WO2017003059A1 - 연속 반응-재생 올레핀 제조방법 - Google Patents

연속 반응-재생 올레핀 제조방법 Download PDF

Info

Publication number
WO2017003059A1
WO2017003059A1 PCT/KR2016/000612 KR2016000612W WO2017003059A1 WO 2017003059 A1 WO2017003059 A1 WO 2017003059A1 KR 2016000612 W KR2016000612 W KR 2016000612W WO 2017003059 A1 WO2017003059 A1 WO 2017003059A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrocarbon
olefin
reducing gas
reaction
Prior art date
Application number
PCT/KR2016/000612
Other languages
English (en)
French (fr)
Inventor
최원춘
박용기
공수진
박선영
홍웅기
박덕수
김철진
Original Assignee
한국화학연구원
에스케이가스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 에스케이가스 주식회사 filed Critical 한국화학연구원
Publication of WO2017003059A1 publication Critical patent/WO2017003059A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for preparing continuous reaction-regenerated olefins.
  • Olefins such as ethylene and propylene are widely used in the petrochemical industry. Generally these olefins are obtained in the pyrolysis process of naphtha. However, the petrochemical industry requires higher amounts of olefins, so olefins are also produced through dehydrogenation processes using catalysts of lower hydrocarbons.
  • Catalytic catalytic dehydrogenation processes for the production of olefins utilize various types of lower hydrocarbon compounds as raw materials and show excellent olefin production yields.
  • the hydrocarbon is in contact with the catalyst, even though the olefin yield is high, the numerical value decreases with time, and thus there is a problem in that the conversion rate of the hydrocarbon and the yield of the olefin as a whole decrease.
  • a circulating fluidized bed process for shortening the contact time of hydrocarbon and catalyst has been proposed.
  • the hydrocarbon generates by-products such as carbon dioxide and carbon monoxide, which are not olefins, rapidly reacting with the catalyst at the initial stage of the reaction. There is this.
  • the object of the present invention is the step of pretreating the catalyst by supplying a reducing gas to the catalyst for preparing the olefin from a hydrocarbon (step 1); Preparing an olefin from a hydrocarbon using the catalyst pretreated in step 1 (step 2); Separating the catalyst used in step 2 from the prepared olefin and regenerating the separated catalyst (step 3); And recycling the catalyst regenerated in step 3 to the process of step 1 (step 4), which is achieved by a continuous reaction-regenerated olefin production method which repeats steps 1 to 4.
  • Step 2 may be performed in a fluidized reactor.
  • the pretreatment of step 1 may be performed by contacting the reducing gas and the catalyst for 0.5 to 5 seconds.
  • the reducing gas may be supplied at 10% to 30% of the metal molar flow rate of the catalyst.
  • the reducing gas of step 1 may include at least one hydrocarbon having an alkane structure of C 1 to C 4 .
  • the reducing gas of step 1 may include at least one hydrocarbon having a linear or branched C 1 to C 4 alkane structure.
  • the reducing gas of step 1 may include at least one gas selected from the group consisting of carbon monoxide, hydrogen, ethylene, ethane and methane.
  • the reducing gas of step 1 may be a by-product generated when preparing olefins from hydrocarbons in step 2.
  • the temperature of the catalyst may increase from 20 ° C. to 60 ° C.
  • the selectivity of step 2 may be 85% to 95%.
  • the hydrocarbon may include propane and the olefin may comprise propylene.
  • An object of the present invention is to supply a reducing gas to the metal oxide catalyst to reduce the oxidation number of the metal component of the catalyst and to increase the temperature of the catalyst 20 °C to 60 °C pre-treatment of the catalyst (step 1); Dehydrogenating propane using the catalyst pretreated in step 1 to produce propylene (step 2); Separating the catalyst used in step 2 from the prepared olefin and then regenerating the separated catalyst by increasing the oxidation number of the metal component of the catalyst using an oxidizing gas (step 3); And recycling the catalyst regenerated in step 3 to the process of step 1 (step 4), which is achieved by a continuous reaction-regenerated olefin production method which repeats steps 1 to 4.
  • the reducing gas of step 1 may be a by-product generated in step 2.
  • the hydrocarbon reaction unit for producing an olefin from a hydrocarbon;
  • a hydrocarbon supply unit supplying a hydrocarbon to the hydrocarbon reaction unit;
  • a reducing gas supply unit for supplying a reducing gas capable of causing an exothermic reaction with oxygen species contained in the catalyst;
  • a catalyst pretreatment unit for pretreating the catalyst through a reducing gas supplied from the reducing gas supply unit;
  • a catalyst supply unit supplying the catalyst pretreated in the catalyst pretreatment unit to the hydrocarbon reaction unit; Separation unit for separating the olefin and the catalyst prepared in the hydrocarbon reaction unit; And an air reaction unit for regenerating the catalyst separated in the separation unit.
  • a method for carrying out the production method of claim 1 is achieved by a continuous reaction-regeneration and fluidized olefin production apparatus.
  • An object in another aspect of the present invention is a hydrocarbon reaction unit for producing an olefin from a hydrocarbon;
  • a hydrocarbon supply unit supplying a hydrocarbon to the hydrocarbon reaction unit;
  • a reducing gas supply unit for supplying a reducing gas capable of causing an exothermic reaction with oxygen species contained in the catalyst;
  • a catalyst pretreatment unit for pretreating the catalyst through a reducing gas supplied from the reducing gas supply unit;
  • a catalyst supply unit supplying the catalyst pretreated in the catalyst pretreatment unit to the hydrocarbon reaction unit; Separation unit for separating the olefin and the catalyst prepared in the hydrocarbon reaction unit; And an air reaction unit for regenerating the catalyst separated in the separation unit.
  • the method comprises: pre-treating a catalyst for preparing an olefin from a hydrocarbon by supplying a reducing gas to the catalyst pretreatment unit ( Step 1); Supplying the catalyst pretreated in step 1 to the hydrocarbon reaction part through a catalyst supply part, and supplying a hydrocarbon raw material to a hydrocarbon reaction part through a hydrocarbon supply part to prepare an olefin from a hydrocarbon (step 2); Separating the catalyst used in step 2 and the prepared olefin in the separation unit, and then introducing the separated catalyst into the air reaction unit to regenerate the catalyst (step 3); And pretreatment by introducing the catalyst regenerated in step 3 into the catalyst pretreatment unit (step 4), wherein the reducing gas is a by-product produced during the preparation of the olefin from the hydrocarbon in step 2 This is achieved by the recycling of by-products from the production of olefins.
  • the production method of the present invention can improve the selectivity and yield of olefins through a process of pretreatment by supplying a reducing gas to the catalyst as compared to the conventional process.
  • the hydrocarbon is prevented from contacting the catalyst at the beginning of the reaction to be converted into unnecessary by-products, thereby facilitating the process of converting the hydrocarbon into olefins, and enabling efficient utilization of the catalyst.
  • the catalyst is directly heated through the catalytic reaction of the pretreatment process, the energy cost for improving the catalytic reaction temperature is reduced compared to the conventional indirect heating method, and the apparatus investment cost for this is also reduced.
  • 1 to 3 are graphs showing the results of analyzing the temperature and reaction product of the catalyst layer according to the propane dehydrogenation reaction in Comparative Example 2;
  • FIG. 4 is a schematic representation of an apparatus for implementing the method of the present invention.
  • 9 to 12 are graphs showing the comparison according to the presence or absence of reducing gas pretreatment of the catalyst in Example 6 and Comparative Example 2 of the present invention.
  • Pretreatment of the catalyst by supplying a reducing gas to a catalyst for preparing olefins from hydrocarbons (step 1);
  • step 2 Preparing an olefin from a hydrocarbon using the catalyst pretreated in step 1 (step 2);
  • step 3 Separating the catalyst used in step 2 from the prepared olefin and regenerating the separated catalyst (step 3); And
  • step 4 Recycling the catalyst regenerated in step 3 to the process of step 1 (step 4);
  • step 1 is a step of pretreating the catalyst by supplying a reducing gas to a catalyst for preparing an olefin from a hydrocarbon.
  • the production process of the invention relates in particular to a dehydrogenation process for producing olefins from hydrocarbons.
  • the production method of the present invention can be used in a process for producing propylene by dehydrogenating propane.
  • a catalyst in particular, a metal oxide catalyst is generally used when preparing the olefin, and when the olefin is prepared from a hydrocarbon through a catalyst in the prior art, as shown in the graphs of FIGS.
  • the initial reaction tends to increase rapidly, and then the temperature gradually decreases.
  • the initial part of the reaction for example, about 5 seconds from the start of the reaction, corresponds to a part unnecessary for the production of the olefin when preparing the olefin from the hydrocarbon.
  • step 1 the pretreatment of step 1 focuses on the generation of a by-product in the prior art, that is, when the temperature of the catalyst increases in the graphs of FIGS. 1 to 3. If the preceding section is increased, the olefin can be produced immediately without a by-product section when feeding the catalyst with hydrocarbon.
  • the pretreatment of step 1 may be performed by contacting the catalyst and the reducing gas for 0.5 to 5 seconds.
  • the time range during which the contact is carried out specifies the degree of time that the temperature of the catalyst is approximately increased, thereby allowing the catalyst to be in an optimal state for olefin production. Can be pretreated.
  • step 1 when the contact between the catalyst and the reducing gas is less than 0.5 seconds, the optimization of the catalyst according to the pretreatment of step 1 may not be achieved. When the contact between the catalyst and the reducing gas exceeds 5 seconds, the yield of the olefin is rather increased. Degradation problems may occur.
  • the amount of reducing gas may be 10% to 30% of the catalyst metal molar flow rate. If the amount of reducing gas is less than 10% of the molar amount of the catalyst metal, the selectivity decreases in the subsequent dehydrogenation reaction, and the conversion rate in the subsequent dehydrogenation reaction decreases if the amount of the reducing gas is greater than 30% of the molar flow rate of the catalyst metal.
  • the temperature of the catalyst may rise from 20 ° C. to 60 ° C., more preferably from 30 ° C. to 50 ° C.
  • the selectivity increase by reduction gas pretreatment is less effective in the dehydrogenation reaction, while the thermal stability of the catalyst decreases when the temperature of the catalyst rises above 60 ° C. by pretreatment. do.
  • the reducing gas in the pretreatment step of step 1 is carbon dioxide or a small amount of unreacted reducing gas generated after contact with the catalyst is led to the air reaction unit is discharged.
  • the separation cost is increased, or the size of the separation portion is increased.
  • the reducing gas of step 1 may include at least one hydrocarbon having a linear or branched C 1 to C 4 alkane structure.
  • the reducing gas of step 1 is a straight chain or may comprise a hydrocarbon group of at least one member having a C 1 to alkene structure of C 4 in the side chain are, or can include alkyne structure a hydrocarbon of C 1 to C 4 have.
  • the reducing gas of step 1 may include a gas such as carbon monoxide, hydrogen, ethylene, ethane, methane.
  • the gas, such as carbon monoxide may react with oxygen on the surface of the highly reactive catalyst to pretreat the catalyst, and the temperature of the catalyst may increase due to the exotherm generated by the pretreatment.
  • the catalyst of step 1 for example a metal oxide catalyst, may be a chemical reaction of hydrogen, which is a kind of reducing gas, and M x O y + H 2 ⁇ M x ' O y ' + H 2 O.
  • the reaction is an exothermic reaction in which water is generated, thereby increasing the temperature of the catalyst. In this pretreatment, the oxidation number of the catalyst metal is reduced.
  • the reducing gas of step 1 may be a by-product generated when preparing the olefin from a hydrocarbon.
  • carbon monoxide, hydrogen, ethylene, ethane, methane and the like are usually generated as by-products.
