WO2017002641A1 - 印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体 - Google Patents

印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体 Download PDF

Info

Publication number
WO2017002641A1
WO2017002641A1 PCT/JP2016/068061 JP2016068061W WO2017002641A1 WO 2017002641 A1 WO2017002641 A1 WO 2017002641A1 JP 2016068061 W JP2016068061 W JP 2016068061W WO 2017002641 A1 WO2017002641 A1 WO 2017002641A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
printing
group
polymer
layer
Prior art date
Application number
PCT/JP2016/068061
Other languages
English (en)
French (fr)
Inventor
修知 嶋中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16817749.1A priority Critical patent/EP3318414A4/en
Priority to CN201680038902.1A priority patent/CN107709029A/zh
Priority to JP2017526284A priority patent/JPWO2017002641A1/ja
Priority to BR112018000045A priority patent/BR112018000045A2/pt
Publication of WO2017002641A1 publication Critical patent/WO2017002641A1/ja
Priority to US15/856,612 priority patent/US20180117942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1041Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/036Chemical or electrical pretreatment characterised by the presence of a polymeric hydrophilic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/038Treatment with a chromium compound, a silicon compound, a phophorus compound or a compound of a metal of group IVB; Hydrophilic coatings obtained by hydrolysis of organometallic compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/06Backcoats; Back layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/10Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by inorganic compounds, e.g. pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/12Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by non-macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/20Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by inorganic additives, e.g. pigments, salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/262Phenolic condensation polymers, e.g. novolacs, resols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Definitions

