WO2017008320A1 - 一种多晶硅薄膜的质量检测方法和系统 - Google Patents

一种多晶硅薄膜的质量检测方法和系统 Download PDF

Info

Publication number
WO2017008320A1
WO2017008320A1 PCT/CN2015/084468 CN2015084468W WO2017008320A1 WO 2017008320 A1 WO2017008320 A1 WO 2017008320A1 CN 2015084468 W CN2015084468 W CN 2015084468W WO 2017008320 A1 WO2017008320 A1 WO 2017008320A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
image
polysilicon film
qualified
quality
Prior art date
Application number
PCT/CN2015/084468
Other languages
English (en)
French (fr)
Inventor
叶昱均
唐丽娟
李勇
王志刚
李子健
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2017008320A1 publication Critical patent/WO2017008320A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a method and system for detecting quality of a polysilicon film.
  • the existing low-temperature polysilicon film is fabricated by using an excimer laser annealing device.
  • the quality of the polycrystalline silicon film after excimer laser annealing is detected by using a Macro detection method, and the human eye is observed with a strong light lamp to perform a polysilicon film Mura detection.
  • the use of excimer lasers to make polycrystalline silicon thin films often results in poor polycrystalline silicon thin films.
  • the polycrystalline silicon thin films are photographed using the current Macro detection method. From this photograph, it can be seen that the polycrystalline silicon thin films have bad lines. Specifically, it is a defective horizontal line or a vertical line, so that the polycrystalline silicon film can be judged to be a defective product; if a photograph as shown in FIG. 2 appears, the polycrystalline silicon film can be judged to be a good product.
  • the quality detection method of the existing polysilicon film that is, the Macro detection
  • the judgment of the subjective consciousness is easy to cause misjudgment, resulting in inaccurate quality detection of the polysilicon film.
  • the object of the present invention is to provide a method and system for detecting quality of a polysilicon film, which solves the technical problem of inaccurate quality detection in the quality inspection method of the existing polysilicon film.
  • Embodiments of the present invention provide a method for quality inspection of a polysilicon film, which includes the following steps:
  • the substrate on which the polysilicon film is formed is irradiated with light, and the polysilicon film is photographed in a direction of 5 to 45 degrees with the substrate to obtain a film image;
  • the display parameters include: a luminance gray scale and/or a line width length distribution;
  • the step of obtaining the qualified number of the image units according to the comparison result between the display parameters of the polysilicon film and the preset parameters in each of the image units includes:
  • the determining is determined according to a comparison result between a display parameter of the polysilicon film and the preset parameter in the image unit.
  • the steps of whether the image unit is qualified include:
  • Embodiments of the present invention provide a method for quality inspection of a polysilicon film; the method includes the following steps:
  • the quality of the polysilicon film is determined based on the number of qualified image units and the total number of image units.
  • the step of obtaining the number of qualified image units according to the comparison result of the display parameters of the polysilicon film and the preset parameters in each of the image units comprises:
  • the display parameters include: a luminance gray scale and/or a line width length distribution.
  • the determining is determined according to a comparison result between a display parameter of the polysilicon film and the preset parameter in the image unit.
  • the steps of whether the image unit is qualified include:
  • the image unit is determined according to a comparison result of a display parameter of the polysilicon film in the image unit and the preset parameter.
  • the steps to qualify are:
  • the step of determining the quality of the polysilicon film according to the number of qualified image units and the total number of the image units includes:
  • the preset number being a quantity set according to the total number of the image units
  • the step of determining the quality of the polysilicon film according to the number of qualified image units and the total number of the image units includes:
  • the step of photographing the polysilicon film includes photographing the polysilicon film in a direction of 5 to 45 degrees with the substrate.
  • the step of irradiating light to the substrate on which the polysilicon film is formed on the surface includes:
  • the substrate is irradiated with light at a direction of 5 to 45 degrees from the substrate on which the polycrystalline silicon thin film is formed.
  • Embodiments of the present invention provide a quality inspection system for a polysilicon film, including:
  • the photographing device includes: a charge coupled component, an optical lens, and a light source;
  • the light source is located above the substrate on which the polysilicon film is formed on the surface, for illuminating the substrate;
  • the optical lens is located above the substrate for collecting light in a field of view and introducing the light into the charge coupled component, the polysilicon film being included in the field of view;
  • the charge coupled component for sensing the light to generate a corresponding image and transmitting the image to the processor
  • the processor is configured to:
  • the quality of the polysilicon film is determined based on the number of qualified image units and the total number of image units.
  • the step of obtaining the number of qualified image units according to the comparison result of the display parameters of the polysilicon film and the preset parameters in each of the image units comprises:
  • the display parameters include: a luminance gray scale and/or a line width length distribution.
  • the determining is determined according to a comparison result between the display parameter of the polysilicon film and the preset parameter in the image unit.
  • the steps of whether the image unit is qualified include:
  • the image unit is determined according to a comparison result of a display parameter of the polysilicon film in the image unit and the preset parameter.