  • the production method of the present invention can be used as a reducing gas for pretreatment of the catalyst such as carbon monoxide generated as a by-product, there is an effect that can reduce the cost of the manufacturing process.
  • step 2 is a step of preparing an olefin from a hydrocarbon using the catalyst pretreated in step 1 above.
  • the catalyst of step 2 is pretreated by a reducing gas before reacting with hydrocarbons, so that the olefin can be produced more efficiently compared to the catalyst in the prior art, that is, a catalyst that has been introduced into the olefin production process without pretreatment. have.
  • the selectivity in the olefin manufacturing step is improved, the selectivity may be 85% or more, more specifically 85% to 95%.
  • the catalyst in the state of which the temperature is increased through the pretreatment of step 1 may be produced without a by-product section.
  • the olefin can be produced from a hydrocarbon. This not only enables the mass production of olefins, but also increases the efficiency in terms of economics of the process.
  • the contact time between the pretreated catalyst and the raw material hydrocarbon may be 0.5 to 10 seconds, preferably 2 to 3 seconds.
  • the contact time of the hydrocarbon and the catalyst is less than 0.5 seconds, there is a problem that the conversion rate of the hydrocarbon is lowered, and if the contact time is more than 10 seconds, the amount of active lattice oxygen participating in the reaction among the lattice oxygen of the catalyst is drastically reduced. Problems may occur in which the selectivity of olefins is reduced.
  • the catalyst in contact with the hydrocarbon in step 2, that is, the catalyst pretreated in step 1 may be a metal oxide catalyst, in this case, the reaction in which the olefin is prepared from the hydrocarbon may be represented by the following scheme 1. In such an olefin manufacturing process, the oxidation number of the catalyst metal is reduced.
  • M is at least one metal selected from the group consisting of chromium, vanadium, manganese, iron, cobalt, molybdenum, copper, zinc, cerium and nickel, and y / x> y '/ x'.
  • the catalyst used in the above steps 1 and 2 may be a metal oxide, as shown in the above scheme, for example, may be in a form supported on a carrier.
  • the metal oxide catalyst is an oxygen species carrier, and when the oxygen species carrier is used as a catalyst, a reaction occurs in which lattice oxygen on the catalyst reacts with hydrogen released from the hydrocarbon to generate water and olefins. Accordingly, the olefin selectivity is high, and the oxidative exothermic reaction of the desorbed hydrogen, which compensates for the lack of reaction energy due to the dehydrogenation endothermic reaction, proceeds, and the manufacturing method thereof is also simple, so that there is an advantage in that economical and mass production is possible.
  • the carrier may be, for example, alumina, but is not limited thereto.
  • the catalyst may be selected by selecting an appropriate material that can be used as a carrier of the catalyst.
  • step 3 is a step of separating the catalyst reacted in step 2 with the prepared olefin and regenerating the separated catalyst.
  • the metal oxide may be regenerated through the catalyst reacted in Step 2, for example, the reaction represented by Scheme 2 below.
  • M x ' O y ' of Scheme 2 means a catalyst on which the reaction as in Scheme 1 is carried out
  • Scheme 2 is a reaction to the reaction with oxygen after the catalyst reacted with the hydrocarbon is separated from the olefin through the separation unit It is shown to be performed by. Regeneration increases the oxidation number of the catalytic metal.
  • step 4 is a step of recycling the catalyst regenerated in step 3 to the process of step 1.
  • step 3 of the present invention By feeding the catalyst regenerated in step 3 of the present invention back to the process of step 1, the catalyst is recycled, thereby making it possible to produce olefins more economically.
  • step 3 since the reaction in which the catalyst is regenerated in step 3 is exothermic, it is possible to raise the temperature of the catalyst through the generated heat energy, and thus, pretreatment may be performed more smoothly through the reducing gas in step 1 being recycled.
  • the production method of the present invention can not only improve the yield of olefin production through the pretreatment of the catalyst, but also can regenerate and repeatedly use the catalyst used in the production of olefin, thereby further improving the economics of the process.
  • the olefin can be continuously produced.
  • the production method of the present invention is a method that can produce olefins more economically than in the prior art, in which there was no pretreatment for the catalyst. Therefore, in the case of the olefin according to the present invention there is an advantage that is more economical than the prior art.
  • a hydrocarbon supply unit supplying a hydrocarbon to the hydrocarbon reaction unit
  • a reducing gas supply unit for supplying a reducing gas capable of causing an exothermic reaction with oxygen species contained in the catalyst
  • a catalyst supply unit supplying the catalyst pretreated in the catalyst pretreatment unit to the hydrocarbon reaction unit;
  • It provides a continuous reaction-regeneration olefin production apparatus comprising a; air reaction unit for regenerating the catalyst separated in the separation unit.
  • a reducing gas capable of causing an exothermic reaction with active oxygen species included in the catalyst is supplied to the catalyst pretreatment unit 60 through the reducing gas supply unit 70.
  • the catalyst pretreated by the reducing gas in the catalyst pretreatment unit is supplied to the hydrocarbon reaction unit 30 through a catalyst supply unit 40, and the reaction in which the olefin is generated from the supplied hydrocarbon is performed in the hydrocarbon reaction unit. .
  • the olefin produced in the hydrocarbon reaction unit may be obtained by being separated from the catalyst used in the separation unit 50, and the catalyst separated in the separation unit may be supplied to the air reaction unit 20 to be regenerated.
  • the catalyst regenerated in the air reaction unit 20 may be supplied again to the catalyst pretreatment unit 60, and then supplied to the hydrocarbon reaction unit again after the pretreatment.
  • the manufacturing apparatus is a device for performing the olefin production method of the present invention as described above, it is possible to produce the olefin from the hydrocarbon while performing the pretreatment process of the catalyst through a reducing gas, by the pre-treatment more than before Olefin can be produced in high yields.
  • a hydrocarbon supply unit supplying a hydrocarbon to the hydrocarbon reaction unit
  • a reducing gas supply unit for supplying a reducing gas capable of causing an exothermic reaction with oxygen species contained in the catalyst
  • a catalyst supply unit supplying the catalyst pretreated in the catalyst pretreatment unit to the hydrocarbon reaction unit;
  • step 1 Supplying a reducing gas to the catalyst pretreatment unit to pretreat the catalyst for preparing the olefin from the hydrocarbon (step 1);
  • step 2 Supplying the catalyst pretreated in step 1 to the hydrocarbon reaction part through a catalyst supply part, and supplying a hydrocarbon raw material to a hydrocarbon reaction part through a hydrocarbon supply part to prepare an olefin from a hydrocarbon (step 2);
  • step 3 Separating the catalyst used in step 2 and the prepared olefin in the separation unit, and then introducing the separated catalyst into the air reaction unit to regenerate the catalyst (step 3); And
  • step 4 introducing the catalyst regenerated in step 3 into the catalyst pretreatment unit (step 4).
  • the reducing gas is a by-product produced during the preparation of the olefin from the hydrocarbon in step 2, it provides a method for recycling by-products generated during the production of olefin from a hydrocarbon.
  • the recycling method of the present invention includes the same technical features as described in the method for producing and manufacturing the olefins described above, but relates to a method for recycling the by-product as a reducing gas for pretreatment of the catalyst, Since it is as described above except used as a reducing gas, the description thereof is omitted.
  • the recycling method of the present invention is to use by-products, ie, by-products of carbon monoxide, hydrogen, methane, ethane, ethylene and the like generated as a reducing gas for pretreatment of the catalyst when preparing olefins from hydrocarbons.
  • Step 1 ⁇ -Al 2 O 3 having a size of 45-120 um obtained by spray drying and calcining an alumina sol was prepared as a carrier.
  • Step 2 To impregnate the metal oxide on the carrier prepared in Step 1, a wet impregnation method was used. Specifically, the alumina carrier prepared in step 1 was immersed in dilute CrO 3 precursor solution, it was left at room temperature for 12 hours, and then the alumina carrier was dried in a 120 ° C. oven.
  • the dried carrier was calcined at 700 ° C. for 6 hours, whereby 17.5 wt% Chromium oxide / Alumina (Al 2 O 3 ) Catalyst was prepared.
  • Step 1 Pretreatment of hydrogen (H 2 ) with the catalyst through a reducing gas supply prior to supplying the chromium oxide / alumina (Al 2 O 3 ) catalyst prepared in the above preparation to the reaction via the catalyst supply And the temperature of the catalyst passing through the catalyst supply part was increased to 40 ° C. to 50 ° C. by pretreatment and heated up to about 660 ° C.
  • Step 2 The catalyst heated in step 1 was supplied to the hydrocarbon reaction section, and propane was supplied to the hydrocarbon reaction section through the hydrocarbon supply section to prepare propylene.
  • Step 3 The catalyst reacted with propylene prepared in step 2 was separated in a separation unit to obtain propylene, and the reacted catalyst was fed back into the air reaction unit to regenerate.
  • Step 4 The catalyst regenerated in the air reaction unit was repeatedly performed in step 1, and then supplied to the hydrocarbon reaction unit.
  • Propylene was prepared in the same manner as in Example 1 except for supplying carbon monoxide (CO) instead of hydrogen as the reducing gas in Step 1 of Example 1 of the present invention.
  • CO carbon monoxide
  • Propylene was prepared in the same manner as in Example 1 except for supplying methane (CH 4 ) instead of hydrogen as a reducing gas in Step 1 of Example 1 of the present invention.
  • Propylene was prepared in the same manner as in Example 1 except that ethylene (C 2 H 4 ) instead of hydrogen was supplied as the reducing gas in Step 1 of Example 1 of the present invention.
  • Propylene was prepared in the same manner as in Example 1 except that ethane (C 2 H 6 ) instead of hydrogen was supplied as the reducing gas in Step 1 of Example 1 of the present invention.
  • Propylene was prepared in the same manner as in Example 1 except that no reducing gas was used in Step 1 of Example 1 of the present invention.
  • Chromium oxide / Alumina (Al 2 O 3 ) prepared in the preparation example of the present invention 0.4 g of the catalyst was fixed on a fritz in a reactor made of quartz, and the furnace temperature was maintained at 630 ° C., followed by propane. The space velocity was 8,230 liter C3 / (kg cat -hr), through which propylene was produced.
  • Example 1 Example 2
  • Example 3-1 Example 3-2 Reducing gas H 2 CO CH 4 CH 4 Reduction Gas Supply (mol / Cr mol) 0.0443 0.0394 0.0361 0.0354 Catalyst Supply Part Catalyst Temperature ( o C) 597 660 660 661 660 Catalyst / propane ratio (weight / weight) 31.5 26.2 21 27.6 24.1 Propane Conversion Rate (%) 42.2 49.0 42.32 45.33 39.09 Propylene Yield (%) 30.76 44.15 30.95 34.69 31.04 Propylene Selectivity (%) 72.89 90.1 73.13 76.53 79.41
  • Example 3-3 Example 3-4 Example 4
  • Example 5 Reducing gas CH 4 CH 4 C 2 H 4 C 2 H 6 Reduction Gas Supply (mol / Cr mol) 0.0529 0.0529 0.0537 0.0762 Catalyst Supply Part Catalyst Temperature ( o C) 670 670 670 670 Catalyst / propane ratio (weight / weight) 38.6 62.1 38 37.5 Propane Conversion Rate (%) 47.53 52.02 51.01 50.01 Propylene Yield (%) 35.19 47.92 40.08 44.51 Propylene Selectivity (%) 74.04 92.11 78.57 89.00
  • the propylene yield can be seen to increase from 30.76% to 44.51%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 연속 반응-재생 올레핀 제조방법에 관한 것으로, 탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리하는 단계(단계 1); 상기 단계 1에서 전처리된 촉매를 사용하여 탄화수소로부터 올레핀을 제조하는 단계(단계 2); 상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 재생하는 단계(단계 3); 및 단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환시키는 단계(단계 4);를 포함하고, 상기 단계 1 내지 4를 반복적으로 수행한다.

