WO2017002632A1 - ディスプレイ用ガラス基板の製造方法 - Google Patents

ディスプレイ用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2017002632A1
WO2017002632A1 PCT/JP2016/067889 JP2016067889W WO2017002632A1 WO 2017002632 A1 WO2017002632 A1 WO 2017002632A1 JP 2016067889 W JP2016067889 W JP 2016067889W WO 2017002632 A1 WO2017002632 A1 WO 2017002632A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sheet glass
cooling rate
glass
cooling
Prior art date
Application number
PCT/JP2016/067889
Other languages
English (en)
French (fr)
Inventor
公彦 中嶋
祐介 塩地
Original Assignee
AvanStrate株式会社
アヴァンストレート コリア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, アヴァンストレート コリア インコーポレイテッド filed Critical AvanStrate株式会社
Priority to KR1020177035631A priority Critical patent/KR102006563B1/ko
Priority to CN201680036348.3A priority patent/CN107709254A/zh
Priority to JP2016544180A priority patent/JP6823457B2/ja
Priority to TW105120828A priority patent/TWI696590B/zh
Publication of WO2017002632A1 publication Critical patent/WO2017002632A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for display.
  • the glass substrate for display is thermally contracted by heat treatment. At this time, if the thermal contraction rate of the glass substrate is large, a pitch shift in which the arrangement of elements formed on the surface of the glass substrate is shifted easily occurs. For this reason, from the viewpoint of reducing the pitch deviation, the glass substrate for display is required to have a small thermal shrinkage rate during the heat treatment.
  • Methods for reducing the thermal shrinkage of the glass substrate include (1) adjusting the glass composition to increase the strain point of the glass, and (2) reducing the cooling rate of the sheet glass after the molding step.
  • a technique for reducing the thermal shrinkage rate of a glass substrate a technique for improving the glass composition so that the strain point is 680 ° C. or higher is known (Patent Document 1).
  • the cooling step includes a first cooling step of cooling the sheet glass until the temperature of the central region of the formed sheet glass reaches the annealing point, and the temperature of the central region is changed from the annealing point to the strain point of ⁇ 50 ° C.
  • This is divided into a second cooling step in which the sheet glass is cooled until the temperature reaches the point, and a third cooling step in which the temperature in the central region is cooled from the strain point of ⁇ 50 ° C. to the strain point of ⁇ 200 ° C.
  • the average cooling rate in the first cooling step is made faster than the average cooling rate in the third cooling step
  • the average cooling rate in the third cooling step is made faster than the average cooling rate in the second cooling step.
  • Patent Document 2 The technology is known (Patent Document 2).
  • Patent Document 1 if the composition is adjusted so that the strain point becomes high, problems such as devitrification and difficult melting are likely to occur, so there is a limit to increasing the strain point. In addition, when producing a glass substrate by the overflow down draw method, there is a problem that if the cooling rate of the sheet glass is reduced in the cooling step performed after the molding step, the slow cooling path becomes long and the cost of the slow cooling device increases. .
  • the average cooling rate in the first cooling step is made faster than the average cooling rate in the third cooling step, and the average cooling rate in the third cooling step is changed to the average cooling rate in the second cooling step. Even if it is faster than the speed, there is a problem that there is a limit to the reduction of the heat shrinkage rate, which is not sufficient.
  • an object of the present invention is to provide a method for producing a glass substrate for display, which can reduce the thermal shrinkage rate of the glass substrate in comparison with the conventional method in the cooling step performed after molding.
  • the first aspect of the present invention is a method for producing a glass substrate for display.
  • the manufacturing method is A molding step of molding the molten glass into a sheet glass by a downdraw method; A cooling step of cooling until the temperature of the central portion in the width direction orthogonal to the flow direction of the sheet glass reaches 300 ° C. when the formed sheet glass is flowed.
  • a cooling rate of a central region that is an inner side of the sheet glass in the width direction than both ends of the sheet glass in the width direction and includes the center portion, and the temperature of the center portion Is lower than the average cooling rate in the central region in the temperature region other than the temperature region in the cooling step.
  • the cooling step includes After being formed into the sheet glass, when the temperature of the center part in the width direction of the sheet glass is equal to or higher than the annealing point, the sheet glass is located on the inner side in the width direction of the sheet glass than both ends in the width direction.
  • the third average cooling rate is preferably smaller than the first average cooling rate and the second average cooling rate.
  • the cooling step further includes a fourth cooling step of cooling the central region at a fourth average cooling rate when the temperature of the central portion is less than 300 ° C. and 100 ° C. or more,
  • the fourth average cooling rate is preferably larger than the third average cooling rate.
  • the 2nd aspect of this invention is a manufacturing method of the glass substrate for a display for performing heat processing at predetermined processing temperature and forming a thin film on the surface.
  • the manufacturing method is A molding step of molding the molten glass into a sheet glass by a downdraw method; When flowing the formed sheet glass, the temperature of the central portion in the width direction perpendicular to the flow direction of the sheet glass is lower by 250 ° C. than the processing temperature, that is, (the processing temperature ⁇ 250 ° C.). And a cooling step for cooling to a low temperature.
  • a cooling rate of a central region that is an inner side of the sheet glass in the width direction than both ends of the sheet glass in the width direction and includes the center portion, and the temperature of the center portion Is less than a temperature lower by 100 ° C. than the treatment temperature, that is, less than (the treatment temperature ⁇ 100 ° C.), more than a temperature lower than the treatment temperature by 250 ° C.
  • the cooling rate is smaller than the average cooling rate of the central region in the temperature region other than the temperature region in the cooling step.
