WO2017006849A1 - 防汚性繊維構造物 - Google Patents

防汚性繊維構造物 Download PDF

Info

Publication number
WO2017006849A1
WO2017006849A1 PCT/JP2016/069600 JP2016069600W WO2017006849A1 WO 2017006849 A1 WO2017006849 A1 WO 2017006849A1 JP 2016069600 W JP2016069600 W JP 2016069600W WO 2017006849 A1 WO2017006849 A1 WO 2017006849A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
resin
antifouling
washing
fluorine
Prior art date
Application number
PCT/JP2016/069600
Other languages
English (en)
French (fr)
Inventor
大塚亜津希
小森晋也
柄澤留美
竹田恵司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680037431.2A priority Critical patent/CN107735525B/zh
Priority to ES16821318T priority patent/ES2943580T3/es
Priority to KR1020177033800A priority patent/KR20180022647A/ko
Priority to US15/736,049 priority patent/US10513820B2/en
Priority to MYPI2017704861A priority patent/MY182289A/en
Priority to EP16821318.9A priority patent/EP3321418B1/en
Priority to JP2016549526A priority patent/JPWO2017006849A1/ja
Publication of WO2017006849A1 publication Critical patent/WO2017006849A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0076Dyeing with mineral dye
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/01Stain or soil resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the present invention relates to a fiber structure having high antifouling properties.
  • Patent Document 1 proposes a processing method in which a fiber surface is coated with a hydrophilic resin, and a water- and oil-repellent resin layer having a hydrophilic group is formed on the hydrophilic resin.
  • Patent Document 2 proposes a processing method in which a film containing a fluorine-based water repellent having a hydrophilic segment to which a hydrophilic polymer is imparted by graft polymerization is formed on the surface of a fiber fabric.
  • Patent Document 3 proposes a processing method for forming a film in which a polymer composed of a triazine ring-containing polymerizable monomer and a fluorine-based water repellent having a hydrophilic component are mixed on the surface of a single fiber.
  • Patent Document 4 proposes a processing method of applying a fluorine-based water repellent to a fiber fabric using a non-block type water-dispersed isocyanate cross-linking agent. JP-A-9-3771 JP 2013-72165 A JP 2008-163475 A JP 2013-36136 A
  • Patent Document 4 has a problem that since it exhibits high water repellency, it has a tendency to reduce the affinity for the washing liquid during washing and to reduce dirt removal by washing.
  • an object of the present invention is to provide a fiber structure having high adhesion inhibitory properties against water-based soils and oily soils and soil-removing properties by washing at the same time.
  • the present invention has the following configuration. That is, A fiber structure in which a resin having antifouling property is fixed to at least a part of a fiber surface, and an area stained with osmium oxide observed by a transmission electron microscope (hereinafter, TEM) is at least one inside the resin. At least one of the regions is circular, the maximum diameter of the region is 100 nm or more and 500 nm or less, and oxygen atoms when the fiber surface is measured with an energy dispersive X-ray analyzer.
  • An antifouling fiber structure having a fluorine atom mass concentration ratio (O / F) of 3 or more.
  • the antifouling fiber structure of the present invention it is preferable that two or more of the regions exist inside the resin, and the individual dyed regions are separated and scattered.
  • a hydrophilic component and a hydrophobic component exist in the region.
  • the hydrophilic component is preferably polyethylene glycol.
  • the content of perfluorooctanoic acid (hereinafter sometimes referred to as PFOA) of the resin is less than the detection limit.
  • the resin contains a compound represented by the following general formula (I) as a polymerization component.
  • the dirt removing property of the dirt removing property test against the indentation stain of the fiber structure is grade 3 or more after 50 industrial washings.
  • the antifouling fiber structure of the present invention controls the ratio of the hydrophilic group and the fluorine group of the antifouling resin on the fiber surface, and the hydrophilic region is present in at least one part inside the antifouling resin. At least one of the regions has a resin structure having a circular shape with a maximum diameter of 100 nm or more and 500 nm or less, thereby suppressing the adhesion of oil stains that are difficult to remove to the fibers and compatibility with the washing liquid during washing. Therefore, it is possible to improve the soil removal property by washing, and the high soil removal property can reduce the washing time and the amount of detergent.
  • Example 2 is a TEM photograph of a fiber cross section obtained by cutting a single fiber used in the fiber structure obtained in Example 1 perpendicularly to the fiber longitudinal direction.
  • the TEM observation conditions were an acceleration voltage of 100 kV and a magnification of 8000 times.
  • the antifouling fiber structure of the present invention is a fiber structure in which a resin having antifouling properties is fixed to at least a part of the fiber surface, and a region dyed with osmium oxide observed by a TEM is a region of the resin. It exists in at least one part inside, and at least one of the regions is circular, and the maximum diameter of the region is 100 nm or more and 500 nm or less.
  • Osmium oxide stains the portion of the resin that contains hydrophilic components.
  • the region dyed with osmium oxide in the fiber structure of the present invention is formed by the hydrophilic component of the resin and exists in at least a part of the inside of the resin.
  • the hydrophilic component include polyethylene glycol and polypropylene glycol, and among them, polyethylene glycol is preferable.
  • an antifouling resin is fixed to the antifouling fiber structure of the present invention, and the term “adhesion” refers to a state where the resin is in contact with the fiber and attached or coated.
  • the dyeing area needs to be circular, and the circular represents a shape with no corners such as an ellipse, an egg, or a bowl. If it is not circular, the effect of the hydrophilic component cannot be sufficiently exhibited, and there is a problem that the stain-removing property at the time of washing deteriorates.
  • two or more dyeing regions exist in the resin from the viewpoint of ensuring a certain amount or more of the hydrophilic component and excellent antifouling property, and that a plurality of dyeing regions are dispersed is hydrophilic. From the viewpoint of maintaining the balance between the property and hydrophobicity, and improving the antifouling property after processing and washing durability.
  • a hydrophilic component and a hydrophobic component are present in the resin, and dyeing is performed on osmium oxide formed by the hydrophilic component.
  • the hydrophilic component can improve the affinity between the fiber and the cleaning liquid, and the hydrophobic (oil repellent) component can suppress the penetration of dirt into the fiber.
  • the maximum diameter of the region stained with osmium oxide in the resin observed by TEM is 100 nm or more and 500 nm or less.
  • the maximum diameter of the region dyed with osmium oxide exceeds 500 nm, the water repellency and oil repellency are lowered, and the dirt adhesion preventing property (SG property) that repels dirt is lowered.
  • the hydrophilic component region is excessively widened, the adhesion between the resin and the fiber is lowered, and the washing durability is also lowered.
  • the method for setting the maximum diameter in the above range is not particularly limited, but the antifouling fiber structure of the present invention can be obtained by adjusting the content of the hydrophilic component.
  • the antifouling fiber structure is immersed in 3% osmium oxide, dyed at room temperature (20 ° C.) for 3 days, washed with water and air-dried, and the sample is embedded with an epoxy resin.
  • the fibers are cut into a thickness of about 70 to 100 nm in a direction perpendicular to the longitudinal direction of the fibers.
  • the fiber is similarly cut into pieces after the sample is cooled.
  • the cut sample piece is observed using a TEM (transmission electron microscope).
  • the TEM observation conditions are an acceleration voltage of 100 kV and a magnification of 20000 times.
  • the resin preferably contains a hydrophobic component together with the hydrophilic component.
  • the hydrophobic component include fluorine resins, silicone resins, hydrocarbon resins and the like. Among these, fluorine resins are preferably used because of their high water repellency and oil repellency.
  • the perfluorooctanoic acid (PFOA) content is preferably less than the detection limit, and a fluorine-containing water repellent having 6 carbon atoms (hereinafter referred to as C6 fluorine-based water repellent) is preferably used.
  • the C6 fluorine-based water repellent is preferably CH 2 ⁇ C (CH 3 ) C ( ⁇ O) OCH 2 CH 2 (CF 2 ) 5 CF 3 .
  • a resin containing a hydrophilic component and a hydrophobic component by copolymerization is preferably used.
  • a fluorine-based water repellent in which a hydrophilic component is copolymerized is preferably used, and a resin having a low water repellency of a water repellent degree of 2 or less due to containing a hydrophilic group is preferably used.
  • the water repellency is 2nd grade or less, the affinity between the fiber and the cleaning liquid can be kept to a minimum, and the cleaning liquid can enter the fiber structure without being repelled during washing, contact with dirt, and high antifouling. Sex can be expressed.
  • the water repellency is a value evaluated by a spray method defined in JIS L 1092 “Test method for waterproofness of textile products” (2009). Moreover, water repellency can be made into 2nd grade or less by adjusting content of a hydrophilic group.
  • fluorinated water repellents containing hydrophilic components that are preferably used include “Paradin” (registered trademark) KFS-100 (manufactured by Keihin Kasei Co., Ltd.) and “Pararesin” (registered). (Trademark) NC-305 (manufactured by Ohara Palladium Co., Ltd.) and “Paragin” (registered trademark) KFS-150 (manufactured by Keihin Kasei Co., Ltd.).
  • the antifouling fiber structure of the present invention has a mass concentration ratio (O / F) of oxygen atom to fluorine atom of 3 or more when the fiber surface is measured with an energy dispersive X-ray analyzer.
  • O / F mass concentration ratio
  • the hydrophobic component increases, so that the water repellency of the fibers is improved and the affinity with the cleaning liquid is lowered. This makes it difficult for the cleaning liquid to come into contact with dirt, and the dirt removal property by washing is reduced.
  • the mass concentration ratio of oxygen atoms to fluorine atoms is preferably 3.1 to 5.0, more preferably 3.2 to 4.9, and particularly preferably 3.3 to 4.0.
  • the mass concentration is measured using an energy dispersive X-ray analyzer.
  • the fiber structure of the present invention was measured in a low vacuum mode (30 Pa), an acceleration potential of 15.0 kV, a probe current of 70 A, and a measurement magnification of 100 times, and the obtained mass concentrations of fluorine and oxygen atoms were used.
  • the ratio of the mass concentration of oxygen atoms and fluorine atoms is calculated.
  • the mass concentration ratio (O / F) of oxygen atoms and fluorine atoms the following equation was used.
  • O / F mass concentration of oxygen atoms (mass%) / mass concentration of fluorine atoms (mass%).
  • the antifouling fiber structure of the present invention exhibits excellent antifouling properties when the oil repellency measured by the method defined in AATCC TM-1966 and graded is 4 or more. Is preferable.
  • the upper limit of the oil repellency is preferably 7th grade, more preferably 6th grade.
  • the antifouling fiber structure of the present invention is “soil removal against indentation dirt” according to the C method using the lipophilic pollutant-3 component specified in JIS L 1919 (2006) “Soil removal test”. It is preferable that the soil removability when it is carried out in the “ability test” is grade 3 or higher after 50 industrial washings.
  • fiber material used in the antifouling fiber structure of the present invention examples include fibers made of polyethylene terephthalate, polypropylene phthalate, polybutylene terephthalate, etc., aromatic polyester fibers made by copolymerizing a third component thereof, L -Aliphatic polyester fibers represented by lactic acid as the main component, polyamide fibers such as nylon 6 and nylon 66, acrylic fibers based on polyacrylonitrile, polyolefin fibers such as polyethylene and polypropylene, poly Examples thereof include synthetic fibers such as vinyl chloride fibers, semi-synthetic fibers such as acetate and rayon, and natural fibers such as cotton, silk and wool.
  • these fibers can be used singly or as a mixture of two or more.
  • a fiber based on a polyester fiber or a polyamide fiber or a fiber based on a polyester fiber or a polyamide fiber.
  • Mixtures of natural fibers such as cotton, silk and wool are preferably used.
  • the fibers used in the antifouling fiber structure of the present invention are filament yarns such as false twisted yarns, strong twisted yarns, taslan processed yarns, nanofibers, thick yarns and mixed yarns in addition to ordinary flat yarns.
  • various forms of fibers such as staple fiber, tow and spun yarn can be used.
  • filament yarn is used.
  • the antifouling fiber structure of the present invention includes fabrics such as knitted fabrics, woven fabrics and nonwoven fabrics using the above-mentioned fibers, and string-like products.
  • fabrics such as knitted fabrics, woven fabrics and nonwoven fabrics using the above-mentioned fibers, and string-like products.
  • a knitted fabric, a woven fabric and a non-woven fabric are used.
  • a general processing agent may be applied to the fabric or string. Moreover, you may use the internally modified fiber as a raw material of an antifouling fiber structure.
  • the processing agent include 2-chloro-6-trichloromethylpyridine, 2-chloro-4-trichloromethyl-6-methoxypyridine, 2-chloro-4-trichloromethyl-6- (2-furylmethoxy) pyridine, di ( Pyridine series such as 4-chlorophenyl) pyridylmethanol, 2,3,5-trichloro-4- (n-propylsulfonyl) pyridine, 2-pyridylthiol-1-oxide zinc, di (2-pyridylthiol-1-oxide) Compounds can be used.
  • a fiber in which a resin other than an antifouling resin is attached as a material may be used.
  • a resin layer other than the antifouling resin is formed on the fiber, and the antifouling resin layer and the two resin layers formed thereafter are present on the fiber.