Description

연속 반응-재생 올레핀 제조방법
본 발명은 연속 반응-재생 올레핀 제조방법에 관한 것이다.
에틸렌, 프로필렌과 같은 올레핀은 석유화학산업에 있어서 널리 사용되고 있다. 일반적으로 이러한 올레핀은 나프타의 열분해 공정에서 얻어진다. 그러나 석유화학산업에서는 더 많은 양의 올레핀이 요구되므로, 저급 탄화수소의 촉매를 이용하여 탈수소 공정을 통해서도 올레핀이 생산된다.
올레핀 생산을 위한 촉매 접촉식 탈수소 공정은 다양한 종류의 저급 탄화수소 화합물을 원료로 사용하며, 우수한 올레핀 생산 수율을 보이고 있다. 다만, 탄화수소가 촉매와 접촉하는 반응 초기에는 올레핀 수율이 높음에도 불구하고 시간이 지남에 따라 그 수치가 감소하여, 전체적으로 탄화수소의 전환율과 올레핀의 수율이 감소하는 문제가 있었다. 이러한 문제를 해결하고자 탄화수소와 촉매의 접촉시간을 짧게 제한하는 순환유동층 공정에 대해서도 제안되었다.
하지만, 탄화수소와 촉매의 접촉시간을 제한한 공정에서도 반응 초기에 탄화수소가 촉매와의 반응을 통해서 올레핀이 아닌 이산화탄소, 일산화탄소 등의 부산물을 급격히 생성시키기 때문에, 반응원료 전환율은 높지만 선택도가 매우 낮은 단점이 있다.
이에, 본 발명에서는 기존 제조 공정보다 경제성과 생산성이 우수한 환원가스(전처리 가스) 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법에 대해 연구하던 중, 촉매가 탄화수소와 반응하기 전에 미리 환원가스를 처리해줌으로써, 보다 높은 올레핀 선택도 및 수율을 보일 뿐만 아니라, 촉매 반응 온도 향상을 위한 에너지 비용이 절감되고, 이를 위한 장치 투자비가 감소되는 환원가스 전처리 후 연속 반응-재생 올레핀 제조 제조방법을 개발하고 발명을 완성하였다.
본 발명의 목적은 연속 반응-재생 올레핀 제조방법을 제공하는 데 있다.
상기 본 발명의 목적은 탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리하는 단계(단계 1); 상기 단계 1에서 전처리된 촉매를 사용하여 탄화수소로부터 올레핀을 제조하는 단계(단계 2); 상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 재생하는 단계(단계 3); 및 단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환 시키는 단계(단계 4);를 포함하고, 상기 단계 1 내지 4를 반복적으로 수행하는 연속 반응-재생 올레핀 제조방법에 의해 달성된다.
상기 단계 2는 유동식 반응기에서 수행될 수 있다.
상기 단계 1의 전처리는 환원가스와 촉매를 0.5 내지 5 초 동안 접촉시켜 수행될 수 있다.
상기 단계 1의 전처리에서, 상기 환원가스는 상기 촉매의 금속 몰유량의 10% 내지 30%로 공급될 수 있다.
상기 단계 1의 환원가스는 C1 내지 C4의 알카인 구조를 갖는 적어도 1종의 탄화수소를 포함할 수 있다.
상기 단계 1의 환원가스는 직쇄 또는 측쇄의 C1 내지 C4의 알케인 구조를 갖는 적어도 1종의 탄화수소를 포함할 수 있다.
상기 단계 1의 환원가스는 일산화탄소, 수소, 에틸렌, 에탄 및 메탄을 포함하는 군으로부터 선택되는 적어도 1종의 가스를 포함할 수 있다.
상기 단계 1의 환원가스는, 상기 단계 2에서 탄화수소로부터 올레핀을 제조시 생성된 부산물일 수 있다.
상기 전처리 단계에서 상기 촉매의 온도가 20℃ 내지 60℃ 상승할 수 있다.
상기 단계 2의 선택도는 85% 내지 95%일 수 있다.
상기 단계 2에서는 탈수소화반응이 이루어지며, 상기 탄화수소는 프로판을 포함하며 상기 올레핀은 프로필렌을 포함할 수 있다.
본 발명의 목적은 금속산화물 촉매에 환원가스를 공급하여 상기 촉매의 금속성분의 산화수를 감소시키며 상기 촉매의 온도를 20℃ 내지 60℃ 증가시켜 상기 촉매를 전처리하는 단계(단계 1); 상기 단계 1에서 전처리된 촉매를 사용하여 프로판을 탈수소화하여 프로필렌을 제조하는 단계(단계 2); 상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 산화가스를 이용하여 상기 촉매의 금속성분의 산화수를 증가시켜 재생하는 단계(단계 3); 및 단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환 시키는 단계(단계 4);를 포함하고, 상기 단계 1 내지 4를 반복적으로 수행하는 연속 반응-재생 올레핀 제조방법에 의해 달성된다.
상기 단계 1의 환원가스는, 상기 단계 2에서 생성된 부산물일 수 있다.
본 발명의 다른 측면의 목적은, 탄화수소로부터 올레핀을 제조하는 탄화수소 반응부; 상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부; 촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부; 상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부; 상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부; 탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및 상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는 제1항의 제조방법을 수행하기 위한, 연속 반응-재생 및 유동식 올레핀 제조장치에 의해 달성된다.
본 발명의 다른 측면에서의 목적은 탄화수소로부터 올레핀을 제조하는 탄화수소 반응부; 상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부; 촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부; 상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부; 상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부; 탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및 상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는 장치를 이용하여 올레핀을 제조함에 있어서, 상기 촉매 전처리부로 환원가스를 공급하여 탄화수소로부터 올레핀을 제조하기 위한 촉매를 전처리하는 단계(단계 1); 상기 단계 1에서 전처리된 촉매를 촉매 공급부를 통해 상기 탄화수소 반응부로 공급하고, 탄화수소 공급부를 통해 탄화수소 반응부로 탄화수소 원료를 공급하여, 탄화수소로부터 올레핀을 제조하는 단계(단계 2); 상기 단계 2에서 사용된 촉매와 제조된 올레핀을 상기 분리부에서 분리한 후, 분리된 촉매를 공기 반응부로 도입하여 촉매를 재생하는 단계(단계 3); 및 단계 3에서 재생된 촉매를 촉매 전처리부로 도입하여 전처리하는 단계(단계 4);를 포함하고, 상기 환원가스는 상기 단계 2에서 탄화수소로부터 올레핀을 제조시 생성된 부산물인 것을 특징으로 하는, 탄화수소로부터 올레핀 제조시 발생하는 부산물의 재활용 방법에 의해 달성된다.
본 발명의 제조방법은 종래 공정에 비해 촉매에 환원가스를 공급하여 전처리하는 공정을 통해, 올레핀의 선택도와 수율을 향상시킬 수 있다. 또한, 탄화수소가 반응 초기에 촉매와 접촉하여 불필요한 부산물로 전환되는 것을 방지하여, 탄화수소가 올레핀으로 전환되는 과정이 용이하고, 촉매의 효율적인 활용이 가능하다. 또한, 전처리 공정의 촉매 반응을 통해 촉매가 직접적으로 가열되기 때문에, 종전의 간접 가열법에 비해 촉매 반응 온도 향상을 위한 에너지 비용이 절감되고, 이를 위한 장치 투자비도 감소된다.
도 1 내지 도 3은 비교예 2에서 프로판 탈수소 반응에 따른 촉매층의 온도 및 반응생성물 분석결과를 나타낸 그래프이고;
도 4는 본 발명의 제조방법을 실시하는 장치를 개략적으로 나타낸 도면이고;
도 5는 본 발명의 실험예 1에서 촉매의 환원가스인 수소 전처리 후, 촉매 층의 온도 변화를 나타낸 그래프이고;
