WO2017004986A1 - 触控显示面板及其制作方法、触控显示装置 - Google Patents

触控显示面板及其制作方法、触控显示装置 Download PDF

Info

Publication number
WO2017004986A1
WO2017004986A1 PCT/CN2016/072824 CN2016072824W WO2017004986A1 WO 2017004986 A1 WO2017004986 A1 WO 2017004986A1 CN 2016072824 W CN2016072824 W CN 2016072824W WO 2017004986 A1 WO2017004986 A1 WO 2017004986A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touch driving
driving electrode
electrode
substrate
Prior art date
Application number
PCT/CN2016/072824
Other languages
English (en)
French (fr)
Inventor
刘英明
董学
王海生
陈小川
丁小梁
杨盛际
赵卫杰
刘红娟
邓立广
朱麾忠
李昌峰
刘伟
王磊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/115,945 priority Critical patent/US9927911B2/en
Priority to EP16787702.6A priority patent/EP3321784B1/en
Publication of WO2017004986A1 publication Critical patent/WO2017004986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • Embodiments of the present invention relate to a touch display panel, a method of fabricating the same, and a touch display device.
  • a display using a touch display panel can enable information interaction between a user and a display control host, and thus, the touch display panel can completely or at least partially replace a commonly used input device.
  • the existing display can not only display but also touch control.
  • the most widely used touch display panel is a capacitive touch display panel, and the capacitive touch display panel is divided into a relative relationship with a thin film transistor (TFT) and a contrast filter (CF).
  • TFT thin film transistor
  • CF contrast filter
  • the in-cell capacitive touch display panel has the advantages of high integration, thinness and superior performance as an important development direction of the touch technology.
  • the in-cell capacitive touch display panel has the touch driving electrode Tx disposed on the array substrate, and the touch sensing electrode Rx is disposed on the opposite substrate corresponding to the array substrate, and the setting direction and touch sensing of the touch driving electrode Tx are
  • the electrodes Rx are arranged in a direction perpendicular to each other.
  • 1 shows the structure of a common electrode layer in an array substrate.
  • the common electrode layer includes two parts, the common electrode 11 serves as a permanent common electrode, and the other part of the common electrode is multiplexed into a touch driving electrode in a touch phase, and is multiplexed into a touch.
  • the common electrode of the control drive electrode is an electrode block 12 that is discontinuously discontinuously distributed.
  • each of the electrode blocks 12 is connected to the metal traces made in the same layer of the gate through the vias 15 , and all the metal traces extend to the peripheral lead regions of the array substrate and are connected to the same column of electrode blocks 12 .
  • the metal traces are connected together by a lead wire in the peripheral lead region to form a touch driving electrode, wherein the metal traces are traces distributed in the horizontal direction in the figure, and the lead wires are distributed in the vertical direction in the figure.
  • the metal traces 131 connected to the first column electrode block 12 are connected by the leads 141 in the peripheral lead region to form the touch driving electrode Tx1
  • the metal traces 132 connected to the second column electrode block 12 are passed through the peripheral lead region.
  • the lead wires 142 are connected to form the touch driving electrode Tx2.
  • the gold in the inner touch drive electrode The metal traces 132 of the touch drive electrode Tx2 straddle the electrode block 12 of the touch drive electrode Tx1, so that the inner touch drive electrode
  • the external touch drive electrodes are subjected to crosstalk, which affects the overall touch uniformity of the touch display panel.
  • the lead 141 forming the touch driving electrode Tx1 and the lead 142 forming the touch driving electrode Tx2 are formed in the same layer, a short circuit occurs. Therefore, in actual manufacturing, the lead 141 and the lead 142 need to be formed in different layers. Alternatively, when the lead 141 and the lead 142 are formed in the same layer, an insulating arrangement is required at the intersection of the lead 141 and the lead 142.
  • the touch display panel is prone to crosstalk during the touch phase, and the overall touch uniformity of the touch display panel is poor.
  • a touch display panel includes an array substrate and a counter substrate disposed opposite to each other, and the opposite substrate includes a plurality of touch sensing electrodes distributed in a row direction.
  • the array substrate includes a plurality of display driving electrodes arranged in a row direction, a plurality of touch driving electrode traces distributed in a row direction, and a plurality of touch driving driving electrodes arranged in a row and insulated from the touch driving electrode traces.
  • Each of the touch driving driving electrodes includes a plurality of touch driving electrode blocks, each of the touch driving electrode blocks is connected to a touch driving electrode trace, and different touch driving electrode blocks are connected to different touches. Control the drive electrode routing.
  • Each of the touch driving electrode blocks includes a plurality of intermittently disposed touch driving electrode units, and the touch driving electrode units included in each of the touch driving electrode blocks are electrically connected through the touch driving electrode connection lines.
  • the orthographic projection of the touch driving electrode trace connected to each of the touch driving electrode blocks and the orthographic projection of the touch driving electrode unit included in the touch driving electrode block other than the touch driving electrode block on the array substrate Do not overlap.
  • the array substrate includes a substrate substrate, a touch driving electrode, a gate line, a gate insulating layer, a semiconductor active layer, a source/drain electrode, a passivation layer, and a pixel electrode sequentially disposed on the substrate
  • the touch driving electrodes are time-division multiplexed.
  • the touch driving electrodes are used as common electrodes for inputting common electrode signals; in the touch phase, the touch driving electrodes are used for inputting touch Drive signal.
  • the touch driving electrode traces are disposed in the same layer as the gate lines.
  • each of the touch driving electrode blocks is connected to a touch driving electrode, and includes: a part of the touch driving electrode unit included in each of the touch driving electrode blocks and a touch
  • the drive electrode traces are in direct contact with the connection.
  • the touch driving electrode connection line is disposed in the same layer as the pixel electrode.
  • the touch driving electrode unit included in each of the touch driving electrode blocks is electrically connected through the touch driving electrode connection line, and the touch driving driving electrode connecting line passes through the gate
  • the insulating layer and the via of the passivation layer electrically connect the touch driving electrode unit included in each of the touch driving electrode blocks.
  • each of the touch driving electrode blocks includes the same size of the touch driving electrode unit.
  • the touch driving electrode units included in the different columns of the touch driving electrode block have the same size.
  • a touch display device is also provided.
  • the touch display device includes the touch display panel as described above.
  • a method for fabricating a touch display panel includes a method of fabricating an array substrate and a counter substrate.
  • the method for fabricating a counter substrate includes forming a plurality of touch sensing electrodes distributed in a row direction on the opposite substrate.
  • the method for fabricating an array substrate includes: forming a plurality of column-shaped touch driving electrodes on a substrate, each of the touch driving electrodes comprising a plurality of touch driving electrode blocks, each of the touch driving electrode blocks And comprising a plurality of intermittently-distributed touch driving electrode units; and a plurality of row-oriented touch driving electrode traces are formed on the substrate substrate for performing the above steps, each of the touch driving electrode blocks and one of the touch driving electrodes
  • the touch drive driving electrode block is connected to different touch driving electrode traces; the front projection of the touch driving electrode trace connected to each of the touch driving electrode blocks and the touch driving electrode
  • the erecting projections of the touch driving electrode units included in the touch driving driving electrode block on the array substrate do not overlap; and the plurality of column direction distributions and the touch driving electrode traces are formed on the substrate substrate that completes the above steps.
  • the insulative touch driving electrode connection line, the touch driving electrode unit included in each of the touch driving electrode blocks is electrically connected through the touch driving electrode connection line
  • the method for fabricating an array substrate includes: forming a plurality of column-shaped touch driving electrodes on a substrate by a patterning process, wherein the touch driving electrodes are time-multiplexed, and in the display stage, the touch driving The electrode is used as a common electrode for inputting a common electrode signal; in the touch phase, the touch driving electrode is used for inputting a touch driving signal; on the base substrate that completes the above steps, a gate is formed in the same layer by a patterning process, a gate line and a touch driving electrode trace, wherein the touch driving electrode trace is parallel to the gate line; and a gate insulating layer and a semiconductor active layer are sequentially formed by a patterning process on the substrate on which the above steps are completed a source drain electrode, a passivation layer, and a through the gate insulating layer a via hole of the passivation layer; a pixel electrode and a touch driving electrode connection line are formed in the same layer by a patterning process on the substrate for completing the above steps