  • the cooling step includes After being formed into the sheet glass, when the temperature of the center part in the width direction of the sheet glass is equal to or higher than the annealing point, the sheet glass is located on the inner side in the width direction of the sheet glass than both ends in the width direction, A first cooling step of cooling a central region, which is a region including the central portion, at a first average cooling rate; When the temperature of the central portion is lower than the annealing point and not less than 100 ° C. lower than the treatment temperature, that is, not less than (the treatment temperature ⁇ 100 ° C.), the central region is cooled at the second average cooling rate. A second cooling step; The temperature of the central portion is less than 100 ° C.
  • a third cooling step of cooling the central region at a third average cooling rate is preferably smaller than the first average cooling rate and the second average cooling rate.
  • the temperature of the central part is further lower than a temperature lower by 250 ° C. than the processing temperature, that is, the processing temperature (° C.) is lower than ⁇ 250 ° C., and is equal to or higher than a temperature lower than the processing temperature by 450 ° C.
  • the first average cooling rate is larger than the second average cooling rate.
  • the third average cooling rate is 5.0 ° C./second or less.
  • the thermal shrinkage rate of the glass substrate is 15 ppm or less.
  • the said heat shrinkage rate is a value calculated
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass substrate after heat treatment / length of glass substrate before heat treatment ⁇ ⁇ 10 6
  • the strain point of the glass substrate is preferably 680 ° C. or higher.
  • the heat shrinkage rate can be reduced as compared with the conventional method.
  • treatment temperature ⁇ X ° C. represents a temperature X ° C. lower than the treatment temperature (° C.) (X is a positive number).
  • FIG. 1 is a diagram illustrating an example of steps of a method for manufacturing a display glass substrate according to the present embodiment
  • FIG. 2 is a schematic diagram illustrating an example of a glass substrate manufacturing apparatus used in the method for manufacturing a display glass substrate according to the present embodiment.
  • the glass substrate manufacturing method mainly includes a melting step S1, a clarification step S2, a forming step S3, and a cooling step S4.
  • the melting step S1 is a step in which the glass raw material is melted.
  • the glass raw material is prepared so as to have a desired composition, and then charged into the melting apparatus 11.
  • the glass raw material is melted by the melting device 11 to become a molten glass FG.
  • the melting temperature is adjusted according to the type of glass. In the present embodiment, heating is performed so that the maximum temperature of the molten glass FG in the melting step S1 is 1500 ° C. to 1650 ° C.
  • the molten glass FG is sent to the refining device 12 through the upstream pipe 23.
  • the clarification step S2 is a step of removing bubbles in the molten glass FG.
  • the molten glass FG from which bubbles have been removed in the refining device 12 is then sent to the forming device 40 through the downstream pipe 24.
  • the forming step S3 is a step of forming the molten glass FG into a sheet glass SG that is a sheet-like glass. Specifically, the molten glass FG overflows from the molded body 41 after being continuously supplied to the molded body 41 (see FIG. 3) included in the molding apparatus 40. The overflowed molten glass FG flows down along the surface of the molded body 41. The molten glass FG is then merged at the lower end of the molded body 41 and formed into a sheet glass SG.
  • Cooling step S4 is a step of cooling the sheet glass SG.
  • the glass sheet is cooled to a temperature close to room temperature through the cooling step S4.
  • the thickness (plate thickness) of the glass substrate, the amount of warpage of the glass substrate, and the plane strain value of the glass substrate are determined according to the cooling state.
  • the cutting step is a step of cutting the sheet glass SG having a temperature close to room temperature into a predetermined size by the cutting device 90.
  • size at the cutting process turns into a glass substrate through processes, such as an end surface process, after that.
  • the glass substrate is shipped to a panel manufacturer or the like.
  • a panel manufacturer forms a device on the surface of a glass substrate to manufacture a display.
  • the sheet glass SG cooled in the cooling step S4 may be shipped as it is after being packed as it is.
  • a panel maker manufactures a display by forming an element on the surface of the sheet glass SG and then cutting the sheet glass SG into a predetermined size and processing the end face.
  • the width direction of the sheet glass SG means a direction that intersects a direction (flow direction) in which the sheet glass SG flows down among the in-plane directions of the surface of the sheet glass SG, that is, a horizontal direction. To do.
  • FIGS. 3 is a cross-sectional view of the molding apparatus 40.
  • FIG. 4 is a side view of the molding apparatus 40.
  • the forming apparatus 40 has a path through which the sheet glass SG passes and a space surrounding the path.
  • the space surrounding the passage is configured by, for example, a molded body chamber 20, a first cooling chamber 30, and a second cooling chamber 80.
  • the temperature along the flow direction of the sheet glass SG when the sheet glass SG flows downward from the position where the molten glass FG merges at the lower end 41a of the formed body 41 and the sheet glass SG is formed.
  • the average cooling rate in the temperature region where the temperature of the central portion C (see FIG. 4) of the sheet glass SG is less than 450 ° C. and 300 ° C. or higher is, as will be described later, of the central portion C in the cooling step S4.
  • the temperature is smaller than the average cooling rate in the temperature region other than the temperature region where the temperature is less than 450 ° C. and 300 ° C. or more. This point will be described later.
  • the both ends of the width direction of the sheet glass SG mean the area
  • region inside the width direction of a part is called center area
  • Both end portions R and L of the sheet glass SG are regions including a target portion to be cut and removed after manufacturing, whereas the central region CA of the sheet glass SG is a region including a target portion to make the plate thickness uniform. It is.
  • the central area CA of the sheet glass SG is, for example, within 85% of the width in the width direction of the sheet glass SG from the center in the width direction of the sheet glass SG.
  • the center part C refers to the center position in the width direction of the sheet glass SG.
  • the average cooling rate is the average cooling rate of the central area CA including the center portion C, and the sheet glass SG passes through this temperature range with respect to the temperature difference in the flow direction at the same position in the width direction in the defined temperature range. It is the value divided by the transit time.
