WO2017002723A1 - 光束制御部材、発光装置および照明装置 - Google Patents

光束制御部材、発光装置および照明装置 Download PDF

Info

Publication number
WO2017002723A1
WO2017002723A1 PCT/JP2016/068813 JP2016068813W WO2017002723A1 WO 2017002723 A1 WO2017002723 A1 WO 2017002723A1 JP 2016068813 W JP2016068813 W JP 2016068813W WO 2017002723 A1 WO2017002723 A1 WO 2017002723A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
optical axis
light emitting
reflecting surface
Prior art date
Application number
PCT/JP2016/068813
Other languages
English (en)
French (fr)
Inventor
晃伸 関
昌代 瀧澤
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US15/739,793 priority Critical patent/US10563825B2/en
Priority to CN201680038593.8A priority patent/CN107709876B/zh
Publication of WO2017002723A1 publication Critical patent/WO2017002723A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • F21V3/0615Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass the material diffusing light, e.g. translucent glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a light flux controlling member that controls light distribution of light emitted from a light emitting element, a light emitting device having the light flux controlling member, and an illumination device.
  • LEDs light-emitting diodes
  • the conventional illumination device using an LED as a light source emits light only in the front direction (light emission direction from the light source), and cannot emit light in a wide range like incandescent bulbs or fluorescent lamps. For this reason, the conventional illuminating device cannot illuminate the room widely using the reflected light from a ceiling or a wall surface like an incandescent bulb or a fluorescent lamp.
  • the light flux controlling member (light direction changing element) described in Patent Literature 1 is disposed on the opposite side of the incident surface and the incident surface disposed to face the light emitting element so as to intersect the optical axis of the light emitting element (LED unit). It has a concave exit surface arranged and an inclined surface arranged on the side and connecting the entrance surface and the exit surface.
  • light having a small emission angle with respect to the optical axis of the light emitting element out of the light emitted from the light emitting element is incident on the inside of the light flux controlling member on the incident surface, and then is returned to the other surface. To reach the center of the exit surface without reflection.
  • attained the output surface is radiate
  • light having a large emission angle with respect to the optical axis of the light emitting element is incident on the incident surface and then reaches the outer edge of the emitting surface.
  • the light that has reached the exit surface is reflected by the exit surface and then exits from the inclined surface to the side or rear.
  • light having an emission angle larger than the optical axis of the light emitting element enters the light flux controlling member at the incident surface, and then reaches the inclined surface without being reflected by another surface.
  • the light reaching the inclined surface is reflected by the inclined surface toward the exit surface.
  • the light reflected by the inclined surface is emitted forward from the emission surface.
  • the light flux controlling member described in Patent Document 1 has a problem in that the balance of light distribution characteristics is poor because there is little light traveling backward.
  • the light flux controlling member described in Patent Document 1 in order to increase the amount of light traveling backward, it is necessary to cause most of the light incident on the incident surface to reach the exit surface without being reflected by other surfaces. There is.
  • the light exit surface (diameter) is increased as a method of causing most of the light incident on the light entrance surface to reach the light exit surface without being reflected by other surfaces. Can be considered. Thereby, most of the light incident on the incident surface can be made to reach the enlarged exit surface without being reflected by other surfaces, and the amount of light traveling backward can be increased.
  • the conventional light flux controlling member cannot achieve both miniaturization and optimization of the balance of orientation characteristics.
  • an object of the present invention is to provide a light flux control member that can be miniaturized and can distribute light in a balanced manner in all of the forward direction, the lateral direction, and the backward direction, such as a light bulb or a fluorescent lamp.
  • Another object of the present invention is to provide a light emitting device and an illumination device having the light flux controlling member.
  • a light flux controlling member is a light flux controlling member that controls light distribution of light emitted from a light emitting element, and is formed symmetrically with respect to the optical axis in a cross section including the optical axis of the light emitting element.
  • the incident region disposed to face the light emitting element, a first reflecting surface disposed on the opposite side of the incident region, and the first reflection with respect to the optical axis in a direction perpendicular to the optical axis.
  • a second reflecting surface disposed away from the surface, a third reflecting surface disposed on the opposite side of the second reflecting surface in the direction along the optical axis, the first reflecting surface, and the third reflecting surface.
  • a cross section including a straight line along a direction perpendicular to the optical axis and the optical axis, a part of the light emitted from the light emitting element is the incident surface After entering at the area, the front of the same side as the incident area with the optical axis as a boundary. Reflected by the first reflecting surface, emitted from the second reflecting surface on the same side, and in the cross section, the other part of the light emitted from the light emitting element is incident on the incident region.
  • the light is emitted from the connecting surface on the same side, and the optical axis is After entering again at the first reflecting surface on the opposite side, the light is emitted from the second reflecting surface on the opposite side.
  • the light-emitting device includes a light-emitting element and a light flux controlling member according to the present invention, and the light flux controlling member is disposed so that the incident region faces the light emitting element.
  • the lighting device according to the present invention includes the light emitting device according to the present invention and a cover that allows the light emitted from the light emitting device to pass through while diffusing.
  • the light distribution characteristic of the lighting device having the light emitting device can be made close to the light distribution characteristic of the incandescent bulb or the fluorescent lamp.
  • FIG. 1 is a cross-sectional view of the lighting apparatus according to Embodiment 1.
  • FIG. 2A to 2D are diagrams showing the configuration of the light flux controlling member according to the first embodiment.
  • 3A to 3D are diagrams showing the configuration of the light flux controlling member according to Comparative Example 1.
  • FIG. 4A to 4D are diagrams showing a configuration of a light flux controlling member according to Comparative Example 2.
  • FIG. 5A to 5C are optical path diagrams in the light flux controlling member according to Comparative Example 1.
  • FIG. 6A to 6C are optical path diagrams in the light flux controlling member according to the second comparative example.
  • 7A to 7C are optical path diagrams in the light flux controlling member according to the first embodiment.
  • FIG. 8 is a graph showing the light distribution characteristics of the light emitting device and the lighting device having the light flux controlling member according to Comparative Example 1.
  • FIG. 9 is a graph showing the light distribution characteristics of the light emitting device and the lighting device having the light flux controlling member according to Comparative Example 2.
  • FIG. 10 is a graph showing the light distribution characteristics of the light emitting device and the lighting device having the light flux controlling member according to the first embodiment.
  • 11A and 11B are perspective views of a light flux controlling member according to a modification of the first embodiment.
  • 12A to 12D are diagrams showing a configuration of a light flux controlling member according to a modification of the first embodiment.
  • FIG. 13 is a cross-sectional view of the lighting apparatus according to Embodiment 2.
  • 14A and 14B are perspective views of the light flux controlling member according to the second embodiment.
  • 15A to 15D are diagrams showing the configuration of the light flux controlling member according to the second embodiment.
  • Embodiment 1 a lighting device that can be used in place of an incandescent bulb will be described as a representative example of the lighting device of the present invention.
  • FIG. 1 is a diagram showing a configuration of a lighting apparatus 100 according to Embodiment 1 of the present invention.
  • the lighting device 100 includes a light emitting device 140 including a light emitting element 110 and a light flux controlling member 120, a substrate 150, a cover 160, and a housing 170.
  • the light emitting element 110 is a light source of the lighting device 100 and is mounted on the housing 170.
  • the light emitting element 110 is a light emitting diode (LED) such as a white light emitting diode.
  • the number of the light emitting elements 110 is not particularly limited, and may be one or plural. In the present embodiment, the number of light emitting elements 110 is one.
  • the light emitting element 110 is arranged so that the optical axis OA intersects the light flux controlling member 120.
  • the “optical axis of the light emitting element” refers to the traveling direction of light at the center of the three-dimensional light flux from the light emitting element 110.
  • the traveling direction of light at the center of a three-dimensional light beam from the plurality of light emitting elements 110 is referred to.
  • the emission direction of the emitted light from the light emitting element 110 along the optical axis OA is the front, and the opposite direction is the rear.
  • the light flux controlling member 120 controls the light distribution of the light emitted from the light emitting element 110.
  • the light flux controlling member 120 is disposed in the housing 170 so as to intersect the optical axis OA of the light emitting element 110.
  • the shape of light flux controlling member 120 is rotationally symmetric with respect to rotation axis RA. That is, in the present embodiment, the rotation axis RA of the light flux controlling member 120 and the central axis CA coincide with each other.
  • light flux controlling member 120 is arranged so that rotation axis RA (center axis CA) coincides with optical axis OA of light emitting element 110.
  • the material of the light flux controlling member 120 is not particularly limited as long as it can transmit light having a desired wavelength.
  • the material of the light flux controlling member 120 examples include light transmissive resins such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), light transmissive glass, and the like.
  • the light flux controlling member 120 is manufactured by injection molding, for example.
  • the light flux controlling member 120 has a diameter of 11.5 mm and a height of 7 mm. Since one of the features of the present invention is the shape of the light flux controlling member 120, details of the light flux controlling member 120 will be described later.
  • the substrate 150 supports the light emitting element 110 and the light flux controlling member 120.
  • the substrate 150 is disposed on the housing 170.
  • the substrate 150 is made of a metal having high thermal conductivity such as aluminum or copper. If the substrate 150 does not require high thermal conductivity, a resin substrate in which a glass nonwoven fabric is impregnated with an epoxy resin may be used as the substrate 150.
  • the cover 160 covers the light flux controlling member 120 and allows light emitted from the light flux controlling member 120 to pass through while diffusing.
  • the cover 160 is light transmissive.
  • the cover 160 has a hollow region including an opening. In the hollow region of the cover 160, the light emitting device 140 is disposed.
  • the material of the cover 160 is light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), or glass.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • EP epoxy resin
  • the cover 160 also has light diffusibility.
  • the means for imparting light diffusing power to the cover 160 is not particularly limited.
  • a light diffusion process (for example, a roughening process) may be performed on the inner surface or the outer surface of the cover 160 made of a transparent material, or light diffusion including a scatterer such as a bead on the transparent material.
  • the cover 160 may be manufactured by blending a material having a property.
  • the cover 160 preferably includes a rotationally symmetric shape with respect to the rotation axis RA of the light flux controlling member 120.
  • the shape of the cover 160 may be, for example, a shape including only a rotationally symmetric shape, or may be a shape including a part of the rotationally symmetric shape.
  • the shape of the cover 160 is preferably a shape that can further improve the balance of light distribution of light emitted from the light flux controlling member 120.
  • the shape of the cover 160 is preferably a shape in which the diameter of the opening of the cover 160 is smaller than the maximum outer diameter of the cover 160 from the viewpoint of increasing the amount of light to the rear.
  • the shape of the cover 160 is, for example, a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a plane).