  • the present invention relates to a printing original plate including a lithographic printing plate precursor and a discarded printing plate precursor, a laminate thereof, a lithographic printing plate and a discarded printing plate produced using the printing original plate, and a laminated body thereof.
  • a lithographic printing plate precursor is often stored and transported as a laminate in which a plurality of lithographic printing plate precursors are stacked.
  • the planographic printing plate precursors are usually used for the purpose of preventing misalignment of the planographic printing plate precursors, preventing adhesion between the lithographic printing plate precursors, and preventing scratches on the recording layer side surface of the lithographic printing plate precursors. Inserts a slip sheet.
  • the use of interleaving paper itself involves problems such as cost increase and disposal processing, and it is necessary to remove it before the exposure process. It also becomes.
  • it is necessary to consider that the recording layer side surface of the planographic printing plate precursor is not damaged. Accordingly, there is a demand for the development of a lithographic printing plate precursor that can be laminated without interleaf.
  • a lithographic printing plate precursor (Patent Document 1), glass having an organic polymer layer containing crosslinked polymer particles having a number average particle size of 1 to 100 ⁇ m on the surface opposite to the surface having the recording layer of the support
  • a lithographic printing plate material (Patent Document 2) provided with a backcoat layer made of a polymer latex having a transition temperature (Tg) of 40 ° C. or less and containing a matting agent having an average particle diameter of 10 ⁇ m or less.
  • Tg transition temperature
  • a lithographic printing plate precursor (Patent Document 3) having a photosensitive layer containing polymer fine particles on one side of a support and a back coat layer containing an organic polymer compound on the opposite side.
  • a lithographic printing plate precursor having a protective layer containing organic polymer fine particles surface-coated with a hydrophilic polymer and silica as the uppermost layer on the recording layer side of the support, and having a back coat layer made of an organic resin on the opposite side ( Patent document 4) is known.
  • Japanese Unexamined Patent Publication No. 2007-148040 Japanese Unexamined Patent Publication No. 2006-56185 Japanese Unexamined Patent Publication No. 2008-249851 Japanese Unexamined Patent Publication No. 2008-15503
  • the photosensitive layer contains organic resin fine particles, but the photosensitive layer is a layer that greatly affects the performance of the lithographic printing plate precursor, and therefore the lithographic printing plate produced therefrom. It is essential that the performance of the lithographic printing plate precursor, in particular, that it does not affect the image forming property and that the fine particles do not fall off.
  • An object of the present invention is to provide a printing original plate that can prevent any misalignment of the original plate, adhesion between original plates, and scratches even without interleaf when laminating printing original plates including lithographic printing plate original plates and discarded plate original plates. It is to be. Moreover, the objective of this invention is providing the laminated body of the said printing original plate. Furthermore, an object of the present invention is to provide a lithographic printing plate or a printing discard plate produced using the printing original plate. Moreover, the objective of this invention is providing the laminated body of the said lithographic printing plate or the discarding plate for printing.
  • the present invention includes the following configurations. 1.
  • a printing original plate having a layer containing a polymer on one side on a support, and a layer containing metal oxide and fine particles obtained by hydrolysis and polycondensation of an organometallic compound or an inorganic metal compound on the other side.
  • the fine particles are fine particles having a hydrophilic surface.
  • the fine particles having a hydrophilic surface are at least one selected from organic resin fine particles having a hydrophilic surface and inorganic fine particles having a hydrophilic surface.
  • the organic resin fine particles having a hydrophilic surface are organic resin fine particles coated with at least one inorganic compound selected from silica, alumina, titania and zirconia.
  • the organic resin fine particles having a hydrophilic surface are organic resin fine particles coated with silica. Or 4.
  • the organic resin constituting the organic resin fine particles having the hydrophilic surface is at least one selected from a polyacrylic resin, a polyurethane resin, a polystyrene resin, a polyester resin, an epoxy resin, a phenol resin, and a melamine resin. 2. Resin ⁇ 5.
  • the polymer-containing layer is a positive image recording layer containing an infrared absorber.
  • the printing original plate as described in any one of. 8).
  • the layer containing the polymer is a negative image recording layer containing an infrared absorber, a polymerization initiator, and a polymerizable compound.
  • the printing original plate as described in any one of. 9.
  • the layer containing the polymer is a negative image recording layer containing an infrared absorber, a polymerization initiator, a polymerizable compound, and a polymer compound in the form of fine particles.
  • the printing original plate as described in any one of. 10. 1.
  • the polymer-containing layer is a negative image recording layer containing an infrared absorber and thermoplastic polymer fine particles.
  • the printing original plate as described in any one of. 11. 6.
  • the polymer-containing layer can be removed with printing ink and / or fountain solution.
  • the printing original plate as described in any one of. 12
  • the layer containing the polymer is a non-photosensitive layer.
  • the printing original plate as described in any one of. 13.
  • the polymer-containing layer can be removed by at least one of printing ink and fountain solution.
  • the printing original plate described in 1. 14.1. ⁇ 11 A lithographic printing plate produced using the printing original plate according to any one of the above. 15.12. Or 13.
  • the present invention includes the following configurations. 20.11. A method for performing printing by exposing an image of the printing original plate described in 1 above, supplying a printing ink and a fountain solution, and removing a non-image part of the layer containing the polymer of the image recording layer on a printing machine. 21.12. A method of printing by supplying printing ink and fountain solution and removing the layer containing the polymer on a printing machine without exposing the printing original plate described in 1 above to an image.
  • a printing original plate including a lithographic printing plate precursor and a discarded printing plate precursor when laminated, a printing original plate that can prevent any deviation of the original plate, adhesion between the original plates, and scratches without interleaving is provided. can do.
  • the laminated body of the said printing original plate can be provided.
  • the laminated body of the said lithographic printing plate or the discarding plate for printing can be provided.
  • the term “printing plate precursor” includes a lithographic printing plate precursor and a printing discard plate precursor. Further, the term “printing plate” includes a lithographic printing plate produced by subjecting a printing original plate to operations such as exposure and development, and a discarded printing plate. In the case of a printing plate precursor, printing and exposure operations are not necessarily required.
  • the printing original plate according to the present invention comprises a layer containing a polymer on one side on a support, a metal oxide and fine particles obtained by hydrolysis and polycondensation of an organometallic compound or an inorganic metal compound on the other side.
  • One feature of the printing original plate according to the present invention is that a metal oxide obtained by hydrolysis and polycondensation of an organometallic compound or an inorganic metal compound on the side opposite to the layer containing the polymer of the support and a specific average A layer containing fine particles having a particle size (hereinafter also referred to as a back coat layer).
  • the back coat layer in the printing original plate according to the present invention contains metal oxides and fine particles obtained by hydrolysis and polycondensation of an organic metal compound or an inorganic metal compound, and the average particle size of the fine particles is 0.3 ⁇ m or more. And a backcoat layer larger than the thickness of the layer containing the metal oxide and fine particles.
  • the back coat layer contains a metal oxide obtained by hydrolysis and polycondensation of an organic metal compound or an inorganic metal compound.
  • a metal oxide obtained by hydrolysis and polycondensation of an organic metal compound or an inorganic metal compound contained in the backcoat layer (hereinafter also simply referred to as a metal oxide) is obtained by using an organic metal compound or an inorganic metal compound in water and an organic solvent.
  • a so-called sol-gel reaction liquid obtained by hydrolysis and condensation polymerization with a catalyst such as acid or alkali is preferable.
  • the organic metal compound or inorganic metal compound include metal alkoxide, metal acetylacetonate, metal acetate, metal oxalate, metal nitrate, metal sulfate, metal carbonate, metal oxychloride, metal chloride, and these.
  • a condensate obtained by partially hydrolyzing and oligomerizing is obtained by partially hydrolyzing and oligomerizing.
  • the metal alkoxide is a compound represented by the formula M (OR) n (wherein M represents a metal element, R represents an alkyl group, and n represents the oxidation number of the metal element).
  • M represents a metal element
  • R represents an alkyl group
  • n represents the oxidation number of the metal element.
  • Specific examples include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , Al (OCH 3 ) 3 , Al (OC 2).
  • mono-substituted silicon such as CH 3 Si (OCH 3 ) 3 , C 2 H 5 Si (OCH 3 ) 3 , CH 3 Si (OC 2 H 5 ) 3 , C 2 H 5 Si (OC 2 H 5 ) 3 Alkoxides are also used.
  • metal alkoxides are preferable because they are highly reactive and easily form a polymer made of a metal-oxygen bond.
  • silicon alkoxide compounds such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 are easily available at low cost, The metal oxide obtained therefrom is excellent in coverage and is particularly preferred.
  • oligomers obtained by condensing these silicon alkoxide compounds by partial hydrolysis For example, an average pentamer ethylsilicate oligomer containing about 40% by mass of SiO 2 may be mentioned.
  • An organic metal compound or an inorganic metal compound can be used alone or in combination of two or more.
  • silane coupling agent in which one or two alkoxy groups of the silicon tetraalkoxy compound are substituted with an alkyl group or a reactive group in combination with a metal alkoxide.
  • silane coupling agent one or two alkoxy groups in the silicon tetraalkoxy compound are substituted with a hydrophobic substituent such as a long-chain alkyl group having 4 to 20 carbon atoms or a fluorine-substituted alkyl group.
  • a coupling agent is mentioned, The silane coupling agent which has a fluorine substituted alkyl group especially is preferable.
  • silane coupling agent examples include CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 CF 2 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 CH 2 CH 2 Si (OC 2 H 5 3 ), and commercially available products include LS-1090 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the content of the silane coupling agent is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, based on the total solid content of the backcoat layer.
  • organic and inorganic acids and alkalis are used as a catalyst useful in forming a sol-gel reaction solution.
  • examples include hydrochloric acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, hydrofluoric acid, phosphoric acid, phosphorous acid and other inorganic acids, formic acid, acetic acid, propionic acid, butyric acid, glycolic acid, chloroacetic acid, dichloroacetic acid, Trichloroacetic acid, fluoroacetic acid, bromoacetic acid, methoxyacetic acid, oxaloacetic acid, citric acid, oxalic acid, succinic acid, malic acid, tartaric acid, fumaric acid, maleic acid, malonic acid, ascorbic acid, benzoic acid, 3,4-dimethoxybenzoic acid Substituted benzoic acids such as acids, phenoxyacetic acid, phthalic acid, picric acid, nicotinic acid, picolinic acid,
  • catalysts include sulfonic acids, sulfinic acids, alkyl sulfates, phosphonic acids, and phosphate esters, such as p-toluenesulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfinic acid, ethyl acid.
  • Organic acids such as phenylphosphonic acid, phenylphosphinic acid, phenyl phosphate, and diphenyl phosphate can also be used.
  • Catalysts can be used alone or in combination of two or more.
  • the amount of the catalyst is preferably 0.001 to 10% by mass, more preferably 0.05 to 5% by mass, based on the starting metal compound.
  • the amount of the catalyst is within this range, the start of the sol-gel reaction is favorably performed, the rapid reaction is suppressed, and the generation of non-uniform sol-gel particles can be prevented.
  • the amount of water added is preferably 0.05 to 50-fold mol, more preferably 0.5 to 30-fold mol of the amount necessary to completely hydrolyze the starting metal compound. When the amount of water is within this range, the hydrolysis proceeds well.
  • Solvent is added to the sol-gel reaction solution.
  • Any solvent may be used as long as it dissolves the starting metal compound and dissolves or disperses the sol-gel particles produced by the reaction, such as lower alcohols such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, diethyl ketone, and the like. Ketones are used.
  • mono- or dialkyl ethers or acetates of glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol can be used for the purpose of improving the coating surface quality of the backcoat layer.
  • the solvent lower alcohols that can be mixed with water are preferable.
  • the sol-gel reaction solution is adjusted with a solvent to a concentration suitable for coating.
  • a solvent to a concentration suitable for coating.
  • the total amount of the solvent is added to the reaction solution from the beginning, the raw material is diluted, making it difficult for the hydrolysis reaction to proceed. Therefore, it is preferable to add a part of the solvent to the sol-gel reaction solution and add the remaining solvent when the reaction proceeds.
  • the back coat layer includes fine particles.
  • the fine particles contained in the backcoat layer are characterized by having an average particle size of 0.3 ⁇ m or more and larger than the thickness of the backcoat layer.
  • the fine particles are preferably fine particles having a hydrophilic surface.
  • the fine particles having a hydrophilic surface include organic resin fine particles having a hydrophilic surface or inorganic fine particles having a hydrophilic surface.
  • the organic resin fine particles having a hydrophilic surface are preferably organic resin fine particles coated with at least one inorganic compound selected from silica, alumina, titania and zirconia. In particular, organic resin fine particles coated with silica are preferable.
  • the organic resin constituting the organic resin fine particles having a hydrophilic surface is at least one resin selected from a polyacrylic resin, a polyurethane resin, a polystyrene resin, a polyester resin, an epoxy resin, a phenol resin, and a melamine resin. It is preferable that
  • organic resin fine particles having a hydrophilic surface will be described in detail by taking, as an example, organic resin fine particles coated with silica (hereinafter also referred to as silica-coated organic resin fine particles).
  • the resin fine particles are not limited to this.
  • Silica-coated organic resin fine particles are fine particles obtained by coating fine particles of an organic resin with silica.
  • the organic resin fine particles constituting the core are preferably not softened or sticky depending on moisture in the air and temperature.
  • organic resin constituting the organic resin fine particles of the silica-coated organic resin fine particles examples include polyacrylic resins, polyurethane resins, polystyrene resins, polyester resins, epoxy resins, phenol resins, and melamine resins.
  • Examples of the material for forming the silica layer covering the surface of the silica-coated organic resin fine particles include compounds having an alkoxysilyl group such as a condensate of an alkoxysiloxane compound, in particular, a siloxane material, specifically silica sol, colloidal silica. Preferred are silica fine particles such as silica nanoparticles.
  • Silica-coated organic resin fine particles are composed of silica particles adhering to the surface of organic resin fine particles as a solid component to form a siloxane compound layer on the surface of organic resin fine particles by condensation reaction of alkoxysiloxane compounds. It may be the configuration.
  • Silica does not necessarily have to cover the entire surface of the organic resin fine particles. If the surface is coated at an amount of 0.5% by mass or more with respect to the mass of the organic resin fine particles, the effect of the present invention can be easily obtained. . That is, when silica is present on at least a part of the surface of the organic resin fine particles, the affinity with the coexisting water-soluble polymer, for example, PVA is achieved on the surface of the organic fine particles, and external stress is applied. However, dropping of the fine particles is suppressed, and excellent scratch resistance and adhesion resistance can be maintained. For this reason, the “silica coating” in the present invention includes such a state that silica is present on at least a part of the surface of the organic resin fine particles.
  • the surface coating state of silica can be confirmed by morphological observation with a scanning electron microscope (TEM) or the like. Moreover, the coating amount of silica can be confirmed by detecting Si atoms by elemental analysis such as fluorescent X-ray analysis and calculating the amount of silica present there.
  • TEM scanning electron microscope
  • the method for producing the silica-coated organic resin fine particles is not particularly limited, and the silica surface coating layer is formed simultaneously with the formation of the organic resin fine particles by coexisting the silica fine particles or the silica precursor compound with the monomer component as the raw material of the organic resin fine particles.
  • the silica fine particles may be physically attached to the surface and then fixed.
  • silica and raw material resin from more water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylic acid, and suspension stabilizers appropriately selected from inorganic suspensions such as calcium phosphate and calcium carbonate
  • a monomer capable of suspension polymerization, a prepolymer capable of suspension cross-linking, or a raw material resin such as a resin liquid constituting the organic resin is added, stirred, and mixed, and silica and raw material A suspension in which the resin is dispersed is prepared.
  • a suspension having a target particle size can be formed by adjusting the type of suspension stabilizer, its concentration, the number of stirring revolutions, and the like.
  • the suspension is heated to start the reaction, and resin particles are produced by suspension polymerization or suspension crosslinking of the resin raw material.
  • the coexisting silica is fixed to the resin particles that are cured by polymerization or cross-linking reaction, particularly near the surface of the resin particles due to the physical properties thereof.
  • the suspension is subjected to solid-liquid separation, and the suspension stabilizer attached to the particles is removed by washing, followed by drying.
  • substantially spherical silica-coated organic resin fine particles having a desired particle diameter on which silica is immobilized are obtained.
  • silica-coated organic resin fine particles having a desired particle diameter by controlling the conditions during suspension polymerization or suspension crosslinking, and without carrying out such control strictly. After the resin fine particles are generated, silica-coated organic fine particles having a desired size can be obtained by a mesh filtration method or the like.
  • the addition amount of the raw material in the mixture when the silica-coated organic fine particles are produced by the above method for example, when the total amount of the raw material resin and silica is 100 parts by weight, first, 200 to 800 parts by weight of water as a dispersion medium 0.1 to 20 parts by weight of a suspension stabilizer is added to the mixture and sufficiently dissolved or dispersed, and the mixture of 100 parts by weight of the raw material resin and silica is added to the liquid, and the dispersed particles have a predetermined particle size. After adjusting the particle size, the liquid temperature is raised to 30 to 90 ° C. and the reaction is carried out for 1 to 8 hours.
  • silica-coated organic resin fine particles As for the method for producing silica-coated organic resin fine particles, the above-mentioned method is one example, for example, Japanese Patent Application Laid-Open No. 2002-327036, Japanese Patent Application Laid-Open No. 2002-173410, Japanese Patent Application Laid-Open No. 2004-307837, and the like.
  • Silica-coated organic resin fine particles obtained by the method described in detail in, for example, Kaikai 2006-38246 can also be used favorably in the present invention.
  • Silica-coated organic resin fine particles are also available as commercial products. Specifically, as silica / melamine composite fine particles, Nissan Chemical Industries, Ltd. Optobead 2000M, Optobead 3500M, Optobead 6500M, Optobead 10500M, optobead 3500S, optobead 6500S. As silica / acrylic composite fine particles, Negami Industrial Co., Ltd. Art Pearl G-200 transparent, Art Pearl G-400 transparent, Art Pearl G-800 transparent, Art Pearl GR-400 transparent, Art Pearl GR-600 transparent, Art Pearl GR-800 transparent, Art Pearl J-7P. Silica / urethane composite fine particles include Negami Industrial Co., Ltd.
  • the silica-coated organic resin fine particles are taken as an example to explain the organic resin fine particles used in the backcoat layer according to the present invention, but the organic resin fine particles coated with alumina, titania or zirconia are also replaced with silica, instead of alumina, It can be similarly carried out by using titania or zirconia.
  • inorganic fine particles having a hydrophilic surface known inorganic particles having a hydrophilic surface can be used.
  • fine particles made of silica, alumina, zirconia or titania are preferable.
  • organic resin fine particles can also be used.
  • organic resin fine particles synthesis of poly (meth) acrylates, polystyrene and derivatives thereof, polyamides, polyimides, polyolefins such as low density polyethylene, high density polyethylene, polypropylene, polyurethane, polyurea, polyesters, etc.
  • the synthetic resin fine particles have advantages such as easy particle size control and easy control of desired surface characteristics by surface modification.
  • a relatively hard resin such as polymethyl methacrylate (PMMA) can be finely divided by a crushing method, but particles are synthesized by an emulsion / suspension polymerization method.
  • PMMA polymethyl methacrylate
  • the method is preferably employed because of the ease and accuracy of particle size control.
  • the production method of organic resin fine particles is “Ultra Fine Particles and Materials”, edited by the Japan Society for Materials Science, published in ⁇ ⁇ ⁇ 1993, “Preparation and Application of Fine Particles / Powder”, supervised by Haruma Kawaguchi, and published by CMC Publishing 2005. It is described in detail.
  • Organic resin fine particles are also available as commercial products.
  • the shape of the fine particles used in the backcoat layer is preferably a true spherical shape, but may be a so-called spindle shape in which the flat plate shape or the projection view is an elliptical shape. It is important that the average particle diameter of the fine particles is larger than the thickness of the backcoat layer.
  • the average particle size of the fine particles is preferably 0.3 ⁇ m or more larger than the thickness of the backcoat layer.
  • the average particle diameter of the fine particles is preferably 0.3 to 30 ⁇ m, more preferably 0.5 to 15 ⁇ m, and still more preferably 1 to 10 ⁇ m. In this range, a sufficient spacer function can be exhibited, it can be easily fixed to the backcoat layer, and has an excellent holding function against external contact stress.
  • the average particle size of the fine particles in the present invention means a commonly used volume average particle size, and the volume average particle size can be measured by a laser diffraction / scattering particle size distribution meter.
  • the measuring device include a particle size distribution measuring device “Microtrac MT-3300II” (manufactured by Nikkiso Co., Ltd.).
  • the addition amount of silica-coated fine particles in the backcoat layer is preferably 5 to 1000 mg / m 2 , more preferably 10 to 500 mg / m 2 , and still more preferably 20 to 200 mg / m 2 .
  • the thickness of the back coat layer is preferably from 0.01 to 30 ⁇ m, more preferably from 0.1 to 10 ⁇ m, still more preferably from 0.2 to 5 ⁇ m. However, the thickness of the backcoat layer needs to be smaller than the average particle diameter of the fine particles contained therein.
  • the thickness of the backcoat layer is measured by forming a backcoat layer by applying a backcoat layer coating solution on the surface of the support to which the backcoat layer is to be applied, and scanning the cross section of the backcoat layer with a scanning electron microscope (SEM). The film thickness can be measured by measuring the thickness of five smooth regions where fine particles are not present and determining the average value.
  • the back coat layer is prepared by preparing a back coat layer coating solution containing the metal oxide and fine particles, and if necessary, other additives, and applying and drying the back coat layer coating solution on the support. be able to.
  • a known coating method such as bar coater coating is used for coating the backcoat layer. Drying is preferably performed at a temperature of 50 to 200 ° C. for a time of about 10 seconds to 5 minutes.
  • the printing original plate according to the present invention has a layer containing a polymer on one side of a support. Below, it describes about the lithographic printing plate precursor which is one preferable aspect of the printing original plate.
  • the planographic printing plate precursor according to the invention has an image recording layer on a support.
  • the image recording layer in the lithographic printing plate precursor corresponds to the polymer-containing layer in the printing original plate. If necessary, the image recording layer lithographic printing plate precursor may have an undercoat layer between the support and the image recording layer and a protective layer on the image recording layer.
  • the image recording layer is an image recording layer whose non-image area is removed by at least one of acidic to alkaline dampening water and printing ink on a printing press.
  • the image recording layer is a negative image recording layer (hereinafter also referred to as image recording layer A) containing an infrared absorber, a polymerization initiator, a polymerizable compound, and a binder polymer.
  • the image recording layer is a negative image recording layer (hereinafter also referred to as image recording layer B) containing an infrared absorber, a polymerization initiator, a polymerizable compound, and a polymer compound in the form of fine particles. is there.
  • the image recording layer is a negative image recording layer (hereinafter also referred to as image recording layer C) containing an infrared absorber and thermoplastic polymer fine particles.
  • the image recording layer A contains an infrared absorber, a polymerization initiator, a polymerizable compound, and a binder polymer.
  • an infrared absorber a polymerization initiator
  • a polymerizable compound a polymerizable compound
  • a binder polymer a binder polymer
  • the infrared absorber has a function of converting absorbed infrared light into heat and a function of being excited by infrared light and transferring electrons and / or energy to a polymerization initiator described later.
  • the infrared absorber used in the present invention is preferably a dye or pigment having an absorption maximum at a wavelength of 760 to 1200 nm, more preferably a dye.
  • the particle diameter of the pigment is preferably 0.01 to 1 ⁇ m, more preferably 0.01 to 0.5 ⁇ m.
  • a known dispersion technique used for ink production or toner production can be used. Details are described in “Latest Pigment Applied Technology” (CMC Publishing, 1986).
  • An infrared absorber may use only 1 type and may use 2 or more types together.
  • the content of the infrared absorber is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, and particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the image recording layer. Part by mass.
  • the polymerization initiator is a compound that initiates and accelerates the polymerization of the polymerizable compound.
  • a known thermal polymerization initiator a compound having a bond with a small bond dissociation energy, a photopolymerization initiator, and the like can be used.
  • radical polymerization initiators described in paragraph numbers [0092] to [0106] of JP 2014-104631 A can be used.
  • preferred compounds include onium salts, especially iodonium salts and sulfonium salts.
  • Preferred specific compounds among the respective salts are the same as the compounds described in paragraph numbers [0104] to [0106] of JP-A-2014-104631.
  • the content of the polymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 0.8 to 20% by mass with respect to the total solid content of the image recording layer. Within this range, better sensitivity and better stain resistance of the non-image area during printing can be obtained.
  • the polymerizable compound is an addition polymerizable compound having at least one ethylenically unsaturated double bond, and is selected from compounds having at least one terminal ethylenically unsaturated bond, preferably two or more. These have chemical forms such as monomers, prepolymers, ie dimers, trimers and oligomers, or mixtures thereof. Specifically, polymerizable compounds described in paragraph numbers [0109] to [0113] of JP-A-2014-104631 can be used.
  • tris (acryloyloxyethyl) isocyanurate, bis (acryloyloxyethyl) hydroxyethyl isocyanurate, etc. are excellent in the balance between the hydrophilicity involved in on-press developability and the polymerization ability involved in printing durability.
  • Isocyanuric acid ethylene oxide modified acrylates are particularly preferred.
  • the polymerizable compound is preferably used in the range of 5 to 75% by mass, more preferably 10 to 70% by mass, and particularly preferably 15 to 60% by mass with respect to the total solid content of the image recording layer.
  • the binder polymer is mainly used for the purpose of improving the film strength of the image recording layer.
  • a conventionally well-known thing can be used for a binder polymer,
  • the polymer which has film property is preferable.
  • acrylic resins, polyvinyl acetal resins, polyurethane resins and the like are preferable.
  • the main chain or the side chain preferably the side chain, has a crosslinkable functional group for improving the film strength of the image area. Things. Crosslinking is formed between the polymer molecules by the crosslinkable group, and curing is accelerated.
  • the crosslinkable functional group is preferably an ethylenically unsaturated group such as a (meth) acryl group, vinyl group, allyl group, or styryl group, or an epoxy group.
  • the crosslinkable functional group is introduced into the polymer by polymer reaction or copolymerization. can do. For example, a reaction between an acrylic polymer or polyurethane having a carboxy group in the side chain and polyurethane and glycidyl methacrylate, or a reaction between a polymer having an epoxy group and an ethylenically unsaturated group-containing carboxylic acid such as methacrylic acid can be used.
  • the content of the crosslinkable group in the binder polymer is preferably 0.1 to 10.0 mmol, more preferably 0.25 to 7.0 mmol, particularly preferably 0.5 to 5.5 mmol per 1 g of the binder polymer. .
  • the binder polymer preferably has a hydrophilic group.
  • the hydrophilic group contributes to imparting on-press developability to the image recording layer.
  • the coexistence of the crosslinkable group and the hydrophilic group makes it possible to achieve both printing durability and on-press developability.
  • hydrophilic group examples include a hydroxy group, a carboxy group, an alkylene oxide structure, an amino group, an ammonium group, an amide group, a sulfo group, and a phosphoric acid group.
  • an alkylene oxide unit having 2 or 3 carbon atoms An alkylene oxide structure having 1 to 9 is preferred.
  • the hydrophilic group can be imparted to the binder polymer by, for example, copolymerizing a monomer having a hydrophilic group.
  • an oleophilic group such as an alkyl group, an aryl group, an aralkyl group or an alkenyl group can be introduced in order to control the inking property.
  • it can be performed by copolymerizing a lipophilic group-containing monomer such as an alkyl methacrylate ester.
  • the binder polymer preferably has a mass average molecular weight (Mw) of 2,000 or more, more preferably 5,000 or more, and still more preferably 10,000 to 300,000.
  • Mw mass average molecular weight
  • the content of the binder polymer is suitably 3 to 90% by mass, preferably 5 to 80% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the image recording layer.
  • a preferred example of the binder polymer is a polymer compound having a polyoxyalkylene chain in the side chain.
  • a polymer compound having a polyoxyalkylene chain in the side chain hereinafter also referred to as POA chain-containing polymer compound
  • POA chain-containing polymer compound a polymer compound having a polyoxyalkylene chain in the side chain
  • the resin constituting the main chain of the POA chain-containing polymer compound includes acrylic resin, polyvinyl acetal resin, polyurethane resin, polyurea resin, polyimide resin, polyamide resin, epoxy resin, methacrylic resin, polystyrene resin, and novolac phenolic resin. , Polyester resin, synthetic rubber and natural rubber, and acrylic resin is particularly preferable.
  • the POA chain-containing polymer compound is substantially free of perfluoroalkyl groups.
  • “Substantially free of perfluoroalkyl group” means that the mass ratio of fluorine atoms present as a perfluoroalkyl group in the polymer compound is less than 0.5% by mass, and preferably does not contain. The mass ratio of fluorine atoms is measured by elemental analysis.
  • the “perfluoroalkyl group” is a group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • the alkylene oxide (oxyalkylene) in the polyoxyalkylene chain is preferably an alkylene oxide having 2 to 6 carbon atoms, more preferably ethylene oxide (oxyethylene) or propylene oxide (oxypropylene), and still more preferably ethylene oxide.
  • the number of repeating alkylene oxides in the polyoxyalkylene chain, that is, the poly (alkylene oxide) site is preferably 2 to 50, and more preferably 4 to 25. If the number of alkylene oxide repeats is 2 or more, the permeability of the fountain solution is sufficiently improved, and if the number of repeats is 50 or less, the printing durability due to wear does not deteriorate, which is preferable.
  • the poly (alkylene oxide) moiety the structures described in paragraph numbers [0060] to [0062] of JP-A No. 2014-104631 are preferable.
  • the POA chain-containing polymer compound may have crosslinkability in order to improve the film strength of the image area.
  • the POA chain-containing polymer compound having crosslinkability is described in paragraph numbers [0063] to [0072] of JP-A-2014-104631.
  • the ratio of the repeating unit having a poly (alkylene oxide) moiety to the total repeating units constituting the POA chain-containing polymer compound is not particularly limited, but is preferably 0.5 to 80 mol%, more preferably 0.5 to 50 mol%.
  • Specific examples of the POA chain-containing polymer compound include those described in paragraphs [0075] to [0076] of JP-A-2014-104631.
  • the POA chain-containing polymer compound can be used in combination with a hydrophilic polymer compound such as polyacrylic acid and polyvinyl alcohol described in JP-A-2008-195018, if necessary. Further, a lipophilic polymer compound and a hydrophilic polymer compound can be used in combination.
  • the form of the POA chain-containing polymer compound in the image recording layer may be present in the form of fine particles, in addition to being present as a binder that functions as a binder for the image recording layer components.
  • the average particle size is in the range of 10 to 1000 nm, preferably in the range of 20 to 300 nm, particularly preferably in the range of 30 to 120 nm.
  • the content of the POA chain-containing polymer compound is preferably 3 to 90% by mass, more preferably 5 to 80% by mass, based on the total solid content of the image recording layer. In the range of 3 to 90% by mass, the permeability of dampening water and the image formability can be more reliably achieved.
  • a polymer compound having a polyfunctional thiol having 6 or more and 10 or less functions as a nucleus, a polymer chain bonded to the nucleus by a sulfide bond, and the polymer chain having a polymerizable group (Hereinafter also referred to as a star polymer compound).
  • a star polymer compound for example, compounds described in JP2012-148555A can be preferably used.
  • the star polymer compound has a polymerizable group such as an ethylenically unsaturated bond for improving the film strength of the image portion as described in JP-A-2008-195018, having a main chain or a side chain, preferably a side chain. What has in a chain