  • a temperature range represented as less than X1 ° C and greater than or equal to X2 ° C such as a temperature range less than 450 ° C and greater than or equal to 300 ° C
  • the temperature difference at the center C is treated as X1-X2 (° C).
  • a cooling rate is calculated.
  • the average cooling rate of the portion other than the central portion C of the central region CA is also a value obtained by dividing the temperature difference in the temperature region by the passage time.
  • the molded body chamber 20 is a space in which the molten glass FG sent from the clarification device 12 is formed into a sheet glass SG.
  • the first cooling chamber 30 is a space for adjusting the thickness and the amount of warpage of the sheet glass SG, which is disposed below the molded body chamber 20.
  • the sheet glass SG in a state where the temperature of the central portion C of the sheet glass SG is higher than the annealing point is cooled.
  • the center portion C of the sheet glass SG is the center in the width direction of the sheet glass SG.
  • the second cooling chamber 80 is a space for adjusting the warp, thermal contraction rate, and strain value of the sheet glass SG, which is disposed below the molded body chamber 20 and the first cooling chamber 30.
  • the sheet glass SG that has passed through the first cooling chamber 30 is cooled to a temperature that is at least 100 ° C. lower than the strain point through the slow cooling point and the strain point.
  • the sheet glass SG may be cooled to a temperature near room temperature.
  • the inside of the second cooling chamber 80 may be divided into a plurality of spaces by a heat insulating member 80b.
  • the plurality of heat insulating members 80b are arranged on both sides in the thickness direction of the sheet glass SG between the plurality of pull-down rollers 81a to 81g. Thereby, the temperature management of the sheet glass SG can be performed more accurately.
  • the molding apparatus 40 includes, for example, a molded body 41, a partition member 50, a cooling roller 51, a temperature adjustment unit 60, pulling rollers 81a to 81g, and heaters 82a to 82g. Furthermore, the shaping
  • the molded body 41 is provided in the molded body chamber 20.
  • the formed body 41 forms the molten glass FG into a sheet glass SG that is a sheet-like glass by causing the molten glass FG to overflow.
  • the molded body 41 has a substantially pentagonal shape (a shape similar to a wedge shape) with respect to the cross-sectional shape.
  • the substantially pentagonal tip corresponds to the lower end portion 41 a of the molded body 41.
  • the molded body 41 has an inlet 42 at the first end (see FIG. 4).
  • a groove 43 is formed on the upper surface of the molded body 41.
  • the inlet 42 is connected to the above-described downstream pipe 24, and the molten glass FG that has flowed out of the refining device 12 is poured into the groove 43 from the inlet 42.
  • the molten glass FG poured into the groove 43 of the molded body 41 overflows from the pair of top portions 41 b and 41 b of the molded body 41 and flows down along the pair of side surfaces (surfaces) 41 c and 41 c of the molded body 41. Thereafter, the molten glass FG joins at the lower end 41a of the molded body 41 to become a sheet glass SG.
  • the partition member 50 is a member that blocks heat transfer from the molded body chamber 20 to the first cooling chamber 30.
  • the partition member 50 is arrange
  • the partition member 50 is a heat insulating material, for example.
  • the cooling roller 51 is provided in the first cooling chamber 30. More specifically, the cooling roller 51 is disposed directly below the partition member 50. Moreover, the cooling roller 51 is arrange
  • the cooling roller 51 is cooled by an air cooling tube or a water cooling tube passed through the inside.
  • the cooling roller 51 contacts both end portions R and L of the sheet glass SG, and rapidly cools both end portions R and L of the sheet glass SG by heat conduction.
  • the viscosities of both end portions R and L of the sheet glass SG in contact with the cooling roller 51 are, for example, 10 9.0 poise or more.
  • the cooling roller 51 is rotationally driven by a cooling roller drive motor 390 (see FIG. 5).
  • the cooling roller 51 cools both end portions R and L of the sheet glass SG and also has a function of lowering the sheet glass SG downward.
  • cooling of the both ends R and L of the sheet glass SG by the cooling roller 51 affects the uniformity of the width of the sheet glass SG and the thickness of the sheet glass SG.
  • the temperature adjustment unit 60 is a unit that is provided in the first cooling chamber 30 and cools the sheet glass SG to the vicinity of the annealing point.
  • the temperature adjustment unit 60 is disposed below the partition member 50 and above the top plate 80 a of the second cooling chamber 80.
  • the temperature adjustment unit 60 cools the sheet glass SG until the temperature of the central portion C of the sheet glass SG becomes near the annealing point. Thereafter, the central portion C of the sheet glass SG is cooled in the second cooling chamber 80 to a temperature in the vicinity of room temperature via a slow cooling point and a strain point.
  • the temperature adjustment unit 60 may have a cooling unit 61.
  • a plurality of cooling units 61 (three here) are arranged in the width direction of the sheet glass SG and a plurality are arranged in the flow direction.
  • the cooling units 61 are arranged one by one so as to face each surface of both end portions R and L of the sheet glass SG, and each surface of a central area CA (see FIG. 4) described later.
  • One is arranged so as to oppose.
  • the pull-down rollers 81a to 81g are provided in the second cooling chamber 80, and pull down the sheet glass SG that has passed through the first cooling chamber 30 in the flow direction of the sheet glass SG.
  • the pulling rollers 81a to 81g are arranged in the second cooling chamber 80 at a predetermined interval along the flow direction.
  • a plurality of pull-down rollers 81a to 81g are arranged on both sides in the thickness direction of the sheet glass SG (see FIG. 3) and on both ends R and L in the width direction of the sheet glass SG (see FIG. 4). That is, the pulling rollers 81a to 81g pull the sheet glass SG downward while being in contact with both ends of the sheet glass SG in the thickness direction of the sheet glass SG in the width direction.