  • the steps to qualify are:
  • the step of determining the quality of the polysilicon film according to the number of qualified image units and the total number of the image units includes:
  • the preset number being a quantity set according to the total number of the image units
  • the step of determining the quality of the polysilicon film according to the number of qualified image units and the total number of the image units includes:
  • the optical lens and the substrate of the polysilicon film are at an angle of 5 to 45 degrees.
  • the light source and the substrate of the polysilicon film are at an angle of 5 to 45 degrees.
  • the invention provides a method and a system for detecting quality of a polysilicon film; the quality detecting method of the invention firstly takes a film image formed by irradiating light onto a polysilicon film, and then dividing the film image into a plurality of image units, and then, in the image unit The display parameters of the polysilicon film are compared with the preset parameters to obtain a comparison result, and finally the number of qualified image units is obtained according to the comparison result, thereby determining the quality of the film image according to the total number of image units of the number of qualified image units;
  • the quality detecting method of the invention does not depend on the subjective consciousness of the human body, and can be automatically completed by the machine, for example, by using a computer and a photographing device; and the accuracy and efficiency of the quality detection are improved compared with the existing quality detecting method, thereby reducing the cost.
  • Figure 1 is a photograph of a poor polysilicon film taken by a giant inspection method
  • FIG. 3 is a schematic flow chart of a method for detecting quality of a polysilicon film according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a result after determining whether each image unit in a film image is qualified according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram showing the result of a quality inspection system for a polysilicon film according to Embodiment 2 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a method for detecting quality of a polysilicon film, as shown in FIG. 3, comprising the following steps:
  • Step S301 irradiating light to the substrate on which the polycrystalline silicon thin film is formed on the surface, and photographing the polycrystalline silicon thin film to obtain a thin film image; and proceeding to step S302.
  • the polysilicon film can be subjected to an excimer laser annealed film.
  • the light source may be irradiated with light to the substrate, and the polycrystalline silicon may be photographed by using a photographing device such as a camera.
  • the device integrated with the light source and the photographing device may also be used to perform step S301.
  • the filming of the polysilicon film in step S301 may specifically: photographing the polysilicon film in a direction of 5 to 45 degrees with the substrate. For example, when photographing with a photographing device, the photographing device is adjusted to an angle of 5 to 45 degrees with respect to the substrate, so that the polysilicon film can be photographed in a direction of 5 to 45 degrees with the substrate.
  • the quality detecting method of the embodiment can irradiate light and capture an image in the same direction, for example, the light source is directly opposite to the substrate, and the substrate is irradiated from a direction perpendicular to the substrate, and the photograph can be photographed at a direction of 45 degrees to the substrate;
  • the quality detecting method of the present embodiment can also separately illuminate light and capture images in different directions, for example, from illuminating light and capturing images in a direction of 5 to 45 degrees from the substrate. Irradiating light and capturing images from different directions can facilitate the placement of the detection device, facilitate quality detection, and illuminate the light from the same direction and capture images to capture clear film images, improving the accuracy of quality inspection.
  • Step S302 The film image is divided into a plurality of image units according to the set size, and the process proceeds to step S303.
  • the film image can be divided into a plurality of image units of equal size according to the set size.
  • the film image will be segmented into a plurality of 5 inch, 6 inch, or 10 inch image units.
  • the size set in step S302 can be determined according to the quality detection requirement, and the smaller the size of the image unit, the larger the number of divided image units, and the higher the accuracy of the quality detection.
  • Step S303 Acquire a display parameter of the polysilicon film in the image unit, and compare the display parameter with a preset parameter to obtain a comparison result, and go to step S304.
  • the display parameter is a parameter that can be used to determine whether the quality of the polysilicon film is acceptable.
  • the display parameter in step S303 may include: a brightness gray scale and/or a line width length distribution.
  • the parameter preset parameters are displayed for comparison.
  • the value of the display parameter may be compared with the value of the preset parameter, for example, the line width length distribution value is compared with the preset distribution value, or the brightness gray scale value is Preset thresholds for comparison, etc.
  • the quality detecting method of the embodiment is performed for each image unit: acquiring display parameters of the polysilicon film in the image, and then comparing the display parameters with the preset parameters to obtain a comparison result, and then acquiring according to each comparison result.
  • the number of qualified image units is performed for each image unit: acquiring display parameters of the polysilicon film in the image, and then comparing the display parameters with the preset parameters to obtain a comparison result, and then acquiring according to each comparison result.
  • Step S304 Acquire the number of the qualified image units according to the comparison result between the display parameters of the polysilicon film and the preset parameters in each of the image units, and then go to step S305.