  • FIG. 1 is a schematic plan view showing a planar structure of a touch display panel of the prior art
  • FIG. 2 is a schematic plan view showing a touch display panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing another touch display panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a planar structure of still another touch display panel according to an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view of a portion of Figure 4.
  • FIG. 6 is a flowchart of a method for fabricating an array substrate included in a method for fabricating a touch display panel according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for fabricating an array substrate according to an embodiment of the present invention.
  • an embodiment of the present invention provides a touch display panel including an array substrate 20 and a counter substrate (not shown) disposed opposite to each other.
  • the opposite substrate includes a plurality of touch sensors distributed in a row direction.
  • the electrode and the touch sensing electrode may be disposed in a region corresponding to the horizontally distributed black matrix, or may be disposed in a region corresponding to the vertically distributed black matrix.
  • Body settings are not limited.
  • the array substrate 20 includes a plurality of display driving electrodes 201 arranged in a row direction, a plurality of touch driving electrode traces 202 arranged in a row direction, and a plurality of touch driving driving electrodes arranged in a row and insulated from the touch driving electrode traces 202. 203.
  • the row direction refers to the horizontal direction
  • the column direction refers to the vertical direction.
  • the row direction may also refer to the vertical direction
  • the column direction may also refer to the horizontal direction, as long as the touch is ensured.
  • the control sensing electrode and the touch driving electrode are arranged to cross each other (for example, perpendicular to each other), wherein:
  • Each of the touch driving electrode blocks 201 includes a plurality of touch driving electrode blocks 2011. Each of the touch driving electrode blocks 2011 is connected to a touch driving electrode line 202. The different columns of the touch driving electrode blocks 2011 are connected to different touch driving electrodes. Trace 202;
  • Each of the touch driving electrode blocks 2011 includes a plurality of intermittently disposed touch driving electrode units 2012, and the touch driving electrode units 2012 included in each of the touch driving electrode blocks 2011 are electrically connected through the touch driving electrode connection lines 203;
  • the front projection of the touch driving electrode traces 202 connected to each of the touch driving electrode blocks 2011 and the touch driving driving electrode blocks 2011 included in the touch driving electrode block 2011 are on the array substrate.
  • the orthographic projections do not overlap.
  • the touch drive electrode traces 202 of different rows are led out through a lead 204 located in the lead area of the array substrate, and the lead 204 is subsequently formed on the array substrate (not shown).
  • the connection principle and the specific design of the touch driving device are not limited herein.
  • the leads 204 connected to the touch driving electrode traces 202 are disposed on the peripheral lead regions on both sides of the array substrate.
  • the leads 204 may also be disposed on the peripheral leads on one side of the array substrate. Area.
  • the front projection of the touch driving electrode trace 202 connected to the fourth column of the touch driving electrode block 2011 and the touch driving electrode connection line 203 included in the touch driving electrode 201 of the first three columns are included.
  • the touch driving electrode 201 of the fourth column is touch-scanned due to the existence of the parasitic capacitance, the touch driving electrodes 201 of the first three columns are touched. Will be crosstalked.
  • the widths of the touch driving electrode traces 202 and the touch driving electrode connection lines 203 need to be narrower, and when the widths of the touch driving electrode traces 202 and the touch driving electrode connecting lines 203 are narrow, the resistance is Correspondingly, the width of the touch driving electrode trace 202 and the touch driving electrode connection line 203 cannot be set small, and the widths of the touch driving electrode trace 202 and the touch driving electrode connecting line 203 need to be The actual process conditions are set.
  • the inner touch driving electrode trace 202 does not cross in the embodiment of the present invention, as compared with the electrode trace in the outer touch driving electrode of the prior art.
  • the outer touch driving electrode 201 includes a large touch driving electrode unit 2012. Therefore, when the inner touch driving electrode is touch-scanned in the embodiment of the present invention, the inner touch driving electrode is opposite to the outer touch driving electrode. The generated crosstalk is small, thereby improving the touch effect of the touch display panel.
  • FIG. 3 and FIG. 4 show only one touch driving electrode block 2011 in the column direction of each column of the touch driving electrodes in the embodiment of the present invention.
  • the design length of the different touch driving electrode traces 202 in the horizontal direction can be designed to be unequal, as shown in FIG. Compared with FIG. 2, when the touch driving electrode block 2011 of the fourth column is touch-scanned in FIG. 3, the touch driving electrode trace 202 connected to the fourth column of the touch driving electrode block 2011 does not cross.
  • the touch driving electrode block 2011 of the first three columns is used. Therefore, when the touch driving electrode block 2011 of the fourth column is touch-scanned, the touch driving electrode block 2011 of the fourth column does not face the touch driving electrode block of the first three columns. 2011 generated crosstalk.
  • the touch driving electrode unit 2012 includes the same size of the touch driving electrode unit 2012, and the size of the touch driving electrode unit 2012 is set according to actual production requirements.
  • the touch driving electrode units 2012 included in the different columns of the touch driving electrode blocks 2011 have the same size.
  • the size of each touch driving electrode unit 2012 may be set to be the same as the size of the sub-pixel unit included in the array substrate.
  • Each column of the touch driving electrode block 2011 in the embodiment of the present invention may include a column of touch driving electrode units 2012 which are intermittently distributed in the vertical direction, as shown in FIGS. 2 and 3.
  • each column of touch driving electrodes Block 2011 may include more than one column of touch drive electrode units 2012 that are intermittently distributed in a vertical direction.
  • each column of the touch driving electrode block 2011 in the embodiment of the present invention includes two columns of touch driving electrode units 2012 which are intermittently distributed in the vertical direction.
  • the array substrate in the embodiment of the present invention includes a substrate substrate, a touch driving electrode, a gate line, a gate insulating layer, a semiconductor active layer, a source/drain electrode, a passivation layer, and the like, which are sequentially disposed on the substrate.
  • Pixel electrode
  • the touch driving electrode is time-multiplexed, and in the display stage, the touch driving electrode is used as a common electrode for inputting a common electrode signal;
  • the touch driving electrode is used to input a touch driving signal.
  • the touch driving driving electrode on the base substrate may be a permanent common electrode, that is, the partial touch driving electrode unit does not receive the touch during the touch phase.
  • the driving signal, the remaining touch driving electrode unit included in the touch driving electrode receives the touch driving signal during the touch phase.
  • the touch sensing electrodes distributed in the upstream direction of the opposite substrate are at the corresponding positions of the front projection areas on the array substrate, that is, the touch driving electrode units 2012 in the area 206 in the figure
  • the touch driving driving unit unit 2012 does not receive the touch driving signal during the touch phase; the touch driving electrode unit 2012 at the remaining positions receives the touch driving signal during the touch phase. Only one permanent common electrode is shown in FIG.
  • the permanent common electrode is connected to the common electrode trace 207, and the common electrode trace 207 is disposed in the same layer as the touch drive electrode trace 202.
  • the permanent common electrode is disposed in the same layer as the touch driving electrode 201; for example, a permanent common electrode and the touch driving electrode 201 can be simultaneously formed by the same conductive film layer by one patterning process.
  • the common electrode traces 207 are disposed in the same layer as the touch drive electrode traces 202.
  • the common electrode traces 207 and the touch drive electrode traces 202 can be simultaneously formed by the same conductive film layer.