  • the pulling rollers 81a to 81g are driven by a pulling roller driving motor 391 (see FIG. 5).
  • the peripheral speed of the pulling rollers 81a to 81g is preferably increased as the lowering rollers 81a to 81g are installed on the downstream side. That is, among the plurality of lowering rollers 81a to 81g, the peripheral speed of the lowering roller 81a is the smallest, and the peripheral speed of the lowering roller 81g is the highest.
  • the pull-down rollers 81a to 81g arranged on both sides in the thickness direction of the sheet glass SG operate in pairs, and the pair of pull-down rollers 81a, 81a, ... pulls the sheet glass SG downward.
  • the heaters 82 a to 82 g are provided inside the second cooling chamber 80 and adjust the temperature of the internal space of the second cooling chamber 80. Specifically, a plurality of heaters 82a to 82g are arranged in the flow direction of the sheet glass SG and the width direction of the sheet glass SG. For example, seven heaters are arranged in the flow direction of the sheet glass SG, and three heaters are arranged in the width direction of the sheet glass. The three heaters arranged in the width direction respectively control the temperature of the central region CA of the sheet glass SG and both end portions R and L of the sheet glass SG. The outputs of the heaters 82a to 82g are controlled by a control device 91 described later.
  • the atmospheric temperature in the vicinity of the sheet glass SG passing through the inside of the second cooling chamber 80 is controlled.
  • the temperature of the sheet glass SG is controlled by controlling the atmospheric temperature in the second cooling chamber 80 by the heaters 82a to 82g. Further, the sheet glass SG transitions from the viscous region to the elastic region through the viscoelastic region by temperature control.
  • the temperature of the sheet glass SG is cooled from the temperature near the annealing point to the temperature near room temperature by the control of the heaters 82a to 82g.
  • an ambient temperature detecting means (in this embodiment, a thermocouple) 380 (see FIG. 5) for detecting the ambient temperature may be provided.
  • the several thermocouple 380 is arrange
  • the thermocouple 380 can detect the temperature of the surface of the sheet glass SG.
  • the thermocouple 380 detects the temperature of the center portion C of the sheet glass SG and the temperatures of both end portions R and L of the sheet glass SG.
  • the outputs of the heaters 82a to 82g are controlled based on the ambient temperature detected by the thermocouple 380.
  • the cutting device 90 cuts the sheet glass SG cooled to a temperature near room temperature in the second cooling chamber 80 into a predetermined size. Thereby, the sheet glass SG becomes a several glass plate.
  • the cutting device 90 is driven by a cutting device drive motor 392 (see FIG. 5). Note that the cutting device 90 is not necessarily provided directly below the second cooling chamber 80.
  • the sheet glass SG may not be cut by the cutting device 90, and the sheet glass SG may be wound into a roll shape to produce a roll-shaped sheet glass.
  • FIG. 5 is a diagram illustrating an example of the configuration of the control device 91.
  • the control device 91 includes a CPU, a RAM, a ROM, a hard disk, and the like, and controls various devices included in the glass substrate manufacturing apparatus 100. Specifically, as shown in FIG. 5, the control device 91 receives signals from various sensors (eg, thermocouple 380) and switches (eg, main power switch 381) included in the glass substrate manufacturing apparatus 100.
  • the temperature adjustment unit 60, heaters 82a to 82g, cooling roller drive motor 390, pulling roller drive motor 391, cutting device drive motor 392, and the like are controlled.
  • the cooling rate of the central region CA, and the average cooling rate in the temperature region where the temperature of the central portion C is less than 450 ° C and 300 ° C or higher is smaller than the average cooling rate of the central region CA in the temperature region other than the temperature region in which the temperature of the central portion C is less than 450 ° C. and 300 ° C. or more in the cooling step S4. That is, in the cooling step S4, the average cooling rate in the central region CA is the smallest in the temperature region where the temperature of the central portion C is less than 450 ° C. and 300 ° C. or higher.
  • the average cooling rate is adjusted using the cooling roller 51, the temperature adjustment unit 60, and the heaters 82a to 82g described above.
  • the temperature profiles TP1 to TP10 in the width direction of the sheet glass SG as shown in FIG. 6 are used as target temperature profiles in the respective temperature regions in the flow direction, and the temperatures of the first cooling chamber 30 and the second cooling chamber 80 are set. By controlling, the thickness, warpage amount, and distortion of the sheet glass SG can be adjusted.
  • FIG. 6 is a diagram illustrating temperature profiles TP1 to TP10 that are examples of target temperature profiles in the cooling process.
  • the temperature of the central region CA of the sheet glass SG is uniform, and both end portions R and L of the sheet glass SG are lower than the temperature of the central region CA. Cooling of both end portions R and L of the sheet glass SG is performed using the cooling roller 51 after molding so that the sheet glass SG has this temperature profile TP1.
  • the temperature distribution of the central area CA is changed from a rectangular shape to a substantially parabolic shape that is convex upward while the temperature of the entire sheet glass SG is lowered, and the degree of convexity of the substantially parabolic shape is gradually reduced.
  • the temperatures at both ends R and L and the central area CA are made constant. Thereafter, in the temperature profiles TP7 to TP10, the temperature distribution has a substantially convex parabolic shape that is convex downward, and the temperature distribution of the central region CA is increased downward while lowering the temperature of the entire sheet glass SG.
  • the temperature of the first cooling chamber 30 and the second cooling chamber 80 is adjusted using the cooling unit 61 and the heaters 82a to 82g so that the temperature of the sheet glass SG has such a temperature profile.