  • strand is mentioned. Crosslinking is formed between the polymer molecules by the polymerizable group, and curing is accelerated.
  • an ethylenically unsaturated group such as a (meth) acryl group, a vinyl group, an allyl group, or a styryl group, or an epoxy group is preferable, and a (meth) acryl group, a vinyl group, or a styryl group is polymerizable. It is more preferable from the viewpoint, and a (meth) acryl group is particularly preferable. These groups can be introduced into the polymer by polymer reaction or copolymerization.
  • a reaction between a polymer having a carboxy group in the side chain and glycidyl methacrylate, or a reaction between a polymer having an epoxy group and an ethylenically unsaturated group-containing carboxylic acid such as methacrylic acid can be used. These groups may be used in combination.
  • the content of the crosslinkable group in the star polymer compound is preferably 0.1 to 10.0 mmol, more preferably 0.25 to 7.0 mmol, most preferably 0.5, per 1 g of the star polymer compound. ⁇ 5.5 mmol.
  • the star polymer compound preferably further has a hydrophilic group.
  • the hydrophilic group contributes to imparting on-press developability to the image recording layer.
  • the coexistence of a polymerizable group and a hydrophilic group makes it possible to achieve both printing durability and developability.
  • hydrophilic group examples include —SO 3 M 1 , —OH, —CONR 1 R 2 (M 1 represents hydrogen, metal ion, ammonium ion, phosphonium ion, and R 1 and R 2 each independently represents a hydrogen atom.
  • M 1 represents hydrogen, metal ion, ammonium ion, phosphonium ion
  • R 1 and R 2 each independently represents a hydrogen atom.
  • —N + R 3 R 4 R 5 X — R 3 to R 5 are each independently and an alkyl group having 1 to 8 carbon, X - represents a counter anion
  • n and m each independently represent an integer of 1 to 100, and R each independently represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • star polymer compound is a star polymer compound having a polyoxyalkylene chain (for example, a group represented by the above general formula (1) or (2)) in the side chain
  • a star polymer compound is also a polymer compound having the polyoxyalkylene chain in the side chain.
  • hydrophilic groups —CONR 1 R 2 , a group represented by the general formula (1), and a group represented by the general formula (2) are preferable, and represented by —CONR 1 R 2 and the general formula (1)
  • the group represented by the general formula (1) is particularly preferred.
  • n is more preferably 1 to 10, and particularly preferably 1 to 4.
  • R is more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group. Two or more of these hydrophilic groups may be used in combination.
  • the star polymer compound preferably has substantially no carboxylic acid group, phosphoric acid group or phosphonic acid group. Specifically, it is preferably less than 0.1 mmol / g, more preferably less than 0.05 mmol / g, and particularly preferably 0.03 mmol / g or less. When these acid groups are less than 0.1 mmol / g, developability is further improved.
  • a lipophilic group such as an alkyl group, an aryl group, an aralkyl group, and an alkenyl group can be introduced into the star polymer compound in order to control the inking property.
  • a lipophilic group-containing monomer such as alkyl methacrylate ester may be copolymerized.
  • star polymer compound examples include those described in paragraph numbers [0153] to [0157] of JP-A-2014-104631.
  • the star polymer compound can be synthesized by a known method such as radical polymerization of the monomer constituting the polymer chain in the presence of the polyfunctional thiol compound.
  • the mass average molecular weight of the star polymer compound is preferably 5,000 to 500,000, more preferably 10,000 to 250,000, and particularly preferably 20,000 to 150,000. In this range, the on-press developability and printing durability become better.
  • star polymer compound may be used alone, or two or more types may be mixed and used. Moreover, you may use together with a normal linear binder polymer.
  • the content of the star polymer compound is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 15 to 85% by mass with respect to the total solid content of the image recording layer.
  • the star polymer compound described in JP 2012-148555 A is preferable because the permeability of the fountain solution is promoted and the on-press developability is improved.
  • the image recording layer A can contain other components described below as required.
  • the image recording layer may contain a low molecular weight hydrophilic compound in order to improve the on-press developability without reducing the printing durability.
  • a low molecular weight hydrophilic compound for example, as the water-soluble organic compound, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol and the like glycols and ether or ester derivatives thereof, glycerin, Polyols such as pentaerythritol and tris (2-hydroxyethyl) isocyanurate, organic amines such as triethanolamine, diethanolamine and monoethanolamine and salts thereof, organic sulfones such as alkylsulfonic acid, toluenesulfonic acid and benzenesulfonic acid Acids and salts thereof, organic sulfamic acids such as alkylsulfamic acid and salts thereof, organic sulfuric acids such as alkyl
  • the salt may be a potassium salt or a lithium salt.
  • organic sulfate examples include compounds described in paragraph numbers [0034] to [0038] of JP-A-2007-276454.
  • betaines compounds in which the hydrocarbon substituent on the nitrogen atom has 1 to 5 carbon atoms are preferable.
  • Specific examples include trimethylammonium acetate, dimethylpropylammonium acetate, 3-hydroxy-4-trimethyl.
  • the dampening solution penetrates into the exposed part of the image recording layer (image part) and does not reduce the hydrophobicity or film strength of the image part.
  • the ink acceptability and printing durability of the layer can be maintained well.
  • the addition amount of the low molecular weight hydrophilic compound is preferably 0.5 to 20% by mass of the total solid content of the image recording layer. 1 to 15% by mass is more preferable, and 2 to 10% by mass is even more preferable. In this range, good on-press developability and printing durability can be obtained.
  • a compound may be used independently and may be used in mixture of 2 or more types.
  • a grease sensitizer such as a phosphonium compound, a nitrogen-containing low molecular weight compound, or an ammonium group-containing polymer can be used in the image recording layer in order to improve the inking property.
  • these compounds function as a surface coating agent for the inorganic stratiform compound, and have an effect of preventing a decrease in the inking property during printing by the inorganic stratiform compound.
  • the phosphonium compound, the nitrogen-containing low molecular weight compound, and the ammonium group-containing polymer are specifically described in paragraph numbers [0184] to [0190] of JP-A-2014-104631.
  • the content of the sensitizer is preferably 0.01 to 30.0% by mass, more preferably 0.1 to 15.0% by mass, and more preferably 1 to 10% by mass with respect to the total solid content of the image recording layer. Further preferred.
  • the image recording layer includes, as other components, a surfactant, a colorant, a bake-out agent, a polymerization inhibitor, a higher fatty acid derivative, a plasticizer, inorganic fine particles, an inorganic layered compound, a co-sensitizer, A chain transfer agent and the like can be contained.
  • a surfactant for example, paragraph numbers [0114] to [0159] of Japanese Patent Application Laid-Open No. 2008-284817, paragraph numbers [0023] to [0027] of Japanese Patent Application Laid-Open No. 2006-091479, and US Patent Publication No. 2008/0311520.
  • paragraph numbers [0114] to [0159] of Japanese Patent Application Laid-Open No. 2008-284817 paragraph numbers [0023] to [0027] of Japanese Patent Application Laid-Open No. 2006-091479, and US Patent Publication No. 2008/0311520.
  • ⁇ Formation of image recording layer A> For the image recording layer A, for example, as described in paragraphs [0142] to [0143] of JP-A-2008-195018, the necessary components described above are dispersed or dissolved in a known solvent to prepare a coating solution. Then, this coating solution is formed on the support directly or through an undercoat layer by a known method such as bar coater coating and then dried.
  • the coating amount (solid content) of the image recording layer on the support obtained after coating and drying is usually 0.3 to 3.0 g / m 2 although it varies depending on the application. Within this range, good sensitivity and good film characteristics of the image recording layer can be obtained.
  • the image recording layer B contains an infrared absorber, a polymerization initiator, a polymerizable compound, and a polymer compound in the form of fine particles.
  • an infrared absorber a polymerization initiator
  • a polymerizable compound a polymerizable compound
  • a polymer compound in the form of fine particles a polymer compound in the form of fine particles.
  • the infrared absorber the polymerization initiator, and the polymerizable compound in the image recording layer B
  • the infrared absorber, the polymerization initiator, and the polymerizable compound described in the image recording layer A can be similarly used.
  • the polymer compound in the form of fine particles may be selected from thermoplastic polymer fine particles, heat-reactive polymer fine particles, polymer fine particles having a polymerizable group, microcapsules enclosing a hydrophobic compound, and microgel (crosslinked polymer fine particles). preferable. Among these, polymer fine particles and microgels having a polymerizable group are preferable.
  • the particulate polymeric compound comprises at least one ethylenically unsaturated polymerizable group. Due to the presence of such a polymer compound in the form of fine particles, the effect of improving the printing durability of the exposed portion and the on-press developability of the unexposed portion can be obtained.
  • thermoplastic polymer fine particles Research Disclosure No. 1 of January 1992 was used. No. 33303, JP-A-9-123387, JP-A-9-131850, JP-A-9-171249, JP-A-9-171250 and European Patent No. 931647 are preferable.
  • Specific examples of the polymer constituting the thermoplastic polymer fine particles include ethylene, styrene, vinyl chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinylidene chloride, acrylonitrile, vinyl carbazole, and a polyalkylene structure.
  • thermoplastic polymer fine particles is preferably 0.01 to 3.0 ⁇ m. The average particle diameter is calculated by a laser light scattering method.
  • thermoreactive polymer fine particles examples include polymer fine particles having a heat-reactive group.
  • the thermoreactive polymer fine particles form a hydrophobized region by crosslinking by a thermal reaction and a functional group change at that time.
  • the thermally reactive group in the polymer fine particles having a thermally reactive group may be any functional group that performs any reaction as long as a chemical bond is formed, but is preferably a polymerizable group.
  • Ethylenically unsaturated group for example, acryloyl group, methacryloyl group, vinyl group, allyl group, etc.
  • cationic polymerizable group for example, vinyl group, vinyloxy group, epoxy group, oxetanyl group, etc.
  • addition reaction for radical polymerization reaction An isocyanate group or a block thereof, an epoxy group, a vinyloxy group and a functional group having an active hydrogen atom as a reaction partner thereof (for example, an amino group, a hydroxy group, a carboxy group, etc.), a carboxy group that performs a condensation reaction, and Hydroxy group or amino group that is the reaction partner, acid anhydride that performs the ring-opening addition reaction, and a reaction partner that is Such as amino group or hydroxy group are
  • the microcapsules for example, as described in JP-A Nos. 2001-277740 and 2001-277742, at least a part of the constituent components of the image recording layer is encapsulated in the microcapsules.
  • the constituent components of the image recording layer can also be contained outside the microcapsules.
  • the image recording layer containing a microcapsule is preferably configured so that a hydrophobic constituent component is encapsulated in the microcapsule and a hydrophilic constituent component is contained outside the microcapsule.
  • the microgel (crosslinked polymer fine particles) can contain a part of the constituent components of the image recording layer on at least one of the surface or the inside thereof.
  • a reactive microgel having a radical polymerizable group on its surface is preferable from the viewpoint of image forming sensitivity and printing durability.
  • a well-known method can be applied to microencapsulate or microgel the constituent components of the image recording layer.
  • the average particle size of the polymer compound in the form of fine particles is preferably 0.01 to 3.0 ⁇ m, more preferably 0.03 to 2.0 ⁇ m, and still more preferably 0.10 to 1.0 ⁇ m. In this range, good resolution and stability over time can be obtained.
  • the average particle diameter is calculated by a laser light scattering method.
  • the content of the polymer compound in the form of fine particles is preferably 5 to 90% by mass based on the total solid content of the image recording layer.
  • the image recording layer B can contain other components described in the image recording layer A as necessary.
  • the image recording layer C contains an infrared absorber and thermoplastic polymer fine particles.
  • the components of the image recording layer C will be described.
  • the infrared absorber contained in the image recording layer C is preferably a dye or pigment having an absorption maximum of 760 to 1200 nm. A dye is more preferred.
  • the dye examples include commercially available dyes and literature (for example, “Dye Handbook” edited by the Society of Synthetic Organic Chemistry, published in 1970, “Chemical Industry”, May 1986, pages 45-51, “Near-Infrared Absorbing Dye”, “90 Development and market trends of age functional pigments "Chapter 2 Section 2.3 (CMC Publishing, published in 1990) or patents can be used.
  • Specific examples include azo dyes and metal complex azo dyes. Infrared absorbing dyes such as pyrazolone azo dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, polymethine dyes and cyanine dyes are preferred.
  • a particularly preferable dye to be added to the image recording layer is an infrared absorbing dye having a water-soluble group.
  • Specific examples of the infrared absorbing dye are shown below, but the present invention is not limited thereto.
  • pigments examples include commercially available pigment and color index (CI) manuals, “Latest Pigment Handbook” (edited by the Japan Pigment Technology Association, published in 1977), “Latest Pigment Applied Technology” (published by CMC, published in 1986), “Printing” The pigments described in “Ink Technology” (CMC Publishing, 1984) can be used.
  • CI pigment and color index
  • the particle diameter of the pigment is preferably 0.01 to 1 ⁇ m, more preferably 0.01 to 0.5 ⁇ m.
  • a method for dispersing the pigment a known dispersion technique used in ink production, toner production, or the like can be used. Details are described in "Latest Pigment Applied Technology” (CMC Publishing, 1986).
  • the content of the infrared absorber is preferably from 0.1 to 30% by mass, more preferably from 0.25 to 25% by mass, and particularly preferably from 0.5 to 20% by mass based on the solid content of the image recording layer. Within this range, good sensitivity can be obtained without impairing the film strength of the image recording layer.
  • the thermoplastic polymer fine particles preferably have a glass transition temperature (Tg) of 60 ° C. to 250 ° C.
  • Tg of the thermoplastic polymer fine particles is more preferably from 70 ° C to 140 ° C, and further preferably from 80 ° C to 120 ° C.
  • Examples of thermoplastic polymer fine particles having a Tg of 60 ° C. or higher include Research Disclosure No. 1 of January 1992. 33303, JP-A-9-123387, JP-A-9-131850, JP-A-9-171249, JP-A-9-171250, and EP931647, and the like. it can.
  • homopolymers or copolymers composed of monomers such as ethylene, styrene, vinyl chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinylidene chloride, acrylonitrile, vinyl carbazole, or mixtures thereof Etc. can be illustrated.
  • Preferred examples include polystyrene and polymethyl methacrylate.
  • the average particle diameter of the thermoplastic polymer fine particles is preferably 0.005 to 2.0 ⁇ m in view of resolution and stability over time. This value is also applied as an average particle diameter when two or more kinds of thermoplastic polymer fine particles are mixed.
  • the average particle diameter is more preferably 0.01 to 1.5 ⁇ m, particularly preferably 0.05 ⁇ m to 1.0 ⁇ m.
  • the polydispersity when two or more kinds of thermoplastic polymer fine particles are mixed is preferably 0.2 or more.
  • the average particle size and polydispersity are calculated by a laser light scattering method.
  • thermoplastic polymer fine particles Two or more kinds may be mixed and used. Specifically, at least two kinds of uses having different particle sizes or at least two kinds of uses having different Tg may be mentioned.
  • the film curability of the image area is further improved, and the printing durability is further improved when a lithographic printing plate is used.
  • thermoplastic polymer particles having the same particle size when thermoplastic polymer particles having the same particle size are used, a certain amount of voids exist between the thermoplastic polymer particles, and even if the thermoplastic polymer particles are melted and solidified by image exposure, the coating film Curability may not be as desired.
  • thermoplastic particles having different particle sizes when thermoplastic particles having different particle sizes are used, the porosity between the thermoplastic polymer particles can be reduced, and as a result, the film curability of the image area after image exposure can be reduced. Can be improved.
  • thermoplastic polymer fine particles when the same Tg is used as the thermoplastic polymer fine particles, the thermoplastic polymer fine particles are not sufficiently melted and solidified when the temperature rise of the image recording layer due to image exposure is insufficient. It may not be a thing.
  • the thermoplastic polymer fine particles having different Tg when used, the film curability of the image portion can be improved even when the temperature rise of the image recording layer due to image exposure is insufficient.
  • thermoplastic polymer fine particles having different Tg When two or more kinds of thermoplastic polymer fine particles having different Tg are mixed and used, it is preferable that at least one kind of Tg of the thermoplastic polymer fine particles is 60 ° C. or higher. Under the present circumstances, it is preferable that the difference of Tg is 10 degreeC or more, More preferably, it is 20 degreeC or more. Moreover, it is preferable to contain 70 mass% or more of thermoplastic polymer fine particles having a Tg of 60 ° C. or higher with respect to the total thermoplastic polymer fine particles.
  • the thermoplastic polymer fine particles may have a crosslinkable group.
  • the crosslinkable group is thermally reacted by the heat generated in the image exposed area to form a crosslink between the polymers, the film strength of the image area is improved, and the printing durability is increased. Will be better.
  • the crosslinkable group may be any functional group capable of performing any reaction as long as a chemical bond is formed.
  • an ethylenically unsaturated group that performs a polymerization reaction for example, acryloyl group, methacryloyl group, vinyl group, allyl group, etc.
  • An isocyanate group that performs an addition reaction, or a block thereof and a group having an active hydrogen atom that is a reaction partner for example, an amino group, a hydroxy group, a carboxyl group, etc.
  • an epoxy group that also performs an addition reaction, and a reaction partner thereof
  • examples thereof include an amino group, a carboxyl group or a hydroxy group, a carboxyl group and a hydroxy group or an amino group that perform a condensation reaction, an acid anhydride that performs a ring-opening addition reaction, an amino group or a hydroxy group, and the like.
  • thermoplastic polymer particles having a crosslinkable group include acryloyl group, methacryloyl group, vinyl group, allyl group, epoxy group, amino group, hydroxy group, carboxyl group, isocyanate group, acid anhydride, and the like.
  • examples thereof include those having a crosslinkable group such as a group in which the above is protected. Introduction of these crosslinkable groups into the polymer may be performed during the polymerization of the polymer fine particles, or may be performed using a polymer reaction after the polymerization of the polymer fine particles.
  • a crosslinkable group is introduced during the polymerization of polymer fine particles, it is preferable to carry out emulsion polymerization or suspension polymerization of a monomer having a crosslinkable group.
  • the monomer having a crosslinkable group include allyl methacrylate, allyl acrylate, vinyl methacrylate, vinyl acrylate, glycidyl methacrylate, glycidyl acrylate, 2-isocyanate ethyl methacrylate, or a block isocyanate based on alcohol thereof, 2-isocyanate ethyl acrylate or the like.
  • Examples of the polymer reaction used in the case where the introduction of the crosslinkable group is performed after the polymer fine particles are polymerized include the polymer reaction described in WO96 / 34316.
  • the thermoplastic polymer fine particles may react with each other through a crosslinkable group, or may react with a high molecular compound or a low molecular compound added to the image recording layer.
  • the content of the thermoplastic polymer fine particles is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and particularly preferably 70 to 85% by mass based on the solid content of the image recording layer.
  • the image recording layer C may further contain other components as necessary.
  • ⁇ Surfactant having polyoxyalkylene group or hydroxy group As a surfactant having a polyoxyalkylene group (hereinafter also referred to as POA group) or a hydroxy group, a surfactant having a POA group or a hydroxy group can be used as appropriate, but an anionic surfactant or nonionic surfactant is used. Agents are preferred. Among the anionic surfactants or nonionic surfactants having a POA group or a hydroxy group, anionic surfactants or nonionic surfactants having a POA group are preferred.
  • a polyoxyethylene group a polyoxypropylene group, a polyoxybutylene group and the like are preferable, and a polyoxyethylene group is particularly preferable.
  • the average degree of polymerization of the oxyalkylene group is usually from 2 to 50, preferably from 2 to 20.
  • the number of hydroxy groups is usually 1 to 10 and preferably 2 to 8. However, the terminal hydroxy group in the oxyalkylene group is not included in the number of hydroxy groups.
  • the anionic surfactant having a POA group is not particularly limited, and polyoxyalkylene alkyl ether carboxylates, polyoxyalkylene alkyl sulfosuccinates, polyoxyalkylene alkyl ether sulfates, alkylphenoxy polyoxyalkylene propyl sulfonic acids Salts, polyoxyalkylene alkyl sulfophenyl ethers, polyoxyalkylene aryl ether sulfates, polyoxyalkylene polycyclic phenyl ether sulfates, polyoxyalkylene styryl phenyl ether sulfates, polyoxyalkylene alkyl ether phosphates, Polyoxyalkylene alkyl phenyl ether phosphate ester salt, polyoxyalkylene perfluoroalkyl ether Ester salts and the like.
  • the anionic surfactant having a hydroxy group is not particularly limited, and examples thereof include hydroxycarboxylates, hydroxyalkyl ether carboxylates, hydroxyalkanesulfonates, fatty acid monoglyceride sulfates, and fatty acid monoglyceride phosphates. .
  • the content of the surfactant having a POA group or a hydroxy group is preferably 0.05 to 15% by mass, more preferably 0.1 to 10% by mass, based on the solid content of the image recording layer.
  • surfactant having a POA group or a hydroxy group are given below, but the present invention is not limited thereto.
  • the following surfactant A-12 is available from DuPont under the trade name Zonyl FSP.
  • the following surfactant N-11 is available from DuPont under the trade name Zonyl FSO 100.
  • the image recording layer may contain an anionic surfactant having no polyoxyalkylene group and hydroxy group for the purpose of ensuring the uniformity of application of the image recording layer.
  • the anionic surfactant is not particularly limited as long as the above object is achieved.
  • alkylbenzenesulfonic acid or a salt thereof, alkylnaphthalenesulfonic acid or a salt thereof, (di) alkyldiphenyl ether (di) sulfonic acid or a salt thereof, or an alkyl sulfate ester salt is preferable.
  • the addition amount of the anionic surfactant having no polyoxyalkylene group and hydroxy group is preferably 1 to 50% by mass, more preferably 1 to 30% by mass with respect to the surfactant having a polyoxyalkylene group or hydroxy group. preferable.
  • anionic surfactant having no polyoxyalkylene group and hydroxy group are listed below, but the present invention is not limited thereto.
  • a nonionic surfactant having no polyoxyalkylene group and hydroxy group or a fluorine-based surfactant may be used.
  • a fluorosurfactant described in JP-A No. 62-170950 is preferably used.
  • the image recording layer can contain a hydrophilic resin.
  • the hydrophilic resin include hydrophilic groups such as hydroxy group, hydroxyethyl group, hydroxypropyl group, amino group, aminoethyl group, aminopropyl group, carboxyl group, carboxylate group, sulfo group, sulfonate group, and phosphate group.
  • the resin it has is preferable.
  • hydrophilic resins include gum arabic, casein, gelatin, starch derivatives, carboxymethylcellulose and its sodium salt, cellulose acetate, sodium alginate, vinyl acetate-maleic acid copolymers, styrene-maleic acid copolymers, polyacrylic acids and Salts thereof, polymethacrylic acids and salts thereof, homopolymers and copolymers of hydroxyethyl methacrylate, homopolymers and copolymers of hydroxyethyl acrylate, homopolymers and copolymers of hydroxypropyl methacrylate, homopolymers and copolymers of hydroxypropyl acrylate, hydroxybutyl Methacrylate homopolymers and copolymers, hydroxybutyl acrylate homopolymers and copolymers, polyesters Lenglycols, hydroxypropylene polymers, polyvinyl alcohols, hydrolyzed polyvinyl acetate having a degree of hydrolysis of at least 60%,
  • the mass average molecular weight of the hydrophilic resin is preferably 2,000 or more from the viewpoint of obtaining sufficient film strength and printing durability.
  • the content of the hydrophilic resin is preferably 0.5 to 50% by mass, more preferably 1 to 30% by mass, based on the solid content of the image recording layer.
  • the image recording layer may contain inorganic fine particles.
  • Preferred examples of the inorganic fine particles include silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, and a mixture thereof.
  • the inorganic fine particles can be used for the purpose of strengthening the film.
  • the average particle size of the inorganic fine particles is preferably 5 nm to 10 ⁇ m, more preferably 10 nm to 1 ⁇ m. Within this range, it is possible to form a non-image portion having excellent hydrophilicity, in which the thermoplastic polymer fine particles are stably dispersed, the film strength of the image recording layer is sufficiently maintained, and print stains are not easily generated.
  • the inorganic fine particles can be easily obtained as a commercial product such as a colloidal silica dispersion.
  • the content of the inorganic fine particles is preferably 1.0 to 70% by mass, more preferably 5.0 to 50% by mass, based on the solid content of the image recording layer.
  • the image recording layer can contain a plasticizer in order to impart flexibility and the like of the coating film.
  • the plasticizer include polyethylene glycol, tributyl citrate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, tricresyl phosphate, tributyl phosphate, trioctyl phosphate, tetrahydrofurfuryl oleate, and the like. It is done.
  • the content of the plasticizer is preferably 0.1% to 50% by mass, more preferably 1 to 30% by mass, based on the solid content of the image recording layer.
  • thermoreactive functional group When polymer fine particles having a heat-reactive functional group (crosslinkable group) are used in the image recording layer, a compound that initiates or accelerates the reaction of the heat-reactive functional group (crosslinkable group) is added as necessary. be able to.
  • the compound that initiates or accelerates the reaction of the thermoreactive functional group include compounds that generate radicals or cations by heat. Examples thereof include lophine dimer, trihalomethyl compound, peroxide, azo compound, diazonium salt, onium salt including diphenyliodonium salt, acylphosphine, imide sulfonate and the like.
  • the amount of such a compound added is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, based on the solid content of the image recording layer. Within this range, good reaction initiation or acceleration effect can be obtained without impairing on-press developability.
  • the image recording layer C is formed by preparing or applying a coating solution by dissolving or dispersing the necessary components described above in an appropriate solvent, and coating the coating solution directly or via an undercoat layer.
  • a coating solution by dissolving or dispersing the necessary components described above in an appropriate solvent, and coating the coating solution directly or via an undercoat layer.
  • the solvent water or a mixed solvent of water and an organic solvent is used, and mixed use of water and an organic solvent is preferable in terms of improving the surface state after coating.
  • the amount of the organic solvent varies depending on the type of the organic solvent, and cannot be generally specified, but is usually preferably 5 to 50% by volume in the mixed solvent. However, it is necessary to use the organic solvent in such an amount that the thermoplastic polymer fine particles do not aggregate.
  • the solid content concentration of the image recording layer coating solution is preferably 1 to 50% by mass.
  • the organic solvent used as the solvent for the coating solution is preferably an organic solvent that is soluble in water.
  • alcohol solvents such as methanol, ethanol, propanol, isopropanol, 1-methoxy-2-propanol, ketone solvents such as acetone and methyl ethyl ketone, glycol ether solvents such as ethylene glycol dimethyl ether, ⁇ -butyrolactone, N, N—
  • Examples include dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide and the like.
  • an organic solvent having a boiling point of 120 ° C. or less and a solubility in water (amount dissolved in 100 g of water) of 10 g or more is preferable, and an organic solvent of 20 g or more is more preferable.
  • the coating amount (solid content) of the image recording layer on the support obtained after coating and drying varies depending on the use, but is usually preferably 0.5 to 5.0 g / m 2 , preferably 0.5 to 2.0 g / m 2. m 2 is more preferable.
  • the image recording layer of the lithographic printing plate precursor according to the invention may be an image recording layer in which the non-image portion is removed by a developer.
  • Such an image recording layer includes image recording layers of many lithographic printing plate precursors known as so-called development type lithographic printing plate precursors.
  • the image recording layer is a negative image recording layer containing a sensitizing dye, a polymerization initiator, a polymerizable compound, and a binder polymer.
  • a negative type image recording layer is described as ⁇ recording layer> in paragraphs [0057]-[0154] of Japanese Patent Application Laid-Open No. 2008-15503, for example.
  • the image recording layer is a positive image recording layer containing a water-insoluble and alkali-soluble resin and an infrared absorber.
  • a positive image recording layer is described, for example, as [Recording layer] in paragraphs [0055]-[0132] of JP-A-2007-148040.
  • planographic printing plate precursor The following describes other components of the planographic printing plate precursor.
  • an undercoat layer can be provided between the image recording layer and the support, if necessary.
  • the undercoat layer enhances the adhesion between the support and the image recording layer in the exposed area and easily peels from the support of the image recording layer in the unexposed area. Contributes to improving the performance.
  • the undercoat layer functions as a heat insulating layer, thereby preventing the heat generated by the exposure from diffusing to the support and lowering the sensitivity.
  • the compound used for the undercoat layer include a silane coupling agent having an addition polymerizable ethylenic double bond reactive group described in JP-A-10-282679, Examples thereof include phosphorus compounds having an ethylenic double bond reactive group described in Japanese Patent No. 304441.
  • Preferable examples include polymer compounds having an adsorptive group, a hydrophilic group, and a crosslinkable group that can be adsorbed on the surface of the support, as described in JP-A Nos. 2005-125749 and 2006-188038. It is done.
  • Such a polymer compound is preferably a copolymer of a monomer having an adsorptive group, a monomer having a hydrophilic group, and a monomer having a crosslinkable group. More specifically, it has an adsorbing group such as a phenolic hydroxy group, a carboxy group, —PO 3 H 2 , —OPO 3 H 2 , —CONHSO 2 —, —SO 2 NHSO 2 —, —COCH 2 COCH 3, etc.
  • an adsorbing group such as a phenolic hydroxy group, a carboxy group, —PO 3 H 2 , —OPO 3 H 2 , —CONHSO 2 —, —SO 2 NHSO 2 —, —COCH 2 COCH 3, etc.
  • Examples thereof include a copolymer of a monomer, a monomer having a hydrophilic group such as a sulfo group, and a monomer having a polymerizable crosslinkable group such as a methacryl group or an allyl group.
  • the polymer compound may have a crosslinkable group introduced by salt formation between a polar substituent of the polymer compound, a substituent having a counter charge and a compound having an ethylenically unsaturated bond.
  • monomers other than those described above, preferably hydrophilic monomers may be further copolymerized.
  • the content of unsaturated double bonds in the polymer compound for the undercoat layer is preferably 0.1 to 10.0 mmol, more preferably 2.0 to 5.5 mmol per 1 g of the polymer compound.
  • the polymer compound for the undercoat layer preferably has a mass average molecular weight of 5,000 or more, more preferably 10,000 to 300,000.
  • the undercoat layer is a chelating agent, a secondary or tertiary amine, a polymerization inhibitor, an amino group, or a functional group having a polymerization inhibiting ability and an aluminum support for preventing contamination over time.
  • Compounds having a group that interacts with the surface for example, 1,4-diazabicyclo [2,2,2] octane (DABCO), 2,3,5,6-tetrahydroxy-p-quinone, chloranil, sulfophthalic acid , Hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid, hydroxyethyliminodiacetic acid, and the like.
  • the undercoat layer is applied by a known method.
  • the coating amount (solid content) of the undercoat layer is preferably 0.1 ⁇ 100mg / m 2, and more preferably 1 ⁇ 30mg / m 2.
  • a known support is used as the support for the lithographic printing plate precursor. Of these, an aluminum plate that has been roughened and anodized by a known method is preferred.
  • the support preferably has a center line average roughness of 0.10 to 1.2 ⁇ m.
  • a protective layer can be provided on the image recording layer as necessary.
  • the protective layer has a function of preventing scratches in the image recording layer and preventing ablation during high-illuminance laser exposure.
  • the protective layer is applied by a known method.
  • the coating amount of the protective layer is a coating amount after drying is preferably 0.01 ⁇ 10g / m 2, more preferably 0.02 ⁇ 3g / m 2, particularly preferably 0.02 ⁇ 1g / m 2.
  • the lithographic printing plate precursor can be produced by applying each constituent layer coating solution according to a conventional method and drying to form each constituent layer.
  • coating die coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, and the like are used.
  • the discard plate precursor for printing is an original plate for producing a discard plate for printing through the same plate making process as the planographic printing plate precursor (however, image exposure is not performed), and basically has no photosensitivity.
  • the printing discard plate is used as a printing cylinder. Used by attaching.
  • the printing plate precursor for printing according to the present invention has a non-photosensitive layer on a support.
  • the non-photosensitive layer in the discarded printing plate precursor corresponds to the polymer-containing layer in the printing original plate.
  • the printing plate precursor for printing may have a hydrophilic layer on the undercoat layer and the non-photosensitive layer between the support and the non-photosensitive layer, if necessary.
  • the non-photosensitive layer is a non-photosensitive layer that is removed by at least one of acidic to alkaline dampening water and printing ink on a printing press.
  • the non-photosensitive layer in the printing plate precursor for printing preferably contains a water-soluble binder polymer or a water-insoluble and alkali-soluble binder polymer (hereinafter also referred to as “binder polymer”). Further, the non-photosensitive layer can contain a colorant having an absorption maximum at 350 to 550 nm and a low molecular acid compound.
  • the binder contained in the non-photosensitive layer in the printing plate precursor for printing is described, for example, in paragraph numbers [0069]-[0074] of JP-A No. 2011-218778.
  • the non-photosensitive layer and its formation method in the printing plate precursor for printing are described, for example, in paragraphs [0021]-[0054] of JP-A-2011-218778.
  • the hydrophilic layer in the printing plate precursor for printing contains a binder.
  • the hydrophilic layer is formed by mixing a binder and a hydrophilic layer coating solution prepared by stirring and mixing various additives such as a colorant, a water-soluble plasticizer, and a surfactant added according to the purpose. For example, it can be formed by applying a method described in US Pat. No. 3,458,311 or Japanese Patent Application Laid-Open No. 55-49729 and applying it to the non-photosensitive layer.