  • the common electrode used as the touch driving electrode is time-multiplexed, and the corresponding voltage for realizing the display image is applied to the common electrode in the image display stage; in the touch display stage, the touch driving voltage is applied to the common electrode to realize the touch function. In the image display stage and the touch display stage, the corresponding voltage for realizing the display image is applied to the permanent common electrode through the common electrode trace 207.
  • the touch driving electrode traces are disposed in the same layer as the gate lines.
  • the touch driving electrode traces and gate lines can be simultaneously formed by the same metal film layer by one patterning process. In this way, the formation of the touch drive electrode trace does not increase the process, nor does it increase Plus production costs.
  • the touch driving electrode connection line is disposed in the same layer as the pixel electrode, and in the actual production process, the touch driving electrode connection line and the pixel electrode can be simultaneously formed by the same patterning process on the same transparent conductive film layer. In this way, the formation of the touch driving electrode connection line does not increase the process and does not increase the manufacturing cost.
  • the touch driving electrode trace 202 is directly in contact with a portion of the touch driving electrode unit 2012 included in the touch driving electrode block 2011, and the direct contact connection can reduce the connection resistance.
  • the direct contact connection does not need to be provided with the via 15 as in FIG. 1, which can reduce the production cost.
  • FIG. 5 is a schematic cross-sectional view of the position of the region 40 in FIG. 4 . It can be seen that the touch driving electrode unit 2012 included in the touch driving electrode block 2011 is directly disposed on the substrate substrate 50 in the embodiment of the present invention.
  • the control driving electrode trace 202 is in direct contact electrical connection with the touch driving electrode unit 2012.
  • a gate insulating layer and a passivation layer 51 are disposed between the touch driving electrode trace 202 and the touch driving electrode connection line 203, and the touch driving electrode connecting line 203 is provided.
  • the touch driving electrode unit 2012 included in each touch driving electrode block 2011 is electrically connected by a via 41 penetrating through the gate insulating layer and the passivation layer.
  • the touch display device includes the touch display panel, and the touch display device can be a liquid crystal display, a liquid crystal television, an organic electroluminescence display OLED panel, or an OLED display. , touch display devices such as OLED TVs or electronic paper.
  • an embodiment of the present invention further provides a method for fabricating a touch display panel, including a method for fabricating an array substrate and a counter substrate, wherein the method for fabricating the opposite substrate includes fabricating a plurality of substrates on the opposite substrate.
  • the touch sensing electrodes distributed in the row direction, and the method for fabricating the array substrate includes:
  • each of the touch driving electrodes comprises a plurality of touch driving electrode blocks, and each of the touch driving electrode blocks includes a plurality of intermittently distributed touches.
  • a plurality of row-oriented touch drive electrode traces are formed on the substrate on which the above steps are performed, and each of the touch drive electrode blocks is connected to a touch drive electrode trace.
  • the control driving electrode block is connected to different touch driving electrode wires; and each of the touch driving electrodes
  • the orthographic projection of the touch-control electrode trace of the pole-connected layer does not overlap with the orthographic projection of the touch-driving electrode unit included in the touch-driving electrode block other than the touch-driving electrode block on the array substrate;
  • the touch driving driving electrode connecting lines insulated from the touch driving electrode traces are formed on the base substrate, and the touch driving driving electrodes included in each of the touch driving electrode blocks are formed on the base substrate.
  • the unit is electrically connected through the touch driving electrode connection line.
  • the method for fabricating an array substrate according to an embodiment of the present invention specifically includes:
  • a plurality of column-shaped touch driving electrodes are formed on the substrate by a patterning process, and the touch driving electrodes are time-multiplexed.
  • the touch driving electrodes are used as common electrodes for input. a common electrode signal; the touch driving electrode is configured to input a touch driving signal during a touch phase;
  • the pixel electrode and the touch driving electrode connection line are formed in the same layer by a patterning process on the substrate on which the above steps are completed, and the touch driving electrode connection line passes each of the touch driving electrode blocks through the via hole.
  • the included touch drive electrode unit is connected.
  • the embodiment of the present invention first deposits a transparent conductive film on the substrate substrate 50, and then forms a touch driving electrode by using a patterning process on the transparent conductive film, and each column of the touch driving electrodes includes a plurality of
  • the touch driving electrode block 2011 includes a plurality of intermittently spaced touch driving electrode units 2012.
  • the transparent conductive film deposited in the embodiment of the present invention may be an indium tin oxide (ITO) film, an indium zinc oxide (IZO) film, or a composite film composed of indium tin oxide and indium zinc oxide.
  • the patterning process in the embodiment of the present invention includes coating, exposing, developing, etching, and some or all processes of removing the photoresist after the photoresist.
  • a metal layer is deposited on the substrate on which the above steps are completed, and then the metal layer is patterned to form a gate (not shown) and a gate line. (not shown) and the touch driving electrode trace 202, wherein the touch driving electrode trace 202 and the gate line are parallel.
  • the metal layer deposited in the embodiment of the present invention may be a single metal layer such as metal molybdenum (Mo), metal aluminum (Al), or metallic nickel (Ni), or may be metal molybdenum (Mo) or aluminum metal (Al).
  • a gate insulating layer (not shown), a semiconductor active layer (not shown), and a source and drain are sequentially formed on a substrate of the above steps by a patterning process.
  • a pole electrode (not shown), a passivation layer (not shown), and a via 41 through the gate insulating layer and the passivation layer.
  • a transparent conductive film is deposited on the substrate on which the above steps are completed, and then the transparent conductive film is patterned to form a pixel electrode (not shown) and touched.
  • the touch driving electrode connection line 203 is connected to the adjacent two touch driving electrode units 2012 through the via 41 in each of the touch driving electrode blocks.
  • the material of the transparent conductive film forming the pixel electrode is the same as the material of the transparent conductive film forming the common electrode.
  • the materials of the two may be different, and the embodiment of the present invention is not public. Specific materials of the electrodes and the pixel electrodes are defined.
  • the touch display panel includes a pair of array substrates and a counter substrate, and the opposite substrate includes a plurality of touch sensors distributed in a row direction.
  • An electrode, the array substrate includes a plurality of column-shaped touch driving electrodes, a plurality of row-oriented touch driving electrode traces, and a plurality of column direction-distributed touch driving electrodes insulated from the touch driving electrode traces
  • Each of the touch driving driving electrodes includes a plurality of touch driving electrode blocks, each of the touch driving electrode blocks is connected to a touch driving electrode, and the touch driving electrode blocks are connected in different columns.
  • Each of the touch driving electrode blocks includes a plurality of intermittently disposed touch driving electrode units, and each of the touch driving electrode blocks includes the touch driving electrode unit
  • the touch driving electrode connection line is electrically connected; the front projection of the touch driving electrode trace connected to each of the touch driving electrode blocks and the touch driving electrode block
  • Other touch driving electrode block orthogonal projection unit comprises a touch driving electrodes do not overlap.
  • the orthographic projection of the touch driving electrode trace connected to each of the touch driving electrode blocks in the embodiment of the present invention and the touch driving electrode unit included in the touch driving electrode block except the touch driving electrode block are The front projections on the array substrate do not overlap.
  • the touch drive electrode traces connected to the inner touch drive electrodes do not span the touch drive electrode unit including the larger area of the outer touch drive electrodes.
  • the inner touch drive electrodes when the touch control electrodes of the inner side are touch-scanned, the inner touch drive electrodes generate less crosstalk to the outer touch drive electrodes, thereby improving the touch effect of the touch display panel.