  • the resin other than the antifouling resin include silicone resins, polyester resins, isocyanate compounds, epoxy resins, melamine resins, guanamine resins, and bismaleimide triazine resins.
  • cross-linked modified fibers may be used, and the crosslinking agent used for the cross-linking modification may be a cause of hydroxyl groups in cellulose molecules constituting cellulosic fibers, especially wrinkles during washing, loss of shape, and shrinkage.
  • a compound capable of reacting with a hydroxyl group in the amorphous region to form a crosslinked structure between cellulose molecules and within the molecule is preferably used.
  • fixing of the resin to the fiber structure can be achieved by treating the fiber structure with a liquid containing an antifouling resin.
  • a specific treatment method after immersing the fiber structure in a treatment solution containing an antifouling resin, the fiber structure is squeezed at a constant pressure in a spread state, preferably dried at a temperature of 80 to 140 ° C., and then preferably Pad dry cure method in which heat treatment is performed at a temperature of 160 to 200 ° C., pad cure method in which drying is performed at a temperature of 160 to 200 ° C., pad steam method in which steam heat treatment is performed at a temperature of 80 to 110 ° C., or the above An in-bath method for raising the temperature to 30 to 130 ° C. in a state where the fiber structure is immersed in a treatment liquid containing a fluorine compound is used.
  • the ratio of the hydrophilic component containing oxygen and the hydrophobic component containing fluorine is optimized in the resin fixed to the fiber surface. By doing so, it is effective to achieve both the resistance to dirt and the ease of removal.
  • the hydrophilic component can improve the affinity between the fiber and the cleaning liquid, and the hydrophobic component can suppress the penetration of dirt into the fiber.
  • a hydrophilic component and a hydrophobic component are contained.
  • a resin obtained by copolymerizing polyethylene glycol and a fluorine compound is preferably used.
  • a silicone resin, a polyester resin, an isocyanate compound, an epoxy resin, and the like can be used in combination in the liquid.
  • a triazine ring-containing resin as the resin to be used in combination.
  • the triazine ring-containing resin include melamine resin, guanamine resin, and bismaleimide triazine resin, and melamine resin is particularly preferably used.
  • the triazine ring-containing resin means a resin having a triazine ring-containing compound as a polymerization component, and the triazine ring-containing compound is a compound containing a triazine ring and having at least two polymerizable functional groups.
  • Examples include triazine ring-containing compounds represented by the general formula.
  • the formation method of the triazine ring-containing resin is as follows. After providing the above-mentioned triazine ring-containing compound and an aqueous liquid composed of a catalyst on the fiber, heat treatment is carried out for polymerization.
  • the catalyst used examples include acids such as acetic acid, formic acid, acrylic acid, malic acid, tartaric acid, maleic acid, phthalic acid, sulfuric acid, persulfuric acid, hydrochloric acid and phosphoric acid, and ammonium salts, sodium salts, potassium salts thereof, and A magnesium salt etc. are mentioned and 1 or more types of these can be used. Among these, ammonium persulfate and potassium persulfate are preferably used as the catalyst.
  • the amount of the catalyst is preferably 0.1 to 20% by mass based on the amount of the monomer used.
  • the heat treatment for such polymerization is preferably dry heat treatment and steam heat treatment at a temperature of 50 to 180 ° C. for 0.1 to 30 minutes, but the steam heat treatment is more uniform on the surface of the single fiber. It is easy to form a film, and the texture after film formation is flexible.
  • saturated steam or superheated steam at 80 to 160 ° C. is preferably used, more preferably 90 to 130 ° C. saturated steam, or 110 to 160 ° C. of saturated steam. It is superheated steam, and both perform processing for several seconds to several minutes.
  • the adhesion amount of the triazine ring-containing resin is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass with respect to the fiber mass.
  • the layer is obtained by performing the same treatment as described above using a mixed solution of the triazine ring-containing resin and the fluorine-containing resin.
  • the mixing mass ratio of the fluororesin and the triazine ring-containing resin is preferably 1 / 0.001 to 1.
  • the antifouling fiber structure of the present invention By attaching an antifouling resin to the fiber surface, the antifouling fiber structure of the present invention can be obtained, but in order to have both high dirt removal property and washing durability, the amount of resin adhering is controlled. It is preferable. Specifically, the fixing rate per fiber weight of the antifouling resin is preferably 0.6 to 1.0%, more preferably 0.7 to 0.9% in terms of solid content. Thus, if it is a preferable range, stain removal performance can be fully expressed and there is no possibility that a texture will harden.
  • the antifouling fiber structure of the present invention is suitable for use as general clothing, work uniforms, bedding, medical clothing, interior goods, industrial materials, etc. in order to exhibit dirt removal performance and washing durability by washing. It is done. Among them, it is suitably used as a work uniform that easily adheres to oil stains that are difficult to be washed off and has a need for antifouling performance.
  • the antifouling fiber structure of the present invention can shorten the washing time and the amount of detergent due to the high stain removability. Washing time in which the MA value of the washing process is 5 (with NA-F50Z8 made by National) when the home washing based on JIS L 0217 103 is performed and the MA value (physical power) is 15 only in the washing process. Washing machine (Asahi Seisakusho Co., Ltd.) with a MA value (physical power) of 51 even in the case of industrial laundry, even when it is shortened to 1 minute 30 seconds).
  • Grade 3 or higher is expressed in the indentation dirt antifouling test.
  • the amount of greenhouse gas reduction per 57 washings of one piece of clothing (440g) using anti-stain fiber structures is 0.44kgCO 2 -eq compared to unprocessed products, compared to unprocessed products. 0.21 kg CO 2 -eq.
  • the antifouling fiber structure of the present invention will be described based on examples.
  • Various measurement evaluations in the examples are as follows.
  • the antifouling fiber structure was immersed in 3% osmium oxide, dyed at room temperature (20 ° C.) for 3 days, washed with water and air dried, and the sample was embedded with an epoxy resin. Thereafter, using a microtome, the fiber was cut into a thickness of about 70 to 100 nm in a direction perpendicular to the fiber length.
  • the cut specimen was observed using a TEM (transmission electron microscope) H-7100FA (manufactured by Hitachi, Ltd.).
  • the TEM observation conditions were an acceleration voltage of 100 kV and a magnification of 8000 times.
  • Judgment criteria are determined by a judgment photograph attached to AATCC TM-1966.
  • n was the average of three evaluations. (Dirt removal) After the fiber structure obtained in each example etc. was washed 50 times under the industrial washing conditions described later, it is defined in the C method of JIS L 1919 “Testing method for antifouling properties of textile products” (2006). The dirt removal property was evaluated by a stain detachability test with a drop wiping method test, and the grade was determined for the stain removal property. The antifouling grade is determined visually using a gray scale for JIS contamination color. There are grades 1 to 5, and the larger the value, the higher the antifouling property.
  • a PET film was placed on a square filter paper, and a fabric cut into 8 cm ⁇ 8 cm was placed thereon. 0.1 mL of oily soil was dropped from a height of 10 cm and left for 30 seconds.
  • a PET film cut to the same size as the fabric was placed on the contaminated fabric, and a load of 100 g was applied for 30 seconds from the top.
  • a circular filter paper was placed on the filter paper, and the dirt was absorbed by the weight of the filter paper. Further, the position of the filter paper was shifted, and the dirt was blotted again at the portion where the filter paper was not dirty. This operation was repeated until the filter paper did not absorb dirt.
  • both ends of the filter paper were held, and the filter paper and dirt were brought into contact with each other and sucked so as not to apply a load as much as possible. Then, it was left for 24 hours under conditions of a temperature of 20 ° C.
  • the SR sex grade was determined by naked eye determination using a gray scale for JIS L 0805 contamination color. There are grades 1 to 5, and the larger the value, the higher the antifouling property. Table 1 shows the equipment used in the above tests.
  • Tumble dry 80 ° C or less
  • Antimicrobial test method The test method was a unified test method, and MRSA clinical isolates were used as test cells.
  • a bouillon suspension of the above-mentioned test bacteria is poured into a sterilized sample cloth, the number of viable bacteria after 18 hours of culture in a sealed container is measured, the number of bacteria relative to the number of bacteria is obtained, According to the standards.
  • Log (B / A)> 1.5 was defined as the difference in the number of bacteria increased / decreased, and 2.2 or higher was determined as the acceptable level. In the examples, the acceptable product was judged as “good” and the rejected product was judged as “failure”.
  • A represents the number of bacteria dispersed and recovered immediately after inoculation of the unprocessed product
  • B represents the number of bacteria dispersed and recovered after 18 hours of incubation of the unprocessed product
  • C represents the number of bacteria dispersed and recovered after 18 hours of incubation of the processed product.
  • the MA value is the total number of loose threads at the edges of the five holes, washed with MA test cloth using a 25cm x 25cm plain woven cotton cloth with five round holes 35mm in diameter at the center and four corners of the cloth. was measured to obtain an MA value. (Greenhouse gas reduction due to reduced washing time) During the soil removability test, the washing time at which the soil removability was grade 4 or higher was measured. Assuming that the power consumption per hour of the washing machine is 470 Wh, and assuming that the power consumption during 28 minutes of washing (washing, rinsing, dehydration) is constant, the washing time when the stain removal performance is 4th or higher From this, the power consumption was estimated.
  • Greenhouse gas emissions were calculated from the estimated power consumption using the LCA support software MiLCA database (TEPCO), and the difference from the unprocessed product was taken as the greenhouse gas reduction. (Greenhouse gas reduction by reducing the amount of detergent) During the soil removability test, the washing time at which the soil removability was grade 4 or higher was measured.
  • Example 1 The total fineness of polyethylene terephthalate was 84 dtex, and a 72-filament false twisted yarn was used for warp and weft yarns to weave twill fabrics.
  • the obtained twill fabric was refined at a temperature of 95 ° C. by a continuous refining machine according to a conventional method, washed with hot water, and then dried at a temperature of 130 ° C. Subsequently, using a liquid dyeing machine, the color was fluorescent white at a temperature of 130 ° C., washed by a conventional method, washed with hot water and dried, and heated at a temperature of 170 ° C. to produce a white fabric.
  • Catalyst solid content 35% Prepare a treatment solution by dissolving 0.5 g / L, immerse the white fabric produced above in this and squeeze it with a mangle to a squeeze rate of 90%, and dry at a temperature of 130 ° C. Thereafter, heat treatment was performed at a temperature of 170 ° C.
  • the stain resistance of the obtained antifouling fiber structure after the industrial washing 50 times was 4-5 according to the gray scale judgment for contamination.
  • Example 2 In Example 1, in place of parazine KFS-122 as a fluororesin, a fluoroalkyl group containing a fluorovinyl monomer having 6 or less carbon atoms and a polyalkylene glycol-containing hydrophilic vinyl monomer as polymerization components (B) pararesin "(Registered trademark) NC-305 (produced by Ohara Palladium Co., Ltd., fluorine resin, solid content: 10%) was used in the same manner as in Example 1 to obtain an antifouling fiber structure.
  • B pararesin "(Registered trademark) NC-305 (produced by Ohara Palladium Co., Ltd., fluorine resin, solid content: 10%) was used in the same manner as in Example 1 to obtain an antifouling fiber structure.
  • Fluorine compound The area of polyethylene glycol forming a plurality of circular dyed areas having a maximum diameter of 100 nm or more and 500 nm or less contained in the above is confirmed. As a result of the determination of the gray scale for contamination, it was graded 3-4, based on the same principle as in Example 1. (Example 3) In Example 1, (C) parazine KFS-150 (produced by Keihin Kasei Co., Ltd., fluororesin, solid) containing perfluorooctyl methacrylate and polyethylene glycol as polymerization components instead of parazine KFS-122 as a fluororesin. An antifouling fiber structure was obtained in the same manner as in Example 1 except that 10%) was used.
  • Example 4 The total fineness of polyethylene terephthalate was 84 dtex, and a 72-filament false twisted yarn was used for warp and weft yarns to weave twill fabrics.
  • fluororesin perfluorooctyl methacrylate and polyethylene glycol are contained as fluororesin.
  • A Parazine KFS-100 (Keihin Kasei Co., Ltd., fluororesin, solid content 10%) 60 g / L and
  • L “Beckamine” (Registered Trademark) M-3 (Dainippon Ink Co., Ltd., triazine ring-containing compound: solid content 80%) 3.0 g / L
  • M Catalyst ACX (Dainippon Ink Chemical Co., Ltd.
  • Catalyst Solid content 35%) Dissolve 0.5 g / L to prepare a treatment solution, immerse the white fabric produced above in this, squeeze with a mangle to a squeeze rate of 90%, and dry at a temperature of 130 ° C. Thereafter, heat treatment was performed at a temperature of 170 ° C. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4-5 as determined by the gray scale for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Example 5 The total fineness of polyethylene terephthalate was 84 dtex, and a 72-filament false twisted yarn was used for warp and weft yarns to weave twill fabrics.
