WO2017002781A1 - 表示装置及びテレビ受信装置 - Google Patents
表示装置及びテレビ受信装置 Download PDFInfo
- Publication number
- WO2017002781A1 WO2017002781A1 PCT/JP2016/069075 JP2016069075W WO2017002781A1 WO 2017002781 A1 WO2017002781 A1 WO 2017002781A1 JP 2016069075 W JP2016069075 W JP 2016069075W WO 2017002781 A1 WO2017002781 A1 WO 2017002781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- red
- phosphor
- color
- display
- Prior art date
Links
- 238000005286 illumination Methods 0.000 claims abstract description 99
- 239000003086 colorant Substances 0.000 claims abstract description 89
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 260
- 238000006243 chemical reaction Methods 0.000 claims description 86
- 239000002096 quantum dot Substances 0.000 claims description 27
- 230000001747 exhibiting effect Effects 0.000 claims description 23
- 239000003566 sealing material Substances 0.000 claims description 16
- 229910052700 potassium Inorganic materials 0.000 claims description 13
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 12
- 239000011591 potassium Substances 0.000 claims description 12
- 239000012190 activator Substances 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 139
- 239000000758 substrate Substances 0.000 description 86
- 230000003287 optical effect Effects 0.000 description 63
- 230000000052 comparative effect Effects 0.000 description 44
- 238000002474 experimental method Methods 0.000 description 44
- 239000000463 material Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 30
- 238000009792 diffusion process Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 23
- 239000010410 layer Substances 0.000 description 20
- 230000002093 peripheral effect Effects 0.000 description 20
- 238000000295 emission spectrum Methods 0.000 description 19
- 239000000126 substance Substances 0.000 description 16
- 230000000630 rising effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000007789 sealing Methods 0.000 description 13
- 230000006872 improvement Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 239000005083 Zinc sulfide Substances 0.000 description 7
- 239000011258 core-shell material Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 7
- 239000000057 synthetic resin Substances 0.000 description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 229910003564 SiAlON Inorganic materials 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- XPIIDKFHGDPTIY-UHFFFAOYSA-N F.F.F.P Chemical compound F.F.F.P XPIIDKFHGDPTIY-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 230000005457 Black-body radiation Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical class [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- YLYPIBBGWLKELC-RMKNXTFCSA-N 2-[2-[(e)-2-[4-(dimethylamino)phenyl]ethenyl]-6-methylpyran-4-ylidene]propanedinitrile Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C1=CC(=C(C#N)C#N)C=C(C)O1 YLYPIBBGWLKELC-RMKNXTFCSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical class C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- -1 potassium fluorosilicate Chemical compound 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133621—Illuminating devices providing coloured light
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/3413—Details of control of colour illumination sources
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/04—Signs, boards or panels, illuminated from behind the insignia
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
- G09G3/3426—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2113/00—Combination of light sources
- F21Y2113/10—Combination of light sources of different colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
Definitions
- the present invention relates to a display device and a television receiver.
- the liquid crystal display device described in Patent Document 1 includes a CCFL tube in which a B phosphor and a G phosphor are applied and an R phosphor is removed, and an R color that emits light having a single spectrum peak PR3 at 620 to 650 nm.
- What combined LED is used as a light source device which irradiates illumination light to a liquid crystal panel. According to this light source device, the influence of the sub-spectrum of 595 nm by the R phosphor, which has been a problem in the conventional CCFL tube, is eliminated, and the color gamut is expanded.
- the adverse effect caused by the sub-spectrum of 580 nm by the conventional G phosphor is reduced, and the color gamut is expanded.
- liquid crystal display devices used for 4K televisions, 8K televisions, and the like tend to require a higher level of color reproduction range in addition to higher definition.
- measures such as increasing the film thickness of the color filter can be considered.
- more light is absorbed by the color filter, which may cause a problem that the light use efficiency decreases. It was.
- the present invention has been completed based on the above circumstances, and an object thereof is to improve color reproducibility while maintaining high light use efficiency.
- the display device of the present invention is a display panel having a plurality of pixel portions that exhibit different colors, and an illumination device that irradiates the display panel with illumination light that includes light of a plurality of colors that exhibit different colors.
- the amount of light emission related to the first color light included in the light of the plurality of colors is selectively large when the amount of light emission related to the light of the plurality of colors required for the reference white light is used as a reference.
- the gradation value of the first pixel portion that exhibits the first color among the plurality of pixel portions during white display is smaller than the gradation value of the pixel portion that exhibits the other colors.
- the illumination light including a plurality of lights emitted from the illumination device is transmitted through the plurality of pixel units included in the display panel according to the gradation value, thereby the plurality of pixel units. Exhibit different colors, thereby displaying a predetermined image. Since the illumination light of the illumination device is light that has a color of the first color than the reference white light, the floor of the first pixel unit that exhibits the first color by the pixel control unit during white display on the display panel. By controlling the tone value to be smaller than the tone value of the pixel portion exhibiting another color, white display can be performed.
- the gradation value of the pixel unit that exhibits other colors is smaller than that during white display by the pixel control unit, and the gradation value of the first pixel unit is larger than during white display. It is controlled to become. As a result, the luminance related to the first color at the time of displaying the first color is increased and the color reproduction range is widened.
- the display panel is configured such that the plurality of pixel portions include at least a red pixel portion that exhibits red, a green pixel portion that exhibits green, and a blue pixel portion that exhibits blue
- the illumination device includes:
- the light of the plurality of colors includes at least red light, green light, and blue light, and the first color light is the red light.
- the pixel control unit converts the red pixel unit into the red light
- the first pixel portion is controlled. In this way, the luminance relating to red at the time of red display is increased and the color reproduction range is widened. Since red tends to be easily recognized by humans as an extension of the color reproduction range compared to other colors, red is more suitable for improving the display quality of an image.
- the lighting device emits light related to the light of the first color when each light emission amount related to the light of the plurality of colors required to make the illumination light the reference white light is 100%.
- the amount is configured to be 107% or more.
- the display panel is configured such that the plurality of pixel portions exhibit four or more different colors. In this way, since the area ratio of each pixel unit is lower than when the pixel unit is configured to exhibit three different colors, the first color light included in the illumination light of the illumination device is reduced. As the amount of light emission increases, the increase rate of the luminance related to the first color at the time of displaying the first color becomes relatively large.
- the illumination device emits light related to the light of the first color when each light emission amount related to the light of the plurality of colors required to make the illumination light the reference white light is 100%.
- the amount is configured to range from 125% to 220%. If the light emission amount related to the first color light is less than 125%, the luminance improvement effect at the time of displaying the first color is about the same as when the pixel portion is configured to exhibit three different colors. On the contrary, when the light emission amount related to the first color light exceeds 220%, the luminance efficiency at the time of white display may be remarkably lowered.
- the luminance improvement effect at the time of displaying the first color has a configuration in which the pixel portion exhibits three different colors.
- the display panel is configured such that the plurality of pixel portions include at least a red pixel portion that exhibits red, a green pixel portion that exhibits green, a blue pixel portion that exhibits blue, and a yellow pixel portion that exhibits yellow.
- the lighting device includes at least red light, green light, and blue light in the plurality of colors of light, and the first color light is the red light.
- the red pixel portion is controlled as the first pixel portion.
- the yellow pixel portion constituting the plurality of pixel portions transmits yellow light, that is, green light and red light.
- the illumination light of the illuminating device is light with a red color that is the first color than the reference white light. Therefore, compared to the case where the reference white light is used, the illumination light at the time of yellow display is displayed.
- the chromaticity related to yellow shifts toward red. This is more suitable for extending the color reproduction range.
- the illumination device includes a light emitting element that emits light, and a phosphor that converts the wavelength of light from the light emitting element, and the phosphor emits light of the first color. And the illumination device has a content related to the first phosphor when the content related to the phosphor required to make the illumination light a reference white light is a reference. Is configured to be relatively large. If it does in this way, when light will be emitted from a light emitting element, the illumination light of an illuminating device will be obtained by wavelength-converting at least one part by fluorescent substance.
- the lighting device includes the light emitting element, a case that houses the light emitting element, and a sealing material that seals the light emitting element in the case and contains the phosphor. At least a light source. If it does in this way, at least one part of the light emitted from the light emitting element with the fluorescent substance contained in the sealing material which seals a light emitting element in a case will be utilized as excitation light.
- the light source is configured such that the first phosphor is potassium silicofluoride using manganese as an activator.
- the first phosphor is potassium silicofluoride using manganese as an activator.
- red light with high color purity can be emitted by sufficiently narrowing the half-value width of the main peak contained in the emission spectrum of potassium silicofluoride as the first phosphor.
- expensive rare earth elements are not used as the material for potassium silicofluoride, the production cost of the light source is low.
- potassium silicofluoride is considered to be less susceptible to performance degradation due to moisture absorption or the like, it is suitable for adopting a configuration in which a light-emitting element is contained in a sealing material for sealing in a case.
- the illumination device includes a light source having the light emitting element, a wavelength conversion member that contains the phosphor and is disposed on the exit side of the light output path with respect to the light source, and converts the wavelength of the light from the light source. At least. In this way, since the phosphor is contained in the wavelength conversion member disposed on the exit side of the light emission path with respect to the light source, the phosphor is unlikely to deteriorate in performance due to heat generated from the light emitting element of the light source. Become. In addition, when the phosphor is contained in the wavelength conversion member, for example, it is easy to adopt a means for sealing the phosphor with a high sealing property. Is suitable.
- the phosphor is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by a wavelength conversion member will become higher, the color purity of the wavelength-converted light will become high. Further, for example, if a means for sealing the quantum dot phosphor with a high sealing property is adopted for the wavelength conversion member, the quantum dot phosphor is less likely to deteriorate in performance due to moisture absorption or the like.
- the illuminating device includes at least a plurality of light emitting elements that respectively emit light of the plurality of colors, and the illuminating device requires the plurality of light emitting elements that are necessary for using the illumination light as reference white light
- the light emission amount related to the first light emitting element emitting the light of the first color is relatively increased. If it does in this way, the illumination light of an illuminating device will be comprised by the light of several colors emitted from a several light emitting element.
- the light emission amount concerning the 1st light emitting element contained in a plurality of light emitting elements is larger than the reference value of each light emission amount concerning each light emitting element required for making illumination light into reference white light.
- the lighting device is configured to include a light source including one light emitting element and a phosphor that converts the wavelength of light from the light emitting element, the color purity of the light of each color emitted from each light emitting element. Is higher and is suitable for improving color reproducibility.
- a television receiver includes the display device described above. According to the television receiver having such a configuration, since the luminance related to the first color at the time of displaying the first color is increased and the color reproduction range is wide, the television image having excellent display quality. Display can be realized.
- FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
- the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped
- Sectional drawing which shows the cross-sectional structure along the long side direction of the liquid crystal panel with which a liquid crystal display device is equipped.
- Sectional drawing which shows the cross-sectional structure along the long side direction of a liquid crystal panel
- luminance at the time of white display with respect to the relative content of the red fluorescent substance which concerns on the comparative experiment 2, and the relative brightness at the time of red display CIE1931 chromaticity diagram showing the transition of red chromaticity during red display when the relative content of the red phosphor according to comparative experiment 2 is changed Table showing chromaticity of each color when the relative content of the red phosphor according to Comparative Experiment 2 is 100% and 180% CIE 1976 chromaticity diagram showing each chromaticity region when the relative content of the red phosphor according to comparative experiment
- FIG. 6 is an exploded perspective view showing a schematic configuration of a liquid crystal display device according to Embodiment 4 of the present invention.
- Sectional drawing which shows the cross-sectional structure which cut
- Sectional drawing which shows the cross-sectional structure which cut
- Sectional drawing which shows the cross-sectional structure which cut
- FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
- the television receiver 10TV, the liquid crystal display device 10 used in the television receiver 10TV, and the backlight device 12 used in the liquid crystal display device 10 are illustrated.
- a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
- the upper side shown in FIGS. 7 and 8 is the front side
- the lower side is the back side.
- the television receiver 10TV receives a liquid crystal display device 10, front and back cabinets 10Ca and 10Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power supply 10P, and a television signal. And a tuner (reception unit) 10T and a stand 10S.
- the liquid crystal display device (display device) 10 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state.
- the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel that displays an image, and a backlight device (illumination device) that is an external light source that supplies light for display to the liquid crystal panel 11. 12 and these are integrally held by a frame-like bezel 13 or the like.
- the liquid crystal panel 11 As shown in FIG. 1, the liquid crystal panel 11 has a substantially circular shape as a whole as viewed in a plane. As shown in FIG. 3, the liquid crystal panel 11 is interposed between a pair of glass substrates 11a and 11b, which are substantially transparent and have excellent translucency, and both the substrates 11a and 11b.
- a liquid crystal layer 11e is sandwiched between the substrates 11a and 11b by a so-called dropping injection method.
- the liquid crystal panel 11 has a display area (active area) that is configured by a central portion of the screen and displays an image, and a frame shape (frame shape) that is configured by an outer peripheral portion of the screen and surrounds the display area AA. At the same time, it is divided into a non-display area (non-active area) where no image is displayed.
- the liquid crystal panel 11 can display an image in the display area using the light supplied from the backlight device 12, and the front side is the light output side. Note that polarizing plates 11c and 11d are attached to the outer surface sides of both the substrates 11a and 11b, respectively.
- the front side (front side) is the CF substrate 11a
- the back side (back side) is the array substrate 11b.
- TFTs Thin Film Transistor: A large number of display elements
- 11g and pixel electrodes 11h are provided in a matrix (matrix), and a gate wiring (scanning line) 11i and a source wiring (in a lattice pattern) around the TFT 11g and the pixel electrode 11h.
- (Data line) 11j is arranged so as to surround it.
- the gate wiring 11i and the source wiring 11j are connected to the gate electrode and the source electrode of the TFT 11g, respectively, and the pixel electrode 11h is connected to the drain electrode of the TFT 11g.
- the TFT 11g is driven based on various signals respectively supplied to the gate wiring 11i and the source wiring 11j, and the supply of the potential to the pixel electrode 11h is controlled in accordance with the driving.
- the pixel electrode 11h is arranged in a rectangular region surrounded by the gate wiring 11i and the source wiring 11j, and is made of a transparent electrode such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide).
- a large number of color filters 11k are provided at positions facing the pixel electrodes 11h on the array substrate 11b side. They are arranged in a matrix.
- red, green, and blue (R, G, B) colors are repeatedly arranged in a predetermined order.
- Each color filter 11k selectively transmits light in a specific wavelength range related to each color. That is, the red color filter 11k selectively selects light in the red wavelength range, the green color filter 11k selects light in the green wavelength range, and the blue color filter 11k selects light in the blue wavelength range. It is supposed to be transparent.
- a lattice-shaped light shielding layer (black matrix) 11l for preventing color mixture is formed between each color filter 11k.
- the light shielding layer 11l is arranged so as to overlap the above-described gate wiring 11i and source wiring 11j in a plan view.
- a solid counter electrode 11m facing the pixel electrode 11h on the array substrate 11b side is provided on the surface of the color filter 11k and the light shielding layer 11l.
- alignment films 11n and 11o for aligning liquid crystal molecules contained in the liquid crystal layer 11e are formed on the inner surfaces of both the substrates 11a and 11b, respectively.
- one display pixel PX as a display unit is configured by a set of three color filters 11k of red, green, and blue and three pixel electrodes 11h facing the color filters 11k.
- the display pixel PX includes a red pixel portion PXR composed of a color filter 11k exhibiting red and a pixel electrode 11h opposed thereto, a green pixel portion PXG composed of a color filter 11k exhibiting green and a pixel electrode 11h opposed thereto, and blue And a blue pixel portion PXB made up of a color filter 11k and a pixel electrode 11h facing the color filter 11k.
- the pixel portions PXR, PXG, and PXB of the respective colors constitute a pixel group by being repeatedly arranged along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 11, and this pixel group is arranged in a column. Many are arranged along the direction (Y-axis direction).
- a voltage is applied to each pixel electrode 11h constituting each color pixel portion PXR, PXG, PXB by a TFT 11g connected thereto, and each color pixel portion is based on the voltage value.
- the alignment state of the liquid crystal layer 11e in PXR, PXG, and PXB changes, so that the transmitted light amount of the liquid crystal panel 11 is individually controlled for each color pixel portion PXR, PXG, and PXB.
- a voltage is supplied to each TFT 11g from a control substrate (pixel control unit) CTR, which is a signal supply source, through a flexible substrate FK connected to an end of the array substrate 11b. ing.
- the control substrate CTR outputs various signals such as voltages based on the gradation values (pixel values) of the pixel portions PXR, PXG, and PXB of the respective colors, which are determined based on an image displayed in the display area of the liquid crystal panel 11, to each TFT 11g.
- Each of the TFTs 11g is driven by being supplied to each gate line 11i and each source line 11j connected to each other.
- the pixel portions PXR, PXG, and PXB of each color are controlled by 256 gradations each having a gradation value of 0 to 255, and thereby the pixel portions PXR and PXG of each color.
- PXB the display color of the display pixel PX is about 16.77 million colors.
- the backlight device 12 includes a chassis 14 having a substantially box shape having a light emitting portion (light emitting portion, opening) 14 b that opens to the front side (light emitting side, liquid crystal panel 11 side), and the chassis.
- a plurality of optical members 15 disposed so as to cover the 14 light emitting portions 14b, and a frame 16 disposed between outer peripheral edges of the plurality of optical members 15.
- an LED (light source) 17 an LED board 18 on which the LED 17 is mounted, a diffusion lens 19 attached to the LED board 18 at a position corresponding to the LED 17, and light in the chassis 14 are reflected.
- a reflective sheet (reflective member) 20 is reflected.
- the backlight device 12 is a so-called direct type in which the LED 17 is arranged in the chassis 14 immediately below the liquid crystal panel 11 and the optical member 15 and the light emitting surface 17a is opposed.
- the LED 17 is arranged in the chassis 14 immediately below the liquid crystal panel 11 and the optical member 15 and the light emitting surface 17a is opposed.
- the chassis 14 is made of, for example, a synthetic resin material. As shown in FIGS. 6 to 8, the chassis 14 has a bottom portion 14a having a horizontally long rectangular shape (rectangular shape, rectangular shape) as in the liquid crystal panel 11, and an outer peripheral edge portion of the bottom portion 14a. And a side portion 14c that rises toward the front side (light-emitting side), and as a whole, has a shallow substantially box shape (substantially shallow dish shape) that opens toward the front side.
- the long side direction of the chassis 14 matches the X-axis direction, and the short side direction matches the Y-axis direction.
- the bottom portion 14a of the chassis 14 is disposed on the back side with respect to the LED substrate 18, that is, on the opposite side of the LED 17 from the light emitting surface 17a side (light emission side).
- the side portion 14c of the chassis 14 has a substantially cylindrical shape that is continuous over the entire circumference with respect to the outer peripheral edge portion of the bottom portion 14a, and opens toward the front opening end side (the light emitting portion 14b side and the side opposite to the bottom portion 14a side). The frontage is wide.
- the side portion 14c is provided with a relatively low first step portion 14c1 and a relatively high second step portion 14c2, and an optical member 15 (specifically described later) is provided on the first step portion 14c1.
- the outer peripheral edge portions of the diffusion plate 15a) and the reflection sheet 20 are placed, whereas the outer peripheral edge portion of the liquid crystal panel 11 is placed on the second step portion 14c2. Further, the frame 16 and the bezel 13 are fixed to the side portion 14c.
- the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14.
- the optical member 15 is disposed so as to cover the light emitting portion 14 b of the chassis 14, and is disposed on the exit side of the light output path with respect to the LED 17.
- the optical member 15 is disposed relatively on the back side (side closer to the LED 17, on the side opposite to the light exit side) and relatively on the front side (side closer to the liquid crystal panel 11, the light exit side).
- a plurality of optical sheets 15b As shown in FIGS. 7 and 8, the diffusing plate 15a is mounted on the first step portion 14c1 of the side portion 14c so as to cover the light emitting portion 14b of the chassis 14 and optically.
- the sheet 15b is interposed between the LED 17 and the diffusing lens 19.
- the diffusing plate 15a is opposed to the LED 17 and the diffusing lens 19 with a predetermined interval on the front side, that is, on the light output side.
- the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin base material that is thicker than the optical sheet 15b, and has a function of diffusing transmitted light.
- the optical sheet 15b is mounted on the frame 16 so as to cover the light emitting part 14b of the chassis 14, and between the liquid crystal panel 11 and the diffusion plate 15a. Intervened.
- the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and a total of three optical sheets 15b are provided.
- the optical sheet 15b includes a microlens sheet 15b1 that imparts an isotropic condensing function to the light emitted from the LED 17, a prism sheet 15b2 that imparts an anisotropic condensing function to the light, and light.
- a reflective polarizing sheet 15b3 that contributes to improving the luminance by polarization reflection.
- the optical sheet 15b is laminated in the order of a microlens sheet 15b1, a prism sheet 15b2, and a reflective polarizing sheet 15b3.
- the frame 16 has a frame shape along the outer peripheral edge of the liquid crystal panel 11 and the optical member 15 as a whole, and the cross-sectional shape thereof has a substantially block shape.
- the frame 16 is placed from the front side with respect to the outer peripheral edge portion of the diffusion plate 15a placed on the first step portion 14c1 of the side portion 14c, so that it is described later.
- Each outer peripheral edge portion of the reflection sheet 20 is pressed from the front side and is sandwiched between the first step portion 14c1.
- the outer peripheral edge portion of the optical sheet 15b is placed on the front side of the frame 16, and the outer peripheral edge portion of the optical sheet 15b is supported from the back side, so that a constant distance is provided between the optical sheet 15b and the diffusion plate 15a. Hold the interval.
- the holding force in the thickness direction (Z-axis direction) applied to the optical sheet 15b is relatively lower than the holding force in the thickness direction applied to the diffusion plate 15a. Therefore, the optical sheet 15b can easily escape expansion and contraction due to thermal expansion and contraction, and generation of wrinkles and the like that can occur due to such expansion and contraction can be suppressed.
- the diffusion plate 15a is temporarily pressed by the frame 16 from the front side.
- the outer peripheral edge portion of the diffusion plate 15a is relatively disposed on the outer side, which is suitable for narrowing the frame.
- the LED 17 is a so-called top surface emitting type in which the LED 17 is surface-mounted and the light emitting surface 17 a faces away from the LED substrate 18.
- the LED 17 has a positional relationship in which the light emitting surface 17a is opposed to the plate surface of the optical member 15 (diffusion plate 15a).
- the LED 17 includes a blue LED element (blue light emitting element, light emitting element) 21 that is a light source, a sealing material 22 that seals the blue LED element 21, and a blue LED element 21.
- a case (container, housing) 23 that is accommodated and filled with the sealing material 22.
- the blue LED element 21 is a semiconductor made of a semiconductor material such as InGaN, and emits blue monochromatic light having a wavelength included in a blue wavelength region (about 420 nm to about 500 nm) when a voltage is applied in the forward direction. It is supposed to be.
- the blue LED element 21 is connected to a wiring pattern on the LED substrate 18 disposed outside the case 23 by a lead frame (not shown).
- the sealing material 22 fills the internal space of the case 23 in which the blue LED element 21 is accommodated, thereby sealing the blue LED element 21 and the lead frame and protecting them. Is done.
- the sealing material 22 fills the internal space of the case 23 in which the blue LED element 21 is accommodated, thereby sealing the blue LED element 21 and the lead frame and protecting them. Is done.
- a green phosphor and a red phosphor are dispersed and blended in a substantially transparent thermosetting resin material (for example, an epoxy resin material, a silicone resin material, etc.) at a predetermined ratio. It is configured.
- the green phosphor emits green light having a wavelength included in a green wavelength region (about 500 nm to about 570 nm) by being excited by blue light emitted from the blue LED element 21.
- the red phosphor emits red light having a wavelength included in a red wavelength region (about 600 nm to about 780 nm) by being excited by blue light emitted from the blue LED element 21. Therefore, the emitted light of the LED 17 (illumination light of the backlight device 12) includes blue light (blue component light) emitted from the blue LED element 21, green light (green component light) emitted from the green phosphor, It is composed of three colors of light, red light (red component light) emitted from the red phosphor, and generally exhibits white as a whole. That is, the LED 17 emits substantially white light.
- the LED 17 Since yellow light is obtained by synthesizing the green light emitted from the green phosphor and the red light emitted from the red phosphor, the LED 17 includes the blue component light and the yellow component light from the LED chip. It can be said that it has both. Details of emission spectra of the blue LED element 21, the green phosphor, and the red phosphor will be described in detail later.
- the case 23 is made of a synthetic resin material (for example, a polyamide resin material) or a ceramic material having a white surface with excellent light reflectivity.
- the case 23 has a substantially box shape having an opening 23c on the light emitting side (the light emitting surface 17a side and the opposite side to the LED substrate 18 side) as a whole, and roughly along the mounting surface 18a of the LED substrate 18.
- the bottom wall 23a has a rectangular shape when viewed from the front (light emission side), whereas the side wall 23b has a substantially rectangular tube shape along the outer peripheral edge of the bottom wall 23a. From the perspective, it has a rectangular frame shape.
- a blue LED element 21 is disposed on the inner surface (bottom surface) of the bottom wall portion 23 a constituting the case 23.
- a lead frame is passed through the side wall 23b. Of the lead frame, an end portion arranged in the case 23 is connected to the blue LED element 21, whereas an end portion led out of the case 23 is connected to the wiring pattern of the LED substrate 18.
- the green phosphor contains at least a sialon phosphor that is a kind of oxynitride phosphor.
- the sialon-based phosphor is a material obtained by replacing a part of silicon nitride silicon atoms with aluminum atoms and a part of nitrogen atoms with oxygen atoms, that is, an oxynitride.
- a sialon-based phosphor that is an oxynitride has excellent luminous efficiency and durability compared to other phosphors made of, for example, sulfide or oxide.
- excellent in durability specifically means that, even when exposed to high-energy excitation light from an LED chip, the luminance does not easily decrease over time.
- green light with high color purity can be emitted by sufficiently narrowing the half width of the peak included in the emission spectrum.
- rare earth elements eg, Tb, Yg, Ag, etc.
- the sialon phosphor constituting the green phosphor according to this embodiment is ⁇ -SiAlON.
- ⁇ -SiAlON is a kind of sialon-based phosphor, and has a general formula Si 6-z Al z O z N 8-z in which aluminum and oxygen are dissolved in ⁇ -type silicon nitride crystal (z indicates the amount of solid solution) ) Or (Si, Al) 6 (O, N) 8 .
- Eu an activator
- the red phosphor contains at least a double fluoride phosphor.