Abstract

一种触控显示面板及其制作方法、触控显示装置。该触控显示面板包括相对设置的阵列基板(20)和对置基板,所述对置基板包括若干行方向分布的触控感应电极。所述阵列基板(20)包括若干列方向分布的触控驱动电极(201)、若干行方向分布的触控驱动电极走线(202)和若干列方向分布的与所述触控驱动电极走线(202)绝缘设置的触控驱动电极连接线(203)。每一列所述触控驱动电极(201)包括若干触控驱动电极块(2011),每一所述触控驱动电极块(2011)与一所述触控驱动电极走线(202)连接,不同列所述触控驱动电极块(2011)连接不同的触控驱动电极走线(202)。每一所述触控驱动电极块(2011)包括若干间断分布的触控驱动电极单元(2012),每一所述触控驱动电极块(2011)包括的所述触控驱动电极单元(2012)通过所述触控驱动电极连接线(203)电连接。与每一所述触控驱动电极块(2011)连接的触控驱动电极走线(202)的正投影与该触控驱动电极块(2011)以外的其它触控驱动电极块(2011)包括的触控驱动电极单元(2012)在阵列基板(20)上的正投影不重叠。可以减小触控显示面板的串扰,提高触控显示面板的触控效果。

Description

触控显示面板及其制作方法、触控显示装置 技术领域
本发明的实施例涉及一种触控显示面板及其制作方法、触控显示装置。
背景技术
随着显示技术的飞速发展,触控显示面板(Touch Panel)已经逐渐遍及人们的生活中。与仅能提供显示功能的传统显示器相比较,使用触控显示面板的显示器能够使得使用者与显示控制主机之间进行信息交互,因此,触控显示面板可以完全或者至少部分取代常用的输入装置,使得现有的显示器不仅能够显示,还能触控控制。目前,应用最广泛的触控显示面板为电容触控显示面板,电容触控显示面板根据与薄膜晶体管基板(Thin Film Transistor,TFT)及对置基板(Colour Filter,CF)的相对关系分为内嵌式(in-cell)、外嵌式(on-cell)及外挂式等三种。其中,内嵌式电容触控显示面板以其集成度高、薄型、性能优越等优点作为触控技术的重要发展方向。
内嵌式电容触控显示面板将触控驱动电极Tx设置在阵列基板上,将触控感应电极Rx设置在与阵列基板对应的对置基板上,触控驱动电极Tx的设置方向与触控感应电极Rx的设置方向互相垂直。图1示出了阵列基板中公共电极层的结构,公共电极层包括两部分,公共电极11作为永久的公共电极,另一部分公共电极复用为触控阶段的触控驱动电极,复用为触控驱动电极的公共电极为不连续间断分布的电极块12。在形成触控驱动电极时,每一电极块12均与栅极同层制作的金属走线通过过孔15连接,所有金属走线延伸到阵列基板的周边引线区,与同一列电极块12连接的金属走线通过周边引线区中的一条引线连接在一起,形成一触控驱动电极,其中,金属走线为图中沿水平方向分布的走线,引线为图中沿竖直方向分布的走线,如:与第一列电极块12连接的金属走线131通过周边引线区中的引线141连接形成触控驱动电极Tx1,与第二列电极块12连接的金属走线132通过周边引线区中的引线142连接形成触控驱动电极Tx2。
对于上述触控显示面板,在触控阶段,由于内侧的触控驱动电极中的金 属走线会跨过外侧触控驱动电极中的电极块,如:触控驱动电极Tx2中的金属走线132跨过触控驱动电极Tx1中的电极块12,这样对内侧的触控驱动电极进行触控扫描时,外侧的触控驱动电极会受到串扰,影响触控显示面板整体触控均一性。另外,形成触控驱动电极Tx1的引线141和形成触控驱动电极Tx2的引线142若同层制作,则会发生短路,因此,在实际制作过程中,引线141和引线142需要制作在不同层,或,引线141和引线142同层制作时,在引线141和引线142的交叉位置处需要绝缘设置。
综上所述,触控显示面板在触控阶段容易发生串扰,触控显示面板整体触控均一性较差。
发明内容
根据本发明的实施例,提供一种触控显示面板。该触控显示面板包括相对设置的阵列基板和对置基板,所述对置基板包括若干行方向分布的触控感应电极。所述阵列基板包括若干列方向分布的触控驱动电极、若干行方向分布的触控驱动电极走线和若干列方向分布的与所述触控驱动电极走线绝缘设置的触控驱动电极连接线。每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线。每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元,每一所述触控驱动电极块包括的所述触控驱动电极单元通过所述触控驱动电极连接线电连接。与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠。
例如,所述阵列基板包括衬底基板,依次位于所述衬底基板上的触控驱动电极、栅极线、栅极绝缘层、半导体有源层、源漏极电极、钝化层和像素电极;所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;在触控阶段,所述触控驱动电极用于输入触控驱动信号。
例如,所述触控驱动电极走线与所述栅极线同层设置。
例如,所述每一所述触控驱动电极块与一所述触控驱动电极走线连接,包括:每一所述触控驱动电极块包括的部分触控驱动电极单元与一所述触控 驱动电极走线直接接触连接。
例如,所述触控驱动电极连接线与所述像素电极同层设置。
例如,所述每一所述触控驱动电极块包括的所述触控驱动电极单元通过所述触控驱动电极连接线电连接,包括:所述触控驱动电极连接线通过贯穿所述栅极绝缘层和所述钝化层的过孔将每一所述触控驱动电极块包括的所述触控驱动电极单元电连接。
例如,每一列所述触控驱动电极块包括的触控驱动电极单元的大小相同。
例如,不同列所述触控驱动电极块包括的触控驱动电极单元的大小相同。
根据本发明的实施例,还提供一种触控显示装置。所述触控显示装置包括如上所述的触控显示面板。
根据本发明的实施例,还提供一种触控显示面板的制作方法。该方法包括制作阵列基板和对置基板的方法。所述制作对置基板的方法包括在对置基板上制作若干行方向分布的触控感应电极。所述制作阵列基板的方法包括:在衬底基板上制作若干列方向分布的触控驱动电极,每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元;在完成上述步骤的衬底基板上制作若干行方向分布的触控驱动电极走线,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线;与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠;在完成上述步骤的衬底基板上制作若干列方向分布的与所述触控驱动电极走线绝缘的触控驱动电极连接线,每一所述触控驱动电极块包括的触控驱动电极单元通过所述触控驱动电极连接线电连接。
例如,所述制作阵列基板的方法包括:在衬底基板上通过构图工艺制作若干列方向分布的触控驱动电极,所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;在触控阶段,所述触控驱动电极用于输入触控驱动信号;在完成上述步骤的衬底基板上通过构图工艺同层制作栅极、栅极线和触控驱动电极走线,所述触控驱动电极走线和所述栅极线平行;在完成上述步骤的衬底基板上通过构图工艺依次制作栅极绝缘层、半导体有源层、源漏极电极、钝化层以及贯穿所述栅极绝缘层 和所述钝化层的过孔;在完成上述步骤的衬底基板上通过构图工艺同层制作像素电极和触控驱动电极连接线,所述触控驱动电极连接线通过所述过孔将每一所述触控驱动电极块包括的触控驱动电极单元进行连接。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有技术触控显示面板的平面结构示意图;