도 6은 본 발명의 실험예 1에서 촉매의 환원가스인 일산화탄소 전처리 후, 촉매 층의 온도 변화를 나타낸 그래프이고;
도 7은 본 발명의 실험예 1에서 촉매의 환원가스인 메탄 전처리 후, 촉매 층의 온도 변화를 나타낸 그래프이고;
도 8은 본 발명의 실험예 1에서 촉매의 환원가스인 에틸렌 전처리 후, 촉매 층의 온도 변화를 나타낸 그래프이고;
도 9 내지 도 12는 본 발명의 실시예 6과 비교예 2에서 촉매의 환원가스 전처리과정 유무에 따른 비교를 나타낸 그래프이다.
본 발명은,
탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리하는 단계(단계 1);
상기 단계 1에서 전처리된 촉매를 사용하여 탄화수소로부터 올레핀을 제조하는 단계(단계 2);
상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 재생하는 단계(단계 3); 및
단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환 시키는 단계(단계 4);를 포함하고,
상기 단계 1 내지 4를 반복적으로 수행하여, 연속적으로 촉매의 재생 및 올레핀을 제조하는 방법을 제공한다.
이하, 본 발명에 따른 연속 반응-재생 및 유동식 올레핀 제조방법을 각 단계별로 상세히 설명한다.
본 발명에 따른 환원가스 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법에 있어서, 단계 1은 탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리하는 단계이다.
본 발명의 제조방법은, 특히 탄화수소로부터 올레핀을 제조하기 위한 탈수소 방법에 관한 것이다. 특히, 본 발명의 제조방법은 프로판을 탈수소화하여 프로필렌을 제조하는 공정에 사용될 수 있다. 이때 상기 올레핀을 제조 시에는 통상적으로 촉매, 특히 금속산화물 촉매가 사용되고 있으며 종래기술에서 촉매를 통해 탄화수소로부터 올레핀을 제조할 시에는 도 1 내지 도 3의 그래프를 통해 나타낸 바와 같이 촉매의 온도가 반응시간이 경과됨에 따라 반응 초기 급격히 증가하는 추세를 나타내며, 이후 온도가 점차적으로 감소하는 것을 알 수 있다.
이때, 시간에 따른 촉매의 온도변화와 함께, 전환율 및 올레핀의 선택도를 살펴보았을 때, 촉매의 온도가 증가되는 반응의 초반부에는 전환율이 100%에 달하는 것으로 나타나고 있으나, 탄화수소 원료의 산화 반응에 의한 이산화탄소가 대부분 발생하는 것을 알 수 있다.
즉, 촉매의 온도가 증가하는 반응의 초반부에서는 올레핀이 아닌 부산물이 탄화수소로부터 발생되는 것을 알 수 있으며, 촉매의 온도가 점차 감소하는 시점부터 탄화수소로부터 올레핀이 제조되는 것을 도 1 내지 도 3의 그래프로부터 알 수 있다.
따라서, 도 1 내지 도 3의 그래프를 참조하였을 때, 탄화수소로부터 올레핀을 제조시, 반응의 초반부, 예를 들어 반응개시 시점으로부터 약 5초 동안은 올레핀의 제조에 불필요한 부분에 해당함을 알 수 있다.
이에, 본 발명의 제조방법에서는 이와 같이 종래기술에서는 부산물인 이산화탄소가 발생하는 반응구간으로 인하여, 촉매의 효율성이 저하되는 것을 방지하고자 단계 1에서 탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리한다.
상기 단계 1의 전처리는 예를 들어 종래기술 즉 도 1 내지 도 3의 그래프에서 촉매의 온도가 증가하는 시점에서 부산물이 발생하는 것에 착안한 것으로써, 탄화수소로 공급되기 전 촉매를 미리 전처리하여 온도가 증가되는 구간을 선행해놓는다면, 탄화수소로 촉매를 공급시 부산물이 발생하는 구간없이 즉각적으로 올레핀을 제조할 수 있기 때문이다.
이때, 상기 단계 1의 전처리는 촉매와 환원가스를 0.5 내지 5 초 동안 접촉시켜 수행될 수 있다. 상기 접촉이 수행되는 시간 범위는, 도 1 내지 도 3의 그래프에서 나타낸 바와 같이, 대략적으로 촉매의 온도가 상승되는 시간의 정도를 특정한 것으로써, 이를 통해 올레핀 제조를 위한 최적의 상태로 상기 촉매를 전처리할 수 있다.
다만, 촉매와 환원가스의 접촉이 0.5초 미만인 경우에는, 단계 1의 전처리에 따른 촉매의 최적화가 이루어지지 않을 수 있으며, 촉매와 환원가스의 접촉이 5초를 초과하는 경우에는 오히려 올레핀의 수율이 저하되는 문제가 발생할 수 있다.
환원가스의 양은 촉매 금속 몰유량의 10% 내지 30%일 수 있다. 환원가스의 양이 촉매 금속 몰량의 10%보다 작으면 이후 탈수소화 반응에서 선택율이 감소하고 환원가스의 양이 촉매 금속 몰유량의 30%보다 크면 이후 탈수소화 반응에서 전환율이 감소한다.
전처리에 의해 촉매의 온도는 20℃ 내지 60℃ 상승할 수 있으며, 더 바람직하게는 30℃ 내지 50℃ 상승할 수 있다. 전처리에 의해 촉매의 온도가 20℃보다 낮게 상승하면 이후 탈수소화 반응에서 환원가스 전처리에 의한 선택율 증가 효과가 적고, 반면, 전처리에 의해 촉매의 온도가 60℃보다 높게 상승하면 촉매의 열적 안정성이 감소한다.
이때, 상기 단계 1의 전처리 단계에서 환원가스는 촉매와 접촉 후 생성된 이산화탄소 또는 미량의 미반응 환원가스는 공기반응부로 유도되어 배출된다. 탄화수소 반응부로 유도되는 경우 분리비용이 증가하거나, 분리부 규모가 증가하게 된다.
이때, 상기 단계 1의 환원가스는 직쇄 또는 측쇄의 C1 내지 C4의 알케인 구조를 갖는 적어도 1종의 탄화수소를 포함할 수 있다.
또는, 상기 단계 1의 환원가스는 직쇄 또는 측쇄의 C1 내지 C4의 알켄 구조를 갖는 적어도 1종의 탄화수소를 포함할 수 있으며, 또는 C1 내지 C4의 알카인 구조인 탄화수소를 포함할 수 있다.
한편, 상기 단계 1의 환원가스는 일산화탄소, 수소, 에틸렌, 에탄, 메탄 등의 가스를 포함할 수 있다. 상기 일산화탄소 등의 가스는 반응성이 높은 촉매 표면의 산소와 반응하여 촉매를 전처리할 수 있으며, 이러한 전처리에 의한 발열로 인하여 촉매의 온도가 상승하게 된다.
일례로써, 상기 단계 1의 촉매, 예를 들어 금속 산화물 촉매는 환원가스의 일종인 수소와 MxOy + H2 → Mx Oy + H2O의 화학반응이 이루어질 수 있으며, 상기 반응은 물이 발생하는 발열반응인바, 이를 통해 촉매의 온도를 상승시킬 수 있다. 이러한 전처리 과정에서 촉매 금속의 산화수는 감소된다.
또한, 상기 단계 1의 환원가스는 탄화수소로부터 올레핀을 제조시 생성된 부산물일 수 있다. 탄화수소로부터 올레핀을 제조시에는 통상적으로 일산화탄소, 수소, 에틸렌, 에탄, 메탄 등이 부산물로써 발생한다. 본 발명의 제조방법에서는 이와 같이 부산물로써 발생하는 일산화탄소 등의 촉매를 전처리하는 환원가스로써 사용할 수 있으며, 이를 통해 제조공정의 비용을 절감할 수 있는 효과가 있다.
본 발명의 제조방법에 있어서, 단계 2는 상기 단계 1에서 전처리된 촉매를 사용하여 탄화수소로부터 올레핀을 제조하는 단계이다.
본 발명에서 단계 2의 촉매는 탄화수소와 반응하기 전에 환원가스에 의해 전처리됨에 따라, 종래기술에서의 촉매, 즉 전처리 없이 올레핀의 제조공정에 투입되었던 촉매와 비교하여, 더욱 효율적으로 올레핀을 제조해낼 수 있다. 또한 본 발명에 따르면 올레핀 제조 단계에서의 선택도가 향상되는데, 선택도는 85%이상일 수 있으며, 더 자세하게는 85% 내지 95%일 수 있다.
즉, 앞서 언급한 바와 같이, 올레핀 제조시 촉매의 온도가 증가하는 짧은 시간동안에는 불필요한 부산물이 생성되는 단점이 있었으나, 상기 단계 1의 전처리를 통해 온도가 증가된 상태의 촉매는 부산물이 생성되는 구간 없이도, 탄화수소로부터 올레핀을 제조해낼 수 있다. 이에 따라 올레핀의 대량생산이 가능할 뿐 아니라, 공정의 경제성 측면에서도 더욱 효율성을 증대시킬 수 있다.
상기 단계 2에서 올레핀을 제조시, 전처리된 촉매와 원료물질인 탄화수소가 접촉하는 시간은 0.5 내지 10 초, 바람직하게는 2 내지 3 초일 수 있다.