- This double fluoride phosphor has a general formula A 2 MF 6 (M is one or more selected from Si, Ti, Zr, Hf, Ge and Sn, and A is selected from Li, Na, K, Rb and Cs 1 Represented by species or more). Since this bifluoride phosphor has a sufficiently narrow half width of the main peak included in the emission spectrum, it can emit red light with high color purity. Further, since it is difficult to absorb the green light emitted from the green phosphor, the utilization efficiency of the green light is kept high.
- the double fluoride phosphor is potassium silicofluoride (K 2 SiF 6 : Mn) using manganese as an activator. Such potassium silicofluoride does not use an expensive rare earth element as a material, so that the manufacturing cost of the red phosphor and the LED 17 is low.
- the LED 17 has an emission spectrum shown in FIG. FIG. 12 shows an emission spectrum of the LED 17, and the horizontal axis indicates the wavelength (unit: nm), and the vertical axis indicates “relative emission intensity (no unit)”.
- the blue LED element 21 constituting the LED 17 has a light emission spectrum in which the main light emission wavelength (peak wavelength) is included in the blue wavelength region, for example, about 444 nm and the half width thereof is about 20 nm.
- the blue light emitted from the blue LED element 21 has a sufficiently narrow half-value width in the emission spectrum, a high color purity, and a sufficiently high luminance. Therefore, the green phosphor and the red phosphor are efficiently excited.
- ⁇ -SiAlON which is a green phosphor
- ⁇ -SiAlON has an emission spectrum in which the main emission wavelength is included in the green wavelength region, for example, about 533 nm and the peak half-value width is about 53 nm.
- Potassium silicofluoride which is a red phosphor, has an emission spectrum including one main peak and one sub peak (first sub peak and second sub peak) on the long wavelength side and the short wavelength side. Yes.
- potassium silicofluoride which is a red phosphor, includes a main peak whose main emission wavelength is included in the red wavelength region, for example, in the range of 629 nm to 635 nm (preferably about 630 nm), and its half-value width is The first sub-peak that is less than 10 nm and further has a main emission wavelength in the range of 607 nm to 614 nm (preferably about 613 nm) and has a main emission wavelength in the range of 645 nm to 648 nm (preferably about 647 nm). It has an emission spectrum including two subpeaks.
- the half width of the main peak included in the emission spectrum of the red phosphor is relatively narrower than the half width of the peak included in the emission spectrum of the green phosphor.
- the LED substrate 18 has a horizontally long rectangular shape (rectangular shape, rectangular shape), and the long side direction (length direction) coincides with the X-axis direction, and the short side direction.
- the chassis 14 is accommodated while extending along the bottom portion 14a.
- the base material of the LED substrate 18 is made of the same metal as the chassis material such as the chassis 14, and a wiring pattern (not shown) made of a metal film such as a copper foil is formed on the surface thereof via an insulating layer.
- the outermost surface has a configuration in which a white reflective layer (not shown) is formed.
- the reflected light can be raised toward the front side and used as emitted light.
- insulating materials such as a ceramic, can also be used as a material used for the base material of LED board 18.
- the LED 17 having the above-described configuration is surface-mounted on the plate surface facing the front side (the plate surface facing the optical member 15 side) among the plate surfaces of the base material of the LED substrate 18, and this is the mounting surface 18a. It is said.
- a plurality of LEDs 17 are linearly arranged in parallel along the long side direction (X-axis direction) of the LED substrate 18, and are connected in series by a wiring pattern formed on the LED substrate 18.
- LEDs 17 are linearly and intermittently arranged on the LED board 18.
- a plurality of LED substrates 18 are arranged in parallel in the chassis 14 along the Y-axis direction with the long side direction and the short side direction aligned with each other.
- four LED boards 18 are arranged side by side along the Y-axis direction in the chassis 14, and the arrangement direction coincides with the Y-axis direction. Accordingly, in the plane of the bottom portion 14 a of the chassis 14, the LEDs 17 are in the X-axis direction (row direction, long side direction of the bottom portion 14 a) that is the length direction of each LED substrate 18, and the arrangement direction of the plurality of LED substrates 18.
- Each LED board 18 is provided with a connector portion to which a wiring member (not shown) is connected, and driving power is supplied from an LED driving board (light source driving board) (not shown) via the wiring member. ing.
- the diffusing lens 19 is made of a synthetic resin material (for example, polycarbonate or acrylic) that is almost transparent (having high translucency) and has a refractive index higher than that of air. As shown in FIGS. 6 to 8, the diffusing lens 19 has a predetermined thickness and is formed in a substantially circular shape when seen in a plan view. Each LED 17 is attached so as to be covered individually from the light output side), that is, overlapped with each LED 17 in a plan view. Therefore, the number of installed diffusion lenses 19 and the planar arrangement of the backlight device 12 have the same relationship as the number of installed LEDs 17 and the planar arrangement.
- the diffusing lens 19 can emit light having strong directivity emitted from the LED 17 while diffusing.
- the diffusion lens 19 functions optically as a pseudo light source that diffuses the light from the LED 17. Thereby, it is possible to reduce the number of installed LEDs 17.
- the diffusing lens 19 is disposed at a position that is substantially concentric with the LED 17 in a plan view.
- the diffusing lens 19 faces the back side, and the surface facing the LED substrate 18 (LED 17) is the light incident surface 19a on which the light from the LED 17 is incident, while facing the front side.
- the surface facing the optical member 15 is a light emitting surface (light emitting surface) 19b that emits light.
- the light incident surface 19a is generally parallel to the plate surface (X-axis direction and Y-axis direction) of the LED substrate 18, but light is incident on a region overlapping the LED 17 when viewed in plan.
- the side recess 19c it has an inclined surface inclined with respect to the optical axis (Z-axis direction) of the LED 17.
- the light incident side concave portion 19 c has a substantially conical shape with an inverted V-shaped cross section and is disposed at a substantially concentric position in the diffusion lens 19.
- the light emitted from the LED 17 and entering the light incident side concave portion 19 c enters the diffusion lens 19 while being refracted at a wide angle by the inclined surface.
- a mounting leg portion 19 d that is a mounting structure for the LED substrate 18 protrudes from the light incident surface 19 a.
- the light emission surface 19b is formed in a flat and substantially spherical shape, and thereby allows the light emitted from the diffusion lens 19 to be emitted while being refracted at a wide angle.
- a light emitting side recess 19e having a substantially bowl shape is formed in a region of the light emitting surface 19b that overlaps the LED 17 when seen in a plan view. By this light exit side recess 19e, most of the light from the LED 17 can be emitted while being refracted at a wide angle.
- the reflection sheet 20 has a white surface with excellent light reflectivity. As shown in FIGS. 2 to 8, the reflection sheet 20 is large enough to cover the entire inner surface of the chassis 14, that is, along the bottom 14a. In other words, it has a size that covers all the LED substrates 18 arranged in a plane.
- the reflection sheet 20 can reflect the light in the chassis 14 toward the front side (light emission side, optical member 15 side).
- the reflection sheet 20 has a substantially bowl shape as a whole, extends along the LED board 18 and the bottom part 14a, and has a size that covers each LED board 18 in a lump and covers almost the entire area thereof.
- the bottom reflection part 20 a of the reflection sheet 20 is arranged so as to overlap the front side of each LED substrate 18, that is, the mounting surface 18 a of the LED 17. Since the bottom reflection part 20a is configured to extend in parallel with the bottom part 14a of the chassis 14 and the plate surface of the optical member 15, the distance in the Z-axis direction to the optical member 15 is the entire area in the plane. Over almost constant.
- the bottom reflecting portion 20a is provided with an insertion hole (light source insertion hole) 20d through which each LED 17 and each diffusion lens 19 are individually inserted at a position overlapping with each LED 17 in plan view.
- a plurality of the insertion holes 20d are arranged in a matrix (matrix shape) in the X-axis direction and the Y-axis direction corresponding to the arrangement of the LEDs 17 and the diffusion lenses 19.
- the bottom side reflection part 20a is arranged so as to overlap with the LED 17 when seen in a plan view, and is arranged in the “LED arrangement area (light source arrangement area)” in the chassis 14.
- the rising reflecting portion 20b is inclined with respect to the bottom reflecting portion 20a and the plate surface of the optical member 15 from the rising proximal end position to the rising leading end position. Accordingly, the interval in the Z-axis direction between the rising reflecting portion 20b and the optical member 15 is assumed to gradually decrease gradually from the rising base end position toward the rising tip position.
- the rising reflecting portion 20b is disposed so as not to overlap with the LED 17 when seen in a plan view, and can be said to be disposed in an “LED non-arrangement region (light source non-arrangement region)” in the chassis 14.
- the rising reflection portion 20b arranged in the LED non-arrangement region is inclined with respect to the bottom reflection portion 20a, so that the reflected light can be given a predetermined angle, whereby the LED non-arrangement region In this case, insufficient light quantity (dark part) is less likely to occur.
- the backlight device 12 has each light emission amount (reference light emission amount) related to the three colors of light required to make the illumination light applied to the liquid crystal panel 11 the reference white light.
- the light emission amount related to the red light (first color light) included in the three colors of light is selectively increased.
- the light emission amount related to the red light required for the illumination light to be the reference white light is illustrated by a two-dot chain line.
- the control substrate CTR has a red pixel portion (first pixel portion exhibiting a first color) that exhibits red among the three color pixel portions PXR, PXG, and PXB during white display.
- the illumination light of the backlight device 12 is light that has a reddish color than the reference white light.
- the control substrate CTR causes the red pixel portion PXR to By controlling the gradation value to be smaller than the gradation values of the green and blue pixel portions PXG and PXB, white display can be performed.
- the control substrate CTR causes the gradation values of the green and blue pixel portions PXG and PXB to be smaller than when white is displayed, and the gradation value of the red pixel portion PXR is larger than when white is displayed. It is controlled to become. As a result, the luminance during red display is increased and the color reproduction range is wide. Moreover, since red tends to be easily recognized by humans as compared with other colors, the red color is more suitable for improving the display quality of an image.
- the content related to the red phosphor is relative. It is configured to increase in number.
- the red phosphor is emitted from the red phosphor.
- the light emission amount of red light is larger than the reference value (the two-dot chain line shown in FIG. 12) of the light emission amount related to the red light required to make the illumination light the reference white light.
- the target illumination light can be easily obtained without complicated control regarding the light emission amount of the blue LED element 21.
- the reference content and the reference light emission amount of the red phosphor required for making the illumination light the reference white light are 100%, the content and the light emission amount related to the red phosphor are 107% or more.
- the luminance of red when the illumination light is set as the reference white light is 100%, the luminance of red at the time of red display is 105% or more, and a sufficiently high luminance improvement effect is obtained. can get. If the luminance is improved by 5% or more than the reference luminance value, it becomes easier for the user to feel that the display image has become brighter.
- This reference white light has, for example, a chromaticity included in a chromaticity range of a predetermined width centered on the black body radiation locus and the black body radiation locus in the chromaticity diagram. That is, the reference white light can be expressed by a specific color temperature or a correlated color temperature. Specifically, the reference white light can be the standard light A, the standard light B, the standard light C, the standard light D65, etc. In addition, the relative spectral distribution with respect to an arbitrary correlated color temperature T can be obtained.
- the chromaticity coordinates represented by the defined standard light DT and the x-value and y-value according to the CIE1931 chromaticity diagram are determined according to any chromaticity included in the band-like chromaticity range such as (0.272, 0.277). It is also possible to use standard light as defined.
- the standard light A has a chromaticity coordinate (0.4476, 0.4074) according to the CIE1931 chromaticity diagram and a color temperature (unit: “K (Kelvin)”) of 2855.6K.
- the standard light B has a chromaticity coordinate (0.3484, 0.3516) according to the CIE1931 chromaticity diagram and a color temperature of 4874K.
- the standard light C has chromaticity coordinates (0.3101, 0.3161) according to the CIE1931 chromaticity diagram and a color temperature of 6774K.
- the standard light D65 has a chromaticity coordinate (0.3157, 0.3290) according to the CIE1931 chromaticity diagram and a correlated color temperature of 6504K.
- control substrate CTR appropriately controls the three color pixel portions PXR, PXG, and PXB within a range of 256 gradations, so that the display color of the display pixel PX is about 16.77 million colors.
- the control substrate CTR has white balance so that the gradation values of the three color pixel portions PXR, PXG, and PXB are maximized and a target white chromaticity is obtained.
- the pixel units PXR, PXG, and PXB are controlled so that the gradation values are in order.
- the control substrate CTR has the pixel portions PXR, PXG, and PXB of the color that performs the single color display among the three color pixel portions PXR, PXG, and PXB.
- the pixel portions PXR, PXG, and PXB are controlled so as to minimize the tone values of the other two-color pixel portions PXR, PXG, and PXB that do not perform monochrome display.
- the control substrate CTR can cause the display pixel PX to perform white display by setting the gradation values of the three color pixel portions PXR, PXG, and PXB to the maximum value “255”. it can.
- the gradation values of the pixel portions PXR, PXG, and PXB of the three colors are the chromaticity of the illumination light of the backlight device (LED), the spectral transmittance of the color filter 11k of each color of the liquid crystal panel 11, and the like.
- the gradation value of the red pixel portion PXR is set to “248”
- the gradation value of the green pixel portion PXG is set to “242”
- the gradation value of the blue pixel portion PXB is adjusted.
- the target white display can be performed on the display pixel PX.
- specific gradation values of the pixel portions PXR, PXG, and PXB accompanying white balance adjustment can be changed as appropriate according to the individual differences.
- the illumination light has a reddish tint
- the chromaticity of the illumination light is white chromaticity (target when performing white display on the liquid crystal panel 11 ( Unlike the target white chromaticity)
- the target white chromaticity is shifted toward red.
- the control substrate CTR makes the gradation value of the red pixel portion PXR out of the three color pixel portions PXR, PXG, and PXB smaller than the gradation value of the other two color pixel portions PXG and PXB.
- the control substrate CTR sets the gradation value of the green pixel portion PXG to “242” and the gradation value of the blue pixel portion PXB to “255” in a state where the white balance is adjusted.
- the gradation value of the red pixel portion PXR is set to “220”, thereby causing the display pixel PX to display at the target white chromaticity. That is, since the illumination light of the backlight device 12 contains more red light than green light and blue light, the opening of the red pixel portion RPX of the liquid crystal panel 11 (ease of light transmission).
- the chromaticity of the display pixel PX is set as the target white chromaticity.
- the target white chromaticity when performing white display on the liquid crystal panel 11 is preferably set to, for example, a color temperature of about 12000K, but is not necessarily limited to this value.
- the control substrate CTR makes the gradation values of the green pixel portion PXG and the blue pixel portion PXB smaller than those during white display, and displays the gradation values of the red pixel portion PXR in white. Bigger than time. Specifically, as shown in FIG. 13, the control substrate CTR sets the gradation values of the green pixel portion PXG and the blue pixel portion PXB to “0”, which is the minimum value, as shown in FIG. By setting the gradation value of the part PXR to “255” which is larger than “220” at the time of white display, the target red display is performed on the display pixel PX.
- the gradation value of the red pixel portion PXR is the maximum value.
- the illumination light of the backlight device 12 is based on the light emission amounts related to the three colors of light required for the reference white light
- the light emission amount related to the red light is selectively increased.
- the red light whose light emission amount is selectively increased is transmitted through the red pixel portion PXR to the maximum when displaying red, so that the amount of transmitted red light is maximized as shown in FIG.
- the color purity of red displayed on the display pixel PX is higher.
- FIG. 14 shows the transmission spectrum of the liquid crystal panel 11 during red display, in which the horizontal axis indicates the wavelength (unit: nm) and the vertical axis indicates “relative luminance (no unit)”. .
- the control substrate CTR sets the gradation value of the green pixel portion PXG to “255” which is the maximum value and displays the gradation values of the red pixel portion PXR and the blue pixel portion PXB as shown in FIG.
- the minimum value By setting the minimum value to “0”, the target green display is performed on the display pixel PX.
- the control substrate CTR sets the gradation value of the blue pixel portion PXB to “255” which is the maximum value, and sets the gradation values of the red pixel portion PXR and the green pixel portion PXG to “0” which is the minimum value.
- the target blue display is performed on the display pixel PX.
- the following comparative experiment 1 was conducted in order to demonstrate the above actions and effects.
- this comparative experiment 1 when the content of the red phosphor included in the LED 17 is larger than the reference content of the red phosphor required for making the illumination light of the backlight device 12 the reference white light, It was measured how the brightness of the display, the brightness when displaying red, and the chromaticity when displaying red are changed.
- the relative content of the red phosphor is increased stepwise from the above-described reference content of the red phosphor to five times, and the relative luminance during white display at that time is increased. And the relative luminance when red is displayed.
- Comparative Experiment 1 when the reference content of the red phosphor is 100%, the relative content of the red phosphor is “100%, 140%, 180%, 220%, 260%, 300%”. , 340%, 380%, 420%, 460%, 500% ", and the relative luminance is measured (FIGS. 15 to 17). Furthermore, in the comparative experiment 1, each chromaticity at the time of red display, green display, and blue display when the relative content of the red phosphor is “100%, 180%” is measured (FIG. 18 and FIG. 19). The experimental results of Comparative Experiment 1 are shown in FIGS. FIG.
- FIG. 15 is a table showing the relative content of the red phosphor, the relative luminance during white display, the relative luminance during red display, and the chromaticity during red display.
- FIG. 15 as the chromaticity at the time of red display, an x value and a y value according to the CIE 1931 chromaticity diagram and a u ′ value and a v ′ value according to the CIE 1976 chromaticity diagram are described, respectively.
- the horizontal axis is a relative value (unit: “%”) when the reference content of the red phosphor is 100% with respect to the content of the red phosphor, whereas the vertical axis is FIG.
- FIG. 6 is a graph showing relative values (unit: “%”) when the red phosphor is used as a reference content with respect to luminance during white display and luminance during red display.
- the “x” plot represents a red display
- the “ ⁇ ” plot represents a white display.
- FIG. 17 is a CIE1931 chromaticity diagram, and shows the transition of red chromaticity during red display when the relative content of the red phosphor is changed as described above.
- FIG. 18 is a table showing the chromaticities of single colors of red, green and blue when the relative content of the red phosphor is “100%, 180%”.
- FIG. 19 is a CIE 1976 chromaticity diagram showing monochromatic chromaticities of red, green and blue when the relative content of the red phosphor is “100%, 180%”.
- the chromaticity region at 100% is represented by a two-dot chain line and a plot of “ ⁇ ”, and the chromaticity region at a relative content of red phosphor of 180% is represented by a solid line and a plot of “ ⁇ ”, respectively. Show.
- red light having an increased light emission amount is used for display as it is.
- the relative content of the red phosphor exceeds 107%, the relative luminance during red display exceeds 105%. Therefore, the relative content of the red phosphor is set to 107% or more.
- the relative content of red phosphor tends to be proportional to the relative amount of red light emitted by the red phosphor, so it can be said that the relative amount of red light emitted is preferably 107% or more.
- 20 is a CIE 1931 chromaticity diagram showing a spectrum locus, a pure purple locus, and a Mac Adam ellipse.
- 18 and 19 when the red phosphor content is 180%, the red color gamut is expanded as compared with the case where the red phosphor content is 100%. I understand. Thus, it can be seen that if the relative content of the red phosphor is increased, the color gamut of red during red display is further expanded and the color reproducibility is further improved.
- the relative luminance at the time of red display is 141%, and a sufficient luminance improvement effect is obtained.
- the liquid crystal display device (display device) 10 includes the liquid crystal panel (display panel) 11 having a plurality of pixel portions PXR, PXG, and PXB that exhibit different colors and a plurality of colors that exhibit different colors.
- a backlight device (illumination device) 12 that irradiates the liquid crystal panel 11 with illumination light including the above-mentioned light, and is based on each light emission amount related to light of a plurality of colors required to make the illumination light a reference white light
- the backlight device 12 is configured to selectively increase the light emission amount related to the first color light included in the light of a plurality of colors, and among the plurality of pixel units PXR, PXG, and PXB during white display
- the gradation value of the red pixel portion (first pixel portion) PXR that exhibits red (first color) is smaller than the gradation values of the pixel portions PXG and PXB that exhibit other colors.
- a pixel portion PXG exhibiting a color, Gradation value of XB is and a control board (pixel control unit) CTR for controlled to be larger than when the gradation value of the red pixel portion PXR white display smaller than when white display.
- illumination light including a plurality of lights emitted from the backlight device 12 passes through the plurality of pixel portions PXR, PXG, and PXB included in the liquid crystal panel 11 according to the gradation values.
- the plurality of pixel portions PXR, PXG, and PXB exhibit different colors, and a predetermined image is displayed.
- the illumination light of the backlight device 12 is light that has a reddish color than the reference white light.
- the gradation value of the red pixel portion PXR that exhibits red by the control substrate CTR is By controlling to be smaller than the gradation values of the pixel portions PXG and PXB exhibiting other colors, white display can be performed.
- the gradation values of the pixel portions PXG and PXB exhibiting other colors are smaller than when white is displayed by the control substrate CTR, and the gradation value of the red pixel portion PXR is larger than when white is displayed. It is controlled to become. Thereby, the luminance relating to red at the time of displaying red is increased and the color reproduction range is widened.
- the liquid crystal panel 11 includes a plurality of pixel units PXR, PXG, and PXB including at least a red pixel unit PXR that exhibits red, a green pixel unit PXG that exhibits green, and a blue pixel unit PXB that exhibits blue.
- the backlight device 12 includes at least red light, green light, and blue light in a plurality of colors, and the first color light is red light.
- the control substrate CTR includes a red pixel unit. PXR is controlled as the first pixel portion. In this way, the luminance relating to red at the time of red display is increased and the color reproduction range is widened. Since red tends to be easily recognized by humans as an extension of the color reproduction range compared to other colors, red is more suitable for improving the display quality of an image.
- the backlight device 12 has a light emission amount of red light of 107% or more, assuming that each light emission amount of light of a plurality of colors required for the illumination light as reference white light is 100%. It is configured as follows. In this way, regarding the luminance related to red at the time of displaying red, when the luminance based on the light emission amount related to red light when the illumination light is set as the reference white light is set to 100%, the luminance is 105% or more. Improvement effect is obtained.
- the backlight device 12 includes a blue LED element (light emitting element) 21 that emits light and a phosphor that converts the wavelength of light from the blue LED element 21 and emits red light to the phosphor. At least a red phosphor (first phosphor) is included, and the backlight device 12 includes a red phosphor when the content of the phosphor necessary for making the illumination light a reference white light is a reference. It is comprised so that the content which concerns may become relatively large. In this way, when light is emitted from the blue LED element 21, at least part of the light is wavelength-converted by the phosphor, so that illumination light of the backlight device 12 can be obtained.
- a blue LED element light emitting element
- a phosphor that converts the wavelength of light from the blue LED element 21 and emits red light to the phosphor.
- At least a red phosphor first phosphor
- the backlight device 12 includes a red phosphor when the content of the phosphor necessary for making the illumination light a
- the content which concerns on the red fluorescent substance contained in fluorescent substance is larger than the reference value of the content which concerns on the fluorescent substance required in order to make illumination light into reference
- the light emission amount of red light is larger than the reference value of each light emission amount related to the light of a plurality of colors required to make the illumination light the reference white light.
- the target illumination light can be easily obtained without complicated control of the light emission amount of the blue LED element 21.
- the backlight device 12 includes a blue LED element 21, a case 23 that houses the blue LED element 21, a sealing material 22 that contains the phosphor by sealing the blue LED element 21 in the case 23, It has at least LED (light source) 17 comprised from these. If it does in this way, at least one part of the light emitted from the blue LED element 21 with the fluorescent substance contained in the sealing material 22 which seals the blue LED element 21 in the case 23 will be utilized as excitation light.
- the LED 17 is configured such that the red phosphor is potassium silicofluoride using manganese as an activator. In this way, red light with high color purity can be emitted by sufficiently narrowing the half-value width of the main peak contained in the emission spectrum of potassium fluorosilicate as a red phosphor.
- an expensive rare earth element is not used as the material for potassium silicofluoride, the manufacturing cost of the LED 17 is low.
- potassium silicofluoride is considered to be less susceptible to performance degradation due to moisture absorption or the like, it is suitable for adopting a configuration in which the blue LED element 21 is contained in the sealing material 22 that seals the case 23. .
- the television receiver 10TV includes the liquid crystal display device 10 described above. According to the television receiver 10TV having such a configuration, since the luminance related to red at the time of displaying red is high and the color reproduction range is wide, display of a television image with excellent display quality is realized. be able to.
- a video conversion circuit board that converts a television video signal output from the tuner 110T into a video signal for the liquid crystal display device 110.
- 110 VC is provided.
- the video conversion circuit board 110VC converts the TV video signal output from the tuner 110T into a video signal of each color of blue, green, red, and yellow, and the generated video signal of each color is connected to the liquid crystal panel 111. Can be output to a control board (not shown in the present embodiment, but see FIG. 11).
- the television receiver 110TV includes a pair of cabinets 110Ca and 110Cb, a power source 110P, and a stand 110S that have the same configuration as that of the first embodiment.
- the color filter 111k provided on the inner surface of the CF substrate 111a constituting the liquid crystal panel 111 includes those exhibiting yellow in addition to red, green and blue, as shown in FIGS. 22 and 24. Those exhibiting colors are repeatedly arranged in a predetermined order.
- the yellow color filter 111k selectively transmits light in the yellow wavelength region, that is, light in the red wavelength region and light in the green wavelength region. That is, the yellow color filter 111k transmits both red light and green light.
- the red color filter 111k and the blue color filter 111k are relatively larger in size and area in the X-axis direction than the green color filter 111k and the yellow color filter 111k, for example, about 1.6 times. It is said.
- the red color filter 111k and the blue color filter 111k have substantially the same size and area in the X-axis direction, and the green color filter 111k and the yellow color filter 111k have a size and area in the X-axis direction. They are almost equal to each other. Accordingly, each pixel electrode 111h facing the red color filter 111k and the blue color filter 111k is replaced with each pixel electrode facing the green color filter 111k and the yellow color filter 111k, as shown in FIGS.
- the dimension and area in the X-axis direction are relatively larger than 111h, for example, about 1.6 times.
- one display pixel PX which is a display unit, is configured by a set of four color filters 111k of red, green, blue, and yellow and four pixel electrodes 111h facing the color filters 111k.
- the display pixel PX includes a red pixel portion PXR, a green pixel portion PXG, a blue pixel portion PXB, and a yellow pixel portion PXY including a yellow color filter 111k and a pixel electrode 111h facing the color filter 111k.
- the pixel portions PXR, PXG, PXB, and PXY of each color constitute a pixel group by being repeatedly arranged along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 111.
- This pixel group Are arranged side by side along the column direction (Y-axis direction).