图2为本发明实施例提供的一种触控显示面板的平面结构示意图;
图3为本发明实施例提供的另一触控显示面板的平面结构示意图;
图4为本发明实施例提供的再一触控显示面板的平面结构示意图;
图5为图4中部分区域的截面结构示意图;
图6为本发明实施例提供的一种触控显示面板的制作方法中包括的制作阵列基板的方法流程图;
图7为本发明实施例提供的制作阵列基板的方法流程图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各层薄膜厚度和区域大小、形状不反应各膜层的真实比例,目的只是示意说明本发明内容。
下面结合附图详细介绍本发明实施例提供的触控显示面板。
如图2所示,本发明实施例提供了一种触控显示面板,包括相对设置的阵列基板20和对置基板(图中未示出),对置基板包括若干行方向分布的触控感应电极,触控感应电极可以设置在横向分布的黑矩阵对应的区域,也可以设置在纵向分布的黑矩阵对应的区域,本发明实施例对触控感应电极的具 体设置不做限定。
阵列基板20包括若干列方向分布的触控驱动电极201、若干行方向分布的触控驱动电极走线202和若干列方向分布的与触控驱动电极走线202绝缘设置的触控驱动电极连接线203。例如,本发明实施例中的行方向指水平方向,列方向指竖直方向,当然,在实际设计中,行方向也可以指竖直方向,列方向也可以指水平方向,只要保证所述触控感应电极与所述触控驱动电极是相互交叉(例如,相互垂直)设置,其中:
每一列触控驱动电极201包括若干触控驱动电极块2011,每一触控驱动电极块2011与一触控驱动电极走线202连接,不同列触控驱动电极块2011连接不同的触控驱动电极走线202;
每一触控驱动电极块2011包括若干间断分布的触控驱动电极单元2012,每一触控驱动电极块2011包括的触控驱动电极单元2012通过触控驱动电极连接线203电连接;
与每一触控驱动电极块2011连接的触控驱动电极走线202的正投影与该触控驱动电极块2011以外的其它触控驱动电极块2011包括的触控驱动电极单元2012在阵列基板上的正投影不重叠。
在实际设计过程中,不同行分布的触控驱动电极走线202均通过一条位于阵列基板周边引线区中的引线204引出,引线204后续与阵列基板上制作的触控驱动装置(图中未示出)连接,触控驱动装置的工作原理及具体设计在这里不做限定。
从图中可以看到,与触控驱动电极走线202连接的引线204设置在阵列基板两侧的周边引线区,当然,在实际设计中,引线204也可以设置在阵列基板一侧的周边引线区。
例如,本发明实施例图2中与第四列触控驱动电极块2011连接的触控驱动电极走线202的正投影与前三列的触控驱动电极201包括的触控驱动电极连接线203的正投影存在重叠区域205,重叠区域205的位置处会产生寄生电容,由于寄生电容的存在,对第四列的触控驱动电极201进行触控扫描时,前三列的触控驱动电极201会受到串扰。重叠区域205的重叠面积越大,产生的寄生电容也越大,寄生电容越大对第四列的触控驱动电极201进行触控扫描时,前三列的触控驱动电极201受到的串扰就越大,因此,在实际设置 中,需要将触控驱动电极走线202和触控驱动电极连接线203的宽度均设置的较窄,而触控驱动电极走线202和触控驱动电极连接线203的宽度较窄时,电阻相应的会增大,因此,触控驱动电极走线202和触控驱动电极连接线203的宽度不能设置的很小,触控驱动电极走线202和触控驱动电极连接线203的宽度需要根据实际工艺情况进行设置。
与图1所示的现有技术内侧触控驱动电极中的金属走线跨过外侧触控驱动电极中的电极块相比,本发明实施例中内侧触控驱动电极走线202并不跨过外侧触控驱动电极201包括的面积较大的触控驱动电极单元2012,因此本发明实施例对内侧的触控驱动电极进行触控扫描时,内侧的触控驱动电极对外侧的触控驱动电极产生的串扰较小,进而提高了触控显示面板的触控效果。
下面的图3和图4仅示出了本发明实施例每一列触控驱动电极在列方向上的一个触控驱动电极块2011。
例如,本发明实施例在设计与每一触控驱动电极块2011连接的触控驱动电极走线202时,为了更好的降低在触控过程中,内侧触控驱动电极对外侧触控驱动电极产生的串扰,不同触控驱动电极走线202在水平方向上的设计长度可以设计的不相等,如图3所示。与图2相比,图3中当对第四列的触控驱动电极块2011进行触控扫描时,由于与第四列触控驱动电极块2011连接的触控驱动电极走线202不跨过前三列的触控驱动电极块2011,因此,对第四列的触控驱动电极块2011进行触控扫描时,第四列的触控驱动电极块2011不对前三列的触控驱动电极块2011产生串扰。
例如,本发明实施例中每一列触控驱动电极块2011包括的触控驱动电极单元2012的大小相同,触控驱动电极单元2012的尺寸根据实际生产的需要进行设置。
为了提高制作触控驱动电极的生产效率,提高触控触控显示面板的触控均匀性,例如,本发明实施例不同列触控驱动电极块2011包括的触控驱动电极单元2012的大小相同。在实际生产过程中,可以将每一个触控驱动电极单元2012的大小设置的与阵列基板包括的亚像素单元的大小相同。
本发明实施例中每一列触控驱动电极块2011可以包括一列沿竖直方向间断分布的触控驱动电极单元2012,如图2和图3所示。在实际设计过程中,若每一个触控驱动电极单元2012的尺寸设计的较小,则每一列触控驱动电极 块2011可以包括大于一列的沿竖直方向间断分布的触控驱动电极单元2012。如图4所示,本发明实施例中每一列触控驱动电极块2011包括两列沿竖直方向间断分布的触控驱动电极单元2012。
例如,本发明实施例中的阵列基板包括衬底基板,依次位于衬底基板上的触控驱动电极、栅极线、栅极绝缘层、半导体有源层、源漏极电极、钝化层和像素电极;
所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;
在触控阶段,所述触控驱动电极用于输入触控驱动信号。
例如,本发明实施例还可以为:位于衬底基板上的触控驱动电极包括的部分触控驱动电极单元作为永久的公共电极,即该部分触控驱动电极单元在触控阶段不接收触控驱动信号,触控驱动电极包括的其余的触控驱动电极单元在触控阶段,接收触控驱动信号。如图2所示,例如,对置基板上行方向分布的触控感应电极在阵列基板上的正投影区域对应位置处的触控驱动电极,即图中区域206中的触控驱动电极单元2012作为永久的公共电极,区域206中的触控驱动电极单元2012在触控阶段不接收触控驱动信号;其余位置处的触控驱动电极单元2012在触控阶段接收触控驱动信号。图2中仅示出了一条永久的公共电极,永久的公共电极与公共电极走线207连接,公共电极走线207与触控驱动电极走线202同层设置。例如,永久的公共电极与触控驱动电极201同层设置;例如,对同一导电膜层通过一次构图工艺即可同时形成永久的公共电极与触控驱动电极201。例如,公共电极走线207与触控驱动电极走线202同层设置;例如,对同一导电膜层通过一次构图工艺即可同时形成公共电极走线207与触控驱动电极走线202。