  • Step S304 specifically includes:
  • Step S304 may specifically include:
  • the method of the embodiment may determine whether the image unit is qualified according to a comparison result between the display parameter of the polysilicon film and the preset parameter in the image unit; specifically, the display parameter includes a brightness gray scale and a line width length distribution. If the brightness grayscale value is greater than or equal to the preset brightness grayscale value, and the line width length distribution value is less than the preset line width length distribution value, determining that the image unit is qualified; if the brightness level value If the value is less than the preset brightness grayscale value, or the line width length distribution value is greater than the preset line width length distribution value, determining that the image unit is unqualified;
  • the display parameter includes only the line width length distribution
  • the line width length distribution value is less than the preset line width length distribution value, it is determined that the image unit is qualified; if the line width length distribution value is not less than the preset The line width length distribution value determines that the image unit is unqualified.
  • the image unit can be determined according to the comparison result, until all the image units are determined. qualified.
  • the quality detecting method of the embodiment may set an identifier for the image unit if the image unit is qualified after determining whether the image unit is qualified, for example, setting “OK”.
  • the number of qualified image units can then be obtained by counting the number of identities.
  • an identifier may be set for the image unit that is not qualified, for example, an identifier of "NG" is set.
  • FIG. 4 it is a schematic diagram of the result after determining whether or not each image unit in the film image is qualified.
  • Step S305 determining the quality of the polysilicon film according to the number of qualified image units and the total number of the image units.
  • the method of the embodiment can determine the quality of the polysilicon film by:
  • the preset number being a quantity set according to the total number of the image units
  • the film image is divided into 50 image units, and the number of qualified image units is set to be greater than 35 when the film quality is qualified; if 40 qualified image units are detected, since 40 is greater than 35, the polysilicon film is determined. The quality is acceptable. If 20 qualified image units are detected, since 20 is less than 35, the quality of the polysilicon film is determined to be unacceptable.
  • the way to calculate the pass rate is to divide the number of qualified image units by the total number of image units.
  • the film image is divided into 100 image units, and the image unit is at least 60% when the film quality is qualified; if 70 qualified image units are detected, the pass rate of the image unit is calculated to be 70%, then the determination is made.
  • the quality of the polysilicon film is acceptable. If 40 qualified image units are detected and the pass rate of the image unit is calculated to be 40%, the quality of the polysilicon film is determined to be unacceptable.
  • the quality detecting method of the embodiment may also determine the quality of the film by using the number of unqualified image units, for example, When the number of qualified image units is less than the preset number, it is determined that the quality of the film is acceptable, and if it is greater than or equal to, the quality of the film is determined to be unacceptable.
  • the quality detecting method of the embodiment does not depend on the subjective consciousness of the person, and can be automatically completed by the machine, for example, by using a computer and a photographing device; compared with the existing quality detecting method, the accuracy and efficiency of the quality detecting are improved, thereby reducing The cost. Further, due to the improved readiness of the film quality inspection, application of a poor film to the liquid crystal display panel is avoided, and the stability of the liquid crystal display panel is improved.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a quality inspection system for a polysilicon film, comprising: a photographing device 501 and a processor 502; the photographing device 501 includes: a charge coupled component 5011, an optical lens 5012, and a light source 5013;
  • the light source 5013 is located above the substrate on which the polysilicon film is formed on the surface, for illuminating the substrate;
  • the optical lens 5012 is located above the substrate for collecting light in the field of view and introducing the light into the charge coupling assembly 5011, the polysilicon film being included in the field of view;
  • the charge coupling component 5011 is configured to sense the light to generate a corresponding image, and transmit the image to the processor 502;
  • the processor 502 is configured to:
  • the quality of the polysilicon film is determined based on the number of qualified image units and the total number of image units.
  • the 5012 lens of the photographing device 501 in this embodiment can be at an angle of 5 to 45 degrees with the substrate of the film, so that the photographing device 501 can be The polysilicon film is photographed in a direction from the substrate at an angle of 5 to 45 degrees to obtain a film image.
  • the light source 5013 is at an angle of 5 to 45 degrees with the substrate of the film, so that the light source can illuminate the film in a direction of 5 to 45 degrees from the substrate.
  • the imaging device 501 can be a Mura image detection system
  • the processor 502 can be a computer. The two are connected by wire or wireless to transmit a thin film image signal.
  • the quality detecting system of the embodiment can automatically perform quality inspection on the polysilicon film, and does not depend on human subjective consciousness, and improves the accuracy and efficiency of quality detection compared with the existing quality detecting method, thereby reducing the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