  • the temperature of the sheet glass SG may be an actual value of the temperature of the sheet glass SG, and is controlled by the heaters 82a to 82g. A value calculated by simulation based on the ambient temperature of the sheet glass SG may be used.
  • FIG. 7 is a diagram illustrating an example of a temperature history (change in temperature with time) along the flow direction of the sheet glass SG at the center C in the present embodiment.
  • the sheet glass SG is formed at the lower end portion 41 a of the molded body 41.
  • the temperature of the sheet glass SG at this time is 1200 degreeC, for example.
  • the temperature of the sheet glass SG becomes a slow cooling point (temperature when the viscosity of the glass is 10 13 poise, for example, 775 ° C.), and at time C, the temperature of the sheet glass SG becomes 450 ° C.
  • the temperature of the sheet glass SG becomes 300 ° C.
  • the temperature of the sheet glass SG becomes 200 ° C. or less and is cut by the cutting device 90.
  • the temperature region of the sheet glass SG from the time point A to the time point B (a temperature region equal to or higher than the annealing point after the formation of the sheet glass SG) is defined as the first temperature region R1, and the sheet glass SG from the time point B to the time point C is elapsed.
  • the second temperature region R2 the temperature region of the sheet glass SG (the temperature region less than 450 ° C. and 300 ° C. or more) up to the time D after the time C has passed is the second temperature region R2.
  • the temperature range of the sheet glass SG from the time point D to the time point E (temperature range of less than 300 ° C. and 100 ° C. or higher) is defined as a fourth temperature region R4.
  • the third average cooling rate in the third temperature region R3 is the first, second and fourth averages of the other first, second, and fourth temperature regions R1, R2, and R4. Small compared to the cooling rate.
  • the sheet glass SG cooling step in the first temperature region R1 is a first cooling step
  • the sheet glass SG cooling steps in the second to fourth temperature regions R2 to R4 are second to fourth cooling steps, respectively.
  • the third average cooling rate in the temperature region R3 is a case where the temperature region (temperature region having a temperature difference of 10 ° C. or more) is determined by arbitrarily dividing a range other than the temperature region R3. Smallest.
  • the first average cooling rate in the first temperature region R1 is larger than the second average cooling rate in the second temperature region because the thermal contraction rate can be efficiently reduced.
  • the heat shrinkage rate is more efficient if the cooling rate of the second to fourth temperature regions R2 to R4 is slower than that of the first temperature region R1. It is preferable from the viewpoint of reducing it.
  • region R4 of a 4th cooling process is larger than the 3rd average cooling speed in a 3rd temperature area
  • the third average cooling rate in the third temperature region R3 is preferably 5 ° C./second or less from the viewpoint that the thermal shrinkage rate can be reduced.
  • the lower limit of the third average cooling rate is not particularly limited, but it is, for example, 0.5 ° C. from the point of not changing the length of the path of the sheet glass SG or the reduction of the production efficiency of the glass substrate. / Second or more is preferable.
  • the third average cooling rate is preferably 1 ° C./second to 4.5 ° C./second.
  • the first average cooling rate in the first temperature region R1 is preferably 5 ° C./second to 50 ° C./second, for example, and more preferably 15 ° C./second to 35 ° C./second.
  • the second average cooling rate in the second temperature region R2 is, for example, 5 ° C./second or less, preferably 1 ° C./second to 5 ° C./second, and preferably 2 ° C./second to 5 ° C./second. More preferred.
  • the fourth average cooling rate in the fourth temperature region R4 in which the temperature of the central portion C is less than 300 ° C. and 100 ° C. or higher is larger than the third average cooling rate in the third temperature region R3. It is preferable in that the path of the sheet glass SG is not lengthened and the thermal shrinkage rate is lowered.
  • the temperature history shown in FIG. 7 is the temperature history in the center portion C, but the time history of the temperature at the same position in the width direction of the other part of the center region CA that is out of the center portion C is also the third temperature region.
  • the average cooling rate in R3 is the smallest.
  • the first to fourth average cooling rates in the first temperature range R1 to the fourth temperature range R4 are obtained by adjusting the atmospheric temperature of the first cooling chamber 30 and the second cooling chamber 80, and are naturally released at normal temperature. It is a small speed compared to cold.
  • glass is amorphous, and high-temperature glass changes its molecular structure toward an optimal structure due to heat, that is, it tends to shrink due to thermal relaxation. For this reason, in order to produce a glass substrate with a small thermal shrinkage rate, it is preferable to cool slowly so that the thermal relaxation of the sheet glass SG proceeds sufficiently.
  • the sheet glass SG is cooled and the sheet glass SG is cooled without sufficient thermal relaxation, changes in the molecular structure in the glass are suppressed or prevented by high viscosity during the thermal relaxation. For this reason, when the glass substrate obtained from such a sheet glass SG is reheated for heat treatment, the suppression or prevention of thermal relaxation is released, and the process starts from the middle of thermal relaxation.
  • glass has a plurality of relaxations having different speeds, and the relaxation of glass can be expressed by a superposition of relaxations having different relaxation speeds (hereinafter, relaxations having different relaxation speeds are referred to as relaxation “components”). Call).
  • relaxations having different relaxation speeds are referred to as relaxation “components”. Call).
  • the glass relaxation component there are a large number of components that rapidly heat relax and contract, a component that gently relaxes and contracts, and a component that relaxes and contracts at an intermediate speed. For this reason, in the cooling process, it is preferable to set a temperature history such that thermal relaxation sufficiently proceeds in all of these components. However, as shown in FIG.
  • the path of the sheet glass SG in the cooling step S ⁇ b> 4 is a path from the vertical upper side to the lower side of the forming apparatus 40, and is provided in a structure such as a building. It is difficult to extend the route because it is necessary to renovate or add to the structure such as a building. For this reason, in the existing conveyance path
  • the heat shrinkage rate of the glass substrate is reduced by making the average cooling rate in the third temperature region R3 smaller than the average cooling rate in the temperature region other than the third temperature region R3 in the cooling step S4. Can be efficiently reduced. The reason is assumed as follows.