例如,用作触控驱动电极的公共电极分时复用,在图像显示阶段为公共电极施加实现显示图像的相应电压;在触控显示阶段,为公共电极施加触控驱动电压,实现触控功能;而在图像显示阶段和触控显示阶段,均通过公共电极走线207为永久的公共电极施加实现显示图像的相应电压。
例如,本发明实施例中触控驱动电极走线与栅极线同层设置,在实际生产过程中,对同一金属膜层通过一次构图工艺即可同时形成触控驱动电极走线和栅极线,这样,形成触控驱动电极走线时不会增加工艺过程,也不会增 加制作成本。
例如,本发明实施例中触控驱动电极连接线与像素电极同层设置,在实际生产过程中,对同一透明导电膜层通过一次构图工艺即可同时形成触控驱动电极连接线和像素电极,这样,形成触控驱动电极连接线时不会增加工艺过程,也不会增加制作成本。
例如,如图4所示,本发明实施例中触控驱动电极走线202与触控驱动电极块2011包括的部分触控驱动电极单元2012直接接触连接,直接接触连接能够降低连接电阻,同时,与图1所示的现有技术相比,直接接触连接不需要设置如图1中的过孔15,能够降低生产成本。
图5为图4中区域40位置的截面结构示意图,从图中可以看到,本发明实施例中触控驱动电极块2011包括的触控驱动电极单元2012直接设置在衬底基板50上,触控驱动电极走线202与触控驱动电极单元2012直接接触电连接。
如图4和图5所示,本发明实施例中触控驱动电极走线202和触控驱动电极连接线203之间设置有栅极绝缘层和钝化层51,触控驱动电极连接线203通过贯穿栅极绝缘层和钝化层的过孔41将每一触控驱动电极块2011包括的触控驱动电极单元2012电连接。
本发明实施例还提供了一种触控显示装置,该触控显示装置包括上述的触控显示面板,该触控显示装置可以为液晶显示器、液晶电视、有机电致发光显示OLED面板、OLED显示器、OLED电视或电子纸等触控显示装置。
下面结合附图介绍本发明实施例提供的触控显示面板的制作方法。
如图6所示,本发明实施例还提供了一种触控显示面板的制作方法,包括制作阵列基板和对置基板的方法,其中,制作对置基板的方法包括在对置基板上制作若干行方向分布的触控感应电极,制作阵列基板的方法包括:
S601、在衬底基板上制作若干列方向分布的触控驱动电极,每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元;
S602、在完成上述步骤的衬底基板上制作若干行方向分布的触控驱动电极走线,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线;与每一所述触控驱动电 极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠;
S603、在完成上述步骤的衬底基板上制作若干列方向分布的与所述触控驱动电极走线绝缘的触控驱动电极连接线,每一所述触控驱动电极块包括的触控驱动电极单元通过所述触控驱动电极连接线电连接。
如图7所示,本发明实施例制作阵列基板的方法具体包括:
S701、在衬底基板上通过构图工艺制作若干列方向分布的触控驱动电极,所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;在触控阶段,所述触控驱动电极用于输入触控驱动信号;
S702、在完成上述步骤的衬底基板上通过构图工艺同层制作栅极、栅极线和触控驱动电极走线,所述触控驱动电极走线和所述栅极线平行;
S703、在完成上述步骤的衬底基板上通过构图工艺依次制作栅极绝缘层、半导体有源层、源漏极电极、钝化层以及贯穿所述栅极绝缘层和所述钝化层的过孔;
S704、在完成上述步骤的衬底基板上通过构图工艺同层制作像素电极和触控驱动电极连接线,所述触控驱动电极连接线通过所述过孔将每一所述触控驱动电极块包括的触控驱动电极单元进行连接。
例如,参见图4和图5,本发明实施例首先在衬底基板50上沉积一层透明导电薄膜,之后对该透明导电薄膜采用构图工艺形成触控驱动电极,每一列触控驱动电极包括若干触控驱动电极块2011,每一触控驱动电极块2011包括若干间断分布的触控驱动电极单元2012。本发明实施例中沉积的透明导电薄膜可以为氧化铟锡(ITO)薄膜,也可以为氧化铟锌(IZO)薄膜,也可以为氧化铟锡和氧化铟锌组成的复合薄膜。本发明实施例中的构图工艺包括光刻胶的涂覆、曝光、显影、刻蚀以及刻蚀后去除光刻胶的部分或全部过程。
接着,参见图4和图5,本发明实施例在完成上述步骤的衬底基板上沉积一层金属层,之后对该金属层采用构图工艺形成栅极(图中未示出)、栅极线(图中未示出)和触控驱动电极走线202,其中,触控驱动电极走线202和栅极线平行。本发明实施例中沉积的金属层可以为金属钼(Mo)、金属铝(Al)、金属镍(Ni)等单层金属层,也可以为金属钼(Mo)、金属铝(Al)、 金属镍(Ni)等金属组成的多层金属层。
接着,参见图4,本发明实施例在完成上述步骤的衬底基板上通过构图工艺依次制作栅极绝缘层(图中未示出)、半导体有源层(图中未示出)、源漏极电极(图中未示出)、钝化层(图中未示出)以及贯穿栅极绝缘层和钝化层的过孔41。
接着,参见图4和图5,本发明实施例在完成上述步骤的衬底基板上沉积一层透明导电薄膜,之后对该透明导电薄膜采用构图工艺形成像素电极(图中未示出)和触控驱动电极连接线203,在每一触控驱动电极块中,触控驱动电极连接线203通过过孔41连接相邻的两个触控驱动电极单元2012。例如,本发明实施例形成像素电极的透明导电薄膜的材料与形成公共电极的透明导电薄膜的材料相同,当然,在实际生产过程中,二者的材料也可以不同,本发明实施例并不对公共电极和像素电极的具体材料作限定。
本发明实施例提供一种触控显示面板及其制作方法、触控显示装置,触控显示面板包括相对设置的阵列基板和对置基板,所述对置基板包括若干行方向分布的触控感应电极,所述阵列基板包括若干列方向分布的触控驱动电极、若干行方向分布的触控驱动电极走线和若干列方向分布的与所述触控驱动电极走线绝缘设置的触控驱动电极连接线;每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线;每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元,每一所述触控驱动电极块包括的所述触控驱动电极单元通过所述触控驱动电极连接线电连接;与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元的正投影不重叠。由于本发明实施例中与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠,与现有技术相比,内侧触控驱动电极连接的触控驱动电极走线不跨过外侧触控驱动电极包括的面积较大的触控驱动电极单元,因此,本发明实施例当对内侧的触控驱动电极进行触控扫描时,内侧的触控驱动电极对外侧的触控驱动电极产生的串扰较小,进而能够提高触控显示面板的触控效果。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年7月9日递交的第201510400775.2号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (11)