- a voltage is applied to each pixel electrode 111h constituting the pixel portions PXR, PXG, PXB, and PXY of each color by a TFT 111g connected to each pixel electrode, and the color of each color is determined based on the voltage value.
- the alignment state of the liquid crystal layer 111e in the pixel portions PXR, PXG, PXB, and PXY changes, so that the amount of light transmitted through the liquid crystal panel 111 is individually controlled for each color pixel portion PXR, PXG, PXB, and PXY. Yes.
- the dimensions and area in the X-axis direction and the Y-axis direction of the display pixel PX according to the present embodiment are the same as those described in the first embodiment.
- the liquid crystal panel 111 having such a configuration is driven when a signal from a control board (not shown) is input, and the control board is output from the tuner 110T in the video conversion circuit board 110VC shown in FIG.
- Each color video signal generated by converting the generated television video signal into a blue, green, red and yellow color video signal is input.
- the amount of light transmitted through the parts PXR, PXG, PXB, and PXY is appropriately controlled.
- the color filter 111k of the liquid crystal panel 111 has what exhibits yellow in addition to what exhibits the three primary colors of light, the color gamut of the display image displayed by the transmitted light is expanded, It is assumed that excellent display can be realized by reproducibility.
- the light transmitted through the yellow color filter 111k has a wavelength close to the peak of visibility, the human eye tends to perceive brightly even with a small amount of energy. Thereby, even if it suppresses the output of LED which the backlight apparatus which is not shown in figure, sufficient brightness
- the display pixel PX including the four color pixel portions PXR, PXG, PXB, and PXY has the same area as that described in the first embodiment, whereas the display pixel PX has four display pixels PX.
- Each color pixel portion PXR, PXG, PXB, PXY is constituted. Therefore, the areas of the four color pixel portions PXR, PXG, PXB, and PXY are smaller than the areas of the three color pixel portions PXR, PXG, and PXB described in the first embodiment. This is because each pixel unit PXR is considered to be about 1.6 times the area of the green pixel unit PXG and the yellow pixel unit PXY in the present embodiment.
- PXG, PXB, PXY are relatively smaller than those described in the first embodiment. Specifically, when the area ratio of the green pixel portion PXG and the yellow pixel portion PXY is “1.0”, the area ratio of the red pixel portion PXR and the blue pixel portion PXB is “1.6”. On the other hand, the area ratio of the pixel portions PXR, PXG, and PXB of the three colors according to the first embodiment is about “1.73”, respectively.
- the backlight device that supplies the illumination light to the liquid crystal panel 111 having such a configuration is based on each light emission amount related to the three colors of light required to make the illumination light a reference white light, as in the first embodiment. In this case, the light emission amount related to the red light included in the three colors of light is selectively increased.
- the control board for controlling the driving of the liquid crystal panel 111 is green, blue, and yellow in which the gradation value of the red pixel portion PXR is another color among the four color pixel portions PXR, PXG, PXB, and PXY during white display.
- the pixel values PXG, PXB, and PXY are smaller than the gradation values of the pixel portions PXG, PXB, and PXY, and the red, green, and yellow pixel portions PXG, PXB, and PXY have smaller gradation values than that of the white display during red display.
- the gradation value is controlled to be larger than that during white display. According to such a configuration, since the illumination light of the backlight device is light that has a reddish color than the reference white light, the gray level of the red pixel unit PXR is displayed by the control substrate during white display on the liquid crystal panel 111.
- the value so as to be smaller than the gradation values of the green, blue, and yellow pixel portions PXG, PXB, and PXY white display can be performed. Since the yellow pixel portion PXY transmits red light in addition to green light, the gradation value of the yellow pixel portion PXY is set to the gradation of each of the green and blue pixel portions PXG and PXB by the control board during white display. It is controlled to be smaller than the value.
- the gradation values of the green, blue, and yellow pixel portions PXG, PXB, and PXY are smaller than the white color display by the control substrate, and the gray level values of the red pixel portion PXR are displayed in white. It is controlled to be larger than the hour. As a result, the luminance relating to red at the time of red display is increased and the color reproduction range is widened.
- the liquid crystal panel 111 according to this embodiment has a lower area ratio of each pixel unit PXR, PXG, PXB, and PXY than the liquid crystal panel 11 according to the first embodiment. Therefore, as the amount of light emission related to the red light included in the illumination light of the backlight device is increased, the increase rate of the luminance related to the red light during the red display is relatively large. And since the amount of light emission related to the red light included in the illumination light of the backlight device is increased, the illumination light has a reddish tint, so the reference white light is assumed to be the illumination light. Compared to the case, the chromaticity related to yellow at the time of yellow display shifts toward red. Such a yellow chromaticity shift occurs because red light passes through the yellow color filter 111k to some extent. This is more suitable for extending the color reproduction range.
- the following comparative experiment 2 was conducted in order to demonstrate the above actions and effects.
- the content of the red phosphor included in the LED is based on the illumination light of the backlight device. Measure how white display brightness, red display brightness, and chromaticity change in red display change when the content of the red phosphor required for white light is increased. did.
- the relative content of the red phosphor is increased stepwise from the reference content of the red phosphor to 5 times the relative content, and the relative luminance at the time of white display at that time And the relative luminance when red is displayed.
- Comparative Experiment 2 when the reference content of the red phosphor is 100%, the relative content of the red phosphor is “100%, 107%, 180%, 220%, 260%, 300%”. , 340%, 380%, 420%, 460%, 500% ", and the relative luminance is measured (FIGS. 25 to 27). Furthermore, in comparative experiment 2, each chromaticity at the time of red display, yellow display, green display and blue display when the relative content of the red phosphor is “100%, 180%” was measured. (FIGS. 28 and 29). The experimental results of Comparative Experiment 2 are shown in FIGS. FIG.
- FIG. 25 is a table showing the relative content of the red phosphor, the relative luminance during white display, the relative luminance during red display, and the chromaticity during red display.
- FIG. 25 as the chromaticity at the time of red display, an x value and a y value according to the CIE 1931 chromaticity diagram and a u ′ value and a v ′ value according to the CIE 1976 chromaticity diagram are described, respectively.
- the horizontal axis represents the relative value (unit: “%”) when the reference content of the red phosphor is 100% with respect to the content of the red phosphor, whereas the vertical axis represents FIG.
- FIG. 6 is a graph showing relative values (unit: “%”) when the red phosphor is used as a reference content with respect to luminance during white display and luminance during red display.
- the “ ⁇ ” plot represents a red display
- the “ ⁇ ” plot represents a white display.
- experimental results (“ ⁇ ” plot, “ ⁇ ” plot) according to Comparative Experiment 1 of Embodiment 1 are shown for reference.
- FIG. 27 is a CIE 1931 chromaticity diagram, and shows the transition of red chromaticity during red display when the relative content of the red phosphor is changed as described above.
- FIG. 28 is a table showing the chromaticity of each single color of red, green and blue when the relative content of the red phosphor is “100%, 180%”.
- 29 is a CIE 1976 chromaticity diagram showing monochromatic chromaticities of red, green and blue when the relative content of the red phosphor is “100%, 180%”.
- the chromaticity region at 100% is represented by a two-dot chain line and a plot of “ ⁇ ”, and the chromaticity region at a relative content of red phosphor of 180% is represented by a solid line and a plot of “ ⁇ ”, respectively. Show.
- the relative luminance at the time of red display according to the experimental result of the comparative experiment 2 is equivalent to the experimental result of the comparative experiment 1.
- the relative luminance at the time of red display according to the experimental result of the comparative experiment 2 exceeds the experimental result of the comparative experiment 1, and the red content increases as the relative content of the red phosphor increases.
- the difference in relative luminance during display is large.
- the liquid crystal panel 111 including the four color pixel portions PXR, PXG, PXB, and PXY is used in the comparative experiment 2, and includes the three color pixel portions PXR, PXG, and PXB as in the comparative experiment 1.
- the individual area ratios of the pixel portions PXR, PXG, PXB, and PXY are low, and the amount of light emission related to red light included in the illumination light of the backlight device is increased. It is presumed that the rate of increase in luminance related to red light during red display is relatively large.
- Comparative Experiment 2 as in Comparative Experiment 1, when the relative content of the red phosphor exceeds 107%, the relative luminance during red display exceeds 105%.
- the relative content of the red phosphor exceeds 220%, the relative luminance during the white display is lower than the experimental result of the comparative experiment 1, but the relative content of the red phosphor is small. Up to 220%, the relative luminance at the time of white display is equivalent to the experimental result of Comparative Experiment 1.
- the reason why the relative luminance at the time of white display decreases when the relative content of the red phosphor exceeds 220% is that the yellow pixel portion PXY transmits red light in addition to green light.
- the gradation value of the yellow pixel portion PXY is controlled by the control board so that the gradation value of each of the green and blue pixel portions PXG and PXB is smaller, and when the white content is displayed as the relative content of the red phosphor increases. It is assumed that the difference between the gradation value of the yellow pixel portion PXY and the gradation values of the green and blue pixel portions PXG and PXB becomes large. Therefore, according to the experimental result of the comparative experiment 2, when the relative content of the red phosphor is in the range of 125% to 220%, the luminance improvement effect at the time of red display exceeds the comparative experiment 1 and the white display It can be said that a significant decrease in luminance efficiency at the time can be avoided. Since the relative content of the red phosphor tends to be proportional to the relative amount of red light emitted by the red phosphor, the relative amount of red light emitted is preferably in the range of 125% to 220%. It can be said.
- the liquid crystal panel 111 is configured such that the plurality of pixel portions PXR, PXG, PXB, and PXY exhibit four or more different colors.
- the area ratio of the pixel units PXR, PXG, PXB, and PXY is lower than that in the case where the pixel units PXR, PXG, and PXB have three different colors.
- the backlight device has a light emission amount of 125% to 220% of red light when each light emission amount related to the light of a plurality of colors required for the illumination light as the reference white light is 100%. Configured to be a range. If the light emission amount related to red light is less than 125%, the luminance improvement effect at the time of red display is about the same as the case where the pixel portions PXR, PXG, and PXB exhibit three different colors. On the contrary, when the amount of light emission related to red light exceeds 220%, the luminance efficiency at the time of white display may be significantly reduced.
- the luminance improvement effect at the time of red display is such that the pixel portions PXR, PXG, and PXB exhibit three different colors. As a result, the luminance efficiency during white display can be avoided from being significantly reduced.
- the liquid crystal panel 111 includes a plurality of pixel portions PXR, PXG, PXB, and PXY, a red pixel portion PXR that exhibits red, a green pixel portion PXG that exhibits green, a blue pixel portion PXB that exhibits blue, and a yellow pixel that exhibits yellow.
- the backlight device includes at least a portion PXY, and the backlight device includes at least red light, green light, and blue light in a plurality of colors, and the first color light is red light.
- the control board controls the red pixel portion PXR as the first pixel portion.
- the yellow pixel portion PXY constituting the plurality of pixel portions PXR, PXG, PXB, and PXY transmits yellow light, that is, green light and red light.
- the illumination light of the backlight device is light that has a red color that is the first color than the reference white light. Therefore, compared with the case where the reference white light is used, the display device displays yellow light. In this case, the chromaticity related to yellow at is shifted toward red. This is more suitable for extending the color reproduction range.
- the optical sheet 215b includes a wavelength conversion sheet (wavelength conversion member) 24 in addition to the microlens sheet 215b1, the prism sheet 215b2, and the reflective polarizing sheet 215b3. .
- the wavelength conversion sheet 24 is disposed so as to be stacked on the back side (side closer to the LED 217) with respect to the microlens sheet 215b1, and is disposed between the microlens sheet 215b1 and the diffusion plate 215a. That is, the wavelength conversion sheet 24 is disposed on the front side of the LED 217, that is, on the exit side of the light output path, and wavelength-converts the light from the LED 217.
- the wavelength conversion sheet 24 contains a phosphor as a substance for converting the wavelength of light from the LED 217. Accordingly, the LED 217 is configured not to contain a phosphor in the sealing material 222, as shown in FIG. As a result, the LED 217 emits light emitted from the blue LED element 221, that is, blue monochromatic light.
- the wavelength conversion sheet 24 includes a red phosphor that converts a part of the blue light from the LED 217 into red light, and a green phosphor that converts a part of the blue light from the LED 217 into green light. include.
- the illumination light of the backlight device 212 is wavelength-converted by the blue light that is the primary light emitted from the LED 217 and the red phosphor and the green phosphor (wavelength conversion material) of the wavelength conversion sheet 24.
- the additive color mixture of red light and green light, which are secondary lights, is generally white and has a predetermined color temperature or correlated color temperature.
- the wavelength conversion sheet 24 includes at least a wavelength conversion layer (phosphor film) containing a red phosphor and a green phosphor, and a pair of protective layers (protection film) that sandwich and protect the wavelength conversion layer from the front and back sides.
- a red phosphor that emits red light and a green phosphor that emits green light using the blue monochromatic light from the LED 217 as excitation light are dispersed and blended.
- the wavelength conversion sheet 24 is the secondary light (green light and red light) which exhibits the color (yellow) complementary to the light emission (blue light, primary light) of the LED 217 with respect to the color (blue). It is assumed that wavelength conversion is performed.
- the wavelength conversion layer is formed by coating a phosphor layer in which a red phosphor and a green phosphor are dispersed and mixed on a base material (phosphor carrier) made of a substantially transparent synthetic resin and forming a film shape.
- the protective layer is made of a substantially transparent synthetic resin and has a film shape, and is excellent in moisture resistance and the like.
- the phosphors of the respective colors are of the down conversion type (down shifting type) in which the excitation wavelength is shorter than the fluorescence wavelength.
- This down-conversion type phosphor is supposed to convert excitation light having a relatively short wavelength and high energy into fluorescence light having a relatively long wavelength and low energy. Therefore, the quantum efficiency (light conversion efficiency) is 30% to 30% higher than when using an up-conversion type phosphor whose excitation wavelength is longer than the fluorescence wavelength (quantum efficiency is about 28%, for example). It is about 50% and higher.
- Each color phosphor is a quantum dot phosphor (Quantum Dot Phosphor).
- Quantum dot phosphors have discrete energy levels by confining electrons, holes, and excitons in all three-dimensional space in a nano-sized semiconductor crystal (for example, about 2 nm to 10 nm in diameter) By changing the size of the dots, the peak wavelength (emission color) of emitted light can be appropriately selected.
- the emission light (fluorescence light) of the quantum dot phosphor has a sharp peak in the emission spectrum and a narrow half width, so that the color purity is extremely high and the color gamut is wide.
- a material of the quantum dot phosphor As a material of the quantum dot phosphor, a combination of Zn, Cd, Hg, Pb or the like that becomes a divalent cation and O, S, Se, Te, or the like that becomes a divalent anion (CdSe (selenization) (Cadmium), ZnS (Zinc Sulfide), etc.)
- a material InP (Indium Phosphide), GaAs) that combines trivalent cation Ga, In, etc. with trivalent anion P, As, Sb, etc. (Gallium arsenide) and the like) and chalcopyrite type compounds (CuInSe 2 and the like).
- the quantum dot phosphor used in the present embodiment is a so-called core-shell type quantum dot phosphor.
- the core-shell type quantum dot phosphor has a configuration in which the periphery of the quantum dot is covered with a shell made of a semiconductor material having a relatively large band gap.
- the backlight device 212 includes the LED 217 having the blue LED element 221 and the phosphor, which is disposed on the exit side of the light emission path with respect to the LED 217 and emits light from the LED 217. And a wavelength conversion sheet (wavelength conversion member) 24 for converting the wavelength of at least.
- the phosphor is contained in the wavelength conversion sheet 24 arranged on the exit side of the light emission path with respect to the LED 217, the performance of the phosphor deteriorates due to the heat emitted from the blue LED element 221 of the LED 217. It will be difficult.
- the phosphor when the phosphor is contained in the wavelength conversion sheet 24, for example, it is easy to adopt a means for sealing the phosphor with a high sealing property, and therefore a phosphor that is likely to be deteriorated in performance due to moisture absorption or the like is used. Preferred above.
- the phosphor is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by the wavelength conversion sheet 24 will become higher, the color purity of the wavelength-converted light will become high. For example, if the wavelength conversion sheet 24 is provided with a means for sealing the quantum dot phosphor with a high sealing property, the quantum dot phosphor is less likely to deteriorate in performance due to moisture absorption or the like.
- the liquid crystal display device 310 has a configuration in which a liquid crystal panel 311 and an edge light type backlight device 312 are integrated by a bezel 313 or the like. Note that the configuration of the liquid crystal panel 311 is the same as that of the above-described first embodiment, and thus redundant description is omitted. Hereinafter, the configuration of the edge light type backlight device 312 will be described.
- the backlight device 312 includes a substantially box-shaped chassis 314 having a light emitting portion 314b that opens toward the front side (the liquid crystal panel 311 side), and a light emitting portion 314b of the chassis 314.
- An optical member 315 arranged in a covering manner.
- an LED 317 that is a light source
- a light guide plate 25 that guides light from the LED 317 and guides it to the optical member 315 (liquid crystal panel 311), and a light guide.
- a frame 316 for holding the light plate 25 from the front side.
- the backlight device 312 includes LED substrates 318 having LEDs 317 at both ends on the long side thereof, and a so-called light guide plate 25 disposed on the center side sandwiched between the LED substrates 318. It is an edge light type (side light type). As described above, the backlight device 312 according to the present embodiment is an edge light type, and thus is suitable for reducing the thickness as compared with the direct-type backlight device 12 as in the first embodiment. Further, the edge light type backlight device 312 according to the present embodiment is not provided with the reflection sheet 20 or the like used in the direct type backlight device 12 shown in the first embodiment. Next, each component of the backlight device 312 will be described in detail.
- the chassis 314 is made of metal, and as shown in FIGS. 32 and 33, a bottom plate portion 314a having a horizontally long rectangular shape as in the liquid crystal panel 311 and side plate portions rising from the outer ends of the respective sides of the bottom plate portion 314a. 314c, and as a whole, has a shallow substantially box shape opened toward the front side.
- the chassis 314 (bottom plate portion 314a) has a long side direction that matches the X-axis direction (horizontal direction) and a short side direction that matches the Y-axis direction (vertical direction). Further, the frame 316 and the bezel 313 can be fixed to the side plate portion 314c.
- the optical member 315 is composed of three optical sheets 315b as shown in FIGS. 32 and 33, and is the same as the first embodiment except that the diffusing plate 15a is not provided.
- the frame 316 has a frame-like portion (frame-like portion) 316a extending along the outer peripheral edge portion of the light guide plate 25.
- the frame-like portion 316a causes the outside of the light guide plate 25 to be outside.
- the peripheral edge can be pressed from the front side over almost the entire circumference.
- the first reflection that reflects light is formed on the back side surfaces of both long side portions of the frame-shaped portion 316a of the frame 316, that is, on the surface facing the light guide plate 25 and the LED substrate 318 (LED 317).
- the first reflection sheet 26 has a size that extends over almost the entire length of the long side portion of the frame-like portion 316 a, and is in direct contact with the end portion of the light guide plate 25 on the LED 317 side and the light guide plate 25.
- the end portion and the LED substrate 318 are collectively covered from the front side.
- the frame 316 supports the outer peripheral edge portion of the optical member 315 from the back side by a frame-like portion 316a that presses the light guide plate 25 from the front side, so that the optical member 315 contacts the light emitting surface 25a of the light guide plate 25 described later. It is supported with a predetermined interval (air layer) in between.
- the frame 316 has a liquid crystal panel support 316b that protrudes from the frame-shaped portion 316a toward the front side and supports the outer peripheral edge of the liquid crystal panel 311 from the back side.
- the LED substrate 318 has an elongated plate shape extending along the long side direction of the chassis 314 (X-axis direction, the longitudinal direction of the light incident surface 25b of the light guide plate 25), and the plate The surface is accommodated in the chassis 314 in a posture parallel to the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the liquid crystal panel 311 and the light guide plate 25 (optical member 315).
- the LED boards 318 are installed in pairs in such a manner that the light guide plate 25 is sandwiched from both sides in the short side direction (Y-axis direction).
- An LED 317 is mounted on the inner side of the LED substrate 318, that is, the surface facing the light guide plate 25 side (the surface facing the light guide plate 25).
- a plurality of LEDs 317 are arranged in a line (linearly) along the length direction (X-axis direction) on the mounting surface 318 a of the LED substrate 318. Therefore, it can be said that a plurality of LEDs 317 are arranged side by side along the long side direction at both ends on the long side of the backlight device 312.
- the plurality of LEDs 317 mounted on each LED board 318 are connected in series by a board wiring part (not shown).
- each LED board 318 is housed in the chassis 314 in such a manner that the mounting surfaces 318a of the LEDs 317 are opposed to each other, the light emitting surfaces 317a of the respective LEDs 317 mounted on the LED boards 318 are opposed to each other.
- the optical axis of each LED 317 substantially coincides with the Y-axis direction.
- the light guide plate 25 is made of a synthetic resin material (for example, acrylic resin material such as PMMA) having a refractive index sufficiently higher than that of air and substantially transparent (excellent translucency). As shown in FIG. 32, the light guide plate 25 has a horizontally long rectangular shape when viewed from the same plane as the liquid crystal panel 311 and the chassis 314. The long side direction is the X axis direction and the short side direction is the Y axis. Each direction matches.
- the light guide plate 25 is disposed immediately below the liquid crystal panel 311 and the optical member 315 in the chassis 314, and is sandwiched between the pair of LED substrates 318 disposed at both ends of the long side of the chassis 314 in the Y-axis direction. It is arranged in the form.
- the alignment direction of the LED 317 (LED substrate 318) and the light guide plate 25 coincides with the Y-axis direction, whereas the alignment direction of the optical member 315 (liquid crystal panel 311) and the light guide plate 25 matches the Z-axis direction. It is assumed that both directions are orthogonal to each other.
- the light guide plate 25 introduces the light emitted from the LED 317 in the Y-axis direction, and rises and emits the light toward the optical member 315 side (Z-axis direction) while propagating the light inside.
- the plate surface facing the front side is, as shown in FIG. 33, a light emitting surface (light emitting plate surface) 25a for emitting internal light toward the optical member 315 and the liquid crystal panel 311. It has become.
- a light emitting surface (light emitting plate surface) 25a for emitting internal light toward the optical member 315 and the liquid crystal panel 311. It has become.
- both end surfaces on the long side forming a longitudinal shape along the X-axis direction are opposed to the LED 317 (LED substrate 318) with a predetermined space therebetween. These serve as a light incident surface (light incident end surface) 25b on which light emitted from the LED 317 is incident.
- the light incident surface 25b is a surface that is parallel to the X-axis direction and the Z-axis direction, and is a surface that is substantially orthogonal to the light emitting surface 25a.
- a second reflection sheet 27 capable of reflecting the light in the light guide plate 25 and rising up to the front side covers the entire area. Is provided.
- the second reflection sheet 27 is extended to a range where it overlaps with the LED board 318 (LED 317) in a plan view, and the LED board 318 (LED 317) is sandwiched between the first reflection sheet 26 on the front side. Has been.
- the optical sheet 415b (optical member 415) according to the present embodiment includes a wavelength conversion sheet 424 in addition to the microlens sheet 415b1, the prism sheet 415b2, and the reflective polarizing sheet 415b3. . Since the wavelength conversion sheet 424 is the same as that described in the third embodiment, a detailed description is omitted, but a red phosphor and a green phosphor, which are substances that convert the wavelength of light from the LED 417, are omitted. Contains.
- the wavelength conversion sheet 424 is disposed so as to be laminated on the back side (side closer to the LED 417) with respect to the microlens sheet 415b1, and is disposed between the microlens sheet 415b1 and the light guide plate 425.
- the LED 417 does not contain a phosphor and emits blue monochromatic light, and is the same as that described in Embodiment 3 above, so a detailed description is omitted (see FIG. 31). . Therefore, when the light emitted from the LED 417 is incident on the light incident surface 425a of the light guide plate 425, propagates through the light guide plate 425, and is emitted from the light output surface 425a, the light output surface 425a is covered.
- the illumination light of the backlight device 412 is blue light that is primary light emitted from the LED 417 and secondary light that is wavelength-converted by the red phosphor and the green phosphor of the wavelength conversion sheet 424.
- the additive color mixture of certain red light and green light generally gives white, and has a predetermined color temperature or correlated color temperature.
- the wavelength conversion tube (wavelength conversion member) 28 is interposed between the LED 517 and the light incident surface 525b of the light guide plate 525, that is, the exit of the light emission path with respect to the LED 517.
- the light from the LED 517 is wavelength-converted.
- the wavelength conversion tube 28 contains a red phosphor and a green phosphor as a substance for wavelength-converting light from the LED 517.
- the wavelength conversion tube 28 extends along the longitudinal direction (X-axis direction) of the light incident surface 525b of the light guide plate 525, is opposed to the light incident surface 525b over almost the entire length, and is mounted on the LED substrate 518. All the LEDs 517 arranged are arranged so as to face each other.
- the wavelength conversion tube 28 is used. Since the content of each phosphor to be contained is small, it is more suitable for cost reduction.
- the optical sheet 515b (optical member 515) is as follows. The microlens sheet 515b1, the prism sheet 515b2, and the reflective polarizing sheet 515b3 are used.
- the wavelength conversion tube 28 includes a substantially transparent and tubular container (capillary) 28a, and a phosphor-containing portion 28b enclosed in the container 28a and containing a red phosphor and a green phosphor.
- the container 28a is made of, for example, glass and has a cavity so as to have a space in which the phosphor-containing portion 28b is enclosed (hollow), and is cut along a direction orthogonal to the extending direction.
- the cross-sectional shape is a vertically long square. In the manufacturing process, the container 28a is open at one end in the length direction, and the phosphor-containing portion 28b is filled into the internal space therefrom.
- the phosphor-containing portion 28b filled in the internal space is sealed by closing the opening of the container 28a, and the performance of the green phosphor deteriorates due to moisture absorption or the like. Is to be prevented.
- the red phosphor and the green phosphor described in the first embodiment are dispersed and blended at a predetermined blending ratio.
- the phosphor-containing portion 28b has a dimension in the Z-axis direction larger than the same dimension (height dimension) in the LED 517, whereby a part of blue light emitted from the LED 517 is red phosphor and The green phosphor is efficiently wavelength-converted into red light and green light, respectively.
- Embodiment 7 A seventh embodiment of the present invention will be described with reference to FIG. In this Embodiment 7, what changed the structure of LED617 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, an effect
- the LED 617 includes three LED elements 621, 29, and 30 that emit light of red, green, and blue colors, respectively.
- the LED 617 includes a blue LED element 621 that emits blue light, a green LED element (green light emitting element, light emitting element) 29 that emits green light, and a red LED element (red light emitting element, light emitting) that emits red light.