  • the obtained twill fabric was refined at a temperature of 95 ° C. by a continuous refining machine according to a conventional method, washed with hot water, and then dried at a temperature of 130 ° C. Subsequently, using a liquid dyeing machine, the color was fluorescent white at a temperature of 130 ° C., washed by a conventional method, washed with hot water and dried, and heated at a temperature of 170 ° C. to produce a white fabric.
  • perfluorooctyl methacrylate and polyethylene glycol are included as fluorine compounds.
  • M Catalyst ACX (Dainippon Ink and Chemicals Co., Ltd., catalyst solid content 35) %) 0.5 g / L was dissolved to prepare a treatment solution, and the fabric was immersed in the solution, drawn with a mangle to a drawing rate of 90%, dried at a temperature of 130 ° C., and then 170 ° C.
  • Example 6 Twill fabric is made by using 34th double yarn consisting of 80% polyethylene terephthalate and 20% cotton for warp yarn, total fineness of polyethylene terephthalate is 84 dtex, and 72-filament false twist yarn for weft yarn.
  • An antifouling fiber structure was obtained in the same manner as in Example 1 except that a white fabric obtained by dyeing the obtained twill fabric by a normal dyeing process was used. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Twill fabric is made by using 34th double yarn consisting of 80% polyethylene terephthalate and 20% cotton for warp yarn, total fineness of polyethylene terephthalate is 84 dtex, and 72-filament false twist yarn for weft yarn. Weaved.
  • An antifouling fiber structure was obtained in the same manner as in Example 4 except that a white fabric obtained by dyeing the obtained twill fabric by a normal dyeing process was used.
  • Example 8 Twill fabric is made by using 34th double yarn consisting of 80% polyethylene terephthalate and 20% cotton for warp yarn, total fineness of polyethylene terephthalate is 84 dtex, and 72-filament false twist yarn for weft yarn. Weaving gave an antifouling fiber structure.
  • Example 5 The same procedure as in Example 5 was performed except that a white fabric obtained by dyeing the obtained twill fabric by a normal dyeing process was used. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Example 9 Twill fabric is made by using 34th double yarn consisting of 80% polyethylene terephthalate and 20% cotton for warp yarn, total fineness of polyethylene terephthalate is 84 dtex, and 72-filament false twist yarn for weft yarn. Weaved. The obtained twill fabric was dyed by a normal dyeing process to produce a white fabric.
  • (R) dimethylol dihydroxyethylene urea resin aqueous solution (solid content 20%) 100 g / L as a crosslinking agent and (S) magnesium chloride 20 g / L as a catalyst were diluted to prepare a treatment solution.
  • the produced white fabric was dipped and drawn using a mangle to a drawing rate of 90%, dried at a temperature of 100 ° C., and then heat-treated at a temperature of 170 ° C.
  • Beccamin (registered trademark) M-3 (manufactured by Dainippon Ink Co., Ltd., triazine ring-containing compound: solid content 80%) 3.0 g / L
  • Catalyst ACX manufactured by Dainippon Ink & Chemicals, Inc.
  • Catalyst solid content 35%) 0.5 g / L was dissolved to prepare a treatment liquid, the fabric was immersed in this, the mungle was used to squeeze to a squeeze rate of 90%, and dried at a temperature of 130 ° C. Thereafter, heat treatment was performed at a temperature of 170 ° C.
  • Example 10 A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4-5 as determined by the gray scale for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability. (Example 10) A plain woven fabric was woven using a 34th yarn consisting of 65% polyethylene terephthalate and 35% cotton for warp and weft.
  • An antifouling fiber structure was obtained in the same manner as in Example 1 except that a white fabric obtained by dyeing the obtained plain woven fabric by a normal dyeing process was used. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 3 by the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Example 11 A plain woven fabric was woven using a 34th yarn consisting of 65% polyethylene terephthalate and 35% cotton for warp and weft.
  • An antifouling fiber structure was obtained in the same manner as in Example 4 except that a white fabric obtained by dyeing the obtained plain woven fabric by a normal dyeing process was used.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 3 by the gray scale judgment for contamination.
  • Example 12 A plain woven fabric was woven using a 34th yarn consisting of 65% polyethylene terephthalate and 35% cotton for warp and weft.
  • An antifouling fiber structure was obtained in the same manner as in Example 5 except that a white fabric obtained by dyeing the obtained plain woven fabric by a normal dyeing process was used.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 3 by the gray scale judgment for contamination.
  • Example 13 A plain woven fabric was woven using a 34th double yarn consisting of 65% by weight of polyethylene terephthalate and 35% by weight of cotton as warp and weft. An antifouling fiber structure was obtained in the same manner as in Example 9, except that a white fabric obtained by dyeing the obtained plain woven fabric by a normal dyeing process was used.
  • Example 14 A plain woven fabric was woven using a 34th double yarn consisting of 65% by weight of polyethylene terephthalate and 35% by weight of cotton as warp and weft. The obtained plain fabric was dyed by a normal dyeing process to produce a white fabric.
  • Example 15 A surge fabric was woven using a 40th double yarn consisting of 80% by weight of polyethylene terephthalate and 20% by weight of wool as warp and weft.
  • An antifouling fiber structure was obtained in the same manner as in Example 1 except that a white fabric obtained by dyeing the obtained surge fabric by a normal dyeing process was used. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Example 16 A surge fabric was woven using a 40th double yarn consisting of 80% by weight of polyethylene terephthalate and 20% by weight of wool as warp and weft.
  • An antifouling fiber structure was obtained in the same manner as in Example 4 except that a white fabric obtained by dyeing the obtained surge fabric by a normal dyeing process was used.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination.
  • Example 17 A surge fabric was woven using a 40th double yarn consisting of 80% by weight of polyethylene terephthalate and 20% by weight of wool as warp and weft. An antifouling fiber structure was obtained in the same manner as in Example 5 except that a white fabric obtained by dyeing the obtained surge fabric from a normal dyeing process was used.
  • Example 18 A satin knitted fabric was knitted using 36 filament processed yarn having a total fineness of 44 dtex made of nylon. An antifouling fiber structure was obtained in the same manner as in Example 1 except that a white fabric obtained by dyeing the obtained satin knitted fabric by a normal dyeing process was used.
  • Example 19 A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability. (Example 19) A 50d nylon processed yarn was supplied with 20d spandex and false twisted, and a knitted knitted fabric was knitted with a yarn using 50% S twist and 50% Z twist.
  • An antifouling fiber structure was obtained in the same manner as in Example 1 except that a white fabric obtained by dyeing the obtained woven knit fabric by a normal dyeing process was used. A region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4 in the gray scale judgment for contamination. From the same principle as in Example 1, it was possible to have both high dirt removal performance and washing durability.
  • Example 20 A plain woven fabric was woven using spun yarn having a total fineness of 41st for polyethylene and terephthalate as warp and weft.
  • the obtained twill fabric was refined at a temperature of 95 ° C. by a continuous refining machine according to a conventional method, washed with hot water, and then dried at a temperature of 130 ° C. Subsequently, using a liquid dyeing machine, the color was fluorescent white at a temperature of 130 ° C., washed by a conventional method, washed with hot water and dried, and heated at a temperature of 170 ° C. to produce a white fabric.
  • triazine ring-containing compound solid content 80%) 3.0 g / L, (N) 3.0 g / L ammonium persulfate was dissolved to prepare a treatment solution,
  • the white fabric produced above is immersed in this and squeezed with a mangle to a squeeze rate of 90%, treated in a saturated steam state at a temperature of 100 ° C., dried at a temperature of 130 ° C., and then 170 Heat treatment was performed at a temperature of ° C.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times
  • the removability was grade 4-5 as determined by the gray scale for contamination.
  • the area of polyethylene glycol that forms a circular dyed area with a maximum diameter of 100 nm or more and 500 nm or less contained in the fluorine-based compound repels dirt due to the fluorine-based compound adhering to the fiber, and has an affinity for the washing liquid during washing.
  • Example 21 A plain woven fabric was woven using a 34th yarn consisting of 65% polyethylene terephthalate and 35% cotton for warp and weft. The obtained plain fabric was dyed by a normal dyeing process to produce a white fabric.
  • triazine ring-containing compound solid content 80%) 3.0 g / L, (N) 3.0 g / L ammonium persulfate was dissolved to prepare a treatment solution,
  • the white fabric produced above is immersed in this and squeezed with a mangle to a squeeze rate of 90%, treated in a saturated steam state at a temperature of 100 ° C., dried at a temperature of 130 ° C., and then 170 Heat treatment was performed at a temperature of ° C.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times
  • the removability was grade 4-5 as determined by the gray scale for contamination.
  • the area of polyethylene glycol that forms a circular dyed area with a maximum diameter of 100 nm or more and 500 nm or less contained in the fluorine-based compound repels dirt due to the fluorine-based compound adhering to the fiber, and has an affinity for the washing liquid during washing.
  • Example 22 A plain woven fabric was woven using spun yarn having a total fineness of 41st for polyethylene and terephthalate as warp and weft. The obtained twill fabric was refined at a temperature of 95 ° C. by a continuous refining machine according to a conventional method, washed with hot water, and then dried at a temperature of 130 ° C. Subsequently, using a liquid dyeing machine, the color was fluorescent white at a temperature of 130 ° C., washed by a conventional method, washed with hot water and dried, and heated at a temperature of 170 ° C. to produce a white fabric.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4-5 as determined by the gray scale for contamination.
  • the area of polyethylene glycol that forms a circular dyed area with a maximum diameter of 100 nm or more and 500 nm or less contained in the fluorine-based compound repels dirt due to the fluorine-based compound adhering to the fiber, and has an affinity for the washing liquid during washing.
  • Example 23 A plain woven fabric was woven using a 34th yarn consisting of 65% polyethylene terephthalate and 35% cotton for warp and weft. The obtained plain fabric was dyed by a normal dyeing process to produce a white fabric.
  • a region of polyethylene glycol forming a plurality of circular dyed regions having a maximum diameter of 100 nm or more and 500 nm or less contained in a fluorine-based compound was confirmed, and the resulting antifouling fiber structure was soiled by pressing after industrial washing 50 times The removability was grade 4-5 as determined by the gray scale for contamination.
  • the area of polyethylene glycol that forms a circular dyed area with a maximum diameter of 100 nm or more and 500 nm or less contained in the fluorine-based compound repels dirt due to the fluorine-based compound adhering to the fiber, and has an affinity for the washing liquid during washing.
  • the indentation method soil-removability after 50 times of industrial washing of the obtained fiber structure was 2-3 in the gray scale judgment for contamination.
  • the fluororesin adhering to the fiber repels dirt
  • the dyeing area of polyethylene glycol contained in the fluororesin is less than 100 nm, so the affinity with the washing liquid at the time of washing is low, and satisfactory stain removability is It was not obtained.
  • the fluororesin adhering to the fiber repels dirt
  • the dyeing area of polyethylene glycol contained in the fluororesin is less than 100 nm, so the affinity with the washing liquid at the time of washing is low, and satisfactory stain removability is It was not obtained.
  • (R) dimethylol dihydroxyethylene urea resin aqueous solution (solid content 20%) 100 g / L as a cross-linking agent and (S) magnesium chloride 20 g / L as a catalyst are diluted to prepare a treatment solution, which is manufactured as described above.
  • the white fabric thus obtained was immersed and drawn using a mangle so that the drawing rate was 90%, dried at a temperature of 100 ° C., and then heat-treated at a temperature of 170 ° C.
  • the indentation method soil removability after 50 times of industrial washing of the obtained fiber structure was ranked first in the gray scale determination for contamination. Since no fluorine-based resin was adhered on the fiber, satisfactory stain removability was not obtained without repelling the stain.
  • Tables 3, 4 and 5 show the results of the performance and the like of the fiber structures obtained in Examples 1 to 23 and Comparative Examples 1 to 11 described above.
  • the () indication of the water repellency described in Table 4 indicates that the back surface of the test cloth is wet.
  • Example 1 to 23 which are the fiber structures of the present invention, the maximum diameter of the hydrophilic component is 100 to 500 nm, whereas the stain removal property against indentation dirt is excellent.
  • Comparative Examples 1 to 11 which are different from the antifouling fiber structure of the present invention, the maximum diameter of the dyed region due to the hydrophilic component is less than 100 nm, and the stain removability against indentation dirt is inferior to that of the Examples. ing.
  • the antifouling fiber structure of the present invention has a high adhesion inhibitory property against water-based and oily soils and a soil-removing property by washing at the same time. Therefore, general clothing, work uniforms, bedding, medical clothing, and interior products And it is suitably used as industrial materials. Among them, it is suitably used as a work uniform that easily adheres to oil stains that are difficult to be washed off and has a need for antifouling performance.
  • Fiber 2 Dyeing phase with osmium oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Multicomponent Fibers (AREA)

