WO2017005031A1 - 一种呼吸机混氧阀的整体式混氧通道 - Google Patents

一种呼吸机混氧阀的整体式混氧通道 Download PDF

Info

Publication number
WO2017005031A1
WO2017005031A1 PCT/CN2016/079340 CN2016079340W WO2017005031A1 WO 2017005031 A1 WO2017005031 A1 WO 2017005031A1 CN 2016079340 W CN2016079340 W CN 2016079340W WO 2017005031 A1 WO2017005031 A1 WO 2017005031A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen mixing
adjustable piston
mixing channel
oxygen
sealing ring
Prior art date
Application number
PCT/CN2016/079340
Other languages
English (en)
French (fr)
Inventor
张新建
马颖丹
Original Assignee
北京谊安医疗系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京谊安医疗系统股份有限公司 filed Critical 北京谊安医疗系统股份有限公司
Priority to EP16820682.9A priority Critical patent/EP3318303B1/en
Priority to EA201800083A priority patent/EA201800083A1/ru
Publication of WO2017005031A1 publication Critical patent/WO2017005031A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen

Definitions

  • the invention relates to the field of ventilator equipment, and in particular to an integral oxygen mixing channel of a ventilator oxygen mixing valve.
  • the oxygen mixing valve is a key component of the ventilator. Its function is to mix the air and oxygen in a set ratio and provide it to the patient. This requires high accuracy in adjusting the oxygen concentration of the mixed gas, although feedback adjustment can be performed by software. The adjustment accuracy is guaranteed, but if the deviation is too large, the software cannot adjust the oxygen concentration to the set value, and ensuring that the oxygen concentration can be adjusted within a controllable range needs to be ensured by the structure of the oxygen mixing valve. At present, the structure of the mixed oxygen channel is as shown in Figure 1.
  • the adjusting rod 4 pushes the left ball guiding seat 6 to control the opening degree thereof, and the ejector rod 5 moves correspondingly to the other ball guiding seat 6 as the left ball guiding seat 6 moves correspondingly, and the opening degree of the steel ball guiding seat 6 on both sides determines the size of the opening.
  • the ratio of the two gases entering from the air passage 9 and the oxygen entering from the oxygen passage 10 into the oxygen mixing chamber 8 is such that the effective adjustment distance of the gas mixing ratio on the structure is the distance between the two sealing rings 3.
  • the above structure has certain defects.
  • the mounting groove of the sealing ring is respectively on the adjustable piston 2 and the valve body 7, and the adjustable piston sleeve 1 is connected to the adjustable piston 2 through the internal thread, and then connected to the valve body 7 through the external thread.
  • error accumulation machining error and assembly error
  • the sleeve is screwed in or out of the adjustable piston, and then the adjustment rod is required to be adjusted in and out. The debugging efficiency is low, and the adjustment at both ends is often difficult to determine which end is specifically adjusted for, and how much is appropriate.
  • the invention aims at the above structural defects, changes the structure of the adjustable piston, changes the mixed oxygen channel to the integral structure, designs the sealing ring groove on the same part, and ensures the distance dimension of the two sealing rings by mechanical processing,
  • the adjustable piston can be assembled at one time without adjustment. It is not necessary to disassemble the valve body during commissioning. Only the adjustment and adjustment of the adjustment rod can be completed to complete the debugging, which can greatly reduce the difficulty of debugging.
  • the integral oxygen mixing passage of the ventilator oxygen mixing valve of the present invention comprises an adjustable piston sleeve 1, an adjustable piston 2 and a valve body 7, and the adjustable piston sleeve 1 is connected by an internal thread to one end of the adjustable piston 2, and then Connected to the valve body 7 by an external thread, wherein the other end of the adjustable piston 2 extends into the valve body 7;
  • a pair of sealing ring grooves 14 are coaxially disposed at two ends of the adjustable piston 2, and a sealing ring 3 is disposed in the sealing ring groove 14.
  • the adjustable piston 2 region between the two sealing rings 3 is designed as a hollow cylinder. Forming a mixed oxygen channel 12;
  • a plurality of vent holes 13 are provided in the circumference of the mixed oxygen passage 12.
  • a plurality of exhaust holes 13 are uniformly provided along the circumference of the middle portion of the mixed oxygen passage 12. Further most preferably, six vent holes 13 are uniformly disposed along the circumference of the middle portion of the mixed oxygen passage 12.
  • the integral oxygen mixing channel further includes a pair of steel balls 11 respectively disposed oppositely with the two sealing rings 3, and a space is left between the steel balls 11 and the sealing ring 3 Adjust the air intake gap.
  • the total area of the plurality of vent holes 13 is greater than the sum of the intake gaps between the two sets of steel balls 11 and the seal ring 3.
  • the adjustable piston 2 and the valve body 7 are supported and fixed by the amount of compression of the sealing ring.
  • the monolithic oxygen mixing channel structure further includes a ram 5 located within the oxygen mixing channel 12.