- Element) 30 a sealing material 622 for sealing these LED elements 621, 29, and 30, and a case 623 for housing them. Therefore, the LED 617 is configured not to have a phosphor like that described in the first embodiment.
- These three LED elements 621, 29, and 30 are arranged in a predetermined order in the bottom surface of the case 623.
- the blue LED element 621 is the same as that described in the first embodiment.
- the green LED element 29 is a semiconductor made of a semiconductor material such as InGaN, GaP, and the like, and is applied with a voltage in the forward direction so that a green monochromatic light having a wavelength included in the green wavelength region (about 500 nm to about 570 nm). Is supposed to emit light.
- the red LED element 30 is a semiconductor made of a semiconductor material such as GaP or GaAsP, for example, and a red monochromatic light having a wavelength included in a red wavelength region (about 600 nm to about 780 nm) when a voltage is applied in the forward direction. Is supposed to emit light.
- the emitted light of the green LED element 29 and the red LED element 30 has a color purity as compared with the fluorescent light in the case where the green phosphor and the red phosphor are contained in the sealing material 22 as in the first embodiment. Therefore, it is suitable for further improving the color reproducibility.
- the LED 617 includes blue light emitted from the blue LED element 621, green light emitted from the green LED element 29, and red light emitted from the red LED element 30 in the emitted light. Due to the additive color mixture of color light, the emitted light is generally white as a whole and has a predetermined color temperature or correlated color temperature. The emitted light of the LED 617 becomes the illumination light of the backlight device as it is as in the first embodiment.
- the red LED element 30 is connected to a drive circuit different from at least the blue LED element 621 and the green LED element 29, and has a relatively high current value (constant current drive) compared to the blue LED element 621 and the green LED element 29. In the case of PWM drive) or a high lighting period ratio (in the case of PWM drive).
- the drive circuits of the LED elements 621, 29, and 30 are preferably made independent of each other because the element characteristics of the LED elements 621, 29, and 30 are different, but the blue LED element 621 and the green LED The element 29 is not necessarily limited thereto.
- the backlight device emits red light when the light emission amounts of the LED elements 621, 29, and 30 required to illuminate the liquid crystal panel and use the illumination light as the reference white light is a reference.
- the light emission amount related to the emitted red LED element 30 is configured to be relatively large.
- control substrate has a gradation value of the red pixel portion of the three color pixel portions in the liquid crystal panel at the time of white display smaller than the gradation values of the green pixel portion and the blue pixel portion, which are other colors,
- control is performed so that the gradation value of the green pixel portion and the blue pixel portion is smaller than that at the time of white display, and the gradation value of the red pixel portion is larger than that at the time of white display.
- the illumination light of the backlight device is light that has a reddish color than the reference white light
- the gradation value of the red pixel portion is adjusted by the control substrate when displaying white in the liquid crystal panel.
- the control substrate is controlled so that the gradation value of the green pixel portion and the blue pixel portion is smaller than that during white display and the gradation value of the red pixel portion is larger than during white display. .
- the luminance during red display is increased and the color reproduction range is wide.
- the backlight device includes at least the plurality of LED elements (light emitting elements) 621, 29, and 30 that emit light of a plurality of colors, respectively.
- Light emission related to the red LED element (first light emitting element) 30 that emits red light when the amount of light emission related to the plurality of LED elements 621, 29, and 30 required for setting the illumination light as the reference white light is used as a reference.
- the amount is configured to be relatively large. If it does in this way, the illumination light of a backlight apparatus will be comprised by the light of the several color emitted from the several LED element 621,29,30.
- the light emission amount related to the red LED element 30 included in the plurality of LED elements 621, 29, 30 is a reference of the light emission amount related to each LED element 621, 29, 30 required for making the illumination light the reference white light. More than the value.
- the backlight device emits light from each of the LED elements 621, 29, and 30 as compared with a case where the backlight device is configured to include an LED including one LED element and a phosphor that converts the wavelength of the LED element light. The color purity relating to the light of each color becomes higher, which is suitable for improving the color reproducibility.
- the gradation value of the pixel portion (green pixel portion, blue pixel portion, yellow pixel portion) that exhibits other colors is set to the minimum value “0”.
- the gradation value of the pixel portion exhibiting another color can be set to a value larger than 0. The same applies to blue display, green display, and yellow display.
- the light emission amount related to the red light is relatively set.
- the gradation value of the red pixel part is made smaller than the gradation value of the pixel part exhibiting other colors.
- the amount of green light or blue light contained in the illumination light is set to be larger than the reference light emission amount (reference value of the light emission amount), and when the white color is displayed by the control board, the green pixel portion is displayed.
- the gradation value of the blue pixel portion is made smaller than the gradation value of the pixel portion exhibiting other colors, and the gradation value of the green pixel portion or the blue pixel portion is larger than that during white display during green display or blue display. To control Possible it is.
- the light emission amount of the red light and the green light included in the illumination light is made larger than the reference light emission amount. It is also possible to control the value to be smaller than the gradation value of the blue pixel portion, and to make the gradation values of the red pixel portion and the green pixel portion larger during red display and green display than during white display. Is possible.
- the emission amounts of red light and blue light included in the illumination light are made larger than the reference emission amount, and the gradation of the red pixel portion and the blue pixel portion is displayed when white is displayed on the control board. It is also possible to control the value to be smaller than the gradation value of the green pixel part, and to make the gradation value of the red pixel part and the blue pixel part larger in red display and blue display than in white display, respectively. Is possible.
- the light emission amounts of the green light and blue light included in the illumination light are made larger than the reference light emission amount, and the gradation of the green pixel portion and the blue pixel portion is displayed when displaying white by the control board. It is also possible to control the value to be smaller than the gradation value of the red pixel portion, and to make the gradation values of the green pixel portion and the blue pixel portion larger at the time of green display and blue display than at the time of white display. Is possible.
- the liquid crystal panel including the pixel portions of three colors or four colors is used.
- the liquid crystal panel including the pixel portions of five colors or more can be used.
- the pixel portion having five or more colors includes a cyan pixel portion that exhibits a cyan color. It is of course possible to add a pixel portion exhibiting a color other than cyan.
- the case where the LED, the wavelength conversion sheet, and the wavelength conversion tube are configured to include a green phosphor and a red phosphor, respectively.
- a configuration including only a yellow phosphor or a configuration including a red phosphor or a green phosphor in addition to the yellow phosphor may be employed.
- the configuration in which the LED includes at least a blue LED element has been described.
- an LED or ultraviolet light for example, a purple LED element that emits purple light that is visible light
- an ultraviolet LED element near ultraviolet LED element
- a yellow phosphor can be added, or a yellow phosphor can be used instead of the red phosphor and the green phosphor.
- the quantum dot phosphor used as the phosphor contained in the wavelength conversion sheet and the wavelength conversion tube is exemplified as a core-shell type made of CdSe and ZnS. It is also possible to use a core type quantum dot phosphor having a single internal composition.
- a material (CdSe, CdS, ZnS) that is a combination of Zn, Cd, Hg, Pb or the like that becomes a divalent cation and O, S, Se, Te, or the like that becomes a divalent anion is used alone. Is possible.
- a material InP (indium phosphide), GaAs (gallium arsenide), etc.) that combines trivalent cations such as Ga and In and trivalent anions such as P, As, and Sb, It is also possible to use a chalcopyrite type compound (such as CuInSe 2 ) alone.
- alloy type quantum dot phosphors can also be used. It is also possible to use a quantum dot phosphor that does not contain cadmium.
- the quantum dot phosphor used as the phosphor contained in the wavelength conversion sheet and the wavelength conversion tube is a CdSe and ZnS core-shell type is exemplified. It is also possible to use a core-shell type quantum dot phosphor formed by combining other materials. Further, the quantum dot phosphor used as the phosphor contained in the wavelength conversion sheet may be a quantum dot phosphor that does not contain Cd (cadmium).
- a sulfide phosphor can be used as the phosphor to be contained in the LED, the wavelength conversion sheet, and the wavelength conversion tube.
- SrGa 2 S 4 : Eu 2+ can be used as the red phosphor (Ca, Sr, Ba) S: Eu 2+ .
- the green phosphor contained in the LED, the wavelength conversion sheet and the wavelength conversion tube contains (Ca, Sr, Ba) 3 SiO 4 : Eu 2+ , Ca 3 Sc 2 Si 3. O 12 : Ce 3+ or the like can be used.
- the red phosphor contained in the LED, the wavelength conversion sheet, and the wavelength conversion tube may be (Ca, Sr, Ba) 2 SiO 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+, or the like.
- a yellow phosphor to be contained in the LED, the wavelength conversion sheet and the wavelength conversion tube includes (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ (commonly called YAG: Ce 3+ ), ⁇ -SiAlON. : Eu 2+ , (Ca, Sr, Ba) 3 SiO 4 : Eu 2+ and the like.
- an organic phosphor can be used as a phosphor contained in the LED, the wavelength conversion sheet, and the wavelength conversion tube.
- the organic phosphor for example, a low molecular organic phosphor having a basic skeleton of triazole or oxadiazole can be used.
- wavelength conversion is performed by energy transfer via dressed photons (near-field light) as phosphors to be included in the LED, wavelength conversion sheet, and wavelength conversion tube. It is also possible to use a phosphor that performs the above. Specifically, a phosphor having a structure in which a DCM dye is dispersed and mixed in zinc oxide quantum dots (ZnO-QD) having a diameter of 3 nm to 5 nm (preferably about 4 nm) is used as this type of phosphor. preferable.
- ZnO-QD zinc oxide quantum dots
- chassis is made of metal
- chassis may be made of synthetic resin
- Embodiments 1 to 3 described above the configuration in which the frame is interposed between the diffusion plate and the optical sheet is shown, but the configuration in which the optical sheet is directly laminated on the front side with respect to the diffusion plate may be adopted. Is possible. In that case, the frame can be omitted.
- the wavelength conversion sheet is directly laminated on the front side with respect to the diffusion plate, and another optical sheet is directly laminated on the front side with respect to the wavelength conversion sheet.
- the specific number of LED boards installed in the chassis, the specific number of LEDs and diffusion lenses mounted on the LED board, and the like can be changed as appropriate.
- a plurality of LED substrates may be arranged in a matrix in the plate surface of the bottom plate portion of the chassis, or a plurality of LEDs may be arranged in a matrix in the mounting surface of the LED substrate. I do not care.
- Embodiments 4 to 6 described above the configuration in which the frame is interposed between the light guide plate and the optical sheet is shown, but the configuration in which the optical sheet is directly laminated on the front side with respect to the light guide plate may be adopted. Is possible. In that case, it is possible to adopt a configuration in which the frame-shaped portion of the frame is arranged in such a manner as to hold the optical sheet group from the front side, and the liquid crystal panel is supported from the back side by the frame-shaped portion.
- the wavelength conversion sheet is directly laminated on the front side with respect to the light guide plate, and another optical sheet is directly laminated on the front side with respect to the wavelength conversion sheet.
- the LED substrates are arranged such that the end surfaces on the pair of long sides of the light guide plate are respectively light incident surfaces, but the pair of short sides of the light guide plate is shown. It is also possible to dispose the LED substrate so that the end faces of the two become the light incident surfaces.
- the double light incident type edge light type backlight device is exemplified, but the end surface on the one long side or the end surface on the one short side of the light guide plate is the light incident surface. It is also possible to use a one-side incident type edge light type backlight device in which an LED substrate is arranged.
- the LED substrate is disposed so that the end faces of the three sides of the light guide plate are respectively light incident surfaces, or the end surfaces of the four sides of the light guide plate are all light incident surfaces. It is also possible to arrange an LED substrate.
- an LED is used as the light source.
- other light sources such as an organic EL can be used.
- the liquid crystal panel and the chassis are vertically placed with the short side direction aligned with the vertical direction.
- the liquid crystal panel and the chassis have the long side direction in the vertical direction. Those that are in a vertically placed state matched with are also included in the present invention.