Abstract

繊維表面の少なくとも1部に防汚性を有する樹脂が固着した繊維構造物であって、透過電子顕微鏡により観察される酸化オスミウムに染色された領域が該樹脂の内部の少なくとも1部に存在し、該領域の少なくとも1つは、円形であり、該領域の最大径は100nm以上、500nm以下であり、さらに繊維表面をエネルギー分散型X線分析装置で測定した際の酸素原子とフッ素原子の質量濃度比(O/F)が3以上である防汚性繊維構造物。 水性汚れと油性汚れに対して高い付着抑制性と洗濯による洗濯による汚れ除去性を有する繊維構造物を提供する。

Description

防汚性繊維構造物
 本発明は、高い防汚性を有する繊維構造物に関するものである。
 従来から、織編物等布帛の繊維構造物の防汚性を改善する要求は高く、その防汚性を改善する方法が種々提案されている。一般に、繊維構造物に防汚性を付与する方法としては、繊維構造物に親水性樹脂を付与して洗浄液との親和性を上げて汚れを落とし易くする加工方法や、繊維構造物に撥水撥油樹脂を付与して繊維への汚れの付着を抑制する加工技術が検討されている。
 しかしながら、繊維構造物に親水性樹脂を付与する場合、水系汚れが付着するとそれが大きく拡がり易くなるという課題がある。また、繊維構造物に撥水撥油性樹脂を付与する場合では、撥水性により洗浄液との親和性が低下するため、一旦汚れが付着した場合に洗濯除去がされにくく、再汚染などが起こりやすいという課題がある。
 このような課題に対して、汚れの付きにくさや落とし易さの両方の性能を満足させるために、親水基を含有した撥水撥油樹脂の繊維への付与が検討されている。
 特許文献1には、繊維表面を親水性樹脂で被覆し、その親水性樹脂の上に親水基を有する撥水撥油樹脂の層を形成する加工方法が提案されている。
 特許文献2には、グラフト重合により親水性ポリマーを付与した親水性セグメントを有するフッ素系撥水剤を含む被膜を、繊維布帛表面に形成する加工方法が提案されている。
 特許文献3には、単繊維表面に、トリアジン環含有重合性単量体からなる重合体と親水性成分を有するフッ素系撥水剤の混合された被膜を形成する加工方法が提案されている。
 また、特許文献4には、非ブロックタイプの水分散型イソシアネート架橋剤を用いてフッ素系撥水剤を繊維布帛に付与する加工方法が提案されている。
特開平9-3771号公報 特開2013-72165号公報 特開2008-163475号公報 特開2013-36136号公報
 しかしながら、特許文献1や、特許文献2に提案された加工方法では、繊維表面に親水性樹脂を被覆していることから、一旦水系汚れ付着してしまうと汚れが拡散しやすくなるという問題がある。
 また、特許文献3に提案された加工方法では、トリアジン環含有重合性単量体からなる重合体を多量に使用していることから、親水性成分を有するフッ素系撥水剤の成分がトリアジン環含有重合性単量体からなる重合体に埋もれてしまい、撥水性および撥油性を発現できないことや、ホルムアルデヒドが発生することによる人体への影響が懸念されるという問題がある。
 また、特許文献4に提案された加工方法では、高い撥水性を発現するため、洗濯時の洗浄液との親和性を低下させ、洗濯による汚れ除去性を低下させる傾向があるという問題がある。
 そこで本発明の課題は、上記従来技術の問題点に鑑み、水性汚れと油性汚れに対して高い付着抑制性と洗濯による汚れ除去性を同時に有する繊維構造物を提供することにある。
 本発明は、上記課題を解決するために、次の構成を有する。すなわち、
 繊維表面の少なくとも1部に防汚性を有する樹脂が固着した繊維構造物であって、透過電子顕微鏡(以下、TEM)により観察される酸化オスミウムに染色された領域が該樹脂の内部の少なくとも1部に存在し、該領域の少なくとも1つは、円形であり、該領域の最大径は100nm以上、500nm以下であり、さらに繊維表面をエネルギー分散型X線分析装置で測定した際の酸素原子とフッ素原子の質量濃度比(O/F)が3以上である防汚性繊維構造物、である。
 また、本発明の防汚性繊維構造物は、該領域が樹脂内部に2つ以上存在し、染色領域個々が離れ、散在していることが好ましい。
 また、本発明の防汚性繊維構造物は、該領域に親水性成分と疎水性成分とが存在していることが好ましい。
 また、本発明の防汚性繊維構造物は、該親水性成分が、ポリエチレングリコールであることが好ましい。
 また、本発明の防汚性繊維構造物は、該樹脂のパーフルオロオクタン酸(以下、PFOAということがある)含有量が検出限界未満であることが好ましい。
 また、本発明の防汚性繊維構造物は、該樹脂が、下記一般式(I)で示される化合物を重合成分として含むことが好ましい。
 CH=C(CH)C(=O)OCHCH(CFCF   (I)
 本発明の防汚性繊維構造物は、繊維構造物の押し込み汚れに対する汚れ除去性試験の汚れ除去性が工業洗濯50回後で3級以上であることが好ましい。
 本発明によれば、高い防汚性を有する繊維構造物を安定に供給することができる。
 本発明の防汚性繊維構造物は、繊維表面の防汚性樹脂の親水基とフッ素基の割合を制御し、防汚性樹脂内部に親水性領域が少なくとも1部に存在し、該親水性領域の少なくとも1つは、最大径100nm以上、500nm以下の円形である樹脂構造にすることにより、洗濯除去が困難な油汚れの繊維への付着を抑制すると共に、洗濯時の洗浄液との親和性を高めるため、洗濯による汚れ除去性を向上することができ、高い汚れ除去性により洗濯時間の短縮や洗剤量の低減が可能となる。
 また、繊維表面の防汚性樹脂を湿熱処理により付着させることで樹脂付着時のマイグレーションが起きにくくなり、複雑な構造を持つ繊維構造物に対しても高い汚れ除去性を付与することが可能となる。
実施例1により得られた繊維構造物に用いられる単繊維について、繊維長手方向に対し垂直に輪切りにした繊維断面のTEM写真である。TEMの観察条件は、加速電圧100kV、倍率8000倍とした。
 本発明の防汚性繊維構造物は、繊維表面の少なくとも1部に防汚性を有する樹脂が固着した繊維構造物であって、TEMにより観察される酸化オスミウムに染色された領域が該樹脂の内部の少なくとも1部に存在し、該領域の少なくとも1つは、円形であり、該領域の最大径は100nm以上、500nm以下である。
 酸化オスミウムは樹脂中、親水性成分が含有される部分を染色する。本発明の繊維構造物において酸化オスミウムに染色された領域は、樹脂の親水性成分により形成され、樹脂の内部の少なくとも1部に存在する。親水性成分としては、ポリエチレングリコール、ポリプロピレングリコール等が挙げられるが、中でもポリエチレングリコールが好ましい。
 本発明の防汚性繊維構造物には防汚性樹脂が固着してなるが、固着とは、樹脂が繊維と接し、付着または被膜している状態を表す。
 染色領域は円形であることが必要であり、円形とは楕円形、卵形、俵形などの角のない形を表す。円形でない場合には、親水成分の効果を十分に発揮することができず、洗濯時の汚れ落ち性が悪くなるという問題がある。
 染色領域は樹脂内部に2つ以上存在することが親水性成分を一定量以上確保して防汚性を優れたものとする観点から好ましく、また、複数の染色領域が散在していることが親水性と疎水性のバランスを保ち、加工上りの防汚性と洗濯耐久性が向上する観点から好ましい。
 本発明の防汚性繊維構造物の高い防汚性を発現するためには、樹脂中に親水性成分と疎水性成分とが存在することが好ましく、親水性成分により形成される酸化オスミウムに染色された領域の大きさを最適化することにより、汚れの付きにくさと落とし易さの性能を両立させることができる。親水性成分により繊維と洗浄液との親和性を向上させ、疎水(撥油)性成分により繊維内部への汚れの浸透を抑制することができる。
 TEMにより観察される樹脂内部における酸化オスミウムに染色された領域の最大径が100nm以上、500nm以下であることが必要である。酸化オスミウムに染色された領域の最大径が500nmを超えると、撥水性および撥油性が低下し、汚れをはじく汚れ付着防止性(SG性)が低下することになる。また、親水性成分領域が広がりすぎることにより、樹脂と繊維との接着性が低下し、洗濯耐久性の低下を招くことにもなる。また、酸化オスミウムに染色された領域の最大径が100nm未満の場合には、洗濯時の洗濯液との親和性が低下し、汚れを落とす汚れ除去性(SR性)が低下することになる。
 最大径を上記範囲とする方法としては、特に限定されるものではないが、親水性成分の含有量を調整することで本発明の防汚性繊維構造物を得ることができる。
 ここで、酸化オスミウムによる染色と、樹脂内部における酸化オスミウムに染色された領域の最大径の測定方法について説明する。まず、防汚性繊維構造物を3%酸化オスミウムに浸漬し、常温(20℃)で3日間染色後、水洗、風乾し、エポキシ樹脂でサンプルを包埋する。
 その後、ミクロトームを用いて、繊維を、繊維長手方向に対して垂直な方向に、70~100nm程度の厚みで輪切りにする。試料の切断が困難な場合は、試料を冷却した後に、同様に繊維を輪切りにする。切断した試料片をTEM(透過型電子顕微鏡)を用いて観察する。TEMの観察条件は、加速電圧100kV、倍率20000倍とする。
 上記のとおりに輪切りにした断面図において、繊維表面に固着している樹脂内の酸化オスミウムに染色された領域を任意に5点選択し、それぞれの最大径を測定し、その平均値を算出する。酸化オスミウムに染色された領域が4点以下の場合は、それらの最大径をそれぞれ測定し、その平均値を求める。繊維構造物から任意に選択した10本の繊維から、それぞれ繊維を輪切りにして切り出し、全部で10個の繊維断面について上記のとおりに最大径を算出し、それらの平均値を「TEMにより観察される樹脂内部における酸化オスミウムに染色された領域の最大径」とする。
 本発明においては、樹脂には、上記の親水性成分とともに疎水性成分が含有されることが好ましい。疎水性成分としては、フッ素系樹脂、シリコーン系樹脂、炭化水素系樹脂等が挙げられるが、中でも撥水性および撥油性が高いことからフッ素系樹脂が好ましく用いられる。
 フッ素系樹脂としては、パーフルオロオクタン酸(PFOA)含有量が検出限界未満であることが好ましく、炭素数6のフッ素系撥水剤(以下、C6フッ素系撥水剤という)が好ましく用いられる。C6フッ素系撥水剤として、好ましくは、CH=C(CH)C(=O)OCHCH(CFCFが挙げられる。
 本発明に用いる樹脂としては、親水性成分と疎水性成分とが共重合により含まれる樹脂が好ましく用いられる。このような樹脂としては、親水性成分が共重合されたフッ素系撥水剤が好ましく用いられ、親水基を含有することによる撥水度2級以下の低撥水性能を有するものが好ましく用いられる。撥水度が2級以下であることで、繊維と洗浄液の親和性を最小限に保つことができ、洗濯時に洗浄液が弾かれることなく繊維構造物内部に入り込み、汚れと接触し、高い防汚性を発現することができる。撥水度は、JIS L 1092「繊維製品の防水性試験方法」(2009年)に規定されたスプレー法により評価を行った値をいう。また、親水基の含有量を調整することにより、撥水度を2級以下とすることができる。好ましく用いられる親水性成分を含有するフッ素系撥水剤としては、具体的には、市販品である“パラジン“(登録商標)KFS-100(京浜化成(株)製)、“パラレジン”(登録商標)NC-305(大原パラヂウム(株)製)および“パラジン“(登録商標)KFS-150(京浜化成(株)製)などが挙げられる。
 本発明の防汚性繊維構造物は、繊維表面をエネルギー分散型X線分析装置で測定した際の酸素原子とフッ素原子の質量濃度比(O/F)が3以上である。酸素原子とフッ素原子の質量濃度比(O/F)が3未満となる場合、疎水性成分が増加するため繊維の撥水性が向上し、洗浄液との親和性が低下してしまう。これにより、洗浄液と汚れの接触が起こりにくくなり、洗濯による汚れ除去性が低下する。
 酸素原子とフッ素原子の質量濃度比として好ましくは3.1~5.0、さらに好ましくは3.2~4.9、特に好ましくは3.3~4.0の範囲である。
 酸素原子とフッ素原子の質量濃度比の測定方法は、エネルギー分散型X線分析装置を用いて質量濃度を測定する。測定条件としては、低真空モード(30Pa)、加速電位15.0kV、プローブ電流70A、測定倍率100倍で本発明の繊維構造物について測定し、得られたフッ素および酸素原子の質量濃度を用いて酸素原子とフッ素原子の質量濃度の比を算出する。酸素原子とフッ素原子の質量濃度比(O/F)を算出するために、次式を用いた。なお、各質量濃度の測定はn=3回の平均値で評価する。
 O/F=酸素原子の質量濃度(質量%)/フッ素原子の質量濃度(質量%)。
 本発明の防汚性繊維構造物は、AATCC TM-1966に規定される方法で測定し、級判定を行った撥油度が4級以上であることが、優れた防汚性を発現する上で好ましい。撥油度の上限は7級であることが好ましく、さらには6級であることが好ましい。これらの撥水度および撥油度は、フッ素系樹脂と、親水基の割合を適宜調整することにより達成することができる。
 本発明の防汚性繊維構造物は、JIS L 1919(2006年)「汚れ除去性試験」に規定された親油性汚染物質-3の成分を使用したC法に準じた「押し込み汚れに対する汚れ除去性試験」で実施した場合の汚れ除去性が工業洗濯50回後で3級以上であることが好ましい。
 本発明の防汚性繊維構造物で用いられる繊維素材としては、ポリエチレンテレフタレート、ポリプロピレンフタレートおよびポリブチレンテレフタレートなどからなる繊維や、これらに第三成分を共重合してなる芳香族ポリエステル系繊維、L-乳酸を主成分とするもので代表される脂肪族ポリエステル系繊維、ナイロン6やナイロン66などのポリアミド系繊維、ポリアクリロニトリルを主成分とするアクリル系繊維、ポリエチレンやポリプロピレンなどのポリオレフィン系繊維、ポリ塩化ビニル系繊維などの合成繊維、アセテートやレーヨンなどの半合成繊維、および木綿、絹および羊毛などの天然繊維などが挙げられる。本発明では、これらの繊維を単独または2種以上の混合物として使用することができるが、ポリエステル系繊維またはポリアミド系繊維を主成分にした繊維もしくはポリエステル系繊維またはポリアミド系繊維を主成分にした繊維と木綿、絹および羊毛などの天然繊維との混合物が好ましく使用される。
 本発明の防汚性繊維構造物で用いられる繊維は、通常のフラットヤーン以外に、仮撚加工糸、強撚糸、タスラン加工糸、ナノファイバー、太細糸および混繊糸等のフィラメントヤーンであってもよく、ステープルファイバー、トウおよび紡績糸など各種形態の繊維を用いることができる。好ましくは、フィラメントヤーンが用いられる。
 本発明の防汚性繊維構造物には、前記の繊維を使用してなる編物、織物および不織布などの布帛状物、および紐状物などが含まれる。好ましくは、編物、織物および不織布が用いられる。