  • the invention designs the oxygen passage, the air passage and the two seal ring grooves on the adjustable piston, and ensures the distance and the coaxiality through the dimensional tolerance and the shape tolerance, and the ejector is inserted into the mixed oxygen passage of the adjustable piston. Calculate the inner diameter of the mixed oxygen channel, and leave enough air gap with the ejector pin. Open the vent hole along the circumference of the mixed oxygen channel. The total area of the vent hole is larger than the maximum gap between the steel ball and the seal ring.
  • This structure can ensure the controllability of the mixed oxygen concentration adjustment in the mechanism, which greatly simplifies the debugging process of the production line.
  • the adjustable piston can be assembled once without adjustment, and only the adjustment rod needs to be adjusted, that is, the single-end adjustment can complete the debugging. It can greatly reduce the difficulty of debugging and improve production efficiency.
  • the present invention can be used in other devices that require a proportional mixing of any two gases, in addition to air-oxygen mixing that can be used in a ventilator.
  • FIG. 1 is a schematic cross-sectional view of a conventional oxygen mixing valve of a ventilator oxygen mixing valve.
  • FIG. 2 is a schematic cross-sectional view of the adjustable piston and the mixed oxygen passage of the present invention.
  • FIG 3 is a schematic cross-sectional view showing a mixed oxygen passage of a ventilator oxygen mixing valve of the present invention.
  • Adjustable piston sleeve 2. Adjustable piston 3. Sealing ring 4. Adjusting rod
  • the integral oxygen mixing passage of the ventilator oxygen mixing valve of the present invention comprises an adjustable piston sleeve 1, an adjustable piston 2 and a valve body 7, and the adjustable piston sleeve 1 is adjustable by an internal thread connection.
  • One end of the piston 2 is connected to the valve body 7 by an external thread, wherein the other end of the adjustable piston 2 extends through the valve body 7; as shown in FIG. 2, the two ends of the adjustable piston 2 are respectively
  • the shaft is provided with a pair of sealing ring grooves 14, a sealing ring 3 is disposed in the sealing ring groove 14, and the adjustable piston 2 region between the two sealing rings 3 is designed as a hollow cylinder to form an oxygen mixing channel 12;
  • a plurality of vent holes 13 are provided in the circumference of the passage 12.
  • a plurality of vent holes 13 may be uniformly disposed along the circumference of the middle portion of the mixed oxygen passage 12. Most preferably, six vent holes 13 are uniformly disposed along the circumference of the middle portion of the mixed oxygen passage 12.
  • the integral oxygen mixing channel of the present invention further includes a pair of steel balls 11 respectively disposed oppositely with the two sealing rings 3, and an adjustable intake air gap is left between the steel balls 11 and the sealing ring 3.
  • the total area of the plurality of vent holes 13 is greater than the sum of the intake gaps between the two sets of steel balls 11 and the seal ring 3.
  • the amount of compression between the adjustable piston 2 and the valve body 7 by means of the sealing ring ensures a seal while providing a support fixing effect.
  • the integral oxygen mixing channel also includes a ram 5 located within the oxygen mixing channel 12.
  • the specific working principle of the oxygen mixing channel of the ventilator oxygen mixing valve of the present invention is as follows:
  • the modified assembly structure of the present invention is shown in FIG. 3.
  • the oxygen passage, the air passage and the two seal ring grooves are all designed on the adjustable piston, and the mixed oxygen passage is changed into a one-piece structure, and the seal ring groove is designed in the same
  • the machining method is used to ensure the distance between the two sealing rings, so that the adjustable piston can be assembled at one time without adjustment. Only the adjusting rod can be adjusted during debugging to complete the debugging, which can greatly reduce the debugging difficulty.
  • the ejector rod is filled into the mixed oxygen passage of the adjustable piston.
  • the inlet rod By calculating the inner diameter of the mixed oxygen passage, the inlet rod has sufficient intake clearance and is opened along the circumference of the mixed oxygen passage.
  • the total area of the vent hole and the vent hole is larger than the maximum gap between the steel ball and the seal ring. This structure can ensure the controllability of the mixed oxygen concentration adjustment in the mechanism, which greatly simplifies the debugging process of the production line.
  • the adjustable piston can be assembled once without adjustment, and only the adjustment rod needs to be adjusted, that is, the single-end adjustment can complete the debugging. It can greatly reduce the difficulty of debugging and improve production efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Lift Valve (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种呼吸机混氧阀的整体式混氧通道,涉及呼吸机设备领域,包括可调活塞套(1)、可调活塞(2)和阀体(7),所述可调活塞套(1)通过内螺纹连接可调活塞(2)的一端,再通过外螺纹连接在阀体(7)上,其中,所述可调活塞(2)的另一端伸入贯穿阀体(7);所述可调活塞(2)两端分别同轴设置一对密封圈槽(14),所述密封圈槽(14)内放置密封圈(3),两密封圈(3)之间的可调活塞(2)区域设计成中空圆筒状,形成混氧通道(12)。这种结构可以在机构上保证混氧浓度调节的可控性,大大简化了生产线的调试过程,即单端调整就可以完成调试,可以大大减轻调试难度,提高生产效率。