  • the housing 170 supports the substrate 150 on which the light emitting element 110 and the light flux controlling member 120 are arranged, and the cover 160 at the front end of the housing 170.
  • the casing 170 is substantially rotationally symmetric with the rotation axis RA of the light flux controlling member 120 as the rotation axis.
  • the housing 170 also serves as a heat sink for releasing heat from the light emitting element 110. For this reason, it is preferable that the housing
  • the light emitted from the light emitting element 110 is controlled by the light flux controlling member 120 so as to go in all directions.
  • the light emitted from the light flux controlling member 120 passes through the cover 160 while diffusing.
  • FIG. 2A to 2D are diagrams showing the configuration of the light flux controlling member 120.
  • FIG. 2A is a plan view of light flux controlling member 120 according to Embodiment 1
  • FIG. 2B is a bottom view
  • FIG. 2C is a side view
  • FIG. 2D is an AA shown in FIG. 2A. It is sectional drawing of a line.
  • the light flux controlling member 120 has an incident region 121, a first reflecting surface 122, a second reflecting surface 123, a third reflecting surface 124, and a connection surface 125.
  • the light flux controlling member 120 forms a gap for releasing heat generated from the light emitting element 110 to the outside, and has a leg portion 126 for fixing the light flux controlling member 120 to the substrate 150. (See FIG. 1). 2A to 2D, the leg portion 126 is omitted.
  • the light flux controlling member 120 is rotationally symmetric with respect to the rotation axis RA (center axis CA) except for the leg portion 126. That is, the incident region 121, the first reflecting surface 122, the second reflecting surface 123, the third reflecting surface 124, and the connection surface 125 are rotationally symmetric surfaces.
  • the incident region 121 is disposed so as to face the light emitting element 110.
  • the incident area 121 allows light emitted from the light emitting element 110 to enter the light flux controlling member 120.
  • the shape of the incident region 121 is not particularly limited as long as the above function can be exhibited.
  • the incident area 121 may be a flat surface, a curved surface, or a plurality of surfaces.
  • the incident region 121 includes a plurality of surfaces, and includes a first incident surface 121a and a second incident surface 121b.
  • the first incident surface 121a is a convex lens surface disposed so as to face the light emitting element 110.
  • the first incident surface 121 a makes light having a small emission angle with respect to the optical axis OA out of the light emitted from the light emitting element 110 enter the light flux controlling member 120.
  • the first incident surface 121 a refracts (condenses) the light emitted from the light emitting element 110 so as to reach the first reflecting surface 122 without reaching the third reflecting surface 124.
  • the shape of the 1st entrance plane 121a will not be specifically limited if the above-mentioned function can be exhibited.
  • the first incident surface 121a may be a flat surface, a curved surface, or a plurality of surfaces.
  • the first incident surface 121a is a curved surface.
  • the shape of the first incident surface 121a is formed so as to become farther from a plane including the light emitting surface of the light emitting element 110 as the distance from the optical axis OA increases.
  • the first incident surface 121a is formed such that, in a cross section including the rotation axis RA (center axis CA), the inclination of the tangent gradually increases as the distance from the optical axis OA increases.
  • the second incident surface 121b is disposed closer to the second reflecting surface 123 (radially outside) than the first incident surface 121a in the direction perpendicular to the optical axis OA.
  • the second incident surface 121 b makes light having a large emission angle with respect to the optical axis OA out of the light emitted from the light emitting element 110 enter the light flux controlling member 120.
  • the second incident surface 121 b controls the light emitted from the light emitting element 110 so that light having a large emission angle with respect to the optical axis OA reaches the second reflecting surface 123.
  • the shape of the 2nd entrance plane 121b will not be specifically limited if the above-mentioned function can be exhibited.
  • the second incident surface 121b may be a single surface or a plurality of surfaces. In the present embodiment, the second incident surface 121b is a single surface. In the present embodiment, the second incident surface 121b is formed so as to approach a plane including the light emitting surface of the light emitting element 110 as the distance from the optical axis OA increases. In the cross section including the rotation axis RA, the shape of the second incident surface 121b may be a straight line or a curved line. In the present embodiment, the shape of the second incident surface 121b in the cross section including the rotation axis RA is a straight line.
  • the inclination angle of the second incident surface 121b with respect to the rotation axis RA in the cross section including the rotation axis RA is not particularly limited.
  • the inclination angle of the second incident surface 121b with respect to the rotation axis RA in the cross section including the rotation axis RA is slightly inclined in consideration of mold release during injection molding.
  • the first incident surface 121a and the second incident surface 121b can also be said to be the inner surfaces of the first concave portion 127 opened to the rear (back surface) of the light flux controlling member 120.
  • the shape of the first recess 127 is a substantially cylindrical shape with the top surface raised inward.
  • the inner top surface of the first recess 127 corresponds to the first incident surface 121a
  • the inner surface of the first recess 127 corresponds to the second incident surface 121b.
  • the first reflecting surface 122 is disposed on the opposite side of the incident region 121.
  • the first reflecting surface 122 is a second reflecting surface on the same side as the first reflecting surface 122 with the optical axis OA as a boundary in a cross section including the optical axis OA in a part of the light incident on the incident region 121. Reflected toward 123.
  • the first reflecting surface 122 may be one surface or a plurality of surfaces. In the present embodiment, the first reflecting surface 122 is a plurality of surfaces.
  • the first reflecting surface 122 includes an inner first reflecting surface 122a and an outer first reflecting surface 122b.
  • the shapes of the inner first reflecting surface 122a and the outer first reflecting surface 122b are not particularly limited as long as the above functions can be exhibited.
  • the inner first reflecting surface 122a and the outer first reflecting surface 122b may be straight lines or curved lines. In the present embodiment, inner first reflective surface 122a and outer first reflective surface 122b are respectively curved. In the present embodiment, in the cross section including the rotation axis RA, the inner first reflection surface 122a and the outer first reflection surface 122b are such that the inclination of each tangent gradually decreases as the distance from the rotation axis RA increases. Is formed.
  • the second reflecting surface 123 is disposed away from the incident region 121 (outward in the radial direction) with respect to the optical axis OA in the direction perpendicular to the optical axis OA of the light emitting element 110.
  • the second reflecting surface 123 is mainly emitted from the light emitting element 110 and reflects the light incident on the second incident surface 121b toward the third reflecting surface 124 or emits the light reflected on the first reflecting surface 122 to the outside.
  • the second reflecting surface 123 functions as a reflecting surface or functions as an exit surface corresponding to the light that reaches it.
  • the second reflecting surface 123 may be a single surface or a plurality of surfaces. In the present embodiment, the second reflecting surface 123 is a single surface.
  • the shape of the 2nd reflective surface 123 will not be specifically limited if the above-mentioned function can be exhibited.
  • the second reflecting surface 123 may be a straight line or a curved line.
  • the second reflecting surface 123 is a curve.
  • the second reflecting surface 123 in the cross section including the rotation axis RA, is formed so as to move away from the optical axis OA as the third reflecting surface 124 is approached.
  • the second reflecting surface 123 is formed such that the slope of the tangential line gradually increases as it approaches the third reflecting surface 124 in the cross section including the rotation axis RA (center axis CA).
  • the third reflecting surface 124 is disposed on the opposite side (upper side) of the second reflecting surface 123 in the direction along the optical axis OA of each light emitting element 110. More specifically, the third reflecting surface 124 is disposed at a position farther from the second reflecting surface 123 than the plane including the light emitting surface of the light emitting element 110.
  • the third reflecting surface 124 mainly reflects the light reflected by the second reflecting surface 123 toward the connection surface 125.
  • the third reflecting surface 124 may be a single surface or a plurality of surfaces. In the present embodiment, the third reflecting surface 124 is one surface.
  • the shape of the 3rd reflective surface 124 will not be specifically limited if the above-mentioned function can be exhibited.
  • the shape of the third incident surface 124 may be a straight line or a curved line.
  • the shape of the third reflecting surface 124 in the cross section including the rotation axis RA is a curve.
  • the third reflecting surface 124 is formed so as to move away from the optical axis OA as the second reflecting surface 123 is approached.
  • the third reflecting surface 124 is formed such that, in a cross section including the rotation axis RA (center axis CA), the inclination of the tangential line gradually decreases as the second reflecting surface 123 is approached.
  • one end of the third reflecting surface 124 is connected to one end of the second reflecting surface 123 in the direction along the optical axis OA.
  • the position of the boundary between the second reflecting surface 123 and the third reflecting surface 124 in the direction along the optical axis OA is not particularly limited as long as the light incident on the second incident surface 121b can reach the second reflecting surface 123.
  • the boundary is formed at a position where the light emitted from the light emitting element 110 and reflected by the second reflecting surface 123 reaches the third reflecting surface 124.
  • connection surface 125 connects the first reflection surface 122 and the third reflection surface 124.
  • the connection surface 125 emits the light reflected by the third reflecting surface 124 to the outside.
  • the connection surface 125 may be one surface or a plurality of surfaces.
  • the connection surface 125 is a plurality of surfaces.
  • connection surface 125 includes a first connection surface 125a and a second connection surface 125b.
  • the first connection surface 125 a is disposed on the first reflecting surface 122 side (lower side) in the direction along the optical axis OA, and the second connection surface 125 b is with respect to a plane including the light emitting surface of the light emitting element 110. It is formed at a position away from the first connection surface 125a. Further, in the cross section including the rotation axis RA, the shape of the first connection surface 125a and the second connection surface 125b (connection surface 125) is particularly limited if the light emitted from the connection surface 125 can be incident on the first reflection surface 122 facing the first connection surface 125a. It is not limited.
  • the shapes of the first connection surface 125a and the second connection surface 125b may be straight lines or curved lines, respectively. In the present embodiment, in the cross section including the rotation axis RA, the shapes of the first connection surface 125a and the second connection surface 125b are both straight lines. In the cross section including the rotation axis RA, the inclination angles of the first connection surface and the second connection surface 125b with respect to the rotation axis RA are not particularly limited. The inclination angle of the first connection surface 125a with respect to the rotation axis RA is 0 °. That is, in the present embodiment, the first connection surface 125a is disposed in a direction along the rotation axis RA.
  • the second connection surface 125b is formed so as to move away from the first connection surface 125a as the distance from the optical axis OA increases. That is, in the present embodiment, the second connection surface 125b is slightly inclined with respect to the rotation axis RA in consideration of mold release at the time of injection molding.
  • the optical path of the light emitted from the light emitting element 110 in the light flux controlling member 120 according to the present embodiment was simulated.
  • the optical path in the light flux controlling member 220 according to Comparative Example 1 shown in FIG. 3 and the optical path in the light flux controlling member 320 according to Comparative Example 2 shown in FIG. 4 were also simulated.
  • FIG. 3 is a diagram illustrating a configuration of the light flux controlling member 220 according to the first comparative example.
  • 3A is a plan view of the light flux controlling member 220 according to Comparative Example 1
  • FIG. 3B is a bottom view
  • FIG. 3C is a side view
  • FIG. 3D is an AA line shown in FIG. 3A.
  • FIG. 3A is a plan view of the light flux controlling member 220 according to Comparative Example 1
  • FIG. 3B is a bottom view
  • FIG. 3C is a side view
  • FIG. 3D is an AA line shown in FIG. 3A.