 また、前記布帛状物または紐状物には、一般的な加工剤を付与しても良い。また、防汚性繊維構造物の素材として内部改質された繊維を用いても良い。前記加工剤として、2-クロロ-6-トリクロロメチルピリジン、2-クロロ-4-トリクロロメチル-6-メトキシピリジン、2-クロロ-4-トリクロロメチル-6-(2-フリルメトキシ)ピリジン、ジ(4-クロロフェニル)ピリジルメタノール、2,3,5-トリクロロ-4-(n-プロピルスルフォニル)ピリジン、2-ピリジルチオール-1-オキシド亜鉛、ジ(2-ピリジルチオール-1-オキシド)等のピリジン系化合物を用いることができる。
 また、前記布帛状物または紐状物には、素材として繊維上に防汚性樹脂以外の樹脂が付着している繊維を用いても良い。この場合、繊維上に防汚性樹脂以外の樹脂層が形成され、その後に形成される防汚性樹脂層と二層の樹脂層が繊維上に存在することになる。このような防汚性樹脂以外の樹脂としては、シリコーン系樹脂、ポリエステル樹脂、イソシアネート化合物、エポキシ樹脂、メラミン樹脂、グアナミン樹脂およびビスマレイミドトリアジン樹脂などが挙げられる。
 また、架橋改質された繊維を用いても良く、架橋改質に用いる架橋剤としては、セルロース系繊維を構成しているセルロース分子中の水酸基、とりわけ洗濯時のシワ、型くずれ、縮みの原因となる非晶領域にある水酸基と反応し、セルロース分子間および分子内に架橋構造を形成することが可能な化合物が好ましく用いられる。具体的にはホルムアルデヒドや、ジメチロールエチレン尿素、ジメチロールトリアゾン、ジメチロールウロン、ジメチロールグリオキザールモノウレイン、ジメチロールプロピレン尿素、これらのメチロール基の一部または全部をメトキシ化、エトキシ化したもの等の繊維素反応型樹脂、ポリカルボン酸類、イソシアネート類等があげられる。
 本発明において、繊維構造物への樹脂の固着は、防汚性樹脂を含む液で繊維構造物を処理することにより達成できる。具体的な処理方法としては、防汚性樹脂を含む処理液に繊維構造物を浸漬した後、拡布の状態で一定の圧力で絞り、好ましくは80~140℃の温度で乾燥し、その後好ましくは160~200℃の温度で熱処理するパッド・ドライ・キュア法や、160~200℃の温度で一気に乾燥させるパッド・キュア法、80~110℃の温度で蒸熱処理するパッド・スチーム法、または、上記のフッ素化合物を含む処理液の中に繊維構造物を浸漬した状態で、好ましくは30~130℃まで温度を上げる浴中法などが用いられる。
 本発明の防汚性繊維構造物において、高い防汚性を発現するためには、繊維表面に固着させる樹脂において、酸素を含有した親水性成分とフッ素を含有した疎水性成分の割合を最適化することにより、汚れの付きにくさと落とし易さの性能を両立させることが有効である。親水性成分により繊維と洗浄液との親和性を向上させ、疎水性成分により繊維内部への汚れの浸透を抑制することができる。
 繊維表面に固着させる樹脂としては、親水性成分と疎水性成分とが含有され、具体的には、前述のとおり例えば、ポリエチレングリコールとフッ素系化合物とを共重合した樹脂が好ましく用いられるが、処理液中に、シリコーン系樹脂、ポリエステル樹脂、イソシアネート化合物およびエポキシ樹脂などを併用して用いることができる。
 本発明では、併用する樹脂としてトリアジン環含有樹脂を用いることが、特に好ましい態様である。トリアジン環含有樹脂としては、メラミン樹脂、グアナミン樹脂およびビスマレイミドトリアジン樹脂などが挙げられ、メラミン樹脂が特に好ましく用いられる。
 トリアジン環含有樹脂とは、トリアジン環含有化合物を重合成分としてなる樹脂を意味し、トリアジン環含有化合物とはトリアジン環を含有し、重合性官能基を少なくとも2個有する化合物であり、例えば、下記の一般式で示されるトリアジン環含有化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは、H、OH、C、Cn02n0+1(n0=1~2)、COOCn12n1+1(n1=1~20)、CONR、NRを表す。ただし、RとRは、H、OCn32n3+1(n3=1~20)、CHCOOCn32n3+1(n3=1~20)、CHOH、CHCHOH、CONH、CONHCH-O-(X-O)n4-R5(X=C、C、C;n4=1~1500;R=H、CH、C)を表す)
 上記一般式で表されるトリアジン環含有化合物以外に、上記の化合物のエチレン尿素共重合化合物、ジメチロール尿素共重合化合物、ジメチロールチオ尿素共重合化合物および酸コロイド化合物なども使用することができる。
 トリアジン環含有樹脂の形成方法は次のとおりである。上記のトリアジン環含有化合物と、触媒からなる水系液を繊維上に付与した後、重合すべく熱処理を行う。
 また、用いられる触媒としては、酢酸、蟻酸、アクリル酸、リンゴ酸、酒石酸、マレイン酸、フタル酸、硫酸、過硫酸、塩酸および燐酸などの酸類およびこれらのアンモニウム塩、ナトリウム塩、カリウム塩、およびマグネシウム塩などが挙げられ、これらの一種以上を使用することができる。中でも、触媒として、過硫酸アンモニウムと過硫酸カリウムが好ましく用いられる。触媒の量は、モノマーの使用量に対して0.1~20質量%で使用することが好ましい。
 このような重合のための熱処理は、好ましくは50~180℃の温度で0.1~30分間の条件で乾熱処理および蒸熱処理するものであるが、蒸熱処理の方が単繊維表面に均一な被膜を形成しやすく、かつ、被膜形成後の風合いが柔軟である。このような蒸熱処理には、好ましくは80~160℃の飽和水蒸気または過熱水蒸気が用いられ、より好ましくは飽和水蒸気の場合は90~130℃の飽和水蒸気であり、または110~160℃の温度の過熱水蒸気であり、いずれも数秒から数分の処理を行う。かかる蒸熱処理を行った後、未反応のモノマーや触媒を除去および染色堅牢度の確保のために、50~95℃の温度で湯洗いか、ノニオン界面活性剤や炭酸ソーダを使用しての洗浄を行うことが好ましい。トリアジン環含有樹脂の付着量は繊維質量に対して好ましくは0.5~5質量%であり、より好ましくは1~3質量%である。
 前述の親水性成分を含むフッ素系樹脂と、トリアジン環含有樹脂とを含む層を形成する場合、トリアジン環含有樹脂とフッ素系樹脂の混合溶液を用いて、前記と同様の処理を行うことにより層を形成することができる。フッ素系樹脂とトリアジン環含有樹脂の混合質量比(フッ素系樹脂/トリアジン環含有樹脂)は、1/0.001~1であることが好ましい。
 繊維表面に防汚性樹脂を付着させることで、本発明の防汚性繊維構造物を得ることができるが、高い汚れ除去性と洗濯耐久性を併せ持つためには、樹脂の固着量を制御することが好ましい。具体的に防汚性樹脂の繊維重量あたりの固着率は、固形分換算で好ましくは0.6~1.0%であり、より好ましくは0.7~0.9%である。このように好ましい範囲であると、汚れ除去性能を充分に発現することができ、風合いが硬化する可能性もない。
 本発明の防汚性繊維構造物は、洗濯による汚れ除去性能および洗濯耐久性を発揮するため、一般衣料品、作業用ユニフォーム、寝装品、医療用衣類、インテリア品および産業資材品等として好適に用いられる。中でも、洗濯で落ちにくいとされる油汚れなどが付着しやすく防汚性能のニーズがある作業用ユニフォームとして好適に用いられる。
 また、本発明の防汚性繊維構造物は、高い汚れ除去性により洗濯時間の短縮や洗剤量の低減が可能となる。JIS L 0217 103に基づいた家庭洗濯をしたとき、洗い工程のみでMA値(物理力)が15となる洗濯機(National製 NA-F50Z8)で、洗い工程のMA値が5となる洗濯時間(洗い時間1分30秒)に短縮した場合も押し込み汚れ防汚性試験で3級以上を発現し、工業洗濯の場合も、MA値(物理力)が51となる洗濯機((株)アサヒ製作所製 Ecoromato10)で、MA値が19となる洗濯時間(洗い時間1分)に短縮した場合も押し込み汚れ防汚性試験で3級以上を発現する。その効果により、防汚性繊維構造物を使用した衣料1着(440g)の洗濯57回あたりの温室効果ガス削減量が未加工品対比、工業洗濯で0.47kgCO‐eqとなり、家庭洗濯では0.23kgCO‐eqとなる。また、JIS L 0217 103の洗剤量を半分にした条件で家庭洗濯をしたときも、押し込み汚れ防汚性試験で3級以上を発現し、工業洗濯の場合も、洗剤量を半分にした条件で押し込み汚れ防汚性試験で3級以上を発現する。その効果により、防汚性繊維構造物を使用した衣料1着(440g)の洗濯57回あたりの温室効果ガス削減量が未加工品対比、工業洗濯で0.44kgCO‐eqとなり、家庭洗濯では0.21kgCO‐eqとなる。
 次に、本発明の防汚性繊維構造物について、実施例に基づいて説明する。実施例における各種測定評価は、次のとおりである。
(TEMによる樹脂内部の構造観察)
 防汚性繊維構造物を3%酸化オスミウムに浸漬し、常温(20℃)で3日間染色後、水洗、風乾し、エポキシ樹脂でサンプルを包埋した。その後、ミクロトームを用いて、繊維を、繊維長に対して垂直な方向に、70~100nm程度の厚みで輪切りにした。切断した試料片をTEM(透過型電子顕微鏡)H-7100FA((株)日立製作所製)を用いて観察した。TEMの観察条件は、加速電圧100kV、倍率8000倍とした。
 上記のとおりに輪切りにした断面図において、繊維表面に固着している樹脂内の酸化オスミウムに染色された領域を任意に5点選択し、それぞれの最大径を測定し、その平均値を算出した。酸化オスミウムに染色された領域が4点以下の場合は、それらの最大径をそれぞれ測定し、その平均値を求めた。繊維構造物から任意に選択した10本の繊維から、それぞれ繊維を輪切りにして切り出し、全部で10個の繊維断面について上記のとおりに最大径を算出し、それらの平均値を「TEMにより観察される酸化オスミウムに染色された領域の最大径」とした。また、円形の酸化オスミウムに染色された領域が存在しない場合は、-とした。
(フッ素化合物についての酸素とフッ素の質量濃度の測定)
 処理をした白色布帛を1cm×1cm程度に切断し、エネルギー分散型X線分析装置を用いて質量濃度を測定した。測定条件としては、低真空モード(30Pa)、加速電位15.0kV、プローブ電流70A、倍率100倍で各試料測定し、得られた酸素原子の質量濃度(質量%)をフッ素の質量濃度(質量%)で除することにより、酸素原子とフッ素原子の質量濃度比を(O/F)を算出した。各質量濃度の測定はn=3回の平均値で評価した。
(撥水度)
 JIS L 1092「繊維製品の防水性試験方法」(2009年)に規定される方法により、スプレー法により評価を行い、撥水度について級判定した。級判定についてはn=1回の評価で実施した。級判定における( )表示は生地の裏まで湿潤していることを示す。撥水度の級は1級から5級まで有り、数値が大きいほど、撥水性が高いことを示す。判定基準はJIS L 1092に添付の判定写真により判別する。
(撥油度)
 AATCC TM-1966に規定される方法で測定し、撥油度について級判定した。撥油性の級は1級から8級まで有り、数値が大きいほど、撥油性が高いことを示す。判定基準はAATCC TM-1966に添付の判定写真により判別する。級判定についてはn=3回の評価の平均値とした。
(汚れ除去性)
 各実施例等で得られた繊維構造物を後述の工業洗濯条件にて50回洗濯した後に、JIS L 1919「繊維製品の防汚性試験方法」(2006年)のC法に規定されている、滴下拭き取り法試験の付いた汚れの落ちやすさ試験により、汚れ除去性の評価を行い、汚れ除去性について、級判定を行った。防汚性の級はJIS汚染色用グレースケールを使用し肉眼判定する。1級から5級まであり、数値が大きいほど、防汚性が高いことを示す。
(汚れ除去性試験時の工業洗濯条件)
 汚れ除去性試験時の洗濯耐久性および汚れ除去性の工業洗濯1回は以下の条件・順序で行った。
1.洗い(水温60℃、浴比1:10、時間15分)
  洗剤:無リン“ダッシュ”(登録商標) 2.0g/L
     メタ珪酸ソーダ 2.0g/L
     “クレワット”(登録商標)N  1.0g/L
2.脱水(時間1分)
3.濯ぎ1(水温50℃、浴比1:10、時間3分)
4.脱水(時間1分)
5.濯ぎ2(水温35℃、浴比1:10、時間3分)
6.脱水(時間1分)
7.濯ぎ3(常水温、浴比1:10、時間3分)
8.脱水(時間1分)
9.タンブラー乾燥
(押し込み汚れに対する汚れ除去性)
 上記の条件による工業洗濯を50回行った後の繊維構造物について、JIS L 1919「繊維製品の防汚性試験方法」(2006年)のC法に準じた押し込み方汚れ除去性能を評価した。JIS L 1919「繊維製品の防汚性試験方法」(2006年)のC法に規定されている親油性汚染物質-3の成分を使用した汚染物質(オイルレッド分率0.1%)を作製し、以下の手順で試験を実施した。
 方形ろ紙の上にPETフィルムを置き、その上に8cm×8cmにカットした布帛をのせた。10cmの高さから油性汚れを0.1mL滴下し、30秒放置した。
 汚染した布帛に布帛と同じ大きさにカットしたPETフィルムをのせ、その上から100gの荷重を30秒かけた。荷重とフィルムを外した後、円形ろ紙を乗せてろ紙の自重で汚れを吸い取った。さらに、ろ紙の位置をずらしてろ紙が汚れていない部分で再度汚れを吸い取った。ろ紙が汚れを吸い取らなくなるまでこの操作を繰り返した。ろ紙が汚染部分に触れない場合はろ紙の両端を持ち、なるべく加重をかけないようにろ紙と汚れを接触させて吸い取った。その後、温度20℃、湿度65%の条件下で24時間放置した。放置後、汚染した布帛を縫い合わせて、約40cm×40cmのサイズにし、洗濯を行った。汚染した布帛が足りない場合は、捨て布を縫い合わせた。JIS L 0805汚染色用グレースケールを用いて肉眼判定でSR性級判定を行った。1級から5級まであり、数値が大きいほど、防汚性が高いことを示す。以上の試験で使用する器材を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(抗菌試験時の工業洗濯条件)
 抗菌試験時の洗濯耐久性の工業洗濯50回分は以下の条件・順序で行った。
1.洗い(水温80℃、浴比1:30、時間120分)
  洗剤:JAFET標準配合洗剤 120mL (水量90Lに対して)
2.脱水(時間3~5分)
4.オーバーフロー濯ぎ(常水温、浴比1:30、時間15分)
5.脱水(時間3~5分)
6.4、5の工程を3回繰り返す(計4回)
7.1~6の工程を5回繰り返す
8.家庭洗濯機にて5分オーバーフロー濯ぎ(常水温、浴比1:30)
9.脱水(時間3~5分)
10.タンブラー乾燥(80℃以下)
(抗菌試験方法)
 試験方法は統一試験法を採用し、試験菌体はMRSA臨床分離株を用いた。試験方法は、滅菌試料布に上記試験菌のブイヨン懸濁液を注加し、密閉容器中で37℃、18時間培養後の生菌数を計測し、殖菌数に対する菌数を求め、次の基準に従った。
 log(B/A)>1.5の条件下、log(B/C)を菌数増減値差とし、2.2以上を合格レベルとした。実施例において、合格品は合格(good)、不合格品は不合格(failure)とした。
 ただし、Aは無加工品の接種直後分散回収した菌数、Bは無加工品の18時間培養後分散回収した菌数、Cは加工品の18時間培養後分散回収した菌数を表す。
