述光耦芯片的IGBT驱动信号输出端和所述第一晶体管的栅极之间;
    第三电阻,连接于所述第一晶体管的第二极与所述IGBT的栅极之间;
    第四电阻,连接于所述第二晶体管的第一极和所述第二晶体管的第二极之间;
    稳压单元,连接于所述IGBT的栅极和地端之间,用于对功率放大后的IGBT驱动信号进行稳压;以及,
    第一滤波单元,连接于所述IGBT的栅极和地端之间,用于对功率放大后的IGBT驱动信号进行滤波。
  6. 如权利要求5所述的IGBT驱动电路,其中,所述稳压单元包括:
    第一稳压二极管,阴极与所述IGBT的栅极连接;以及,
    第二稳压二极管,阳极与所述第一稳压二极管的阳极连接,阴极接地。
  7. 如权利要求5所述的IGBT驱动电路,其中,所述第一滤波单元包括:相互并联的第五电阻和第二电容;
    所述第五电阻的第一端与所述IGBT的栅极连接,所述第五电阻的第二端与地端连接;
    所述IGBT的发射极与地端连接。
  8. 如权利要求1至7中任一权利要求所述的IGBT驱动电路,其中,所述光耦芯片的型号为FOD8332。
  9. 如权利要求8所述的IGBT驱动电路,还包括:集电极电位检测单元,与所述IGBT的集电极连接,还通过所述光耦芯片的DESAT引脚与所述去饱和模块连接;
    所述去饱和模块通过所述集电极电位检测单元检测所述IGBT的集电极的电位是否过高,所述IGBT的集电极的电位变化是否过快;
    当所述光耦芯片包括的去饱和模块检测到所述IGBT的集电极的电位过 高或者所述IGBT的集电极的电位变化过快时,所述光耦芯片包括的故障反馈模块通过
    Figure PCTCN2015098214-appb-100001
    引脚向所述外部控制器发送所述故障控制信号。
  10. 如权利要求9所述的IGBT驱动电路,其中,所述集电极电位检测单元包括:
    第三电容,第一端与所述光耦芯片的VE引脚连接,第二端与所述光耦芯片的DESAT引脚连接;
    第六电阻,第一端与所述第三电容的第一端连接;
    第一二极管,阳极与所述第六电阻的第二端连接,阴极与所述IGBT的集电极连接;以及,
    第三稳压二极管,阴极通过第三电容与所述光耦芯片的VE引脚连接,阳极与地端连接。
  11. 如权利要求8所述的IGBT驱动电路,其中,当所述光耦芯片的VDD端接入的电压小于预定电压时,所述光耦芯片停止工作。
  12. 如权利要求10所述的IGBT驱动电路,还包括:
    第四电容,第一端与所述光耦芯片的VCLAMP引脚连接,第二端与所述光耦芯片的VDD引脚连接;以及,
    第二滤波单元,连接于所述光耦芯片的VDD引脚和所述光耦芯片的VE引脚之间。
  13. 如权利要求12所述的IGBT驱动电路,其中,所述第二滤波单元包括相互并联的第五电容和第七电阻。
  14. 如权利要求8所述的IGBT驱动电路,其中,所述光耦芯片通过VLED-引脚接入所述外部控制器输入的外部驱动信号,所述光耦芯片通过VO引脚输出所述IGBT驱动信号。
PCT/CN2015/098214 2015-07-15 2015-12-22 绝缘栅双极型晶体管驱动电路 WO2017008441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,593 US9960766B2 (en) 2015-07-15 2015-12-22 Insulated gate bipolar transistor driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510415519.0A CN104935315B (zh) 2015-07-15 2015-07-15 Igbt驱动电路
CN201510415519.0 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017008441A1 true WO2017008441A1 (zh) 2017-01-19

Family

ID=54122315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098214 WO2017008441A1 (zh) 2015-07-15 2015-12-22 绝缘栅双极型晶体管驱动电路

Country Status (3)

Country Link
US (1) US9960766B2 (zh)
CN (1) CN104935315B (zh)
WO (1) WO2017008441A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450235A (zh) * 2018-12-27 2019-03-08 杭州易和网络有限公司 Igbt多并联模块驱动电路
CN110086330A (zh) * 2019-06-14 2019-08-02 山西恒信风光新能源技术有限公司 基于分离式绝缘栅双极igbt驱动结构的风电场变频器功率单元
CN110266296A (zh) * 2019-06-24 2019-09-20 北京机械设备研究所 一种igbt的驱动电路及igbt保护方法
CN110266297A (zh) * 2019-06-24 2019-09-20 北京机械设备研究所 一种igbt驱动电路
CN115603725A (zh) * 2021-06-28 2023-01-13 比亚迪股份有限公司(Cn) Igbt驱动保护控制电路和设备