  • the light flux controlling member 220 according to Comparative Example 1 includes an incident surface 221 disposed to face the light emitting element 110, and a reflecting surface 222 disposed on the opposite side of the incident surface 221. , Having an emission surface 223 connecting the outer edge of the incident surface 221 and the outer edge of the reflection surface 222, and is rotationally symmetric with the central axis CA as the rotation axis.
  • the light flux controlling member 220 according to Comparative Example 1 has a diameter of 35 mm and a height of 13 mm.
  • the light flux controlling member 220 according to the comparative example 1 is larger than the light flux controlling member 120 according to the present embodiment described above.
  • the incident surface 221 is formed in a planar shape.
  • the reflection surface 222 includes a first reflection surface 222a formed so as to intersect the central axis CA, and a second reflection surface 222b disposed so as to surround the first reflection surface 222a.
  • the first reflecting surface 222a emits part of the light incident on the incident surface 221 away from the central axis CA.
  • the second reflection surface 222 b internally reflects another part of the light incident on the incident surface 221 toward the emission surface 223.
  • the emission surface 223 emits the light reflected by the reflection surface 222 to the outside.
  • FIG. 4 is a diagram showing a configuration of the light flux controlling member 320 according to Comparative Example 2.
  • 4A is a plan view of a light flux controlling member 320 according to Comparative Example 2
  • FIG. 4B is a bottom view
  • FIG. 4C is a side view
  • FIG. 4D is an AA line shown in FIG. 4A.
  • FIG. 4A is a plan view of a light flux controlling member 320 according to Comparative Example 2
  • FIG. 4B is a bottom view
  • FIG. 4C is a side view
  • FIG. 4D is an AA line shown in FIG. 4A.
  • the light flux controlling member 320 according to the comparative example 2 includes an incident surface 321 disposed to face the light emitting element 110, and a reflecting surface 322 disposed on the opposite side of the incident surface 321 ( The first reflecting surface 322a and the second reflecting surface 322b), and an output surface 323 connecting the outer edge portion of the incident surface 321 and the outer edge portion of the reflecting surface 322, and is rotationally symmetric with the central axis CA as the rotation axis.
  • the light flux controlling member 320 according to the comparative example 2 has a diameter of 15 mm and a height of 9.8 mm.
  • the light flux controlling member 320 according to the comparative example 2 is larger than the light flux controlling member 120 according to the present embodiment described above. Further, the light flux controlling member 320 according to the comparative example 2 has the same shape as a part of the vicinity of the central axis CA of the light flux controlling member 220 according to the comparative example 1. That is, the light flux controlling member 320 according to the comparative example 2 has a shape corresponding to the area indicated by the broken line shown in FIGS. 3A and 3D.
  • FIG. 5A to 5C are optical path diagrams in the light flux controlling member 220 according to Comparative Example 1.
  • FIG. 5A to 5C show optical paths in a cross section including the rotation axis RA.
  • 5A is an optical path diagram of light emitted to one side from the center of the light emitting element 110 with the optical axis OA as a boundary
  • FIG. 5B is a diagram of light emitted to the outside from one end of the light emitting element 110.
  • FIG. It is an optical path diagram.
  • FIG. 5C is an optical path diagram of light emitted from one end of the light emitting element 110 to the optical axis OA side. In FIGS. 5A to 5C, hatching is omitted to show the optical path.
  • the light emitted from the center of the light emitting element 110 enters the light flux controlling member 220 through the incident surface 221.
  • the incident surface 221 light having a small emission angle with respect to the optical axis OA of the light emitting element 110 is emitted so as to move away from the optical axis OA on the first reflecting surface 222a.
  • the light incident on the incident surface 221 light having a large emission angle with respect to the optical axis OA of the light emitting element 110 is reflected by the second reflecting surface 222b and emitted from the emitting surface 223.
  • the light emitted from one end of the light emitting element 110 enters the light flux controlling member 220 through the incident surface 221.
  • the incident surface 221 light having a small emission angle with respect to the optical axis OA of the light emitting element 110 is emitted so as to move away from the optical axis OA on the first reflecting surface 222a.
  • the light incident on the incident surface 221 light having a large emission angle with respect to the optical axis OA of the light emitting element 110 is reflected by the second reflecting surface 222b and emitted from the emitting surface 223.
  • the light flux controlling member 220 according to the comparative example 1 can obtain a relatively good balance of light distribution.
  • 6A to 6C are optical path diagrams in the light flux controlling member 320 according to the second comparative example. 6A to 6C show optical paths in a cross section including the rotation axis RA.
  • 6A is an optical path diagram of light emitted to one side from the center of the light emitting element 110 with the optical axis OA as a boundary
  • FIG. 6B is a diagram of light emitted to the outside from one end of the light emitting element 110.
  • FIG. It is an optical path diagram.
  • FIG. 6C is an optical path diagram of light emitted from one end of the light emitting element 110 to the optical axis OA side. In FIGS. 6A to 6C, hatching is omitted to show the optical path.
  • the light emitted from the center of the light emitting element 110 enters the light flux controlling member 320 at the incident surface 321.
  • the first reflecting surface 322 a so as to be away from the optical axis OA.
  • light having a large emission angle with respect to the optical axis OA of the light emitting element 110 is reflected by the first reflection surface 322 a and emitted from the emission surface 323.
  • the light emitted from one end of the light emitting element 110 enters the light flux controlling member 320 at the incident surface 321.
  • the light incident on the incident surface 321 light having a small emission angle with respect to the optical axis OA of the light emitting element 110 is emitted from the first reflecting surface 322 a so as to be away from the optical axis OA.
  • the light incident on the incident surface 321 light having a large emission angle with respect to the optical axis OA of the light emitting element 110 is reflected by the first reflection surface 322 a and emitted from the emission surface 323.
  • the light flux controlling member 320 according to the comparative example 2 has a shape in which the diameter of the light flux controlling member 220 according to the comparative example 1 is reduced. The balance has deteriorated.
  • 7A to 7C are optical path diagrams in light flux controlling member 120 according to the present embodiment.
  • 7A to 7C show optical paths in a cross section including the rotation axis RA.
  • 7A is an optical path diagram of light emitted from the center of the light emitting element 110
  • FIG. 7B is an optical path diagram of light emitted outward from one end of the light emitting element 110.
  • FIG. 7C is an optical path diagram of light emitted from one end of the light emitting element 110 to the optical axis OA side in a cross section including the rotation axis RA.
  • hatching is omitted to show the optical path.
  • the light emitted from the center of the light emitting element 110 enters the light flux controlling member 120 in the incident region 121. More specifically, out of the light emitted from the center of the light emitting element 110, light having a small emission angle with respect to the optical axis OA of the light emitting element 110 is incident on the first incident surface 121a.
  • the light incident on the first incident surface 121a is reflected by the first reflecting surface 122 on the same side as the first incident surface 121a with the optical axis OA as a boundary, and is emitted from the second reflecting surface 123 on the same side. .
  • a lot of light out of the light emitted from the second reflecting surface 123 is emitted sideways or rearward.
  • the light emitted from the center of the light emitting element 110 light having a large emission angle with respect to the optical axis OA of the light emitting element 110 is incident on the second incident surface 121b.
  • the light incident on the second incident surface 121b is reflected in the order of the second reflecting surface 123 and the third reflecting surface 124 on the same side as the second incident surface 121b with the optical axis OA as a boundary in the cross section including the rotation axis RA. Then, the light is emitted from the connection surface 125 on the same side.
  • connection surface 125 In the cross section including the rotation axis RA, the light emitted from the connection surface 125 is incident again on the opposite first reflection surface 122a or the connection surface 125 across the optical axis OA, and then the second reflection surface on the opposite side. 123. At this time, most of the light emitted from the second reflecting surface 123 is emitted backward.
  • the light is emitted from one end of the light emitting element 110 to the same side as the end of the light emitting surface from which the light is emitted with the optical axis OA as a boundary.
  • Light is incident on the first incident surface 121a and the second incident surface 121b on the same side. More specifically, light having a small emission angle with respect to the optical axis OA of the light emitting element 110 out of the light emitted from the end of the light emitting element 110 is incident on the first incident surface 121a.
  • the light incident on the first incident surface 121a is emitted to the outside from the first reflecting surface 122 on the same side as the first incident surface 121a on which the light is incident with the optical axis OA as a boundary.
  • the light incident on the second incident surface 121b is sequentially reflected by the second reflecting surface 123 and the third reflecting surface 124 on the same side as the second incident surface 121b with the optical axis OA as a boundary.
  • the light reflected by the third reflecting surface 124 is once emitted to the outside through the connection surface 125 on the same side.
  • connection surface 125 The light emitted from the connection surface 125 is incident again on the opposite first reflection surface 122 with the optical axis OA as a boundary, and is then emitted from the opposite second reflection surface 124. At this time, most of the light emitted from the second reflecting surface 123 is emitted backward.
  • the light was emitted from one end of the light emitting element 110 to the side opposite to the end of the light emitting surface from which the light was emitted with the optical axis OA as a boundary.
  • the light is incident on the first incident surface 121a on the same side as the end of the light emitting surface from which the light is emitted and the second incident surface 121b on the opposite side. More specifically, light having a small emission angle with respect to the optical axis OA of the light emitting element 110 out of the light emitted from the end of the light emitting element 110 is incident on the first incident surface 121a.
  • the light incident on the first incident surface 121a is emitted to the outside from the second reflecting surface 123 on the opposite side.
  • the light incident on the second incident surface 121b is sequentially reflected by the second reflecting surface 123 and the third reflecting surface 124 on the same side as the second incident surface 123 with the optical axis OA as a boundary.
  • the light reflected by the third reflecting surface 124 is once emitted to the outside through the connection surface 125 on the same side.
  • the light emitted from the connection surface 125 is incident again on the opposite first reflection surface 122 with the optical axis OA as a boundary, and is then emitted from the opposite second reflection surface 123. At this time, most of the light emitted from the second reflecting surface 123 is emitted backward.
  • the light emitted from the light emitting element 110 is emitted toward the front, the side, and the rear. That is, the light flux controlling member 120 according to the present embodiment is smaller than the light flux controlling member 320 according to the comparative example 2, but has a good balance of light distribution.
  • the light distribution characteristics of the light emitting device 140 having one light emitting element 110 and the light flux controlling member 120, and the cover 160 on the light emitting device 140 are provided.
  • Each of the light distribution characteristics of the attached lighting device 100 was simulated.
  • the lighting device and the simulation were also simulated.
  • the relative illuminance in all directions on the plane including the rotation axis RA was obtained using the intersection of the rotation axis RA and the light emitting surface of the light emitting element 110 as a reference point.
  • the illuminance on the virtual surface at a distance of 1000 mm from the reference point was calculated.
  • each graph 8 to 10 are graphs showing the light distribution characteristics of the light emitting device and the lighting device according to Comparative Example 1, Comparative Example 2, and the present embodiment.
  • the numerical value described on the outer side of each graph indicates an angle (°) with respect to the reference point. 0 ° indicates the direction of the optical axis OA (forward direction), 90 ° indicates the horizontal direction (lateral direction), and 180 ° indicates the backward direction.