만약, 탄화수소와 촉매의 접촉 시간이 0.5 초 미만인 경우 탄화수소의 전환율이 저하되는 문제점이 있고, 접촉시간이 10 초를 초과하는 경우에는 촉매의 격자 산소 중 반응에 참여하는 활성 격자 산소의 양이 급격히 줄어들어 올레핀의 선택도가 감소하는 문제점이 발생할 수 있다.
이때, 단계 2에서 탄화수소와 접촉하는 촉매, 즉 상기 단계 1에서 전처리된 촉매는, 금속 산화물 촉매일 수 있으며, 이 경우 탄화수소로부터 올레핀이 제조되는 반응은 하기 반응식 1로 표현될 수 있다. 이러한 올레핀 제조 공정에서 촉매 금속의 산화수는 감소하게 된다.
<반응식 1>
탄화수소 + MxOy의 격자산소 → 올레핀 + H2O + Mx'Oy'
(이때, 상기 반응식의 MxOy는 상기 단계 1의 촉매이며,
상기 M은 크롬, 바나듐, 망간, 철, 코발트, 몰리브덴, 구리, 아연, 세륨 및 니켈을 포함하는 군으로부터 선택되는 적어도 1종의 금속이며, y/x > y'/x' 이다.)
상기 단계 1 및 2에서 사용되는 촉매는 상기 반응식에서 나타낸 바와 같이 금속 산화물일 수 있으며, 예를 들어 담체에 담지된 형태일 수 있다. 상기 금속 산화물 촉매는 산소 종 전달체로써, 이와 같이 산소 종 전달체를 촉매로 사용하는 경우, 촉매 상의 격자 산소와 탄화수소로부터 탈리된 수소가 반응하여 물과 올레핀이 생성되는 반응이 일어난다. 이에 따라, 올레핀 선택도가 높으며, 탈수소 흡열 반응에 의한 반응 에너지 부족을 보완하는 탈리된 수소의 산화 발열반응이 진행되고, 그 제조방법 또한 간단하기 때문에 경제적이면서 대량생산이 가능한 장점이 있다.
한편, 상기 담체는 예를 들어 알루미나일 수 있으나, 이에 제한되는 것은 아니며 촉매의 담체로써 사용될 수 있는 적절한 물질을 선택하여 촉매를 적용시킬 수 있다.
본 발명에 따른 제조방법에 있어서, 단계 3은 상기 단계 2에서 반응한 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 재생하는 단계이다.
상기 단계 2에서 반응한 촉매, 예를 들어 하기 반응식 2로 표시되는 반응을 통해 금속산화물이 재생될 수 있다. 이때, 반응식 2의 Mx'Oy '는 상기 반응식 1과 같은 반응이 수행된 촉매를 의미하며, 반응식 2는 탄화수소와 반응한 촉매가 분리부를 통해 올레핀과 분리된 후의 재생이 산소와의 반응에 의해서 수행되는 것을 나타낸 것이다. 재생에 의해 촉매 금속의 산화수는 증가된다.
<반응식 2>
Mx'Oy' + O2 → MxOy
본 발명에 따른 제조방법에 있어서, 단계 4는 단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환 시키는 단계이다.
본 발명의 단계 3에서 재생된 촉매를 다시 단계 1의 공정에 공급함으로써, 촉매를 재활용하므로 보다 경제적으로 올레핀을 제조 가능하다.
또한, 상기 단계 3에서 촉매가 재생되는 반응은 발열반응이므로, 이때 발생한 열에너지를 통해 촉매의 온도를 상승시킬 수 있는바, 재순환되는 단계 1에서 환원가스를 통해 전처리가 더욱 원활하게 수행될 수 있다.
즉, 탄화수소로부터 올레핀을 제조할 시 요구되는 온도까지 촉매의 온도를 승온시킴에 있어서, 상기 단계 3의 재생에 의하여 에너지가 촉매로 공급되기 때문에 보다 경제적으로 촉매의 온도를 높일 수 있다.
본 발명의 제조방법은 이와 같이, 촉매의 전처리를 통한 올레핀의 제조 수율을 향상시킬 수 있을 뿐 아니라, 올레핀 제조에 사용되는 촉매를 재생하여 반복적으로 사용할 수 있는 바, 공정의 경제성을 더욱 향상시킬 수 있을 뿐 아니라, 올레핀을 연속적으로 제조할 수 있는 장점이 있다.
본 발명의 제조방법은 앞서 언급한 바와 같이, 촉매에 대한 전처리가 없었던 종래기술과 비교하여 더욱 경제적으로 올레핀을 제조해낼 수 있는 방법이다. 따라서, 본 발명에 따른 상기 올레핀의 경우 종래기술보다 더욱 경제성이 우수한 장점이 있다.
나아가, 본 발명은,
탄화수소로부터 올레핀을 제조하는 탄화수소 반응부;
상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부;
촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부;
상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부;
상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부;
탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및
상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는, 연속 반응-재생 올레핀 제조장치를 제공한다.
이때, 본 발명의 제조장치의 일례를 나타낸 도 4의 모식도를 통해 나타내었으며, 이하 도면을 참조하면 본 발명의 제조장치를 상세히 설명한다.
도 4에 나타난 바와 같이, 환원가스 공급부(70)를 통해서 촉매가 갖고 있는 활성 산소종과 발열반응을 일으킬 수 있는 환원가스가 촉매 전처리부(60)로 공급된다. 이때, 상기 촉매 전처리부에서 환원가스에 의해 전처리된 촉매는 촉매공급부(40)를 통해 상기 탄화수소 반응부(30)으로 공급되며, 상기 탄화수소 반응부에서는 공급된 탄화수소로부터 올레핀이 생성되는 반응이 수행된다.
상기 탄화수소 반응부에서 생성된 올레핀은, 분리부(50)에서 사용된 촉매와 분리되어 수득될 수 있으며, 분리부에서 분리된 촉매는 공기반응부(20)로 공급되어 재생될 수 있다.
또한, 상기 공기 반응부(20)에서 재생된 촉매는 다시 촉매 전처리부(60)로 재공급되어, 전처리 후 다시 탄화수소 반응부로 공급될 수 있다.
즉, 상기 제조장치는 앞서 설명한 바와 같은 본 발명의 올레핀 제조방법을 수행하기 위한 장치로써, 환원가스를 통해 촉매의 전처리과정을 수행하면서 탄화수소로부터 올레핀을 제조할 수 있으며, 상기 전처리에 의하여 종래보다 더욱 높은 수율로 올레핀을 제조해낼 수 있다.
더 나아가, 본 발명은,
탄화수소로부터 올레핀을 제조하는 탄화수소 반응부;
상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부;
촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부;
상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부;
상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부;
탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및
상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는 장치를 이용하여 올레핀을 제조함에 있어서,
상기 촉매 전처리부로 환원가스를 공급하여 탄화수소로부터 올레핀을 제조하기 위한 촉매를 전처리하는 단계(단계 1);
상기 단계 1에서 전처리된 촉매를 촉매 공급부를 통해 상기 탄화수소 반응부로 공급하고, 탄화수소 공급부를 통해 탄화수소 반응부로 탄화수소 원료를 공급하여, 탄화수소로부터 올레핀을 제조하는 단계(단계 2);
상기 단계 2에서 사용된 촉매와 제조된 올레핀을 상기 분리부에서 분리한 후, 분리된 촉매를 공기 반응부로 도입하여 촉매를 재생하는 단계(단계 3); 및
단계 3에서 재생된 촉매를 촉매 전처리부로 도입하여 전처리하는 단계(단계 4);를 포함하고,
상기 환원가스는 상기 단계 2에서 탄화수소로부터 올레핀을 제조시 생성된 부산물인 것을 특징으로 하는, 탄화수소로부터 올레핀 제조시 발생하는 부산물의 재활용 방법을 제공한다.
이때, 본 발명의 재활용 방법은, 앞서 설명한 올레핀의 제조방법 및 제조장치에서 설명한 바와 동일한 기술적 특징을 포함하고 있으며 다만 촉매를 전처리하기 위한 환원가스로써 부산물을 재활용하는 방법에 관한 것인 바, 부산물이 환원가스로써 사용되는 것 이외에는 상기한 바와 같기 때문에 이에 대한 설명은 생략한다.
본 발명의 재활용 방법은, 탄화수소로부터 올레핀을 제조시 촉매를 전처리하기 위한 환원가스로써 부산물, 즉 탄화수소로부터 올레핀 제조시 발생하는 일산화탄소, 수소, 메탄, 에탄, 에틸렌 등의 부산물을 사용하는 것이다.