  1. 一种触控显示面板,包括相对设置的阵列基板和对置基板,所述对置基板包括若干行方向分布的触控感应电极,其中,
    所述阵列基板包括若干列方向分布的触控驱动电极、若干行方向分布的触控驱动电极走线和若干列方向分布的与所述触控驱动电极走线绝缘设置的触控驱动电极连接线;
    每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线;
    每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元,每一所述触控驱动电极块包括的所述触控驱动电极单元通过所述触控驱动电极连接线电连接;
    与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠。
  2. 根据权利要求1所述的触控显示面板,其中,所述阵列基板包括衬底基板,依次位于所述衬底基板上的触控驱动电极、栅极线、栅极绝缘层、半导体有源层、源漏极电极、钝化层和像素电极;
    所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;
    在触控阶段,所述触控驱动电极用于输入触控驱动信号。
  3. 根据权利要求2所述的触控显示面板,其中,所述触控驱动电极走线与所述栅极线同层设置。
  4. 根据权利要求3所述的触控显示面板,其中,所述每一所述触控驱动电极块与一所述触控驱动电极走线连接,包括:
    每一所述触控驱动电极块包括的部分触控驱动电极单元与一所述触控驱动电极走线直接接触连接。
  5. 根据权利要求2至4任一项所述的触控显示面板,其中,所述触控驱动电极连接线与所述像素电极同层设置。
  6. 根据权利要求5所述的触控显示面板,其中,所述每一所述触控驱动电极块包括的所述触控驱动电极单元通过所述触控驱动电极连接线电连接,包括:
    所述触控驱动电极连接线通过贯穿所述栅极绝缘层和所述钝化层的过孔将每一所述触控驱动电极块包括的所述触控驱动电极单元电连接。
  7. 根据权利要求1所述的触控显示面板,其中,每一列所述触控驱动电极块包括的触控驱动电极单元的大小相同。
  8. 根据权利要求7所述的触控显示面板,其中,不同列所述触控驱动电极块包括的触控驱动电极单元的大小相同。
  9. 一种触控显示装置,其中,所述触控显示装置包括权利要求1-8任一权项所述的触控显示面板。
  10. 一种触控显示面板的制作方法,包括制作阵列基板和对置基板的方法,所述制作对置基板的方法包括在对置基板上制作若干行方向分布的触控感应电极,其中,
    所述制作阵列基板的方法包括:
    在衬底基板上制作若干列方向分布的触控驱动电极,每一列所述触控驱动电极包括若干触控驱动电极块,每一所述触控驱动电极块包括若干间断分布的触控驱动电极单元;
    在完成上述步骤的衬底基板上制作若干行方向分布的触控驱动电极走线,每一所述触控驱动电极块与一所述触控驱动电极走线连接,不同列所述触控驱动电极块连接不同的触控驱动电极走线;与每一所述触控驱动电极块连接的触控驱动电极走线的正投影与该触控驱动电极块以外的其它触控驱动电极块包括的触控驱动电极单元在阵列基板上的正投影不重叠;
    在完成上述步骤的衬底基板上制作若干列方向分布的与所述触控驱动电极走线绝缘的触控驱动电极连接线,每一所述触控驱动电极块包括的触控驱动电极单元通过所述触控驱动电极连接线电连接。
  11. 根据权利要求10所述的方法,其中,所述制作阵列基板的方法包括:
    在衬底基板上通过构图工艺制作若干列方向分布的触控驱动电极,所述触控驱动电极分时复用,在显示阶段,所述触控驱动电极用作公共电极,用于输入公共电极信号;在触控阶段,所述触控驱动电极用于输入触控驱动信 号;
    在完成上述步骤的衬底基板上通过构图工艺同层制作栅极、栅极线和触控驱动电极走线,所述触控驱动电极走线和所述栅极线平行;
    在完成上述步骤的衬底基板上通过构图工艺依次制作栅极绝缘层、半导体有源层、源漏极电极、钝化层以及贯穿所述栅极绝缘层和所述钝化层的过孔;
    在完成上述步骤的衬底基板上通过构图工艺同层制作像素电极和触控驱动电极连接线,所述触控驱动电极连接线通过所述过孔将每一所述触控驱动电极块包括的触控驱动电极单元进行连接。
PCT/CN2016/072824 2015-07-09 2016-01-29 触控显示面板及其制作方法、触控显示装置 WO2017004986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/115,945 US9927911B2 (en) 2015-07-09 2016-01-29 Touch display panel and fabrication method thereof, and touch display apparatus
EP16787702.6A EP3321784B1 (en) 2015-07-09 2016-01-29 Touch display panel and manufacturing method therefor, and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510400775.2A CN104898892B (zh) 2015-07-09 2015-07-09 一种触控显示面板及其制作方法、触控显示装置
CN201510400775.2 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017004986A1 true WO2017004986A1 (zh) 2017-01-12