  • the numerical value described inside each graph has shown the relative illumination intensity (maximum value 1) of each direction.
  • the solid line in each graph indicates the result when the light emitting element 110 and the light flux controlling member are combined (light emitting device), and the dotted line indicates the case where the light emitting element 110, the light flux controlling member, and the cover 160 are combined ( The result of (illuminating device) is shown.
  • FIG. 8 is a graph showing the light distribution characteristics of the light emitting device and the lighting device in Comparative Example 1. As shown in FIG. 8, it was found that in the light emitting device (solid line), the amount of light traveling in the forward direction is small and light traveling in the vicinity of ⁇ 140 ° is generated. This is considered to be because most of the light emitted from the light emitting element 110 is controlled backward by the reflecting surface 222 of the light flux controlling member 220. In addition, in the illumination device (dotted line) in which the cover 160 is attached to the light emitting device, the amount of emitted light directed in the forward direction and the lateral direction can be made uniform, but there is much light directed in the vicinity of ⁇ 140 °, and unevenness of the light is caused. there were.
  • FIG. 9 is a graph showing the light distribution characteristics of the light emitting device and the lighting device in Comparative Example 2. As shown in FIG. 9, it was found that in the light emitting device (solid line), in addition to light traveling in the direction near ⁇ 140 °, light traveling in the direction near ⁇ 50 ° is generated. This is considered to be because the incident surface 321 (diameter) of the light flux controlling member 320 is small, and the light incident on the incident surface 321 is reflected by the exit surface 323 and emitted from the reflective surface 322.
  • the amount of emitted light directed in the lateral direction can be made uniform, but there is much light directed in the directions near ⁇ 50 ° and ⁇ 140 °, and there is unevenness in the light. It was. As described above, when the light flux controlling member 220 of the comparative example 1 is downsized, the light distribution characteristic is deteriorated.
  • FIG. 10 is a graph showing the light distribution characteristics of the light emitting device 140 and the lighting device 100 according to the first embodiment.
  • the light emitting device solid line
  • the illumination device 100 in which the cover 160 is attached to the light emitting device 140 can further reduce light unevenness by equalizing the amount of light emitted in the forward direction, the lateral direction, and the backward direction.
  • the light flux control member 120 according to the present embodiment is smaller than the light flux control member 320 according to the comparative example 2, but has a good balance of light distribution.
  • light flux controlling member 420 according to a modification of the first embodiment will be described.
  • the light flux controlling member 420 according to the modification of the first embodiment is different from the light flux controlling member 120 according to the first embodiment only in the shapes of the first incident surface 421a and the first reflecting surface 422. Therefore, the same components as those of light flux controlling member 120 according to Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11 is a perspective view of a light flux controlling member 420 according to a modification of the first embodiment.
  • 11A is a perspective view of the light flux controlling member 420 as seen from the first reflecting surface 422 side
  • FIG. 11B is a perspective view of the light flux controlling member 420 as seen from the incident region 421 side.
  • 12A to 12D are diagrams showing a configuration of light flux controlling member 420 according to a modification of the first embodiment.
  • 12A is a plan view of a light flux controlling member 420 according to a modification of the first embodiment
  • FIG. 12B is a bottom view
  • FIG. 12C is a side view
  • FIG. 12D is shown in FIG. 12A. It is sectional drawing of an AA line.
  • the light flux controlling member 420 includes an incident region 421, a first reflecting surface 422, a second reflecting surface 123, and a third reflecting surface. 124 and a connecting surface 425.
  • the incident region 421 includes a first incident surface 421a and a second incident surface 421b.
  • the first incident surface 421a includes an inner first incident surface 421c and an outer first reflecting surface 421d.
  • the inner first incident surface 421c is arranged so as to intersect the optical axis OA.
  • the inner first incident surface 421c refracts light having a small emission angle with respect to the optical axis OA of the light emitting element 110 out of the light emitted from the light emitting element 110, while refracting the light away from the optical axis OA.
  • the inner first incident surface 421c is formed so as to approach a plane including the light emitting surface of the light emitting element 110 as the distance from the optical axis OA increases.
  • the shape of the inner first incident surface 421c in the cross section including the optical axis OA is not particularly limited as long as the above-described conditions are satisfied.
  • the shape of the inner first incident surface 421c in the cross section including the optical axis OA is a straight line. That is, the inner first incident surface 421c is formed in a conical side surface shape.
  • the outer first incident surface 421d is arranged at a position farther from the optical axis OA than the inner first incident surface 421c in the direction perpendicular to the optical axis OA. Outer first incident surface 421d is larger than the incident angle of light incident on inner first incident surface 421c out of the light emitted from light emitting element 110, and smaller than the incident angle of light incident on second incident surface 421b. The light having the angle is incident on the light flux controlling member 420 while being refracted away from the optical axis OA.
  • the shape of the outer first incident surface 421d is not particularly limited.
  • the shape of the outer first incident surface 421d may be a flat surface or a curved surface. In the present embodiment, the shape of the outer first incident surface 421d is a plane.
  • the first reflecting surface 422 is disposed so as to be orthogonal to the optical axis OA.
  • connection surface 425 is composed of one surface.
  • the shape of the connection surface 425 is not particularly limited.
  • the shape of the connection surface 425 is a straight line.
  • the inclination angle of the connection surface 425 is not particularly limited.
  • the connection surface 425 is formed so as to approach a plane including the light emitting surface of the light emitting element 110 as the distance from the optical axis OA increases. That is, in the present embodiment, the connection surface 425 is slightly inclined with respect to the rotation axis RA in consideration of mold release at the time of injection molding.
  • the illuminating device 100 having the light flux control members 120 and 420 according to the present embodiment controls the second light emitted from the light emitting element 110 even if the light flux control members 120 and 420 are downsized. Since the reflecting surface 123 and the third reflecting surface 124 are provided, it is possible to control the light flux controlling members 120 and 420 so as to appropriately proceed toward the rear without increasing the size.
  • the lighting device 100 according to the present embodiment can exhibit a light distribution characteristic closer to that of an incandescent bulb as compared with a conventional lighting device.
  • Embodiment 2 Next, the illuminating device 500 which concerns on Embodiment 2 is demonstrated.
  • a lighting device that can be used in place of a fluorescent lamp will be described as a representative example of the lighting device of the present invention.
  • FIG. 13 is a cross-sectional view of lighting apparatus 500 according to Embodiment 2 of the present invention.
  • 14 and 15 are diagrams showing a configuration of light flux controlling member 520 according to the second embodiment.
  • 14A is a perspective view of the light flux controlling member 520 viewed from the first reflecting surface 522 side
  • FIG. 14B is a perspective view of the light flux controlling member 520 viewed from the incident region 521 side.
  • 15A is a plan view of light flux controlling member 520 according to Embodiment 2
  • FIG. 15B is a bottom view
  • FIG. 15C is a side view
  • FIG. 15D is a front view.
  • the lighting device 500 includes a light emitting device 540 including a plurality of light emitting elements 110 and a light flux controlling member 520, a substrate 550, and a cover 560.
  • the light emitting element 110 is the same as the light emitting element 110 used in the illumination device 100 according to the first embodiment.
  • the plurality of light-emitting elements 110 are arranged in a row on the substrate 550.
  • the number of the light emitting elements 110 in the light emitting device 540 is not particularly limited as long as it is two or more.
  • the light flux controlling member 520 is formed in a column shape.
  • the light emitting device 540 is disposed on the substrate 550. The light flux controlling member 520 will be described later.
  • the cover 560 transmits the light emitted from the light flux controlling member 520 to the outside while diffusing it.
  • the cover 560 is disposed via the air layer with respect to the light emitting device 540 so as to cover the light emitting device 540.
  • the outer surface of the cover 560 becomes an effective light emitting area.
  • the shape of the cover 560 is not particularly limited as long as the light-emitting device 540 can be covered via the air layer. In the example shown in FIG. 13, the cover 560 has a shape in which a part of a cylinder is cut out, but the cover 560 may have a cylindrical shape or the like.
  • the light flux controlling member 520 according to the second embodiment is formed in a column shape.
  • the light flux controlling member 520 has an incident region 521, a first reflecting surface 522, a second reflecting surface 523, a third reflecting surface 524, and a connection surface 525.
  • the incident region 521, the first reflecting surface 522, the second reflecting surface 523, the third reflecting surface 524, and the connection surface 525 extend in one direction orthogonal to the optical axis OA of the light emitting element 110. Therefore, each surface has no curvature in the direction (the arrangement direction of the plurality of light emitting elements 110).
  • light flux controlling member 520 does not need to have a leg portion. This is because the light flux controlling member 520 extends in one direction orthogonal to the optical axis OA of the light emitting element 110 and thus has a gap for releasing heat generated from the light emitting element 110 to the outside.
  • the incident region 521 is disposed so as to face the light emitting element 110.
  • the incident region 521 includes a first incident surface 521a and a second incident surface 521b.
  • the first reflecting surface 522 has an inner first reflecting surface 522a and an outer first reflecting surface 522b.
  • the connection surface 525 has a first connection surface 525a and a second connection surface 525b.
  • the shapes of the cross sections in the minor axis direction of incident region 521, first reflecting surface 522, second reflecting surface 523, third reflecting surface 524, and connecting surface 525 include rotation axis RA of light flux controlling member 120 in the first embodiment. It is the same as the cross-sectional shape. Further, the functions of the incident region 521, the first reflecting surface 522, the second reflecting surface 523, the third reflecting surface 524, and the connecting surface 525 are the same as the incident region 121 and the first reflecting surface 122 of the light flux controlling member 120 in the first embodiment. The functions of the second reflecting surface 123, the third reflecting surface 124, and the connecting surface 125 are the same.
  • the first incident surface 521a may have an inner first incident surface and an outer first reflective surface, as in the first embodiment.
  • the functions of the inner first incident surface and the outer first reflecting surface are the same as those of the inner first incident surface 421c and the outer first reflecting surface 421d in the first embodiment.
  • light flux controlling member 520 according to Embodiment 2 has the same effect as light flux controlling member 120 according to Embodiment 1.
  • the illumination device 500 according to the present embodiment can exhibit a light distribution characteristic closer to a fluorescent lamp than a conventional illumination device.
  • the illumination device having the light flux controlling member according to the present invention can be used in place of an incandescent bulb or a fluorescent lamp, it can be widely applied to various illumination devices such as a chandelier, a fluorescent lamp, and an indirect illumination device.
  • Illuminating device 110 Light emitting element 120, 220, 320, 420, 520 Light flux controlling member 121, 421, 521 Incident region 121a, 421a, 521a First incident surface 121b, 421b, 521b Second incident surface 122, 422, 522 First reflection surface 122a, 522a Inner first reflection surface 122b, 522b Outer first reflection surface 123, 523 Second reflection surface 124, 524 Third reflection surface 125, 425, 525 Connection surface 125a, 525a First connection surface 125b, 525b Second connection surface 126 Leg 127 First recess 140, 540 Light emitting device 150, 550 Substrate 160, 560 Cover 170 Housing 221, 321 Incident surface 222, 322 Reflective surface 222a, 322a First reflective surface 222b, 322b Second Reflective surface 223, 323, exit surface Outer 21c inside the first entrance surface 421d first entrance surface CA rotation axis OA optical axis RA rotary shaft