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935315B (zh) * 2015-07-15 2019-02-19 北京京东方能源科技有限公司 Igbt驱动电路
CN107979362B (zh) * 2016-10-25 2021-08-24 中惠创智(深圳)无线供电技术有限公司 一种电路系统及功率器件驱动保护电路
CN108235481B (zh) * 2016-12-22 2021-03-30 佛山市顺德区美的电热电器制造有限公司 一种基于电源输入电压的igbt集电极电压保护方法、装置及电磁炉
JP7157046B2 (ja) * 2017-04-05 2022-10-19 ローム株式会社 パワーモジュール
CN107508469B (zh) * 2017-09-28 2024-01-16 中车大连机车研究所有限公司 一种中高压igbt通用智能驱动板
CN108039878B (zh) * 2017-09-28 2021-08-31 长春理工大学 基于igbt低频噪声检测的低噪声偏置电路
CN108258913B (zh) * 2018-03-08 2024-05-24 重庆禾维科技有限公司 快速响应的高压电源
CN108512404A (zh) * 2018-04-26 2018-09-07 浙江大维高新技术股份有限公司 一种上半桥驱动电路
CN108768143A (zh) * 2018-04-26 2018-11-06 浙江大维高新技术股份有限公司 一种下半桥及制动igbt驱动电路
CN108539962A (zh) * 2018-04-27 2018-09-14 浙江大维高新技术股份有限公司 一种一体化电梯变频器
CN108631561B (zh) * 2018-06-06 2024-04-16 广东明阳龙源电力电子有限公司 一种软硬件处理的隔离式igbt驱动反馈系统
CN109495092B (zh) * 2018-11-19 2024-06-04 深圳市格瑞普智能电子有限公司 功率开关管驱动电路及驱动方法
CN109525206B (zh) * 2018-12-28 2021-12-28 中科特思信息技术(深圳)有限公司 一种射频功率放大器实时监测保护电路
CN109981089B (zh) * 2019-04-08 2023-12-08 广东安朴电力技术有限公司 一种igbt驱动保护系统
CN110176855A (zh) * 2019-05-31 2019-08-27 芜湖康爱而电气有限公司 一种基于hcpl-316j的igbt驱动的有源钳位保护电路
CN110492723A (zh) * 2019-08-01 2019-11-22 北京稳力科技有限公司 一种燃料电池汽车高速空压机用逆变器驱动电路
CN112051494B (zh) * 2019-11-28 2021-07-20 长城汽车股份有限公司 绝缘栅双极型晶体管的栅极检测电路
CN111181507B (zh) * 2020-01-21 2024-01-30 西安茂德通讯科技有限公司 X波段400w功放
CN112583393A (zh) * 2020-11-26 2021-03-30 南京轨道交通系统工程有限公司 一种基于单电源电路的igbt栅极驱动器
CN113794357A (zh) * 2021-07-29 2021-12-14 广东美的白色家电技术创新中心有限公司 一种故障处理电路、芯片、智能功率模块和家用电器
CN114157122A (zh) * 2021-11-22 2022-03-08 江苏现代电力科技股份有限公司 一种大电流并管igbt驱动装置
CN114400621A (zh) * 2021-12-15 2022-04-26 中克骆瑞新能源科技有限公司 一种igbt的短路保护电路
CN116759995B (zh) * 2023-08-23 2024-02-13 深圳深蕾科技股份有限公司 一种用于单功率模块驱动芯片的驱动故障保护电路
CN117155078B (zh) * 2023-10-30 2024-01-30 江苏天合储能有限公司 功率模块的控制电路、控制方法及功率模块