提供了一种多晶硅薄膜的质量检测方法和系统;该质量检测方法包括:向多晶硅薄膜的基板照射光,对多晶硅薄膜进行拍摄得到薄膜图像;将薄膜图像分割成多个图像单元;根据图像单元中多晶硅薄膜的显示参数与预设参数的对比结果获取合格的图像单元的数量;根据该数量和图像单元的总数量确定多晶硅薄膜质量。

Description

一种多晶硅薄膜的质量检测方法和系统 技术领域
本发明涉及液晶显示器技术领域,特别是涉及一种多晶硅薄膜的质量检测方法和系统。
背景技术
现有制作低温多晶硅薄膜为利用准分子激光退火设备,完成准分子激光退火后的多晶硅薄膜质量检测为利用一巨观(Macro)检测,以人眼观察搭配强光灯,进行多晶硅薄膜Mura检测。利用准分子激光制作多晶硅薄膜会常常会出现不良的多晶硅薄膜,如图1所述为利用目前Macro检测方法对多晶硅薄膜进行检测得到的照片,从该照片中可以看出多晶硅薄膜出现了不良的线条,具体地为不良的横线或垂直线,因此可判断该多晶硅薄膜为不良品;若出现如图2所示的照片,则可以判断该多晶硅薄膜为良品。
可见,现有多晶硅薄膜的质量检测方法,即Macro检测,往往依赖于人为主观意识判断,然而人为主观意识判断很容易造成误判,导致对多晶硅薄膜的质量检测不准确。
因此,有必要提供一种新的多晶硅薄膜的质量检测方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种多晶硅薄膜的质量检测方法和系统,以解决现有多晶硅薄膜的质量检测方法存在的质量检测不准确的技术问题。
技术解决方案
本发明的实施例提供了一种多晶硅薄膜的质量检测方法,其包括如下步骤:
向表面上形成有多晶硅薄膜的基板照射光,并在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄,以获得薄膜图像;
按照设定的尺寸将所述薄膜图像分割成多个图像单元;
获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果; 所述显示参数包括:亮度灰阶和/或线条宽长度分布;
根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量;
其中所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
统计合格的所述图像的数量。
在本发明的质量检测方法中,当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
本发明的实施例提供了一种多晶硅薄膜的质量检测方法;其包括如下步骤:
向表面上形成有多晶硅薄膜的基板照射光,并对所述多晶硅薄膜进行拍摄,以获得薄膜图像;
按照设定的尺寸将所述薄膜图像分割成多个图像单元;
获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果;
根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
在本发明的质量检测方法中,所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
统计合格的所述图像的数量。
在本发明的质量检测方法中,所述显示参数包括:亮度灰阶和/或线条宽长度分布。
在本发明的质量检测方法中,当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
在本发明的质量检测方法中,当所述显示参数包括线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
当所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
当所述线条宽长度分布值不小于预设线条宽长度分布值时,确定所述图像单元不合格。
在本发明的质量检测方法中,所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
将合格的所述图像单元的数量与预设数量进行比较,所述预设数量为根据所述图像单元的总数量设定的数量;
当合格的所述图像单元的数量小于预设数量时,确定所述多晶硅薄膜的质量为不合格;
当合格的所述图像单元的数量大于或等于预设数量时,确定所述多晶硅薄膜的质量为合格。
在本发明的质量检测方法中,所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
根据合格的所述图像单元的数量和所述图像单元的总数量计算图像单元的合格率;
将所述合格率与预设合格率进行比较;
当所述合格率小于预设合格率时,确定所述多晶硅薄膜的质量为不合格;
当所述合格率大于或等于预设合格率时,确定所述多晶硅薄膜的质量为合格。
在本发明的质量检测方法中,所述对所述多晶硅薄膜进行拍摄的步骤包括:在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄。
在本发明的质量检测方法中,所述向表面上形成有多晶硅薄膜的基板照射光的步骤包括:
在与表面上形成有多晶硅薄膜的基板呈5度到45度角的方向上向所述基板照射光。
本发明的实施例提供了一种多晶硅薄膜的质量检测系统,其包括:
拍摄装置和处理器;
所述拍摄装置包括:电荷耦合组件、光学镜头以及光源;
所述光源位于所述表面上形成有多晶硅薄膜的基板上方,用于向所述基板照射光;
所述光学镜头位于所述基板上方,用于收集视场内的光线,并将所述光线引入到所述电荷耦合组件,所述多晶硅薄膜包含在所述视场中;
所述电荷耦合组件,用于感应所述光线生成对应的图像,并将所述图像传输给所述处理器;以及
所述处理器,用于:
按照设定的尺寸将所述薄膜图像分割成多个图像单元;
获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果;
根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
在本发明的质量检测系统,所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
统计合格的所述图像的数量。
在本发明的质量检测系统中,其中所述显示参数包括:亮度灰阶和/或线条宽长度分布。
在本发明的质量检测系统中,当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
在本发明的质量检测系统中,当所述显示参数包括线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
当所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