Description

一种呼吸机混氧阀的整体式混氧通道 技术领域
本发明涉及呼吸机设备领域,具体地,涉及一种呼吸机混氧阀的整体式混氧通道。
背景技术
混氧阀是呼吸机的关键部件,其作用是将空气和氧气按设定比例混合后提供给患者,这就对其调节混合气体氧气浓度的准确性要求较高,虽然通过软件进行反馈调节可以保证调节精度,但若偏差过大软件也无法将氧浓度调节到设定值,而保证氧浓度能在一个可控范围内进行调节就需要由混氧阀的结构来保证。目前,混氧通道的结构多如图1所示。
调整杆4推动其左侧钢珠导向座6,控制其开度,顶杆5随着左侧钢珠导向座6相应移动推动另一钢珠导向座6,两侧钢珠导向座6开度的大小决定了从空气通道9进入的空气和从氧气通道10进入的氧气这两种气体进入混氧腔8的比例,在该结构上气体混合比例的有效调节距离即为两个密封圈3之间的距离。
上述这种结构存在一定的缺陷,密封圈的安装槽分别在可调活塞2和阀体7上,可调活塞套1通过内螺纹连接可调活塞2,再通过外螺纹连接在阀体7上,这样的结构装配后会导致误差累积(加工误差和装配误差),不能保证有效调节距离,在生产线调试混氧阀时也就比较麻烦,需要多次反复拆装阀体装配以调节可调活塞套旋进或旋出可调活塞的距离,而后还需要调节调整杆的进出,调试效率低,两端调整往往不好判断该具体针对哪一端进行调整,调多少合适。
发明内容
本发明针对以上的结构缺陷,更改可调活塞的结构,将混氧通道更改为整体式结构,将密封圈槽设计在同一个零件上,用机械加工的方法保证两密封圈的距离尺寸,可以使可调活塞一次装配好不需调整,调试时不需拆装阀体装配仅需对调整杆进行进出调整就可以完成调试,可以大大减轻调试难度。
本发明的呼吸机混氧阀的整体式混氧通道,包括可调活塞套1、可调活塞2和阀体7,所述可调活塞套1通过内螺纹连接可调活塞2的一端,再通过外螺纹连接在阀体7上,其中,所述可调活塞2的另一端伸入贯穿阀体7;
所述可调活塞2两端分别同轴设置一对密封圈槽14,所述密封圈槽14内放置密封圈3,两密封圈3之间的可调活塞2区域设计成中空圆筒状,形成混氧通道12;
所述混氧通道12的圆周设置若干排气孔13。
根据本发明的整体式混氧通道,作为优选地,沿混氧通道12的中段圆周均匀设置若干排气孔13。进一步最优选地,沿混氧通道12的中段圆周均匀设置六个排气孔13。
根据本发明的整体式混氧通道,所述整体式混氧通道还包括一对钢珠11,分别与两个密封圈3一一相对配合设置,所述钢珠11与密封圈3之间留有可调进气空隙。若干排气孔13的总面积大于两组钢珠11与密封圈3之间的进气空隙之和。
作为优选地,所述的可调活塞2与阀体7之间依靠密封圈的压缩量提供支撑固定。
所述整体式混氧通道结构还包括顶杆5,位于混氧通道12内。
本发明将氧气通道、空气通道及两个密封圈槽都设计在可调活塞上,通过尺寸公差和形位公差保证其距离和同轴度,顶杆装入可调活塞的混氧通道,通过计算设计混氧通道内径尺寸,与顶杆留有足够进气间隙,沿混氧通道圆周开排气孔,排气孔总面积大于钢球与密封圈进气最大间隙即可。这种结构可以在机构上保证混氧浓度调节的可控性,大大简化了生产线的调试过程,可调活塞一次装配好不需调整,仅需对调整杆进行调整,即单端调整就可以完成调试,可以大大减轻调试难度,提高生产效率。此外,本发明除了可以用于呼吸机的空氧混合,也可用于其他需要任意两种气体按比例混合的装置中。