  • the coating amount of the hydrophilic layer is preferably 0.2 to 5.0 g / m 2 and more preferably 0.3 to 3.0 g / m 2 .
  • the binder contained in the hydrophilic layer in the printing plate precursor for printing is described, for example, in paragraph numbers [0069]-[0074] of JP-A No. 2011-218778.
  • the plate making of the printing original plate according to the present invention is described below.
  • the plate making of the printing original plate according to the present invention basically includes an image exposure step and a development processing step.
  • the printing plate precursor is subjected to a development processing step without going through an image exposure step.
  • the image exposure of the lithographic printing plate precursor can be performed according to the normal image exposure operation of the lithographic printing plate precursor.
  • Image exposure is performed by laser exposure through a transparent original having a line image, a halftone dot image, or the like, or by laser light scanning using digital data.
  • the wavelength of the light source is preferably 700 to 1400 nm.
  • a solid-state laser and a semiconductor laser that emit infrared rays are suitable.
  • the output is preferably 100 mW or more
  • the exposure time per pixel is preferably within 20 microseconds
  • the irradiation energy amount is preferably 10 to 300 mJ / cm 2 .
  • the exposure mechanism may be any of an internal drum system, an external drum system, a flat bed system, and the like. Image exposure can be performed by a conventional method using a plate setter or the like.
  • the development process can be performed by a usual method.
  • on-machine development when fountain solution and printing ink are supplied to the lithographic printing plate precursor subjected to image exposure on the printing machine, the image recording layer cured by exposure at the exposed portion of the image recording layer is: A printing ink receiving portion having an oleophilic surface is formed.
  • the uncured image recording layer is removed by dissolution or dispersion by the supplied dampening water and / or printing ink, and a hydrophilic surface is exposed in that area.
  • the fountain solution adheres to the exposed hydrophilic surface, and the printing ink is deposited on the image recording layer in the exposed area and printing is started.
  • the surface of the lithographic printing plate precursor may be supplied first with dampening water or printing ink. However, in order to penetrate the dampening water and promote on-machine developability, the dampening water is first supplied. Is preferably supplied.
  • Development processing using a developing solution can be performed by a conventional method.
  • Development processing of the development type negative planographic printing plate precursor is described in paragraph numbers [0197]-[0220] of JP-A-2008-15503, for example.
  • Development processing of the development type positive planographic printing plate precursor is described, for example, in paragraphs [0157] to [0160] of JP-A-2007-148040.
  • the printing original plate laminate according to the present invention is a laminate in which a plurality of (usually 2 to 500) printing original plates according to the present invention are directly stacked without using interleaf paper.
  • the printing original plate laminate according to the present invention is excellent in any performance of mat dropping, adhesiveness, scuffing, and scratching because of the backcoat layer having a specific configuration of the printing original plate according to the present invention. Also, there is no accumulation deviation.
  • the printing plate laminate according to the present invention is a laminate in which a plurality of lithographic printing plates or printing discard plates are directly stacked without using interleaving paper.
  • the laminate for printing according to the present invention is excellent in any performance of mat dropping, adhesiveness, scratches, and scratches because of the backcoat layer having a specific configuration that the printing original plate according to the present invention has, Also, it is difficult to cause an accumulation shift.
  • the molecular weight is a mass average molecular weight (Mw), and the ratio of repeating units is a mole percentage, except for those specifically defined.
  • Mw mass average molecular weight
  • a mass average molecular weight (Mw) is the value measured as a polystyrene conversion value by a gel permeation chromatography (GPC) method.
  • the mechanical surface roughening treatment was performed with the median diameter of the abrasive pumice being 30 ⁇ m, the number of bundled brushes being 4, and the number of rotations of the bundled brush being 250 rpm.
  • the material of the bunch planting brush was 6 ⁇ 10 nylon, with a bristle diameter of 0.3 mm and a bristle length of 50 mm.
  • the bundle-planting brush is a tube made by making a hole in a stainless steel tube of ⁇ 300 mm so as to be dense. The distance between the two support rollers ( ⁇ 200 mm) at the bottom of the bundle-planting brush was 300 mm.
  • the bundle brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus with respect to the load before the bundle brush was pressed against the aluminum plate.
  • the rotation direction of the bundle planting brush was the same as the movement direction of the aluminum plate.
  • Electrochemical roughening treatment An electrochemical roughening treatment was carried out continuously using an alternating voltage of 60 Hz.
  • an electrolytic solution prepared by adding aluminum nitrate to an aqueous solution having a temperature of 35 ° C. and nitric acid of 10.4 g / L to adjust the aluminum ion concentration to 4.5 g / L was used.
  • the AC power supply waveform is subjected to electrochemical surface roughening using a carbon electrode as a counter electrode using a trapezoidal rectangular wave alternating current with a time tp of 0.8 msec until the current value reaches a peak from zero, a duty ratio of 1: 1. went. Ferrite was used for the auxiliary anode.
  • the current density was 30 A / dm 2 at the peak current value, and 5% of the current flowing from the power source was shunted to the auxiliary anode.
  • the amount of electricity was 185 C / dm 2 in terms of the total amount of electricity when the aluminum plate was an anode. Then, water washing by spraying was performed.
  • desmutting treatment was performed in an aqueous sulfuric acid solution.
  • an aqueous sulfuric acid solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used.
  • the liquid temperature was 60 ° C.
  • the desmutting treatment was performed by spraying a desmutting solution for 3 seconds.
  • Electrochemical surface roughening treatment An electrochemical surface roughening treatment was performed continuously using an alternating voltage of 60 Hz.
  • an electrolytic solution an electrolytic solution in which aluminum chloride was adjusted to 4.5 g / L by adding aluminum chloride to an aqueous solution having a liquid temperature of 35 ° C. and hydrochloric acid of 6.2 g / L was used.
  • the AC power supply waveform is subjected to electrochemical surface roughening using a carbon electrode as a counter electrode using a trapezoidal rectangular wave alternating current with a time tp of 0.8 msec until the current value reaches a peak from zero, a duty ratio of 1: 1. went. Ferrite was used for the auxiliary anode.
  • the current density was 25A / dm 2 at the peak of electric current amount in hydrochloric acid electrolysis of the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode. Then, water washing by spraying was performed.
  • (K) Second Anodizing Treatment A second stage anodizing treatment was performed using an anodizing apparatus using direct current electrolysis. Anodization was performed under the conditions shown in Table C to form an anodized film having a predetermined film thickness. As the electrolytic solution, an aqueous solution containing the components shown in Table C was used.
  • (L) Third Anodizing Treatment A third stage anodizing treatment was performed using an anodizing apparatus using direct current electrolysis. Anodization was performed under the conditions shown in Table D to form an anodized film having a predetermined film thickness. As the electrolytic solution, an aqueous solution containing the components shown in Table D was used.
  • (M) Hydrophilization treatment In order to ensure the hydrophilicity of the non-image area, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 8.5 mg / m 2 . Then, water washing by spraying was performed.
  • the density of the holes is shown in Table E.
  • the small diameter hole portion includes a first small diameter hole portion and a second small diameter hole portion having different depths, and the deeper one is referred to as a first small diameter hole portion.
  • the average value and the minimum value are shown as the barrier layer thickness.
  • the average value is obtained by measuring the thickness of the anodized film from the bottom of the first small-diameter hole to the aluminum plate surface at 50 locations and arithmetically averaging them.
  • the diameters of the micropores (large-diameter holes and small-diameter holes) existing in the range of 400 ⁇ 600 nm 2 were measured and averaged.
  • the upper part of the anodized film was cut, and thereafter various diameters were obtained.
  • the average depth of the small-diameter hole was measured by observing the cross section of the support (anodized film) with FE-SEM (50,000 times) and measuring the depth of 25 arbitrary micropores in the obtained image. The average value.
  • “Communication density” means the density of small-diameter holes in the cross-section of the anodized film.
  • “Surface area increase ratio” means a value calculated based on the following formula (A).
  • Formula (A) Surface area increase ratio 1 + pore density ⁇ (( ⁇ ⁇ (surface layer average diameter / 2 + bottom average diameter / 2) ⁇ ((bottom average diameter / 2 ⁇ surface layer average diameter / 2) 2 + depth A 2 ) 1/2 + ⁇ X (bottom average diameter / 2) 2 - ⁇ x (surface layer average diameter / 2) 2 ))
  • the average depth (nm)” column of the small diameter hole portion the average depth of the second small diameter hole portion is shown on the left side, and the average depth of the first small diameter hole portion is shown on the right side.
  • the density of the first small diameter hole is shown in parentheses together with the communication density of the small diameter hole. Further, the average diameter of the first small-diameter holes located from the bottom of the second small-diameter holes to the bottom of the first small-diameter holes was about 12 nm.
  • Tetraethyl silicate 50 mass parts ⁇ Water 20 mass parts ⁇ Methanol 15 mass parts ⁇ Phosphoric acid 0.05 mass parts
  • a backcoat coating liquid (1) was prepared by adding the following liquid.
  • the reaction product obtained by mixing and stirring the above components is represented as metal oxide 1 in the following Tables F to I.
  • Pyrogallol formaldehyde condensation resin (Mw: 2000) 4 parts by mass Dimethyl phthalate 5 parts by mass Fluorosurfactant (N-butylperfluorooctane sulfonamidoethyl acrylate / polyoxyethylene acrylate copolymer (Mw: 20000)) 7 parts by mass of methanol silica sol (manufactured by Nissan Chemical Industries, Ltd., 30% methanol solution) 50 parts by weight, 10 parts by mass of silica-coated acrylic resin particles ⁇ 800 parts by mass of methanol
  • the back coat layer coating solution (1) having the above composition was applied to one surface of the support 1 with a bar and dried at 100 ° C. for 120 seconds to form a back coat layer having a thickness of 1.5 ⁇ m.
  • Undercoat layer coating solution (1) having the following composition was applied to the other surface of the support 1 so that the dry coating amount was 20 mg / m 2 to form an undercoat layer.
  • Undercoat layer coating solution (1) ⁇ Undercoat layer compound (UC-1) (the following structure) 0.18 g ⁇ Hydroxyethyliminodiacetic acid 0.05g ⁇ Surfactant (Emalex 710, manufactured by Nippon Emulsion Co., Ltd.) 0.03g ⁇ Water 28.0g
  • an image recording layer coating solution (1) having the following composition was bar-coated and then oven-dried at 100 ° C. for 60 seconds to form an image recording layer having a dry coating amount of 1.0 g / m 2 .
  • the image recording layer coating solution (1) was obtained by mixing and stirring the following photosensitive solution (1) and microgel solution (1) immediately before coating.
  • Microgel solution (1) ⁇ Microgel (1) 2.640 g ⁇ Distilled water 2.425g
  • microgel (1) As an oil phase component, 4.46 g of a polyfunctional isocyanate (Mitsui Chemicals, Inc .; 75% by mass ethyl acetate solution) having the following structure, trimethylolpropane (6 mol) and xylene diisocyanate (18 mol) were added.
  • a polyfunctional isocyanate Mitsubishi Chemicals, Inc .; 75% by mass ethyl acetate solution
  • aqueous phase component 40 g of a 4% by mass aqueous solution of polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-205) was prepared. The oil phase component and the aqueous phase component were mixed and emulsified for 10 minutes at 12,000 rpm using a homogenizer. The obtained emulsion was added to 25 g of distilled water, stirred at room temperature for 30 minutes, and then stirred at 50 ° C. for 3 hours. A microgel (1) was prepared by diluting the solid content concentration of the microgel solution thus obtained with distilled water so as to be 15% by mass. The average particle size of the microgel measured by the light scattering method was 0.2 ⁇ m.
  • a protective layer coating solution (1) having the following composition was bar coated on the image recording layer, followed by oven drying at 120 ° C. for 60 seconds to form a protective layer having a dry coating amount of 0.15 g / m 2.
  • An original plate 101 was produced.
  • Hydrophilic polymer (1) (the following structure, Mw: 30,000) (solid content) 0.03g ⁇ Polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., CKS50, 0.10 g Modified with sulfonic acid, saponification degree 99 mol% or more, polymerization degree 300) 6% by mass aqueous solution / polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-405, 0.03 g) Saponification degree 81.5 mol%, polymerization degree 500) 6% by mass aqueous solution / surfactant (Emalex 710, manufactured by Nippon Emulsion Co., Ltd.) 0.86g (The following structure) 1% by mass aqueous solution / ion-exchanged water 6.0 g
  • lithographic printing plate precursors 102 to 111 Preparation of lithographic printing plate precursors 102 to 111.
  • the type of metal oxide, the type of fine particles, the average particle size and addition amount, and the thickness of the backcoat layer in the backcoat layer coating solution are changed as shown in Table F below. Except for the above, lithographic printing plate precursors 102 to 111 were produced in the same manner.
  • thermoplastic polymer fine particles Preparation of aqueous dispersion of thermoplastic polymer fine particles
  • a 1000 ml four-necked flask was equipped with a stirrer, thermometer, dropping funnel, nitrogen inlet tube, reflux condenser, and nitrogen gas was introduced for deoxygenation, while polyethylene glycol methyl ether methacrylate (average of PEGMA, ethylene glycol) 20) 10 g, distilled water 200 g and n-propanol 200 g were added and heated until the internal temperature reached 70 ° C.
  • 10 g of premixed styrene (St), 80 g of acrylonitrile (AN) and 0.8 g of 2,2′-azobisisobutyronitrile were added dropwise over 1 hour.
  • the particle size distribution of the thermoplastic polymer fine particles had a maximum value at a volume average particle size of 150 nm.
  • the particle size distribution is obtained by taking an electron micrograph of polymer fine particles, measuring a total of 5000 fine particle sizes on the photograph, and a logarithmic scale between 0 and the maximum value of the obtained particle size measurement values. And the frequency of appearance of each particle size was plotted and obtained.
  • the particle size of spherical particles having the same particle area as that on the photograph was used as the particle size.
  • the aluminum plate was desmutted by etching with 155 g / l sulfuric acid aqueous solution at 70 ° C. for 4 seconds, and washed with demineralized water at 25 ° C. for 2 seconds.
  • the aluminum plate was anodized in a 155 g / l sulfuric acid aqueous solution for 13 seconds at a temperature of 45 ° C. and a current density of 22 A / dm 2 and washed with demineralized water for 2 seconds.
  • FIG. 1 The support 2 had a surface roughness Ra of 0.21 ⁇ m and an anodized film amount of 4 g / m 2 .
  • the back coat layer coating solution (1) was applied onto one surface of the support 2 with a bar and dried at 100 ° C. for 120 seconds to form a 1.5 ⁇ m thick back coat layer.
  • An image recording layer aqueous coating solution containing the following thermoplastic polymer fine particles, an infrared absorber and polyacrylic acid was prepared, the pH was adjusted to 3.6, and then coated on the other surface of the support 2 at 50 ° C. Was dried for 1 minute to form an image recording layer to prepare a lithographic printing plate precursor 113.
  • the coating amount after drying of each component is shown below.
  • Thermoplastic polymer fine particles 0.7 g / m 2
  • Infrared absorber IR-01 1.20 ⁇ 10 ⁇ 4 g / m 2
  • Polyacrylic acid 0.09 g / m 2
  • thermoplastic polymer fine particles, infrared absorber IR-01, and polyacrylic acid used in the image recording layer coating solution are as shown below.
  • Thermoplastic polymer fine particles Styrene / acrylonitrile copolymer (molar ratio 50/50), Tg: 99 ° C., volume average particle diameter: 60 nm
  • a protective layer was formed on the image recording layer using the protective layer coating solution (1) in the same manner as in the production of the lithographic printing plate precursor 1, and a lithographic printing plate precursor 114 was produced.
  • lithographic printing plate precursor 115 (for comparison) A lithographic printing plate precursor 115 was produced in the same manner as in the production of the lithographic printing plate precursor 101 except that the thickness of the backcoat layer was changed to 10 ⁇ m.
  • lithographic printing plate precursor 116 (for comparison) The backcoat layer was prepared in the same manner as in the production of the lithographic printing plate precursor 109 except that the metal oxide in the backcoat layer coating solution was changed to a polyester resin (Chemit K-588, Toray Industries, Inc., Tg: 100 ° C.). To prepare a lithographic printing plate precursor 116.
  • planographic printing plate precursor 119 (for comparison) A lithographic printing plate precursor 119 was produced in the same manner as the lithographic printing plate precursor 101 except that the fine particles in the backcoat layer coating solution were removed.
  • lithographic printing plate precursor 120 (for comparison) A lithographic printing plate precursor 120 was produced in the same manner as the lithographic printing plate precursor 118 except that the fine particles in the backcoat layer coating solution were removed.
  • ⁇ Matte drop> Place the lithographic printing plate precursor on the back (backcoat layer side) upside down, place a 2cm x 2cm ethylene propylene diene rubber (EDPM) piece on it, and put the rubber piece in front while applying a 1kg load. Pulled on. Thereafter, the back surface of the lithographic printing plate precursor was observed with a scanning electron microscope (SEM), and a predetermined field of view (200 ⁇ m ⁇ 300 ⁇ m) was observed at five locations to measure the proportion of fine particles that had fallen off. Evaluation is performed according to the following criteria, 3 is a practical lower limit level, and 2 or less is a practically impossible level. 5: The proportion of fine particles falling off is 0%.
  • SEM scanning electron microscope
  • the proportion of fine particles that have fallen is 0%, but there are fine particles that are not partially covered by the backcoat layer.
  • 3 The proportion of fine particles falling off is greater than 0% and 25% or less.
  • 2 The proportion of fine particles falling off is greater than 25% and 75% or less.
  • 1 The proportion of fine particles falling off is greater than 75% and 100% or less.
  • lithographic printing plate precursors (10 ⁇ 10 cm) were humidity-conditioned for 2 hours in an environment of 25 ° C. and 75% RH, and then sequentially laminated in the same direction with no interleaving paper interposed therebetween to obtain a laminate.
  • This laminate was hermetically packaged with kraft paper having an aluminum laminate layer, and left under a 30 ° C. environment for 5 days under a load of 4 kg. Thereafter, the planographic printing plate precursor was peeled off, and the adhesion state between the image recording layer side surface of the planographic printing plate precursor and the support side surface of the adjacent planographic printing plate precursor was visually observed. Evaluation is performed according to the following criteria, 3 is a practical lower limit level, and 2 or less is a practically impossible level. 5: No adhesion. 4: There is slight adhesion. 3: There is a little adhesion. 2: Strong adhesion that can be removed by hand when force is applied. 1: Very strong adhesion that is difficult to bond and peel off by hand.
  • ⁇ Scratch> The lithographic printing plate precursor was conditioned for 2 hours in an environment of 25 degrees 60% RH, punched into 2.5 cm x 2.5 cm, and then subjected to a continuous load type scratch strength tester TYPE: 18 manufactured by Shinto Kagaku Co., Ltd.
  • the surface of the lithographic printing plate precursor that was not attached or punched was set so that the back side of the punched lithographic printing plate precursor was in contact with it, and several portions of the lithographic printing plate precursor were scratched with a load of 500 gf.
  • the scratched lithographic printing plate precursor was set on a Trend setter 3244 manufactured by Creo, and image exposure was performed at a resolution of 2400 dpi, an output of 7 W, an external drum rotational speed of 150 rpm, and a plate surface energy of 110 mJ / cm 2 .
  • the lithographic printing plate precursor after image exposure is mounted on an offset rotary printing machine manufactured by Tokyo Machinery Co., Ltd., soiby KKST-S (red) manufactured by Inktec Co., Ltd. as printing ink for newspapers, and Sakata Inks (dampening water) Using Eco Seven N-1 manufactured by Co., Ltd., printing was performed on newsprint at a speed of 100,000 sheets / hour.
  • lithographic printing plate precursors (10 cm ⁇ 65 cm) were humidity-conditioned for 2 hours in an environment of 25 ° C. and 60% RH, and then sequentially laminated in the same direction with no interleaving paper interposed therebetween to obtain a laminate.
  • the laminate was hermetically wrapped with kraft paper having an aluminum laminate layer, sandwiched between 5 cm ⁇ 5 cm stainless steel (SUS) plates, and pressed with a vise so as to obtain a load of 500 kgf. In a pressurized state, it was left in a 25 ° C. environment for 5 days. Thereafter, the lithographic printing plate precursor was exposed, developed and printed under the same conditions as the scratch evaluation.
  • the 1,000th printed material was sampled, and the degree of scratching due to the press wound was visually observed. Evaluation is performed according to the following criteria, 3 is a practical lower limit level, and 2 or less is a practically impossible level. 5: No dirt. 4: Although it cannot be confirmed by visual recognition, there are some scratches that can be confirmed with a 6 magnification loupe. 3: Although it cannot be confirmed by visual recognition, there are scratches on the entire surface that can be confirmed with a 6 magnification loupe. 2: Dirt that is partially visible. 1: Dirt visible on the entire surface.
  • the smoothness of the back of the lithographic printing plate precursor was measured according to JIS P8119 (1998). The measurement was performed using a Beck smoothness tester manufactured by Kumagai Riki Kogyo Co., Ltd., with an air volume of 1/10 of the standard air volume, that is, 1 ml. From the standpoint of preventing misalignment of the lithographic printing plate precursor, the Beck smoothness is preferably 200 seconds or less, more preferably 100 seconds or less, and even more preferably 50 seconds or less.
  • Polyester resin 1 Chemit K-588, manufactured by Toray Industries, Inc. (Tg: 100 ° C.)
  • Polymer latex 1 Acrylate ester-based polymer latex (AE-337 manufactured by JSR Corporation, (Tg: ⁇ 30 ° C.)
  • Silica-coated acrylic resin particles Art Pearl J-7P Silica-coated melamine resin particles manufactured by Negami Kogyo Co., Ltd .: Opt beads 6500M Silica-coated urethane resin particles manufactured by Nissan Chemical Industries, Ltd .: Art Pearl C-800T manufactured by Negami Kogyo Co., Ltd.
  • Acrylic resin particles MX-500 Polyethylene resin particles manufactured by Soken Chemical Co., Ltd .: Chemipearl W200 Polystyrene resin particles manufactured by Mitsui Chemicals, Inc .: Chemisnow SX-500H manufactured by Soken Chemical Co., Ltd.
  • the lithographic printing plate precursor having a backcoat layer containing a specific metal oxide and specific fine particles according to the present invention was evaluated in any evaluation of matting, adhesiveness, scratches, and scratches. It is excellent, and it can be seen that there is no misalignment even when laminated without interleaf.
  • the lithographic printing plate precursor of Comparative Example having a backcoat layer that does not satisfy the requirements according to the present invention is insufficient in any of evaluation of mat dropping, adhesiveness, scratches, pressing scratches, and misalignment.
  • lithographic printing plate precursor 208 (for comparison) A lithographic printing plate precursor 208 was produced in the same manner except that the thickness of the backcoat layer was changed to 3.5 ⁇ m in the production of the lithographic printing plate precursor 203.
  • evaluation of planographic printing plate precursor Each lithographic printing plate precursor thus obtained was evaluated in the same manner as in Example 101 for mat removal, adhesiveness, scratches and dents, and Beck smoothness. The evaluation results are shown in Table G below.
  • Each component used for the back coat layer described in Table G is as follows.
  • Silica particles 1 Silicia 440 Fuji Silysia Chemical Co., Ltd.
  • Silica particles 2 Silicia 436 Fuji Silysia Chemical Co., Ltd.
  • Silica particles 3 Silicia 320 Fuji Silysia Chemical Ltd.
  • the lithographic printing plate precursor having a backcoat layer containing a specific metal oxide and specific fine particles according to the present invention was evaluated in any evaluation of matting, adhesiveness, scratches, and scratches. It is excellent, and it can be seen that there is no misalignment even when laminated without interleaf.
  • the lithographic printing plate precursor of Comparative Example having a backcoat layer that does not satisfy the requirements according to the present invention is insufficient in any of evaluation of mat dropping, adhesiveness, scratches, pressing scratches, and misalignment.
  • An image recording layer coating solution (3) having the following composition was coated on the undercoat layer using a wire bar. Drying was performed at 115 ° C. for 34 seconds using a warm air dryer. The coating amount after drying was 1.4 g / m 2 .
  • a protective layer coating solution (2) having the following composition was applied with a wire bar, and dried at 125 ° C. for 75 seconds with a hot air drying apparatus to form a protective layer.
  • the coating amount after drying was 1.6 g / m 2 .
  • a planographic printing plate precursor 301 was produced.
  • undercoat layer coating solution (3) having the following composition was applied to the other surface (the surface not having the backcoat layer) of the support having the backcoat layer used for the production of the lithographic printing plate precursor 101 with a bar coater, at 80 ° C. and dried for 15 seconds, the coating amount after drying to form an undercoat layer of 18 mg / m 2.
  • a lower layer coating solution having the following composition was coated with a bar coater so that the coating amount after drying was 0.85 g / m 2 , dried at 160 ° C. for 44 seconds, and immediately supported with cold air at 17 to 20 ° C. The body was cooled to 35 ° C. to form a lower layer. Thereafter, an upper layer coating solution having the following composition was applied with a bar coater so that the coating amount after drying was 0.22 g / m 2 , dried at 148 ° C. for 25 seconds, and further slowly cooled with air at 20 to 26 ° C. The upper layer was formed. Thus, a planographic printing plate precursor 302 was produced.
  • the planographic printing plate precursor was set on a Trend setter 3244 manufactured by Creo, and image exposure was performed at a resolution of 2400 dpi, an output of 7 W, an outer drum rotation speed of 150 rpm, and a plate surface energy of 110 mJ / cm 2 .
  • the lithographic printing plate precursor subjected to image exposure was developed at a conveyance speed (line speed) of 2 m / min and a development temperature of 30 ° C. using an automatic developing machine LP-1310HII manufactured by FUJIFILM Corporation.
  • the developer is a 1: 4 water diluted solution of DH-N manufactured by Fuji Film Co., Ltd.
  • the developer replenisher is a 1: 1.4 water diluted solution of FCT-421 manufactured by Fuji Film Co., Ltd.
  • the finisher is Fuji Film ( A 1: 1 water dilution solution of HN-GV manufactured by Co., Ltd. was used.
  • the planographic printing plate precursor was set on a Trend setter 3244 manufactured by Creo, and image exposure was performed at a resolution of 2400 dpi, an output of 7 W, an outer drum rotation speed of 150 rpm, and a plate surface energy of 110 mJ / cm 2 .
  • the lithographic printing plate precursor subjected to image exposure is charged into an automatic developing machine LP-940HII manufactured by Fuji Film Co., Ltd. by diluting the developer DT-2 manufactured by Fuji Film Co., Ltd. with 1: 8 water, and the developing temperature is 32 ° C.
  • the development process was performed with a development time of 12 seconds.
  • the lithographic printing plate is mounted on an offset rotary printing machine manufactured by Tokyo Machine Works, Ltd., and is used as a newspaper printing ink by Soiby KKST-S (red) manufactured by Inktec Co., Ltd. and as an fountain solution by Eco Seven N manufactured by Sakata Inx Co., Ltd. -1 was used and printed on newsprint at a speed of 100,000 sheets / hour.
  • the development type negative planographic printing plate precursor 301 and the development type positive planographic printing plate precursor 302 having a backcoat layer containing the specific metal oxide and specific fine particles according to the present invention are: These are all excellent in the evaluation of mat removal, adhesiveness, scratches, and scratches, and it can be seen that even if they are laminated without interleaving paper, there is no accumulation deviation.
  • Example 401 to 402 [Preparation of Discarded Plate Master 401 for Printing]
  • a printing plate precursor 401 for printing was prepared in the same manner as in the production of the lithographic printing plate precursor 101 except that the infrared absorbent (1) was removed from the image recording layer coating solution (1).
  • undercoat layer coating solution (4) having the following composition is bar-coated on the other surface (the surface not having the backcoat layer) of the support having the backcoat layer used for the production of the lithographic printing plate precursor 101, and 100 ° C. was dried for 20 seconds to form an undercoat layer having a coating amount of 20 mg / m 2 after drying.
  • a non-photosensitive layer coating solution (1) having the following composition is bar-coated and dried at 100 ° C. for 60 seconds to form a non-photosensitive layer having a coating amount of 1.0 mg / m 2 after drying. did.
  • Non-photosensitive layer coating solution (1) -Binder polymer A (below) 2.465 parts by mass-Phosphoric acid (85% by mass aqueous solution) 0.08 parts by mass-Sulfophthalic acid (50% by mass aqueous solution) 0.017 parts by mass-Tricarballylic acid 0.017 parts by mass Colorant (VPB-Naps (Victoria Pure Blue naphthalene sulfonate, manufactured by Hodogaya Chemical Co., Ltd.) 0.0014 parts by mass Fluorosurfactant (Megafac F-780-F, DIC Corporation, 30% by mass solution of MEK) 0.009 parts by mass / methyl ethyl ketone (MEK) 7.93 parts by mass / methanol 6.28 parts by mass / 1-methoxy-2-propanol (MFG) 2.01 parts by mass Part
  • hydrophilic layer coating solution (1) having the following composition is coated with a bar and dried at 125 ° C. for 75 seconds to form a hydrophilic layer having a coating amount after drying of 1.6 mg / m 2. did.
  • a printing plate precursor 402 for printing was prepared.
  • the above pluronic P-84 is an ethylene oxide / propylene oxide block copolymer, and EMALEX 710 is polyoxyethylene lauryl ether.
  • the printing plate precursor for printing was developed at a development speed of 30.degree. C. at a conveyance speed (line speed) of 2 m / min using an automatic developing machine LP-1310NewsII manufactured by FUJIFILM Corporation.
  • the developer is a 1: 4 water dilution of HN-D manufactured by FUJIFILM Corporation
  • the developer replenisher is a 1: 1.4 water dilution of FCT-421
  • the finisher is 1 of HN-GV manufactured by FUJIFILM Corporation. : 1 water dilution was used respectively.
  • the on-press development type printing waste plate precursor 401 and the development processing printing waste plate precursor 402 having the back coat layer containing the specific metal oxide and the specific fine particles according to the present invention All are excellent in all evaluations of mat removal, adhesiveness, scratches, and scratches, and it is understood that no stacking deviation occurs even when laminated without interleaf.
  • Example 501 The lithographic printing plate precursor 101 was subjected to the following image exposure and development processes to prepare a lithographic printing plate.
  • the planographic printing plate precursor was set on a Trend setter 3244 manufactured by Creo, and image exposure was performed at a resolution of 2400 dpi, an output of 7 W, an outer drum rotation speed of 150 rpm, and a plate surface energy of 110 mJ / cm 2 .
  • the lithographic printing plate precursor subjected to image exposure was developed using an automatic developing apparatus 1 shown in FIG. That is, in the development processing unit 10, using the following developer (A), a development processing step of removing the unexposed portion of the image recording layer, a water washing step of washing the developed lithographic printing plate in the water washing unit 16, and A lithographic printing plate was prepared by sequentially performing a desensitizing step of applying the following desensitizing treatment liquid to the lithographic printing plate after washing with the desensitizing treatment section 18.
  • an automatic developing apparatus 1 as an example of an automatic developing apparatus will be briefly described with reference to FIG.
  • a development processing unit 10 has a development processing unit 10, and a development unit 14, a water washing unit 16, which is continuously formed along the conveyance direction (arrow A) of the conveyance path 12 of the planographic printing plate precursor, A desensitizing treatment unit 18 and a drying unit 20 are provided.
  • the developing unit 14 is partitioned by an outer panel 111, and the outer panel 111 is provided with a slit-like insertion port 112.
  • a developing tank 24 filled with a developing solution and an insertion roller pair 241 for guiding the planographic printing plate precursor into the developing tank 24 are provided inside the developing unit 14.
  • the upper part of the developing tank 24 is covered with a shielding lid 242.
  • a guide roller 143 and a guide member, a brush roller 141, a submerged transport roller 144, a brush roller 142, and a developing unit outlet roller 56 are arranged in parallel from the upstream side in the transport direction.
  • the lithographic printing plate precursor conveyed into the developing tank 24 is immersed in the developer and passes between the rotating brush rollers 141 and 142 to remove non-image portions.
  • the lithographic printing plate carried out from the developing tank 24 is supplied with rinsing water by a rinsing spray 66 in the rinsing section 16, and the developer remaining on the plate surface and the like is removed by rinsing, and then the desensitizing processing section 18 performs gumming.
  • the liquid (desensitizing liquid) supply spray 72 supplies the desensitizing liquid to the plate surface.
  • the partition plate 201 disposed between the development processing unit 10 and the drying unit 20 is provided with a slit-shaped insertion port 202. Further, a shutter (not shown) is provided in the passage between the development processing unit 10 and the drying unit 20, and when the planographic printing plate precursor does not pass through the passage, the passage is closed by the shutter.
  • the drying unit 20 includes a support roller 203, a duct 204, a transport roller pair 205, a duct 206, and a transport roller pair 208 in this order. Slit holes are provided at the ends of the ducts 204 and 205.
  • the drying unit 20 is provided with drying means (drying member) such as hot air supply means (hot air supply member) and heat generation means (heat generation member) (not shown).
  • drying means drying member
  • hot air supply means hot air supply member
  • heat generation means heat generation member
  • ⁇ Developer (A)> -Nonionic surfactant Polyoxyethylene naphthalene ether (New Coal B13, manufactured by Nippon Emulsifier Co., Ltd., solid content 100%)) 5.0% by mass Chelating agent ((ethylenediamine disuccinic acid trisodium salt (Kyrest EDDS-35, manufactured by Kyrest Co., Ltd.)) 0.5% by mass ⁇ Silicone-based antifoaming agent (TSA739 Momentive ⁇ Performance Materials Japan GK) 0.1% by mass ⁇ Preservatives (Actide LA1206, 0.1% by mass by So Japan Co., Ltd. Water was added to make the total amount 100% by mass. (PH: 9.4)
  • a printing original plate including a lithographic printing plate precursor and a discarded printing plate precursor when laminated, a printing original plate that can prevent any deviation of the original plate, adhesion between the original plates, and scratches without interleaving is provided. can do.
  • the laminated body of the said printing original plate can be provided.
  • the laminated body of the said lithographic printing plate or the discarding plate for printing can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