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466185B2 (en) * 2006-10-23 2008-12-16 Infineon Technologies Ag IGBT-Driver circuit for desaturated turn-off with high desaturation level
CN102332705A (zh) * 2011-10-25 2012-01-25 杭州日鼎控制技术有限公司 大功率变频装置igbt短路保护电路
CN102347603A (zh) * 2011-09-21 2012-02-08 深圳市英威腾电气股份有限公司 绝缘栅双极型晶体管驱动保护电路
CN202564928U (zh) * 2012-05-21 2012-11-28 永济新时速电机电器有限责任公司 绝缘栅双极型晶体管的保护电路
CN103326547A (zh) * 2013-06-18 2013-09-25 欧瑞传动电气股份有限公司 一种带保护延时的igbt驱动电路
CN103336235A (zh) * 2013-06-13 2013-10-02 广东明阳龙源电力电子有限公司 一种igbt状态检测电路
CN104702253A (zh) * 2013-12-04 2015-06-10 Abb公司 用于功率半导体开关的短路保护的方法和装置
CN104935315A (zh) * 2015-07-15 2015-09-23 北京京东方能源科技有限公司 Igbt驱动电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570101B1 (en) * 2008-02-27 2009-08-04 The United States Of America As Represented By The United States Department Of Energy Advanced insulated gate bipolar transistor gate drive
CN201708537U (zh) * 2010-06-21 2011-01-12 广东易事特电源股份有限公司 一种变换器桥臂直通保护电路
US8760218B2 (en) * 2012-05-07 2014-06-24 General Electric Company System and method for operating an electric power converter
CN202737730U (zh) * 2012-07-03 2013-02-13 辛玉刚 Igbt驱动电路及三相半桥逆变器驱动电路
CN202906778U (zh) * 2012-10-22 2013-04-24 江苏兆伏新能源有限公司 T型三电平igbt驱动电路
GB2509987B (en) * 2013-01-22 2020-01-22 Nidec Control Techniques Ltd A desaturation detection circuit for use between the desaturation detection input of an optocoupler and the output of a power switching device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466185B2 (en) * 2006-10-23 2008-12-16 Infineon Technologies Ag IGBT-Driver circuit for desaturated turn-off with high desaturation level
CN102347603A (zh) * 2011-09-21 2012-02-08 深圳市英威腾电气股份有限公司 绝缘栅双极型晶体管驱动保护电路
CN102332705A (zh) * 2011-10-25 2012-01-25 杭州日鼎控制技术有限公司 大功率变频装置igbt短路保护电路
CN202564928U (zh) * 2012-05-21 2012-11-28 永济新时速电机电器有限责任公司 绝缘栅双极型晶体管的保护电路
CN103336235A (zh) * 2013-06-13 2013-10-02 广东明阳龙源电力电子有限公司 一种igbt状态检测电路
CN103326547A (zh) * 2013-06-18 2013-09-25 欧瑞传动电气股份有限公司 一种带保护延时的igbt驱动电路
CN104702253A (zh) * 2013-12-04 2015-06-10 Abb公司 用于功率半导体开关的短路保护的方法和装置
CN104935315A (zh) * 2015-07-15 2015-09-23 北京京东方能源科技有限公司 Igbt驱动电路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450235A (zh) * 2018-12-27 2019-03-08 杭州易和网络有限公司 Igbt多并联模块驱动电路
CN109450235B (zh) * 2018-12-27 2024-01-12 杭州易和网络有限公司 Igbt多并联模块驱动电路
CN110086330A (zh) * 2019-06-14 2019-08-02 山西恒信风光新能源技术有限公司 基于分离式绝缘栅双极igbt驱动结构的风电场变频器功率单元
CN110086330B (zh) * 2019-06-14 2024-02-09 山西恒信风光新能源技术有限公司 基于分离式绝缘栅双极igbt驱动结构的风电场变频器功率单元
CN110266296A (zh) * 2019-06-24 2019-09-20 北京机械设备研究所 一种igbt的驱动电路及igbt保护方法
CN110266297A (zh) * 2019-06-24 2019-09-20 北京机械设备研究所 一种igbt驱动电路
CN110266297B (zh) * 2019-06-24 2023-07-25 北京机械设备研究所 一种igbt驱动电路
CN110266296B (zh) * 2019-06-24 2023-07-25 北京机械设备研究所 一种igbt的驱动电路及igbt保护方法
CN115603725A (zh) * 2021-06-28 2023-01-13 比亚迪股份有限公司(Cn) Igbt驱动保护控制电路和设备

Also Published As

Publication number Publication date
CN104935315A (zh) 2015-09-23
US9960766B2 (en) 2018-05-01
US20170149431A1 (en) 2017-05-25
CN104935315B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2017008441A1 (zh) 绝缘栅双极型晶体管驱动电路
US20110317453A1 (en) Control circuit, control method, and power supply device
WO2014069525A1 (ja) 電子回路
WO2010021082A1 (ja) 電力用半導体素子の駆動回路
CN202373957U (zh) 过压及欠压保护电路
TW201232512A (en) Gate driver and semiconductor device employing the same
JP2017529046A5 (zh)
JP2012090435A (ja) 駆動回路及びこれを備える半導体装置
WO2018103574A1 (zh) 过欠压保护电路和机顶盒
WO2020224234A1 (zh) 碳化硅-金属氧化物半导体场效应晶体管sic-mosfet的驱动电路
CN108649938B (zh) 一种抑制负向驱动电压尖峰的mos管驱动电路
CN111525786A (zh) 具有igbt退饱和保护功能的驱动信号互锁电路
CN107294199A (zh) 一种逻辑复合型电压检测切换电路
CN107979362B (zh) 一种电路系统及功率器件驱动保护电路
CN204882781U (zh) 大功率变频器驱动预检测电路
CN102790609B (zh) 一种绝缘栅功率管的驱动器
CN209046518U (zh) 基于igbt的大功率并联电源驱动电路
CN203133225U (zh) 直流风扇的驱动及状态检测电路
CN114709793A (zh) 一种硬件过流保护电路及方法
CN208369548U (zh) 一种igbt驱动保护电路
JP2004282959A (ja) 電圧制御型駆動素子の駆動装置
CN212063823U (zh) 驱动电路及驱动装置
CN206060723U (zh) Agv电路板之间的通讯电路
CN105991116B (zh) 驱动电路及电子设备
JP2020129867A (ja) 過電流検出回路及び電流出力回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15108593

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898166

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15898166

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15898166

Country of ref document: EP

Kind code of ref document: A1