Family

ID=54031590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072824 WO2017004986A1 (zh) 2015-07-09 2016-01-29 触控显示面板及其制作方法、触控显示装置

Country Status (4)

Country Link
US (1) US9927911B2 (zh)
EP (1) EP3321784B1 (zh)
CN (1) CN104898892B (zh)
WO (1) WO2017004986A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898892B (zh) * 2015-07-09 2017-11-17 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置
CN105182582B (zh) * 2015-09-07 2019-03-05 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN105742330A (zh) * 2016-03-16 2016-07-06 京东方科技集团股份有限公司 一种有机发光显示面板及其制作方法、显示装置
CN105607783B (zh) * 2016-03-24 2019-06-07 上海天马微电子有限公司 一种触控显示面板
CN106445230A (zh) * 2016-09-12 2017-02-22 京东方科技集团股份有限公司 一种触控面板及其制备方法、显示装置
CN106775165B (zh) * 2017-01-06 2019-12-24 武汉华星光电技术有限公司 内嵌式触控显示面板及电子装置
CN108932085B (zh) * 2017-05-25 2021-01-22 京东方科技集团股份有限公司 阵列基板、显示装置及其驱动方法
CN107272244B (zh) * 2017-08-15 2020-12-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
US10606388B2 (en) 2017-09-30 2020-03-31 Wuhan China Star Optoelectronics Technology Co., Ltd. Array substrate, manufacturing method thereof and touch display panel
CN107589576B (zh) * 2017-09-30 2020-11-06 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板
CN107894863B (zh) * 2017-11-30 2021-09-28 武汉天马微电子有限公司 一种显示装置和电子设备
KR102493681B1 (ko) * 2018-03-30 2023-01-31 엘지디스플레이 주식회사 터치 디스플레이 장치 및 터치 센싱 방법
KR102463812B1 (ko) * 2018-04-03 2022-11-03 엘지디스플레이 주식회사 터치 디스플레이 장치 및 터치 센싱 방법
CN108469927B (zh) * 2018-04-28 2021-02-09 上海天马微电子有限公司 触控显示面板及其驱动方法、触控显示装置
US10635251B2 (en) 2018-05-30 2020-04-28 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch panel and touch device
CN108762590B (zh) * 2018-05-30 2020-02-07 武汉华星光电半导体显示技术有限公司 触控面板及触控装置
KR102561107B1 (ko) * 2018-09-21 2023-07-27 엘지디스플레이 주식회사 터치표시장치
CN110045871B (zh) * 2019-04-19 2022-06-21 业成科技(成都)有限公司 触控面板及应用其的触控显示装置
US11762489B2 (en) * 2019-12-13 2023-09-19 Ordos Yuansheng Optoelectronics Co., Ltd. Array substrate and method of driving the same, touch display device
CN111142709B (zh) * 2019-12-27 2024-02-23 上海摩软通讯技术有限公司 一种触控面板及显示装置
CN111596789B (zh) * 2020-04-20 2022-07-19 昆山国显光电有限公司 触控面板、触控显示面板及触控显示装置
CN111524461A (zh) * 2020-04-27 2020-08-11 武汉华星光电半导体显示技术有限公司 一种显示模组及其制备方法
CN113064507A (zh) * 2021-03-04 2021-07-02 武汉华星光电半导体显示技术有限公司 触控面板及电子设备
CN114442853A (zh) * 2022-01-28 2022-05-06 云谷(固安)科技有限公司 触控面板及触控显示屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841716A (zh) * 2012-08-21 2012-12-26 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102866815A (zh) * 2012-09-03 2013-01-09 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN202711227U (zh) * 2012-08-21 2013-01-30 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN202736016U (zh) * 2012-09-03 2013-02-13 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103049155A (zh) * 2012-12-13 2013-04-17 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104049799A (zh) * 2014-05-30 2014-09-17 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏及显示装置
CN104898892A (zh) * 2015-07-09 2015-09-09 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830879B (zh) * 2012-08-17 2015-09-09 北京京东方光电科技有限公司 一种内嵌式触摸屏
CN203133794U (zh) * 2013-03-29 2013-08-14 京东方科技集团股份有限公司 一种触摸屏
US9244560B2 (en) * 2013-04-15 2016-01-26 Stmicroelectronics Asia Pacific Pte Ltd Multiple row receiving line pattern for in-cell touchscreen panels
TWM473556U (zh) * 2013-07-17 2014-03-01 Superc Touch Corp 窄邊框高正確性內嵌顯示觸控結構
CN103412675B (zh) * 2013-07-26 2016-07-27 北京京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏及显示装置
CN104217692A (zh) * 2014-08-29 2014-12-17 京东方科技集团股份有限公司 一种内嵌式触控显示装置及其驱动方法
CN104331210B (zh) * 2014-11-27 2018-12-18 京东方科技集团股份有限公司 一种内嵌式触摸屏、其触控检测方法及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841716A (zh) * 2012-08-21 2012-12-26 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN202711227U (zh) * 2012-08-21 2013-01-30 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102866815A (zh) * 2012-09-03 2013-01-09 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN202736016U (zh) * 2012-09-03 2013-02-13 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103049155A (zh) * 2012-12-13 2013-04-17 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104049799A (zh) * 2014-05-30 2014-09-17 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏及显示装置
CN104898892A (zh) * 2015-07-09 2015-09-09 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置

Also Published As

Publication number Publication date
CN104898892A (zh) 2015-09-09
CN104898892B (zh) 2017-11-17
US9927911B2 (en) 2018-03-27
EP3321784B1 (en) 2020-04-29
US20170185208A1 (en) 2017-06-29
EP3321784A4 (en) 2019-01-16
EP3321784A1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2017004986A1 (zh) 触控显示面板及其制作方法、触控显示装置
CN107589576B (zh) 阵列基板及其制作方法、触控显示面板
CN106873212B (zh) 包括盒内式触摸板的背板基板、液晶显示装置及制造方法
US10705367B2 (en) Touch display panel having touch line formed on the same layer as the gate line
WO2017197934A1 (zh) 阵列基板及其制作方法、触控显示装置
US9740344B2 (en) Touch screen and manufacturing method thereof, display device
US9977276B2 (en) Array substrate, display panel and display device
TWI492115B (zh) 內嵌式觸控面板
WO2016201838A1 (zh) 触控面板及其制备方法、触控显示装置
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
TWI662445B (zh) 薄膜電晶體基板及具有薄膜電晶體的觸控顯示面板
WO2017008472A1 (zh) Ads阵列基板及其制作方法、显示器件
WO2017008450A1 (zh) 平面转换模式阵列基板及其制作方法、显示器件
WO2016029558A1 (zh) 触摸基板及其制作方法、触摸显示装置
WO2016192121A1 (zh) 自电容式内嵌触摸屏及其制备方法、液晶显示器
WO2018205660A1 (zh) 一种触控基板、触控显示面板和触控显示装置
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
KR20120054838A (ko) 액정표시장치 및 그 제조방법
WO2015180288A1 (zh) 内嵌式触控面板及显示装置
US10606388B2 (en) Array substrate, manufacturing method thereof and touch display panel
TW201504868A (zh) 內嵌式觸控顯示面板
WO2017045222A1 (zh) 一种触摸面板、阵列基板及其制造方法
CN105739753A (zh) 使用内嵌式触摸模式的液晶显示装置及其制造方法
US20160253026A1 (en) Touch Panel, Method of Fabricating the Same and Touch Display Device
WO2015176437A1 (zh) 阵列基板及其制作方法、触控显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15115945

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016787702

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16787702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016787702

Country of ref document: EP