支持体上の一方の側にポリマーを含有する層、他方の側に有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び微粒子を含む層を有する印刷用原版であって、前記微粒子の平均粒子径が0.3μm以上であり、かつ、前記金属酸化物及び微粒子を含む層の厚さより大きい印刷用原版により、印刷用原版を積層する場合、合紙なしでも、原版集積ズレ、原版同士の接着、擦れ傷がいずれも防止できる印刷用原版を提供する。

Description

印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体
 本発明は、平版印刷版原版及び捨て版原版を含む印刷用原版、その積層体、並びに、印刷用原版を用いて作成された平版印刷版及び印刷用捨て版、その積層体に関する。
 平版印刷版原版は、しばしば、複数枚重ね合わせた積層体として保管、搬送される。この積層体においては、通常、平版印刷版原版の集積ズレ防止、平版印刷版原版同士の接着防止、平版印刷版原版の記録層側表面の擦れ傷防止などの目的で、平版印刷版原版の間に合紙が挿入される。しかしながら、合紙の使用は、それ自体、コストアップ、廃棄処理などの問題を含んでおり、また、露光工程の前に取り除く必要があるため、製版工程の負荷、合紙剥離不良トラブル発生のリスクともなる。更に、合紙を取り除く際には、平版印刷版原版の記録層側表面が損傷を受けないよう配慮が必要となる。従って、合紙をなしに積層可能な平版印刷版原版の開発が求められている。
 例えば、支持体の記録層を有する面とは反対側の面に、数平均粒径1~100μmの架橋されたポリマー粒子を含有する有機ポリマー層を有する平版印刷版原版(特許文献1)、ガラス転移温度(Tg)40℃以下のポリマーラテックスより成り、かつ平均粒子径10μm以下のマット剤を含有するバックコート層が設けられた平版印刷版材料(特許文献2)が知られている。また、支持体の一面にポリマー微粒子などを含有する感光層を有し、反対側の面に有機高分子化合物を含有するバックコート層を有する平版印刷版原版(特許文献3)が知られている。更に、支持体の記録層側の最上層として親水性ポリマー及びシリカで表面被覆した有機樹脂微粒子を含有する保護層を有し、反対側に有機樹脂からなるバックコート層を有する平版印刷版原版(特許文献4)が知られている。
日本国特開2007-148040号公報 日本国特開2006-56185号公報 日本国特開2008-249851号公報 日本国特開2008-15503号公報
 しかしながら、特許文献1に記載の技術では、架橋ポリマー粒子と有機ポリマーからなる層のTgが高すぎると擦れ傷の発生を十分に防止できない場合があることが判明した。また、公知文献2に記載の技術では、原版同士の接着を十分に防止できない場合があることが判明した。また、公知文献3に記載の技術では、感光層に有機樹脂微粒子を含有させるが、感光層は平版印刷版原版、従って、それから作製される平版印刷版の性能を大きく左右する層であるので、平版印刷版原版の性能、特に、画像形成性に影響しないこと、微粒子が脱落しないことが必須要件であり、有機樹脂微粒子を感光層に含有させるためには、これら性能を十分考慮する必要があり、感光層設計の幅が極めて限定される場合があることが判明した。
 また、公知文献4に記載の技術を、従来の湿式現像型平版印刷版原版に比べて保護層の厚さが著しく薄い機上現像型平版印刷版原版などに適用した場合、十分な効果が得られないことが判明した。これは、有機樹脂微粒子が十分に保持されず、保護層から脱落してしまうことが原因であると思われる。
 本発明の目的は、平版印刷版原版及び捨て版原版を含む印刷用原版を積層する場合、合紙なしでも、原版集積ズレ、原版同士の接着、擦れ傷がいずれも防止できる印刷用原版を提供することである。また、本発明の目的は、上記印刷用原版の積層体を提供することである。
 更に、本発明の目的は、上記印刷用原版を用いて作製され平版印刷版又は印刷用捨て版を提供することである。また、本発明の目的は、上記平版印刷版又は印刷用捨て版の積層体を提供することである。
 本発明は、下記の構成を含む。
1.支持体上の一方の側にポリマーを含有する層、他方の側に有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び微粒子を含む層を有する印刷用原版であって、上記微粒子の平均粒子径が0.3μm以上であり、かつ、上記金属酸化物及び微粒子を含む層の厚さより大きい印刷用原版。
2.上記微粒子が、親水性表面を有する微粒子である1.に記載の印刷用原版。
3.上記親水性表面を有する微粒子が、親水性表面を有する有機樹脂微粒子、親水性表面を有する無機微粒子から選ばれる少なくとも1種である2.に記載の印刷用原版。
4.上記親水性表面を有する有機樹脂微粒子が、シリカ、アルミナ、チタニア及びジルコニアから選ばれる少なくとも1種の無機化合物で被覆された有機樹脂微粒子である3.に記載の印刷用原版。
5.上記親水性表面を有する有機樹脂微粒子が、シリカで被覆された有機樹脂微粒子である3.又は4.に記載の印刷用原版。
6.上記親水性表面を有する有機樹脂微粒子を構成する有機樹脂が、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フェノール系樹脂及びメラミン樹脂から選ばれる少なくとも1種の樹脂である3.~5.のいずれか一項に記載の印刷用原版。
7.上記ポリマーを含有する層が、赤外線吸収剤を含有するポジ型画像記録層である1.~6.のいずれか一項に記載の印刷用原版。
8.上記ポリマーを含有する層が、赤外線吸収剤、重合開始剤、重合性化合物を含有するネガ型画像記録層である1.~6.のいずれか一項に記載の印刷用原版。
9.上記ポリマーを含有する層が、赤外線吸収剤、重合開始剤、重合性化合物及び微粒子形状の高分子化合物を含有するネガ型画像記録層である1.~6.のいずれか一項に記載の印刷用原版。
10.上記ポリマーを含有する層が、赤外線吸収剤及び熱可塑性ポリマー微粒子を含有するネガ型画像記録層である1.~6.のいずれか一項に記載の印刷用原版。
11.上記ポリマーを含有する層が、印刷インキ及び湿し水の少なくともいずれかにより除去可能である7.~10.のいずれか一項に記載の印刷用原版。
12.上記ポリマーを含有する層が、非感光性層である1.~6.のいずれか一項に記載の印刷用原版。
13.上記ポリマーを含有する層が、印刷インキ及び湿し水のうちの少なくともいずれかにより除去可能であることを特徴とする12.に記載の印刷用原版。
14.1.~11.のいずれか一項に記載の印刷用原版を用いて作製された平版印刷版。
15.12.又は13.に記載の印刷用原版を用いて作製された印刷用捨て版。
16.1.~11.のいずれか一項に記載の印刷用原版を直接接触させて複数枚積層してなる積層体。
17.12.又は13.に記載の印刷用原版を直接接触させて複数枚積層してなる積層体。
18.14.に記載の平版印刷版を直接接触させて複数枚積層してなる積層体。
19.15.に記載の印刷用捨て版を直接接触させて複数枚積層してなる積層体。
 更に、本発明は下記の構成も含む。
20.11.に記載の印刷用原版を画像露光し、印刷インキ及び湿し水を供給して印刷機上で画像記録層の上記ポリマーを含有する層の非画像部を除去し、印刷を行う方法。
21.12.に記載の印刷用原版を画像露光することなく、印刷インキ及び湿し水を供給して印刷機上で上記ポリマーを含有する層を除去し、印刷を行う方法。
 本発明によれば、平版印刷版原版及び捨て版原版を含む印刷用原版を積層する場合、合紙なしでも、原版集積ズレ、原版同士の接着、擦れ傷がいずれも防止できる印刷用原版を提供することができる。また、上記印刷用原版の積層体を提供することができる。
 更に、本発明によれば、上記印刷用原版を用いて作製され平版印刷版又は印刷用捨て版を提供することができる。また、上記平版印刷版又は印刷用捨て版の積層体を提供することができる。
平版印刷版原版の自動現像装置の構成の一例を示す概略図である。
 以下に、本発明を詳細に説明する。
 本明細書において、「印刷用原版」の用語は、平版印刷版原版及び印刷用捨て版原版を包含する。また、「印刷版」の用語は、印刷用原版を露光、現像などの操作を経て作製された平版印刷版及び印刷用捨て版を包含する。印刷用捨て版原版の場合には、露光、現像の操作は必ずしも必要ない。
 本発明に係る印刷用原版は、支持体上の一方の側にポリマーを含有する層、他方の側に有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び微粒子を含む層を有する印刷用原版であって、上記微粒子の平均粒子径が0.3μm以上であり、かつ、上記金属酸化物及び微粒子を含む層の厚さより大きい印刷用原版である。
 本発明に係る印刷用原版の1つの特徴は、支持体のポリマーを含有する層とは反対側に有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び特定の平均粒子径を有する微粒子を含む層(以下、バックコート層とも云う)を有することである。
〔バックコート層〕
 本発明に係る印刷用原版におけるバックコート層は、有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び微粒子を含み、上記微粒子の平均粒子径が0.3μm以上であり、かつ、上記金属酸化物及び微粒子を含む層の厚さより大きいバックコート層である。
(有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物)
 バックコート層は、有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物を含む。
 バックコート層に含まれる有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物(以下、単に金属酸化物とも云う)は、有機金属化合物又は無機金属化合物を水及び有機溶媒中で、酸又はアルカリなどの触媒で加水分解及び縮重合させて得られる、いわゆるゾル-ゲル反応液であることが好ましい。
 有機金属化合物又は無機金属化合物としては、例えば、金属アルコキシド、金属アセチルアセトネート、金属酢酸塩、金属シュウ酸塩、金属硝酸塩、金属硫酸塩、金属炭酸塩、金属オキシ塩化物、金属塩化物及びこれらを部分加水分解してオリゴマー化した縮合物が挙げられる。
 金属アルコキシドは、式M(OR)(式中、Mは金属元素、Rはアルキル基、nは金属元素の酸化数を表す)で表される化合物である。具体例としては、Si(OCH、Si(OC、Si(OC、Si(OC、Al(OCH、Al(OC、Al(OC、Al(OC、B(OCH、B(OC、B(OC、B(OC、Ti(OCH、Ti(OC、Ti(OC、Ti(OC、Zr(OCH、Zr(OC、Zr(OC、Zr(OCなどが挙げられ、その他、Ge、Li、Na、Fe、Ga、Mg、P、Sb、Sn、Ta、Vなどの原子のアルコキシドが挙げられる。更に、CHSi(OCH、CSi(OCH、CHSi(OC、CSi(OCなどのモノ置換珪素アルコキシドも用いられる。
 有機金属化合物又は無機金属化合物のなかでは、金属アルコキシドが反応性に富み、金属-酸素の結合からできた重合体を生成しやすく好ましい。それらのうち、Si(OCH、Si(OC、Si(OC、Si(OCなどの珪素のアルコキシド化合物が安価で入手し易く、それから得られる金属酸化物の被覆性が優れており特に好ましい。また、これらの珪素のアルコキシド化合物を部分加水分解して縮合したオリゴマーも好ましい。例えば、約40質量%のSiOを含有する平均5量体のエチルシリケートオリゴマーが挙げられる。
 有機金属化合物又は無機金属化合物は、単独、又は2種以上を組み合わせて用いることができる。
 更に、上記珪素のテトラアルコキシ化合物の1個又は2個のアルコキシ基を、アルキル基や反応性を持った基で置換したいわゆるシランカップリング剤を、金属アルコキシドと併用することも好ましい。シランカップリング剤としては、上記珪素のテトラアルコキシ化合物における1個又は2個のアルコキシ基を、炭素数4~20の長鎖アルキル基、フッ素置換アルキル基などの疎水性の置換基で置換したシランカップリング剤が挙げられ、特にフッ素置換アルキル基を有するシランカップリング剤が好ましい。シランカップリング剤の具体例としては、CFCHCHSi(OCH、CFCFCHCHSi(OCH、CFCHCHSi(OCなどが挙げられ、市販品では、信越化学株式会社製LS-1090等が挙げられる。シランカップリング剤の含有量は好ましくは、バックコート層全固形分の5~90質量%であり、より好ましく10~80質量%である。
 ゾル-ゲル反応液を形成する際に有用な触媒としては、有機、無機の酸及びびアルカリが用いられる。その例としては、塩酸、硫酸、亜硫酸、硝酸、亜硝酸、フッ化水素酸、リン酸、亜リン酸などの無機酸、ギ酸、酢酸、プロピオン酸、酪酸、グリコール酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、フロロ酢酸、ブロモ酢酸、メトキシ酢酸、オキサロ酢酸、クエン酸、シュウ酸、コハク酸、リンゴ酸、酒石酸、フマル酸、マレイン酸、マロン酸、アスコルビン酸、安息香酸、3,4-ジメトキシ安息香酸のような置換安息香酸、フェノキシ酢酸、フタル酸、ピクリン酸、ニコチン酸、ピコリン酸、ピラジン、ピラゾール、ジピコリン酸、アジピン酸、p-トルイル酸、テレフタル酸、1,4-シクロヘキセン-2,2-ジカルボン酸、エルカ酸、ラウリン酸、n-ウンデカン酸などの有機酸、アルカリ金属及びアルカリ土類金属の水酸化物、アンモニア、エタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルカリが挙げられる。
 他の好ましい触媒として、スルホン酸類、スルフィン酸類、アルキル硫酸類、ホスホン酸類、及びリン酸エステル類など、具体的には、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、p-トルエンスルフィン酸、エチル酸、フェニルホスホン酸、フェニルホスフィン酸、リン酸フェニル、リン酸ジフェニルなどの有機酸も使用できる。
 触媒は単独又は2種以上を組み合わせて用いることができる。触媒量は、原料の金属化合物に対して、好ましくは0.001~10質量%、より好ましくは0.05~5質量%である。触媒量がこの範囲であると、ゾル-ゲル反応の開始が良好に行われると共に、急激な反応が抑制され、不均一なゾル-ゲル粒子の発生を防止することができる。
 ゾル-ゲル反応を開始させるには、適量の水が必要である。水の添加量は原料の金属化合物を完全に加水分解するのに必要な量の0.05~50倍モルが好ましく、0.5~30倍モルが好ましい。水の量がこの範囲であると、加水分解が良好に進行する。
 ゾル-ゲル反応液には溶媒が添加される。溶媒は、原料の金属化合物を溶解し、反応で生じたゾル-ゲル粒子を溶解又は分散するものであればよく、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコール類、アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類が用いられる。またバックコート層の塗布面質向上等の目的でエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコールなどのグリコール類のモノ又はジアルキルエーテル又は酢酸エステルを用いることができる。溶媒としては、水と混合可能な低級アルコール類が好ましい。ゾル-ゲル反応液は、塗布するのに適した濃度に溶媒で調整されるが、溶媒の全量を最初から反応液に加えると原料が希釈されるためか加水分解反応が進みにくくなる。そこで溶媒の一部をゾル-ゲル反応液に加え、反応が進んだ時点で残りの溶媒を加える方法が好ましい。
(微粒子)
 バックコート層は、微粒子を含む。
 バックコート層に含まれる微粒子は、平均粒子径が0.3μm以上であり、かつ、バックコート層の厚さより大きいことが特徴である。
 微粒子は、親水性表面を有する微粒子であることが好ましい。親水性表面を有する微粒子は、親水性表面を有する有機樹脂微粒子又は親水性表面を有する無機微粒子を含む。
 親水性表面を有する有機樹脂微粒子は、シリカ、アルミナ、チタニア及びジルコニアから選ばれる少なくとも1種の無機化合物で被覆された有機樹脂微粒子が好ましい。特に、シリカで被覆された有機樹脂微粒子が好ましい。
 親水性表面を有する有機樹脂微粒子を構成する有機樹脂は、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フェノール系樹脂及びメラミン樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。
 以下に、親水性表面を有する有機樹脂微粒子について、シリカで被覆された有機樹脂微粒子(以下、シリカ被覆有機樹脂微粒子とも云う)を例として詳細に説明するが、本発明における親水性表面を有する有機樹脂微粒子はこれに限定されるものではない。
(シリカ被覆有機樹脂微粒子)
 シリカ被覆有機樹脂微粒子は、有機樹脂からなる微粒子をシリカで表面被覆した微粒子である。コアを構成する有機樹脂微粒子は、空気中の湿分や、温度によって、軟化したり、べとついたりすることがないことが好ましい。
 シリカ被覆有機樹脂微粒子の有機樹脂微粒子を構成する有機樹脂としては、例えば、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、エポシキ系樹脂、フェノール樹脂、メラミン樹脂などが挙げられる。
 シリカ被覆有機樹脂微粒子の表面を被覆するシリカ層を形成する材料としては、アルコキシシロキサン系化合物の縮合物などのアルコキシシリル基を有する化合物、特に、シロキサン系材料、具体的には、シリカゾル、コロイダルシリカ、シリカナノ粒子などのシリカ微粒子などが好ましく挙げられる。
 シリカ被覆有機樹脂微粒子の構成は、有機樹脂微粒子表面にシリカ微粒子が固体成分として付着している構成であっても、アルコキシシロキサン系化合物を縮合反応させて有機樹脂微粒子表面にシロキサン系化合物層を形成した構成であってもよい。
 シリカは必ずしも有機樹脂微粒子表面全域を被覆している必要はなく、少なくとも有機樹脂微粒子の質量に対し、0.5質量%以上の量で表面を被覆していると、本発明の効果を得やすい。即ち、有機樹脂微粒子の表面の少なくとも一部にシリカが存在することで、有機微粒子表面における、共存する水溶性高分子、例えば、PVAとの親和性の向上が達成され、外部応力を受けた場合でも微粒子の脱落が抑制され、優れた耐傷性、耐接着性を維持することができる。このため、本発明における「シリカ被覆」とは、このように有機樹脂微粒子の表面の少なくとも一部にシリカが存在する状態をも包含するものである。
 シリカの表面被覆状態は、走査型電子顕微鏡(TEM)等による形態観察により確認することができる。また、シリカの被覆量は、蛍光X線分析などの元素分析によりSi原子を検知し、そこに存在するシリカの量を算出することで確認することができる。
 シリカ被覆有機樹脂微粒子の製造方法は特に制限はなく、シリカ微粒子あるいはシリカ前駆体化合物を、有機樹脂微粒子の原料となるモノマー成分と共存させて有機樹脂微粒子形成と同時にシリカ表面被覆層を形成させる方法であってもよく、また、有機樹脂微粒子を形成した後、シリカ微粒子を物理的に表面に付着させ、その後、固定化する方法であってもよい。
 以下に、シリカ被覆有機樹脂微粒子の製造方法の1例を挙げる。まず、ポリビニルアルコール、メチルセルロース、ポリアクリル酸などの水溶性高分子やリン酸カルシウム、炭酸カルシウムなどの無機系懸濁剤などから適宜選択される懸濁安定剤を含む水中に、シリカと、原料樹脂(より具体的には、上記有機樹脂を構成する、懸濁重合が可能なモノマー、懸濁架橋が可能なプレポリマー、又は樹脂液などの原料樹脂)とを添加、攪拌、混合して、シリカと原料樹脂とを分散させた懸濁液を調製する。その際、懸濁安定剤の種類、その濃度、攪拌回転数などを調節することにより、目的の粒径を有する懸濁液を形成することができる。次いで、この懸濁液を加温して反応を開始させ、樹脂原料を、懸濁重合又は懸濁架橋させることにより樹脂粒子を生成させる。このとき、共存するシリカが重合或いは架橋反応により硬化する樹脂粒子に、特に、その物性に起因して樹脂粒子表面近傍に、固定化される。その後、懸濁液を固液分離し、洗浄により粒子に付着している懸濁安定剤を除去し、乾燥させる。かくして、シリカが固定化された所望粒径の略球状のシリカ被覆有機樹脂微粒子が得られる。
 このように、懸濁重合、或いは懸濁架橋の際に条件を制御して所望の粒径のシリカ被覆有機樹脂微粒子を得ることもできるし、このような制御を厳密に行うことなくシリカ被覆有機樹脂微粒子を生成した後、メッシュ濾過法などにより所望の大きさのシリカ被覆有機微粒子を得ることもできる。
 上記方法によりシリカ被覆有機微粒子を製造する際の混合物における原料の添加量などについては、例えば、原料樹脂とシリカとの総量が100重量部の場合、まず、分散媒である水200~800重量部に懸濁安定剤0.1~20重量部を添加し、十分に溶解又は分散させ、その液中に、上記100重量部の原料樹脂とシリカとの混合物を投入し、分散粒子が所定の粒度になるように攪拌速度を調整しながら攪拌し、この粒度調整を行った後に液温を30~90℃に昇温し、1~8時間反応させる。
 シリカ被覆有機樹脂微粒子の製造方法については、上記した方法はその1例であり、例えば、特開2002-327036号公報、特開2002-173410号公報、特開2004-307837号公報、及び、特開2006-38246号公報などに詳細に記載された方法により得られるシリカ被覆有機樹脂微粒子も本発明に好適に使用することができる。
 また、シリカ被覆有機樹脂微粒子は市販品としても入手可能であり、具体的には、シリカ/メラミン複合微粒子としては、日産化学工業(株)オプトビーズ2000M,オプトビーズ3500M、オプトビーズ6500M、オプトビーズ10500M、オプトビーズ3500S、オプトビーズ6500Sが挙げられる。シリカ/アクリル複合微粒子としては、根上工業(株)アートパールG-200透明、アートパールG-400透明、アートパールG-800透明、アートパールGR-400透明、アートパールGR-600透明、アートパールGR-800透明、アートパールJ-7Pが挙げられる。シリカ/ウレタン複合微粒子としては、根上工業(株)アートパールC-400透明、C-800透明、P-800T、U-600T、U-800T、CF-600T、CF800T、大日精化(株)ダイナミックビーズCN5070D、ダンプラコートTHUが挙げられる。
 以上、シリカ被覆有機樹脂微粒子を例として、本発明に係るバックコート層に用いられる有機樹脂微粒子について説明したが、アルミナ、チタニア又はジルコニアで被覆された有機樹脂微粒子についても、シリカの代りにアルミナ、チタニア又はジルコニアを用いることにより同様に実施することができる。
 親水性表面を有する無機微粒子としては、公知の親水性表面を有する無機粒子を用いることができる。特に、シリカ、アルミナ、ジルコニア又はチタニアからなる微粒子が好ましい。
 バックコート層に含まれる微粒子としては、有機樹脂微粒子も用いることができる。有機樹脂微粒子としては、ポリ(メタ)アクリル酸エステル類、ポリスチレン及びその誘導体、ポリアミド類、ポリイミド類、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、などのポリオレフィン類、ポリウレタン、ポリウレア、ポリエステル類などの合成樹脂からなる微粒子、及び、キチン、キトサン、セルロース、架橋澱粉、架橋セルロース等の天然高分子からなる微粒子などが好ましく挙げられる。
 なかでも、合成樹脂微粒子は、粒子サイズ制御の容易さや、表面改質により所望の表面特性を制御し易いなどの利点がある。
 このような、有機樹脂微粒子の製造方法は、ポリメチルメタクリレート(PMMA)のような比較的に硬い樹脂では、破砕法による微粒子化も可能であるが、乳化・懸濁重合法により粒子を合成する方法が、粒子径制御の容易性、精度から好ましく採用されている。
 有機樹脂微粒子の製造方法は、「超微粒子と材料」日本材料科学会編、裳華房1993年発刊、「微粒子・粉体の作製と応用」川口春馬監修、シーエムシー出版2005年発刊等に詳細に記載されている。
 有機樹脂微粒子は市販品としても入手可能であり、例えば、綜研化学株式会社製、架橋アクリル樹脂MX-300、MX-500、MX-1000、MX-1500H、MR-2HG、MR-7HG,MR-10HG、MR-3GSN、MR-5GSN、MR-7G、MR-10G、MR-5C、MR-7GC、スチリル樹脂系のSX-350H、SX-500H、積水化成品工業製アクリル樹脂、MBX-5、MBX-8、MBX-12MBX-15、MBX-20,MB20X-5、MB30X-5、MB30X-8、MB30X-20、SBX-6、SBX-8、SBX-12、SBX-17三井化学製ポリオレフィン樹脂、ケミパールW100、W200、W300、W308、W310、W400、W401、W405、W410、W500、WF640、W700、W800、W900、W950、WP100などが挙げられる。
 バックコート層に用いられる微粒子の形状は、真球状形状が好ましいが、平板形状若しくは投影図が楕円形状となるような所謂紡錘形状であってもよい。
 微粒子の平均粒子径は、バックコート層の厚さより大きいことが重要である。微粒子の平均粒子径は、バックコート層の厚さより0.3μm以上大きいことが好ましい。
 微粒子の平均粒子径は、好ましくは0.3~30μm、より好ましくは0.5~15μm、更に好ましくは1~10μmである。この範囲において十分なスペーサー機能を発現することができ、バックコート層への固定化が容易で、外部からの接触応力に対しても優れた保持機能を有する。
 本発明における微粒子の平均粒子径は、通常用いられる体積平均粒子径を意味し、かかる体積平均粒子径は、レーザー回折・散乱式粒度分布計により測定することができる。測定装置としては、例えば、粒度分布測定装置「マイクロトラックMT-3300II」(日機装(株)製)が挙げられる。
 バックコート層におけるシリカ被覆微粒子の添加量は、好ましくは5~1000mg/m、より好ましくは10~500mg/m、更に好ましくは20~200mg/mである。
 バックコート層には、必要に応じて、その他の添加剤、例えば、バックコート層の塗布性の向上などのためのフッ素系の界面活性剤、すべり性の調整のためのその他の界面活性剤、着色して版種を判別するための染料や顔料などを添加することができる。これら添加剤は、例えば、特開平6-234284号公報の段落番号〔0030〕~〔0036〕に詳細に記載されている。
 バックコート層の厚さは、0.01~30μmが好ましく、0.1~10μmがより好ましく、0.2~5μmが更に好ましい。但し、バックコート層の厚さは、これに含有される上記微粒子の平均粒子径より小さいことが必要である。
 バックコート層の厚さの測定は、バックコート層を塗布すべき支持体表面にバックコート層塗布液を塗布してバックコート層を形成し、バックコート層の断面を走査型電子顕微鏡(SEM)で観察し微粒子の存在しない平滑な領域の膜厚を5箇所測定して、その平均値を求めることにより行うことができる。
 バックコート層は、上記金属酸化物及び微粒子、必要により、その他の添加剤などを含有するバックコート層塗布液を調整し、バックコート層塗布液を支持体上に塗布、乾燥することにより作製することができる。バックコート層の塗布には、バーコーター塗布など公知の塗布方法が用いられる。乾燥は、温度50~200℃、時間10秒~5分程度が好ましい。
[印刷用原版]
 本発明に係る印刷用原版は支持体の一方の側にポリマーを含有する層を有する。
 以下に、印刷用原版の1つの好ましい態様である平版印刷版原版について記載する。
[平版印刷版原版]
 本発明に係る平版印刷版原版は、支持体上に画像記録層を有する。平版印刷版原版における画像記録層は、上記印刷用原版におけるポリマーを含有する層に該当する。画像記録層平版印刷版原版は、必要により、支持体と画像記録層との間に下塗り層、画像記録層の上に保護層を有してもよい。
〔画像記録層〕
 画像記録層は、その非画像部が、印刷機上で酸性~アルカリ性の湿し水及び印刷インキの少なくとも1方により除去される画像記録層であることが1つの好ましい態様である。
 1つの態様によれば、画像記録層は、赤外線吸収剤、重合開始剤、重合性化合物及びバインダーポリマーを含有するネガ型画像記録層(以下、画像記録層Aともいう)である。
 もう1つの態様によれば、画像記録層は、赤外線吸収剤、重合開始剤、重合性化合物及び微粒子形状の高分子化合物を含有するネガ型画像記録層(以下、画像記録層Bともいう)である。
 更にもう1つの態様によれば、画像記録層は、赤外線吸収剤及び熱可塑性ポリマー微粒子を含有するネガ型画像記録層(以下、画像記録層Cともいう)である。
(画像記録層A)
 画像記録層Aは、赤外線吸収剤、重合開始剤、重合性化合物及びバインダーポリマーを含有する。以下、画像記録層Aの構成成分について説明する。
<赤外線吸収剤>
 赤外線吸収剤は、吸収した赤外線を熱に変換する機能と赤外線により励起して後述の重合開始剤に電子移動及び/又はエネルギー移動する機能を有する。本発明において使用される赤外線吸収剤は、波長760~1200nmに吸収極大を有する染料又は顔料が好ましく、染料がより好ましい。
 染料としては、特開2014-104631号公報の段落番号〔0082〕~〔0088〕に記載のものを使用できる。
 顔料の粒径は0.01~1μmが好ましく、0.01~0.5μmがより好ましい。顔料を分散するには、インク製造やトナー製造等に用いられる公知の分散技術が使用できる。詳細は、「最新顔料応用技術」(CMC出版、1986年刊)などに記載されている。
 赤外線吸収剤は1種のみを用いてもよいし2種以上を併用してもよい。
 赤外線吸収剤の含有量は、画像記録層の全固形分100質量部に対し、好ましくは0.05~30質量部、より好ましくは0.1~20質量部、特に好ましくは0.2~10質量部である。
<重合開始剤>
 重合開始剤は、重合性化合物の重合を開始、促進する化合物である。重合開始剤としては、公知の熱重合開始剤、結合解離エネルギーの小さな結合を有する化合物、光重合開始剤などを使用することができる。具体的には、特開2014-104631号公報の段落番号〔0092〕~〔0106〕に記載のラジカル重合開始剤を使用できる。
 重合開始剤の中で、好ましい化合物として、オニウム塩、なかでもヨードニウム塩及びスルホニウム塩が挙げられる。それぞれの塩の中で好ましい具体的化合物は、特開2014-104631号公報の段落番号〔0104〕~〔0106〕に記載の化合物と同じである。
 重合開始剤の含有量は、画像記録層の全固形分に対して0.1~50質量%が好ましく、0.5~30質量%がより好ましく、0.8~20質量%が特に好ましい。この範囲でより良好な感度と印刷時の非画像部のより良好な汚れ難さが得られる。
<重合性化合物>
 重合性化合物は、少なくとも一個のエチレン性不飽和二重結合を有する付加重合性化合物であり、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物から選ばれる。これらは、例えばモノマー、プレポリマー、すなわち2量体、3量体及びオリゴマー、又はそれらの混合物などの化学的形態を有する。具体的には、特開2014-104631号公報の段落番号〔0109〕~〔0113〕に記載の重合性化合物を使用できる。
 上記の中でも、機上現像性に関与する親水性と耐刷性に関与する重合能のバランスに優れる点から、トリス(アクリロイルオキシエチル)イソシアヌレート、ビス(アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレートなどのイソシアヌル酸エチレンオキシド変性アクリレート類が特に好ましい。
 重合性化合物の構造、単独使用か併用か、添加量等の使用方法の詳細は、最終的な平版印刷版原版の性能設計にあわせて任意に設定できる。重合性化合物は、画像記録層の全固形分に対して、好ましくは5~75質量%、更に好ましくは10~70質量%、特に好ましくは15~60質量%の範囲で使用される。
<バインダーポリマー>
 バインダーポリマーは、主として画像記録層の膜強度を向上させる目的で用いられる。バインダーポリマーは、従来公知のものを使用でき、皮膜性を有するポリマーが好ましい。なかでも、アクリル樹脂、ポリビニルアセタール樹脂、ポリウレタン樹脂などが好ましい。
 好適なバインダーポリマーとしては、特開2008-195018号公報に記載のような、画像部の皮膜強度を向上するための架橋性官能基を主鎖又は側鎖、好ましくは側鎖に有しているものが挙げられる。架橋性基によってポリマー分子間に架橋が形成され、硬化が促進する。
 架橋性官能基としては、(メタ)アクリル基、ビニル基、アリル基、スチリル基などのエチレン性不飽和基やエポキシ基等が好ましく、架橋性官能基は高分子反応や共重合によってポリマーに導入することができる。例えば、カルボキシ基を側鎖に有するアクリルポリマーやポリウレタンとグリシジルメタクリレートとの反応、あるいはエポキシ基を有するポリマーとメタクリル酸などのエチレン性不飽和基含有カルボン酸との反応を利用できる。
 バインダーポリマー中の架橋性基の含有量は、バインダーポリマー1g当たり、好ましくは0.1~10.0mmol、より好ましくは0.25~7.0mmol、特に好ましくは0.5~5.5mmolである。
 また、バインダーポリマーは親水性基を有することが好ましい。親水性基は画像記録層に機上現像性を付与するのに寄与する。特に、架橋性基と親水性基を共存させることにより、耐刷性と機上現像性の両立が可能になる。
 親水性基としては、たとえば、ヒドロキシ基、カルボキシ基、アルキレンオキシド構造、アミノ基、アンモニウム基、アミド基、スルホ基、リン酸基等などがあり、なかでも、炭素数2又は3のアルキレンオキシド単位を1~9個有するアルキレンオキシド構造が好ましい。バインダーポリマーに親水性基を付与するには、例えば、親水性基を有するモノマーを共重合することにより行うことできる。
 バインダーポリマーには、着肉性を制御するため、アルキル基、アリール基、アラルキル基、アルケニル基などの親油性の基を導入することもできる。例えば、メタクリル酸アルキルエステなどの親油性基含有モノマーを共重合することにより行うことできる。
 バインダーポリマーは、質量平均分子量(Mw)が2,000以上であることが好ましく、5,000以上であることがより好ましく、10,000~300,000であることが更に好ましい。
 バインダーポリマーの含有量は、画像記録層の全固形分に対して、3~90質量%が適当であり、5~80質量%が好ましく、10~70質量%がより好ましい。
 バインダーポリマーの好ましい例として、ポリオキシアルキレン鎖を側鎖に有する高分子化合物が挙げられる。ポリオキシアルキレン鎖を側鎖に有する高分子化合物(以下、POA鎖含有高分子化合物ともいう)を画像記録層に含有することにより、湿し水の浸透性が促進され、機上現像性が向上する。
 POA鎖含有高分子化合物の主鎖を構成する樹脂としては、アクリル樹脂、ポリビニルアセタール樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、メタクリル樹脂、ポリスチレン系樹脂、ノボラック型フェノール系樹脂、ポリエステル樹脂、合成ゴム、天然ゴムが挙げられ、特にアクリル樹脂が好ましい。
 POA鎖含有高分子化合物は、パーフルオロアルキル基を実質的に含まないものである。「パーフルオロアルキル基を実質的に含まない」とは、高分子化合物中のパーフルオロアルキル基として存在するフッ素原子の質量比が0.5質量%より少ないものであり、含まないものが好ましい。フッ素原子の質量比は元素分析法により測定される。
 また、「パーフルオロアルキル基」とは、アルキル基の全ての水素原子がフッ素原子で置換された基である。
 ポリオキシアルキレン鎖におけるアルキレンオキサイド(オキシアルキレン)としては炭素原子数が2~6のアルキレンオキサイドが好ましく、エチレンオキサイド(オキシエチレン)又はプロピレンオキサイド(オキシプロピレン)がより好ましく、エチレンオキサイドが更に好ましい。
 ポリオキシアルキレン鎖、すなわち、ポリ(アルキレンオキサイド)部位におけるアルキレンオキサイドの繰返し数は2~50が好ましく、4~25がより好ましい。
 アルキレンオキサイドの繰り返し数が2以上であれば湿し水の浸透性が十分向上し、また、繰り返し数が50以下であれば摩耗による耐刷性が低下することがなく、好ましい。
 ポリ(アルキレンオキサイド)部位については、特開2014-104631号公報の段落番号〔0060〕~〔0062〕に記載の構造が好ましい。
 POA鎖含有高分子化合物は、画像部の皮膜強度を向上するために、架橋性を有していてもよい。架橋性を有するPOA鎖含有高分子化合物については、特開2014-104631号公報の段落番号〔0063〕~〔0072〕に記載されている。
 POA鎖含有高分子化合物を構成する全繰り返し単位に対する、ポリ(アルキレンオキサイド)部位を有する繰り返し単位の比率は、特に限定されないが、好ましくは0.5~80モル%、より好ましくは0.5~50モル%である。POA鎖含有高分子化合物の具体例は、特開2014-104631号公報の段落番号〔0075〕~〔0076〕に記載のものが挙げられる。
 POA鎖含有高分子化合物は必要に応じて、特開2008-195018号公報に記載のポリアクリル酸、ポリビニルアルコールなどの親水性高分子化合物を併用することができる。また、親油的な高分子化合物と親水的な高分子化合物を併用することもできる。
 POA鎖含有高分子化合物の画像記録層中での形態は、画像記録層成分のつなぎの機能を果たすバインダーとして存在する以外に、微粒子の形状で存在してもよい。微粒子形状で存在する場合には、平均粒径は10~1000nmの範囲であり、好ましくは20~300nmの範囲であり、特に好ましくは30~120nmの範囲である。
 POA鎖含有高分子化合物の含有量は、画像記録層の全固形分に対して、好ましくは3~90質量%、より好ましくは5~80質量%である。3~90質量%の範囲で、湿し水の浸透性と画像形成性をより確実に両立させることができる。
 バインダーポリマーの他の好ましい例として、6官能以上10官能以下の多官能チオールを核として、この核に対しスルフィド結合により結合したポリマー鎖を有し、当該ポリマー鎖が重合性基を有する高分子化合物(以下、星型高分子化合物ともいう)が挙げられる。星型高分子化合物としては、例えば、特開2012-148555号公報に記載の化合物を好ましく用いることができる。
 星型高分子化合物は、特開2008-195018号公報に記載のような画像部の皮膜強度を向上するためのエチレン性不飽和結合等の重合性基を、主鎖又は側鎖、好ましくは側鎖に有しているものが挙げられる。重合性基によってポリマー分子間に架橋が形成され、硬化が促進する。
 重合性基としては、(メタ)アクリル基、ビニル基、アリル基、スチリル基などのエチレン性不飽和基やエポキシ基等が好ましく、(メタ)アクリル基、ビニル基、スチリル基が重合反応性の観点でより好ましく、(メタ)アクリル基が特に好ましい。これらの基は高分子反応や共重合によってポリマーに導入することができる。例えば、カルボキシ基を側鎖に有するポリマーとグリシジルメタクリレートとの反応、あるいはエポキシ基を有するポリマーとメタクリル酸などのエチレン性不飽和基含有カルボン酸との反応を利用できる。これらの基は併用してもよい。
 星型高分子化合物中の架橋性基の含有量は、星型高分子化合物1g当たり、好ましくは0.1~10.0mmol、より好ましくは0.25~7.0mmol、最も好ましくは0.5~5.5mmolである。
 また、星型高分子化合物は、更に親水性基を有することが好ましい。親水性基は画像記録層に機上現像性を付与するのに寄与する。特に、重合性基と親水性基を共存させることにより、耐刷性と現像性の両立が可能になる。
 親水性基としては、-SO、-OH、-CONR(Mは水素、金属イオン、アンモニウムイオン、ホスホニウムイオン、を表し、R、Rは各々独立して水素原子、アルキル基、アルケニル基、アリール基を表す。RとRは結合して環を形成してもよい。)、-N+R(R~Rは、各々独立して炭素数1~8のアルキル基を表し、Xはカウンターアニオンを表す)、下記一般式(1)で表される基及び一般式(2)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上式中、n及びmは、それぞれ独立に、1~100の整数を表し、Rは、それぞれ独立に、水素原子又は炭素数1~18のアルキル基を表す。
 ここで、星型高分子化合物が、ポリオキシアルキレン鎖(例えば、上記一般式(1)又は(2)で表される基)を側鎖に有している星型高分子化合物である場合、このような星型高分子化合物は、上記ポリオキシアルキレン鎖を側鎖に有する高分子化合物でもある。
 これら親水性基の中でも、-CONR、一般式(1)で表される基及び一般式(2)で表される基が好ましく、-CONR及び一般式(1)で表される基がより好ましく、一般式(1)で表される基が特に好ましい。更に一般式(1)で表される基の中でも、nは1~10がより好ましく、1~4が特に好ましい。また、Rは水素原子又は炭素数1~4のアルキル基がより好ましく、水素原子又はメチル基が特に好ましい。これら親水性基は2種以上を併用してもよい。
 また、星型高分子化合物は、カルボン酸基、リン酸基、ホスホン酸基を実質的に持たないことが好ましい。具体的には0.1mmol/gより少ないことが好ましく、0.05mmol/gより少ないことがより好ましく、0.03mmol/g以下であることが特に好ましい。これらの酸基が0.1mmol/gより少ないと現像性がより向上する。
 また、星型高分子化合物には、着肉性を制御するため、アルキル基、アリール基、アラルキル基、アルケニル基などの親油性の基を導入できる。具体的には、メタクリル酸アルキルエステなどの親油性基含有モノマーを共重合すればよい。
 星型高分子化合物の具体例としては、特開2014-104631号公報の段落番号〔0153〕~〔0157〕に記載されているものが挙げられる。
 星型高分子化合物は、上記の多官能チオール化合物の存在下で、ポリマー鎖を構成する上記モノマーをラジカル重合するなど、公知の方法によって合成することができる。
 星型高分子化合物の質量平均分子量は、5,000~500,000が好ましく、10,000~250,000がより好ましく、20,000~150,000が特に好ましい。この範囲において、機上現像性と耐刷性がより良好になる。
 星型高分子化合物は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。また、通常の直鎖型バインダーポリマーと併用してもよい。
 星型高分子化合物の含有率は、画像記録層の全固形分に対し、5~95質量%が好ましく、10~90質量%以下がより好ましく、15~85質量%以下が特に好ましい。
 特に、湿し水の浸透性が促進され、機上現像性が向上することから、特開2012-148555号公報に記載の星型高分子化合物が好ましい。
<その他の成分>
 画像記録層Aには、必要に応じて、以下に記載するその他の成分を含有させることができる。
(1)低分子親水性化合物
 画像記録層は、耐刷性を低下させることなく機上現像性を向上させるために、低分子親水性化合物を含有してもよい。