즉, 불필요한 부산물을 폐기하는 것이 아닌, 촉매의 전처리에 사용할 수 있는바 부산물의 폐기에 따른 경제적 손실을 해결할 수 있는 것으로써, 올레핀 제조를 더욱 경제적으로 수행할 수 있을 뿐 아니라, 부산물의 재활용에 따른 환경적인 이점 또한 나타낼 수 있다.
이하 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 단 하기 실시예들은 본 발명의 설명을 위한 것일 뿐 본 발명의 범위가 하기 실시예에 의하여 한정되는 것은 아니다.
<제조예>
단계 1: 알루미나 졸(sol)을 분무 건조 및 소성하여 얻어진 45~120 um 크기의 γ-Al2O3을 담체로 준비하였다.
단계 2: 상기 단계 1에서 준비된 담체에 금속 산화물을 담지하기 위해, 습식 함침법을 사용하였다. 상세하게는, 상기 단계 1에서 준비된 알루미나 담체를 묽은 CrO3 전구체 용액에 침지한 후, 이를 상온에서 12시간 방치하였으며, 이후 상기 알루미나 담체를 120 ℃ 오븐에 넣어 건조하였다.
건조된 담체는 700 ℃에서 6시간 소성하였으며, 이를 통해 17.5 wt% 크롬 산화물(Chromium oxide)/알루미나(Al2O3) 촉매를 제조하였다.
<실시예 1> 올레핀 제조 1
단계 1: 상기 제조예에서 제조된 크롬 산화물(Chromium oxide)/알루미나(Al2O3) 촉매를 촉매 공급부를 통해 반응부에 공급하기에 앞서, 수소(H2)를 환원가스 공급부를 통해 촉매 전처리부로 공급하였고, 촉매공급부를 지나는 촉매의 온도는 전처리에 의해 40℃ 내지 50℃가 상승하여 660℃ 정도까지 승온되었다.
단계 2: 상기 단계 1에서 승온된 촉매를 탄화수소 반응부로 공급하고, 프로판을 탄화수소 공급부를 통하여 탄화수소 반응부로 공급하여 프로필렌을 제조하였다.
단계 3: 상기 단계 2에서 제조된 프로필렌과 반응한 촉매를 분리부에서 분리하여 프로필렌을 수득하고, 반응한 촉매는 다시 공기 반응부로 공급하여 재생하였다.
단계 4: 상기 공기 반응부에서 재생된 촉매를 단계 1의 과정을 반복수행한 후, 탄화수소 반응부로 공급하였다.
<실시예 2> 올레핀 제조 2
본 발명의 실시예 1의 단계 1에서 환원가스로써 수소가 아닌 일산화탄소(CO)를 공급한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 프로필렌을 제조하였다.
<실시예 3> 올레핀 제조 3
본 발명의 실시예 1의 단계 1에서 환원가스로써 수소가 아닌 메탄(CH4)을 공급한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 프로필렌을 제조하였다.
<실시예 4> 올레핀 제조 4
본 발명의 실시예 1의 단계 1에서 환원가스로써 수소가 아닌 에틸렌(C2H4)을 공급한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 프로필렌을 제조하였다.
<실시예 5> 올레핀 제조 5
본 발명의 실시예 1의 단계 1에서 환원가스로써 수소가 아닌 에탄(C2H6)을 공급한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 프로필렌을 제조하였다.
<실시예 6> 올레핀 제조 6
본 발명의 하기 비교예 2에서 프로판을 흘려주기 전, 환원가스 처리량을 0.11 mol H2/mol Cr로 하고, 퍼니스(furnace)온도를 680 ℃로 유지시킨 것을 제외하고 하기 비교예 2와 동일하게 수행하여 프로필렌을 제조하였다.
<비교예 1>
본 발명의 실시예 1의 단계 1에서 환원가스를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 프로필렌을 제조하였다.
<비교예 2>
본 발명의 제조예에서 제조된 크롬 산화물(Chromium oxide)/알루미나(Al2O3) 촉매 0.4g을 쿼츠로 제작된 반응기의 프리츠(Fritz)위에 고정시키고, 퍼니스(furnace)온도를 630 ℃로 유지시킨 후, 프로판을 흘려주었다. 이때 공간 속도는 8,230 literC3/(kgcat-hr)이었고, 이를 통해 프로필렌을 제조하였다.
<실험예 1> 촉매의 환원가스 전처리 후, 촉매 층의 온도 변화
환원가스로써 수소, 일산화탄소, 메탄, 에틸렌을 공급하고, 이후 프로판을 흘려주는 경우 촉매층의 온도를 하기와 같이 분석하였다.
(1) 환원가스로써 수소를 공급하였을 때, 프로판 탈수소 반응 중 촉매의 온도를 측정하였으며, 그 결과는 도 5에 나타내었다.
도 5에 나타난 바와 같이 산소 종 전달체의 전처리를 위한 수소의 양이 증가할수록, 탈수소 반응 중 반응초기 급격한 연소반응에 의한 촉매 층 온도증가 폭이 감소하는 것을 알 수 있다.
(2) 환원가스로써 일산화탄소를 공급하였을 때, 프로판 탈수소 반응 중 촉매의 온도를 측정하였으며, 그 결과는 도 6에 나타내었다.
도 6에 나타난 바와 같이 산소 종 전달체의 전처리를 위한 일산화탄소의 양이 증가할수록, 탈수소 반응 중 반응 초기 급격한 연소반응에 의한 촉매 층 온도증가 폭이 감소하는 것을 알 수 있다.
(3) 환원가스로써 메탄을 공급하였을 때, 프로판 탈수소 반응 중 촉매의 온도를 측정하였으며, 그 결과는 도 7에 나타내었다.
도 7에 나타난 바와 같이 산소 종 전달체의 전처리를 위한 메탄의 양이 증가할수록, 탈수소 반응 중 반응 초기 급격한 연소반응에 의한 촉매 층 온도증가 폭이 감소하는 것을 알 수 있다.
(4) 환원가스로써 에틸렌을 공급하였을 때, 프로판 탈수소 반응 중 촉매의 온도를 측정하였으며, 그 결과는 도 8에 나타내었다.
도 8에 나타난 바와 같이 산소 종 전달체의 전처리를 위한 에틸렌의 양이 증가할수록, 탈수소 반응 중 반응초기 급격한 연소반응에 의한 촉매 층 온도증가 폭이 감소하는 것을 알 수 있다.
<실험예 2> 환원가스를 통한 촉매의 전처리 유무에 따른 비교분석
본 발명의 촉매의 환원가스 전처리 과정이 추가된 실시예 1 내지 6과 환원가스 전처리 과정이 적용되지 않은 비교예 1 및 2에 있어서 프로필렌의 수율 및 프로판의 전환율을 측정하여 도 9 내지 도 12, 표 1 및 표 2에 비교하여 나타내었다.
도 9 내지 도 12에 나타난 바와 같이 실시예 6처럼 촉매를 환원가스 전처리한 경우, 비교예 2의 결과와 달리, 프로판이 촉매와의 접촉 직후에 프로필렌 수율 및 선택도는 증가하고, 부산물인 이산화탄소 수율은 감소하는 것을 알 수 있다.
비교예 1 실시예 1 실시예 2 실시예 3-1 실시예 3-2
환원가스 H2 CO CH4 CH4
환원가스 공급량 (mol/Cr mol) 0.0443 0.0394 0.0361 0.0354
촉매공급부 촉매온도(oC) 597 660 660 661 660
촉매/프로판 비(중량/중량) 31.5 26.2 21 27.6 24.1
프로판 전환율(%) 42.2 49.0 42.32 45.33 39.09
프로필렌 수율(%) 30.76 44.15 30.95 34.69 31.04
프로필렌 선택도(%) 72.89 90.1 73.13 76.53 79.41
실시예 3-3 실시예 3-4 실시예 4 실시예 5
환원가스 CH4 CH4 C2H4 C2H6
환원가스 공급량 (mol/Cr mol) 0.0529 0.0529 0.0537 0.0762
촉매공급부 촉매온도(oC) 670 670 670 670
촉매/프로판 비(중량/중량) 38.6 62.1 38 37.5
프로판 전환율(%) 47.53 52.02 51.01 50.01
프로필렌 수율(%) 35.19 47.92 40.08 44.51
프로필렌 선택도(%) 74.04 92.11 78.57 89.00
프로판 전환율(%) = ((공급 프로판 - 미반응 프로판)/공급 프로판) * 100
프로필렌 수율(%) = (생성 프로필렌/공급 프로판) * 100
프로필렌 선택도(%) = (프로필렌 수율/프로판 전환율) * 100
표 1과 표 2에 나타난 바와 같이 환원가스로 촉매를 전처리함에 따라 프로필렌 수율은 30.76%에서 44.51%까지 증가하는 것을 알 수 있다.