  • FIG. 8 is a schematic diagram of temperature histories T1 to T3 (solid lines) in the cooling process of the sheet glass SG in the cooling process S4 in which time is plotted on the horizontal axis and temperature is plotted on the vertical axis.
  • Time points A and E in the figure correspond to time points A and E in FIG.
  • the temperature history T1 is an example of the temperature history of the present embodiment.
  • the temperature history T2 is a high temperature state
  • the cooling rate is decreased with respect to the temperature history T1, and then the cooling rate is set to the temperature history T1.
  • the cooling rate is increased to a cooling rate equivalent to the temperature history T1
  • the temperature history T3 is set to a cooling rate equivalent to the temperature history T1 in a high temperature state, and then cooled to the temperature history T1.
  • This is a mode in which the speed is reduced and then the cooling speed is increased with respect to the temperature history T1.
  • the component that slowly relaxes and contracts as described above (this component is referred to as component X) cannot follow the cooling rate in the high temperature state, and the change in the molecular structure related to component X at point P1 is Suppressed or blocked by viscosity.
  • the temperature history T2 since the cooling rate in the high temperature state is small, the change in the molecular structure related to the component X at the point P2 is suppressed or prevented by the viscosity.
  • a component that quickly shrinks by thermal relaxation (this component is referred to as component Y) cannot follow the cooling rate at the point P3, and changes in the molecular structure related to the component Y (thermal relaxation) at the point P3.
  • the component Y cannot follow the cooling rate at the point P4, and the change (thermal relaxation) of the molecular structure related to the component Y is suppressed or prevented by the viscosity at the point P4.
  • the component Y cannot follow the cooling rate at the point P5, and the change (thermal relaxation) of the molecular structure related to the component Y is suppressed or prevented by the viscosity at the point P5.
  • the temperature at which the change in the molecular structure (thermal relaxation) at points P1 and P2 is suppressed or prevented does not differ significantly between points P1 and P2, but the molecule related to component Y
  • the temperatures at points P3 to P5 where the change in structure is suppressed are greatly different. Specifically, the temperature at the point P3 is the lowest. Accordingly, in the temperature histories T1 to T3, the lower the temperature at which thermal relaxation is suppressed or prevented, the more the thermal relaxation proceeds. Therefore, the lower the temperature at which the change in molecular structure related to the component Y is suppressed or prevented.
  • the heat shrinkage rate can be reduced.
  • the temperature history T1 that suppresses or prevents the change in the molecular structure related to the component Y at the lowest temperature can sufficiently perform thermal relaxation before cutting the sheet glass SG, As a result, it is possible to provide a sheet glass SG with a reduced thermal shrinkage efficiently.
  • the first to fourth average cooling rates in the first to fourth temperature regions can be set so that the thermal contraction rate of the sheet glass SG achieves a predetermined target value.
  • the thermal shrinkage rate of the sheet glass SG is actually measured under a plurality of types of cooling conditions, and a calibration curve is created based on the obtained measurement values.
  • the flow direction of the temperature profiles TP1 to TP10 which are targets in the width direction of the set sheet glass SG using the created calibration curve so that the thermal shrinkage rate of the sheet glass SG achieves a predetermined target value.
  • the first to fourth average cooling rates in the first to fourth temperature regions can be set by adjusting the temperature distribution along.
  • the temperature range of the third temperature region R3 is set to less than 450 ° C. and 300 ° C. or more, but when applied to a glass substrate for display for performing a heat treatment at a predetermined processing temperature to form a thin film on the surface,
  • the third temperature region R3 may be a temperature region of less than (treatment temperature ⁇ 100 ° C.) (above treatment temperature ⁇ 250 ° C.) or more.
  • the treatment temperature is preferably 300 ° C. or higher, more preferably 400 ° C. or higher.
  • a thin film typified by a TFT such as a low-temperature polysilicon TFT (Thin Film Transistor) or an oxide semiconductor such as IGZO (indium, gallium, zinc, oxygen) is formed on the surface of a glass substrate.
  • a processing temperature for example, 300 ° C. or higher, or 400 ° C. or higher. Therefore, the glass substrate may determine the temperature range of the third temperature region R3 according to the processing temperature of this heat treatment.
  • the heat treatment temperature during the formation of the thin film is, for example, 300 ° C. to 700 ° C. or 400 ° C. to 650 ° C.
  • the temperature region where the temperature of the central portion C is equal to or higher than the annealing point is defined as the first temperature region R1, and the temperature of the central portion C is lower than the annealing point (treatment temperature (° C.) ⁇ 100 ° C. )
  • the third average cooling rate in the third temperature range R3 is the first average cooling rate in the first temperature range R1 and the second average cooling rate in the second temperature range R2.
  • a temperature region where the temperature of the central portion C is less than (treatment temperature (° C.) ⁇ 250 ° C.) (treatment temperature (° C.) ⁇ 450 ° C. or more) is defined as a fourth temperature region R4, and the fourth average in the fourth temperature region R4.
  • the cooling rate is preferably larger than the third average cooling rate in the third temperature region R3 in terms of reducing the heat shrinkage rate without lengthening the conveyance path.
  • the thermal contraction rate of a glass substrate shall be 15 ppm or less by defining such temperature history by cooling process S4. More preferably, the thermal shrinkage of the glass substrate is 10 ppm or less.
  • the strain point of the glass substrate (temperature when the viscosity of the glass is 10 14.5 poise) is preferably 680 ° C. or higher from the viewpoint of reducing the thermal shrinkage of the glass substrate, and is 700 ° C. or higher. It is more preferable that the temperature is 720 ° C. or higher.