- a TFT is used as a switching element of a liquid crystal display device.
- the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
- a switching element other than TFT for example, a thin film diode (TFD)
- the present invention can also be applied to a liquid crystal display device for monochrome display.
- the transmissive liquid crystal display device is exemplified.
- the present invention can be applied to a reflective liquid crystal display device and a transflective liquid crystal display device.
- the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
- the display device using another type of display panel such as a MEMS (Micro Electro Mechanical Systems) display panel is also used.
- the present invention is applicable.
- the television receiver provided with the tuner is exemplified, but the present invention can also be applied to a display device that does not include the tuner. Specifically, the present invention can also be applied to a liquid crystal display device used as an electronic signboard (digital signage) or an electronic blackboard.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
液晶表示装置10は、複数の画素部PXR,PXG,PXBを有する液晶パネル11と、照明光を基準白色光とするのに要する複数の色の光に係る各発光量を基準としたとき、複数の色の光に含まれる第1の色の光に係る発光量が選択的に多くなるよう構成されるバックライト装置12と、白色表示時には複数の画素部PXR,PXG,PXBのうち赤色を呈する赤色画素部PXRの階調値が他の色を呈する画素部PXG,PXBの階調値よりも小さくなり、赤色の表示時には他の色を呈する画素部PXG,PXBの階調値が白色表示時よりも小さく赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御するコントロール基板CTRと、を備える。
Description
本発明は、表示装置及びテレビ受信装置に関する。
従来の液晶表示装置の一例として下記特許文献1に記載されたものが知られている。この特許文献1に記載された液晶表示装置は、B蛍光体およびG蛍光体を塗布しR蛍光体を除いたCCFL管と、620~650nmに単一スペクトルのピークPR3を有する光を発するR色LEDとを組み合わせたものを液晶パネルに照明光を照射する光源装置として用いている。この光源装置によれば、従来のCCFL管において問題であったR蛍光体による595nmの副スペクトルの影響を解消して色域が拡大される。また、510~520nmに単一スペクトルのピークを有する光を発するG蛍光体を用いることで、従来のG蛍光体による580nmの副スペクトルに起因する悪影響を軽減し、色域を拡大する。
(発明が解決しようとする課題)
ところで、近年では、4Kテレビや8Kテレビなどに用いられる液晶表示装置においては、高精細化に加えて色再現範囲の拡大が一層高いレベルで求められる傾向にある。このような要請に応えるには、例えばカラーフィルタの膜厚を増すといった対策が考えられるが、そうすると光がカラーフィルタによってより多く吸収されるため、光の利用効率が低下する問題が生じるおそれがあった。
ところで、近年では、4Kテレビや8Kテレビなどに用いられる液晶表示装置においては、高精細化に加えて色再現範囲の拡大が一層高いレベルで求められる傾向にある。このような要請に応えるには、例えばカラーフィルタの膜厚を増すといった対策が考えられるが、そうすると光がカラーフィルタによってより多く吸収されるため、光の利用効率が低下する問題が生じるおそれがあった。
本発明は上記のような事情に基づいて完成されたものであって、光の利用効率を高く維持しつつ色再現性を向上させることを目的とする。
(課題を解決するための手段)
本発明の表示装置は、異なる色を呈する複数の画素部を有する表示パネルと、異なる色を呈する複数の色の光を含む照明光を前記表示パネルに照射する照明装置であって、前記照明光を基準白色光とするのに要する前記複数の色の光に係る各発光量を基準としたとき、前記複数の色の光に含まれる第1の色の光に係る発光量が選択的に多くなるよう構成される照明装置と、白色表示時には前記複数の画素部のうち前記第1の色を呈する第1の画素部の階調値が他の色を呈する画素部の階調値よりも小さくなり、前記第1の色の表示時には前記他の色を呈する画素部の階調値が前記白色表示時よりも小さく前記第1の画素部の階調値が前記白色表示時よりも大きくなるよう制御する画素制御部と、を備える。
本発明の表示装置は、異なる色を呈する複数の画素部を有する表示パネルと、異なる色を呈する複数の色の光を含む照明光を前記表示パネルに照射する照明装置であって、前記照明光を基準白色光とするのに要する前記複数の色の光に係る各発光量を基準としたとき、前記複数の色の光に含まれる第1の色の光に係る発光量が選択的に多くなるよう構成される照明装置と、白色表示時には前記複数の画素部のうち前記第1の色を呈する第1の画素部の階調値が他の色を呈する画素部の階調値よりも小さくなり、前記第1の色の表示時には前記他の色を呈する画素部の階調値が前記白色表示時よりも小さく前記第1の画素部の階調値が前記白色表示時よりも大きくなるよう制御する画素制御部と、を備える。
このような構成によれば、照明装置から発せられた複数の光を含む照明光が、表示パネルに有される複数の画素部をその階調値に応じて透過されることで複数の画素部が異なる色を呈し、もって所定の画像が表示される。照明装置の照明光は、基準白色光よりも第1の色の色味がかかった光となるため、表示パネルにおいて白色表示時には画素制御部により第1の色を呈する第1の画素部の階調値が、他の色を呈する画素部の階調値よりも小さくなるよう制御されることで、白色の表示を行うことができる。一方、表示パネルにおいて第1の色の表示時には画素制御部により他の色を呈する画素部の階調値が白色表示時よりも小さく第1の画素部の階調値が白色表示時よりも大きくなるよう制御される。これにより、第1の色の表示時における第1の色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。
本発明の実施態様として、次の構成が好ましい。
(1)前記表示パネルは、前記複数の画素部が、赤色を呈する赤色画素部、緑色を呈する緑色画素部、及び青色を呈する青色画素部を少なくとも含むよう構成されており、前記照明装置は、前記複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに前記第1の色の光が前記赤色の光とされ、前記画素制御部は、前記赤色画素部を前記第1の画素部として制御している。このようにすれば、赤色表示時における赤色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。赤色は、他の色に比べると、色再現範囲の拡張が人間により認識され易い傾向があることから、画像に係る表示品位の向上を図る上でより好適とされる。
(1)前記表示パネルは、前記複数の画素部が、赤色を呈する赤色画素部、緑色を呈する緑色画素部、及び青色を呈する青色画素部を少なくとも含むよう構成されており、前記照明装置は、前記複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに前記第1の色の光が前記赤色の光とされ、前記画素制御部は、前記赤色画素部を前記第1の画素部として制御している。このようにすれば、赤色表示時における赤色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。赤色は、他の色に比べると、色再現範囲の拡張が人間により認識され易い傾向があることから、画像に係る表示品位の向上を図る上でより好適とされる。
(2)前記照明装置は、前記照明光を前記基準白色光とするのに要する前記複数の色の光に係る各発光量をそれぞれ100%としたとき、前記第1の色の光に係る発光量が107%以上となるよう構成される。このようにすれば、第1の色の表示時における第1の色に係る輝度に関して、仮に照明光を基準白色光とした場合の第1の色の光に係る発光量に基づく輝度を100%としたとき、105%以上の輝度向上効果が得られる。
(3)前記表示パネルは、前記複数の画素部が4つ以上の異なる色を呈するよう構成されている。このようにすれば、仮に画素部が3つの異なる色を呈する構成とした場合に比べると、各画素部の面積比率が低くなるので、照明装置の照明光に含まれる第1の色の光に係る発光量が多くされるのに伴う、第1の色の表示時における第1の色に係る輝度の増加率が相対的に大きくなる。
(4)前記照明装置は、前記照明光を前記基準白色光とするのに要する前記複数の色の光に係る各発光量をそれぞれ100%としたとき、前記第1の色の光に係る発光量が125%~220%の範囲となるよう構成される。仮に第1の色の光に係る発光量が125%を下回る場合には、第1の色の表示時における輝度の改善効果が、画素部が3つの異なる色を呈する構成とした場合と同等程度となるおそれがあり、逆に第1の色の光に係る発光量が220%を上回る場合には、白色表示時における輝度効率が著しく低下するおそれがある。その点、第1の色の光に係る発光量を125%~220%の範囲とすることで、第1の色の表示時における輝度の改善効果が、画素部が3つの異なる色を呈する構成とした場合を上回るとともに、白色表示時における輝度効率の著しい低下を避けることができる。
(5)前記表示パネルは、前記複数の画素部が、赤色を呈する赤色画素部、緑色を呈する緑色画素部、青色を呈する青色画素部、及び黄色を呈する黄色画素部を少なくとも含むよう構成されており、前記照明装置は、前記複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに前記第1の色の光が前記赤色の光とされ、前記画素制御部は、前記赤色画素部を前記第1の画素部として制御している。このような構成の表示パネルでは、複数の画素部を構成する黄色画素部が、黄色の光、つまり緑色の光と赤色の光とを透過するものとされる。照明装置の照明光は、基準白色光よりも第1の色である赤色の色味がかかった光となっていることから、仮に基準白色光を用いた場合に比べると、黄色の表示時における黄色に係る色度が赤色寄りにシフトすることになる。これにより、色再現範囲を拡張する上でより好適となる。
(6)前記照明装置は、光を発する発光素子と、前記発光素子からの光を波長変換する蛍光体と、を有するとともに、前記蛍光体には、前記第1の色の光を発する第1の蛍光体が少なくとも含まれており、前記照明装置は、前記照明光を基準白色光とするために要する前記蛍光体に係る含有量を基準としたとき、前記第1の蛍光体に係る含有量が相対的に多くなるよう構成される。このようにすれば、発光素子から光が発せられると少なくともその一部が蛍光体によって波長変換されることで、照明装置の照明光が得られる。そして、蛍光体に含まれる第1の蛍光体に係る含有量が、照明光を基準白色光とするために要する蛍光体に係る含有量の基準値よりも多くなっているので、第1の蛍光体から発せられる第1の色の光の発光量が、照明光を基準白色光とするのに要する複数の色の光に係る各発光量の基準値よりも多くなる。このように、発光素子の発光量に関して複雑な制御をせずとも、目的とする照明光を容易に得られる。
(7)前記照明装置は、前記発光素子と、前記発光素子を収容するケースと、前記発光素子を前記ケース内に封止して前記蛍光体が含有される封止材と、から構成される光源を少なくとも有する。このようにすれば、発光素子をケース内に封止する封止材に含有される蛍光体によって発光素子から発せられた光の少なくとも一部が励起光として利用される。
(8)前記光源は、前記第1の蛍光体が、付活剤としてマンガンを用いたケイフッ化カリウムとなるよう構成される。このようにすれば、第1の蛍光体であるケイフッ化カリウムにおける発光スペクトルに含まれるメインピークの半値幅が十分に狭くなることで色純度の高い赤色光を発することができる。しかも、ケイフッ化カリウムには、材料として高価な希土類元素が用いられていないので、光源に係る製造コストが安価なものとなる。また、ケイフッ化カリウムは、吸湿などにより性能劣化が生じ難いものとされているから、発光素子をケース内に封止する封止材に含有させる構成を採る上で好適とされる。
(9)前記照明装置は、前記発光素子を有する光源と、前記蛍光体を含有していて前記光源に対して出光経路の出口側に配されて前記光源の光を波長変換する波長変換部材と、を少なくとも有する。このようにすれば、光源に対して出光経路の出口側に配される波長変換部材に蛍光体が含有されているので、光源の発光素子から発せられる熱によって蛍光体が性能劣化し難いものとなる。また、波長変換部材に蛍光体を含有させるに際して、例えば蛍光体を高いシール性でもって封止する手段を採るのが容易となるので、吸湿などによる性能劣化が懸念される蛍光体を使用する上で好適となる。
(10)前記蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換部材による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。また、例えば波長変換部材に量子ドット蛍光体を高いシール性でもって封止する手段を採るようにすれば、量子ドット蛍光体が吸湿などによって性能劣化し難いものとなって好適である。
(11)前記照明装置は、前記複数の色の光をそれぞれ発する複数の発光素子を少なくとも有しており、前記照明装置は、前記照明光を基準白色光とするために要する前記複数の発光素子に係る各発光量を基準としたとき、前記第1の色の光を発する第1の発光素子に係る発光量が相対的に多くなるよう構成される。このようにすれば、複数の発光素子から発せられる複数の色の光によって照明装置の照明光が構成される。そして、複数の発光素子に含まれる第1の発光素子に係る発光量が、照明光を基準白色光とするために要する各発光素子に係る各発光量の基準値よりも多くなっている。仮に、照明装置が、1つの発光素子と、発光素子の光を波長変換する蛍光体と、からなる光源を備える構成とした場合に比べると、各発光素子から発せられる各色の光に係る色純度がより高いものとなり、色再現性の向上を図る上で好適とされる。
次に、上記課題を解決するために、本発明のテレビ受信装置は、上記記載の表示装置を備える。このような構成のテレビ受信装置によれば、第1の色の表示時における第1の色に係る輝度が高くなるとともに色再現範囲が広いものとなっているから、表示品位に優れたテレビ画像の表示を実現することができる。
(発明の効果)
本発明によれば、光の利用効率を高く維持しつつ色再現性を向上させることができる。
本発明によれば、光の利用効率を高く維持しつつ色再現性を向上させることができる。
<実施形態1>
本発明の実施形態1を図1から図20によって説明する。本実施形態では、テレビ受信装置10TV、テレビ受信装置10TVに用いられる液晶表示装置10、及び液晶表示装置10に用いられるバックライト装置12について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図7及び図8などに示す上側を表側とし、同図下側を裏側とする。
本発明の実施形態1を図1から図20によって説明する。本実施形態では、テレビ受信装置10TV、テレビ受信装置10TVに用いられる液晶表示装置10、及び液晶表示装置10に用いられるバックライト装置12について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図7及び図8などに示す上側を表側とし、同図下側を裏側とする。
本実施形態に係るテレビ受信装置10TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sと、を備えて構成される。液晶表示装置(表示装置)10は、全体として横長(長手)の方形状(矩形状)をなし、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、画像を表示する表示パネルである液晶パネル11と、液晶パネル11に表示のための光を供給する外部光源であるバックライト装置(照明装置)12と、を備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。
先に、液晶パネル11について説明する。液晶パネル11は、図1に示すように、全体として平面に視て略円形状をなしている。液晶パネル11は、図3に示すように、ほぼ透明で優れた透光性を有するガラス製の一対の基板11a,11bと、両基板11a,11b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子(液晶材料)を含む液晶層11eと、液晶層11eの周りを封止するよう周方向に沿って延在するとともに両基板11a,11bを液晶層11eの厚さ分のギャップを維持した状態で貼り合わせるシール部(図示せず)と、を少なくとも備える。この液晶パネル11では、いわゆる滴下注入法にて液晶層11eが両基板11a,11b間に挟持されるようになっている。この液晶パネル11は、画面の中央側部分により構成されて画像が表示される表示領域(アクティブエリア)と、画面の外周側部分により構成されて表示領域AAを取り囲む額縁状(枠状)をなすとともに画像が表示されない非表示領域(ノンアクティブエリア)と、に区分されている。液晶パネル11は、バックライト装置12から供給される光を利用して表示領域に画像を表示することができ、その表側が出光側とされている。なお、両基板11a,11bの外面側には、それぞれ偏光板11c,11dが貼り付けられている。
液晶パネル11を構成する両基板11a,11bのうち表側(正面側)がCF基板11aとされ、裏側(背面側)がアレイ基板11bとされる。アレイ基板11bのうちの表示領域AAの内面側(液晶層11e側、CF基板11aとの対向面側)には、図3及び図4に示すように、スイッチング素子であるTFT(Thin Film Transistor:表示素子)11g及び画素電極11hが多数個マトリクス状(行列状)に並んで設けられるとともに、これらTFT11g及び画素電極11hの周りには、格子状をなすゲート配線(走査線)11i及びソース配線(データ線)11jが取り囲むようにして配設されている。ゲート配線11iとソース配線11jとがそれぞれTFT11gのゲート電極とソース電極とに接続され、画素電極11hがTFT11gのドレイン電極に接続されている。そして、TFT11gは、ゲート配線11i及びソース配線11jにそれぞれ供給される各種信号に基づいて駆動され、その駆動に伴って画素電極11hへの電位の供給が制御されるようになっている。画素電極11hは、ゲート配線11i及びソース配線11jにより囲まれた方形の領域に配されており、ITO(Indium Tin Oxide:酸化インジウム錫)或いはZnO(Zinc Oxide:酸化亜鉛)といった透明電極からなる。
一方、CF基板11aのうちの表示領域AAの内面側には、図3及び図5に示すように、アレイ基板11b側の各画素電極11hと対向状をなす位置に多数個のカラーフィルタ11kがマトリクス状に並んで設けられている。カラーフィルタ11kは、赤色、緑色及び青色(R,G,B)の三色を呈するものが所定の順で繰り返し並んで配置される。各色のカラーフィルタ11kは、各色に係る特定の波長範囲の光を選択的に透過するものとされる。つまり、赤色のカラーフィルタ11kは、赤色の波長領域の光を、緑色のカラーフィルタ11kは、緑色の波長領域の光を、青色のカラーフィルタ11kは、青色の波長領域の光を、それぞれ選択的に透過するものとされる。各カラーフィルタ11k間には、混色を防ぐための格子状の遮光層(ブラックマトリクス)11lが形成されている。遮光層11lは、上記したゲート配線11i及びソース配線11jと平面に視て重畳する配置とされる。カラーフィルタ11k及び遮光層11lの表面には、アレイ基板11b側の画素電極11hと対向するベタ状の対向電極11mが設けられている。また、両基板11a,11bの内面側には、液晶層11eに含まれる液晶分子を配向させるための配向膜11n,11oがそれぞれ形成されている。
当該液晶パネル11においては、赤色、緑色及び青色の3色のカラーフィルタ11k及びそれらと対向する3つの画素電極11hの組によって表示単位である1つの表示画素PXが構成されている。表示画素PXは、赤色を呈するカラーフィルタ11kとそれに対向する画素電極11hとからなる赤色画素部PXRと、緑色を呈するカラーフィルタ11kとそれに対向する画素電極11hとからなる緑色画素部PXGと、青色を呈するカラーフィルタ11kとそれに対向する画素電極11hとからなる青色画素部PXBと、からなる。これら各色の画素部PXR,PXG,PXBは、液晶パネル11の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。そして、各色の画素部PXR,PXG,PXBを構成する各画素電極11hには、それぞれに接続されたTFT11gにより電圧がそれぞれ印加されるようになっており、その電圧値に基づいて各色の画素部PXR,PXG,PXBにおける液晶層11eの配向状態が変化し、もって各色の画素部PXR,PXG,PXB毎に液晶パネル11の透過光量が個別に制御されるようになっている。各TFT11gには、図11に示すように、アレイ基板11bの端部に接続されたフレキシブル基板FKを介して信号供給源であるコントロール基板(画素制御部)CTRから電圧が供給されるようになっている。コントロール基板CTRは、液晶パネル11の表示領域に表示する画像に基づいて決定される、各色の画素部PXR,PXG,PXBの階調値(画素値)に基づいた電圧などの各種信号を各TFT11gに接続された各ゲート配線11i及び各ソース配線11jに供給し、もって各TFT11gが駆動されるようになっている。本実施形態に係るコントロール基板CTRによれば、各色の画素部PXR,PXG,PXBが、それぞれ0~255の階調値をとる256階調ずつに制御され、それにより各色の画素部PXR,PXG,PXBからなる表示画素PXによる表示色が約1677万色とされている。
続いて、バックライト装置12について詳しく説明する。バックライト装置12は、図2に示すように、表側(出光側、液晶パネル11側)に開口する光出射部(出光部、開口部)14bを有した略箱型をなすシャーシ14と、シャーシ14の光出射部14bを覆うようにして配される複数の光学部材15と、複数の光学部材15における外周縁部の間に介在する形で配されるフレーム16と、を備える。さらに、シャーシ14内には、LED(光源)17と、LED17が実装されたLED基板18と、LED基板18においてLED17に対応した位置に取り付けられる拡散レンズ19と、シャーシ14内の光を反射させる反射シート(反射部材)20と、が備えられる。このように、本実施形態に係るバックライト装置12は、シャーシ14内において液晶パネル11及び光学部材15の直下位置にLED17が配されてその発光面17aが対向状をなす、いわゆる直下型とされる。以下では、バックライト装置12の各構成部品について詳しく説明する。
シャーシ14は、例えば合成樹脂材料からなり、図6から図8に示すように、液晶パネル11と同様に横長な方形状(矩形状、長方形状)をなす底部14aと、底部14aの外周縁部から表側(出光側)に向けて立ち上がる側部14cと、から構成されており、全体としては表側に向けて開口した浅い略箱型(略浅皿状)をなしている。シャーシ14は、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。シャーシ14における底部14aは、LED基板18に対して裏側、つまりLED17に対してその発光面17a側(出光側)とは反対側に配されている。シャーシ14における側部14cは、底部14aの外周縁部に対して全周にわたって連なる略筒状をなしていて表側の開口端側(光出射部14b側、底部14a側とは反対側)ほど開口間口が広くなっている。側部14cには、相対的に低い第1段部14c1と、相対的に高い第2段部14c2と、が設けられており、このうちの第1段部14c1に後述する光学部材15(具体的には拡散板15a)及び反射シート20の各外周縁部が載せられるのに対し、第2段部14c2に液晶パネル11の外周縁部が載せられるようになっている。また、側部14cには、フレーム16及びベゼル13が固定されている。
光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、シャーシ14の光出射部14bを覆う形で配され、LED17に対して出光経路の出口側に配されている。光学部材15は、相対的に裏側(LED17に近い側、出光側とは反対側)に配される拡散板15aと、相対的に表側(液晶パネル11に近い側、出光側)に配される複数の光学シート15bと、から構成されている。このうちの拡散板15aは、図7及び図8に示すように、その外周縁部が側部14cの第1段部14c1に載せられることで、シャーシ14の光出射部14bを覆うとともに、光学シート15bとLED17及び拡散レンズ19との間に介在して配される。拡散板15aは、LED17及び拡散レンズ19に対して表側、つまり出光側に所定の間隔を空けて対向状をなしている。拡散板15aは、光学シート15bよりも板厚が厚い、ほぼ透明な樹脂製の基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。
光学シート15bは、図7及び図8に示すように、その外周縁部がフレーム16に載せられることで、シャーシ14の光出射部14bを覆うとともに、液晶パネル11と拡散板15aとの間に介在して配される。光学シート15bは、拡散板15aよりも板厚が薄いシート状をなしていて合計で3枚が備えられている。具体的には、光学シート15bは、LED17から発せられた光に等方性集光作用を付与するマイクロレンズシート15b1と、光に異方性集光作用を付与するプリズムシート15b2と、光を偏光反射して輝度を向上させるのに寄与する反射型偏光シート15b3と、から構成される。光学シート15bは、マイクロレンズシート15b1、プリズムシート15b2及び反射型偏光シート15b3の順で積層されている。
フレーム16は、図2に示すように、全体として液晶パネル11及び光学部材15の外周縁部に沿う枠状をなしており、その断面形状が略ブロック状をなしている。フレーム16は、図7及び図8に示すように、側部14cの第1段部14c1に載せられた拡散板15aの外周縁部に対して表側から載せられることで、拡散板15a及び後述する反射シート20の各外周縁部を表側から押さえるとともに第1段部14c1との間で挟持するものとされる。一方、フレーム16には、その表側に光学シート15bの外周縁部が載せられて光学シート15bの外周縁部を裏側から支持しており、それにより光学シート15bと拡散板15aとの間に一定の間隔を保持している。このような構成のフレーム16によれば、光学シート15bに付与される厚み方向(Z軸方向)についての保持力が、拡散板15aに付与される厚み方向についての保持力よりも相対的に低くなるので、光学シート15bについては熱膨張や熱収縮に伴う伸縮を逃がし易くなり、そのような伸縮に伴って生じ得る皺などの発生を抑制することができる。しかも、フレーム16に載せられる光学シート15bの外周縁部が、フレーム16及び拡散板15aの外周縁部と平面に視て重畳する配置となっているので、仮にフレーム16によって表側から押さえられる拡散板15aに対して光学シートを直接載せるようにした場合に比べると、拡散板15aの外周縁部が相対的に外側に配されることになり、もって狭額縁化を図る上で好適となる。
次に、LED17及びLED17が実装されるLED基板18について説明する。LED17は、図7及び図8に示すように、LED基板18上に表面実装されるとともにその発光面17aがLED基板18側とは反対側を向いた、いわゆる頂面発光型とされている。LED17は、発光面17aが光学部材15(拡散板15a)の板面と対向状をなす位置関係にある。詳しくは、LED17は、図10に示すように、発光源である青色LED素子(青色発光素子、発光素子)21と、青色LED素子21を封止する封止材22と、青色LED素子21が収容されるとともに封止材22が充填されるケース(収容体、筐体)23と、を備える。
青色LED素子21は、例えばInGaNなどの半導体材料からなる半導体であり、順方向に電圧が印加されることで青色の波長領域(約420nm~約500nm)に含まれる波長の青色の単色光を発光するものとされる。この青色LED素子21は、図示しないリードフレームによってケース23外に配されたLED基板18における配線パターンに接続される。封止材22は、LED17の製造工程では青色LED素子21が収容されたケース23の内部空間に充填されることで、青色LED素子21及びリードフレームを封止するとともにこれらの保護を図るものとされる。
封止材22は、LED17の製造工程では青色LED素子21が収容されたケース23の内部空間に充填されることで、青色LED素子21及びリードフレームを封止するとともにこれらの保護を図るものとされる。封止材22は、ほぼ透明な熱硬化性樹脂材料(例えば、エポキシ樹脂材料、シリコーン樹脂材料など)に、共に図示を省略する緑色蛍光体及び赤色蛍光体をそれぞれ所定の割合でもって分散配合した構成とされている。緑色蛍光体は、青色LED素子21から発せられた青色光により励起されることで緑色の波長領域(約500nm~約570nm)に含まれる波長の緑色光を発光するものとされる。赤色蛍光体は、青色LED素子21から発せられた青色光により励起されることで赤色の波長領域(約600nm~約780nm)に含まれる波長の赤色光を発光するものとされる。従って、LED17の発光光(バックライト装置12の照明光)は、青色LED素子21から発せられる青色光(青色成分の光)と、緑色蛍光体から発せられる緑色光(緑色成分の光)と、赤色蛍光体から発せられる赤色光(赤色成分の光)と、の3色の光から構成されていて、全体として概ね白色を呈するものとされる。つまり、このLED17は、略白色光を発するものとされる。なお、緑色蛍光体から発せられる緑色光と、赤色蛍光体から発せられる赤色光との合成により黄色光が得られることから、このLED17は、LEDチップからの青色成分の光と、黄色成分の光とを併せ持っている、とも言える。なお、青色LED素子21、緑色蛍光体及び赤色蛍光体の各発光スペクトルの詳細などについては、後に詳しく説明する。
ケース23は、表面が光の反射性に優れた白色を呈する合成樹脂材料(例えばポリアミド系樹脂材料)またはセラミック材料からなる。ケース23は、全体として光出射側(発光面17a側、LED基板18側とは反対側)に開口部23cを有する略箱型をなしており、大まかにはLED基板18の実装面18aに沿って延在する底壁部23aと、底壁部23aの外縁から立ち上がる側壁部23bとを有している。このうち底壁部23aは、正面(光出射側)から視て方形状をなしているのに対し、側壁部23bは、底壁部23aの外周縁に沿う略角筒状をなしていて正面から視ると方形の枠状をなしている。ケース23を構成する底壁部23aの内面(底面)には、青色LED素子21が配置されている。これに対して側壁部23bには、リードフレームが貫通されている。リードフレームのうち、ケース23内に配される端部が青色LED素子21に接続されるのに対し、ケース23外に導出される端部がLED基板18の配線パターンに接続される。
本実施形態に係るLED17が有する緑色蛍光体及び赤色蛍光体について説明する。緑色蛍光体には、少なくとも酸窒化物蛍光体の一種であるサイアロン系蛍光体が含有されている。サイアロン系蛍光体は、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質、つまり酸窒化物である。酸窒化物であるサイアロン系蛍光体は、例えば硫化物や酸化物などからなる他の蛍光体に比べると、発光効率に優れるとともに耐久性に優れている。ここで言う「耐久性に優れる」とは、具体的には、LEDチップからの高いエネルギーの励起光に曝されても経時的に輝度低下が生じ難いことなどを意味する。しかも、発光スペクトルに含まれるピークの半値幅が十分に狭くなることで色純度の高い緑色光を発光することができる。サイアロン系蛍光体には、付活剤として希土類元素(例えばTb,Yg,Agなど)が用いられる。そして、本実施形態に係る緑色蛍光体を構成するサイアロン系蛍光体は、β-SiAlONとされる。β-SiAlONは、サイアロン系蛍光体の一種であり、β型窒化ケイ素結晶にアルミニウムと酸素とが固溶した一般式Si6-zAlzOzN8-z(zは固溶量を示す)または(Si,Al)6(O,N)8により表される物質である。本実施形態に係るβ-SiAlONには、付活剤として例えば希土類元素の一種であるEu(ユーロピウム)が用いられている。これにより、発光スペクトルに含まれるピークの半値幅がより狭くなるので、色純度の高い緑色光を発光することができる。
赤色蛍光体には、少なくとも複フッ化物蛍光体が含有されている。この複フッ化物蛍光体は、一般式A2MF6(MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種以上、AはLi、Na、K、Rb及びCsから選ばれる1種以上)により表される。この複フッ化物蛍光体は、発光スペクトルに含まれるメインピークの半値幅が十分に狭くなっているので、色純度の高い赤色光を発光することができる。また、緑色蛍光体から発せられる緑色光を吸収し難いものとされているので、緑色光の利用効率が高く保たれる。複フッ化物蛍光体は、付活剤としてマンガンを用いたケイフッ化カリウム(K2SiF6:Mn)とされる。このようなケイフッ化カリウムでは、材料として高価な希土類元素を用いていないので、赤色蛍光体並びにLED17に係る製造コストが安価なものとなっている。