Abstract

本発明の光束制御部材は、入射領域と、第1反射面と、第2反射面と、第3反射面と、接続面と、を有する。光軸および光軸に垂直な方向に沿う直線を含む断面において、発光素子から出射された光のうち、一部の光は、入射領域で入射した後、光軸を境界として当該入射領域と同じ側の第1反射面で反射して、当該同じ側の第2反射面から出射される。断面において、他の一部の光は、入射領域で入射して、光軸を境界として当該入射領域と同じ側の第2反射面および第3反射面の順番で反射した後、当該同じ側の接続面から出射して、光軸を挟んで反対側の第1反射面または接続面で再度入射した後に、当該反対側の第2反射面から出射される。

Description

光束制御部材、発光装置および照明装置
 本発明は、発光素子から出射された光の配光を制御する光束制御部材、当該光束制御部材を有する発光装置および照明装置に関する。
 近年、省エネルギーや環境保全の観点から、発光ダイオード(以下、「LED」ともいう)を光源とする照明装置(例えば、LED電球)が、白熱電球または蛍光灯に代わるものとして使用されている。しかしながら、LEDを光源とする従来の照明装置は、前方(光源からの光の出射方向)のみに光を出射し、白熱電球または蛍光灯のように幅広い方向に光を出射できない。このため、従来の照明装置は、白熱電球または蛍光灯のように天井や壁面からの反射光を利用して室内を広範囲に照らすことができない。
 LEDを光源とする従来の照明装置の配光特性を白熱電球または蛍光灯の配光特性に近づけるため、LEDからの出射光の配光を光束制御部材で制御することが提案されている(例えば、特許文献1参照)。
 特許文献1に記載の光束制御部材(光方向変換素子)は、発光素子(LED部)の光軸に交わるように、発光素子と対向して配置された入射面と、入射面の反対側に配置された凹状の出射面と、側方に配置され、入射面および出射面を接続する傾斜面とを有する。特許文献1に記載の光束制御部材では、発光素子から出射された光のうち、発光素子の光軸に対する出射角度が小さい光は、入射面で光束制御部材の内部に入射した後、他の面で反射せずに出射面の中央部分に到達する。そして、出射面に到達した当該光は、出射面の中央部から前方に向かって出射される。また、発光素子から出射された光のうち、発光素子の光軸に対する出射角度が大きい光は、入射面で入射した後、出射面の外縁部に到達する。出射面に到達した当該光は、出射面で反射した後、傾斜面から側方または後方に向かって出射される。また、発光素子の光軸に対する出射角度が、さらに大きい光は、入射面で光束制御部材の内部に入射した後、他の面で反射せずに傾斜面に到達する。傾斜面に到達した当該光は、傾斜面で出射面に向かって反射される。傾斜面で反射した光は、出射面から前方に向かって出射される。
特開2012-160666号公報
 しかしながら、特許文献1に記載の光束制御部材には、後方に向かう光が少ないため、配光特性のバランスが悪いという問題がある。特許文献1に記載の光束制御部材において、後方に向かう光を多くするためには、入射面で入射した光のうち、大部分の光を他の面で反射させずに出射面に到達させる必要がある。特許文献1に記載の光束制御部材において、入射面で入射した光のうち、大部分の光を他の面で反射させずに出射面に到達させる方法として、出射面(径)を大きくすることが考えられる。これにより、入射面で入射した光のうち、大部分の光を、大きくした出射面に他の面で反射させずに到達させて、後方に向かう光の光量を多くすることができる。
 しかしながら、出射面(径)を大きくすると、光束制御部材が大型化してしまうという問題がある。このように、従来の光束制御部材では、小型化と、配向特性のバランスの最適化とを両立させることができなかった。
 そこで、本発明の目的は、小型化できるとともに、電球または蛍光灯のように、前方方向、側方方向および後方方向のすべてにバランスよく配光することができる光束制御部材を提供することである。また、本発明の別の目的は、この光束制御部材を有する発光装置および照明装置を提供することである。
 本発明に係る光束制御部材は、発光素子から出射された光の配光を制御する光束制御部材であって、前記発光素子の光軸を含む断面において前記光軸に対して対称に形成され、前記発光素子と対向するように配置された入射領域と、前記入射領域の反対側に配置された第1反射面と、前記光軸に垂直な方向に、前記光軸に対して前記第1反射面よりも離れて配置された第2反射面と、前記光軸に沿う方向において、前記第2反射面の反対側に配置された第3反射面と、前記第1反射面および前記第3反射面を接続する接続面と、を有し、前記光軸および前記光軸に垂直な方向に沿う直線を含む断面において、前記発光素子から出射された光のうち、一部の光は、前記入射領域で入射した後、前記光軸を境界として当該入射領域と同じ側の前記第1反射面で反射して、当該同じ側の前記第2反射面から出射され、前記断面において、前記発光素子から出射された光のうち、他の一部の光は、前記入射領域で入射して、前記光軸を境界として当該入射領域と同じ側の前記第2反射面および前記第3反射面の順番で反射した後、当該同じ側の前記接続面から出射して、前記光軸を挟んで反対側の前記第1反射面で再度入射した後に、当該反対側の前記第2反射面から出射される。
 また、本発明に係る発光装置は、発光素子と、本発明に係る光束制御部材と、を有し、前記光束制御部材は、前記入射領域が前記発光素子と対向するように配置されている。
 また、本発明に係る照明装置は、本発明に係る発光装置と、前記発光装置からの出射光を拡散させつつ透過させるカバーと、を有する。
 本発明の光束制御部材によれば、小型化できるとともに、発光装置を有する照明装置の配光特性を白熱電球または蛍光灯の配光特性に近づけることができる。
図1は、実施の形態1に係る照明装置の断面図である。 図2A~Dは、実施の形態1に係る光束制御部材の構成を示す図である。 図3A~Dは、比較例1に係る光束制御部材の構成を示す図である。 図4A~Dは、比較例2に係る光束制御部材の構成を示す図である。 図5A~Cは、比較例1に係る光束制御部材における光路図である。 図6A~Cは、比較例2に係る光束制御部材における光路図である。 図7A~Cは、実施の形態1に係る光束制御部材における光路図である。 図8は、比較例1に係る光束制御部材を有する発光装置および照明装置の配光特性を示すグラフである。 図9は、比較例2に係る光束制御部材を有する発光装置および照明装置の配光特性を示すグラフである。 図10は、実施の形態1に係る光束制御部材を有する発光装置および照明装置の配光特性を示すグラフである。 図11A、Bは、実施の形態1の変形例に係る光束制御部材の斜視図である。 図12A~Dは、実施の形態1の変形例に係る光束制御部材の構成を示す図である。 図13は、実施の形態2に係る照明装置の断面図である。 図14A、Bは、実施の形態2に係る光束制御部材の斜視図である。 図15A~Dは、実施の形態2に係る光束制御部材の構成を示す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 [実施の形態1]
 実施の形態1では、本発明の照明装置の代表例として、白熱電球に代えて使用されうる照明装置について説明する。
 (照明装置の構成)
 図1は、本発明の実施の形態1に係る照明装置100の構成を示す図である。
 図1に示されるように、照明装置100は、発光素子110および光束制御部材120を含む発光装置140と、基板150と、カバー160と、筐体170とを有する。
 発光素子110は、照明装置100の光源であり、筐体170に実装されている。たとえば、発光素子110は、白色発光ダイオードなどの発光ダイオード(LED)である。発光素子110の数は、特に限定されず、1個であってもよいし、複数個であってもよい。本実施の形態では、発光素子110の数は、1個である。発光素子110は、その光軸OAが光束制御部材120と交わるように配置される。ここで、「発光素子の光軸」とは、発光素子110からの立体的な光束の中心における光の進行方向を言う。発光素子110が複数ある場合は、複数の発光素子110からの立体的な光束の中心における光の進行方向を言う。以下の説明では、発光素子110からの出射光の光軸OAに沿う出射方向を前方とし、その反対の方向を後方とする。
 光束制御部材120は、発光素子110から出射された光の配光を制御する。光束制御部材120は、発光素子110の光軸OAと交わるように筐体170に配置される。本実施の形態では、光束制御部材120の形状は、回転軸RAに対して回転対称である。すなわち、本実施の形態では、光束制御部材120の回転軸RAと、中心軸CAとは一致している。また、本実施の形態では、光束制御部材120は、回転軸RA(中心軸CA)と、発光素子110の光軸OAとが一致するように配置されている。光束制御部材120の材料は、所望の波長の光を通過させ得るものであれば特に限定されない。光束制御部材120の材料の例には、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂や、光透過性のガラスなどが含まれる。また、光束制御部材120は、例えば射出成形により製造される。例えば光束制御部材120の直径は、11.5mmであり、高さは、7mmである。本発明の特徴の一つは、光束制御部材120の形状であるため、光束制御部材120の詳細は、後述する。
 基板150は、発光素子110および光束制御部材120を支持する。基板150は、筐体170上に配置されている。基板150は、例えば、アルミニウムや銅などの熱伝導性の高い金属からなる。基板150に高い熱伝導性を要しない場合は、基板150として、ガラス不織布にエポキシ樹脂を含浸させた樹脂製基板を用いてもよい。
 カバー160は、光束制御部材120を覆い、光束制御部材120から出射した光を拡散させつつ透過させる。カバー160は、光透過性を有する。カバー160は、開口部を含む中空領域を有する。カバー160の中空領域内には、発光装置140が配置される。たとえば、カバー160の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。カバー160は、光拡散性も有する。カバー160に光拡散能を付与する手段は、特に限定されない。たとえば、透明な材料で作製されたカバー160の内面または外面に光拡散処理(例えば、粗面化処理)を行ってもよいし、上記の透明な材料に、ビーズなどの散乱子を含む光拡散性の材料を配合してカバー160を作製してもよい。
 カバー160は、光束制御部材120の回転軸RAに対して回転対称な形状を含むことが好ましい。カバー160の形状は、例えば、回転対称な形状のみからなる形状であってもよいし、回転対称な形状の一部分を含む形状であってもよい。カバー160の形状は、光束制御部材120からの出射光の配光のバランスをさらに改善することができる形状であることが好ましい。たとえば、カバー160の形状は、後方への光の光量をより多くする観点から、カバー160の最大外径に比べてカバー160の開口部の径が小さい形状であることが好ましい。カバー160の形状は、例えば球冠形状(球面の一部を平面で切り取った形状)である。
 筐体170は、発光素子110および光束制御部材120を配置した基板150と、カバー160とを筐体170の前方端部で支持する。筐体170は、光束制御部材120の回転軸RAを回転軸とする略回転対称である。筐体170は、発光素子110からの熱を放出するためのヒートシンクを兼ねている。このため、筐体170は、アルミニウムや銅などの熱伝導性の高い金属によって構成されていることが好ましい。
 発光素子110から出射された光は、光束制御部材120によって全方向に向かうように制御される。光束制御部材120から出射された光は、カバー160を拡散しつつ透過する。
 (光束制御部材の構成)
 ここで、光束制御部材120について詳細に説明する。図2A~Dは、光束制御部材120の構成を示す図である。図2Aは、実施の形態1に係る光束制御部材120の平面図であり、図2Bは、底面図であり、図2Cは、側面図であり、図2Dは、図2Aに示されるA-A線の断面図である。
 図2A~Dに示されるように、光束制御部材120は、入射領域121と、第1反射面122と、第2反射面123と、第3反射面124と、接続面125とを有する。また、本実施の形態では、光束制御部材120は、発光素子110から発せられる熱を外部に逃がすための間隙を形成するとともに、光束制御部材120を基板150に固定するための脚部126を有している(図1参照)。なお、図2A~Dでは、脚部126を省略している。
 前述したとおり、光束制御部材120は、脚部126を除いて、回転軸RA(中心軸CA)に対して回転対称である。すなわち、入射領域121と、第1反射面122と、第2反射面123と、第3反射面124と、接続面125とは、それぞれ回転対称面である。
 入射領域121は、発光素子110と対向するように配置されている。入射領域121は、発光素子110から出射された光を光束制御部材120の内部に入射させる。入射領域121の形状は、前述の機能を発揮できれば特に限定されない。入射領域121は、平面であってもよいし、曲面であってもよいし、複数の面で構成されてもよい。本実施の形態では、入射領域121は、複数の面で構成されており、第1入射面121aと、第2入射面121bとを含む。
 第1入射面121aは、発光素子110と対向するように配置されている、凸レンズ面である。第1入射面121aは、発光素子110から出射された光のうち、光軸OAに対する出射角度が小さい光を光束制御部材120の内部に入射させる。また、第1入射面121aは、発光素子110から出射された光を、第3反射面124に到達させずに、第1反射面122に到達するように屈折(集光)させる。第1入射面121aの形状は、前述の機能を発揮できれば特に限定されない。第1入射面121aは、平面であってもよいし、曲面であってもよいし、複数の面を有してもよい。本実施の形態では、第1入射面121aは、曲面である。また、本実施の形態では、第1入射面121aの形状は、光軸OAから離れるにつれて、発光素子110の発光面を含む平面から遠ざかるように形成されている。また、第1入射面121aは、回転軸RA(中心軸CA)を含む断面において、光軸OAから離れるにつれて、その接線の傾きが徐々に大きくなるように形成されている。
 第2入射面121bは、光軸OAに垂直な方向において、第1入射面121aよりも第2反射面123側(径方向外側)に配置されている。第2入射面121bは、発光素子110から出射された光のうち、光軸OAに対する出射角度が大きい光を光束制御部材120の内部に入射させる。また、第2入射面121bは、発光素子110から出射された光のうち、光軸OAに対する出射角度が大きい光を第2反射面123に到達するように制御する。第2入射面121bの形状は、前述の機能を発揮できれば特に限定されない。第2入射面121bは、1つの面であってもよいし、複数の面であってもよい。本実施の形態では、第2入射面121bは、1つの面である。また、本実施の形態では、第2入射面121bは、光軸OAから離れるにつれて、発光素子110の発光面を含む平面に近づくように形成されている。回転軸RAを含む断面において、第2入射面121bの形状は、直線であってもよいし、曲線であってもよい。本実施の形態では、回転軸RAを含む断面における第2入射面121bの形状は、直線である。また、回転軸RAを含む断面における回転軸RAに対する第2入射面121bの傾斜角度は、特に限定されない。本実施の形態では、回転軸RAを含む断面における回転軸RAに対する第2入射面121bの傾斜角度は、射出成形時の離型を考慮して、僅かに傾斜している。