 低分子親水性化合物としては、例えば、水溶性有機化合物としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のグリコール類及びそのエーテル又はエステル誘導体類、グリセリン、ペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌレート等のポリオール類、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン等の有機アミン類及びその塩、アルキルスルホン酸、トルエンスルホン酸、ベンゼンスルホン酸等の有機スルホン酸類及びその塩、アルキルスルファミン酸等の有機スルファミン酸類及びその塩、アルキル硫酸、アルキルエーテル硫酸等の有機硫酸類及びその塩、フェニルホスホン酸等の有機ホスホン酸類及びその塩、酒石酸、シュウ酸、クエン酸、リンゴ酸、乳酸、グルコン酸、アミノ酸類等の有機カルボン酸類及びその塩、ベタイン類、等が挙げられる。
 これらの中でも、ポリオール類、有機硫酸塩類、有機スルホン酸塩類、ベタイン類の群から選ばれる少なくとも一つを含有させることが好ましい。
 有機スルホン酸塩の具体的な化合物としては、特開2007-276454号公報の段落番号〔0026〕~〔0031〕、特開2009-154525号公報の段落番号〔0020〕~〔0047〕に記載の化合物などが挙げられる。塩は、カリウム塩、リチウム塩でもよい。
 有機硫酸塩としては、特開2007-276454号公報の段落番号〔0034〕~〔0038〕に記載の化合物が挙げられる。
 ベタイン類としては、窒素原子への炭化水素置換基の炭素原子数が1~5である化合物が好ましく、具体例としては、トリメチルアンモニウムアセタート、ジメチルプロピルアンモニウムアセタート、3-ヒドロキシ-4-トリメチルアンモニオブチラート、4-(1-ピリジニオ)ブチラート、1-ヒドロキシエチル-1-イミダゾリオアセタート、トリメチルアンモニウムメタンスルホナート、ジメチルプロピルアンモニウムメタンスルホナート、3-トリメチルアンモニオ-1-プロパンスルホナート、3-(1-ピリジニオ)-1-プロパンスルホナートなどが挙げられる。
 低分子親水性化合物は、疎水性部分の構造が小さいため、湿し水が画像記録層露光部(画像部)へ浸透して画像部の疎水性や皮膜強度を低下させることがなく、画像記録層のインキ受容性や耐刷性を良好に維持できる。
 低分子親水性化合物の添加量は、画像記録層全固形分量の0.5~20質量%が好ましい。1~15質量%がより好ましく、2~10質量%が更に好ましい。この範囲で良好な機上現像性と耐刷性が得られる。
 化合物は単独で用いてもよく、2種以上を混合して用いてもよい。
(2)感脂化剤
 画像記録層には、着肉性を向上させるために、ホスホニウム化合物、含窒素低分子化合物、アンモニウム基含有ポリマーなどの感脂化剤を用いることができる。特に、保護層に無機質層状化合物を含有させる場合には、これらの化合物は、無機質層状化合物の表面被覆剤として機能し、無機質層状化合物による印刷途中の着肉性低下を防止する作用を有する。
 ホスホニウム化合物、含窒素低分子化合物、アンモニウム基含有ポリマーは、特開2014-104631号公報の段落番号〔0184〕~〔0190〕に具体的に記載されている。
 感脂化剤の含有量は、画像記録層の全固形分に対して0.01~30.0質量%が好ましく、0.1~15.0質量%がより好ましく、1~10質量%が更に好ましい。
(3)その他
 画像記録層は、その他の成分として、更に、界面活性剤、着色剤、焼き出し剤、重合禁止剤、高級脂肪酸誘導体、可塑剤、無機微粒子、無機質層状化合物、共増感剤、連鎖移動剤などを含有することができる。具体的には、特開2008-284817号公報の段落番号〔0114〕~〔0159〕、特開2006-091479号公報の段落番号〔0023〕~〔0027〕、米国特許公開2008/0311520号明細書の段落番号〔0060〕に記載の化合物及び添加量を好ましく用いることができる。
<画像記録層Aの形成>
 画像記録層Aは、例えば、特開2008-195018号公報の段落番号〔0142〕~〔0143〕に記載のように、必要な上記各成分を公知の溶剤に分散又は溶解して塗布液を調製し、この塗布液を支持体上に直接又は下塗り層を介して、バーコーター塗布など公知の方法で塗布し、乾燥することで形成される。塗布、乾燥後に得られる支持体上の画像記録層塗布量(固形分)は、用途によって異なるが、通常0.3~3.0g/mが好ましい。この範囲で、良好な感度と画像記録層の良好な皮膜特性が得られる。
(画像記録層B)
 画像記録層Bは、赤外線吸収剤、重合開始剤、重合性化合物及び微粒子形状の高分子化合物を含有する。以下、画像記録層Bの構成成分について説明する。
 画像記録層Bにおける赤外線吸収剤、重合開始剤及び重合性化合物に関しては、画像記録層Aにおいて記載した赤外線吸収剤、重合開始剤及び重合性化合物を同様に用いることができる。
<微粒子形状の高分子化合物>
 微粒子形状の高分子化合物は、熱可塑性ポリマー微粒子、熱反応性ポリマー微粒子、重合性基を有するポリマー微粒子、疎水性化合物を内包しているマイクロカプセル、及びミクロゲル(架橋ポリマー微粒子)から選ばれることが好ましい。なかでも、重合性基を有するポリマー微粒子及びミクロゲルが好ましい。特に好ましい実施形態では、微粒子形状の高分子化合物は少なくとも1つのエチレン性不飽和重合性基を含む。このような微粒子形状の高分子化合物の存在により、露光部の耐刷性及び未露光部の機上現像性を高める効果が得られる。
 熱可塑性ポリマー微粒子としては、1992年1月のResearch Disclosure No.33303、特開平9-123387号公報、同9-131850号公報、同9-171249号公報、同9-171250号公報及び欧州特許第931647号明細書などに記載の熱可塑性ポリマー微粒子が好ましい。
 熱可塑性ポリマー微粒子を構成するポリマーの具体例としては、エチレン、スチレン、塩化ビニル、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、塩化ビニリデン、アクリロニトリル、ビニルカルバゾール、ポリアルキレン構造を有するアクリレート又はメタクリレートなどのモノマーのホモポリマー若しくはコポリマー又はそれらの混合物を挙げることができる。好ましくは、ポリスチレン、スチレン及びアクリロニトリルを含む共重合体、ポリメタクリル酸メチルを挙げることができる。熱可塑性ポリマー微粒子の平均粒径は0.01~3.0μmが好ましい。平均粒径はレーザー光散乱法により算出される。
 熱反応性ポリマー微粒子としては、熱反応性基を有するポリマー微粒子が挙げられる。熱反応性ポリマー微粒子は熱反応による架橋及びその際の官能基変化により疎水化領域を形成する。
 熱反応性基を有するポリマー微粒子における熱反応性基としては、化学結合が形成されるならば、どのような反応を行う官能基でもよいが、重合性基であることが好ましく、その例として、ラジカル重合反応を行うエチレン性不飽和基(例えば、アクリロイル基、メタクリロイル基、ビニル基、アリル基など)、カチオン重合性基(例えば、ビニル基、ビニルオキシ基、エポキシ基、オキセタニル基など)、付加反応を行うイソシアナート基又はそのブロック体、エポキシ基、ビニルオキシ基及びこれらの反応相手である活性水素原子を有する官能基(例えば、アミノ基、ヒドロキシ基、カルボキシ基など)、縮合反応を行うカルボキシ基及び反応相手であるヒドロキシ基又はアミノ基、開環付加反応を行う酸無水物及び反応相手であるアミノ基又はヒドロキシ基などが好ましく挙げられる。
 マイクロカプセルとしては、例えば、特開2001-277740号公報、特開2001-277742号公報に記載のごとく、画像記録層の構成成分の少なくとも一部をマイクロカプセルに内包させたものである。画像記録層の構成成分は、マイクロカプセル外にも含有させることもできる。マイクロカプセルを含有する画像記録層は、疎水性の構成成分をマイクロカプセルに内包し、親水性の構成成分をマイクロカプセル外に含有する構成が好ましい態様である。
 ミクロゲル(架橋ポリマー微粒子)は、その表面又は内部の少なくとも一方に、画像記録層の構成成分の一部を含有することができる。特に、ラジカル重合性基をその表面に有する反応性ミクロゲルは、画像形成感度や耐刷性の観点から好ましい。
 画像記録層の構成成分をマイクロカプセル化又はミクロゲル化するには、公知の方法が適用できる。
 微粒子形状の高分子化合物の平均粒径は、0.01~3.0μmが好ましく、0.03~2.0μmがより好ましく、0.10~1.0μmが更に好ましい。この範囲で良好な解像度と経時安定性が得られる。平均粒径はレーザー光散乱法により算出される。
 微粒子形状の高分子化合物の含有量は、画像記録層全固形分の5~90質量%が好ましい。
<その他の成分>
 画像記録層Bには、必要に応じて、上記画像記録層Aにおいて記載したその他の成分を含有させることができる。
<画像記録層Bの形成>
 画像記録層Bの形成に関しては、上記画像記録層Aの形成の記載を適用することができる。
(画像記録層C)
 画像記録層Cは、赤外線吸収剤及び熱可塑性ポリマー微粒子を含有する。以下、画像記録層Cの構成成分について説明する。
<赤外線吸収剤>
 画像記録層Cに含まれる赤外線吸収剤は、好ましくは760~1200nm吸収極大を有する染料又は顔料である。染料がより好ましい。
 染料としては、市販の染料及び文献(例えば「染料便覧」有機合成化学協会編集、昭和45年刊、「化学工業」1986年5月号P.45~51の「近赤外吸収色素」、「90年代機能性色素の開発と市場動向」第2章2.3項(CMC出版、1990年刊)又は特許に記載されている公知の染料が利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、ポリメチン染料、シアニン染料などの赤外線吸収染料が好ましい。
 これらの中で、画像記録層に添加するのに特に好ましい染料は水溶性基を有する赤外線吸収染料である。
 以下に赤外線吸収染料の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 顔料としては、市販の顔料及びカラーインデックス(C.I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)、「印刷インキ技術」(CMC出版、1984年刊)に記載されている顔料が利用できる。
 顔料の粒径は0.01~1μmが好ましく、0.01~0.5μmがより好ましい。顔料を分散する方法としては、インク製造やトナー製造等に用いられる公知の分散技術が使用できる。詳細は、「最新顔料応用技術」(CMC出版、1986年刊)に記載されている。
 赤外線吸収剤の含有量は、画像記録層固形分の0.1~30質量%が好ましく、0.25~25質量%がより好ましく、0.5~20質量%が特に好ましい。この範囲内で、画像記録層の膜強度を損なうことなく、良好な感度が得られる。
<熱可塑性ポリマー微粒子>
 熱可塑性ポリマー微粒子はそのガラス転移温度(Tg)が60℃~250℃であることが好ましい。熱可塑性ポリマー微粒子のTgは、70℃~140℃がより好ましく、80℃~120℃が更に好ましい。
 Tgが60℃以上の熱可塑性ポリマー微粒子としては、例えば、1992年1月のReseach Disclosure No.33303、特開平9-123387号公報、同9-131850号公報、同9-171249号公報、同9-171250号公報及びEP931647号公報などに記載の熱可塑性ポリマー微粒子を好適なものとして挙げることができる。
 具体的には、エチレン、スチレン、塩化ビニル、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、塩化ビニリデン、アクリロニトリル、ビニルカルバゾールなどのモノマーから構成されるホモポリマー若しくはコポリマー又はそれらの混合物などを例示することができる。好ましいものとして、ポリスチレン、ポリメタクリル酸メチルなどが挙げられる。
 熱可塑性ポリマー微粒子の平均粒径は、解像度及び経時安定性を考慮すると好ましくは0.005~2.0μmである。この値は熱可塑性ポリマー微粒子を2種以上混ぜた場合の平均粒径としても適用される。平均粒径は、より好ましくは0.01~1.5μm、特に好ましくは0.05μm~1.0μmである。熱可塑性ポリマー微粒子を2種以上混ぜた場合の多分散性は0.2以上であることが好ましい。平均粒径及び多分散性はレーザー光散乱法により算出される。
 熱可塑性ポリマー微粒子は2種類以上を混合して用いてもよい。具体的には、粒子サイズの異なる少なくとも2種類の使用又はTgの異なる少なくとも2種類の使用が挙げられる。2種類以上を混合使用により、画像部の皮膜硬化性が更に向上し、平版印刷版とした場合に耐刷性が一層向上する。
 例えば、熱可塑性ポリマー微粒子として粒子サイズが同じものを用いた場合には、熱可塑性ポリマー微粒子間にある程度の空隙が存在することになり、画像露光により熱可塑性ポリマー微粒子を溶融固化させても皮膜の硬化性が所望のものにならないことがある。これに対して、熱可塑性ポリマー微粒子として粒子サイズが異なるものを用いた場合、熱可塑性ポリマー微粒子間にある空隙率を低くすることができ、その結果、画像露光後の画像部の皮膜硬化性を向上させることができる。
 また、熱可塑性ポリマー微粒子としてTgが同じものを用いた場合には、画像露光による画像記録層の温度上昇が不十分なとき、熱可塑性ポリマー微粒子が十分に溶融固化せず皮膜の硬化性が所望のものにならないことがある。これに対して、熱可塑性ポリマー微粒子としてTgが異なるものを用いた場合、画像露光による画像記録層の温度上昇が不十分なときでも画像部の皮膜硬化性を向上させることができる。
 Tgが異なる熱可塑性ポリマー微粒子を2種以上混ぜて用いる場合、熱可塑性ポリマー微粒子の少なくとも1種類のTgは60℃以上であることが好ましい。この際、Tgの差が10℃以上あることが好ましく、更に好ましくは20℃以上である。また、Tgが60℃以上の熱可塑性ポリマー微粒子を全熱可塑性ポリマー微粒子に対して70質量%以上含有することが好ましい。
 熱可塑性ポリマー微粒子は架橋性基を有していてもよい。架橋性基を有する熱可塑性ポリマー微粒子を用いることにより、画像露光部に発生する熱によって架橋性基が熱反応してポリマー間に架橋が形成され、画像部の皮膜強度が向上し、耐刷性がより優れたものになる。架橋性基としては化学結合が形成されるならばどのような反応を行う官能基でもよく、例えば、重合反応を行うエチレン性不飽和基(例えば、アクリロイル基、メタクリロイル基、ビニル基、アリル基など)、付加反応を行うイソシアナート基あるいはそのブロック体及びその反応相手である活性水素原子を有する基(例えば、アミノ基、ヒドロキシ基、カルボキシル基など)、同じく付加反応を行うエポキシ基及びその反応相手であるアミノ基、カルボキシル基あるいはヒドロキシ基、縮合反応を行うカルボキシル基とヒドロキシ基あるいはアミノ基、開環付加反応を行う酸無水物とアミノ基あるいはヒドロキシ基などを挙げることができる。
 架橋性基を有する熱可塑性ポリマー微粒子としては、具体的には、アクリロイル基、メタクリルロイル基、ビニル基、アリル基、エポキシ基、アミノ基、ヒドロキシ基、カルボキシル基、イソシアネート基、酸無水物及びそれらを保護した基などの架橋性基を有するものを挙げることができる。これら架橋性基のポリマーへの導入は、ポリマー微粒子の重合時に行ってもよいし、ポリマー微粒子の重合後に高分子反応を利用して行ってもよい。
 ポリマー微粒子の重合時に架橋性基を導入する場合は、架橋性基を有するモノマーを乳化重合あるいは懸濁重合することが好ましい。架橋性基を有するモノマーの具体例として、アリルメタクリレート、アリルアクリレート、ビニルメタクリレート、ビニルアクリレート、グリシジルメタクリレート、グリシジルアクリレート、2-イソシアネートエチルメタクリレートあるいはそのアルコールなどによるブロックイソシアナート、2-イソシアネートエチルアクリレートあるいはそのアルコールなどによるブロックイソシアナート、2-アミノエチルメタクリレート、2-アミノエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、アクリル酸、メタクリル酸、無水マレイン酸、2官能アクリレート、2官能メタクリレートなどを挙げることができる。
 架橋性基の導入をポリマー微粒子の重合後に行う場合に用いる高分子反応としては、例えば、WO96/34316号に記載されている高分子反応を挙げることができる。
 熱可塑性ポリマー微粒子は、架橋性基を介してポリマー微粒子同士が反応してもよいし、画像記録層に添加された高分子化合物あるいは低分子化合物と反応してもよい。
 熱可塑性ポリマー微粒子の含有量は、画像記録層固形分の50~95質量%が好ましく、60~90質量%がより好ましく、70~85質量%が特に好ましい。
<その他の成分>
 画像記録層Cは、必要に応じて、更にその他の成分を含有してもよい。
<ポリオキシアルキレン基又はヒドロキシ基を有する界面活性剤>
 ポリオキシアルキレン基(以下、POA基とも記載する)又はヒドロキシ基を有する界面活性剤としては、POA基又はヒドロキシ基を有する界面活性剤を適宜用いることができるが、アニオン界面活性剤又はノニオン界面活性剤が好ましい。POA基又はヒドロキシ基を有するアニオン界面活性剤又はノニオン界面活性剤の中で、POA基を有するアニオン界面活性剤又はノニオン界面活性剤が好ましい。
 POA基としては、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等が好ましく、ポリオキシエチレン基が特に好ましい。
 オキシアルキレン基の平均重合度は通常2~50が適当であり、好ましくは2~20である。
 ヒドロキシ基の数は通常1~10が適当であり、好ましくは2~8である。但し、オキシアルキレン基における末端ヒドロキシ基は、ヒドロキシ基の数には含めない。
(POA基又はヒドロキシ基を有するアニオン界面活性剤)
 POA基を有するアニオン界面活性剤としては、特に限定されず、ポリオキシアルキレンアルキルエーテルカルボン酸塩類、ポリオキシアルキレンアルキルスルホコハク酸塩類、ポリオキシアルキレンアルキルエーテル硫酸エステル塩類、アルキルフェノキシポリオキシアルキレンプロピルスルホン酸塩類、ポリオキシアルキレンアルキルスルホフェニルエーテル類、ポリオキシアルキレンアリールエーテル硫酸エステル塩類、ポリオキシアルキレン多環フェニルエーテル硫酸エステル塩類、ポリオキシアルキレンスチリルフェニルエーテル硫酸エステル塩類、ポリオキシアルキレンルキルエーテル燐酸エステル塩類、ポリオキシアルキレンアルキルフェニルエーテル燐酸エステル塩類、ポリオキシアルキレンパーフルオロアルキルエーテル燐酸エステル塩類等が挙げられる。
 ヒドロキシ基を有するアニオン界面活性剤としては、特に限定されず、ヒドロキシカルボン酸塩類、ヒドロキシアルキルエーテルカルボン酸塩類、ヒドロキシアルカンスルホン酸塩類、脂肪酸モノグリセリド硫酸エステル塩類、脂肪酸モノグリセリドリン酸エステル塩類等が挙げられる。
 POA基又はヒドロキシ基を有する界面活性剤の含有量は、画像記録層固形分の0.05~15質量%が好ましく、0.1~10質量%がより好ましい。
 以下に、POA基又はヒドロキシ基を有する界面活性剤の具体例を挙げるが、本発明はこれらに限定されるものではない。下記界面活性剤A-12は、ゾニールFSPの商品名でデュポン社から入手できる。また、下記界面活性剤N-11は、ゾニールFSO 100の商品名でデュポン社から入手できる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 画像記録層は、画像記録層の塗布の均一性を確保する目的で、ポリオキシアルキレン基及びヒドロキシ基を有さないアニオン界面活性剤を含有してもよい。
 当該アニオン界面活性剤は、上記目的を達成する限り、特に制限されない。中でも、アルキルベンゼンスルホン酸又はその塩、アルキルナフタレンスルホン酸又はその塩、(ジ)アルキルジフェニルエーテル(ジ)スルホン酸又はその塩、アルキル硫酸エステル塩が好ましい。
 ポリオキシアルキレン基及びヒドロキシ基を有さないアニオン界面活性剤の添加量は、ポリオキシアルキレン基又はヒドロキシ基を有する界面活性剤に対して1~50質量%が好ましく、1~30質量%がより好ましい。
 以下に、ポリオキシアルキレン基及びヒドロキシ基を有さないアニオン界面活性剤の具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000006
 また、画像記録層の塗布の均一性を確保する目的で、ポリオキシアルキレン基及びヒドロキシ基を有さないノニオン界面活性剤、あるいはフッ素系界面活性剤を用いてもよい。例えば、特開昭62-170950号に記載のフッ素系界面活性剤が好ましく用いられる。
 画像記録層は、親水性樹脂を含有することができる。親水性樹脂としては、例えばヒドロキシ基、ヒドロキシエチル基、ヒドロキシプロピル基、アミノ基、アミノエチル基、アミノプロピル基、カルボキシル基、カルボキシラト基、スルホ基、スルホナト基、リン酸基などの親水基を有する樹脂が好ましい。
 親水性樹脂の具体例として、アラビアゴム、カゼイン、ゼラチン、澱粉誘導体、カルボキシメチルセルロース及びそのナトリウム塩、セルロースアセテート、アルギン酸ナトリウム、酢酸ビニル-マレイン酸コポリマー類、スチレン-マレイン酸コポリマー類、ポリアクリル酸類及びそれらの塩、ポリメタクリル酸類及びそれらの塩、ヒドロキシエチルメタクリレートのホモポリマー及びコポリマー、ヒドロキシエチルアクリレートのホモポリマー及びコポリマー、ヒドロキシプロピルメタクリレートのホモポリマー及びコポリマー、ヒドロキシプロピルアクリレートのホモポリマー及びコポリマー、ヒドロキシブチルメタクリレートのホモポリマー及びコポリマー、ヒドロキシブチルアクリレートのホモポリマー及びコポリマー、ポリエチレングリコール類、ヒドロキシプロピレンポリマー類、ポリビニルアルコール類、加水分解度が少なくとも60%、好ましくは少なくとも80%の加水分解ポリビニルアセテート、ポリビニルホルマール、ポリビニルブチラール、ポリビニルピロリドン、アクリルアミドのホモポリマー及びコポリマー、メタクリルアミドのホモポリマー及びコポリマー、N-メチロールアクリルアミドのホモポリマー及びコポリマー等を挙げることができる。
 親水性樹脂の質量平均分子量は、十分な皮膜強度や耐刷性が得られる観点から、2,000以上が好ましい。
 親水性樹脂の含有量は、画像記録層固形分の0.5~50質量%が好ましく、1~30質量%がより好ましい。
 画像記録層は無機微粒子を含有してもよい。無機微粒子としては、シリカ、アルミナ、酸化マグネシウム、酸化チタン、炭酸マグネシウム、アルギン酸カルシウム又はこれらの混合物などが好適な例として挙げられる。無機微粒子は、皮膜の強化などの目的で用いることができる。
 無機微粒子の平均粒径は5nm~10μmが好ましく、10nm~1μmがより好ましい。この範囲で、熱可塑性ポリマー微粒子とも安定に分散され、画像記録層の膜強度を充分に保持し、印刷汚れを生じにくい親水性に優れた非画像部を形成できる。
 無機微粒子は、コロイダルシリカ分散物などの市販品として容易に入手できる。
 無機微粒子の含有量は、画像記録層固形分の1.0~70質量%が好ましく、5.0~50質量%がより好ましい。
 画像記録層には、塗膜の柔軟性等を付与するために可塑剤を含有させることができる。可塑剤としては、例えば、ポリエチレングリコール、クエン酸トリブチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、リン酸トリクレジル、リン酸トリブチル、リン酸トリオクチル、オレイン酸テトラヒドロフルフリル等が挙げられる。
 可塑剤の含有量は、画像記録層固形分の0.1%~50質量%が好ましく、1~30質量%がより好ましい。
 画像記録層において、熱反応性官能基(架橋性基)を有するポリマー微粒子を用いる場合は、必要に応じて、熱反応性官能基(架橋性基)の反応を開始又は促進する化合物を添加することができる。熱反応性官能基の反応を開始又は促進する化合物としては、熱によりラジカル又はカチオンを発生するような化合物を挙げることができる。例えば、ロフィンダイマー、トリハロメチル化合物、過酸化物、アゾ化合物、ジアゾニウム塩、ジフェニルヨードニウム塩などを含むオニウム塩、アシルホスフィン、イミドスルホナートなどが挙げられる。このような化合物の添加量は、画像記録層固形分の1~20質量%が好ましく、1~10質量%がより好ましい。この範囲で、機上現像性を損なわず、良好な反応開始又は促進効果が得られる。
<画像記録層Cの形成>
 画像記録層Cは、必要な上記各成分を適当な溶剤に溶解又は分散して塗布液を調製し、この塗布液を支持体上に直接又は下塗り層を介して塗布して形成される。溶剤としては、水又は水と有機溶剤との混合溶剤が用いられるが、水と有機溶剤の混合使用が、塗布後の面状を良好にする点で好ましい。有機溶剤の量は、有機溶剤の種類によって異なるので、一概に特定できないが、通常混合溶剤中5~50容量%が好ましい。但し、有機溶剤は熱可塑性ポリマー微粒子が凝集しない範囲の量で使用する必要がある。画像記録層用塗布液の固形分濃度は、好ましくは1~50質量%である。
 塗布液の溶剤として用いられる有機溶剤は、水に可溶な有機溶剤が好ましい。具体的には、メタノール、エタノール、プロパノール、イソプロパノール、1-メトキシ-2-プロパノールなどのアルコール溶剤、アセトン、メチルエチルケトンなどのケトン溶剤、エチレングリコールジメチルエーテルなどのグリコールエーテル溶剤、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシドなどが挙げられる。特に、沸点が120℃以下であって、水に対する溶解度(水100gに対する溶解量)が10g以上の有機溶剤が好ましく、20g以上の有機溶剤がよりに好ましい。
 画像記録層用塗布液の塗布方法としては、種々の方法を用いることができる。例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等を挙げられる。塗布、乾燥後に得られる支持体上の画像記録層の塗布量(固形分)は、用途によって異なるが、通常は0.5~5.0g/mが好ましく、0.5~2.0g/mがより好ましい。
 本発明に係る平版印刷版原版の画像記録層は、その非画像部が、現像液により除去される画像記録層であってもよい。このような画像記録層は、所謂現像処理型平版印刷版原版として知られている多くの平版印刷版原版の画像記録層を含む。
 現像液により除去される画像記録層の1つの態様によれば、画像記録層は、増感色素、重合開始剤、重合性化合物及びバインダーポリマーを含有するネガ型の画像記録層である。このような、ネガ型の画像記録層は、例えば、特開2008-15503号公報の段落番号〔0057〕-〔0154〕に<記録層>として記載されている。
 現像液により除去される画像記録層の1つの態様によれば、画像記録層は、水不溶性かつアルカリ可溶性樹脂及び赤外線吸収剤を含有するポジ型の画像記録層である。このような、ポジ型の画像記録層は、例えば、特開2007-148040号公報の段落番号〔0055〕-〔0132〕に〔記録層〕として記載されている。
 以下に、平版印刷版原版の他の構成要素について記載する。
〔下塗り層〕
 平版印刷版原版は、画像記録層と支持体との間に、必要により、下塗り層を設けることができる。下塗り層は、露光部においては支持体と画像記録層との密着を強化し、未露光部においては画像記録層の支持体からのはく離を生じやすくさせるため、耐刷性を損なわず機上現像性を向上させるのに寄与する。また、赤外線レーザー露光の場合は、下塗り層が断熱層として機能することにより、露光により発生した熱が支持体に拡散して感度が低下するのを防ぐ作用を有する。
 下塗り層に用いる化合物としては、具体的には、特開平10-282679号公報に記載されている付加重合可能なエチレン性二重結合反応基を有しているシランカップリング剤、特開平2-304441号公報記載のエチレン性二重結合反応基を有しているリン化合物が挙げられる。好ましいものとして、特開2005-125749号公報及び特開2006-188038号公報に記載のごとき、支持体表面に吸着可能な吸着性基、親水性基、及び架橋性基を有する高分子化合物が挙げられる。このような高分子化合物としては、吸着性基を有するモノマー、親水性基を有するモノマー、及び架橋性基を有するモノマーの共重合体であることが好ましい。より具体的には、フェノール性ヒドロキシ基、カルボキシ基、-PO、-OPO、-CONHSO-、-SONHSO-、-COCHCOCHなどの吸着性基を有するモノマーと、スルホ基などの親水性基を有するモノマーと、更にメタクリル基、アリル基などの重合性の架橋性基を有するモノマーとの共重合体が挙げられる。高分子化合物は、高分子化合物の極性置換基と、対荷電を有する置換基及びエチレン性不飽和結合を有する化合物との塩形成で導入された架橋性基を有してもよい。また、上記以外のモノマー、好ましくは親水性モノマーが更に共重合されていてもよい。
 下塗り層用高分子化合物中の不飽和二重結合の含有量は、高分子化合物1g当たり、好ましくは0.1~10.0mmol、より好ましくは2.0~5.5mmolである。
 下塗り層用高分子化合物は、質量平均分子量が5,000以上であるのが好ましく、10,000~300,000であるのがより好ましい。
 下塗り層は、上記下塗り層用化合物の他に、経時における汚れ防止のため、キレート剤、第2級又は第3級アミン、重合禁止剤、アミノ基又は重合禁止能を有する官能基とアルミニウム支持体表面と相互作用する基とを有する化合物など(例えば、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、2,3,5,6-テトラヒドロキシ-p-キノン、クロラニル、スルホフタル酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、ヒドロキシエチルイミノ二酢酸など)を含有することができる。
 下塗り層は、公知の方法で塗布される。下塗り層の塗布量(固形分)は、0.1~100mg/mが好ましく、1~30mg/mがより好ましい。
〔支持体〕
 平版印刷版原版の支持体としては、公知の支持体が用いられる。なかでも、公知の方法で粗面化処理され、陽極酸化処理されたアルミニウム板が好ましい。
 アルミニウム板には、必要に応じて、特開2001-253181号公報や特開2001-322365号公報に記載されている陽極酸化皮膜のマイクロポアの拡大処理や封孔処理、及び米国特許第2,714,066号、同第3,181,461号、同第3,280,734号及び同第3,902,734号の各明細書に記載されているようなアルカリ金属シリケートあるいは米国特許第3,276,868号、同第4,153,461号及び同第4,689,272号の各明細書に記載されているようなポリビニルホスホン酸などによる表面親水化処理を適宜選択して行うことができる。
 支持体は、中心線平均粗さが0.10~1.2μmであることが好ましい。
〔保護層〕
 平版印刷版原版は、画像記録層の上に、必要により、保護層を設けることができる。保護層は酸素遮断によって画像形成阻害反応を抑制する機能の他、画像記録層における傷の発生防止、及び高照度レーザー露光時のアブレーション防止の機能を有する。
 このような機能を有する保護層については、特開2014-104631号公報の段落番号〔0202〕~〔0204〕に記載のものを使用できる。
 保護層は、公知の方法で塗布される。保護層の塗布量は、乾燥後の塗布量で、0.01~10g/mが好ましく、0.02~3g/mがより好ましく、0.02~1g/mが特に好ましい。
 平版印刷版原版は、各構成層の塗布液を通常の方法に従って塗布、乾燥して各構成層を形成することにより製造することができる。塗布には、ダイコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法など用いられる。
 以下に、印刷用原版の他の1つの好ましい態様である印刷用捨て版原版について記載する。
 印刷用捨て版原版は、平版印刷版原版と同様の製版工程(但し、画像露光は行わない)を経て印刷用捨て版を作製するための原版であり、基本的に感光性を有さない。印刷用捨て版は、印刷業界においてよく知られるように、例えば、カラーの新聞印刷(多色印刷)において一部の紙面を2色又は1色で印刷を行う必要がある場合に、版胴に取り付けて用いられる。
[印刷用捨て版原版]
 本発明に係る印刷用捨て版原版は、支持体上に非感光性層を有する。印刷用捨て版原版における非感光性層は、上記印刷用原版におけるポリマーを含有する層に該当する。印刷用捨て版原版は、必要により、支持体と非感光性層との間に下塗り層、非感光性層の上に親水性層を有してもよい。
 非感光性層は、印刷機上で酸性~アルカリ性の湿し水及び印刷インキの少なくとも1方により除去される非感光性層であることが1つの好ましい態様である。
 印刷用捨て版原版における非感光性層は、水溶性バインダーポリマー又は水不溶性かつアルカリ可溶性のバインダーポリマー(以下、「バインダーポリマー」ともいう。)を含むことが好ましい。また、非感光性層は、350~550nmに吸収極大を有する着色剤、及び、低分子酸性化合物を含有することができる。
 印刷用捨て版原版における非感光性層に含有されるバインダーは、例えば、特開2011-218778号公報の段落番号〔0069〕-〔0074〕に記載されている。
 印刷用捨て版原版における非感光性層及びその形成方法は、例えば、特開2011-218778号公報の段落番号〔0021〕-〔0054〕に記載されている。
 印刷用捨て版原版における親水性層は、バインダーを含有する。
 親水性層の形成は、バインダー、及び、目的に応じて添加される着色剤、水溶性可塑剤、界面活性剤など種々の添加剤を撹拌、混合して調製される親水性層塗布液を、例えば、米国特許第3,458,311号明細書又は特開昭55-49729号公報に記載されている方法を適用して、非感光性層上に塗布することにより形成することができる。親水性層の塗布量は、0.2~5.0g/m2が好ましく、0.3~3.0g/m2がより好ましい。
 印刷用捨て版原版における親水性層に含有されるバインダーは、例えば、特開2011-218778号公報の段落番号〔0069〕-〔0074〕に記載されている。
 本発明に係る印刷用原版の製版について以下に記載する。本発明に係る印刷用原版の製版は、基本的に画像露光工程及び現像処理工程を含む。なお、本発明に係る印刷用原版の中で、印刷用捨て版原版は、画像露光工程を経ずに現像処理工程が行われる。
〔画像露光工程〕
 平版印刷版原版の画像露光は、通常の平版印刷版原版の画像露光操作に準じて行うことができる。
 画像露光は、線画像、網点画像等を有する透明原画を通してレーザー露光するかデジタルデータによるレーザー光走査等で行われる。光源の波長は700~1400nmが好ましく用いられる。700~1400nmの光源としては、赤外線を放射する固体レーザー及び半導体レーザーが好適である。赤外線レーザーに関しては、出力は100mW以上であることが好ましく、1画素当たりの露光時間は20マイクロ秒以内であるのが好ましく、照射エネルギー量は10~300mJ/cmであることが好ましい。露光時間を短縮するためマルチビームレーザーデバイスを用いることが好ましい。露光機構は、内面ドラム方式、外面ドラム方式、フラットベッド方式等の何れでもよい。画像露光は、プレートセッターなどを用いて常法により行うことができる。
〔現像処理工程〕
 現像処理は、通常の方法により行うことができる。機上現像の場合、画像露光された平版印刷版原版に、印刷機上で、湿し水と印刷インキとを供給すると、画像記録層の露光部においては、露光により硬化した画像記録層が、親油性表面を有する印刷インキ受容部を形成する。一方、未露光部においては、供給された湿し水及び/又は印刷インキによって、未硬化の画像記録層が溶解又は分散して除去され、その部分に親水性の表面が露出する。その結果、湿し水は露出した親水性の表面に付着し、印刷インキは露光領域の画像記録層に着肉して印刷が開始される。
 ここで、最初に平版印刷版原版の表面に供給されるのは、湿し水でもよく印刷インキでもよいが、湿し水を浸透させ機上現像性を促進するために、最初に湿し水を供給することが好ましい。
 現像液を用いる現像処理は、常法により行うことができる。現像処理型ネガ型平版印刷版原版の現像処理は、例えば、特開2008-15503号公報の段落番号〔0197〕-〔0220〕に記載されている。現像処理型ポジ型平版印刷版原版の現像処理は、例えば、特開2007-148040号公報の段落番号〔0157〕-〔0160〕に記載されている。
〔印刷用原版積層体、印刷版積層体〕
 本発明に係る印刷用原版積層体は、本発明の係る印刷用原版を合紙を介さずに直接複数(通常、2~500枚)重ねてなる積層体である。
 本発明に係る印刷用原版積層体は、本発明の係る印刷用原版が有する特定の構成のバックコート層の故に、マット落ち、接着性、擦れ傷及び押し傷のいずれの性能においても優れており、また、集積ズレを生じることがない。
 本発明に係る印刷版積層体は、平版印刷版あるいは印刷用捨て版を、各々、合紙を介さずに直接複数枚程度重ねてなる積層体である。この様な積層体は、製版後、印刷開始までに数時間~数日程度間が空く場合、平版印刷版あるいは印刷用捨て版を、各々、複数枚程度重ねて適当な場所に静置する場合形成される。
 本発明に係る印刷用積層体は、本発明の係る印刷用原版が有する特定の構成のバックコート層の故に、マット落ち、接着性、擦れ傷及び押し傷のいずれの性能においても優れており、また、集積ズレを生じ難い。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、高分子化合物において、特別に規定したもの以外は、分子量は質量平均分子量(Mw)であり、繰り返し単位の比率はモル百分率である。また、質量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)法によるポリスチレン換算値として測定した値である。
[実施例101~114及び比較例101~107]
〔平版印刷版原版101の作製〕
<支持体1の作製>
 厚さ0.3mmの表Aに示す組成のアルミニウム合金板に対し、下記(a)~(m)の処理を施し、支持体1を作製した。なお、全ての処理工程の間には水洗処理を施し、水洗処理の後にはニップローラで液切りを行った。
Figure JPOXMLDOC01-appb-T000007
(a)機械的粗面化処理(ブラシグレイン法)
 パミスの懸濁液(比重1.1g/cm)を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転する束植ブラシにより機械的粗面化処理を行った。
 機械的粗面化処理は、研磨材パミスのメジアン径を30μm、束植ブラシの数を4、束植ブラシの回転数を250rpmとして行った。束植ブラシの材質は6・10ナイロンで、ブラシ毛の直径0.3mm、毛長50mmであった。束植ブラシはφ300mmのステンレス製の筒に穴をあけて密になるように植毛したものである。束植ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。束植ブラシはブラシを回転させる駆動モータの負荷が、束植ブラシをアルミニウム板に押さえつける前の負荷に対して10kWプラスになるまで押さえつけた。束植ブラシの回転方向はアルミニウム板の移動方向と同じであった。
(b)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、10g/mであった。
(c)酸性水溶液中でのデスマット処理
 次に、硝酸水溶液中でデスマット処理を行った。デスマット処理に用いた硝酸水溶液は、次工程の電気化学的粗面化に用いた硝酸電解液を用いた。液温は35℃であった。デスマット液をスプレーにて吹き付けて3秒間デスマット処理を行った。
(d)電気化学的粗面化処理
 60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電流密度は電流のピーク値で30A/dm、補助陽極には電源から流れる電流の5%を分流させた。電気量はアルミニウム板が陽極時の電気量の総和で185C/dmであった。その後、スプレーによる水洗を行った。
(e)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.5g/mであった。
(f)酸性水溶液中でのデスマット処理
 次に、硫酸水溶液中でデスマット処理を行った。デスマット処理には、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの硫酸水溶液を用いた。液温は60℃であった。デスマット液をスプレーにて吹き付けて3秒間デスマット処理を行った。
(g)電気化学的粗面化処理
 60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。電解液は、液温35℃、塩酸6.2g/Lの水溶液に塩化アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で25A/dmであり、塩酸電解における電気量はアルミニウム板が陽極時の電気量の総和で63C/dmであった。その後、スプレーによる水洗を行った。
(h)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.1g/mであった。
(i)酸性水溶液中でのデスマット処理
 次に、硫酸水溶液中でデスマット処理を行った。陽極酸化処理工程で使用する硫酸水溶液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを含有)を用い、液温35℃で4秒間デスマット処理を行った。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(j)第1陽極酸化処理
 直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表Bに示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。電解液には、表Bに示す成分を含む水溶液を用いた。表B~Dにおいて、「成分濃度」は、「液成分」欄に記載の各成分の含有濃度(g/L)を表す。
Figure JPOXMLDOC01-appb-T000008
(k)第2陽極酸化処理
 直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表Cに示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。電解液には、表Cに示す成分を含む水溶液を用いた。
Figure JPOXMLDOC01-appb-T000009
(l)第3陽極酸化処理
 直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表Dに示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。電解液には、表Dに示す成分を含む水溶液を用いた。
Figure JPOXMLDOC01-appb-T000010
(m)親水化処理
 非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は8.5mg/mであった。その後、スプレーによる水洗を行った。
 上記で得られたマイクロポアを有する陽極酸化皮膜中の大径孔部の陽極酸化皮膜表面における平均径(表層平均径)、大径孔部の連通位置における平均径(底部平均径)、小径孔部の連通位置における平均径(小径孔部径)、大径孔部及び小径孔部の平均深さ、小径孔部の底部からアルミニウム板表面までの陽極酸化皮膜の厚み(バリア層厚)、小径孔部の密度など表Eに示す。上記小径孔部は、深さが異なる第1の小径孔部及び第2の小径孔部を含み、深い方を第1の小径孔部と称する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表Eにおいて、バリア層厚として、平均値と最小値とを示す。平均値は、第1の小径孔部の底部からアルミニウム板表面までの陽極酸化皮膜の厚みを50箇所測定し、それらを算術平均したものである。