附图说明
图1是现有的呼吸机混氧阀混氧通道剖面示意图。
图2是本发明的可调活塞及混氧通道剖面示意图。
图3是本发明的呼吸机混氧阀混氧通道剖面示意图。
附图标记
1、可调活塞套    2、可调活塞    3、密封圈        4、调整杆
5、顶杆          6、钢珠导向座  7、阀体          8、混氧腔
9、空气通道      10、氧气通道   11、钢珠         12、混氧通道
13、排气孔       14、密封圈槽
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图3所示,本发明的呼吸机混氧阀的整体式混氧通道,包括可调活塞套1、可调活塞2和阀体7,所述可调活塞套1通过内螺纹连接可调活塞2的一端,再通过外螺纹连接在阀体7上,其中,所述可调活塞2的另一端伸入贯穿阀体7;如图2所述,所述可调活塞2两端分别同轴设置一对密封圈槽14,所述密封圈槽14内放置密封圈3,两密封圈3之间的可调活塞2区域设计成中空圆筒状,形成混氧通道12;所述混氧通道12的圆周设置若干排气孔13。
作为优选地,可以沿混氧通道12的中段圆周均匀设置若干排气孔13。最优选地,沿混氧通道12的中段圆周均匀设置六个排气孔13。
本发明的整体式混氧通道,还包括一对钢珠11,分别与两个密封圈3一一相对配合设置,所述钢珠11与密封圈3之间留有可调进气空隙。若干排气孔13的总面积大于两组钢珠11与密封圈3之间的进气空隙之和。
作为优选地,上述可调活塞2与阀体7之间依靠密封圈的压缩量保证密封的同时提供支撑固定作用。
所述整体式混氧通道还包括顶杆5,位于混氧通道12内。
本发明的呼吸机混氧阀混氧通道的具体工作原理如下所示:
本发明更改后的装配结构如图3所示,氧气通道、空气通道及两个密封圈槽都设计在可调活塞上,将混氧通道更改为整体式结构,将密封圈槽设计在同一个零件上,用机械加工的方法保证两密封圈的距离尺寸,可以使可调活塞一次装配好不需调整,调试时仅需对调整杆进行调整就可以完成调试,可以大大减轻调试难度。通过尺寸公差保证两密封圈距离和同轴度,顶杆装入可调活塞的混氧通道,通过计算设计混氧通道内径尺寸,与顶杆留有足够进气间隙,沿混氧通道圆周开排气孔,排气孔总面积大于钢球与密封圈进气最大间隙即可。这种结构可以在机构上保证混氧浓度调节的可控性,大大简化了生产线的调试过程,可调活塞一次装配好不需调整,仅需对调整杆进行调整,即单端调整就可以完成调试,可以大大减轻调试难度,提高生产效率。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变型,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (7)