当所述线条宽长度分布值不小于预设线条宽长度分布值时,确定所述图像单元不合格。
在本发明的质量检测系统中,所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
将合格的所述图像单元的数量与预设数量进行比较,所述预设数量为根据所述图像单元的总数量设定的数量;
当合格的所述图像单元的数量小于预设数量时,确定所述多晶硅薄膜的质量为不合格;
当合格的所述图像单元的数量大于或等于预设数量时,确定所述多晶硅薄膜的质量为合格。
在本发明的质量检测系统中,所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
根据合格的所述图像单元的数量和所述图像单元的总数量计算图像单元的合格率;
将所述合格率与预设合格率进行比较;
当所述合格率小于预设合格率时,确定所述多晶硅薄膜的质量为不合格;
当所述合格率大于或等于预设合格率时,确定所述多晶硅薄膜的质量为合格。
在本发明的质量检测系统中,所述光学镜头与所述多晶硅薄膜的基板呈5度到45度角。
在本发明的质量检测系统中,所述光源与所述多晶硅薄膜的基板呈5度到45度角。
有益效果
本发明提供了一种多晶硅薄膜的质量检测方法和系统;本发明的质量检测方法首先拍摄对多晶硅薄膜照射光形成的薄膜图像,然后将薄膜图像分割成多个图像单元,接着,将图像单元中多晶硅薄膜的显示参数与预设参数比较,以获取比较结果,最后根据比较结果获取合格的图像单元的数量,从而根据合格的图像单元的数量图像单元的总数量来判别薄膜图像的质量;可见,本发明的质量检测方法不依赖于人为主观意识,可以由机器自动完成,例如利用计算机和拍摄设备来完成;与现有质量检测方法相比,提高了质量检测的准确性和效率,从而降低了成本。
附图说明
图1为利用巨观检测方式获取的不良多晶硅薄膜的照片;
图2为利用巨观检测方式获取的良好多晶硅薄膜的照片;
图3为本发明实施例一提供的一种多晶硅薄膜的质量检测方法的流程示意图;
图4为本发明实施例一提供的一种为对薄膜图像中各图像单元确定是否合格之后的结果示意图;
图5为本发明实施例二提供的一种多晶硅薄膜的质量检测系统的结果示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
实施例一:
本实施例提供了一种多晶硅薄膜的质量检测方法,如图3所示,包括如下步骤:
步骤S301:向表面上形成有多晶硅薄膜的基板照射光,并对所述多晶硅薄膜进行拍摄,以获得薄膜图像;转步骤S302。
本实施例中多晶硅薄膜可以经过准分子激光退火后的薄膜。
本实施例中可以光源向基板照射光,可以采用拍摄设备,例如照相机对所述多晶硅包括进行拍摄。本实施例中也可以采用集成有光源和拍摄设备的设备来执行步骤S301。
步骤S301中对多晶硅薄膜进行拍摄具体可以为:在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄。例如,采用拍摄设备拍摄时,将拍摄设备调整至于基板呈5度到45度角,即可实现在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄。
本实施例质量检测方法可以在同一个方向上照射光和拍摄图像,例如将光源正对基板,从与基板垂直的方向照射基板,而拍摄照片时可以在与基板呈45度角的方向拍摄;当然本实施例质量检测方法也可以在不同的方向上分别照射光和拍摄图像,例如从在与基板5度到45度角的方向上照射光和拍摄图像。从不同的方向上分别进行照射光和拍摄图像,可以方便检测设备的放置,方便质量检测,从相同的方向上进行照射光和拍摄图像可以拍摄到清晰的薄膜图像,提升质量检测的准确性。
步骤S302:按照设定的尺寸将所述薄膜图像分割成多个图像单元,转步骤S303。
具体地,可以按照设定的尺寸将薄膜图像分割成多个尺寸相等的图像单元。例如将将所述薄膜图像分割成多个5寸、6寸、或者10寸的图像单元。
步骤S302中设定的尺寸可以根据质量检测需求确定,图像单元的尺寸越小分割的图像单元数量越多,质量检测的准确性越高。
步骤S303:获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果,转步骤S304。
本实施例中显示参数为可以用来判断多晶硅薄膜质量是否合格的参数;具体地,步骤S303中显示参数可以包括:亮度灰阶和/或线条宽长度分布。本步骤将显示参数预设参数进行对比可以是将显示参数的值与预设参数的值进行对比,例如将线条宽长度分布值与预设分布值进行对比,又或者是将亮度灰阶值与预设阈值进行比较等。
本实施例质量检测方法,对于每个图像单元均执行:获取图像中所述多晶硅薄膜的显示参数,然后将显示参数与预设参数进行对比,以获取对比结果,接着,根据各个对比结果来获取合格的图像单元的数量。
步骤S304:根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量,转步骤S305。
步骤S304具体包括:
根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
统计合格的所述图像的数量
步骤S304可以具体包括:
根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
统计合格的所述图像的数量。
本实施例方法可以根据所述图像单元中所述多晶硅薄膜的显示参数与预设参数的对比结果来确定该图像单元是否合格;具体地,在显示参数包括亮度灰阶和线条宽长度分布的情况下,如果所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值,则确定所述图像单元合格;如果所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值,则确定所述图像单元不合格;
在显示参数仅包括线条宽长度分布的情况下,如果所述线条宽长度分布值小于预设线条宽长度分布值,则确定所述图像单元合格;如果所述线条宽长度分布值不小于预设线条宽长度分布值,则确定所述图像单元不合格。
本实施例质量检测方法对于分割的每个图像单元,获取图像单元中多晶硅薄膜的显示参数与预设参数对比结果后,可以根据对比结果可以确定图像单元是否合格,直到确定完所有的图像单元是否合格。
优选的,为了方便统计合格的图像单元的个数,本实施例质量检测方法,可以在确定图像单元是否合格之后,若所述图像单元合格,为所述图像单元设置标识,例如设置“OK”的标识;之后可以通过统计标识的数量以获取合格的图像单元的数量。进一步地,若所述图像单元不合格,也可以给为不合格的图像单元设置标识,例如设置“NG”的标识。如图4所示,为对薄膜图像中各图像单元确定是否合格之后的结果示意图。