(裏抜け防止性)
 固形油汚れをフィルム上に1mmの厚さで5×5cmの範囲に塗布し、その上から滅菌ガーゼ(川本産業(株)製、滅菌ガーゼ タイプIII “ケーパイン”(登録商標) No.7164 5.0cm×5.0cm 1枚入)を乗せる。その上に8×8cmの生地サンプルを乗せ、またその上にろ紙((株)三商製)、0.4kPa、5.0×5.0cmの荷重の順で乗せ、37℃で24時間放置後、ろ紙への固形油汚れの裏抜け有無について目視で判断した。
 表4において、裏抜けが無い場合を合格(good)、裏抜けがある場合を不合格(failure)とした。
<固形油汚れの成分>
・白色ワセリン(健栄製薬(株)製):99.9質量%
・オイルレッド(和光純薬工業(株)製):0.1質量%
(汚れ除去性が4級となるための最小MA値)
 汚れ除去性試験の際に、JIS L 0217 103(1995年改正、洗剤量:1.0g/L)に基づいた家庭洗濯をしたときの汚れ除去性が4級以上となる最短の洗濯時間を測定し、この時の物理量をMA(メカニカルアクション)値で表した。MA値は布の中心と四隅に直径35mmの丸い穴を5つ打ち抜いた25cm×25cmの平織綿布を用いたMAテスト布を入れて洗濯を行い、その5つの穴の縁のほつれた糸の総数を測定しMA値とした。
(洗濯時間短縮による温室効果ガス削減量)
 汚れ除去性試験の際に汚れ除去性が4級以上となる洗濯時間を測定した。洗濯機の1時間あたり消費電力を470Whと仮定し、28分の洗濯(洗い・濯ぎ・脱水)中の電力消費が一定であるものと仮定して、汚れ除去性が4級以上となる洗濯時間から消費電力量を試算した。試算した消費電力量からLCA支援ソフトMiLCAのデータベース(東京電力)によって温室効果ガス排出量を算出し、未加工品との差を温室効果ガス削減量とした。
(洗剤量低減による温室効果ガス削減量)
 汚れ除去性試験の際に汚れ除去性が4級以上となる洗濯時間を測定した。無リン“ダッシュ”(登録商標)2.0g/L、メタ珪酸ソーダ2.0g/L、“クレワット”(登録商標)N1.0g/Lから削減できた洗剤量を計算し、LCA支援ソフトMiLCAのデータベースより洗濯用合成洗剤(無リン“ダッシュ”(登録商標))、けい酸ナトリウム(メタ珪酸ソーダ)、キレート剤(“クレワット”(登録商標)N)を利用し、温室効果ガス排出量を算出し、洗剤を標準量使用した際の温室効果ガス排出量との差を温室効果ガス削減量とした。
(実施例1)
 ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をタテ糸とヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を95℃の温度で、連続式精錬機で常法に従い精錬し湯水洗し、次いで130℃の温度で乾燥した。次いで、液流染色機を用いて、130℃の温度で蛍光白色に染色し、常法により洗浄し湯水洗し乾燥して、170℃の温度で加熱を行い、白色布帛を製造した。
 次いで、パーフルオロオクチルメタクリレートとポリエチレングリコールを重合成分として含む(A)パラジン KFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。繊維上に付着したフッ素系化合物が汚れを弾き、フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が、洗濯時の洗濯液との親和性を維持しつつ、フッ素系化合物と繊維表面の親和性に影響を及ぼさないため、高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例2)
 実施例1において、フッ素系樹脂としてパラジンKFS-122に代えて、フルオロアルキル基の炭素数が6以下のフッ素系ビニルモノマーとポリアルキレングリコール含有親水性ビニルモノマーとを重合成分として含む(B)パラレジン”(登録商標) NC-305(大原パラジウム(株)製、フッ素系樹脂、固形分10%)を使用した以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で3-4級となった。実施例1と同様の原理からである。
(実施例3)
 実施例1において、フッ素系樹脂としてパラジンKFS-122に代えて、パーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(C)パラジンKFS-150(京浜化成(株)製、フッ素系樹脂、固形分10%)を使用した以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で3級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例4)
 ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をタテ糸とヨコ糸に使用して、ツイル織物を製織した。
 次いで、抗菌剤として(O)2-ピリジルチオール-1-オキシド亜鉛50gと(P)ナフタレンスルホン酸のホルマリン縮合物20gおよび(Q)リグニンスルホン酸ナトリウム30gを水300gと共にスラリー化し、次いでガラスビーズを用いて湿式粉砕処理を施し、平均粒径1μmのコロイド状態の組成物にし、コロイド化した上記抗菌剤を1%owf、蛍光白色の分散染料を2%owf、均染剤を0.5g/L、浴比1:10、pH5の液中に供試布を浸し、130℃、60分間の条件で常法による染色加工を行った。この後、水洗し、170℃、2分間乾燥して抗菌加工布を得た。
 その後、フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールが含まれる(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例5)
 ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をタテ糸とヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を95℃の温度で、連続式精錬機で常法に従い精錬し湯水洗し、次いで130℃の温度で乾燥した。次いで、液流染色機を用いて、130℃の温度で蛍光白色に染色し、常法により洗浄し湯水洗し乾燥して、170℃の温度で加熱を行い、白色布帛を製造した。
 次いで、抗菌剤として(O)2-ピリジルチオール-1-オキシド亜鉛50g/Lを希釈して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、120℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。
 さらに、フッ素化合物としてパーフルオロオクチルメタクリレートとポリエチレングリコールが含まれる(A)パラジン KFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例6)
 ポリエチレンテレフタレート80%、綿20%からなる34番手の双糸をタテ糸に使用し、ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を通常の染色工程により染色した白色布帛を使用する以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例7)
 ポリエチレンテレフタレート80%、綿20%からなる34番手の双糸をタテ糸に使用し、ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を通常の染色工程により染色した白色布帛を使用する以外は実施例4と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例8)
 ポリエチレンテレフタレート80%、綿20%からなる34番手の双糸をタテ糸に使用し、ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をヨコ糸に使用して、ツイル織物を製織して防汚性繊維構造物を得た。得られたツイル織物を通常の染色工程により染色した白色布帛を使用する以外は実施例5と同様にした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例9)
 ポリエチレンテレフタレート80%、綿20%からなる34番手の双糸をタテ糸に使用し、ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を通常の染色工程により染色し、白色布帛を製造した。
 次いで、架橋剤として(R)ジメチロールジヒドロキシエチレン尿素樹脂水溶液(固形分20%)100g/Lと、触媒として(S)塩化マグネシウム20g/Lを希釈して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、100℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。
 さらに、フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例10)
 ポリエチレンテレフタレート65%、綿35%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色した白色布帛を使用する以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で3級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例11)
 ポリエチレンテレフタレート65%、綿35%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色した白色布帛を使用する以外は実施例4と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で3級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例12)
 ポリエチレンテレフタレート65%、綿35%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色した白色布帛を使用する以外は実施例5と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で3級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例13)
 ポリエチレンテレフタレート65重量%、綿35重量%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色した白色布帛を使用する以外は実施例9と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例14)
 ポリエチレンテレフタレート65重量%、綿35重量%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色し、白色布帛を製造した。
 次いで、フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(A)パラジン KFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと((R)ジメチロールジヒドロキシエチレン尿素樹脂水溶液(固形分20%)100g/Lと、触媒として(S)塩化マグネシウム20g/Lを希釈して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例15)
 ポリエチレンテレフタレート80重量%、ウール20重量%からなる40番手の双糸をタテ糸、ヨコ糸に使用して、サージ織物を製織した。得られたサージ織物を通常の染色工程により染色した白色布帛を使用する以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例16)
 ポリエチレンテレフタレート80重量%、ウール20重量%からなる40番手の双糸をタテ糸、ヨコ糸に使用して、サージ織物を製織した。得られたサージ織物を通常の染色工程により染色した白色布帛を使用する以外は実施例4と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例17)
 ポリエチレンテレフタレート80重量%、ウール20重量%からなる40番手の双糸をタテ糸、ヨコ糸に使用して、サージ織物を製織した。得られたサージ織物を通常の染色工程より染色した白色布帛を使用する以外は実施例5と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例18)
 ナイロンからなる総繊度が44dtexで、36フィラメントの加工糸を使用して、サテン編物を製編した。得られたサテン編物を通常の染色工程により染色した白色布帛を使用する以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例19)
 50dのナイロン加工糸に20dのスパンデックスが供給され仮撚加工されており、S撚りが50%、Z撚りが50%の糸使いで天竺編物を製編した。得られた天竺編物を通常の染色工程により染色した白色布帛を使用する以外は実施例1と同様にして防汚性繊維構造物を得た。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4級となった。実施例1と同様の原理から高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例20)
 ポリエチレンテレフタレートからなる総繊度が41番手の紡績糸をタテ糸とヨコ糸に使用して、平織物を製織した。得られたツイル織物を95℃の温度で、連続式精錬機で常法に従い精錬し湯水洗し、次いで130℃の温度で乾燥した。次いで、液流染色機を用いて、130℃の温度で蛍光白色に染色し、常法により洗浄し湯水洗し乾燥して、170℃の温度で加熱を行い、白色布帛を製造した。
 次いで、パーフルオロオクチルメタクリレートとポリエチレングリコールを重合成分として含む(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと、(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(N)過硫酸アンモニウム3.0g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、飽和水蒸気の状態で100℃の温度で処理し、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。繊維上に付着したフッ素系化合物が汚れを弾き、フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の染色領域を形成するポリエチレングリコールの領域が、洗濯時の洗濯液との親和性を維持しつつ、フッ素系化合物と繊維表面の親和性に影響を及ぼさないため、高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例21)