 このように、第1入射面121aおよび第2入射面121bは、光束制御部材120の後方(裏面)に開口した第1凹部127の内面とも言える。本実施の形態では、第1凹部127の形状は、天面が内側に隆起した略円柱形状である。この場合、第1凹部127の内天面は第1入射面121aに相当し、第1凹部127の内側面は第2入射面121bに相当する。
 第1反射面122は、入射領域121の反対側に配置されている。第1反射面122は、入射領域121で入射した光のうち、一部の光を、光軸OAを含む断面において、光軸OAを境界として第1反射面122と同じ側の第2反射面123に向けて反射させる。第1反射面122は、1つの面であってもよいし、複数の面であってもよい。本実施の形態では、第1反射面122は、複数の面である。第1反射面122は、内側第1反射面122aと、外側第1反射面122bとを有する。内側第1反射面122aおよび外側第1反射面122bの形状は、前述の機能を発揮できれば特に限定されない。回転軸RAを含む断面において、内側第1反射面122aおよび外側第1反射面122bは、直線であってもよいし、曲線であってもよい。本実施の形態では、内側第1反射面122aおよび外側第1反射面122bは、それぞれ曲線である。また、本実施の形態では、回転軸RAを含む断面において、内側第1反射面122aおよび外側第1反射面122bは、回転軸RAから離れるにつれて、それぞれその接線の傾きが徐々に小さくなるように形成されている。
 第2反射面123は、発光素子110の光軸OAに垂直な方向において、光軸OAに対して入射領域121よりも離れて(径方向外側に)配置されている。第2反射面123は、主として発光素子110から出射され、第2入射面121bで入射した光を第3反射面124に向けて反射させるか、第1反射面122で反射した光を外部に出射させる。すなわち、第2反射面123は、到達する光に対応して、反射面として機能するか、出射面として機能する。第2反射面123は、1つの面であってもよいし、複数の面であってもよい。本実施の形態では、第2反射面123は、1つの面である。第2反射面123の形状は、前述の機能を発揮できれば特に限定されない。回転軸RAを含む断面において、第2反射面123は、直線であってもよいし、曲線であってもよい。本実施の形態では、第2反射面123は、曲線である。また、本実施の形態では、回転軸RAを含む断面において、第2反射面123は、第3反射面124に近づくにつれて光軸OAから遠ざかるように形成されている。また、第2反射面123は、回転軸RA(中心軸CA)を含む断面において、第3反射面124に近づくにつれて、その接線の傾きが徐々に大きくなるように形成されている。
 第3反射面124は、各発光素子110の光軸OAに沿う方向において、第2反射面123の反対側(上側)に配置されている。より具体的には、第3反射面124は、発光素子110の発光面を含む平面に対して第2反射面123よりも離れた位置に配置されている。第3反射面124は、主として第2反射面123で反射した光を接続面125に向けて反射させる。第3反射面124は、1つの面であってもよいし、複数の面であってもよい。本実施の形態では、第3反射面124は、1つの面である。第3反射面124の形状は、前述の機能を発揮できれば特に限定されない。回転軸RAを含む断面において、第3入射面124の形状は、直線であってもよいし、曲線であってもよい。本実施の形態では、回転軸RAを含む断面における第3反射面124の形状は、曲線である。また、本実施の形態では、回転軸RAを含む断面において、第3反射面124は、第2反射面123に近づくにつれて光軸OAから遠ざかるように形成されている。また、第3反射面124は、回転軸RA(中心軸CA)を含む断面において、第2反射面123に近づくにつれて、その接線の傾きが徐々に小さくなるように形成されている。
 また、本実施の形態では、光軸OAに沿う方向において、第3反射面124の一端は、第2反射面123の一端に接続されている。光軸OAに沿う方向における第2反射面123および第3反射面124の境界の位置は、第2入射面121bで入射した光が第2反射面123に到達できれば特に限定されない。本実施の形態では、当該境界は、発光素子110から出射され、第2反射面123で反射した光が第3反射面124に到達する位置に形成されている。
 接続面125は、第1反射面122および第3反射面124を接続する。接続面125は、第3反射面124で反射した光を外部に出射させる。接続面125は、1つの面であってもよいし、複数の面であってもよい。本実施の形態では、接続面125は、複数の面である。本実施の形態では、接続面125は、第1接続面125aと、第2接続面125bとを含む。
 第1接続面125aは、光軸OAに沿う方向において、第1反射面122側(下側)に配置されており、第2接続面125bは、発光素子110の発光面を含む平面に対して第1接続面125aより離れた位置に形成されている。また、回転軸RAを含む断面において、第1接続面125aおよび第2接続面125b(接続面125)の形状は、接続面125から出射された光が対向する第1反射面122で入射できれば特に限定されない。回転軸RAを含む断面において、第1接続面125aおよび第2接続面125bの形状は、それぞれ直線であってもよいし、曲線であってもよい。本実施の形態では、回転軸RAを含む断面において、第1接続面125aおよび第2接続面125bの形状は、いずれも直線である。回転軸RAを含む断面において、回転軸RAに対する第1接続面および第2接続面125bの傾斜角度は、特に限定されない。回転軸RAに対する第1接続面125aの傾斜角度は、0°である。すなわち、本実施の形態では、第1接続面125aは、回転軸RAに沿う方向に配置されている。また、本実施の形態では、第2接続面125bは、光軸OAから離れるにつれて、第1接続面125aから離れるように形成されている。すなわち、本実施の形態では、第2接続面125bは、射出成形時の離型を考慮して、回転軸RAに対して僅かに傾斜している。
 (光束制御部材における光の光路)
 本実施の形態に係る光束制御部材120における発光素子110から出射された光の光路についてシミュレーションした。また、比較のため、図3に示される比較例1に係る光束制御部材220における光路と、図4に示される比較例2に係る光束制御部材320における光路とについてもシミュレーションした。
 図3は、比較例1に係る光束制御部材220の構成を示す図である。図3Aは、比較例1に係る光束制御部材220の平面図であり、図3Bは、底面図であり、図3Cは、側面図であり、図3Dは、図3Aに示されるA-A線の断面図である。
 図3A~Dに示されるように、比較例1に係る光束制御部材220は、発光素子110と対向して配置された入射面221と、入射面221の反対側に配置された反射面222と、入射面221の外縁部と反射面222の外縁部を接続する出射面223とを有し、中心軸CAを回転軸とする回転対称である。例えば、比較例1に係る光束制御部材220の直径は、35mmであり、高さは13mmである。このように、前述した本実施の形態に係る光束制御部材120と比較して、比較例1に係る光束制御部材220は、大きい。
 入射面221は、平面状に形成されている。また、反射面222は、中心軸CAと交わるように形成された第1反射面222aと、第1反射面222aを取り囲むように配置された第2反射面222bとを有する。第1反射面222aは、入射面221で入射した光のうち、一部の光を中心軸CAから離れるように出射させる。第2反射面222bは、入射面221で入射した光のうち、他の一部の光を出射面223に向けて内部反射させる。出射面223は、反射面222で反射した光を外部に出射させる。
 図4は、比較例2に係る光束制御部材320の構成を示す図である。図4Aは、比較例2に係る光束制御部材320の平面図であり、図4Bは、底面図であり、図4Cは、側面図であり、図4Dは、図4Aに示されるA-A線の断面図である。
 図4A~Dに示されるように、比較例2に係る光束制御部材320は、発光素子110と対向して配置された入射面321と、入射面321の反対側に配置された反射面322(第1反射面322aおよび第2反射面322b)と、入射面321の外縁部と反射面322の外縁部を接続する出射面323とを有し、中心軸CAを回転軸とする回転対称である。例えば、比較例2に係る光束制御部材320の直径は、15mmであり、高さは9.8mmである。このように、前述した本実施の形態に係る光束制御部材120と比較して、比較例2に係る光束制御部材320は、大きい。また、比較例2に係る光束制御部材320は、比較例1に係る光束制御部材220の中心軸CA近傍の一部と同じ形状である。すなわち、比較例2に係る光束制御部材320は、図3Aおよび図3Dに示される破線で示される領域に相当する形状である。
 図5A~Cは、比較例1に係る光束制御部材220における光路図である。図5A~Cでは、回転軸RAを含む断面における光路を示している。図5Aは、発光素子110の中心から、光軸OAを境界として一方に出射された光の光路図であり、図5Bは、発光素子110の一方の端部から、外側に出射された光の光路図である。図5Cは、発光素子110の一方の端部から、光軸OA側に出射された光の光路図である。なお、図5A~Cでは、光路を示すため、ハッチングを省略している。
 図5Aに示されるように、発光素子110の中心から出射された光は、入射面221で光束制御部材220の内部に入射する。入射面221で入射した光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1反射面222aで光軸OAから遠ざかるように出射する。また、入射面221で入射した光のうち、発光素子110の光軸OAに対する出射角度が大きな光は、第2反射面222bで反射して、出射面223から出射される。また、図5Bおよび図5Cに示されるように、回転軸RAを含む断面において、発光素子110の一方の端部から出射された光は、入射面221で光束制御部材220の内部に入射する。入射面221で入射した光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1反射面222aで光軸OAから遠ざかるように出射する。また、入射面221で入射した光のうち、発光素子110の光軸OAに対する出射角度が大きな光は、第2反射面222bで反射して、出射面223から出射される。このとき、出射面223から出射される光のうち、大部分の光は、後方に向かって出射される。このように、比較例1に係る光束制御部材220は、比較的良好な配光のバランスを得ることができる。
 図6A~Cは、比較例2に係る光束制御部材320における光路図である。図6A~Cでは、回転軸RAを含む断面における光路を示している。図6Aは、発光素子110の中心から、光軸OAを境界として一方に出射された光の光路図であり、図6Bは、発光素子110の一方の端部から、外側に出射された光の光路図である。図6Cは、発光素子110の一方の端部から、光軸OA側に出射された光の光路図である。なお、図6A~Cでは、光路を示すため、ハッチングを省略している。
 図6Aに示されるように、発光素子110の中心から出射された光は、入射面321で光束制御部材320の内部に入射する。入射面321で入射した光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1反射面322aで光軸OAから遠ざかるように出射する。また、入射面321で入射した光のうち、発光素子110の光軸OAに対する出射角度が大きな光は、第1反射面322aで反射して、出射面323から出射される。また、図6Bおよび図6Cに示されるように、回転軸RAを含む断面において、発光素子110の一方の端部から出射された光は、入射面321で光束制御部材320の内部に入射する。入射面321で入射した光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1反射面322aで光軸OAから遠ざかるように出射する。また、入射面321で入射した光のうち、発光素子110の光軸OAに対する出射角度が大きな光は、第1反射面322aで反射して、出射面323から出射される。このように、比較例2に係る光束制御部材320は、比較例1に係る光束制御部材220の径を小さくした形状であるため、比較例1の光束制御部材220と比較して、配光のバランスが悪化してしまった。
 図7A~Cは、本実施の形態に係る光束制御部材120における光路図である。図7A~Cでは、回転軸RAを含む断面における光路を示している。図7Aは、発光素子110の中心から出射された光の光路図であり、図7Bは、発光素子110の一方の端部から、外側に出射された光の光路図である。図7Cは、回転軸RAを含む断面において、発光素子110の一方の端部から、光軸OA側に出射された光の光路図である。なお、図7A~Cでは、光路を示すため、ハッチングを省略している。
 図7Aに示されるように、発光素子110の中心から出射された光は、入射領域121で光束制御部材120の内部に入射する。より具体的には、発光素子110の中心から出射された光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1入射面121aで入射する。第1入射面121aで入射した光は、光軸OAを境界として当該第1入射面121aと同じ側の第1反射面122で反射して、当該同じ側の第2反射面123から出射される。このとき、第2反射面123から出射される光のうち、多くの光は、側方または後方に向けて出射される。一方、発光素子110の中心から出射された光のうち、発光素子110の光軸OAに対する出射角度が大きな光は、第2入射面121bで入射する。第2入射面121bで入射した光は、回転軸RAを含む断面において、光軸OAを境界として当該第2入射面121bと同じ側の第2反射面123および第3反射面124の順番で反射した後、当該同じ側の接続面125から出射する。接続面125から出射した光は、回転軸RAを含む断面において、光軸OAを挟んで反対側の第1反射面122aまたは接続面125で再度入射した後に、当該反対側の前記第2反射面123から出射される。このとき、第2反射面123から出射される光のうち、多くの光は、後方に向けて出射される。