步骤S305:根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
在获取合格的图像单元的数量之后,本实施例方法可以采用如下方式来确定多晶硅薄膜的质量:
1、直接将合格的图像单元的数量与预设数量对比的方式,具体为:
将合格的所述图像单元的数量与预设数量进行比较,所述预设数量为根据所述图像单元的总数量设定的数量;
当合格的所述图像单元的数量小于预设数量时,确定所述多晶硅薄膜的质量为不合格;
当合格的所述图像单元的数量大于或等于预设数量时,确定所述多晶硅薄膜的质量为合格。
例如,将薄膜图像分割成50个图像单元,设定薄膜质量合格时合格的图像单元数量为大于35;若检测到有40个合格的图像单元,由于40大于35,则确定所述多晶硅薄膜的质量为合格,若检测到有20各合格的图像单元,由于20小于35,则确定所述多晶硅薄膜的质量为不合格。
2、计算图像单元的合格率或者良率的方式,具体为:
根据合格的所述图像单元的数量和所述图像单元的总数量计算图像单元的合格率;
将所述合格率与预设合格率进行比较;
当所述合格率小于预设合格率时,确定所述多晶硅薄膜的质量为不合格;
当所述合格率大于或等于预设合格率时,确定所述多晶硅薄膜的质量为合格。
本实施例中,计算合格率的方式为:将合格图像单元的个数除以图像单元的总数量。
例如,将薄膜图像分割成100个图像单元,设定薄膜质量合格时图像单元最少为60%;若检测到有70个合格的图像单元,通过计算图像单元的合格率为70%,则确定所述多晶硅薄膜的质量为合格,若检测到有40个合格的图像单元,通过计算图像单元的合格率为40%,,则确定所述多晶硅薄膜的质量为不合格。
应当理解的是,虽然上述介绍的是采用合格图像单元的数量来确定薄膜的质量,然而,本实施例质量检测方法还可以采用不合格的图像单元的个数来确定薄膜的质量,例如在不合格的图像单元的个数小于预设数量时,则确定薄膜的质量为合格,若大于或等于,则确定薄膜的质量为不合格。
本实施例的质量检测方法不依赖于人为主观意识,可以由机器自动完成,例如利用计算机和拍摄设备来完成;与现有质量检测方法相比,提高了质量检测的准确性和效率,从而降低了成本。进一步,由于薄膜质量检测的准备性的提高,避免了将不良的薄膜应用到液晶显示面板中,提高了液晶显示面板的稳定性。
实施例二:
如图5所示,本实施例提供了一种多晶硅薄膜的质量检测系统,包括:拍摄装置501和处理器502;所述拍摄装置501包括:电荷耦合组件5011、光学镜头5012以及光源5013;
所述光源5013位于所述表面上形成有多晶硅薄膜的基板上方,用于向所述基板照射光;
所述光学镜头5012位于所述基板上方,用于收集视场内的光线,并将所述光线引入到所述电荷耦合组件5011,所述多晶硅薄膜包含在所述视场中;
所述电荷耦合组件5011,用于感应所述光线生成对应的图像,并将所述图像传输给所述处理器502;
所述处理器502,用于:
按照设定的尺寸将所述薄膜图像分割成多个图像单元;
获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果;
根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
优选地,为了能够拍摄更好的薄膜图像以进一步提高质量检测精确性,可以使本实施例中拍摄装置501的5012镜头与薄膜的基板呈5度到45度角,进而使得拍摄装置501可以在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄,以获取薄膜图像。同样也可以似的光源5013与薄膜的基板呈5度到45度角,进而使得光源可以在与所述基板呈5度到45度角的方向上对薄膜照射光。
本实施例中拍摄装置501可以为Mura影像检测系统,处理器502可以为计算机,二者通过有线或者无线的方式连接,用以传输薄膜图像信号。
本实施例的质量检测系统,可以自动对多晶硅薄膜进行质量检测,不依赖于人为主观意识,与现有质量检测方法相比,提高了质量检测的准确性和效率,从而降低了成本。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种多晶硅薄膜的质量检测方法,其包括如下步骤:
    向表面上形成有多晶硅薄膜的基板照射光,并在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄,以获得薄膜图像;
    按照设定的尺寸将所述薄膜图像分割成多个图像单元;
    获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果; 所述显示参数包括:亮度灰阶和/或线条宽长度分布;
    根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
    根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量;
    其中所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
    根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
    统计合格的所述图像的数量。
  2. 如权利要求1所述的质量检测方法,其特征在于,其中当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
    当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
    当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
  3. 一种多晶硅薄膜的质量检测方法,其包括如下步骤:
    向表面上形成有多晶硅薄膜的基板照射光,并对所述多晶硅薄膜进行拍摄,以获得薄膜图像;
    按照设定的尺寸将所述薄膜图像分割成多个图像单元;
    获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果;
    根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
    根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
  4. 如权利要求3所述的质量检测方法,其中所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
    根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
    统计合格的所述图像的数量。