 マイクロポアの平均径(大径孔部及び小径孔部の平均径)は、大径孔部表面及び小径孔部表面を倍率15万倍のFE-SEMでN=4枚観察し、得られた4枚の画像において、400×600nmの範囲に存在するマイクロポア(大径孔部及び小径孔部)の径を測定し、平均した値である。なお、大径孔部の深さが深く、小径孔部の径が測定しづらい場合は、陽極酸化皮膜上部を切削し、その後各種径を求めた。
 大径孔部の平均深さは、支持体(陽極酸化皮膜)の断面を倍率50万倍のFE-TEMで観察し、得られた画像において、任意のマイクロポアの表面から連通位置までの距離を60個(N=60)測定し、それらを平均した値である。また、小径孔部の平均深さは、支持体(陽極酸化皮膜)の断面をFE-SEMで観察し(5万倍)、得られた画像において、任意のマイクロポア25個の深さを測定し、平均した値である。
 「連通部密度」は、連通位置における陽極酸化皮膜断面の小径孔部の密度を意味する。「表面積増加倍率」は、下記式(A)に基づいて計算した値を意味する。
 式(A)
 表面積増加倍率 = 1+ポア密度×((π×(表層平均径/2+底部平均径/2)×((底部平均径/2-表層平均径/2)+深さA1/2+π×(底部平均径/2)-π×(表層平均径/2)))
 小径孔部の「平均深さ(nm)」欄において、第2の小径孔部の平均深さを左側に、第1の小径孔部の平均深さを右側に示す。表E中の小径孔部の「連通部密度」欄において、小径孔部の連通部密度と共に、第1の小径孔部の密度をカッコ書き中に示す。
 また、第2の小径孔部の底部から第1の小径孔部の底部までに位置する第1の小径孔部の平均径は、12nm程度であった。
<バックコート層の形成>
(バックコート層塗布液(1)の調製)
・テトラエチルシリケート                 50質量部
・水                           20質量部
・メタノール                       15質量部
・リン酸                       0.05質量部
 上記成分を混合、撹拌すると約5分で発熱が開始した。60分間反応させた後、以下に示す液を加えることによりバックコート塗布液(1)を調製した。なお、上記成分の混合、撹拌による反応生成物は、後掲の表F~Iにおいて金属酸化物1と表す。
・ピロガロールホルムアルデヒド縮合樹脂(Mw:2000)  4質量部
・ジメチルフタレート                    5質量部
・フッ素系界面活性剤(N-ブチルペルフルオロオクタン
 スルホンアミドエチルアクリレート/ポリオキシエチレン
 アクリレート共重合体(Mw:20000)       0.7質量部
・メタノールシリカゾル(日産化学工業(株)製、メタノール30%液)
                             50重量部
・シリカ被覆アクリル樹脂粒子               10質量部 
・メタノール                      800質量部
 支持体1の一方の表面に、上記組成のバックコート層塗布液(1)をバー塗布し、100℃で120秒間乾燥し、厚さ1.5μmのバックコート層を形成した。
<下塗り層の形成>
 支持体1の他方の表面に、下記組成の下塗り層塗布液(1)を乾燥塗布量が20mg/mになるよう塗布して、下塗り層を形成した。
(下塗り層塗布液(1))
・下塗り層用化合物(UC-1)(下記構造)        0.18g
・ヒドロキシエチルイミノ二酢酸              0.05g
・界面活性剤(エマレックス710、日本エマルジョン(株)製)
                             0.03g
・水                           28.0g
Figure JPOXMLDOC01-appb-C000013
<画像記録層の形成>
 下塗り層上に、下記組成の画像記録層塗布液(1)をバー塗布した後、100℃で60秒オーブン乾燥し、乾燥塗布量1.0g/mの画像記録層を形成した。
 画像記録層塗布液(1)は下記感光液(1)及びミクロゲル液(1)を塗布直前に混合し撹拌することにより得た。
(画像記録層塗布液(1))
(感光液(1))
 ・バインダーポリマー(1)(下記構造)        0.240g
  (Mw:55,000、n(オキシエチレン単位数):2)
 ・赤外線吸収剤(1)(下記構造)           0.020g
 ・ボレート化合物(1)(テトラフェニルホウ酸ナトリウム) 
                            0.010g
 ・重合開始剤(1)(下記構造)            0.162g
 ・重合性化合物                    0.192g
   トリス(アクリロイルオキシエチル)イソシアヌレート
   (NKエステルA-9300、新中村化学(株)製)
 ・アニオン性界面活性剤1(下記構造)         0.050g
 ・感脂化剤                      0.055g
   ホスホニウム化合物(1)(下記構造)
 ・感脂化剤                      0.018g
   ベンジルジメチルオクチルアンモニウム・PF6
 ・感脂化剤                      0.040g
   アンモニウム基含有ポリマー(下記構造)
  (Mw:50,000、還元比粘度 45ml/g)
 ・フッ素系界面活性剤(1)(下記構造)        0.008g
 ・2-ブタノン                    1.091g
 ・1-メトキシ-2-プロパノール           8.609g
(ミクロゲル液(1))
 ・ミクロゲル(1)                  2.640g
 ・蒸留水                       2.425g
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(ミクロゲル(1)の作製)
 油相成分として、下記構造の多官能イソシアナート(三井化学(株)製;75質量%酢酸エチル溶液)4.46g、トリメチロールプロパン(6モル)とキシレンジイソシアナート(18モル)を付加させ、これにメチル片末端ポリオキシエチレン(1モル、オキシエチレン単位の繰り返し数:90)を付加させた付加体(三井化学ポリウレタン(株)製;50質量%酢酸エチル溶液)10g、ペンタエリスリトールトリアクリレート(日本化薬(株)製、SR444)3.15g及びパイオニンA-41C(竹本油脂(株)製)0.1gを酢酸エチル17gに溶解した。水相成分としてポリビニルアルコール((株)クラレ製、PVA-205)の4質量%水溶液40gを調製した。油相成分及び水相成分を混合し、ホモジナイザーを用いて12,000rpmで10分間乳化した。得られた乳化物を、蒸留水25gに添加し、室温で30分攪拌後、50℃で3時間攪拌した。このようにして得られたミクロゲル液の固形分濃度を、15質量%になるように蒸留水を用いて希釈して、ミクロゲル(1)を作製した。光散乱法により測定したミクロゲルの平均粒径は0.2μmであった。
Figure JPOXMLDOC01-appb-C000016
<保護層の形成>
 画像記録層上に、下記組成の保護層塗布液(1)をバー塗布した後、120℃で60秒オーブン乾燥し、乾燥塗布量0.15g/mの保護層を形成して平版印刷版原版101を作製した。
(保護層用塗布液(1))
・無機層状化合物分散液(1)(下記)            1.5g
・親水性ポリマー(1)(下記構造、Mw:30,000)(固形分)
                             0.03g
・ポリビニルアルコール(日本合成化学工業(株)製、CKS50、 
                             0.10g
 スルホン酸変性、けん化度99モル%以上、重合度300)6質量%水溶液
・ポリビニルアルコール((株)クラレ製、PVA-405、 0.03g
 けん化度81.5モル%、重合度500)6質量%水溶液
・界面活性剤(エマレックス710、日本エマルジョン(株)製)
                             0.86g
(下記構造)1質量%水溶液
・イオン交換水                       6.0g
Figure JPOXMLDOC01-appb-C000017
(無機層状化合物分散液(1)の調製)
 イオン交換水193.6gに合成雲母ソマシフME-100(コープケミカル(株)製)6.4gを添加し、ホモジナイザーを用いて体積平均粒子径(レーザー散乱法)が3μmになるまで分散した。得られた分散粒子のアスペクト比は100以上であった。
〔平版印刷版原版102~111の作製〕
 平版印刷版原版101の作製において、バックコート層塗布液における金属酸化物の種類、微粒子の種類、平均粒子径及び添加量、並びに、バックコート層の厚さを下記表Fに示すように変更する以外は同様にして平版印刷版原版102~111を作製した。
〔平版印刷版原版112の作製〕
<画像記録層の形成>
 平版印刷版原版1の作製に用いたバックコート層及び下塗り層を有する支持体の下塗り層上に、下記組成の画像記録層塗布液(2)をバー塗布した後、70℃で60秒オーブン乾燥し、乾燥塗布量0.6g/mの画像記録層を形成した。かくして、平版印刷版原版112を作製した。
(画像記録層塗布液(2))
 ・熱可塑性ポリマー微粒子水分散液(下記)        20.0g
 ・赤外線吸収剤(2)(下記構造)             0.2g
 ・重合開始剤(Irgacure250、チバスペシャリティケミカルズ社製)
                              0.4g
 ・重合開始剤(2)(下記構造)             0.15g
 ・重合性化合物 SR-399(サートマー社製)     1.50g
 ・メルカプト-3-トリアゾール              0.2g
 ・Byk336(Byk Chemie社製)        0.4g
 ・Klucel M(Hercules社製)        4.8g
 ・ELVACITE 4026(Ineos Acrylics社製)
                              2.5g
 ・アニオン性界面活性剤1(上記構造)          0.15g
 ・n-プロパノール                   55.0g
 ・2-ブタノン                     17.0g
 上記組成中の商品名で記載の化合物は下記の通りである。
 ・IRGACURE 250:(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウム=ヘキサフルオロホスファート(75質量%プロピレンカーボナート溶液)
 ・SR-399:ジペンタエリスリトールペンタアクリレート
 ・Byk 336:変性ジメチルポリシロキサン共重合体(25質量%キシレン/メトキシプロピルアセテート溶液)
 ・Klucel M:ヒドロキシプロピルセルロース(2質量%水溶液)
 ・ELVACITE 4026:高分岐ポリメチルメタクリレート(10質量%2-ブタノン溶液)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(熱可塑性ポリマー微粒子水分散液の作製)
 1000mlの4つ口フラスコに撹拌機、温度計、滴下ロート、窒素導入管、還流冷却器を施し、窒素ガスを導入して脱酸素を行いつつ、ポリエチレングリコールメチルエーテルメタクリレート(PEGMA、エチレングリコールの平均の繰返し単位数:20)10g、蒸留水200g及びn-プロパノール200gを加えて内温が70℃となるまで加熱した。次に予め混合されたスチレン(St)10g、アクリロニトリル(AN)80g及び2,2’-アゾビスイソブチロニトリル0.8gの混合物を1時間かけて滴下した。滴下終了後5時間そのまま反応を続けた後、2,2’-アゾビスイソブチロニトリル0.4gを添加し、内温を80℃まで上昇させた。続いて、0.5gの2,2’-アゾビスイソブチロニトリルを6時間かけて添加した。合計で20時間反応させた段階でポリマー化は98%以上進行しており、質量比でPEGMA/St/AN=10/10/80の熱可塑性ポリマー微粒子水分散液が得られた。この熱可塑性ポリマー微粒子の粒径分布は、体積平均粒子径150nmに極大値を有していた。
 ここで、粒径分布は、ポリマー微粒子の電子顕微鏡写真を撮影し、写真上で微粒子の粒径を総計で5000個測定し、得られた粒径測定値の最大値から0の間を対数目盛で50分割して各粒径の出現頻度をプロットして求めた。なお非球形粒子については写真上の粒子面積と同一の粒子面積を持つ球形粒子の粒径値を粒径とした。
〔平版印刷版原版113の作製〕
<支持体2の作製>
 厚さ0.19mmのアルミニウム板を40g/lの水酸化ナトリウム水溶液中に60℃で8秒間浸漬することにより脱脂し、脱塩水により2秒間洗浄した。次に、アルミニウム板を、15秒間交流を用いて12g/lの塩酸及び38g/lの硫酸アルミニウム(18水和物)を含有する水溶液中で、33℃の温度及び130A/dmの電流密度で電気化学的粗面化処理を行った。脱塩水により2秒間洗浄した後、アルミニウム板を155g/lの硫酸水溶液により70℃で4秒間エッチングすることによりデスマット処理し、脱塩水により25℃で2秒間洗浄した。アルミニウム板を13秒間155g/lの硫酸水溶液中で、45℃の温度及び22A/dmの電流密度で陽極酸化処理し、脱塩水で2秒間洗浄した。更に、4g/lのポリビニルホスホン酸水溶液を用いて40℃で10秒間処理し、脱塩水により20℃で2秒間洗浄し、乾燥して支持体2を作製した。支持体2は、表面粗さRaが0.21μmで、陽極酸化皮膜量は4g/mであった。
<バックコート層の形成>
 支持体2の一方の表面に、上記バックコート層塗布液(1)をバー塗布し、100℃で120秒間乾燥し厚さ1.5μmのバックコート層を形成した。
<画像記録層の形成>
 下記熱可塑性ポリマー微粒子、赤外線吸収剤及びポリアクリル酸を含有する画像記録層水系塗布液を調製し、pHを3.6に調整した後、支持体2の他方の表面上に塗布し、50℃で1分間乾燥して画像記録層を形成して平版印刷版原版113を作製した。各成分の乾燥後の塗布量を以下に示す。
 熱可塑性ポリマー微粒子: 0.7g/m
 赤外線吸収剤 IR-01: 1.20×10-4g/m
 ポリアクリル酸: 0.09g/m
 画像記録層塗布液に用いた熱可塑性ポリマー微粒子、赤外線吸収剤IR-01、ポリアクリル酸は以下に示す通りである。
 熱可塑性ポリマー微粒子:スチレン/アクリロニトリル共重合体(モル比50/50)、Tg:99℃、体積平均粒子径:60nm
 赤外線吸収剤IR-01:下記構造の赤外線吸収剤
Figure JPOXMLDOC01-appb-C000020
 ポリアクリル酸 Mw:250,000
〔平版印刷版原版114の作製〕
<バックコート層の形成>
 二軸延伸(延伸比は縦、横各3.3倍)し240℃で3分間熱固定した厚さ180μmのポリエチレンテレフタレートフィルムの一方の表面に、コロナ放電処理を施した後、上記バックコート層塗布液(1)をバー塗布し、100℃で120秒間乾燥して、厚さ1.5μmのバックコート層を形成した。
<画像記録層の形成>
 上記ポリエチレンテレフタレートフィルムの他方の表面に、8W/mのコロナ放電処理を施した後、 上記画像記録層塗布液(1)を用いて平版印刷版原版1の作製と同様にして画像記録層を形成した。
<保護層の形成>
 上記画像記録層上に、上記保護層塗布液(1)を用いて平版印刷版原版1の作製と同様にして保護層を形成して、平版印刷版原版114を作製した。
〔平版印刷版原版115の作製〕(比較用)
 平版印刷版原版101の作製において、バックコート層の厚さを10μmに変更した以外は同様にしてバックコート層を形成して、平版印刷版原版115を作製した。
〔平版印刷版原版116の作製〕(比較用)
 平版印刷版原版109の作製において、バックコート層塗布液中の金属酸化物を、ポリエステル樹脂(ケミット K-588 東レ(株)製、Tg:100℃)に変更した以外は同様にしてバックコート層を形成して、平版印刷版原版116を作製した。
〔平版印刷版原版117の作製〕(比較用)
 平版印刷版原版109の作製において、バックコート層塗布液中の金属酸化物を、アクリル酸エステル系ポリマーラテックス (AE-337 JSR(株)製、Tg:-30℃)に変更した以外は同様にしてバックコート層を形成して、平版印刷版原版117を作製した。
〔平版印刷版原版118の作製〕(比較用)
 平版印刷版原版114の作製において、バックコート層塗布液中の金属酸化物を、アクリル酸エステル系ポリマーラテックス (AE-337 JSR(株)製、Tg:-30℃)に変更した以外は同様にしてバックコート層を形成して、平版印刷版原版118を作製した。
〔平版印刷版原版119の作製〕(比較用)
 平版印刷版原版101の作製において、バックコート層塗布液中の微粒子を除いた以外は同様にしてバックコート層を形成して、平版印刷版原版119を作製した。
〔平版印刷版原版120の作製〕(比較用)
 平版印刷版原版118の作製において、バックコート層塗布液中の微粒子を除いた以外は同様にしてバックコート層を形成して、平版印刷版原版120を作製した。
〔平版印刷版原版121の作製〕(比較用)
 平版印刷版原版117の作製において、バックコート層塗布液中の微粒子を除いた以外は同様にしてバックコート層を形成して、平版印刷版原版121を作製した。
〔平版印刷版原版の評価〕
 得られた各平版印刷版原版について、マット落ち、接着性、擦れ傷、押し傷及びベック平滑度を下記のように評価した。評価結果を下記表Fに示す。
<マット落ち>
 平版印刷版原版の裏面(バックコート層側)を上にして静置し、その上に縦2cm×横2cmのエチレンプロピレンジエンゴム(EDPM)片を載せ、1kgの荷重をかけながらゴム片を手前に引いた。その後、平版印刷版原版の裏面を走査型電子顕微鏡(SEM)で観察して、所定視野(200μm×300μm)を5箇所観察して、脱落している微粒子の割合を計測した。評価は下記の基準で行い、3が実用下限レベル、2以下は実用上不可レベルである。
 5:脱落している微粒子の割合が0%。
 4:脱落している微粒子の割合が0%であるが、一部がバックコート層に覆われていない微粒子が存在する。
 3:脱落している微粒子の割合が0%より大きく、25%以下である。
 2:脱落している微粒子の割合が25%より大きく、75%以下である。
 1:脱落している微粒子の割合が75%より大きく、100%以下である。
<接着性>
 平版印刷版原版(10×10cm)3枚を25℃75%RHの環境下で2時間調湿後、同方向に合紙の挟み込みのない状態で順次重ねて積層体とした。この積層体を、アルミニウムラミネート層を有するクラフト紙で密閉包装し、4kgの荷重をかけた状態で、30℃環境下5日間放置した。その後、平版印刷版原版を剥がして、平版印刷版原版の画像記録層側表面と隣接する平版印刷版原版の支持体側表面との接着状態を目視で観察した。評価は下記の基準で行い、3が実用下限レベル、2以下は実用上不可レベルである。
 5:接着なし。
 4:かすかな接着あり。
 3:少し接着あり。
 2:力を入れると手でなんとか剥がせる強い接着。
 1:接着して手で剥がすのが困難な非常に強い接着。
<擦れ傷>
 平版印刷版原版を25度60%RHの環境下で2時間調湿後、2.5cm×2.5cmに打ち抜き、新東科学(株)製の連続加重式引掻強度試験機TYPE:18に取り付け、打ち抜いていない平版印刷版原版の表面の上に、打ち抜いた平版印刷版原版の裏面が接触するようにセットし、500gfの加重で平版印刷版原版の数箇所に擦れ傷をつけた。擦れ傷をつけた平版印刷版原版をCreo社製Trendsetter3244にセットし、解像度2400dpiで出力7W、外面ドラム回転数150rpm、版面エネルギー110mJ/cmで画像露光した。画像露光後の平版印刷版原版を、(株)東京機械製作所製オフセット輪転印刷機に装着し、新聞用印刷インキとしてインクテック(株)製ソイビーKKST-S(紅)、湿し水としてサカタインクス(株)製エコセブンN-1を用い、新聞用紙に100、000枚/時のスピードで印刷した。印刷過程において、1、000枚目の印刷物をサンプリングし、擦れ傷に起因するキズ汚れの程度を目視で観察した。評価は下記の基準で行い、3が実用下限レベル、2以下は実用上不可レベルである。
 5:キズ汚れなし。
 4:視認では確認はできないが、6倍率のルーペで確認可能なキズ汚れが1か所あり。
 3:視認では確認はできないが、6倍率のルーペで確認可能なキズ汚れが数か所あり。
 2:複数個所に視認で確認可能なキズ汚れあり。
 1:全面キズ汚れあり。
<押し傷>
 平版印刷版原版(10cm×65cm)10枚を25℃60%RHの環境下で2時間調湿後、同方向に合紙の挟み込みのない状態で順次重ねて積層体とした。この積層体を、アルミニウムラミネート層を有するクラフト紙で密閉包装し、5cm×5cmのステンレス鋼(SUS)板で上下を挟み、500kgfの加重になるように万力で加圧した。加圧した状態で、25℃環境下5日間放置した。その後、平版印刷版原版を擦れ傷評価と同じ条件で露光、現像、印刷を行った。印刷過程において、1、000枚目の印刷物をサンプリングし、押し傷に起因するキズ汚れの程度を目視で観察した。評価は下記の基準で行い、3が実用下限レベル、2以下は実用上不可レベルである。
 5:汚れなし。
 4:視認では確認はできないが、6倍率のルーペで確認可能なキズ汚れが部分的にあり。
 3:視認では確認はできないが、6倍率のルーペで確認可能なキズ汚れが全面にあり。
 2:部分的に視認可能な汚れあり。
 1:全面に視認可能な汚れあり。
<ベック平滑度>
 平版印刷版原版裏面(バックコート層表面)のベックの平滑度を、JIS P8119(1998)に準拠して測定した。測定は、熊谷理機工業(株)製ベック平滑度試験機を用い、標準空気量の1/10、即ち1mlの空気量で測定した。平版印刷版原版の集積ズレを防止する観点から、ベック平滑度は好ましくは200秒以下、より好ましくは100秒以下、更に好ましくは50秒以下である。
Figure JPOXMLDOC01-appb-T000021
 表Fに記載のバックコート層に用いた各成分は以下のとおりである。
ポリエステル樹脂1:ケミット K-588 東レ(株)製、(Tg:100℃)
ポリマーラテックス1:アクリル酸エステル系ポリマーラテックス(AE-337 JSR(株)製、(Tg:-30℃)
シリカ被覆アクリル樹脂粒子:アートパール J-7P 根上工業(株)製
シリカ被覆メラミン樹脂粒子:オプトビーズ 6500M 日産化学工業(株)製
シリカ被覆ウレタン樹脂粒子:アートパール C-800T 根上工業(株)製
アクリル樹脂粒子:MX-500 綜研化学(株)製
ポリエチレン樹脂粒子:ケミパール W200 三井化学(株)製
ポリスチレン樹脂粒子:ケミスノー SX-500H 綜研化学(株)製
 表Fに示す結果から、本発明に係る特定の金属酸化物と特定の微粒子を含むバックコート層を有する平版印刷版原版は、マット落ち、接着性、擦れ傷及び押し傷のいずれの評価においても優れており、また、合紙なしで積層しても、集積ズレを生じることがないことがわかる。他方、本発明に係る要件を満たしていないバックコート層を有する比較例の平版印刷版原版は、マット落ち、接着性、擦れ傷、押し傷及び集積ズレのいずれかの評価において不十分である。
[実施例201~207及び比較例201]
〔平版印刷版原版201~207の作製〕
 平版印刷版原版101の作製において、バックコート層塗布液における金属酸化物の種類、微粒子の種類、平均粒子径及び添加量、並びに、バックコート層の厚さを下記表Gに示すように変更した以外は同様にして平版印刷版原版201~207を作製した。
〔平版印刷版原版208の作製〕(比較用)
 平版印刷版原版203の作製において、バックコート層の厚さを3.5μmに変更した以外は同様にして平版印刷版原版208を作製した。
〔平版印刷版原版の評価〕
 得られた各平版印刷版原版について、マット落ち、接着性、擦れ傷及び押し傷及びベック平滑度を実施例101と同様にして評価した。評価結果を下記表Gに示す。
Figure JPOXMLDOC01-appb-T000022
 表Gに記載のバックコート層に用いた各成分は以下のとおりである。
シリカ粒子1:サイリシア 440 富士シリシア化学(株)
シリカ粒子2:サイリシア 436 富士シリシア化学(株)
シリカ粒子3:サイリシア 320 富士シリシア化学(株)
 表Gに示す結果から、本発明に係る特定の金属酸化物と特定の微粒子を含むバックコート層を有する平版印刷版原版は、マット落ち、接着性、擦れ傷及び押し傷のいずれの評価においても優れており、また、合紙なしで積層しても、集積ズレを生じることがないことがわかる。他方、本発明に係る要件を満たしていないバックコート層を有する比較例の平版印刷版原版は、マット落ち、接着性、擦れ傷、押し傷及び集積ズレのいずれかの評価において不十分である。
[実施例301~302]
〔平版印刷版原版301の作製〕
<下塗り層の形成>
 平版印刷版原版101の作製に用いたバックコート層を有する支持体の他の表面(バックコート層を有さない表面)に、下記組成の下塗り層塗布液(2)をワイヤーバーにて塗布し、90℃で30秒間乾燥した。塗布量は10mg/mであった。
(下塗り層塗布液(2))
・高分子化合物A(下記構造)(質量平均分子量:3万) 0.05g
・メタノール                       27g
・イオン交換水                       3g
Figure JPOXMLDOC01-appb-C000023
<画像記録層の形成>
 下記組成の画像記録層塗布液(3)を、下塗り層上にワイヤーバーを用いて塗布した。乾燥は、温風式乾燥装置にて115℃で34秒間行った。乾燥後の被覆量は1.4g/mであった。
(画像記録層塗布液(3))
・赤外線吸収剤(IR-1)(下記構造)        0.074g
・重合開始剤(OS-12)(下記構造)        0.280g
・添加剤(PM-1)(下記構造)           0.151g
・重合性化合物(AM-1)(下記構造)         1.00g
・バインダーポリマー(BT-1)(下記構造)      1.00g
・エチルバイオレット(C-1)(下記構造)       0.04g
・フッ素系界面活性剤                 0.015g
  (メガファックF-780-F DIC(株)製、
  メチルイソブチルケトン(MIBK)30質量%溶液)
・メチルエチルケトン                  10.4g
・メタノール                      4.83g
・1-メトキシ-2-プロパノール            10.4g
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
<保護層の形成>
 画像記録層上に、下記組成の保護層塗布液(2)をワイヤーバーで塗布し、温風式乾燥装置にて125℃で75秒間乾燥させたて保護層を形成した。乾燥後の塗布量は1.6g/mであった。かくして、平版印刷版原版301を作製した。
<保護層塗布液(2)>
・合成雲母(ソマシフME-100、8%水分散液、コープケミカル(株)製)                             94g
・ポリビニルアルコール(CKS-50:ケン化度99モル%、重合度300、日本合成化学工業(株)製)                58g
・カルボキシメチルセルロース(セロゲンPR、第一工業製薬(株)製) 
                               24g
・界面活性剤-1(プルロニックP-84、BASF社製)   2.5g
・界面活性剤-2(エマレックス710、日本エマルジョン(株)製)
                                5g
・純水                          1364g
〔平版印刷版原版302の作製〕
<下塗り層の形成>
 平版印刷版原版101の作製に用いたバックコート層を有する支持体の他の表面(バックコート層を有さない表面)に、下記組成の下塗り層塗布液(3)をバーコーターで塗布し、80℃で15秒間乾燥し、乾燥後の塗布量が18mg/mの下塗り層を形成した。
(下塗り層塗布液(3))
・高分子化合物(下記構造)                 0.3g
・メタノール                        100g
Figure JPOXMLDOC01-appb-C000026
<画像記録層の形成>
 下塗り層上に、下記組成の下層塗布液を乾燥後の塗布量が0.85g/mになるようバーコーターで塗布し、160℃で44秒間乾燥し、直ちに17~20℃の冷風で支持体の温度が35℃になるまで冷却して下層を形成した。その後、下記組成の上層塗布液を乾燥後の塗布量が0.22g/mになるようにバーコーターで塗布し、148℃で25秒間乾燥し、更に20~26℃の風で徐冷して上層を形成した。かくして、平版印刷版原版302を作製した。
(下層塗布液)
・N-(4-アミノスルホニルフェニル)メタクリルアミド/アクリロニトリル/メタクリル酸メチル                  2.1g
   (36/34/30質量%:質量平均分子量50000、
   酸価2.65)
・m,p-クレゾールノボラック               0.1g
   (m/p比=6/4、質量平均分子量4500、
   未反応クレゾール0.8質量%含有、Tg:75℃)
・シアニン染料A(下記構造)               0.13g
・4,4’-ビスヒドロキシフェニルスルホン        0.13g
・無水テトラヒドロフタル酸                0.19g
・p-トルエンスルホン酸                0.008g
・3-メトキシ-4-ジアゾジフェニルアミン
  ヘキサフルオロホスフェート             0.032g
・エチルバイオレットの対イオンを6-ヒドロキシ-2-ナフタレンスルホン酸に変えた染料                    0.078g
・フッ素系界面活性剤B(下記構造)           0.007g
・メチルエチルケトン                   25.0g
・1-メトキシ-2-プロパノール             13.0g
・γ-ブチロラクトン                   13.0g
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(上層塗布液)
・フェノール/m-クレゾール/p-クレゾールノボラック  0.35g
  (モル比=5/3/2、質量平均分子量:5000、
   未反応クレゾール:1.2質量%含有、Tg:70℃)
・アクリル系樹脂C(下記構造)             0.042g
・シアニン染料A(上記構造)              0.019g
・アンモニウム化合物D(下記構造)           0.004g
・スルホニウム化合物G(下記構造)           0.032g
・フッ素系界面活性剤B(上記構造)          0.0045g
・フッ素系界面活性剤E(下記構造)          0.0033g
・フッ素系ポリマーF(下記構造)            0.018g
・メチルエチルケトン                   10.0g
・1-メトキシ-2-プロパノール             20.0g
Figure JPOXMLDOC01-appb-C000029
〔平版印刷版原版の評価〕
 得られた各平版印刷版原版について、マット落ち、接着性、擦れ傷、押し傷及びベック平滑度を実施例101と同様にして評価した。但し、擦れ傷及び押し傷の評価における画像露光及び現像処理、並びに印刷は下記のように行った。結果を下記表Hに示す。
<現像処理型ネガ型平版印刷版原版301の画像露光及び現像処理>
(画像露光)
 平版印刷版原版をCreo社製Trendsetter3244にセットし、解像度2400dpi、出力7W、外面ドラム回転数150rpm、版面エネルギー110mJ/cmで画像露光した。
(現像処理)
 画像露光された平版印刷版原版を、富士フイルム(株)製自動現像機LP-1310HIIを用い搬送速度(ライン速度)2m/分、現像温度30℃で現像処理した。現像液は富士フイルム(株)社製DH-Nの1:4水希釈液、現像補充液は富士フイルム(株)社製FCT-421の1:1.4水希釈液、フィニッシャーは富士フイルム(株)製HN-GVの1:1水希釈液をそれぞれ用いた。
<現像処理型ポジ型平版印刷版原版302の画像露光及び現像処理>
(画像露光)
 平版印刷版原版をCreo社製Trendsetter3244にセットし、解像度2400dpi、出力7W、外面ドラム回転数150rpm、版面エネルギー110mJ/cmで画像露光した。
(現像処理)
 画像露光された平版印刷版原版を、富士フイルム(株)製自動現像機LP-940HIIに、富士フイルム(株)製現像液DT-2を1:8水希釈して仕込み、現像温度32℃、現像時間12秒で現像処理した。
(印刷)
 平版印刷版を、(株)東京機械製作所製オフセット輪転印刷機に装着し、新聞用印刷インキとしてインクテック(株)製ソイビーKKST-S(紅)、湿し水としてサカタインクス(株)製エコセブンN-1を用い、新聞用紙に100、000枚/時のスピードで印刷した。
Figure JPOXMLDOC01-appb-T000030
 表Hに示す結果から、本発明に係る特定の金属酸化物と特定の微粒子を含むバックコート層を有する、現像処理型ネガ型平版印刷版原版301及び現像処理型ポジ型平版印刷版原版302は、いずれも、マット落ち、接着性、擦れ傷及び押し傷のいずれの評価においても優れており、また、合紙なしで積層しても、集積ズレを生じることがないことがわかる。
[実施例401~402]
〔印刷用捨て版原版401の作製〕
 平版印刷版原版101の作製において、画像記録層塗布液(1)から赤外線吸収剤(1)を除く以外は同様にして印刷用捨て版原版401を作製した。
〔印刷用捨て版原版402の作製〕
<下塗り層の形成>
 平版印刷版原版101の作製に用いたバックコート層を有する支持体の他の表面(バックコート層を有さない表面)に、下記組成の下塗り層塗布液(4)をバー塗布し、100℃で20秒間乾燥し、乾燥後の塗布量が20mg/mの下塗り層を形成した。
<下塗り層用塗布液(4)>
・ポリマー(下記構造)                 0.3質量部
・純水                        60.0質量部
・メタノール                    939.7質量部
Figure JPOXMLDOC01-appb-C000031
<非感光性層の形成>
 下塗り層の上に、下記組成の非感光性層塗布液(1)をバー塗布し、100℃で60秒間乾燥し、乾燥後の塗布量が1.0mg/mの非感光性層を形成した。
(非感光性層塗布液(1))
・バインダーポリマーA(下記)           2.465質量部
・リン酸(85質量%水溶液)             0.08質量部
・スルホフタル酸(50質量%水溶液)        0.017質量部
・トリカルバリル酸                 0.017質量部
・着色剤(VPB-Naps(ビクトリアピュアブルーの
 ナフタレンスルホン酸塩、保土ヶ谷化学(株)製) 0.0014質量部
・フッ素系界面活性剤(メガファックF-780-F、
 DIC(株)製、MEKの30質量%溶液)     0.009質量部
・メチルエチルケトン(MEK)            7.93質量部
・メタノール                     6.28質量部
・1-メトキシ-2-プロパノール(MFG)      2.01質量部
 上記バインダーポリマーAは、下記(1)~(4)の4種類のモノマーの縮合反応物(質量平均分子量:85,000、酸含有量:1.64meq/g)のMFG/MEK=1/1の16質量%溶液である。
 (1)4,4-ジフェニルメタンジイソシアネート   37.5モル%
 (2)ヘキサメチレンジイソシアネート        12.5モル%
 (3)2,2-ビス(ヒドロキシメチル)プロピオン酸 32.5モル%
 (4)テトラエチレングリコール           17.5モル%
 <親水性層の形成>
 非感光性層の上に、下記組成の親水性層塗布液(1)をバー塗布し、125℃で75秒間乾燥し、乾燥後の塗布量が1.6mg/mの親水性層を形成した。かくして、印刷用捨て版原版402を作製した。
(親水性層塗布液(1))
・合成雲母(ソマシフME-100、8%水分散液、
 コープケミカル(株)製)                94質量部
・ポリビニルアルコール(CKS-50:ケン化度:99モル%、
 重合度:300、日本合成化学工業(株)製)       58質量部
・カルボキシメチルセルロース(セロゲンPR、第一工業製薬(株)製)
                             24質量部
・界面活性剤-1(プルロニックP-84、BASF社製) 2.5質量部
・界面活性剤-2(エマレックス710、日本エマルジョン(株)製)
                              5質量部
・純水                        1364質量部
 上記プルロニックP-84は、エチレンオキサイド/プロピレンオキサイド ブロック共重合体であり、エマレックス710は、ポリオキシエチレンラウリルエーテルである。
〔印刷用捨て版原版の評価〕
 得られた各印刷用捨て版原版について、マット落ち、接着性、擦れ傷、押し傷及びベック平滑度を実施例101と同様にして評価した。但し、印刷用捨て版原版401に関しては、擦れ傷及び押し傷の評価における画像露光は行わずに印刷を行った。また、印刷用捨て版原版402に関しては、擦れ傷及び押し傷の評価における画像露光は行わず、下記の現像処理及び印刷を行った。評価結果を下記表Iに示す。
(現像処理)
 印刷用捨て版原版を、富士フイルム(株)製自動現像機LP-1310NewsIIを用い搬送速度(ライン速度)2m/分、現像温度30℃で現像処理した。現像液は富士フイルム(株)製HN-Dの1:4水希釈液、現像補充液はFCT-421の1:1.4水希釈液、フィニッシャーは富士フイルム(株)製HN-GVの1:1水希釈液をそれぞれ用いた。
(印刷)
 印刷用捨て版を、(株)東京機械製作所製オフセット輪転印刷機に装着し、新聞用印刷インキとしてインクテック(株)製ソイビーKKST-S(紅)、湿し水としてサカタインクス(株)製エコセブンN-1を用い、新聞用紙に100、000枚/時のスピードで印刷した。
Figure JPOXMLDOC01-appb-T000032
 表Iに示す結果から、本発明に係る特定の金属酸化物と特定の微粒子を含むバックコート層を有する、機上現像型印刷用捨て版原版401及び現像処理型印刷用捨て版原版402は、いずれも、マット落ち、接着性、擦れ傷及び押し傷のいずれの評価においても優れており、また、合紙なしで積層しても、集積ズレを生じることがないことがわかる。
[実施例501]
 上記平版印刷版原版101を、以下の画像露光、現像処理を行って平版印刷版を作製した。
(画像露光)
 平版印刷版原版をCreo社製Trendsetter3244にセットし、解像度2400dpi、出力7W、外面ドラム回転数150rpm、版面エネルギー110mJ/cmで画像露光した。
(現像処理)
 画像露光された平版印刷版原版を、図1に示す自動現像装置1を使用して、現像処理した。即ち、現像処理部10において、下記現像液(A)を用いて、画像記録層の未露光部を除去する現像処理工程、現像後の平版印刷版を水洗部16において水洗する水洗工程、及び、水洗後の平版印刷版に不感脂化処理部18にて下記不感脂化処理液を適用する不感脂化工程を順次行って平版印刷版を作製した。
 ここで、自動現像装置の一例である自動現像装置1を、図1を参照しながら簡単に説明する。
 図1に示す自動現像装置1は、現像処理部10を有し、平版印刷版原版の搬送路12の搬送方向(矢印A)に沿って連続して形成された現像部14、水洗部16、不感脂化処理部18及び乾燥部20を有している。
 現像部14は、外板パネル111により仕切られており、外板パネル111にはスリット状挿入口112が設けられている。
 現像部14の内部には、現像液で満たされている現像槽24と、平版印刷版原版を現像槽24内部へ案内する挿入ローラー対241が設けられている。現像槽24の上部は遮蔽蓋242で覆われている。
 現像槽24の内部には、搬送方向上流側から順に、ガイドローラー143及びガイド部材、ブラシローラ141、液中搬送ローラー144、ブラシローラ142、及び現像部出口ローラー56が並設されている。現像槽24内部に搬送された平版印刷版原版は、現像液中に浸漬され、回転するブラシローラ141、142の間を通過することにより非画像部が除去される。
 現像槽24から搬出された平版印刷版は水洗部16において、水洗スプレー66により水洗水が供給され、版面等に残存する現像液が水洗除去され、その後、不感脂化処理部18にて、ガム液(不感脂化処理液)供給スプレー72により、版面に不感脂化処理液が供給される。
 現像処理部10と乾燥部20との間に配置された仕切り板201にはスリット状挿通口202が設けられている。また、現像処理部10と乾燥部20との間の通路にはシャッター(不図示)が設けられ、平版印刷版原版が通路を通過していないとき、通路はシャッターにより閉じられている。
 乾燥部20は、支持ローラー203、ダクト204、搬送ローラー対205、ダクト206、搬送ローラー対208がこの順に設けられている。ダクト204、205の先端にはスリット孔が設けられている。また、乾燥部20には図示しない温風供給手段(温風供給部材)、発熱手段(発熱部材)等の乾燥手段(乾燥部材)が設けられている。乾燥部20には排出口209が設けられ、乾燥手段により乾燥された平版印刷版は排出口209から排出される。
<現像液(A)>
・ノニオン性界面活性剤(ポリオキシエチレンナフタレンエーテル
 (ニューコール B13、日本乳化剤(株)製、固形分100%))
                           5.0質量%
・キレート剤((エチレンジアミンジコハク酸3ナトリウム塩
 (キレストEDDS-35、キレスト(株)製)    0.5質量%
・シリコーン系消泡剤(TSA739 モメンティブ・
 パフォーマンス・マテリアルズ・ジャパン合同会社製) 0.1質量%
・防腐剤(Acticide LA1206、
 ソー・ジャパン(株)製)              0.1質量%
水を加えて全量を100質量%とした。(pH:9.4)
 現像処理における条件を以下に示す。
現像液温度: 25℃
搬送速度: 100cm/min.
現像部のブラシ回転速度: 100rpm
水洗部の水供給条件: 水(25℃、供給量:10L/min)
不感脂化処理液: ガム液(FN-6、富士フイルム(株)製)/水道水=1/1(pH:3.5)不感脂化処理液温度:25℃、不感脂化処理液槽通過時間:10L/min)
 本発明によれば、平版印刷版原版及び捨て版原版を含む印刷用原版を積層する場合、合紙なしでも、原版集積ズレ、原版同士の接着、擦れ傷がいずれも防止できる印刷用原版を提供することができる。また、上記印刷用原版の積層体を提供することができる。
 更に、本発明によれば、上記印刷用原版を用いて作製され平版印刷版又は印刷用捨て版を提供することができる。また、上記平版印刷版又は印刷用捨て版の積層体を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年6月30日出願の日本特許出願(特願2015-132081)に基づくものであり、その内容はここに参照として取り込まれる。
1 自動現像装置
14 現像処理部
16 水洗部
18 不感脂化処理部