  1. 一种呼吸机混氧阀的整体式混氧通道,包括可调活塞套(1)、可调活塞(2)和阀体(7),所述可调活塞套(1)通过内螺纹连接可调活塞(2)的一端,再通过外螺纹连接在阀体(7)上,其特征在于,所述可调活塞(2)的另一端伸入贯穿阀体(7);
    所述可调活塞(2)两端分别同轴设置一对密封圈槽(14),所述密封圈槽(14)内放置密封圈(3),两密封圈(3)之间的可调活塞(2)区域设计成中空圆筒状,形成混氧通道(12);
    所述混氧通道(12)的圆周设置若干排气孔(13)。
  2. 根据权利要求1所述的整体式混氧通道,其特征在于,沿混氧通道(12)的中段圆周均匀设置若干排气孔(13)。
  3. 根据权利要求2所述的整体式混氧通道,其特征在于,沿混氧通道(12)的中段圆周均匀设置六个排气孔(13)。
  4. 根据权利要求1-3所述的整体式混氧通道,其特征在于,所述整体式混氧通道还包括一对钢珠(11),分别与两个密封圈(3)一一相对配合设置,所述钢珠(11)与密封圈(13)之间留有可调进气空隙。
  5. 根据权利要求4所述的整体式混氧通道,其特征在于,所述若干排气孔(13)的总面积大于两组钢珠(11)与密封圈(3)之间的进气空隙之和。
  6. 根据权利要求1所述的整体式混氧通道,其特征在于,所述可调活塞(2)与阀体(7)之间依靠密封圈的压缩量提供支撑固定。
  7. 根据权利要求1所述的整体式混氧通道,其特征在于,所述整体式混氧通道还包括顶杆(5),位于混氧通道(12)内。
PCT/CN2016/079340 2015-07-06 2016-04-15 一种呼吸机混氧阀的整体式混氧通道 WO2017005031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16820682.9A EP3318303B1 (en) 2015-07-06 2016-04-15 Integral type oxygen mixing channel for respirator oxygen mixing valve
EA201800083A EA201800083A1 (ru) 2015-07-06 2016-04-15 Клапан смешивания кислорода для респиратора

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520479627.X 2015-07-06
CN201520479627.XU CN205307557U (zh) 2015-07-06 2015-07-06 一种呼吸机混氧阀的整体式混氧通道

Publications (1)

Publication Number Publication Date
WO2017005031A1 true WO2017005031A1 (zh) 2017-01-12

Family

ID=56187936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079340 WO2017005031A1 (zh) 2015-07-06 2016-04-15 一种呼吸机混氧阀的整体式混氧通道

Country Status (4)