  5. 如权利要求4所述的质量检测方法,其中所述显示参数包括:亮度灰阶和/或线条宽长度分布。
  6. 如权利要求5所述的质量检测方法,其中当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
    当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
    当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
  7. 如权利要求5所述的质量检测方法,其中当所述显示参数包括线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
    当所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
    当所述线条宽长度分布值不小于预设线条宽长度分布值时,确定所述图像单元不合格。
  8. 如权利要求3所述的质量检测方法,其中所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
    将合格的所述图像单元的数量与预设数量进行比较,所述预设数量为根据所述图像单元的总数量设定的数量;
    当合格的所述图像单元的数量小于预设数量时,确定所述多晶硅薄膜的质量为不合格;
    当合格的所述图像单元的数量大于或等于预设数量时,确定所述多晶硅薄膜的质量为合格。
  9. 如权利要求3所述的质量检测方法,其中所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
    根据合格的所述图像单元的数量和所述图像单元的总数量计算图像单元的合格率;
    将所述合格率与预设合格率进行比较;
    当所述合格率小于预设合格率时,确定所述多晶硅薄膜的质量为不合格;
    当所述合格率大于或等于预设合格率时,确定所述多晶硅薄膜的质量为合格。
  10. 如权利要求3所述的质量检测方法,其中所述对所述多晶硅薄膜进行拍摄的步骤包括:在与所述基板呈5度到45度角的方向上对所述多晶硅薄膜进行拍摄。
  11. 如权利要求10所述的质量检测方法,其中所述向表面上形成有多晶硅薄膜的基板照射光的步骤包括:
    在与表面上形成有多晶硅薄膜的基板呈5度到45度角的方向上向所述基板照射光。
  12. 一种多晶硅薄膜的质量检测系统,其包括:
    拍摄装置和处理器;
    所述拍摄装置包括:电荷耦合组件、光学镜头以及光源;
    所述光源位于所述表面上形成有多晶硅薄膜的基板上方,用于向所述基板照射光;
    所述光学镜头位于所述基板上方,用于收集视场内的光线,并将所述光线引入到所述电荷耦合组件,所述多晶硅薄膜包含在所述视场中;
    所述电荷耦合组件,用于感应所述光线生成对应的图像,并将所述图像传输给所述处理器;以及
    所述处理器,用于:
    按照设定的尺寸将所述薄膜图像分割成多个图像单元;
    获取所述图像单元中所述多晶硅薄膜的显示参数,并将所述显示参数与预设参数进行对比,以获取对比结果;
    根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果获取合格的所述图像单元的数量;
    根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量。
  13. 如权利要求12所述的质量检测系统,其中所述根据各所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的所述对比结果获取合格的所述图像单元的数量的步骤包括:
    根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格;
    统计合格的所述图像的数量。
  14. 如权利要求13所述的质量检测系统,其中所述显示参数包括:亮度灰阶和/或线条宽长度分布。
  15. 如权利要求14所述的质量检测系统,其中当所述显示参数包括亮度灰阶和线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
    当所述亮度灰阶值大于或等于预设亮度灰阶值,且所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
    当所述亮度阶值小于预设亮度灰阶值,或者所述线条宽长度分布值大于预设线条宽长度分布值时,确定所述图像单元不合格。
  16. 如权利要求14所述的质量检测系统,其中当所述显示参数包括线条宽长度分布时,所述根据所述图像单元中所述多晶硅薄膜的显示参数与所述预设参数的对比结果确定所述图像单元是否合格的步骤包括:
    当所述线条宽长度分布值小于预设线条宽长度分布值时,确定所述图像单元合格;
    当所述线条宽长度分布值不小于预设线条宽长度分布值时,确定所述图像单元不合格。
  17. 如权利要求12所述的质量检测系统,其中所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
    将合格的所述图像单元的数量与预设数量进行比较,所述预设数量为根据所述图像单元的总数量设定的数量;
    当合格的所述图像单元的数量小于预设数量时,确定所述多晶硅薄膜的质量为不合格;
    当合格的所述图像单元的数量大于或等于预设数量时,确定所述多晶硅薄膜的质量为合格。
  18. 如权利要求12所述的质量检测系统,其中所述根据合格的所述图像单元的数量和所述图像单元的总数量确定所述多晶硅薄膜的质量的步骤包括:
    根据合格的所述图像单元的数量和所述图像单元的总数量计算图像单元的合格率;
    将所述合格率与预设合格率进行比较;
    当所述合格率小于预设合格率时,确定所述多晶硅薄膜的质量为不合格;
    当所述合格率大于或等于预设合格率时,确定所述多晶硅薄膜的质量为合格。
  19. 如权利要求12所述的质量检测系统,其中所述光学镜头与所述多晶硅薄膜的基板呈5度到45度角。
  20. 如权利要求19所述的质量检测系统,其中所述光源与所述多晶硅薄膜的基板呈5度到45度角。
PCT/CN2015/084468 2015-07-13 2015-07-20 一种多晶硅薄膜的质量检测方法和系统 WO2017008320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510408380.7A CN105092473B (zh) 2015-07-13 2015-07-13 一种多晶硅薄膜的质量检测方法和系统
CN201510408380.7 2015-07-13