 図7Bに示されるように、回転軸RAを含む断面において、発光素子110の一方の端部から、光軸OAを境界として、光が出射された発光面の端部と同じ側に出射された光は、同じ側の第1入射面121aおよび第2入射面121bで入射する。より具体的には、発光素子110の端部から出射された光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1入射面121aで入射する。第1入射面121aで入射した光のうち、大部分の光は、光軸OAを境界として、光が入射した第1入射面121aと同じ側の第1反射面122から外部に出射される。一方、第2入射面121bで入射した光は、光軸OAを境界として、第2入射面121bと同じ側の第2反射面123および第3反射面124で順番に反射される。第3反射面124で反射された光は、当該同じ側の接続面125で一度外部に出射される。接続面125から出射された光は、光軸OAを境界として反対側の第1反射面122で再度入射した後に、当該反対側の第2反射面124から出射される。このとき、第2反射面123から出射される光のうち、多くの光は、後方に向けて出射される。
 図7Cに示されるように、回転軸RAを含む断面において、発光素子110の一方の端部から、光軸OAを境界として、光が出射された発光面の端部と反対側に出射された光は、光が出射された発光面の端部と同じ側の第1入射面121aおよび当該反対側の第2入射面121bで入射する。より具体的には、発光素子110の端部から出射された光のうち、発光素子110の光軸OAに対する出射角度が小さな光は、第1入射面121aで入射する。第1入射面121aで入射した光のうち、大部分の光は、当該反対側の第2反射面123から外部に出射される。一方、第2入射面121bで入射した光は、光軸OAを境界として、第2入射面123と同じ側の第2反射面123および第3反射面124で順番に反射される。第3反射面124で反射された光は、当該同じ側の接続面125で一度外部に出射される。接続面125から出射された光は、光軸OAを境界として反対側の第1反射面122で再度入射した後に、当該反対側の第2反射面123から出射される。このとき、第2反射面123から出射される光のうち、多くの光は、後方に向けて出射される。
 このように、本実施の形態に係る光束制御部材120では、発光素子110から出射された光は、前方、側方および後方に向けて出射される。すなわち、本実施の形態に係る光束制御部材120は、比較例2に係る光束制御部材320より小さいが配光のバランスが良好である。
 (発光装置および照明装置の配光特性)
 次に、本実施の形態に係る光束制御部材120の効果を確認するために、1個の発光素子110および光束制御部材120を有する発光装置140の配光特性と、発光装置140にカバー160を取り付けた照明装置100の配光特性とをそれぞれシミュレーションした。また、比較のため、図3に示される比較例1に係る光束制御部材220を用いた発光装置および照明装置と、図4に示される比較例2に係る光束制御部材320を用いた発光装置および照明装置とについてもシミュレーションした。各シミュレーションでは、回転軸RAと、発光素子110の発光面との交点を基準点として、回転軸RAを含む平面における全方位の相対照度を求めた。また、各シミュレーションでは、当該基準点から1000mmの距離にある仮想面における照度を算出した。
 図8~10は、比較例1、比較例2および本実施の形態に係る発光装置および照明装置の配光特性を示すグラフである。各グラフの外側に記載されている数値は、当該基準点に対する角度(°)を示している。0°は光軸OAの方向(前方方向)、90°は水平方向(側方方向)、180°は、後方方向を示している。また、各グラフの内側に記載されている数値は、各方向の相対照度(最大値1)を示している。各グラフの実線は、発光素子110と、光束制御部材とを組み合わせた場合(発光装置)の結果を示しており、点線は、発光素子110と、光束制御部材と、カバー160を組み合わせた場合(照明装置)の結果を示している。
 図8は、比較例1における発光装置および照明装置の配光特性を示すグラフである。図8に示されるように、発光装置(実線)では、前方方向に向かう光はわずかであり、±140°近傍方向に向かう光が生成されることがわかった。これは、光束制御部材220の反射面222により、発光素子110から出射された光のうち、大部分の光が後方に向かって制御されたためだと考えられる。また、発光装置にカバー160を取り付けた照明装置(点線)では、前方方向および側方方向に向かう出射光量を均一にできているが、±140°近傍方向に向かう光が多く、光のムラがあった。
 図9は、比較例2における発光装置および照明装置の配光特性を示すグラフである。図9に示されるように、発光装置(実線)では、±140°近傍方向に向かう光に加え、±50°近傍方向に向かう光が生成されることがわかった。これは、光束制御部材320の入射面321(径)が小さいため、入射面321で入射した光が出射面323で反射して、反射面322から出射されたためだと考えられる。また、発光装置にカバー160を取り付けた照明装置では、側方方向に向かう出射光量を均一にできているが、±50°近傍および±140°近傍方向に向かう光が多く、光のムラがあった。このように、比較例1の光束制御部材220は、小型化すると配光特性が劣化してしまう。
 図10は、実施の形態1に係る発光装置140および照明装置100の配光特性を示すグラフである。図10に示されるように、発光装置(実線)では、前方に向かう光に加え、側方に向かう光および後方に向かう光が生成されることが分かった。これは、主として、光束制御部材120の第2反射面123および第3反射面124により後方に向かう光を生成するとともに、適度に前方および側方に光が出射されるためだと考えられた。また、発光装置140にカバー160を取り付けた照明装置100(点線)では、前方方向、側方方向および後方方向へ向かう出射光量を均等にすることにより光のムラをより低減できることがわかった。このように、本実施の形態に係る光束制御部材120は、比較例2に係る光束制御部材320より小さいが配光のバランスが良好である。
 (変形例)
 次に、実施の形態1の変形例に係る光束制御部材420について説明する。実施の形態1の変形例に係る光束制御部材420は、第1入射面421aおよび第1反射面422の形状のみが実施の形態1に係る光束制御部材120と異なる。そこで、実施の形態1に係る光束制御部材120と同様の構成については、同一の符号を付してその説明を省略する。
 図11は、実施の形態1の変形例に係る光束制御部材420の斜視図である。図11Aは、光束制御部材420を第1反射面422側からみた斜視図であり、図11Bは、光束制御部材420を入射領域421側からみた斜視図である。また、図12A~Dは、実施の形態1の変形例に係る光束制御部材420の構成を示す図である。図12Aは、実施の形態1の変形例に係る光束制御部材420の平面図であり、図12Bは、底面図であり、図12Cは、側面図であり、図12Dは、図12Aに示されるA-A線の断面図である。
 図11A、Bおよび図12A~Dに示されるように、実施の形態1の変形例に係る光束制御部材420は、入射領域421、第1反射面422、第2反射面123、第3反射面124および接続面425を有する。また、入射領域421は、第1入射面421aと、第2入射面421bとを有する。第1入射面421aは、内側第1入射面421cと、外側第1反射面421dと、を有する。
 内側第1入射面421cは、光軸OAと交わるように配置されている。内側第1入射面421cは、発光素子110から出射した光のうち、発光素子110の光軸OAに対する出射角度が小さな光を、光軸OAから離れるように屈折させつつ、光束制御部材420の内部に入射させる。内側第1入射面421cは、光軸OAから離れるにつれて、発光素子110の発光面を含む平面に近づくように形成されている。また、光軸OAを含む断面における内側第1入射面421cの形状は、前述の条件を満たせば特に限定されない。本実施の形態では、光軸OAを含む断面における内側第1入射面421cの形状は、直線である。すなわち、内側第1入射面421cは、円錐の側面状に形成されている。
 外側第1入射面421dは、光軸OAと垂直な方向において内側第1入射面421cより光軸OAから離れた位置に配置されている。外側第1入射面421dは、発光素子110から出射した光のうち、内側第1入射面421cで入射した光の入射角度より大きく、かつ第2入射面421bに入射する光の入射角度より小さい出射角度の光を、光軸OAから離れるように屈折させつつ、光束制御部材420の内部に入射させる。外側第1入射面421dの形状は、特に限定されない。外側第1入射面421dの形状は、平面であってもよいし、曲面であってもよい。本実施の形態では、外側第1入射面421dの形状は、平面である。また、第1反射面422は、光軸OAと直交するように配置されている。
 接続面425は、1つの面で構成されている。また、回転軸RAを含む断面において、接続面425の形状は、特に限定されない。回転軸RAを含む断面において、接続面425の形状は、直線である。回転軸RAを含む断面において、接続面425の傾斜角度は、特に限定されない。また、本実施の形態では、接続面425は、光軸OAから離れるにつれて、発光素子110の発光面を含む平面に近づくように形成されている。すなわち、本実施の形態では、回転軸RAに対して接続面425は、射出成形時の離型を考慮して、僅かに傾斜している。
 (効果)
 以上のように、本実施の形態に係る光束制御部材120、420を有する照明装置100は、光束制御部材120、420を小型化しても発光素子110から出射される光を制御するための第2反射面123および第3反射面124を有しているため、光束制御部材120、420が大型化することなく、適切に後方に向けて進行するように制御できる。本実施の形態に係る照明装置100は、従来の照明装置に比べて、より白熱電球に近い配光特性を示すことができる。
 [実施の形態2]
 次に、実施の形態2に係る照明装置500について説明する。実施の形態2では、本発明の照明装置の代表例として、蛍光灯に代えて使用されうる照明装置について説明する。
 (照明装置の構成)
 図13は、本発明の実施の形態2に係る照明装置500の断面図である。図14および図15は、実施の形態2に係る光束制御部材520の構成を示す図である。図14Aは、光束制御部材520を第1反射面522側から見た場合の斜視図であり、図14Bは、光束制御部材520を入射領域521側からみた斜視図である。図15Aは、実施の形態2に係る光束制御部材520の平面図であり、図15Bは、底面図であり、図15Cは、側面図であり、図15Dは、正面図である。
 図13に示されるように、照明装置500は、複数の発光素子110および光束制御部材520を含む発光装置540と、基板550と、カバー560とを有する。
 発光素子110は、実施の形態1に係る照明装置100に使用された発光素子110と同じである。発光装置540において、複数の発光素子110は、基板550上に一列に配置されている。発光装置540における発光素子110の数は、2以上であれば特に限定されない。光束制御部材520は、柱状に形成されている。発光装置540は、基板550上に配置されている。なお、光束制御部材520については、後述する。
 カバー560は、光束制御部材520から出射された光を拡散させつつ外部に透過させる。カバー560は、発光装置540を覆うように、発光装置540に対して空気層を介して配置されている。カバー560の外面は、有効発光領域となる。カバー560の形状は、空気層を介して発光装置540を覆うことができれば、特に限定されない。図13に示される例では、カバー560は、円筒の一部を切り欠いた形状であるが、カバー560は、円筒形状などであってもよい。
 図14A、Bおよび図15A~Dに示されるように、実施の形態2に係る光束制御部材520は、柱状に形成されている。光束制御部材520は、入射領域521、第1反射面522、第2反射面523、第3反射面524および接続面525を有する。入射領域521、第1反射面522、第2反射面523、第3反射面524および接続面525は、発光素子110の光軸OAに直交する一の方向に延在している。したがって、各面は、当該方向(複数の発光素子110の配列方向)については曲率を有していない。なお、本実施の形態では、光束制御部材520は、脚部を有する必要がない。これは、光束制御部材520が発光素子110の光軸OAに直交する一の方向に延在しているため、発光素子110から発せられる熱を外部に逃がすための間隙を有するためである。
 入射領域521は、発光素子110と対向するように配置されている。入射領域521は、第1入射面521aおよび第2入射面521bを含む。また、第1反射面522は、内側第1反射面522aおよび外側第1反射面522bを有する。さらに、接続面525は、第1接続面525aおよび第2接続面525bを有する。
 入射領域521、第1反射面522、第2反射面523、第3反射面524および接続面525の短軸方向の断面の形状は、実施の形態1における光束制御部材120の回転軸RAを含む断面形状と同じである。また、入射領域521、第1反射面522、第2反射面523、第3反射面524および接続面525の機能は、実施の形態1における光束制御部材120の入射領域121、第1反射面122、第2反射面123、第3反射面124および接続面125の機能とそれぞれ同じである。
 なお、特に図示しないが、実施の形態1と同様に、第1入射面521aは、内側第1入射面と、外側第1反射面と、を有していてもよい。この場合、内側第1入射面および外側第1反射面の機能は、実施の形態1における内側第1入射面421cおよび外側第1反射面421dと同じである。
 (効果)
 以上のように、実施の形態2に係る光束制御部材520は、実施の形態1に係る光束制御部材120と同様の効果を有する。本実施の形態に係る照明装置500は、従来の照明装置に比べて、より蛍光灯に近い配光特性を示すことができる。
 本出願は、2015年6月29日出願の特願2015-129864に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明に係る光束制御部材を有する照明装置は、白熱電球または蛍光灯に代えて使用されうるため、シャンデリアや蛍光灯、間接照明装置などの各種照明機器に幅広く適用されうる。
 100、500 照明装置
 110 発光素子
 120、220、320、420、520 光束制御部材
 121、421、521 入射領域
 121a、421a、521a 第1入射面
 121b、421b、521b 第2入射面
 122、422、522 第1反射面
 122a、522a 内側第1反射面
 122b、522b 外側第1反射面
 123、523 第2反射面
 124、524 第3反射面
 125、425、525 接続面
 125a、525a 第1接続面
 125b、525b 第2接続面
 126 脚部
 127 第1凹部
 140、540 発光装置
 150、550 基板
 160、560 カバー
 170 筐体
 221、321 入射面
 222、322 反射面
 222a、322a 第1反射面
 222b、322b 第2反射面
 223、323、 出射面
 421c 内側第1入射面
 421d 外側第1入射面
 CA 回転軸
 OA 光軸
 RA 回転軸