Claims (15)

  1. 탄화수소로부터 올레핀을 제조하기 위한 촉매에 환원가스를 공급하여 상기 촉매를 전처리하는 단계(단계 1);
    상기 단계 1에서 전처리된 촉매를 사용하여 탄화수소로부터 올레핀을 제조하
    는 단계(단계 2);
    상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 재생하는 단계(단계 3); 및
    단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환시키는 단계(단계 4);를 포함하고,
    상기 단계 1 내지 4를 반복적으로 수행하는 연속 반응-재생 올레핀 제조방법.
  2. 제1항에 있어서,
    상기 단계 2는 유동식 반응기에서 수행되는 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  3. 제1항에 있어서,
    상기 단계 1의 전처리는 환원가스와 촉매를 0.5 내지 5 초 동안 접촉시켜 수행되는 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  4. 제4항에 있어서,
    상기 단계 1의 전처리에서,
    상기 환원가스는 상기 촉매의 금속 몰유량의 10% 내지 30%로 공급되는 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  5. 제4항에 있어서,
    상기 단계 1의 환원가스는 C1 내지 C4의 알카인 구조를 갖는 적어도 1종의 탄화수소를 포함하는 것을 특징으로 하는 연속 반응-재생 및 유동식 올레핀 제조방법.
  6. 제4항에 있어서,
    상기 단계 1의 환원가스는 직쇄 또는 측쇄의 C1 내지 C4의 알케인 구조를 갖는 적어도 1종의 탄화수소를 포함하는 것을 특징으로 하는 연속 반응-재생 및 유동식 올레핀 제조방법.
  7. 제4항에 있어서,
    상기 단계 1의 환원가스는 일산화탄소, 수소, 에틸렌, 에탄 및 메탄을 포함하는 군으로부터 선택되는 적어도 1종의 가스를 포함하는 것을 특징으로 하는 연속 반응-재생 및 유동식 올레핀 제조방법.
  8. 제4항에 있어서,
    상기 단계 1의 환원가스는,
    상기 단계 2에서 탄화수소로부터 올레핀을 제조시 생성된 부산물인 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  9. 제1항에 있어서,
    상기 전처리 단계에서 상기 촉매의 온도가 20℃ 내지 60℃ 상승하는 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  10. 제1항에 있어서,
    상기 단계 2의 선택도는 85% 내지 95%인 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  11. 제1항에 있어서,
    상기 단계 2에서는 탈수소화반응이 이루어지며,
    상기 탄화수소는 프로판을 포함하며 상기 올레핀은 프로필렌을 포함하는 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  12. 금속산화물 촉매에 환원가스를 공급하여 상기 촉매의 금속성분의 산화수를 감소시키며 상기 촉매의 온도를 20℃ 내지 60℃ 증가시켜 상기 촉매를 전처리하는 단계(단계 1);
    상기 단계 1에서 전처리된 촉매를 사용하여 프로판을 탈수소화하여 프로필렌을 제조하는 단계(단계 2);
    상기 단계 2에서 사용된 촉매와 제조된 올레핀을 분리한 후, 분리된 촉매를 산화가스를 이용하여 상기 촉매의 금속성분의 산화수를 증가시켜 재생하는 단계(단계 3); 및
    단계 3에서 재생된 촉매를 상기 단계 1의 공정으로 재순환 시키는 단계(단계 4);를 포함하고,
    상기 단계 1 내지 4를 반복적으로 수행하는 연속 반응-재생 올레핀 제조방법.
  13. 제12항에 있어서,
    상기 단계 1의 환원가스는,
    상기 단계 2에서 생성된 부산물인 것을 특징으로 하는 연속 반응-재생 올레핀 제조방법.
  14. 탄화수소로부터 올레핀을 제조하는 탄화수소 반응부;
    상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부;
    촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부;
    상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부;
    상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부;
    탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및
    상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는 제1항의 제조방법을 수행하기 위한, 연속 반응-재생 올레핀 제조장치.
  15. 탄화수소로부터 올레핀을 제조하는 탄화수소 반응부;
    상기 탄화수소 반응부로 탄화수소를 공급하는, 탄화수소 공급부;
    촉매가 갖고 있는 산소종과 발열반응을 일으킬 수 있는 환원가스를 공급하는, 환원가스 공급부;
    상기 환원가스 공급부로부터 공급되는 환원가스를 통해 촉매를 전처리하는, 촉매 전처리부;
    상기 촉매전처리부에서 전처리된 촉매를 상기 탄화수소 반응부로 공급하는 촉매 공급부;
    탄화수소 반응부에서 제조된 올레핀과 촉매를 분리하는, 분리부; 및
    상기 분리부에서 분리된 촉매를 재생하는 공기 반응부;를 포함하는 장치를 이용하여 올레핀을 제조함에 있어서,
    상기 촉매 전처리부로 환원가스를 공급하여 탄화수소로부터 올레핀을 제조하기 위한 촉매를 전처리하는 단계(단계 1);
    상기 단계 1에서 전처리된 촉매를 촉매 공급부를 통해 상기 탄화수소 반응부로 공급하고, 탄화수소 공급부를 통해 탄화수소 반응부로 탄화수소 원료를 공급하여, 탄화수소로부터 올레핀을 제조하는 단계(단계 2);
    상기 단계 2에서 사용된 촉매와 제조된 올레핀을 상기 분리부에서 분리한 후, 분리된 촉매를 공기 반응부로 도입하여 촉매를 재생하는 단계(단계 3); 및
    단계 3에서 재생된 촉매를 촉매 전처리부로 도입하여 전처리하는 단계(단계 4);를 포함하고,
    상기 환원가스는 상기 단계 2에서 탄화수소로부터 올레핀을 제조시 생성된 부산물인 것을 특징으로 하는, 탄화수소로부터 올레핀 제조시 발생하는 부산물의 재활용 방법.
PCT/KR2016/000612 2015-06-30 2016-01-20 연속 반응-재생 올레핀 제조방법 WO2017003059A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0092953 2015-06-30
KR20150092953 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017003059A1 true WO2017003059A1 (ko) 2017-01-05