次に、LED17の発光スペクトルについて説明する。LED17は、図12に示される発光スペクトルを有している。図12は、LED17の発光スペクトルを表しており、その横軸が波長(単位:nm)を、縦軸が「相対発光強度(無単位)」を、それぞれ示している。LED17を構成する青色LED素子21は、主発光波長(ピーク波長)が青色の波長領域に含まれていて例えば444nm程度となり且つその半値幅が20nm程度となる発光スペクトルを有している。この青色LED素子21から発せられる青色光は、発光スペクトルにおける半値幅が十分に狭くて色純度が高く且つ輝度が十分に高いものとされるから、緑色蛍光体及び赤色蛍光体を効率的に励起して緑色光及び赤色光を発光させることができるとともに、LED17からの青色光に係る色純度が高いものとなる。緑色蛍光体であるβ-SiAlONは、主発光波長が緑色の波長領域に含まれていて例えば533nm程度とされ且つピークの半値幅が53nm程度となる発光スペクトルを有している。赤色蛍光体であるケイフッ化カリウムは、1つのメインピークと、その長波長側と短波長側とに1つずつのサブピーク(第1サブピーク及び第2サブピーク)と、を含む発光スペクトルを有している。より詳しくは、赤色蛍光体であるケイフッ化カリウムは、主発光波長が赤色の波長領域に含まれていて例えば629nm~635nmの範囲(好ましくは630nm程度)となるメインピークを含み且つその半値幅が10nm未満とされ、さらには主発光波長が例えば607nm~614nmの範囲(好ましくは613nm程度)となる第1サブピークを含むとともに主発光波長が例えば645nm~648nmの範囲(好ましくは647nm程度)となる第2サブピークを含む発光スペクトルを有している。このように赤色蛍光体の発光スペクトルに含まれるメインピークの半値幅は、緑色蛍光体の発光スペクトルに含まれるピークの半値幅に比べて相対的に狭くなっている。以上のような構成により、緑色蛍光体から発せられる緑色光の色純度が十分に高いものとされるとともに、赤色蛍光体から発せられる赤色光の色純度が十分に高いものとされる。
LED基板18は、図6から図8に示すように、横長な方形状(矩形状、長方形状)をなしており、長辺方向(長さ方向)がX軸方向と一致し、短辺方向(幅方向)がY軸方向と一致する状態でシャーシ14内において底部14aに沿って延在しつつ収容されている。LED基板18の基材は、シャーシ14と同じアルミ系材料などの金属製とされ、その表面に絶縁層を介して銅箔などの金属膜からなる配線パターン(図示せず)が形成され、さらには最外表面には、白色を呈する反射層(図示せず)が形成された構成とされる。この反射層によりLED17から出射されてLED基板18側に戻された光を反射することで、その反射光を表側に向けて立ち上げて出射光として利用することが可能とされる。なお、LED基板18の基材に用いる材料としては、セラミックなどの絶縁材料を用いることも可能である。このLED基板18の基材の板面のうち、表側を向いた板面(光学部材15側を向いた板面)には、上記した構成のLED17が表面実装されており、ここが実装面18aとされる。LED17は、LED基板18における長辺方向(X軸方向)に沿って複数が直線的に並列して配されるとともに、LED基板18に形成された配線パターンにより直列接続されている。具体的には、LED基板18には、8つのLED17が直線的に且つ間欠的に並んで配されている。そして、LED基板18は、シャーシ14内においてY軸方向に沿って複数が互いに長辺方向及び短辺方向を揃えた状態で並列して配置されている。具体的には、LED基板18は、シャーシ14内においてY軸方向に沿って4枚並んで配されており、その並び方向がY軸方向と一致している。従って、シャーシ14の底部14aの面内においてLED17は、各LED基板18の長さ方向であるX軸方向(行方向、底部14aの長辺方向)、及び複数のLED基板18の並び方向であるY軸方向(列方向、底部14aの短辺方向)について複数ずつ行列状(マトリクス状)に配置されていると言える。なお、各LED基板18には、図示しない配線部材が接続されるコネクタ部が設けられており、配線部材を介して図示しないLED駆動基板(光源駆動基板)から駆動電力が供給されるようになっている。
拡散レンズ19は、ほぼ透明で(高い透光性を有し)且つ屈折率が空気よりも高い合成樹脂材料(例えばポリカーボネートやアクリルなど)からなる。拡散レンズ19は、図6から図8に示すように、所定の厚みを有するとともに、平面に視て略円形状に形成されており、LED基板18に対して各LED17の発光面17aを表側(出光側)から個別に覆うよう、つまり平面に視て各LED17と重畳するようそれぞれ取り付けられている。従って、バックライト装置12における拡散レンズ19の設置数及び平面配置は、既述したLED17の設置数及び平面配置と同一の関係とされる。そして、この拡散レンズ19は、LED17から発せられた指向性の強い光を拡散させつつ出射させることができる。つまり、LED17から発せられた光は、拡散レンズ19を介することにより指向性が緩和された形で光学部材15へ向けて照射されるので、隣り合うLED17間の間隔を広くとってもその間の領域が暗部として視認され難くなる。つまり、拡散レンズ19は、LED17の光を拡散させる擬似光源として光学的に機能する。これにより、LED17の設置個数を少なくすることが可能となっている。この拡散レンズ19は、平面に視てLED17とほぼ同心となる位置に配されている。
この拡散レンズ19は、図9に示すように、裏側を向き、LED基板18(LED17)と対向する面がLED17からの光が入射される光入射面19aとされるのに対し、表側を向き、光学部材15と対向する面が光を出射する光出射面(発光面)19bとされる。このうち、光入射面19aは、全体としてはLED基板18の板面(X軸方向及びY軸方向)に沿って並行する形態とされるものの、平面に視てLED17と重畳する領域に光入射側凹部19cが形成されることでLED17の光軸(Z軸方向)に対して傾斜した傾斜面を有している。光入射側凹部19cは、断面逆V字型の略円錐状をなすとともに拡散レンズ19においてほぼ同心位置に配されている。LED17から発せられて光入射側凹部19c内に入った光は、傾斜面によって広角に屈折されつつ拡散レンズ19に入射する。また、光入射面19aからは、LED基板18に対する取付構造である取付脚部19dが突設されている。光出射面19bは、扁平な略球面状に形成されており、それにより、拡散レンズ19から出射する光を広角に屈折させつつ出射させることが可能とされる。この光出射面19bのうち平面に視てLED17と重畳する領域には、略擂鉢状をなす光出射側凹部19eが形成されている。この光出射側凹部19eにより、LED17からの光の多くを広角に屈折させつつ出射させるなどすることができる。
反射シート20は、表面が光の反射性に優れた白色を呈するものとされており、図2から図8に示すように、シャーシ14の内面をほぼ全域にわたって覆う大きさ、つまり底部14aに沿って平面配置された全LED基板18を一括して覆う大きさを有している。この反射シート20によりシャーシ14内の光を表側(光出射側、光学部材15側)に向けて反射させることができるようになっている。反射シート20は、全体としては略擂鉢状をなしており、LED基板18及び底部14aに倣って延在するとともに各LED基板18を一括してそのほぼ全域を覆う大きさの底側反射部20aと、底側反射部20aの各外端から表側に立ち上がるとともに底側反射部20aに対して傾斜状をなす4つの立ち上がり反射部20bと、各立ち上がり反射部20bの外端から外向きに延出するとともにシャーシ14の側部14cの第1段部14c1に載せられる延出部(外縁部)20cと、から構成されている。
反射シート20の底側反射部20aは、図7及び図8に示すように、各LED基板18における表側の面、つまりLED17の実装面18aに対して表側に重なるよう配される。底側反射部20aは、シャーシ14の底部14a及び光学部材15の板面に並行する形で延在する構成とされているため、光学部材15までのZ軸方向についての間隔が面内の全域にわたってほぼ一定とされている。底側反射部20aには、各LED17と平面に視て重畳する位置に各LED17及び各拡散レンズ19を個別に挿通する挿通孔(光源挿通孔)20dが開口して設けられている。この挿通孔20dは、各LED17及び各拡散レンズ19の配置に対応してX軸方向及びY軸方向について行列状(マトリクス状)に複数が並んで配置されている。このように底側反射部20aは、平面に視てLED17と重畳する配置とされており、シャーシ14内の「LED配置領域(光源配置領域)」に配されている、と言える。立ち上がり反射部20bは、立ち上がり基端位置から立ち上がり先端位置に至るまで底側反射部20a及び光学部材15の板面に対して傾斜状をなしている。従って、立ち上がり反射部20bと光学部材15との間のZ軸方向についての間隔は、立ち上がり基端位置から立ち上がり先端位置へ向けて連続的に漸次減少するものとされており、立ち上がり基端位置にて最大(底側反射部20aと光学部材15との間のZ軸方向についての間隔とほぼ等しい大きさ)となり、立ち上がり先端位置にて最小となっている。立ち上がり反射部20bは、平面に視てLED17とは非重畳となる配置とされており、シャーシ14内の「LED非配置領域(光源非配置領域)」に配されている、と言える。LED非配置領域に配された立ち上がり反射部20bは、底側反射部20aに対して傾斜状をなしていることで、反射光に所定の角度付けをすることができ、それによりLED非配置領域において光量不足(暗部)が生じ難くなっている。
さて、本実施形態に係るバックライト装置12は、図12に示すように、液晶パネル11に照射する照明光を基準白色光とするのに要する3色の光に係る各発光量(基準発光量)を基準としたとき、3色の光に含まれる赤色光(第1の色の光)に係る発光量が選択的に多くなるよう構成されている。なお、図12には、照明光を基準白色光とするのに要する赤色光に係る発光量を二点鎖線により図示している。その上で、コントロール基板CTRは、図13に示すように、白色表示時には3色の画素部PXR,PXG,PXBのうち赤色を呈する赤色画素部(第1の色を呈する第1の画素部)PXRの階調値が他の色である緑色及び青色を呈する画素部PXG,PXBの階調値よりも小さくなり、赤色表示時(第1の色の表示時)には緑色及び青色を呈する画素部PXG,PXBの階調値が白色表示時よりも小さく赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御している。このような構成によれば、バックライト装置12の照明光は、基準白色光よりも赤色の色味がかかった光となるため、液晶パネル11において白色表示時にはコントロール基板CTRにより赤色画素部PXRの階調値が、緑色及び青色の画素部PXG,PXBの階調値よりも小さくなるよう制御されることで、白色の表示を行うことができる。一方、液晶パネル11において赤色表示時には、コントロール基板CTRにより緑色及び青色の画素部PXG,PXBの階調値が白色表示時よりも小さく、赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御される。これにより、赤色表示時における輝度が高くなるとともにその色再現範囲が広いものとなる。しかも、赤色は、他の色に比べると、色再現範囲の拡張が人間により認識され易い傾向があることから、画像に係る表示品位の向上を図る上でより好適とされる。
詳しくは、バックライト装置12は、液晶パネル11に照射する照明光を基準白色光とするために要するLED17の赤色蛍光体に係る含有量を基準としたとき、赤色蛍光体に係る含有量が相対的に多くなるよう構成されている。このように、LED17の赤色蛍光体に係る含有量が、照明光を基準白色光とするために要する赤色蛍光体に係る含有量の基準値よりも多くなっているので、赤色蛍光体から発せられる赤色光の発光量が、図12に示すように、照明光を基準白色光とするのに要する赤色光に係る発光量の基準値(図12に示す二点鎖線)よりも多くなる。これにより、青色LED素子21の発光量に関して複雑な制御をせずとも、目的とする照明光を容易に得られる。具体的には、照明光を基準白色光とするために要する赤色蛍光体の基準含有量及び基準発光量を100%としたとき、赤色蛍光体に係る含有量及び発光量は、107%以上とされている。このようにすれば、照明光を基準白色光とした場合の赤色表示時における赤色の輝度を100%としたとき、赤色表示時における赤色の輝度が105%以上となり、十分に高い輝度向上効果が得られる。基準となる輝度値よりも5%以上の輝度向上が図られれば、使用者にとって表示画像が明るくなったことを実感し易いものとなる。
ここで、バックライト装置12から液晶パネル11に照射される照明光に係る基準白色光について説明する。この基準白色光は、例えば、色度図における黒体放射軌跡及び黒体放射軌跡を中心とした所定幅の帯状の色度範囲に含まれる色度を有している。つまり、基準白色光は、特定の色温度または相関色温度によっても表すことが可能とされる。具体的には、基準白色光を、標準光A、標準光B、標準光C、標準光D65などとすることができ、それ以外にも、任意の相関色温度Tに対して相対分光分布が定義された標準光DTやCIE1931色度図に係るx値及びy値によって表される色度座標が(0.272,0.277)など上記帯状の色度範囲に含まれる任意の色度によって定義される標準光とすることも可能である。なお、標準光Aは、CIE1931色度図に係る色度座標が(0.4476,0.4074)、色温度(単位は「K(ケルビン)」)が2855.6Kとされる。標準光Bは、CIE1931色度図に係る色度座標が(0.3484,0.3516)、色温度が4874Kとされる。標準光Cは、CIE1931色度図に係る色度座標が(0.3101,0.3161)、色温度が6774Kとされる。標準光D65は、CIE1931色度図に係る色度座標が(0.3157,0.3290)、相関色温度が6504Kとされる。
次に、コントロール基板CTRによる3色の画素部PXR,PXG,PXBの階調値に係る制御に関して詳しく説明する。コントロール基板CTRは、既述した通り、3色の画素部PXR,PXG,PXBをそれぞれ256階調の範囲内で適宜に制御することで、表示画素PXの表示色を約1677万色としている。例えば、表示画素PXに白色表示をさせる場合には、コントロール基板CTRは、3色の画素部PXR,PXG,PXBの階調値を最大化し且つ目標となる白色色度が得られるようホワイトバランスが整った階調値となるよう各画素部PXR,PXG,PXBを制御している。一方、表示画素PXに赤色、緑色及び青色の単色表示をさせる場合には、コントロール基板CTRは、3色の画素部PXR,PXG,PXBのうち単色表示を行う色の画素部PXR,PXG,PXBの階調値を最大化するとともに単色表示を行わない他の2色の画素部PXR,PXG,PXBの階調値を最小化するよう、各画素部PXR,PXG,PXBを制御している。
ここで、仮に、バックライト装置の照明光の色度が、液晶パネル11において白色表示を行う際の目標となる白色色度(目標白色色度)と同等の色度であった場合には、コントロール基板CTRは、図13に示すように、3色の画素部PXR,PXG,PXBの階調値をそれぞれ最大値の「255」とすることで、表示画素PXに白色表示を行わせることができる。しかし、実際には、3色の各画素部PXR,PXG,PXBの階調値は、バックライト装置(LED)の照明光の色度や液晶パネル11の各色のカラーフィルタ11kの分光透過率などの個体差に応じてホワイトバランス調整されるため、例えば赤色画素部PXRの階調値を「248」とし、緑色画素部PXGの階調値を「242」とし、青色画素部PXBの階調値を「255」とすることで、目標の白色表示を表示画素PXに行わせることができる。なお、ホワイトバランス調整に伴う各画素部PXR,PXG,PXBの具体的な階調値は、上記個体差に応じて適宜に変更され得る。
これに対し、本実施形態では、バックライト装置12が、照明光を基準白色光とするのに要する3色の光に係る各発光量を基準としたとき、赤色光に係る発光量が選択的に多くなるよう構成されているので、当該照明光が赤色の色味がかったものとなっており、その照明光の色度が液晶パネル11において白色表示を行う際の目標となる白色色度(目標白色色度)とは異なり、目標白色色度に対して赤色寄りにシフトしたものとなっている。これに伴い、コントロール基板CTRは、3色の各画素部PXR,PXG,PXBのうちの赤色画素部PXRの階調値を他の2色の画素部PXG,PXBの階調値よりも小さくなるよう制御することで、表示画素PXに白色表示を行わせている。具体的には、コントロール基板CTRは、図13に示すように、ホワイトバランスを調整した状態で、緑色画素部PXGの階調値を「242」とし、青色画素部PXBの階調値を「255」とするのに対し、赤色画素部PXRの階調値を「220」としており、それにより目標白色色度での表示を表示画素PXに行わせるようにしている。つまり、バックライト装置12の照明光には、緑色光及び青色光よりも赤色光がより多く含まれているので、液晶パネル11の赤色画素部RPXの開度(光の透過のし易さ)が緑色画素部PXG及び青色画素部PXBの開度よりも低くなるようコントロール基板CTRにより制限することで、表示画素PXの色度が目標白色色度とされている。なお、液晶パネル11において白色表示を行う際の目標白色色度は、例えば色温度12000K程度とされるのが好ましいが、必ずしもこの数値に限定されるものではない。
そして、赤色の単色表示を行う場合には、コントロール基板CTRは、緑色画素部PXG及び青色画素部PXBの階調値を白色表示時よりも小さくし、赤色画素部PXRの階調値を白色表示時よりも大きくしている。具体的には、赤色表示時にコントロール基板CTRは、図13に示すように、緑色画素部PXG及び青色画素部PXBの階調値をそれぞれ最小値である「0」とするのに対し、赤色画素部PXRの階調値を白色表示時の「220」よりも大きな「255」とすることで、目標の赤色表示を表示画素PXに行わせている。つまり、赤色表示時には、赤色画素部PXRの階調値は、最大値となっている。ここで、バックライト装置12の照明光は、基準白色光とするのに要する3色の光に係る各発光量を基準としたとき、赤色光に係る発光量が選択的に多くなっており、その発光量が選択的に多くされた赤色光が、赤色表示時には赤色画素部PXRを最大限に透過することになるので、図14に示すように、赤色光の透過光量が最大化されるとともに表示画素PXに表示される赤色の色純度がより高いものとなる。これにより、赤色表示時における輝度が高くなるとともにその色再現範囲が広いものとなる。なお、図14は、赤色表示時における液晶パネル11の透過スペクトルを表しており、その横軸が波長(単位:nm)を、縦軸が「相対輝度(無単位)」を、それぞれ示している。
また、緑色表示時にコントロール基板CTRは、図13に示すように、緑色画素部PXGの階調値を最大値である「255」とし、赤色画素部PXR及び青色画素部PXBの階調値をそれぞれ最小値である「0」とすることで、目標の緑色表示を表示画素PXに行わせている。青色表示時にコントロール基板CTRは、青色画素部PXBの階調値を最大値である「255」とし、赤色画素部PXR及び緑色画素部PXGの階調値をそれぞれ最小値である「0」とすることで、目標の青色表示を表示画素PXに行わせている。
上記のような作用及び効果を実証するため、以下の比較実験1を行った。この比較実験1では、LED17に含ませる赤色蛍光体の含有量を、バックライト装置12の照明光を基準白色光とするために要する赤色蛍光体の基準含有量よりも多くしたとき、白色表示時の輝度及び赤色表示時の輝度と、赤色表示時の色度と、がどのように変化するかを測定した。具体的には、比較実験1では、赤色蛍光体の相対含有量を、上記した赤色蛍光体の基準含有量からその5倍にまで段階的に増すようにし、そのときの白色表示時の相対輝度及び赤色表示時の相対輝度をそれぞれ測定している。より詳しくは、比較実験1では、赤色蛍光体の基準含有量を100%としたとき、赤色蛍光体の相対含有量を、「100%,140%,180%,220%,260%,300%,340%,380%,420%,460%,500%」として上記各相対輝度の測定を行っている(図15から図17)。さらには、比較実験1では、赤色蛍光体の相対含有量を「100%,180%」としたときの、赤色表示時、緑色表示時及び青色表示時の各色度をそれぞれ測定している(図18及び図19)。比較実験1の実験結果を図15から図19に示す。図15は、赤色蛍光体の相対含有量と、白色表示時の相対輝度、赤色表示時の相対輝度及び赤色表示時の色度、を表す表である。図15において赤色表示時の色度としては、CIE1931色度図に係るx値及びy値と、CIE1976色度図に係るu′値及びv′値と、がそれぞれ記載されている。図16は、横軸が、赤色蛍光体の含有量に関して上記した赤色蛍光体の基準含有量を100%としたときの相対値(単位は「%」)とされるのに対し、縦軸が、白色表示時の輝度及び赤色表示時の輝度に関して赤色蛍光体を基準含有量としたときの相対値(単位は「%」)とされるグラフである。図16において、「×」のプロットが赤色表示時を、「▲」のプロットが白色表示時を、それぞれ表している。図17は、CIE1931色度図であり、上記のように赤色蛍光体の相対含有量を変化させたときにおける赤色表示時の赤色色度の推移を表している。図18は、赤色蛍光体の相対含有量を「100%,180%」としたときの赤色、緑色及び青色の各単色の色度を表す表である。図19は、赤色蛍光体の相対含有量を「100%,180%」としたときの赤色、緑色及び青色の各単色色度を表すCIE1976色度図であり、赤色蛍光体の相対含有量を100%としたときの色度領域を二点鎖線及び「◆」のプロットにより、赤色蛍光体の相対含有量を180%としたときの色度領域を実線及び「■」のプロットにより、それぞれ図示している。
比較実験1の実験結果について説明する。図15及び図16によれば、赤色蛍光体の相対含有量を多くするほど、白色表示時の相対輝度が低下するものの、赤色表示時の相対輝度は向上する傾向であることが分かる。このように白色表示時の相対輝度が低下する理由は、赤色蛍光体の相対含有量を多くするほど赤色光の発光量が増すことから、白色表示時には赤色画素部PXRの階調値をより小さくしなければならないためである。赤色表示時の相対輝度が向上する理由は、赤色蛍光体の相対含有量を多くするほど赤色光の発光量が増すのに対し、赤色表示時における赤色画素部PXRの階調値は最大値で発光量の増加した赤色光がそのまま表示に利用されるためである。特に、図16によれば、赤色蛍光体の相対含有量が107%を超えると、赤色表示時の相対輝度が105%を超えることから、赤色蛍光体の相対含有量を107%以上とするのが、赤色表示時の輝度向上効果を十分に得る上で好ましいものとされる。なお、赤色蛍光体の相対含有量は、赤色蛍光体による赤色光の相対発光量に比例する傾向にあることから、赤色光の相対発光量を107%以上とするのが好ましい、と言える。
一方、図15及び図17によれば、赤色蛍光体の相対含有量を多くするほど、赤色表示時における赤色色度のx値が増加してy値が減少する傾向であることが分かる。このように赤色表示時における赤色色度のx値が増加してy値が減少するということは、図20に示されるCIE1931色度図におけるスペクトル軌跡のうちの赤色の波長領域を長波長側にシフトすることを意味する。従って、赤色蛍光体の相対含有量を多くするほど、赤色表示時における赤色の色域がより拡張されて色再現性がより向上する、と言える。さらには、赤色表示時における赤色色度のx値が増加してy値が減少するということは、図20に示されるCIE1931色度図におけるマックアダムの楕円のうち、赤色の波長領域付近に配される楕円をその短軸方向に沿ってシフトすることを意味する。マックアダムの楕円は、人間に色の差が判別できない色度範囲を表すものであることから、上記のように赤色色度がマックアダムの楕円をその短軸方向に沿ってシフトすると、人間にとっては赤色の色味の違いがより明確に知覚され易くなる、と言える。つまり、赤色表示時に赤色の色味がより鮮やかに使用者に認識され易くなり、表示品位の向上を図る上で好ましいものとされる。なお、図20は、CIE1931色度図であって、スペクトル軌跡及び純紫軌跡と、マックアダムの楕円と、が示されるものである。そして、図18及び図19によれば、赤色蛍光体の含有量を180%とすれば、赤色蛍光体の含有量が100%の場合に比べると、赤色の色域が拡張されていることが分かる。このように、赤色蛍光体の相対含有量が多くなれば、赤色表示時における赤色の色域がより拡張されて色再現性がより向上することが分かる。なお、図15によれば、赤色蛍光体の含有量を180%としたとき、赤色表示時の相対輝度が141%となっていて、十分な輝度向上効果が得られている、と言える。
以上説明したように本実施形態の液晶表示装置(表示装置)10は、異なる色を呈する複数の画素部PXR,PXG,PXBを有する液晶パネル(表示パネル)11と、異なる色を呈する複数の色の光を含む照明光を液晶パネル11に照射するバックライト装置(照明装置)12であって、照明光を基準白色光とするのに要する複数の色の光に係る各発光量を基準としたとき、複数の色の光に含まれる第1の色の光に係る発光量が選択的に多くなるよう構成されるバックライト装置12と、白色表示時には複数の画素部PXR,PXG,PXBのうち赤色(第1の色)を呈する赤色画素部(第1の画素部)PXRの階調値が他の色を呈する画素部PXG,PXBの階調値よりも小さくなり、赤色の表示時には他の色を呈する画素部PXG,PXBの階調値が白色表示時よりも小さく赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御するコントロール基板(画素制御部)CTRと、を備える。
このような構成によれば、バックライト装置12から発せられた複数の光を含む照明光が、液晶パネル11に有される複数の画素部PXR,PXG,PXBをその階調値に応じて透過されることで複数の画素部PXR,PXG,PXBが異なる色を呈し、もって所定の画像が表示される。バックライト装置12の照明光は、基準白色光よりも赤色の色味がかかった光となるため、液晶パネル11において白色表示時にはコントロール基板CTRにより赤色を呈する赤色画素部PXRの階調値が、他の色を呈する画素部PXG,PXBの階調値よりも小さくなるよう制御されることで、白色の表示を行うことができる。一方、液晶パネル11において赤色の表示時にはコントロール基板CTRにより他の色を呈する画素部PXG,PXBの階調値が白色表示時よりも小さく赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御される。これにより、赤色の表示時における赤色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。
また、液晶パネル11は、複数の画素部PXR,PXG,PXBが、赤色を呈する赤色画素部PXR、緑色を呈する緑色画素部PXG、及び青色を呈する青色画素部PXBを少なくとも含むよう構成されており、バックライト装置12は、複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに第1の色の光が赤色の光とされ、コントロール基板CTRは、赤色画素部PXRを第1の画素部として制御している。このようにすれば、赤色表示時における赤色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。赤色は、他の色に比べると、色再現範囲の拡張が人間により認識され易い傾向があることから、画像に係る表示品位の向上を図る上でより好適とされる。
また、バックライト装置12は、照明光を基準白色光とするのに要する複数の色の光に係る各発光量をそれぞれ100%としたとき、赤色の光に係る発光量が107%以上となるよう構成される。このようにすれば、赤色の表示時における赤色に係る輝度に関して、仮に照明光を基準白色光とした場合の赤色の光に係る発光量に基づく輝度を100%としたとき、105%以上の輝度向上効果が得られる。
また、バックライト装置12は、光を発する青色LED素子(発光素子)21と、青色LED素子21からの光を波長変換する蛍光体と、を有するとともに、蛍光体には、赤色の光を発する赤色蛍光体(第1の蛍光体)が少なくとも含まれており、バックライト装置12は、照明光を基準白色光とするために要する蛍光体に係る含有量を基準としたとき、赤色蛍光体に係る含有量が相対的に多くなるよう構成される。このようにすれば、青色LED素子21から光が発せられると少なくともその一部が蛍光体によって波長変換されることで、バックライト装置12の照明光が得られる。そして、蛍光体に含まれる赤色蛍光体に係る含有量が、照明光を基準白色光とするために要する蛍光体に係る含有量の基準値よりも多くなっているので、赤色蛍光体から発せられる赤色の光の発光量が、照明光を基準白色光とするのに要する複数の色の光に係る各発光量の基準値よりも多くなる。このように、青色LED素子21の発光量に関して複雑な制御をせずとも、目的とする照明光を容易に得られる。
また、バックライト装置12は、青色LED素子21と、青色LED素子21を収容するケース23と、青色LED素子21をケース23内に封止して蛍光体が含有される封止材22と、から構成されるLED(光源)17を少なくとも有する。このようにすれば、青色LED素子21をケース23内に封止する封止材22に含有される蛍光体によって青色LED素子21から発せられた光の少なくとも一部が励起光として利用される。
また、LED17は、赤色蛍光体が、付活剤としてマンガンを用いたケイフッ化カリウムとなるよう構成される。このようにすれば、赤色蛍光体であるケイフッ化カリウムにおける発光スペクトルに含まれるメインピークの半値幅が十分に狭くなることで色純度の高い赤色光を発することができる。しかも、ケイフッ化カリウムには、材料として高価な希土類元素が用いられていないので、LED17に係る製造コストが安価なものとなる。また、ケイフッ化カリウムは、吸湿などにより性能劣化が生じ難いものとされているから、青色LED素子21をケース23内に封止する封止材22に含有させる構成を採る上で好適とされる。
本実施形態に係るテレビ受信装置10TVは、上記記載の液晶表示装置10を備える。このような構成のテレビ受信装置10TVによれば、赤色の表示時における赤色に係る輝度が高くなるとともに色再現範囲が広いものとなっているから、表示品位に優れたテレビ画像の表示を実現することができる。
<実施形態2>
本発明の実施形態2を図21から図29によって説明する。この実施形態2では、カラーフィルタ111kを4色に変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態2を図21から図29によって説明する。この実施形態2では、カラーフィルタ111kを4色に変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係るテレビ受信装置110TV及び液晶表示装置110には、図21に示すように、チューナー110Tから出力されたテレビ映像信号を当該液晶表示装置110用の映像信号に変換する映像変換回路基板110VCが備えられている。詳しくは、映像変換回路基板110VCは、チューナー110Tから出力されたテレビ映像信号を青色、緑色、赤色及び黄色の各色の映像信号に変換し、生成された各色の映像信号を液晶パネル111に接続されたコントロール基板(本実施形態では図示しないが図11を参照)に出力することができる。また、テレビ受信装置110TVは、実施形態1と同様の構成とされる一対のキャビネット110Ca,110Cbと、電源110Pと、スタンド110Sと、を備えている。
液晶パネル111を構成するCF基板111aの内面に設けられるカラーフィルタ111kには、図22及び図24に示すように、赤色、緑色及び青色に加えて黄色を呈するものが含まれており、これら4色を呈するものが所定の順で繰り返し並んで配置される。このうちの黄色のカラーフィルタ111kは、黄色の波長領域の光、つまり赤色の波長領域の光と緑色の波長領域の光とを選択的に透過するものとされる。つまり、黄色のカラーフィルタ111kは、赤色光及び緑色光を共に透過するものとされる。赤色のカラーフィルタ111k及び青色のカラーフィルタ111kは、緑色カラーフィルタ111k及び黄色のカラーフィルタ111kよりもX軸方向についての寸法及び面積が相対的に大きなものとされており、例えば1.6倍程度とされる。なお、赤色のカラーフィルタ111k及び青色のカラーフィルタ111kは、X軸方向についての寸法及び面積が互いにほぼ等しく、また緑色カラーフィルタ111k及び黄色のカラーフィルタ111kは、X軸方向についての寸法及び面積が互いにほぼ等しくなっている。これに伴い、赤色のカラーフィルタ111k及び青色のカラーフィルタ111kと対向する各画素電極111hは、図22及び図23に示すように、緑色カラーフィルタ111k及び黄色のカラーフィルタ111kと対向する各画素電極111hよりもX軸方向についての寸法及び面積が相対的に大きなものとされており、例えば1.6倍程度とされる。
そして、この液晶パネル111においては、赤色、緑色、青色及び黄色の4色のカラーフィルタ111k及びそれらと対向する4つの画素電極111hの組によって表示単位である1つの表示画素PXが構成されている。表示画素PXは、赤色画素部PXRと、緑色画素部PXGと、青色画素部PXBと、黄色を呈するカラーフィルタ111kとそれに対向する画素電極111hとからなる黄色画素部PXYと、からなる。これら各色の画素部PXR,PXG,PXB,PXYは、液晶パネル111の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。そして、各色の画素部PXR,PXG,PXB,PXYを構成する各画素電極111hには、それぞれに接続されたTFT111gにより電圧がそれぞれ印加されるようになっており、その電圧値に基づいて各色の画素部PXR,PXG,PXB,PXYにおける液晶層111eの配向状態が変化し、もって各色の画素部PXR,PXG,PXB,PXY毎に液晶パネル111の透過光量が個別に制御されるようになっている。なお、本実施形態に係る表示画素PXにおけるX軸方向及びY軸方向についての寸法及び面積は、上記した実施形態1に記載したものと同一である。