Country Link
EP (1) EP3318303B1 (zh)
CN (1) CN205307557U (zh)
EA (1) EA201800083A1 (zh)
WO (1) WO2017005031A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917137A (en) * 1988-09-07 1990-04-17 Symmons Industries, Inc. Pressure-balancing mixing valve
JPH07158766A (ja) * 1993-12-02 1995-06-20 Tsutomu Kaigawa 自動均圧調整弁付き気水混合弁
FR2887950A1 (fr) * 2005-07-01 2007-01-05 Service Ind Sante Novam Sarl Vanne sans siege, a obturateur coulissant pour la distribution du gaz
CN101025235A (zh) * 2006-02-24 2007-08-29 罗伯特·博世有限公司 方向阀或流量控制阀
CN200991483Y (zh) * 2006-12-26 2007-12-19 北京谊安医疗系统股份有限公司 文丘里方式氧浓度补偿装置
CN104208794A (zh) * 2013-05-31 2014-12-17 北京谊安医疗系统股份有限公司 混氧阀和具有该混氧阀的呼吸机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917137A (en) * 1988-09-07 1990-04-17 Symmons Industries, Inc. Pressure-balancing mixing valve
JPH07158766A (ja) * 1993-12-02 1995-06-20 Tsutomu Kaigawa 自動均圧調整弁付き気水混合弁
FR2887950A1 (fr) * 2005-07-01 2007-01-05 Service Ind Sante Novam Sarl Vanne sans siege, a obturateur coulissant pour la distribution du gaz
CN101025235A (zh) * 2006-02-24 2007-08-29 罗伯特·博世有限公司 方向阀或流量控制阀
CN200991483Y (zh) * 2006-12-26 2007-12-19 北京谊安医疗系统股份有限公司 文丘里方式氧浓度补偿装置
CN104208794A (zh) * 2013-05-31 2014-12-17 北京谊安医疗系统股份有限公司 混氧阀和具有该混氧阀的呼吸机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318303A4 *

Also Published As

Publication number Publication date
CN205307557U (zh) 2016-06-15
EP3318303A4 (en) 2018-05-30
EP3318303B1 (en) 2019-09-11
EA201800083A1 (ru) 2018-09-28
EP3318303A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
CN104675760A (zh) 一种喷嘴可调式蒸汽喷射器
CN204312430U (zh) 一种插装式比例节流阀
JP2019517648A (ja) 高流量制御精度の電子膨張弁
GB2572454A (en) Self-contained hydraulic actuator for valve
WO2017005031A1 (zh) 一种呼吸机混氧阀的整体式混氧通道
CN203374243U (zh) 外笼套式节流阀
CN205534292U (zh) 一种降压机构
KR102379924B1 (ko) 고압 과열증기용 감압밸브
WO2023103239A1 (zh) 一种适用于氢能手持火炬的单弹簧高压减压器
KR101668665B1 (ko) 개폐량 조절 볼밸브
CN205534441U (zh) 一种无泄漏燃气减压阀
CN209800788U (zh) 一种流体比例调节阀
CN208519298U (zh) 消音型全封闭卧式减压阀
CN205938024U (zh) 一种储气瓶用减压器结构
CN206592367U (zh) 迷你气缸
CN103982479B (zh) 一种插装式气动高速差动开关阀
CN205479549U (zh) 一种便于更换阀芯的气体减压阀
CN206816735U (zh) 一种内循环式气杆气缸
CN205479567U (zh) 一种具有故障自关闭功能的气体减压阀
CN204729685U (zh) 一种改良的单向节流阀
CN106337948A (zh) 一种燃气发动机用可调节流阀
US2582974A (en) Valve for fluid pressure regulators
CN219911827U (zh) 一种高密封气动高真空球阀
CN104047734A (zh) 航空活塞发动机起动活门及具有其的航空活塞发动机
CN210344044U (zh) 一种对半式空气轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016820682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201800083

Country of ref document: EA