  • the upper limit of the strain point of the glass substrate is preferably 780 ° C. or less, and preferably 760 ° C. or less. More preferred.
  • the devitrification temperature is preferably 1280 ° C. or less, and preferably 1100 ° C. to 1270 ° C. from the viewpoint of achieving both a reduction in heat shrinkage and devitrification resistance. It is more preferable to be.
  • Glass composition As a glass composition of the glass substrate manufactured by this embodiment, the following glass compositions are illustrated by mol% display, for example. SiO 2 55-80%, B 2 O 3 0-18%, Al 2 O 3 3-20%, MgO 0-20%, CaO 0-20%, SrO 0-20%, BaO 0-20%, RO 5-25% (Wherein R is at least one selected from Mg, Ca, Sr and Ba), R ' 2 O 0% to 2.0% (However, R ′ is at least one selected from Li, Na and K) including.
  • the total content of metal oxides whose valence fluctuates in the molten glass is not particularly limited, but may be 0.05 to 1.5%, for example. Further, it is preferred not to include As 2 O 3, Sb 2 O 3 and PbO substantially.
  • the glass substrate produced by the method for producing a glass substrate of the present embodiment is particularly suitable as a glass substrate for a display such as a liquid crystal display, a plasma display, and an organic EL display, and a cover glass for protecting the display.
  • the display using the glass substrate for display includes a flat panel display having a flat display surface, an organic EL display and a liquid crystal display, and a curved display having a curved display surface.
  • the glass substrate is a glass substrate for a high-definition display, such as a glass substrate for a liquid crystal display, a glass substrate for an organic EL (Electro-Luminescence) display, an LTPS (Low Temperature Poly-silicon) thin film semiconductor, or an IGZO (Indium, Gallium, It is preferable to use as a glass substrate for display using an oxide semiconductor such as Zinc or Oxide.
  • a glass substrate for display non-alkali glass or alkali trace glass is used.
  • the glass substrate for display has high viscosity at high temperatures. For example, the temperature of the molten glass having a 10 2.5 poise of viscosity is 1500 ° C. or higher.
  • the alkali-free glass is a glass having a composition that does not substantially contain an alkali metal oxide (R ′ 2 O).
  • Alkali metal oxide is not practically contained means a glass having a composition in which an alkali metal oxide is not added as a glass raw material except for impurities mixed in from the raw material and the like. It is less than 1% by mass.
  • the thermal contraction rate in the present embodiment is measured by performing a heat treatment.
  • a glass substrate is cut into a rectangle of a predetermined size, a marking line is put on both ends of the long side, and the glass is cut in half at the center of the short side to obtain two glass samples.
  • One of the glass samples is heat-treated (at 500 ° C. for 30 minutes). Measure the length of the other glass sample without heat treatment. Further, the heat-treated glass sample and the untreated glass sample are put together to measure the deviation amount of the marking line with a laser microscope or the like, and the difference in the length of the glass sample is obtained to obtain the thermal contraction amount of the sample. be able to.
  • the heat shrinkage rate is obtained by the following equation.
  • the thermal shrinkage rate of this glass sample be the thermal shrinkage rate of a glass substrate.
  • Thermal contraction rate (ppm) (difference) / (length of glass sample before heat treatment) ⁇ 10 6
  • glass substrates of Examples 1 to 3 and Comparative Example were manufactured under the following conditions.
  • the composition of the glass (mol%) is, SiO 2 70.5%, B 2 O 3 7.2%, Al 2 O 3 11.0%, K 2 O 0.2%, CaO 11.0%, SnO 2 They were 0.09% and Fe 2 O 3 0.01%.
  • the devitrification temperature of the glass was 1206 ° C., and the liquidus viscosity was 1.9 ⁇ 10 5 dPa ⁇ s.
  • the annealing point of the glass was 758 ° C., and the strain point was 699 ° C.
  • the sheet glass SG has a width of 1600 mm and a thickness of 0.7 mm (Example 1, Comparative Example 1), 0.5 mm (Example 2, Comparative Example 2), 0.4 mm (Example 3, Comparative Example 3). Moreover, the heat processing temperature for forming a thin film in a glass substrate was 550 degreeC.
  • the average cooling rate when the temperature of the central portion C in the width direction of the sheet glass SG is equal to or higher than the annealing point is the first average cooling rate, and the average when the temperature of the central portion C is 450 ° C. or higher below the annealing point.
  • the cooling rate was the second average cooling rate, and the average cooling rate when the temperature of the central portion C was less than 450 ° C. and 300 ° C. or higher was taken as the third average cooling rate.
  • the third average cooling rate was slower than the first average cooling rate and the second average cooling rate.
  • Comparative Examples 1 to 3 the second average cooling rate was made slower than the second average cooling rate of Examples 1 to 3, and the third average cooling rate was made faster than the third average cooling rate of Examples 1 to 3.
  • the second average cooling rate of Comparative Examples 1 to 3 was slower than the third average cooling rate of Comparative Examples 1 to 3.
  • the thermal shrinkage rate of Examples 1 to 3 was 15 ppm or less, but the thermal shrinkage rate of Comparative Examples 1 to 3 exceeded 15 ppm. From this, the effect of this embodiment is clear.