このような構成の液晶パネル111は、図示しないコントロール基板からの信号が入力されることで駆動されるのであるが、そのコントロール基板には、図21に示す映像変換回路基板110VCにおいてチューナー110Tから出力されたテレビ映像信号が、青色、緑色、赤色及び黄色の各色の映像信号に変換されて生成された各色の映像信号が入力されるようになっており、それにより液晶パネル111では、各色の画素部PXR,PXG,PXB,PXYを透過する透過光量を適宜制御されるようになっている。そして、液晶パネル111のカラーフィルタ111kが光の三原色を呈するものに加えて黄色を呈するものを有しているので、その透過光により表示される表示画像の色域が拡張されており、もって色再現性により優れた表示を実現できるものとされる。しかも、黄色のカラーフィルタ111kを透過した光は、視感度のピークに近い波長を有することから、人間の目には少ないエネルギーでも明るく知覚される傾向とされる。これにより、図示しないバックライト装置が有するLEDの出力を抑制しても十分な輝度を得ることができることとなり、LEDの消費電力を低減でき、もって環境性能にも優れる、といった効果が得られる。
以上のように4色の画素部PXR,PXG,PXB,PXYからなる表示画素PXは、その面積が上記した実施形態1に記載したものと同一とされているのに対し、表示画素PXが4色の各画素部PXR,PXG,PXB,PXYにより構成されている。このため、4色の各画素部PXR,PXG,PXB,PXYの面積は、上記した実施形態1に記載された3色の各画素部PXR,PXG,PXBの面積よりもそれぞれ小さくなっている。これは、本実施形態において赤色画素部PXR及び青色画素部PXBの面積が緑色画素部PXG及び黄色画素部PXYの面積の1.6倍程度とされていることを踏まえても、各画素部PXR,PXG,PXB,PXYの面積が上記した実施形態1に記載されたものよりもそれぞれ相対的に小さい。具体的には、緑色画素部PXG及び黄色画素部PXYの面積比率をそれぞれ「1.0」としたとき、赤色画素部PXR及び青色画素部PXBの面積比率がそれぞれ「1.6」となるのに対し、実施形態1に係る3色の各画素部PXR,PXG,PXBの面積比率がそれぞれ約「1.73」となる。
このような構成の液晶パネル111に照明光を供給するバックライト装置は、上記した実施形態1と同様に、照明光を基準白色光とするのに要する3色の光に係る各発光量を基準としたとき、3色の光に含まれる赤色光に係る発光量が選択的に多くなるよう構成されている。そして、液晶パネル111の駆動を制御するコントロール基板は、白色表示時には4色の画素部PXR,PXG,PXB,PXYのうち赤色画素部PXRの階調値が他の色である緑色、青色及び黄色を呈する画素部PXG,PXB,PXYの階調値よりも小さくなり、赤色表示時には緑色、青色及び黄色の各画素部PXG,PXB,PXYの階調値が白色表示時よりも小さく赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御している。このような構成によれば、バックライト装置の照明光は、基準白色光よりも赤色の色味がかかった光となるため、液晶パネル111において白色表示時にはコントロール基板により赤色画素部PXRの階調値が、緑色、青色及び黄色の各画素部PXG,PXB,PXYの階調値よりも小さくなるよう制御されることで、白色の表示を行うことができる。なお、黄色画素部PXYは、緑色光に加えて赤色光も透過することから、白色表示時にはコントロール基板により黄色画素部PXYの階調値が、緑色及び青色の各画素部PXG,PXBの階調値よりも小さくなるよう制御されている。一方、液晶パネル111において赤色表示時には、コントロール基板により緑色、青色及び黄色の各画素部PXG,PXB,PXYの階調値が白色表示時よりも小さく、赤色画素部PXRの階調値が白色表示時よりも大きくなるよう制御される。これにより、赤色表示時における赤色に係る輝度が高くなるとともにその色再現範囲が広いものとなる。
ここで、本実施形態に係る液晶パネル111は、既述した通り、上記した実施形態1に係る液晶パネル11に比べると、各画素部PXR,PXG,PXB,PXYの個々の面積比率が低くなっているので、バックライト装置の照明光に含まれる赤色光に係る発光量が多くされるのに伴う、赤色表示時における赤色光に係る輝度の増加率が相対的に大きくなっている。そして、バックライト装置の照明光に含まれる赤色光に係る発光量が多くされることで、当該照明光が赤色の色味がかったものとなっているので、仮に基準白色光を照明光とした場合に比べると、黄色表示時における黄色に係る色度が赤色寄りにシフトすることになる。このような黄色色度のシフトは、黄色のカラーフィルタ111kを赤色光がある程度透過するため生じる。これにより、色再現範囲を拡張する上でより好適となる。
上記のような作用及び効果を実証するため、以下の比較実験2を行った。この比較実験2では、4色の画素部PXR,PXG,PXB,PXYを備える液晶パネル111を用いることを前提とし、LEDに含ませる赤色蛍光体の含有量を、バックライト装置の照明光を基準白色光とするために要する赤色蛍光体の基準含有量よりも多くしたとき、白色表示時の輝度及び赤色表示時の輝度と、赤色表示時の色度と、がどのように変化するかを測定した。具体的には、比較実験2では、赤色蛍光体の相対含有量を、上記した赤色蛍光体の基準含有量からその5倍にまで段階的に増すようにし、そのときの白色表示時の相対輝度及び赤色表示時の相対輝度をそれぞれ測定している。より詳しくは、比較実験2では、赤色蛍光体の基準含有量を100%としたとき、赤色蛍光体の相対含有量を、「100%,107%,180%,220%,260%,300%,340%,380%,420%,460%,500%」として上記各相対輝度の測定を行っている(図25から図27)。さらには、比較実験2では、赤色蛍光体の相対含有量を「100%,180%」としたときの、赤色表示時、黄色表示時、緑色表示時及び青色表示時の各色度をそれぞれ測定している(図28及び図29)。比較実験2の実験結果を図25から図29に示す。図25は、赤色蛍光体の相対含有量と、白色表示時の相対輝度、赤色表示時の相対輝度及び赤色表示時の色度、を表す表である。図25において赤色表示時の色度としては、CIE1931色度図に係るx値及びy値と、CIE1976色度図に係るu′値及びv′値と、がそれぞれ記載されている。図26は、横軸が、赤色蛍光体の含有量に関して上記した赤色蛍光体の基準含有量を100%としたときの相対値(単位は「%」)とされるのに対し、縦軸が、白色表示時の輝度及び赤色表示時の輝度に関して赤色蛍光体を基準含有量としたときの相対値(単位は「%」)とされるグラフである。図26において、「■」のプロットが赤色表示時を、「◆」のプロットが白色表示時を、それぞれ表している。なお、図26には、実施形態1の比較実験1に係る実験結果(「×」のプロット、「▲」のプロット)を参考のため示している。図27は、CIE1931色度図であり、上記のように赤色蛍光体の相対含有量を変化させたときにおける赤色表示時の赤色色度の推移を表している。図28は、赤色蛍光体の相対含有量を「100%,180%」としたときの赤色、緑色及び青色の各単色の色度を表す表である。図29は、赤色蛍光体の相対含有量を「100%,180%」としたときの赤色、緑色及び青色の各単色色度を表すCIE1976色度図であり、赤色蛍光体の相対含有量を100%としたときの色度領域を二点鎖線及び「◆」のプロットにより、赤色蛍光体の相対含有量を180%としたときの色度領域を実線及び「■」のプロットにより、それぞれ図示している。
比較実験2の実験結果について説明する。図25及び図26によれば、赤色蛍光体の相対含有量を多くするほど、白色表示時の相対輝度が低下するものの、赤色表示時の相対輝度は向上する、という比較実験1と同様の傾向であることが分かる。このような傾向となる理由は、実施形態1の比較実験1にて説明した通りである。比較実験2の実験結果において特筆すべきは、赤色蛍光体の相対含有量が125%を超えると、赤色表示時の相対輝度が比較実験1の実験結果を上回る点(第1の点)と、赤色蛍光体の相対含有量が220%を超えると、白色表示時の相対輝度が比較実験1の実験結果を下回る点(第2の点)と、である。第1の点について詳しく説明すると、赤色蛍光体の相対含有量が125%に至るまでは、比較実験2の実験結果に係る赤色表示時の相対輝度が比較実験1の実験結果と同等であるものの、赤色蛍光体の相対含有量が125%を超えると、比較実験2の実験結果に係る赤色表示時の相対輝度が比較実験1の実験結果を上回り、赤色蛍光体の相対含有量が増すほど赤色表示時の相対輝度の差が大きくなっている。これは、比較実験2では4色の画素部PXR,PXG,PXB,PXYを備える液晶パネル111を用いることを前提としており、比較実験1のような3色の画素部PXR,PXG,PXBを備える液晶パネル11に比べると、各画素部PXR,PXG,PXB,PXYの個々の面積比率が低くなっており、バックライト装置の照明光に含まれる赤色光に係る発光量が多くされるのに伴う、赤色表示時における赤色光に係る輝度の増加率が相対的に大きくなるため、と推察される。なお、比較実験2においても、比較実験1と同様に、赤色蛍光体の相対含有量が107%を超えると、赤色表示時の相対輝度が105%を超えるものとされる。
一方、第2の点について詳しく説明すると、赤色蛍光体の相対含有量が220%を超えると、白色表示時の相対輝度が比較実験1の実験結果を下回るものの、赤色蛍光体の相対含有量が220%に至るまでは、白色表示時の相対輝度が比較実験1の実験結果と同等となっている。このように赤色蛍光体の相対含有量が220%を超えたときに白色表示時の相対輝度が低下する理由は、黄色画素部PXYが緑色光に加えて赤色光も透過することから、白色表示時に黄色画素部PXYの階調値が緑色及び青色の各画素部PXG,PXBの階調値よりも小さくなるようコントロール基板により制御されており、赤色蛍光体の相対含有量が増すほど白色表示時の黄色画素部PXYの階調値と緑色及び青色の各画素部PXG,PXBの階調値との差が大きくなるため、と推察される。従って、比較実験2の実験結果によれば、赤色蛍光体の相対含有量を125%~220%の範囲とすれば、赤色表示時における輝度の改善効果が、比較実験1を上回るとともに、白色表示時における輝度効率の著しい低下を避けることができる、と言える。なお、赤色蛍光体の相対含有量は、赤色蛍光体による赤色光の相対発光量に比例する傾向にあることから、赤色光の相対発光量を125%~220%の範囲とするのが好ましい、と言える。
一方、図25及び図27によれば、赤色蛍光体の相対含有量を多くするほど、赤色表示時における赤色色度のx値が増加してy値が減少する、という比較実験1と同様の傾向であることが分かる。このような傾向となる理由及びそれによってもたらされる効果(赤色表示時における赤色の色域がより拡張されて色再現性がより向上する効果など)は、実施形態1の比較実験1にて説明した通りである。そして、図28及び図29によれば、赤色蛍光体の含有量を180%とすれば、赤色蛍光体の含有量が100%の場合に比べると、赤色の色域が拡張されていることが分かる。このように、赤色蛍光体の相対含有量が多くなれば、赤色表示時における赤色の色域がより拡張されて色再現性がより向上することが分かる。なお、図25によれば、赤色蛍光体の含有量を180%としたとき、赤色表示時の相対輝度が146%となっていて、比較実験1の実験結果(141%)よりもさらに高い輝度向上効果が得られている、と言える。
以上説明したように本実施形態によれば、液晶パネル111は、複数の画素部PXR,PXG,PXB,PXYが4つ以上の異なる色を呈するよう構成されている。このようにすれば、仮に画素部PXR,PXG,PXBが3つの異なる色を呈する構成とした場合に比べると、各画素部PXR,PXG,PXB,PXYの面積比率が低くなるので、バックライト装置の照明光に含まれる赤色の光に係る発光量が多くされるのに伴う、赤色の表示時における赤色に係る輝度の増加率が相対的に大きくなる。
また、バックライト装置は、照明光を基準白色光とするのに要する複数の色の光に係る各発光量をそれぞれ100%としたとき、赤色の光に係る発光量が125%~220%の範囲となるよう構成される。仮に赤色の光に係る発光量が125%を下回る場合には、赤色の表示時における輝度の改善効果が、画素部PXR,PXG,PXBが3つの異なる色を呈する構成とした場合と同等程度となるおそれがあり、逆に赤色の光に係る発光量が220%を上回る場合には、白色表示時における輝度効率が著しく低下するおそれがある。その点、赤色の光に係る発光量を125%~220%の範囲とすることで、赤色の表示時における輝度の改善効果が、画素部PXR,PXG,PXBが3つの異なる色を呈する構成とした場合を上回るとともに、白色表示時における輝度効率の著しい低下を避けることができる。
また、液晶パネル111は、複数の画素部PXR,PXG,PXB,PXYが、赤色を呈する赤色画素部PXR、緑色を呈する緑色画素部PXG、青色を呈する青色画素部PXB、及び黄色を呈する黄色画素部PXYを少なくとも含むよう構成されており、バックライト装置は、複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに第1の色の光が赤色の光とされ、コントロール基板は、赤色画素部PXRを第1の画素部として制御している。このような構成の液晶パネル111では、複数の画素部PXR,PXG,PXB,PXYを構成する黄色画素部PXYが、黄色の光、つまり緑色の光と赤色の光とを透過するものとされる。バックライト装置の照明光は、基準白色光よりも第1の色である赤色の色味がかかった光となっていることから、仮に基準白色光を用いた場合に比べると、黄色の表示時における黄色に係る色度が赤色寄りにシフトすることになる。これにより、色再現範囲を拡張する上でより好適となる。
<実施形態3>
本発明の実施形態3を図30または図31によって説明する。この実施形態3では、上記した実施形態1からLED217の構成を変更し、光学シート215bに波長変換シート24を追加したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態3を図30または図31によって説明する。この実施形態3では、上記した実施形態1からLED217の構成を変更し、光学シート215bに波長変換シート24を追加したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る光学シート215bには、図30に示すように、マイクロレンズシート215b1、プリズムシート215b2及び反射型偏光シート215b3に加えて、波長変換シート(波長変換部材)24が含まれている。波長変換シート24は、マイクロレンズシート215b1に対して裏側(LED217に近い側)に積層する形で配されており、マイクロレンズシート215b1と拡散板215aとの間に介在する配置とされる。すなわち、波長変換シート24は、LED217に対して表側、つまり出光経路の出口側に配され、LED217からの光を波長変換するものとされる。波長変換シート24は、LED217からの光を波長変換するための物質として蛍光体を含有している。これに伴い、LED217は、図31に示すように、封止材222に蛍光体を含有しない構成とされる。これにより、LED217は、その発光光が、青色LED素子221の発光光、つまり青色の単色光とされている。そして、波長変換シート24には、LED217からの青色光の一部を赤色光に波長変換する赤色蛍光体と、LED217からの青色光の一部を緑色光に波長変換する緑色蛍光体と、が含まれている。従って、本実施形態に係るバックライト装置212の照明光は、LED217から発せられる一次光である青色光と、波長変換シート24の赤色蛍光体及び緑色蛍光体(波長変換物質)により波長変換された二次光である赤色光及び緑色光と、の加法混色によって概ね白色を呈していて所定の色温度または相関色温度を有するようになっている。
波長変換シート24は、赤色蛍光体及び緑色蛍光体を含有する波長変換層(蛍光体フィルム)と、波長変換層を表裏から挟み込んでこれを保護する一対の保護層(保護フィルム)と、を少なくとも有している。波長変換層には、LED217からの青色の単色光を励起光として、赤色光を発する赤色蛍光体と、緑色光を発する緑色蛍光体と、が分散配合されている。これにより、波長変換シート24は、LED217の発光光(青色光、一次光)をその色味(青色)に対して補色となる色味(黄色)を呈する二次光(緑色光及び赤色光)に波長変換するものとされる。波長変換層は、ほぼ透明な合成樹脂製でフィルム状をなす基材(蛍光体担体)に、赤色蛍光体及び緑色蛍光体を分散配合した蛍光体層を塗布してなるものとされる。保護層は、ほぼ透明な合成樹脂製でフィルム状をなしており、防湿性などに優れるものとされる。
このように、各色の蛍光体は、励起波長が蛍光波長よりも短波長とされるダウンコンバージョン型(ダウンシフティング型)とされている。このダウンコンバージョン型の蛍光体は、相対的に短波長で且つ高いエネルギーを持つ励起光を、相対的に長波長で且つ低いエネルギーを持つ蛍光光に変換するものとされる。従って、仮に励起波長が蛍光波長よりも長波長とされるアップコンバージョン型の蛍光体を用いた場合(量子効率が例えば28%程度)に比べると、量子効率(光の変換効率)が30%~50%程度と、より高いものとなっている。各色の蛍光体は、それぞれ量子ドット蛍光体(Quantum Dot Phosphor)とされる。量子ドット蛍光体は、ナノサイズ(例えば直径2nm~10nm程度)の半導体結晶中に電子・正孔や励起子を三次元空間全方位で閉じ込めることで、離散的エネルギー準位を有しており、そのドットのサイズを変えることで発光光のピーク波長(発光色)などを適宜に選択することが可能とされる。この量子ドット蛍光体の発光光(蛍光光)は、その発光スペクトルにおけるピークが急峻となってその半値幅が狭くなることから、色純度が極めて高くなるとともにその色域が広いものとなる。量子ドット蛍光体の材料としては、2価の陽イオンになるZn、Cd、Hg、Pb等と2価の陰イオンになるO、S、Se、Te等とを組み合わせた材料(CdSe(セレン化カドミウム)、ZnS(硫化亜鉛)等)、3価の陽イオンとなるGa、In等と3価の陰イオンとなるP、As、Sb等とを組み合わせた材料(InP(リン化インジウム)、GaAs(ヒ化ガリウム)等)、さらにはカルコパイライト型化合物(CuInSe2等)などがある。本実施形態では、量子ドット蛍光体の材料として、上記のうちのCdSeとZnSとを併用している。また、本実施形態において用いる量子ドット蛍光体は、いわゆるコア・シェル型量子ドット蛍光体とされる。コア・シェル型量子ドット蛍光体は、量子ドットの周囲を、比較的バンドギャップの大きな半導体物質からなるシェルによって被覆した構成とされる。具体的には、コア・シェル型量子ドット蛍光体として、シグマ アルドリッチ ジャパン合同会社の製品である「Lumidot(登録商標) CdSe/ZnS」を用いるのが好ましい。
以上説明したように本実施形態によれば、バックライト装置212は、青色LED素子221を有するLED217と、蛍光体を含有していてLED217に対して出光経路の出口側に配されてLED217の光を波長変換する波長変換シート(波長変換部材)24と、を少なくとも有する。このようにすれば、LED217に対して出光経路の出口側に配される波長変換シート24に蛍光体が含有されているので、LED217の青色LED素子221から発せられる熱によって蛍光体が性能劣化し難いものとなる。また、波長変換シート24に蛍光体を含有させるに際して、例えば蛍光体を高いシール性でもって封止する手段を採るのが容易となるので、吸湿などによる性能劣化が懸念される蛍光体を使用する上で好適となる。
また、蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換シート24による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。また、例えば波長変換シート24に量子ドット蛍光体を高いシール性でもって封止する手段を採るようにすれば、量子ドット蛍光体が吸湿などによって性能劣化し難いものとなって好適である。
<実施形態4>
本発明の実施形態4を図32または図33によって説明する。この実施形態4では、上記した実施形態1からバックライト装置312をエッジライト型に変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態4を図32または図33によって説明する。この実施形態4では、上記した実施形態1からバックライト装置312をエッジライト型に変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る液晶表示装置310は、図32に示すように、液晶パネル311と、エッジライト型のバックライト装置312と、をベゼル313などにより一体化した構成とされる。なお、液晶パネル311の構成は、上記した実施形態1と同様であるから、重複する説明は省略する。以下、エッジライト型のバックライト装置312の構成について説明する。
バックライト装置312は、図32に示すように、表側側(液晶パネル311側)に向けて開口する光出射部314bを有した略箱型をなすシャーシ314と、シャーシ314の光出射部314bを覆う形で配される光学部材315と、を備える。さらに、シャーシ314内には、光源であるLED317と、LED317が実装されたLED基板318と、LED317からの光を導光して光学部材315(液晶パネル311)へと導く導光板25と、導光板25を表側から押さえるフレーム316と、が備えられる。そして、このバックライト装置312は、その長辺側の両端部にLED317を有するLED基板318をそれぞれ備えるとともに、両LED基板318間に挟まれた中央側に導光板25を配置してなる、いわゆるエッジライト型(サイドライト型)とされている。このように本実施形態に係るバックライト装置312は、エッジライト型であるから、実施形態1のような直下型のバックライト装置12に比べると、薄型化を図る上で好適とされる。また、本実施形態に係るエッジライト型のバックライト装置312は、実施形態1にて示した直下型のバックライト装置12で用いていた反射シート20などが備えられていない。続いて、バックライト装置312の各構成部品について詳しく説明する。
シャーシ314は、金属製とされ、図32及び図33に示すように、液晶パネル311と同様に横長の方形状をなす底板部314aと、底板部314aの各辺の外端からそれぞれ立ち上がる側板部314cとからなり、全体としては表側に向けて開口した浅い略箱型をなしている。シャーシ314(底板部314a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、側板部314cには、フレーム316及びベゼル313が固定可能とされる。
光学部材315は、図32及び図33に示すように、3枚の光学シート315bにより構成されており、上記した実施形態1とは拡散板15aを備えない点を除いては同様である。フレーム316は、図32に示すように、導光板25の外周縁部に沿って延在する枠状部(額縁状部)316aを有しており、その枠状部316aにより導光板25の外周縁部をほぼ全周にわたって表側から押さえることが可能とされる。フレーム316の枠状部316aのうち両長辺部分における裏側の面、つまり導光板25及びLED基板318(LED317)との対向面には、図33に示すように、光を反射させる第1反射シート26がそれぞれ取り付けられている。第1反射シート26は、枠状部316aの長辺部分におけるほぼ全長にわたって延在する大きさを有しており、導光板25におけるLED317側の端部に直接当接されるとともに導光板25の上記端部とLED基板318とを一括して表側から覆うものとされる。フレーム316は、導光板25を表側から押さえる枠状部316aによって光学部材315の外周縁部を裏側から支持するものとされ、それにより光学部材315が後述する導光板25の光出射面25aとの間に所定の間隔(空気層)を空けた形で支持される。さらには、フレーム316は、枠状部316aから表側に向けて突出するとともに、液晶パネル311における外周縁部を裏側から支持する液晶パネル支持部316bを有している。
LED317は、上記した実施形態1と同様の構成であるから、重複する説明は省略する。LED基板318は、図32に示すように、シャーシ314の長辺方向(X軸方向、導光板25における光入射面25bの長手方向)に沿って延在する細長い板状をなすとともに、その板面をX軸方向及びZ軸方向に並行した姿勢、つまり液晶パネル311及び導光板25(光学部材315)の板面と直交させた姿勢でシャーシ314内に収容されている。LED基板318は、導光板25をその短辺方向(Y軸方向)の両側方から挟み込む形で対をなす形で設置されている。LED基板318の板面であって内側、つまり導光板25側を向いた面(導光板25との対向面)には、LED317が実装されている。LED317は、LED基板318の実装面318aにおいて、その長さ方向(X軸方向)に沿って複数が一列に(直線的に)並んで配置されている。従って、LED317は、バックライト装置312における長辺側の両端部においてそれぞれ長辺方向に沿って複数ずつ並んで配置されていると言える。各LED基板318に実装された複数のLED317は、基板配線部(図示せず)によって直列接続されている。各LED基板318は、LED317の実装面318aが互いに対向状をなす姿勢でシャーシ314内に収容されているので、両LED基板318にそれぞれ実装された各LED317の発光面317aが対向状をなすとともに、各LED317における光軸がY軸方向とほぼ一致する。
導光板25は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPMMAなどのアクリル樹脂材料など)からなる。導光板25は、図32に示すように、液晶パネル311及びシャーシ314と同様に平面に視て横長の方形状をなしており、その長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致している。導光板25は、シャーシ314内において液晶パネル311及び光学部材315の直下位置に配されており、シャーシ314における長辺側の両端部に配された一対のLED基板318間にY軸方向について挟み込まれる形で配されている。従って、LED317(LED基板318)と導光板25との並び方向がY軸方向と一致するのに対して、光学部材315(液晶パネル311)と導光板25との並び方向がZ軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光板25は、LED317からY軸方向に向けて発せられた光を導入するとともに、その光を内部で伝播させつつ光学部材315側(Z軸方向)へ向くよう立ち上げて出射させる機能を有する。
導光板25の板面のうち、表側を向いた板面が、図33に示すように、内部の光を光学部材315及び液晶パネル311に向けて出射させる光出射面(出光板面)25aとなっている。導光板25における板面に対して隣り合う外周端面のうち、X軸方向に沿って長手状をなす長辺側の両端面は、それぞれLED317(LED基板318)と所定の間隔を空けて対向状をなしており、これらがLED317から発せられた光が入射される光入射面(入光端面)25bとなっている。光入射面25bは、X軸方向及びZ軸方向に沿って並行する面とされ、光出射面25aに対して略直交する面とされる。導光板25における光出射面25aとは反対側の反対板面25cには、導光板25内の光を反射して表側へ立ち上げることが可能な第2反射シート27がその全域を覆う形で設けられている。第2反射シート27は、平面に視てLED基板318(LED317)と重畳する範囲にまで拡張されるとともに、表側の第1反射シート26との間でLED基板318(LED317)を挟み込む形で配されている。これにより、LED317からの光を両反射シート26,27間で繰り返し反射することで、光入射面25bに対して効率的に入射させることができる。なお、導光板25における光出射面25aまたは反対板面25cの少なくともいずれか一方には、内部の光を反射させる反射部(図示せず)または内部の光を散乱させる散乱部(図示せず)が所定の面内分布を持つようパターニングされており、それにより光出射面25aからの出射光が面内において均一な分布となるよう制御されている。
<実施形態5>
本発明の実施形態5を図34によって説明する。この実施形態5では、上記した実施形態4からLED417の構成を変更し、光学シート415bに波長変換シート424を追加したものを示す。なお、上記した実施形態4と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態5を図34によって説明する。この実施形態5では、上記した実施形態4からLED417の構成を変更し、光学シート415bに波長変換シート424を追加したものを示す。なお、上記した実施形態4と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る光学シート415b(光学部材415)には、図34に示すように、マイクロレンズシート415b1、プリズムシート415b2及び反射型偏光シート415b3に加えて、波長変換シート424が含まれている。この波長変換シート424は、上記した実施形態3に記載されたものと同様のものであるから詳しい説明は割愛するが、LED417からの光を波長変換する物質である赤色蛍光体及び緑色蛍光体を含有している。波長変換シート424は、マイクロレンズシート415b1に対して裏側(LED417に近い側)に積層する形で配されており、マイクロレンズシート415b1と導光板425との間に介在する配置とされる。LED417は、蛍光体を含有しない構成であって青色の単色光を発するものとされており、上記した実施形態3に記載されたものと同様であるから詳しい説明は割愛する(図31を参照)。従って、LED417から発せられた光は、導光板425の光入射面425aに入射されてから導光板425内を伝播されてその光出射面425aから出射されると、光出射面425aを覆う形で配される波長変換シート424を透過する過程でその一部が赤色蛍光体及び緑色蛍光体によって赤色光及び緑色光に波長変換されることになる。これにより、本実施形態に係るバックライト装置412の照明光は、LED417から発せられる一次光である青色光と、波長変換シート424の赤色蛍光体及び緑色蛍光体により波長変換された二次光である赤色光及び緑色光と、の加法混色によって概ね白色を呈することとなり、所定の色温度または相関色温度を有するようになっている。
<実施形態6>
本発明の実施形態6を図35によって説明する。この実施形態6では、上記した実施形態5に記載した波長変換シート424に代えて波長変換チューブ28を用いた場合を示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態6を図35によって説明する。この実施形態6では、上記した実施形態5に記載した波長変換シート424に代えて波長変換チューブ28を用いた場合を示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る波長変換チューブ(波長変換部材)28は、図35に示すように、LED517と導光板525の光入射面525bとの間に介在する形、つまりLED517に対して出光経路の出口側に配されており、LED517からの光を波長変換するものとされる。波長変換チューブ28は、LED517からの光を波長変換するための物質として赤色蛍光体及び緑色蛍光体を含有している。波長変換チューブ28は、導光板525の光入射面525bにおける長手方向(X軸方向)に沿って延在し、光入射面525bに対してほぼ全長にわたって対向状をなすとともに、LED基板518に実装された全てのLED517に対して対向状をなす形で配されている。このような構成によれば、上記した実施形態5のように波長変換シート424が導光板425の光出射面425aを覆う形で配した場合に比べると(図34を参照)、波長変換チューブ28に含有させる各蛍光体の含有量が少なく済むので、低コスト化を図る上でより好適となる。なお、本実施形態では、上記した実施形態4に記載した波長変換シート424(図34を参照)に代えて波長変換チューブ28を用いた構成であるから、光学シート515b(光学部材515)は、マイクロレンズシート515b1、プリズムシート515b2及び反射型偏光シート515b3の3枚から構成されている。
波長変換チューブ28は、ほぼ透明で管状をなす容器(キャピラリ)28aと、容器28a内に封入されて赤色蛍光体及び緑色蛍光体を含有する蛍光体含有部28bと、から構成される。容器28aは、例えばガラス製とされ、内部に蛍光体含有部28bが封入される空間が有されるよう空洞を有していて(中空で)、延在方向と直交する方向に沿って切断した断面形状が縦長の方形状をなしている。容器28aは、製造過程では長さ方向の一端側が開口しており、そこから蛍光体含有部28bが内部空間に充填されるようになっている。そして、蛍光体含有部28bの充填が完了したら、容器28aの開口部を閉塞することで、内部空間に充填された蛍光体含有部28bを封止し、緑色蛍光体が吸湿などにより性能劣化するのが防がれるようになっている。蛍光体含有部28bには、上記した実施形態1に記載した赤色蛍光体及び緑色蛍光体が所定の配合比率でもって分散配合されている。蛍光体含有部28bは、Z軸方向についての寸法が、LED517における同寸法(高さ寸法)よりも大きなものとされており、それによりLED517から発せられた青色光の一部が赤色蛍光体及び緑色蛍光体によりそれぞれ効率的に赤色光及び緑色光に波長変換されるようになっている。
<実施形態7>