 ポリエチレンテレフタレート65%、綿35%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色して白色布帛を製造した。
 次いで、パーフルオロオクチルメタクリレートとポリエチレングリコールを重合成分として含む(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと、(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(N)過硫酸アンモニウム3.0g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、飽和水蒸気の状態で100℃の温度で処理し、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。繊維上に付着したフッ素系化合物が汚れを弾き、フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の染色領域を形成するポリエチレングリコールの領域が、洗濯時の洗濯液との親和性を維持しつつ、フッ素系化合物と繊維表面の親和性に影響を及ぼさないため、高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例22)
 ポリエチレンテレフタレートからなる総繊度が41番手の紡績糸をタテ糸とヨコ糸に使用して、平織物を製織した。得られたツイル織物を95℃の温度で、連続式精錬機で常法に従い精錬し湯水洗し、次いで130℃の温度で乾燥した。次いで、液流染色機を用いて、130℃の温度で蛍光白色に染色し、常法により洗浄し湯水洗し乾燥して、170℃の温度で加熱を行い、白色布帛を製造した。
 次いで、パーフルオロオクチルメタクリレートとポリエチレングリコールを重合成分として含む(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと、(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、190℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。繊維上に付着したフッ素系化合物が汚れを弾き、フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の染色領域を形成するポリエチレングリコールの領域が、洗濯時の洗濯液との親和性を維持しつつ、フッ素系化合物と繊維表面の親和性に影響を及ぼさないため、高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(実施例23)
 ポリエチレンテレフタレート65%、綿35%からなる34番手の双糸をタテ糸、ヨコ糸に使用して、平織物を製織した。得られた平織物を通常の染色工程により染色して白色布帛を製造した。
 次いで、パーフルオロオクチルメタクリレートとポリエチレングリコールを重合成分として含む(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lと、(L)“ベッカミン”(登録商標)M-3(大日本インキ(株)製トリアジン環含有化合物:固形分80%)3.0g/L、(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)0.5g/Lを溶解して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、190℃の温度で加熱処理をした。フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の複数の染色領域を形成するポリエチレングリコールの領域が確認され、得られた防汚性繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で4-5級となった。繊維上に付着したフッ素系化合物が汚れを弾き、フッ素系化合物に含まれる最大径100nm以上、500nm以下の円形の染色領域を形成するポリエチレングリコールの領域が、洗濯時の洗濯液との親和性を維持しつつ、フッ素系化合物と繊維表面の親和性に影響を及ぼさないため、高い汚れ除去性と洗濯耐久性を併せ持つことができた。
(比較例1)
 フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(D)パラジンKFS-101(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例2)
 フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(E)パラジンKFS-102(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系化合物が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例3)
 フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(F)パラジンKFS-200(京浜化成(株)製、フッ素系樹脂、固形分10%)60g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールの領域が100nm以下であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例4)
 フッ素系樹脂としてパーフルオロオクチルメタクリレートとポリエチレングリコールとを重合成分として含む(G)“アサヒガード”(登録商標)AG-1100(旭硝子(株)製、フッ素系樹脂、固形分20%)30g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールの領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例5)
 フッ素樹脂としてフルオロアルキル基の炭素数が6以下のフッ素系ビニルモノマーを重合成分として含む(H)“ユニダイン”(登録商標) TG-5243(ダイキン工業(株)製、固形分30%)20g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、汚れ除去性が低くなった。
(比較例6)
 フルオロアルキル基の炭素数が6以下のフッ素系ビニルモノマーを重合成分として含むフッ素系樹脂として(I)“ユニダイン”(登録商標) TG-5521(ダイキン工業(株)製、固形分30%)20g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例7)
 フルオロアルキル基の炭素数が6以下のフッ素系ビニルモノマーを重合成分として含むフッ素系樹脂として(J)“アサヒガード”(登録商標)AG-E092(旭硝子(株)製、フッ素系樹脂、固形20分%)30g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2-3級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例8)
 フルオロアルキル基の炭素数が6以下のフッ素系ビニルモノマーを重合成分として含むフッ素系樹脂として(K)“マックスガード”(登録商標) FX-2500T((株)京絹化成製、フッ素系樹脂、固形分30%)20g/Lを使用する以外は実施例1と同様にして防汚性繊維構造物を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で2級となった。繊維上に付着したフッ素系樹脂が汚れを弾くものの、フッ素系樹脂に含まれるポリエチレングリコールによる染色領域が100nm未満であるため、洗濯時の洗濯液との親和性が低く、満足する汚れ除去性は得られなかった。
(比較例9)
 ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をタテ糸とヨコ糸に使用して、ツイル織物を製織した。
 次いで、抗菌剤として(O)2-ピリジルチオール-1-オキシド亜鉛50gと(P)ナフタレンスルホン酸のホルマリン縮合物20gおよび(Q)リグニンスルホン酸ナトリウム30gを水300gと共にスラリー化し、次いでガラスビーズを用いて湿式粉砕処理を施し、平均粒径1μmのコロイド状態の組成物にし、コロイド化した上記抗菌剤を1%owf、蛍光白色の分散染料を2%owf、均染剤を0.5g/l、浴比1:10、pH5の液中に供試布を浸し、130℃、60分間の条件で常法による染色加工を行った。この後、水洗し、170℃、2分間乾燥して抗菌加工布を得た。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で1級となった。繊維上にフッ素系樹脂が付着していないため、汚れを弾くことなく、満足する汚れ除去性は得られなかった。
(比較例10)
 ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をタテ糸とヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を95℃の温度で、連続式精錬機で常法に従い精錬し湯水洗し、次いで130℃の温度で乾燥した。次いで、液流染色機を用いて、130℃の温度で蛍光白色に染色し、常法により洗浄し湯水洗し乾燥して、170℃の温度で加熱を行い、白色布帛を製造した。
 次いで、抗菌剤として(O)2-ピリジルチオール-1-オキシド亜鉛50g/Lを希釈して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、120℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で1級となった。繊維上にフッ素系樹脂が付着していないため、汚れを弾くことなく、満足する汚れ除去性は得られなかった。
(比較例11)
 ポリエチレンテレフタレート80重量%、綿20重量%からなる34番手の双糸をタテ糸に使用し、ポリエチレンテレフタレートからなる総繊度が84dtexで、72フィラメントの仮撚り加工糸をヨコ糸に使用して、ツイル織物を製織した。得られたツイル織物を通常の染色工程より白色布帛を製造した。
 次いで、架橋剤として(R)ジメチロールジヒドロキシエチレン尿素樹脂水溶液(固形分20%)100g/Lと触媒として(S)塩化マグネシウム20g/Lを希釈して処理液を調整し、これに上記で製造された白色布帛を浸漬してマングルを用いて絞り率90%となるよう絞り、100℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。得られた繊維構造物の工業洗濯50回後の押し込み法汚れ除去性は汚染用グレースケール判定で1級となった。繊維上にフッ素系樹脂が付着していないため、汚れを弾くことなく、満足する汚れ除去性は得られなかった。
 以上の実施例1~23、比較例1~11では以下のフッ素系樹脂を用い、フッ素系樹脂の付着量が固形分換算で繊維重量あたり0.77%となるように濃度を調整した。比較例で用いられるフッ素系樹脂は、フッ素系樹脂に含まれる親水性側鎖のポリエチレングリコールの量が不適切である。
(A)パラジンKFS-100(京浜化成(株)製、フッ素系樹脂、固形分10%、PEG含有)
(B)パラレジンNC-305(大原パラヂウム(株)製、フッ素系樹脂、固形分10%、PEG含有)
(C)パラジンKFS-150(京浜化成(株)製、フッ素系樹脂、固形分10%、PEG含有)
(D)パラジンKFS-101(京浜化成(株)製、フッ素系樹脂、固形分10%、PEG含有)
(E)パラジンKFS-102(京浜化成(株)製、フッ素系樹脂、固形分10%、PEG含有)
(F)パラジンKFS-200(京浜化成(株)製、フッ素系樹脂、固形分10%、PEG含有)
(G)“アサヒガード”(登録商標)AG-1100(旭硝子(株)製、フッ素系樹脂、固形分20%、PEG含有)
(H)“ユニダイン”(登録商標) TG-5243(ダイキン工業(株)製、固形分30%、PEG非含有)
(I)“ユニダイン”(登録商標) TG-5521(ダイキン工業(株)製、固形分30%、PEG非含有)
(J)“アサヒガード”(登録商標)AG-E092(旭硝子(株)製、フッ素系樹脂、固形20分%、PEG非含有)
(K)“マックスガード” (登録商標) FX-2500T((株)京絹化成製、フッ素系樹脂、固形分30%、PEG非含有)
 また、フッ素化合物の架橋剤として(L)を触媒として(M)を用いた。
(L)“ベッカミン”(登録商標)M-3(大日本インキ化学工業(株)製トリアジン環含有化合物:固形分80%)
(M)キャタリストACX(大日本インキ化学工業(株)製 触媒 固形分35%)
(N)過硫酸アンモニウム
 また、抗菌性を付与するために以下の(N)~(P)の薬剤を用いた。
(O)2-ピリジルチオール-1-オキシド亜鉛
(P)ナフタレンスルホン酸のホルマリン縮合物
(Q)リグニンスルホン酸ナトリウム
 また、天然素材混の合成繊維布帛に洗濯耐久性を付与するために以下の(R)~(S)の薬剤を用いた。
(R)ジメチロールジヒドロキシエチレン尿素
(S)塩化マグネシウム
 以上の実施例1~23、比較例1~11の処理液組成(A)~(S)と繊維素材を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 以上の実施例1~23、比較例1~11において得られた繊維構造物の性能等の結果を、表3、表4、表5に示す。表4中に記載の撥水度の( )表示は、試験布の裏面まで濡れていることを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3から明らかなように、本発明の繊維構造物である実施例1~23においては、親水性成分の最大径が100~500nmであり、押し込み汚れに対する汚れ除去性に優れているのに対して、本発明の防汚性繊維構造物とは異なる比較例1~11においては、親水性成分による染色領域の最大径が100nm未満であり、実施例に比べて押し込み汚れに対する汚れ除去性が劣っている。
 本発明の防汚性繊維構造物は、水性汚れと油性汚れに対して高い付着抑制性と洗濯による汚れ除去性を同時に有するため、一般衣料品、作業用ユニフォーム、寝装品、医療用衣類、インテリア品および産業資材品等として好適に用いられる。中でも、洗濯で落ちにくいとされる油汚れなどが付着しやすく防汚性能のニーズがある作業用ユニフォームとして好適に用いられる。
 1:繊維
 2:酸化オスミウムによる染色相 