Claims (9)

  1.  発光素子から出射された光の配光を制御する光束制御部材であって、
     前記発光素子の光軸を含む断面において前記光軸に対して対称に形成され、
     前記発光素子と対向するように配置された入射領域と、
     前記入射領域の反対側に配置された第1反射面と、
     前記光軸に垂直な方向に、前記光軸に対して前記第1反射面よりも離れて配置された第2反射面と、
     前記光軸に沿う方向において、前記第2反射面の反対側に配置された第3反射面と、
     前記第1反射面および前記第3反射面を接続する接続面と、
     を有し、
     前記光軸および前記光軸に垂直な方向に沿う直線を含む断面において、前記発光素子から出射された光のうち、一部の光は、前記入射領域で入射した後、前記光軸を境界として当該入射領域と同じ側の前記第1反射面で反射して、当該同じ側の前記第2反射面から出射され、
     前記断面において、前記発光素子から出射された光のうち、他の一部の光は、前記入射領域で入射して、前記光軸を境界として当該入射領域と同じ側の前記第2反射面および前記第3反射面の順番で反射した後、当該同じ側の前記接続面から出射して、前記光軸を挟んで反対側の前記第1反射面で再度入射した後に、当該反対側の前記第2反射面から出射される、
     光束制御部材。
  2.  前記入射領域は、
     前記発光素子と対向するように配置され、前記発光素子から出射された光のうち、前記光軸に対する出射角度が小さい光が入射する第1入射面と、
     前記光軸に垂直な方向において、前記第1入射面よりも前記第2反射面側に配置され、前記発光素子から出射された光のうち、前記光軸に対する出射角度が大きい光が入射する第2入射面と、
     を有し、
     前記断面において、前記第1入射面に入射した光は、前記光軸を境界として当該第1入射面と同じ側の前記第1反射面で反射して、当該同じ側の前記第2反射面から出射され、
     前記断面において、前記第2入射面で入射した光は、前記光軸を境界として当該第2入射面と同じ側の前記第2反射面および前記第3反射面の順番で反射した後、当該同じ側の前記接続面から出射して、前記光軸を挟んで反対側の前記第1反射面で再度入射した後に、当該反対側の前記第2反射面から出射される、
     請求項1に記載の光束制御部材。
  3.  前記第1入射面および前記第1反射面は、それぞれ前記光軸から離れるにつれて、前記発光素子の発光面を含む平面から遠ざかるように形成されている、
     請求項2に記載の光束制御部材。
  4.  前記第1入射面は、
     前記光軸と交わるように配置され、前記光軸から離れるにつれて、前記発光素子の発光面を含む平面に近づくように形成された内側第1入射面と、
     前記光軸と垂直な方向において前記第1内側入射面より前記光軸から離れた位置に配置された外側第1入射面と、を有する、
     請求項2に記載の光束制御部材。
  5.  前記第2反射面は、前記第3反射面に近づくにつれて、前記光軸から遠ざかるように形成され、
     前記第3反射面は、前記第2反射面に近づくにつれて、前記光軸から遠ざかるように形成されている、
     請求項1~4のいずれか一項に記載の光束制御部材。
  6.  前記入射領域、前記第1反射面、前記第2反射面、前記第3反射面および前記接続面は、前記光軸に沿う軸を回転軸とする回転対称である、請求項1~5のいずれか一項に記載の光束制御部材。
  7.  前記入射領域、前記第1反射面、前記第2反射面、前記第3反射面および前記接続面は、前記光軸に対して直交する方向に延在している、請求項1~5のいずれか一項に記載の光束制御部材。
  8.  発光素子と、
     請求項1~7のいずれか一項に記載の光束制御部材と、を有し、
     前記光束制御部材は、前記入射領域が前記発光素子と対向するように配置されている、
     発光装置。
  9.  請求項8に記載の発光装置と、
     前記発光装置からの出射光を拡散させつつ透過させるカバーと、
     を有する、照明装置。
PCT/JP2016/068813 2015-06-29 2016-06-24 光束制御部材、発光装置および照明装置 WO2017002723A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/739,793 US10563825B2 (en) 2015-06-29 2016-06-24 Light flux control member, light-emitting device and illumination device
CN201680038593.8A CN107709876B (zh) 2015-06-29 2016-06-24 光束控制部件、发光装置及照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015129864A JP6541126B2 (ja) 2015-06-29 2015-06-29 光束制御部材、発光装置および照明装置
JP2015-129864 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017002723A1 true WO2017002723A1 (ja) 2017-01-05

Family

ID=57608452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068813 WO2017002723A1 (ja) 2015-06-29 2016-06-24 光束制御部材、発光装置および照明装置

Country Status (4)

Country Link
US (1) US10563825B2 (ja)
JP (1) JP6541126B2 (ja)
CN (1) CN107709876B (ja)
WO (1) WO2017002723A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125245A (ja) * 2017-02-03 2018-08-09 株式会社エンプラス 面光源装置および表示装置
JP7047240B2 (ja) * 2018-01-30 2022-04-05 日亜化学工業株式会社 照明装置
CN112483939A (zh) * 2020-12-11 2021-03-12 赛尔富电子有限公司 一种透镜以及带有该透镜的灯具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048205A (ja) * 2010-08-24 2012-03-08 Samsung Led Co Ltd 光学レンズ、これを備えるledモジュール及び照明装置
JP2013065574A (ja) * 2012-12-25 2013-04-11 Sharp Corp 照明装置
WO2014082370A1 (zh) * 2012-12-01 2014-06-05 欧普照明股份有限公司 一种光源
JP2014524125A (ja) * 2011-07-22 2014-09-18 ガーディアン・インダストリーズ・コーポレーション Led照明システム用熱管理サブシステム、熱管理サブシステムを含むled照明システム、及び/又はその製造方法
WO2015074502A1 (zh) * 2013-11-22 2015-05-28 成都派斯光学有限公司 Led蜡烛灯透镜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160666A (ja) 2011-02-02 2012-08-23 Sharp Corp 光源モジュール及び照明装置
TWM416736U (en) * 2011-06-03 2011-11-21 Lustrous Technology Ltd Light guide structure and lamp structure
KR101946909B1 (ko) * 2012-01-10 2019-04-25 엘지이노텍 주식회사 렌즈 유닛 및 발광 장치
JP2015074502A (ja) 2013-10-13 2015-04-20 まり子 萩原 砂時計式調味料入れ
TWI564506B (zh) * 2014-12-31 2017-01-01 錼創科技股份有限公司 光學模組

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048205A (ja) * 2010-08-24 2012-03-08 Samsung Led Co Ltd 光学レンズ、これを備えるledモジュール及び照明装置
JP2014524125A (ja) * 2011-07-22 2014-09-18 ガーディアン・インダストリーズ・コーポレーション Led照明システム用熱管理サブシステム、熱管理サブシステムを含むled照明システム、及び/又はその製造方法
WO2014082370A1 (zh) * 2012-12-01 2014-06-05 欧普照明股份有限公司 一种光源
JP2013065574A (ja) * 2012-12-25 2013-04-11 Sharp Corp 照明装置
WO2015074502A1 (zh) * 2013-11-22 2015-05-28 成都派斯光学有限公司 Led蜡烛灯透镜

Also Published As

Publication number Publication date
JP2017016776A (ja) 2017-01-19
US20190011086A1 (en) 2019-01-10
US10563825B2 (en) 2020-02-18
CN107709876A (zh) 2018-02-16
CN107709876B (zh) 2019-10-22
JP6541126B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
US10274160B2 (en) Luminaire for emitting directional and non-directional light
JP6507035B2 (ja) 光束制御部材、発光装置および照明装置
US9360191B2 (en) Lighting device
JP2015103323A (ja) 照明装置
JP2015225849A (ja) 光束制御部材、発光装置および照明装置
JP5977636B2 (ja) 光束制御部材、発光装置および照明装置
US8956015B2 (en) Light-emitting apparatus and lighting system
WO2017002723A1 (ja) 光束制御部材、発光装置および照明装置
US11553566B2 (en) Luminaire for emitting directional and non-directional light
JP2014123479A (ja) 照明装置及びこれに用いられる集光ユニット
JP2012209049A (ja) Led照明装置およびレンズ
JP2016058310A (ja) 光束制御部材、発光装置および照明装置
JP6689590B2 (ja) 光束制御部材、発光装置および照明装置
JP6144166B2 (ja) 車両用灯具
WO2016009798A1 (ja) 光束制御部材、発光装置および照明装置
CA2961624A1 (en) Luminaire for emitting directional and non-directional light
CN113251384A (zh) 光准直组件和发光装置
JP2017174628A (ja) 車両用灯具
JP2015026451A (ja) 電球形照明装置
WO2016181789A1 (ja) 光束制御部材、発光装置および照明装置
US11867365B2 (en) Luminaire for emitting directional and non-directional light
JP7300879B2 (ja) 光学レンズ、光源装置及び照明装置
JP6659918B2 (ja) 固体光エミッタ照明アセンブリ及び照明器具
EP2843301A1 (en) Light engine for an illumination device
JP2015532518A (ja) プリズム素子を持つ間接照明のための照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817831

Country of ref document: EP

Kind code of ref document: A1