Claims (19)

  1.  支持体上の一方の側にポリマーを含有する層、他方の側に有機金属化合物又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物及び微粒子を含む層を有する印刷用原版であって、前記微粒子の平均粒子径が0.3μm以上であり、且つ、前記金属酸化物及び微粒子を含む層の厚さより大きい印刷用原版。
  2.  前記微粒子が、親水性表面を有する微粒子である請求項1に記載の印刷用原版。
  3.  前記親水性表面を有する微粒子が、親水性表面を有する有機樹脂微粒子、親水性表面を有する無機微粒子から選ばれる少なくとも1種である請求項2に記載の印刷用原版。
  4.  前記親水性表面を有する有機樹脂微粒子が、シリカ、アルミナ、チタニア及びジルコニアから選ばれる少なくとも1種の無機化合物で被覆された有機樹脂微粒子である請求項3に記載の印刷用原版。
  5.  前記親水性表面を有する有機樹脂微粒子が、シリカで被覆された有機樹脂微粒子である請求項3又は4に記載の印刷用原版。
  6.  前記親水性表面を有する有機樹脂微粒子を構成する有機樹脂が、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フェノール系樹脂及びメラミン樹脂から選ばれる少なくとも1種の樹脂である請求項3~5のいずれか一項に記載の印刷用原版。
  7.  前記ポリマーを含有する層が、赤外線吸収剤を含有するポジ型画像記録層である請求項1~6のいずれか一項に記載の印刷用原版。
  8.  前記ポリマーを含有する層が、赤外線吸収剤、重合開始剤、重合性化合物を含有するネガ型画像記録層である請求項1~6のいずれか一項に記載の印刷用原版。
  9.  前記ポリマーを含有する層が、赤外線吸収剤、重合開始剤、重合性化合物及び微粒子形状の高分子化合物を含有するネガ型画像記録層である請求項1~6のいずれか一項に記載の印刷用原版。
  10.  前記ポリマーを含有する層が、赤外線吸収剤及び熱可塑性ポリマー微粒子を含有するネガ型画像記録層である請求項1~6のいずれか一項に記載の印刷用原版。
  11.  前記ポリマーを含有する層が、印刷インキ及び湿し水の少なくともいずれかにより除去可能である請求項7~10のいずれか一項に記載の印刷用原版。
  12.  前記ポリマーを含有する層が、非感光性層である請求項1~6のいずれか一項に記載の印刷用原版。
  13.  前記ポリマーを含有する層が、印刷インキ及び湿し水のうちの少なくともいずれかにより除去可能であることを特徴とする請求項12に記載の印刷用原版。
  14.  請求項1~11のいずれか一項に記載の印刷用原版を用いて作製された平版印刷版。
  15.  請求項12又は13に記載の印刷用原版を用いて作製された印刷用捨て版。
  16.  請求項1~11のいずれか一項に記載の印刷用原版を直接接触させて複数枚積層してなる積層体。
  17.  請求項12又は13に記載の印刷用原版を直接接触させて複数枚積層してなる積層体。
  18.  請求項14に記載の平版印刷版を直接接触させて複数枚積層してなる積層体。
  19.  請求項15に記載の印刷用捨て版を直接接触させて複数枚積層してなる積層体。
PCT/JP2016/068061 2015-06-30 2016-06-17 印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体 WO2017002641A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16817749.1A EP3318414A4 (en) 2015-06-30 2016-06-17 Original plate for printing, lithographic printing plate, disposable plate for printing, and laminate thereof
CN201680038902.1A CN107709029A (zh) 2015-06-30 2016-06-17 印刷用原版、平版印刷版、印刷用废弃版及其层叠体
JP2017526284A JPWO2017002641A1 (ja) 2015-06-30 2016-06-17 印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体
BR112018000045A BR112018000045A2 (pt) 2015-06-30 2016-06-17 precursor de chapa de impressão, chapa de impressão planográfica, chapa de impressão descartável e laminado dos mesmos
US15/856,612 US20180117942A1 (en) 2015-06-30 2017-12-28 Printing plate precursor, planographic printing plate, blank plate for printing, and laminate thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132081 2015-06-30
JP2015-132081 2015-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/856,612 Continuation US20180117942A1 (en) 2015-06-30 2017-12-28 Printing plate precursor, planographic printing plate, blank plate for printing, and laminate thereof

Publications (1)

Publication Number Publication Date
WO2017002641A1 true WO2017002641A1 (ja) 2017-01-05

Family

ID=57608734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068061 WO2017002641A1 (ja) 2015-06-30 2016-06-17 印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体

Country Status (6)

Country Link
US (1) US20180117942A1 (ja)
EP (1) EP3318414A4 (ja)
JP (1) JPWO2017002641A1 (ja)
CN (1) CN107709029A (ja)
BR (1) BR112018000045A2 (ja)
WO (1) WO2017002641A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045084A1 (ja) 2017-08-31 2019-03-07 富士フイルム株式会社 印刷用原版、及び印刷用原版積層体
CN109703051A (zh) * 2018-12-08 2019-05-03 沈阳自动化研究所(昆山)智能装备研究院 一种实现密胺制品自动化生产设备
EP3511174A4 (en) * 2017-09-29 2020-01-08 Fujifilm Corporation FLAT PRINT PLATE ORIGINAL, METHOD FOR PRODUCING A FLAT PRINT PLATE AND FLAT PRINT METHOD
EP3511172A4 (en) * 2017-03-31 2020-01-08 FUJIFILM Corporation FLAT PRINT ORIGINAL PLATE AND METHOD FOR THE PRODUCTION THEREOF, FLAT PRINT ORIGINAL PLATE LAMINATE AND FLAT PRINT METHOD
WO2020067373A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 印刷用原版、印刷用原版積層体、印刷版の製版方法、及び印刷方法
WO2020085501A1 (ja) * 2018-10-25 2020-04-30 富士フイルム株式会社 平版印刷版原版、平版印刷版原版積層体、及び、平版印刷版の作製方法
CN112533764A (zh) * 2018-07-31 2021-03-19 富士胶片株式会社 平版印刷版原版、平版印刷版原版层叠体、平版印刷版的制版方法及平版印刷方法
CN112654507A (zh) * 2018-07-31 2021-04-13 富士胶片株式会社 平版印刷版原版、平版印刷版原版层叠体、平版印刷版的制版方法及平版印刷方法
CN112752656A (zh) * 2018-09-28 2021-05-04 富士胶片株式会社 印刷用原版、印刷用原版层叠体、印刷版的制版方法及印刷方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339118B2 (ja) * 2015-04-08 2018-06-06 アイシン精機株式会社 車両用機械部品およびピストン
EP3754428B1 (en) * 2018-03-29 2024-04-17 FUJIFILM Corporation Development processing device for planographic printing plate manufacture, and manufacturing method of planographic printing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281422A (ja) * 2005-04-05 2006-10-19 Konica Minolta Medical & Graphic Inc 平版印刷版材料の製造方法およびその平版印刷版材料を用いた印刷方法
JP2006327136A (ja) * 2005-05-30 2006-12-07 Konica Minolta Medical & Graphic Inc 平版印刷方法
JP2008015503A (ja) * 2006-06-09 2008-01-24 Fujifilm Corp 平版印刷版原版及び平版印刷版原版の積層体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420083B1 (en) * 1999-04-21 2002-07-16 Fuji Photo Film Co., Ltd. Planographic printing plate precursor and process for manufacturing planographic printing plate
DE60114352T2 (de) * 2000-12-28 2006-07-20 Fuji Photo Film Co., Ltd., Minami-Ashigara Verfahren zur Herstellung feiner Polymerpartikel und diese enthaltende lithographische Druckplatte
CN1308156C (zh) * 2001-03-26 2007-04-04 富士胶片株式会社 平版形成用热敏型版材及其制造方法、涂布液、平版
JP2006062322A (ja) * 2004-08-30 2006-03-09 Fuji Photo Film Co Ltd 平版印刷版原版、平版印刷版原版積層体、及び製版方法
JP2007272143A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 平版印刷版原版およびその積層体
CN101086621A (zh) * 2006-06-09 2007-12-12 富士胶片株式会社 平版印刷版原版以及平版印刷版原版层叠体
JP5690696B2 (ja) * 2011-09-28 2015-03-25 富士フイルム株式会社 平版印刷版の製版方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281422A (ja) * 2005-04-05 2006-10-19 Konica Minolta Medical & Graphic Inc 平版印刷版材料の製造方法およびその平版印刷版材料を用いた印刷方法
JP2006327136A (ja) * 2005-05-30 2006-12-07 Konica Minolta Medical & Graphic Inc 平版印刷方法
JP2008015503A (ja) * 2006-06-09 2008-01-24 Fujifilm Corp 平版印刷版原版及び平版印刷版原版の積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318414A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696083B2 (en) 2017-03-31 2020-06-30 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
EP4275910A3 (en) * 2017-03-31 2024-01-24 FUJIFILM Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
EP3838594A1 (en) * 2017-03-31 2021-06-23 FUJIFILM Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
EP3511172A4 (en) * 2017-03-31 2020-01-08 FUJIFILM Corporation FLAT PRINT ORIGINAL PLATE AND METHOD FOR THE PRODUCTION THEREOF, FLAT PRINT ORIGINAL PLATE LAMINATE AND FLAT PRINT METHOD
US10919331B2 (en) 2017-03-31 2021-02-16 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
US10800195B2 (en) 2017-03-31 2020-10-13 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
CN111065525B (zh) * 2017-08-31 2022-03-29 富士胶片株式会社 印刷用原版及印刷用原版层叠体
CN111065525A (zh) * 2017-08-31 2020-04-24 富士胶片株式会社 印刷用原版及印刷用原版层叠体
WO2019045084A1 (ja) 2017-08-31 2019-03-07 富士フイルム株式会社 印刷用原版、及び印刷用原版積層体
JPWO2019045084A1 (ja) * 2017-08-31 2020-03-26 富士フイルム株式会社 印刷用原版、及び印刷用原版積層体
EP3511174A4 (en) * 2017-09-29 2020-01-08 Fujifilm Corporation FLAT PRINT PLATE ORIGINAL, METHOD FOR PRODUCING A FLAT PRINT PLATE AND FLAT PRINT METHOD
CN112533764A (zh) * 2018-07-31 2021-03-19 富士胶片株式会社 平版印刷版原版、平版印刷版原版层叠体、平版印刷版的制版方法及平版印刷方法
CN112654507A (zh) * 2018-07-31 2021-04-13 富士胶片株式会社 平版印刷版原版、平版印刷版原版层叠体、平版印刷版的制版方法及平版印刷方法
JPWO2020026957A1 (ja) * 2018-07-31 2021-08-19 富士フイルム株式会社 平版印刷版原版、及び、捨て版原版
US11590750B2 (en) 2018-07-31 2023-02-28 Fujifilm Corporation Planographic printing plate precursor, planographic printing plate precursor laminate, plate-making method for planographic printing plate, and planographic printing method
US11660852B2 (en) 2018-07-31 2023-05-30 Fujifilm Corporation Planographic printing plate precursor, planographic printing plate precursor laminate, plate-making method for planographic printing plate, and planographic printing method
CN112752656A (zh) * 2018-09-28 2021-05-04 富士胶片株式会社 印刷用原版、印刷用原版层叠体、印刷版的制版方法及印刷方法
CN112789178A (zh) * 2018-09-28 2021-05-11 富士胶片株式会社 印刷用原版、印刷用原版层叠体、印刷版的制版方法及印刷方法
JPWO2020067373A1 (ja) * 2018-09-28 2021-09-02 富士フイルム株式会社 印刷用原版、及び印刷版の製版方法
WO2020067373A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 印刷用原版、印刷用原版積層体、印刷版の製版方法、及び印刷方法
US11745531B2 (en) 2018-09-28 2023-09-05 Fujifilm Corporation Printing plate precursor, printing plate precursor laminate, method for making printing plate, and printing method
CN112789178B (zh) * 2018-09-28 2023-10-20 富士胶片株式会社 印刷用原版、其层叠体、印刷版的制版方法及印刷方法
WO2020085501A1 (ja) * 2018-10-25 2020-04-30 富士フイルム株式会社 平版印刷版原版、平版印刷版原版積層体、及び、平版印刷版の作製方法
CN109703051A (zh) * 2018-12-08 2019-05-03 沈阳自动化研究所(昆山)智能装备研究院 一种实现密胺制品自动化生产设备

Also Published As

Publication number Publication date
BR112018000045A2 (pt) 2018-09-04
CN107709029A (zh) 2018-02-16
JPWO2017002641A1 (ja) 2017-12-07
EP3318414A4 (en) 2018-08-01
EP3318414A1 (en) 2018-05-09
US20180117942A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2017002641A1 (ja) 印刷用原版、平版印刷版、印刷用捨て版、及び、その積層体
JP6454057B1 (ja) 平版印刷版原版及びその製造方法、平版印刷版原版積層体、並びに、平版印刷方法
JP6454058B1 (ja) 平版印刷版原版及びその製造方法、平版印刷版原版積層体、平版印刷版の製版方法、並びに、平版印刷方法
JP6442632B2 (ja) 平版印刷版原版、及びその製造方法
JP6311037B2 (ja) 平版印刷版原版、その製造方法、及びそれを用いる印刷方法
JP6205502B2 (ja) 平版印刷版原版、その製造方法、及びそれを用いる印刷方法
CN111065525B (zh) 印刷用原版及印刷用原版层叠体
WO2020026957A1 (ja) 平版印刷版原版、平版印刷版原版積層体、平版印刷版の製版方法、及び、平版印刷方法
JP7055877B2 (ja) 平版印刷版原版
JP2023100737A (ja) 印刷用原版、印刷用原版積層体、印刷版の製版方法、及び印刷方法
JP7309741B2 (ja) 印刷用原版、及び印刷版の製版方法
JP6978504B2 (ja) 平版印刷版原版、及び、平版印刷版の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817749

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000045

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000045

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180102