Claims (7)

  1. 繊維表面の少なくとも1部に防汚性を有する樹脂が固着した繊維構造物であって、透過電子顕微鏡により観察される酸化オスミウムに染色された領域が該樹脂の内部の少なくとも1部に存在し、該領域の少なくとも1つは、円形であり、該領域の最大径は100nm以上、500nm以下であり、さらに繊維表面をエネルギー分散型X線分析装置で測定した際の酸素原子とフッ素原子の質量濃度比(O/F)が3以上である防汚性繊維構造物。
  2. 該領域が樹脂内部に2つ以上存在し、染色領域個々が離れ、散在している請求項1に記載の防汚性繊維構造物。
  3. 該領域に親水性成分と疎水成分とが存在する請求項2に記載の防汚性繊維構造物。
  4. 該親水性成分が、ポリエチレングリコールである請求項3に記載の防汚性繊維構造物。
  5. 該樹脂のパーフルオロオクタン酸含有量が検出限界未満である請求項1~4のいずれかに記載の防汚性繊維構造物。
  6. 該樹脂が、下記一般式(I)で示される化合物を重合成分として含む請求項5に記載の防汚性繊維構造物。
     CH=C(CH)C(=O)OCHCH(CFCF   (I)
  7. 該繊維構造物の押し込み汚れに対する汚れ除去性試験の汚れ除去性が工業洗濯50回後で3級以上である請求項1~6のいずれかに記載の防汚性繊維構造物。
PCT/JP2016/069600 2015-07-06 2016-07-01 防汚性繊維構造物 WO2017006849A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680037431.2A CN107735525B (zh) 2015-07-06 2016-07-01 防污性纤维结构物
ES16821318T ES2943580T3 (es) 2015-07-06 2016-07-01 Estructura de fibra resistente a las manchas
KR1020177033800A KR20180022647A (ko) 2015-07-06 2016-07-01 방오성 섬유 구조물
US15/736,049 US10513820B2 (en) 2015-07-06 2016-07-01 Stainproof fiber structure
MYPI2017704861A MY182289A (en) 2015-07-06 2016-07-01 Stainproof fiber structure
EP16821318.9A EP3321418B1 (en) 2015-07-06 2016-07-01 Stainproof fiber structure
JP2016549526A JPWO2017006849A1 (ja) 2015-07-06 2016-07-01 防汚性繊維構造物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015135033 2015-07-06
JP2015-135033 2015-07-06
JP2016-048045 2016-03-11
JP2016048045 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017006849A1 true WO2017006849A1 (ja) 2017-01-12

Family

ID=57685220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069600 WO2017006849A1 (ja) 2015-07-06 2016-07-01 防汚性繊維構造物

Country Status (8)

Country Link
US (1) US10513820B2 (ja)
EP (1) EP3321418B1 (ja)
JP (1) JPWO2017006849A1 (ja)
KR (1) KR20180022647A (ja)
CN (1) CN107735525B (ja)
ES (1) ES2943580T3 (ja)
MY (1) MY182289A (ja)
WO (1) WO2017006849A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196747B1 (ja) * 2017-05-31 2017-09-13 東洋紡Stc株式会社 自動化洗濯プラント対応編地
WO2019073898A1 (ja) 2017-10-11 2019-04-18 東レ株式会社 防汚性繊維構造物
US20220018043A1 (en) * 2019-04-01 2022-01-20 Toray Industries, Inc. Fibrous structure containing elastic polyurethane yarn
KR102667486B1 (ko) * 2018-12-21 2024-05-22 닛카카가쿠가부시키가이샤 발수제 조성물 및 발수성 섬유 제품의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324173A (ja) * 1996-06-06 1997-12-16 Daikin Ind Ltd 防汚加工用組成物および防汚加工方法
JPH1149825A (ja) * 1997-08-06 1999-02-23 Daikin Ind Ltd 新規共重合体および防汚加工剤
JP2000212549A (ja) * 1999-01-25 2000-08-02 Asahi Glass Co Ltd 撥水撥油剤組成物およびその製造方法
JP2005330354A (ja) * 2004-05-19 2005-12-02 Ohara Palladium Kagaku Kk 親水・撥油加工剤ならびにそれで処理した繊維製品
JP2008062460A (ja) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc 光学フィルムとそれを用いた画像表示素子
WO2013088902A1 (ja) * 2011-12-12 2013-06-20 ユニマテック株式会社 含フッ素共重合体およびそれを有効成分とする撥水撥油剤
JP2014163030A (ja) * 2013-02-26 2014-09-08 Ohara Paragium Chemical Co Ltd 吸水撥油防汚加工剤ならびにそれを用いて処理した繊維製品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1215861A (en) * 1967-02-09 1970-12-16 Minnesota Mining & Mfg Cleanable stain-resistant fabrics or fibers and polymers therefor
JP3748592B2 (ja) 1995-06-19 2006-02-22 旭化成せんい株式会社 耐久防汚性繊維構造物およびその製造方法
JP2004162056A (ja) * 2002-10-25 2004-06-10 Toray Ind Inc 透湿防水フィルムおよびそれを用いてなる透湿防水複合材
JP2006152508A (ja) * 2004-12-01 2006-06-15 Nisshinbo Ind Inc 防汚性繊維構造物及びその加工方法
CN101370976A (zh) * 2006-01-18 2009-02-18 东丽株式会社 纤维结构物
JP5114946B2 (ja) 2006-12-27 2013-01-09 東レ株式会社 繊維構造物
JP2013036136A (ja) 2011-08-08 2013-02-21 Komatsu Seiren Co Ltd 撥水撥油sr性布帛
JP5865648B2 (ja) 2011-09-29 2016-02-17 ユニチカトレーディング株式会社 防汚性布帛の製造方法
CN103184688B (zh) * 2011-12-31 2016-04-13 东丽纤维研究所(中国)有限公司 一种防污纺织品及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324173A (ja) * 1996-06-06 1997-12-16 Daikin Ind Ltd 防汚加工用組成物および防汚加工方法
JPH1149825A (ja) * 1997-08-06 1999-02-23 Daikin Ind Ltd 新規共重合体および防汚加工剤
JP2000212549A (ja) * 1999-01-25 2000-08-02 Asahi Glass Co Ltd 撥水撥油剤組成物およびその製造方法
JP2005330354A (ja) * 2004-05-19 2005-12-02 Ohara Palladium Kagaku Kk 親水・撥油加工剤ならびにそれで処理した繊維製品
JP2008062460A (ja) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc 光学フィルムとそれを用いた画像表示素子
WO2013088902A1 (ja) * 2011-12-12 2013-06-20 ユニマテック株式会社 含フッ素共重合体およびそれを有効成分とする撥水撥油剤
JP2014163030A (ja) * 2013-02-26 2014-09-08 Ohara Paragium Chemical Co Ltd 吸水撥油防汚加工剤ならびにそれを用いて処理した繊維製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321418A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196747B1 (ja) * 2017-05-31 2017-09-13 東洋紡Stc株式会社 自動化洗濯プラント対応編地
JP2018145579A (ja) * 2017-05-31 2018-09-20 東洋紡Stc株式会社 自動化洗濯プラント対応編地
WO2019073898A1 (ja) 2017-10-11 2019-04-18 東レ株式会社 防汚性繊維構造物
CN111183254A (zh) * 2017-10-11 2020-05-19 东丽株式会社 防污性纤维结构物
KR20200058418A (ko) 2017-10-11 2020-05-27 도레이 카부시키가이샤 방오성 섬유 구조물
JPWO2019073898A1 (ja) * 2017-10-11 2020-09-17 東レ株式会社 防汚性繊維構造物
EP3696318A4 (en) * 2017-10-11 2021-07-07 Toray Industries, Inc. STAIN RESISTANT FIBER STRUCTURE
KR102667486B1 (ko) * 2018-12-21 2024-05-22 닛카카가쿠가부시키가이샤 발수제 조성물 및 발수성 섬유 제품의 제조 방법
US20220018043A1 (en) * 2019-04-01 2022-01-20 Toray Industries, Inc. Fibrous structure containing elastic polyurethane yarn

Also Published As

Publication number Publication date
EP3321418B1 (en) 2023-04-05
MY182289A (en) 2021-01-18
KR20180022647A (ko) 2018-03-06
US10513820B2 (en) 2019-12-24
EP3321418A4 (en) 2019-02-20
ES2943580T3 (es) 2023-06-14
US20180179699A1 (en) 2018-06-28
CN107735525B (zh) 2020-04-24
CN107735525A (zh) 2018-02-23
EP3321418A1 (en) 2018-05-16
JPWO2017006849A1 (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
KR20030022265A (ko) 지속가능한 발수능 및 오염제거능이 개선된 텍스타일 기재및 이의 제조방법
WO2017006849A1 (ja) 防汚性繊維構造物
JP5865648B2 (ja) 防汚性布帛の製造方法
JPH09296372A (ja) 耐墨汁汚れ性合成繊維布帛及びその製造方法
WO2020175376A1 (ja) 撥水性繊維構造物の製造方法、繊維構造物および衣料
JP3852156B2 (ja) 防汚性合成繊維布帛およびその製造方法
JP6063135B2 (ja) 撥水撥油性を持つ繊維構造物の製造方法
CN101370976A (zh) 纤维结构物
JP5114946B2 (ja) 繊維構造物
JP2007247089A (ja) 繊維構造物
JP2007146313A (ja) 繊維構造物
JPWO2007083596A1 (ja) 繊維構造物
JP6214945B2 (ja) 撥水性花粉付着防止布帛
JP3800670B2 (ja) 耐墨汁汚れ性合成繊維及びその製造方法
WO2019073898A1 (ja) 防汚性繊維構造物
KR102508178B1 (ko) 방오 코팅된 바지의 제조방법 및 이로부터 제조된 기능성 바지
JP2012102427A (ja) 速乾性布帛および繊維製品
JP2008303511A (ja) 繊維構造物
JP2007247090A (ja) 繊維構造物
JP2009228181A (ja) 繊維構造物
JP2008163472A (ja) 繊維構造物
JP2008240206A (ja) 防汚性繊維構造物本発明は、優れた防汚性を有する繊維構造物に関するものである。
JP2019206769A (ja) 防汚性布帛およびその製造方法
JP2015001026A (ja) 繊維構造物
JP2009235613A (ja) 繊維構造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549526

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033800

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016821318

Country of ref document: EP