Publications (1)

Publication Number Publication Date
WO2017008320A1 true WO2017008320A1 (zh) 2017-01-19

Family

ID=54573391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084468 WO2017008320A1 (zh) 2015-07-13 2015-07-20 一种多晶硅薄膜的质量检测方法和系统

Country Status (2)

Country Link
CN (1) CN105092473B (zh)
WO (1) WO2017008320A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991082A (zh) * 2019-12-19 2020-04-10 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法
CN117437235A (zh) * 2023-12-21 2024-01-23 四川新康意众申新材料有限公司 基于图像处理的塑料薄膜质量检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706641B (zh) * 2016-12-30 2020-08-04 武汉华星光电技术有限公司 一种多晶硅薄膜的质量检测方法和系统
CN107421916B (zh) * 2017-05-02 2021-02-23 京东方科技集团股份有限公司 检测装置、工艺系统和检测方法
CN111398531B (zh) * 2020-04-07 2021-01-08 苏州鸿凌达电子科技有限公司 一种高效石墨烯膜鉴别系统及方法
CN111667094A (zh) * 2020-04-22 2020-09-15 深圳市吉迩科技有限公司 一种自动化检测方法、系统和装置
CN114742749B (zh) * 2022-02-27 2023-04-18 扬州盛强薄膜材料有限公司 基于图像处理的pvc薄膜质量检测方法
CN116754564A (zh) * 2023-07-27 2023-09-15 东莞市昌盛电子制品有限公司 一种不良品自动检测装置及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093246A (zh) * 2006-06-22 2007-12-26 上海理工大学 智能化发光二极管车灯照明质量在线检测系统
US20110142291A1 (en) * 2009-12-16 2011-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Processing Digital Image and Computer Readable Recording Medium
CN103556561A (zh) * 2013-10-24 2014-02-05 中联重科股份有限公司 一种用于路面离析检测的方法、系统及工程机械
CN103942791A (zh) * 2014-04-14 2014-07-23 立德高科(北京)数码科技有限责任公司 对特殊光谱防伪标识的印刷质量进行实时检测的方法
CN104359925A (zh) * 2014-11-17 2015-02-18 上海埃蒙特自动化系统有限公司 实现电子玻璃缺陷自动检测的系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161143B2 (ja) * 1998-12-17 2008-10-08 株式会社Ihi レーザ照明を用いた溶接部撮像装置
KR100503513B1 (ko) * 2003-01-08 2005-07-26 삼성전자주식회사 웨이퍼의 불량검출 장치 및 방법
JP4403904B2 (ja) * 2004-07-22 2010-01-27 株式会社Ihi 溶接部可視化方法及び装置
JP4345930B2 (ja) * 2005-01-28 2009-10-14 Ykk株式会社 物品の外観検査装置
JP4399494B2 (ja) * 2006-12-28 2010-01-13 シャープ株式会社 欠陥検出装置、欠陥検出方法、イメージセンサデバイスおよびイメージセンサモジュール
JP6177010B2 (ja) * 2013-06-03 2017-08-09 新電元工業株式会社 捺印シンボル検査方法、捺印シンボル検査装置、及び電子機器
CN104749184B (zh) * 2013-12-31 2018-08-21 研祥智能科技股份有限公司 自动光学检测方法和系统
CN104142349A (zh) * 2014-07-28 2014-11-12 云南省机械研究设计院 一种检测外包装透明薄膜热封缺陷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093246A (zh) * 2006-06-22 2007-12-26 上海理工大学 智能化发光二极管车灯照明质量在线检测系统
US20110142291A1 (en) * 2009-12-16 2011-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Processing Digital Image and Computer Readable Recording Medium
CN103556561A (zh) * 2013-10-24 2014-02-05 中联重科股份有限公司 一种用于路面离析检测的方法、系统及工程机械
CN103942791A (zh) * 2014-04-14 2014-07-23 立德高科(北京)数码科技有限责任公司 对特殊光谱防伪标识的印刷质量进行实时检测的方法
CN104359925A (zh) * 2014-11-17 2015-02-18 上海埃蒙特自动化系统有限公司 实现电子玻璃缺陷自动检测的系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991082A (zh) * 2019-12-19 2020-04-10 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法
CN110991082B (zh) * 2019-12-19 2023-11-28 信利(仁寿)高端显示科技有限公司 一种基于准分子激光退火的Mura的量化方法
CN117437235A (zh) * 2023-12-21 2024-01-23 四川新康意众申新材料有限公司 基于图像处理的塑料薄膜质量检测方法
CN117437235B (zh) * 2023-12-21 2024-03-12 四川新康意众申新材料有限公司 基于图像处理的塑料薄膜质量检测方法

Also Published As

Publication number Publication date
CN105092473B (zh) 2018-11-02
CN105092473A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017008320A1 (zh) 一种多晶硅薄膜的质量检测方法和系统
WO2018076757A1 (zh) 一种人体位置获取方法和装置
WO2017133274A1 (zh) 一种终端屏幕亮度调节方法、系统及终端
WO2017124792A1 (zh) 动态捕捉人脸摄像的方法、系统及移动终端
WO2013155749A1 (zh) 基板的检测方法和装置
WO2018090431A1 (zh) 画面亮度调整方法及画面亮度调整装置
WO2017000358A1 (zh) 液晶显示面板的Gamma调整方法及装置
WO2020062616A1 (zh) 显示面板的伽马值调节方法、装置及显示设备
WO2021201450A1 (en) Image projecting apparatus and controlling method thereof
WO2017181686A1 (zh) 一种移动终端视频通讯中画面角度自动修正方法及系统
WO2020085768A1 (en) Display apparatus and method for driving same
WO2018040444A1 (zh) 一种双摄像头拍照控制方法、拍照控制装置及终端
WO2016180246A1 (zh) 蓝宝石的激光加工方法、设备和存储介质
WO2017197664A1 (zh) 一种全景图像采集装置及采集方法
WO2017211054A1 (zh) 蓝牙智能手表、智能终端、及其spp远程控制拍照的方法和系统
WO2016167499A1 (ko) 촬영 장치 및 촬영 장치의 제어 방법
WO2015072604A1 (ko) 투명 디스플레이 장치와 그의 제어방법
WO2017201811A1 (zh) 一种液晶显示器的驱动方法及驱动装置
WO2020062615A1 (zh) 显示面板的伽马值调节方法、装置及显示设备
WO2020134967A1 (zh) 偏光片贴附检测方法、装置和显示装置
CN109923856A (zh) 补光控制装置、系统、方法以及移动设备
WO2019022551A1 (ko) 광학필름 결함 검출 장치 및 광학필름 결함 검출 방법
WO2020134963A1 (zh) 显示面板驱动方法、装置和可读存储介质
WO2009119983A2 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템
WO2016037347A1 (zh) 显示面板测试装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898047

Country of ref document: EP

Kind code of ref document: A1