Family

ID=57607862

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/008671 WO2017003014A1 (ko) 2015-06-30 2015-08-19 환원가스 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법
PCT/KR2016/000612 WO2017003059A1 (ko) 2015-06-30 2016-01-20 연속 반응-재생 올레핀 제조방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008671 WO2017003014A1 (ko) 2015-06-30 2015-08-19 환원가스 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법

Country Status (2)

Country Link
KR (1) KR101807221B1 (ko)
WO (2) WO2017003014A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179176B1 (ko) 2017-06-07 2020-11-16 에스케이가스 주식회사 순환유동층 공정을 이용한 올레핀의 제조방법
KR102179574B1 (ko) 2017-06-07 2020-11-16 에스케이가스 주식회사 환원 전처리를 포함하는 올레핀 제조 방법
KR20200083760A (ko) 2018-12-28 2020-07-09 에스케이가스 주식회사 순환유동층 공정을 이용한 올레핀의 제조방법
CN111804199B (zh) * 2020-07-31 2022-06-03 广东博智林机器人有限公司 搅拌结构及具有其的搅拌器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177922A (ja) * 1982-04-12 1983-10-18 Mitsubishi Gas Chem Co Inc オレフインの製造方法
KR960700810A (ko) * 1991-12-05 1996-02-24 윌리엄 에이. 하이드릭크 비닐 아세테이트 합성에 유용한 팔라듐-금 촉매의 전처리 방법(Pretreatment of Palladium-Gold Catalysts Useful in Vinyl Acetate Synthesis)
KR20070047285A (ko) * 2004-07-28 2007-05-04 메이덴샤 코포레이션 방향족 탄화수소와 수소의 제조 방법
JP5331305B2 (ja) * 2004-03-31 2013-10-30 公益財団法人名古屋産業科学研究所 水素化促進剤、水素化触媒及びアルケン化合物の製法
KR20150139870A (ko) * 2013-04-03 2015-12-14 에스씨지 케미컬스 컴퍼니, 리미티드. 파라핀을 올레핀으로 전환하는 방법 및 이에 사용되기 위한 촉매

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004878B (zh) * 1987-08-08 1989-07-26 中国石油化工总公司 制取低碳烯烃的烃类催化转化方法
DE4437252A1 (de) * 1994-10-18 1996-04-25 Basf Ag Katalysator und Verfahren für die katalytische oxidative Dehydrierung von Alkylaromaten und Paraffinen
JPH0975734A (ja) * 1995-09-11 1997-03-25 Mitsubishi Gas Chem Co Inc 触媒の再生方法
KR100651418B1 (ko) 2006-03-17 2006-11-30 에스케이 주식회사 고속유동층을 이용하여 탄화수소 원료로부터 경질 올레핀을제조하는 접촉분해 공정
EA016496B9 (ru) * 2007-06-25 2012-07-30 Сауди Бейсик Индастриз Корпорейшн Способ получения смеси синтез-газа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177922A (ja) * 1982-04-12 1983-10-18 Mitsubishi Gas Chem Co Inc オレフインの製造方法
KR960700810A (ko) * 1991-12-05 1996-02-24 윌리엄 에이. 하이드릭크 비닐 아세테이트 합성에 유용한 팔라듐-금 촉매의 전처리 방법(Pretreatment of Palladium-Gold Catalysts Useful in Vinyl Acetate Synthesis)
JP5331305B2 (ja) * 2004-03-31 2013-10-30 公益財団法人名古屋産業科学研究所 水素化促進剤、水素化触媒及びアルケン化合物の製法
KR20070047285A (ko) * 2004-07-28 2007-05-04 메이덴샤 코포레이션 방향족 탄화수소와 수소의 제조 방법
KR20150139870A (ko) * 2013-04-03 2015-12-14 에스씨지 케미컬스 컴퍼니, 리미티드. 파라핀을 올레핀으로 전환하는 방법 및 이에 사용되기 위한 촉매

Also Published As

Publication number Publication date
WO2017003014A1 (ko) 2017-01-05
KR101807221B1 (ko) 2018-01-18
KR20170003371A (ko) 2017-01-09

Similar Documents

Publication Publication Date Title
WO2018124782A1 (ko) 올레핀 제조용 촉매 및 이를 이용한 연속 반응-재생 올레핀 제조방법
WO2017003059A1 (ko) 연속 반응-재생 올레핀 제조방법
WO2018088815A1 (ko) 올레핀 복분해 반응용 촉매 및 이의 제조방법
JP5139281B2 (ja) エチレンの製造方法
WO2013105779A1 (ko) 카본나노튜브 및 그 제조방법
WO2017010600A1 (ko) 탄화수소의 탈수소화를 통해 올레핀을 제조하기 위한 촉매 및 그 제조방법
JP2008544999A5 (ko)
WO2013015605A2 (en) Method of producing aromatic hydrocarbons from byproducts of aromatic carboxylic acid and/or aromatic carboxylic acid alkylester preparation processes
WO2020091418A1 (ko) 코발트계 단원자 탈수소화 촉매 및 이를 이용하여 파라핀으로부터 대응되는 올레핀을 제조하는 방법
WO2022098009A1 (ko) 알칸족 가스로부터 올레핀을 제조하기 위한 탈수소촉매 및 그 제조방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2019245157A1 (ko) 경질올레핀 제조용 촉매, 이의 제조방법, 및 이를 이용하여 경질올레핀을 제조하는 방법
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
WO2018088736A1 (ko) 합성 가스로부터 디메틸에테르를 제조하기 위한 촉매 및 이의 제조방법
WO2016171516A1 (ko) 촉매 활성화를 위해 별도의 환원 전처리를 수행하지 않는 피셔-트롭쉬 합성반응을 통해 합성가스로부터 액체 또는 고체 탄화수소를 제조하는 방법
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
WO2022139183A1 (ko) 신규촉매와 순환유동층 공정을 이용한 올레핀의 제조방법
WO2018225952A1 (ko) 순환유동층 공정을 이용한 올레핀의 제조방법
WO2018182102A1 (ko) 담지된 금속셀레나이드 촉매, 이의 제조방법 및 이를 이용한 우레탄 제조방법
WO2018124579A1 (ko) 부타디엔 제조방법
WO2020138748A1 (ko) 순환유동층 공정을 이용한 올레핀의 제조방법
WO2018225951A1 (ko) 환원 전처리를 포함하는 올레핀 제조 방법
WO2024123019A1 (ko) 배가스 내 이산화탄소 직접 전환용 촉매 및 이를 이용한 배가스 처리 방법
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2014171688A1 (ko) 에너지 절감형 에탄올 탈수 촉매 및 이를 이용한 에틸렌 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818092

Country of ref document: EP

Kind code of ref document: A1