本発明の実施形態7を図36によって説明する。この実施形態7では、上記した実施形態1からLED617の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本発明の実施形態7を図36によって説明する。この実施形態7では、上記した実施形態1からLED617の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係るLED617は、図36に示すように、赤色、緑色、青色の各色の光をそれぞれ発する3つのLED素子621,29,30を備えている。詳しくは、LED617は、青色の光を発する青色LED素子621と、緑色の光を発する緑色LED素子(緑色発光素子、発光素子)29と、赤色の光を発する赤色LED素子(赤色発光素子、発光素子)30と、これらのLED素子621,29,30を封止する封止材622と、これらを収容するケース623と、を有している。従って、このLED617は、上記した実施形態1に記載したもののような蛍光体を有さない構成とされる。これら3つのLED素子621,29,30は、ケース623の底面の面内において所定の順序でもって並ぶ形で配されている。青色LED素子621は、上記した実施形態1に記載したものと同様である。緑色LED素子29は、例えばInGaN、GaPなどの半導体材料からなる半導体であり、順方向に電圧が印加されることで緑色の波長領域(約500nm~約570nm)に含まれる波長の緑色の単色光を発光するものとされる。赤色LED素子30は、例えばGaP、GaAsPなどの半導体材料からなる半導体であり、順方向に電圧が印加されることで赤色の波長領域(約600nm~約780nm)に含まれる波長の赤色の単色光を発光するものとされる。これら緑色LED素子29及び赤色LED素子30の発光光は、上記した実施形態1のように封止材22中に緑色蛍光体及び赤色蛍光体を含有させた場合の蛍光光に比べると、色純度がより高いものとなっており、色再現性のさらなる向上を図る上で好適とされる。このようにLED617は、その出射光に、青色LED素子621が発する青色光と、緑色LED素子29が発する緑色光と、赤色LED素子30が発する赤色光と、が含まれており、これらの3色の光の加法混色により発光光が全体として概ね白色を呈していて所定の色温度または相関色温度を有するようになっている。このLED617の発光光は、上記した実施形態1と同様にそのままバックライト装置の照明光となる。
赤色LED素子30は、少なくとも青色LED素子621及び緑色LED素子29とは異なる駆動回路に接続されており、青色LED素子621及び緑色LED素子29に比べると相対的に高い電流値(定電流駆動の場合)または高い点灯期間比率(PWM駆動の場合)でもって駆動されるようになっている。なお、各LED素子621,29,30の駆動回路は、各LED素子621,29,30の素子特性が異なることから、全て独立させるのが好ましいものとされるが、青色LED素子621及び緑色LED素子29に関しては必ずしもその限りではない。
そして、本実施形態に係るバックライト装置は、液晶パネルに照射され照明光を基準白色光とするために要する各LED素子621,29,30に係る各発光量を基準としたとき、赤色光を発する赤色LED素子30に係る発光量が相対的に多くなるよう構成される。その上で、コントロール基板は、白色表示時には液晶パネルにおける3色の画素部のうち赤色画素部の階調値が他の色である緑色画素部及び青色画素部の階調値よりも小さくなり、赤色表示時には緑色画素部及び青色画素部の階調値が白色表示時よりも小さく赤色画素部の階調値が白色表示時よりも大きくなるよう制御している。このような構成によれば、バックライト装置の照明光は、基準白色光よりも赤色の色味がかかった光となるため、液晶パネルにおいて白色表示時にはコントロール基板により赤色画素部の階調値が、緑色画素部及び青色画素部の階調値よりも小さくなるよう制御されることで、白色の表示を行うことができる。一方、液晶パネルにおいて赤色表示時には、コントロール基板により緑色画素部及び青色画素部の階調値が白色表示時よりも小さく、赤色画素部の階調値が白色表示時よりも大きくなるよう制御される。これにより、赤色表示時における輝度が高くなるとともにその色再現範囲が広いものとなる。
以上説明したように本実施形態によれば、バックライト装置は、複数の色の光をそれぞれ発する複数のLED素子(発光素子)621,29,30を少なくとも有しており、バックライト装置は、照明光を基準白色光とするために要する複数のLED素子621,29,30に係る各発光量を基準としたとき、赤色の光を発する赤色LED素子(第1の発光素子)30に係る発光量が相対的に多くなるよう構成される。このようにすれば、複数のLED素子621,29,30から発せられる複数の色の光によってバックライト装置の照明光が構成される。そして、複数のLED素子621,29,30に含まれる赤色LED素子30に係る発光量が、照明光を基準白色光とするために要する各LED素子621,29,30に係る各発光量の基準値よりも多くなっている。仮に、バックライト装置が、1つのLED素子と、そのLED素子の光を波長変換する蛍光体と、からなるLEDを備える構成とした場合に比べると、各LED素子621,29,30から発せられる各色の光に係る色純度がより高いものとなり、色再現性の向上を図る上で好適とされる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記した各実施形態以外にも、白色表示を行う際における各画素部の階調値の具体的な数値は、適宜に変更可能である。
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記した各実施形態以外にも、白色表示を行う際における各画素部の階調値の具体的な数値は、適宜に変更可能である。
(2)上記した各実施形態では、赤色表示を行う際に、他の色を呈する画素部(緑色画素部、青色画素部、黄色画素部)の階調値を最小値の「0」とした場合を示したが、他の色を呈する画素部の階調値を0よりも大きな値とすることも可能である。これは、青色表示時、緑色表示時、黄色表示時においても同様である。
(3)上記した各実施形態では、赤色表示を行う際に、表示色と同色の画素部である赤色画素部の階調値を最大値の「255」とした場合を示したが、赤色画素部の階調値を255よりも小さい値とすることも可能である。これは、青色表示時、緑色表示時、黄色表示時においても同様である。
(4)上記した各実施形態では、バックライト装置の照明光を基準白色光とするために要する3色の光に係る各発光量を基準としたとき、赤色光に係る発光量を相対的に多くした上で、コントロール基板により白色表示時には赤色画素部の階調値を他の色を呈する画素部の階調値よりも小さくし、赤色表示時には赤色画素部の階調値が白色表示時よりも大きくなるよう制御した場合を示したが、照明光に含まれる緑色光または青色光の発光量を基準発光量(発光量の基準値)よりも多くし、コントロール基板により白色表示時には緑色画素部または青色画素部の階調値を他の色を呈する画素部の階調値よりも小さくし、緑色表示時または青色表示時には緑色画素部または青色画素部の階調値が白色表示時よりも大きくなるよう制御することも可能である。
(5)上記した(4)以外にも、照明光に含まれる赤色光及び緑色光の発光量を基準発光量よりも多くし、コントロール基板により白色表示時には赤色画素部及び緑色画素部の階調値を青色画素部の階調値よりも小さくし、赤色表示時と緑色表示時とには赤色画素部と緑色画素部との階調値が白色表示時よりもそれぞれ大きくなるよう制御することも可能である。
(6)上記した(5)以外にも、照明光に含まれる赤色光及び青色光の発光量を基準発光量よりも多くし、コントロール基板により白色表示時には赤色画素部及び青色画素部の階調値を緑色画素部の階調値よりも小さくし、赤色表示時と青色表示時とには赤色画素部と青色画素部との階調値が白色表示時よりもそれぞれ大きくなるよう制御することも可能である。
(7)上記した(6)以外にも、照明光に含まれる緑色光及び青色光の発光量を基準発光量よりも多くし、コントロール基板により白色表示時には緑色画素部及び青色画素部の階調値を赤色画素部の階調値よりも小さくし、緑色表示時と青色表示時とには緑色画素部と青色画素部との階調値が白色表示時よりもそれぞれ大きくなるよう制御することも可能である。
(8)上記した各実施形態では、3色または4色の画素部を備える液晶パネルを用いた場合を示したが、5色以上の画素部を備える液晶パネルを用いることも可能である。5色以上の画素部には、例えば赤色画素部、緑色画素部、青色画素部及び黄色画素部に加えてシアン色を呈するシアン画素部を含ませるのが好ましいものとされる。シアン色以外の色を呈する画素部を追加することも勿論可能である。
(9)上記した実施形態2では、赤色画素部、緑色画素部、青色画素部及び黄色画素部の4色の画素部を備える液晶パネルを用いた場合を示したが、黄色画素部に代えてシアン色を呈するシアン画素部を備えた液晶パネルを用いることも可能である。シアン色以外の色を呈する画素部を黄色画素部に代替して設置することも勿論可能である。それ以外にも、黄色画素部に代えて全可視光線を透過するほぼ透明な透明画素部を備えた液晶パネルを用いることも可能である。
(10)上記した各実施形態以外にも、液晶パネルの面内における各色の画素部の具体的な並び順や各色の画素部の具体的な面積比率などは、適宜に変更可能である。
(11)上記した実施形態1,2,4以外にも、LEDに備えられる青色LED素子、赤色蛍光体及び緑色蛍光体の発光スペクトル(ピーク波長の数値、ピークの半値幅の数値など)に関しては、適宜に変更することが可能である。この点は、実施形態3,5~7に記載した波長変換シート及び波長変換チューブに含有される赤色蛍光体及び緑色蛍光体やLEDに備えられる緑色LED素子及び赤色LED素子に関しても同様である。
(12)上記した各実施形態では、LED、波長変換シート及び波長変換チューブがそれぞれ緑色蛍光体及び赤色蛍光体を含む構成とされる場合を示したが、LED、波長変換シート及び波長変換チューブに黄色蛍光体のみを含ませた構成としたり、黄色蛍光体に加えて赤色蛍光体や緑色蛍光体を含ませた構成としたりすることも可能である。
(13)上記した各実施形態では、LEDが少なくとも青色LED素子を備える構成を示したが、青色LED素子に代えて可視光線である紫色の光を発する紫色LED素子を備えたLEDや紫外線(例えば近紫外線)を発する紫外線LED素子(近紫外線LED素子)などを用いることも可能である。その場合、LED、波長変換シート及び波長変換チューブに含有させる蛍光体としては、赤色蛍光体、緑色蛍光体及び青色蛍光体を用いるのが好ましいものとされる。この場合、黄色蛍光体を追加したり、或いは赤色蛍光体及び緑色蛍光体に代えて黄色蛍光体としたりすることも可能である。
(14)上記した実施形態2に記載した構成を、実施形態3~7に記載した構成に組み合わせることも可能である。
(15)上記した実施形態4に記載した構成を、実施形態7に記載した構成に組み合わせることも可能である。
(16)上記した実施形態3,5,6では、波長変換シート及び波長変換チューブに含まれる蛍光体として用いた量子ドット蛍光体をCdSe及びZnSからなるコア・シェル型とした場合を例示したが、内部組成を単一組成としたコア型量子ドット蛍光体を用いることも可能である。例えば、2価の陽イオンになるZn、Cd、Hg、Pb等と2価の陰イオンになるO、S、Se、Te等とを組み合わせた材料(CdSe、CdS、ZnS)を単独で用いることが可能である。さらには、3価の陽イオンとなるGa、In等と3価の陰イオンとなるP、As、Sb等とを組み合わせた材料(InP(リン化インジウム)、GaAs(ヒ化ガリウム)等)やカルコパイライト型化合物(CuInSe2等)などを単独で用いることも可能である。また、コア・シェル型やコア型の量子ドット蛍光体以外にも、合金型の量子ドット蛍光体を用いることも可能である。また、カドミウムを含有しない量子ドット蛍光体を用いることも可能である。
(17)上記した実施形態3,5,6では、波長変換シート及び波長変換チューブに含まれる蛍光体として用いた量子ドット蛍光体をCdSe及びZnSのコア・シェル型とした場合を例示したが、他の材料同士を組み合わせてなるコア・シェル型の量子ドット蛍光体を用いることも可能である。また、波長変換シートに含まれる蛍光体として用いた量子ドット蛍光体を、Cd(カドミウム)を含有しない量子ドット蛍光体とすることも可能である。
(18)上記した各実施形態以外にも、LED、波長変換シート及び波長変換チューブに含有させる蛍光体として硫化物蛍光体を用いることができ、具体的には緑色蛍光体としてSrGa2S4:Eu2+を、赤色蛍光体として(Ca,Sr,Ba)S:Eu2+を、それぞれ用いることが可能である。
(19)上記した(18)以外にも、LED、波長変換シート及び波長変換チューブに含有させる緑色蛍光体を、(Ca,Sr,Ba) 3SiO4:Eu2+、Ca3Sc2Si3O12:Ce3+などとすることができる。また、LED、波長変換シート及び波長変換チューブに含有させる赤色蛍光体を、(Ca,Sr,Ba) 2SiO5N8:Eu2+、CaAlSiN3:Eu2+などとすることができる。さらには、LED、波長変換シート及び波長変換チューブに含有させる黄色蛍光体を、(Y,Gd) 3 (Al,Ga) 5O12:Ce3+(通称 YAG:Ce3+)、α-SiAlON:Eu2+、(Ca,Sr,Ba)3SiO4:Eu2+などとすることができる。
(20)上記した(18),(19)以外にも、LED、波長変換シート及び波長変換チューブに含有させる蛍光体として有機蛍光体を用いることができる。有機蛍光体としては、例えばトリアゾールまたはオキサジアゾールを基本骨格とした低分子の有機蛍光体を用いることができる。
(21)上記した(19),(19),(20)以外にも、LED、波長変換シート及び波長変換チューブに含有させる蛍光体としてドレスト光子(近接場光)を介したエネルギー移動によって波長変換を行う蛍光体を用いることも可能である。この種の蛍光体としては、具体的には、直径3nm~5nm(好ましくは4nm程度)の酸化亜鉛量子ドット(ZnO-QD)にDCM色素を分散・混合させた構成の蛍光体を用いるのが好ましい。
(22)上記した各実施形態では、LEDを構成する青色LED素子の材料としてInGaNを用いた場合を示したが、他のLED素子の材料として、例えばGaN、AlGaN、GaP、ZnSe、ZnO、AlGaInPなどを用いることも可能である。また、実施形態7において、LEDを構成する緑色LED素子や赤色LED素子の具体的な材料も適宜に変更可能である。
(23)上記した各実施形態では、シャーシが金属製とされた場合を例示したが、シャーシを合成樹脂製とすることも可能である。
(24)上記した各実施形態では、3枚または4枚の光学部材を備える構成を例示したが、光学部材の枚数を2枚以下または5枚以上に変更することも可能である。また、使用する光学部材の種類についても適宜に変更可能であり、例えば拡散シートなどを用いることも可能である。また、各光学部材の具体的な積層順についても適宜に変更可能である。
(25)上記した実施形態1~3では、LEDを個別に覆う形で配される拡散レンズを備えたものを示したが、拡散レンズを省略した構成のものにも本発明は適用可能である。
(26)上記した実施形態1~3では、拡散板と光学シートとの間にフレームが介在する構成を示したが、光学シートが拡散板に対して表側に直接積層される構成を採ることも可能である。その場合、フレームを省略することも可能である。なお、実施形態3では、波長変換シートが拡散板に対して表側に直接積層され、波長変換シートに対して他の光学シートが表側に直接積層される構成となる。
(27)上記した実施形態1~3以外にも、シャーシ内におけるLED基板の具体的な設置数、LED基板におけるLED及び拡散レンズの具体的な実装数などは適宜に変更可能である。例えば、シャーシの底板部の板面内においてLED基板がマトリクス状に複数ずつ並んで配置されていてもよく、またLED基板の実装面内においてLEDがマトリクス状に複数ずつ並んで配置されていても構わない。
(28)上記した実施形態4~6では、導光板と光学シートとの間にフレームが介在する構成を示したが、光学シートが導光板に対して表側に直接積層される構成を採ることも可能である。その場合、フレームの枠状部が光学シート群を表側から押さえる形で配されるとともに、枠状部によって液晶パネルを裏側から支持する構成を採ることが可能である。なお、実施形態5では、波長変換シートが導光板に対して表側に直接積層され、波長変換シートに対して他の光学シートが表側に直接積層される構成となる。
(29)上記した実施形態4~6では、導光板における一対の長辺側の端面がそれぞれ光入射面となるようLED基板が配置されたものを示したが、導光板における一対の短辺側の端面がそれぞれ光入射面となるようLED基板を配置することも可能である。
(30)上記した実施形態4~6では、両側入光タイプのエッジライト型のバックライト装置を例示したが、導光板における一長辺側の端面または一短辺側の端面が光入射面となるようLED基板が配置された片側入光タイプのエッジライト型のバックライト装置を用いることも可能である。
(31)上記した実施形態4~6以外にも、導光板における3辺の端面がそれぞれ光入射面となるようLED基板を配置したり、導光板における4辺の端面が全て光入射面となるようLED基板を配置したりすることも可能である。
(32)上記した各実施形態では、光源としてLEDを用いたものを示したが、有機ELなどの他の光源を用いることも可能である。
(33)上記した各実施形態では、液晶パネル及びシャーシがその短辺方向を鉛直方向と一致させた縦置き状態とされるものを例示したが、液晶パネル及びシャーシがその長辺方向を鉛直方向と一致させた縦置き状態とされるものも本発明に含まれる。
(34)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
(35)上記した各実施形態では、透過型の液晶表示装置を例示したが、それ以外にも反射型の液晶表示装置や半透過型の液晶表示装置にも本発明は適用可能である。
(36)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、MEMS(Micro Electro Mechanical Systems)表示パネルなどの他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。
(37)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。具体的には、電子看板(デジタルサイネージ)や電子黒板として使用される液晶表示装置にも本発明は適用することができる。
10,110,310...液晶表示装置(表示装置)、11,111,311...液晶パネル(表示パネル)、12,212,312,412...バックライト装置(照明装置)、17,217,317,417,517,617...LED(光源)、21,221,621...青色LED素子(発光素子)、22,222,622...封止材、23,623...ケース、24,424...波長変換シート(波長変換部材)、28...波長変換チューブ(波長変換部材)、29...緑色LED素子(発光素子)、30...赤色LED素子(発光素子、第1の発光素子)、CTR...コントロール基板(画素制御部)、PXB...青色画素部(画素部、他の色を呈する画素部)、PXG...緑色画素部(画素部、他の色を呈する画素部)、PXR...赤色画素部(画素部、第1の画素部)、PXY...黄色画素部(画素部、他の色を呈する画素部)
Claims (13)
- 異なる色を呈する複数の画素部を有する表示パネルと、
異なる色を呈する複数の色の光を含む照明光を前記表示パネルに照射する照明装置であって、前記照明光を基準白色光とするのに要する前記複数の色の光に係る各発光量を基準としたとき、前記複数の色の光に含まれる第1の色の光に係る発光量が選択的に多くなるよう構成される照明装置と、
白色表示時には前記複数の画素部のうち前記第1の色を呈する第1の画素部の階調値が他の色を呈する画素部の階調値よりも小さくなり、前記第1の色の表示時には前記他の色を呈する画素部の階調値が前記白色表示時よりも小さく前記第1の画素部の階調値が前記白色表示時よりも大きくなるよう制御する画素制御部と、を備える表示装置。 - 前記表示パネルは、前記複数の画素部が、赤色を呈する赤色画素部、緑色を呈する緑色画素部、及び青色を呈する青色画素部を少なくとも含むよう構成されており、
前記照明装置は、前記複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに前記第1の色の光が前記赤色の光とされ、前記画素制御部は、前記赤色画素部を前記第1の画素部として制御している請求項1記載の表示装置。 - 前記照明装置は、前記照明光を前記基準白色光とするのに要する前記複数の色の光に係る各発光量をそれぞれ100%としたとき、前記第1の色の光に係る発光量が107%以上となるよう構成される請求項1または請求項2記載の表示装置。
- 前記表示パネルは、前記複数の画素部が4つ以上の異なる色を呈するよう構成されている請求項1から請求項3のいずれか1項に記載の表示装置。
- 前記照明装置は、前記照明光を前記基準白色光とするのに要する前記複数の色の光に係る各発光量をそれぞれ100%としたとき、前記第1の色の光に係る発光量が125%~220%の範囲となるよう構成される請求項4記載の表示装置。
- 前記表示パネルは、前記複数の画素部が、赤色を呈する赤色画素部、緑色を呈する緑色画素部、青色を呈する青色画素部、及び黄色を呈する黄色画素部を少なくとも含むよう構成されており、
前記照明装置は、前記複数の色の光に赤色の光、緑色の光、及び青色の光を少なくとも含むとともに前記第1の色の光が前記赤色の光とされ、前記画素制御部は、前記赤色画素部を前記第1の画素部として制御している請求項4または請求項5記載の表示装置。 - 前記照明装置は、光を発する発光素子と、前記発光素子からの光を波長変換する蛍光体と、を有するとともに、前記蛍光体には、前記第1の色の光を発する第1の蛍光体が少なくとも含まれており、
前記照明装置は、前記照明光を基準白色光とするために要する前記蛍光体に係る含有量を基準としたとき、前記第1の蛍光体に係る含有量が相対的に多くなるよう構成される請求項1から請求項6のいずれか1項に記載の表示装置。 - 前記照明装置は、前記発光素子と、前記発光素子を収容するケースと、前記発光素子を前記ケース内に封止して前記蛍光体が含有される封止材と、から構成される光源を少なくとも有する請求項7記載の表示装置。
- 前記光源は、前記第1の蛍光体が、付活剤としてマンガンを用いたケイフッ化カリウムとなるよう構成される請求項8記載の表示装置。
- 前記照明装置は、前記発光素子を有する光源と、前記蛍光体を含有していて前記光源に対して出光経路の出口側に配されて前記光源の光を波長変換する波長変換部材と、を少なくとも有する請求項7記載の表示装置。
- 前記蛍光体は、量子ドット蛍光体とされる請求項10記載の表示装置。
- 前記照明装置は、前記複数の色の光をそれぞれ発する複数の発光素子を少なくとも有しており、
前記照明装置は、前記照明光を基準白色光とするために要する前記複数の発光素子に係る各発光量を基準としたとき、前記第1の色の光を発する第1の発光素子に係る発光量が相対的に多くなるよう構成される請求項1から請求項6のいずれか1項に記載の表示装置。 - 請求項1から請求項12のいずれか1項に記載の表示装置を備えるテレビ受信装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680038057.8A CN107851420A (zh) | 2015-06-30 | 2016-06-28 | 显示装置以及电视接收装置 |
US15/740,108 US20180188610A1 (en) | 2015-06-30 | 2016-06-28 | Display device and television device |
JP2017526354A JP6496023B2 (ja) | 2015-06-30 | 2016-06-28 | 表示装置及びテレビ受信装置 |
EP16817889.5A EP3319078A4 (en) | 2015-06-30 | 2016-06-28 | Display device and television receiving device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131169 | 2015-06-30 | ||
JP2015-131169 | 2015-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002781A1 true WO2017002781A1 (ja) | 2017-01-05 |
Family
ID=57608733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069075 WO2017002781A1 (ja) | 2015-06-30 | 2016-06-28 | 表示装置及びテレビ受信装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180188610A1 (ja) |
EP (1) | EP3319078A4 (ja) |
JP (1) | JP6496023B2 (ja) |
CN (1) | CN107851420A (ja) |
WO (1) | WO2017002781A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021068548A (ja) * | 2019-10-21 | 2021-04-30 | シャープ株式会社 | バックライト装置および液晶表示装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105867025B (zh) * | 2016-06-01 | 2019-02-01 | 武汉华星光电技术有限公司 | 背光模组 |
KR102646632B1 (ko) * | 2016-09-20 | 2024-03-12 | 삼성디스플레이 주식회사 | 표시 장치 |
KR101947643B1 (ko) * | 2016-12-02 | 2019-02-13 | 엘지전자 주식회사 | 반도체 발광소자를 이용한 디스플레이 장치 |
CN107255885B (zh) * | 2017-08-16 | 2020-02-21 | 京东方科技集团股份有限公司 | 显示面板及其制造方法 |
US11561433B2 (en) * | 2018-06-22 | 2023-01-24 | Sakai Display Products Corporation | Liquid crystal display device having liquid display panel and backlight device emitting light toward back surface of liquid crystal display panel, and method for producing same |
JP7275616B2 (ja) * | 2019-02-06 | 2023-05-18 | 富士フイルムビジネスイノベーション株式会社 | 発光装置、光学装置および情報処理装置 |
JP2021136124A (ja) * | 2020-02-26 | 2021-09-13 | 株式会社ジャパンディスプレイ | 照明装置及び表示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129611A1 (ja) * | 2005-05-30 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | レーザ画像表示装置およびカラー画像表示方法 |
JP2007141738A (ja) * | 2005-11-21 | 2007-06-07 | Sharp Corp | 照明装置、液晶表示装置、照明装置の制御方法、照明装置制御プログラム、および記録媒体 |
JP2012220517A (ja) * | 2011-04-04 | 2012-11-12 | Sanyo Electric Co Ltd | 投写型表示装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5478826B2 (ja) * | 2005-10-03 | 2014-04-23 | シャープ株式会社 | 表示装置 |
CN100585889C (zh) * | 2006-09-30 | 2010-01-27 | 财团法人工业技术研究院 | 发光装置及具有其的面光源装置和平面显示装置 |
GB2442505A (en) * | 2006-10-04 | 2008-04-09 | Sharp Kk | A display with a primary light source for illuminating a nanophosphor re-emission material |
JP2008158454A (ja) * | 2006-12-26 | 2008-07-10 | Sony Corp | 液晶表示装置 |
JP5117762B2 (ja) * | 2007-05-18 | 2013-01-16 | 株式会社半導体エネルギー研究所 | 液晶表示装置 |
US8675031B2 (en) * | 2009-10-29 | 2014-03-18 | Sharp Kabushiki Kaisha | Liquid crystal display device |
CN102985963B (zh) * | 2010-07-09 | 2015-07-22 | 夏普株式会社 | 液晶显示装置 |
JP5593920B2 (ja) * | 2010-07-27 | 2014-09-24 | ソニー株式会社 | 液晶表示装置 |
WO2012140551A1 (en) * | 2011-04-13 | 2012-10-18 | Koninklijke Philips Electronics N.V. | Generation of image signals for a display |
CN105324860A (zh) * | 2013-06-18 | 2016-02-10 | 夏普株式会社 | 发光装置 |
-
2016
- 2016-06-28 US US15/740,108 patent/US20180188610A1/en not_active Abandoned
- 2016-06-28 EP EP16817889.5A patent/EP3319078A4/en not_active Withdrawn
- 2016-06-28 CN CN201680038057.8A patent/CN107851420A/zh active Pending
- 2016-06-28 WO PCT/JP2016/069075 patent/WO2017002781A1/ja active Application Filing
- 2016-06-28 JP JP2017526354A patent/JP6496023B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129611A1 (ja) * | 2005-05-30 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | レーザ画像表示装置およびカラー画像表示方法 |
JP2007141738A (ja) * | 2005-11-21 | 2007-06-07 | Sharp Corp | 照明装置、液晶表示装置、照明装置の制御方法、照明装置制御プログラム、および記録媒体 |
JP2012220517A (ja) * | 2011-04-04 | 2012-11-12 | Sanyo Electric Co Ltd | 投写型表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021068548A (ja) * | 2019-10-21 | 2021-04-30 | シャープ株式会社 | バックライト装置および液晶表示装置 |
JP7339844B2 (ja) | 2019-10-21 | 2023-09-06 | シャープ株式会社 | バックライト装置および液晶表示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107851420A (zh) | 2018-03-27 |
EP3319078A4 (en) | 2018-08-08 |
EP3319078A1 (en) | 2018-05-09 |
JPWO2017002781A1 (ja) | 2018-06-07 |
JP6496023B2 (ja) | 2019-04-03 |
US20180188610A1 (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6496023B2 (ja) | 表示装置及びテレビ受信装置 | |
JP6554592B2 (ja) | 照明装置、表示装置、及びテレビ受信装置 | |
US9804436B2 (en) | Display device and television reception device | |
JP6532179B2 (ja) | 照明装置、表示装置、及びテレビ受信装置 | |
KR101183571B1 (ko) | 광발광 칼라 액정디스플레이 | |
TWI587044B (zh) | 光致發光彩色顯示器 | |
US20080151143A1 (en) | Light emitting diode based backlighting for color liquid crystal displays | |
JP2010092705A (ja) | 照明装置及びこれを用いた表示装置 | |
JP5878580B2 (ja) | 表示装置及びテレビ受信装置 | |
CN107960115A (zh) | 照明装置、显示装置以及电视接收装置 | |
US10121941B2 (en) | Light source device | |
WO2015152055A1 (ja) | 照明装置、表示装置及びテレビ受信装置 | |
WO2014087875A1 (ja) | 表示装置及びテレビ受信装置 | |
KR20150035065A (ko) | 불소계 형광체를 사용한 표시 장치 | |
JP2016058586A (ja) | 表示装置及びテレビ受信装置 | |
CN105009196B (zh) | 显示装置及电视接收装置 | |
KR101946263B1 (ko) | 액정표시장치 | |
WO2016158369A1 (ja) | 照明装置、表示装置、及びテレビ受信装置 | |
KR101833506B1 (ko) | 액정표시장치 | |
WO2016158728A1 (ja) | 照明装置、表示装置、及びテレビ受信装置 | |
JP6781559B2 (ja) | 照明装置、表示装置及びテレビ受信装置 | |
KR101946264B1 (ko) | 액정표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817889 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526354 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016817889 Country of ref document: EP |