  • this invention is not limited to the said embodiment and Example, Even if it is variously improved and changed in the range which does not deviate from the main point of this invention. Of course it is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

熱収縮率の小さいディスプレイ用ガラス基板を製造するとき、成形工程により成形されたシートガラスの幅方向の中心部の温度が300℃になるまで冷却する。このとき、シートガラスの幅方向の両端部よりも前記シートガラスの幅方向内側にあり、前記中心部を含む領域である中央領域の冷却速度であって、前記中心部の温度が450℃未満300℃以上の温度領域における平均冷却速度は、前記冷却工程の中の、前記温度領域以外の温度領域における前記中央領域の平均冷却速度に比べて小さい。

Description

ディスプレイ用ガラス基板の製造方法
 本発明は、ディスプレイ用ガラス基板の製造方法に関する。
 ディスプレイを製造する工程において、ディスプレイ用ガラス基板は、熱処理により熱収縮をする。このとき、ガラス基板の熱収縮率が大きいと、ガラス基板の表面に形成される素子の配置がずれるピッチズレが生じやすくなる。このため、ピッチズレを低減する観点から、ディスプレイ用ガラス基板には、熱処理時における熱収縮率が小さいことが求められている。
 ガラス基板の熱収縮率を小さくする方法としては、(1)ガラス組成を調整することで、ガラスの歪点を高くすること、(2)成形工程後のシートガラスの冷却速度を低減することなどが挙げられる。例えば、ガラス基板の熱収縮率を小さくする技術として、歪点が680℃以上になるようにガラス組成を改良する技術が知られている(特許文献1)。
 また、冷却工程を、成形後のシートガラスの中央領域の温度が徐冷点になるまでシートガラスを冷却する第1の冷却工程と、中央領域の温度が、徐冷点から歪点-50℃になるまでシートガラスを冷却する第2の冷却工程と、中央領域の温度が、歪点-50℃から歪点-200℃になるまでシートガラスを冷却する第3の冷却工程と、に分ける。このとき、第1の冷却工程における平均冷却速度を、第3の冷却工程における平均冷却速度より速くし、第3の冷却工程における平均冷却速度を、第2の冷却工程における平均冷却速度より速くする技術が知れている(特許文献2)。
特表2003-503301号公報 特許第5153965号公報
 しかし、特許文献1に従って、歪点が高くなるように組成を調整すると、失透及び難熔解という問題が生じやすいため、歪点を高くするには限界がある。また、オーバーフローダウンドロー法でガラス基板を作製するとき、成形工程後に行う冷却工程においてシートガラスの冷却速度を小さくすると、徐冷経路が長くなり、徐冷装置のコストが増大するという問題があった。
 また、特許文献2に従って、第1の冷却工程における平均冷却速度を、第3の冷却工程における平均冷却速度より速くし、第3の冷却工程における平均冷却速度を、第2の冷却工程における平均冷却速度より速くしても、熱収縮率の低減に限界があり、十分ではないという問題があった。
 携帯電話等のモバイル機器に搭載されるディスプレイには、益々高精細化及び低消費電力化が求められている。そのため、近年、ディスプレイの製造工程における熱処理時に生じるガラス基板の熱収縮率をさらに小さくすることが益々求められている。
 そこで、本発明は、成形後に行う冷却工程において、ガラス基板の熱収縮率を従来に比べて低減することができるディスプレイ用ガラス基板の製造方法を提供することを目的とする。
 本発明の第1の態様は、ディスプレイ用ガラス基板の製造方法である。当該製造方法は、
 熔融ガラスをダウンドロー法によってシートガラスに成形する成形工程と、
 成形された前記シートガラスを流すときに、前記シートガラスの流れ方向と直交する幅方向の中心部の温度が300℃になるまで冷却する冷却工程と、を備える。
 前記冷却工程において、前記シートガラスの幅方向の両端部よりも前記シートガラスの前記幅方向の内側にあり、前記中心部を含む領域である中央領域の冷却速度であって、前記中心部の温度が450℃未満300℃以上の温度領域における平均冷却速度は、前記冷却工程の中の、前記温度領域以外の温度領域における前記中央領域の平均冷却速度に比べて小さい。
 前記冷却工程は、
 前記シートガラスに成形された後、前記シートガラスの前記幅方向の中心部の温度が徐冷点以上であるとき、前記シートガラスの幅方向の両端部よりも前記シートガラスの幅方向内側にあり、前記中心部を含む領域である中央領域を第1平均冷却速度で冷却する第1冷却工程と、
 前記中心部の温度が前記徐冷点未満450℃以上であるとき、前記中央領域を第2平均冷却速度で冷却する第2冷却工程と、
 前記中心部の温度が450℃未満300℃以上であるとき、前記中央領域を第3平均冷却速度で冷却する第3冷却工程と、を含み、
 前記第3平均冷却速度は、前記第1平均冷却速度及び前記第2平均冷却速度より小さい、ことが好ましい。
 前記冷却工程は、さらに、前記中心部の温度が300℃未満100℃以上であるとき、前記中央領域を第4平均冷却速度で冷却する第4冷却工程を含み、
 前記第4平均冷却速度は、前記第3平均冷却速度よりも大きい、ことが好ましい。
 また、本発明の第2の態様は、所定の処理温度で熱処理を施して表面に薄膜を形成するためのディスプレイ用ガラス基板の製造方法である。当該製造方法は、
 熔融ガラスをダウンドロー法によってシートガラスに成形する成形工程と、
 成形された前記シートガラスを流すときに、前記シートガラスの流れ方向と直交する幅方向の中心部の温度が、前記処理温度よりも250℃低い温度、すなわち(前記処理温度-250℃)になるまで冷却する冷却工程と、を備える。
 前記冷却工程において、前記シートガラスの幅方向の両端部よりも前記シートガラスの前記幅方向の内側にあり、前記中心部を含む領域である中央領域の冷却速度であって、前記中心部の温度が、前記処理温度よりも100℃低い温度未満、すなわち(前記処理温度-100℃)未満、前記処理温度よりも250℃低い温度以上、すなわち(前記処理温度-250℃)以上の温度領域における平均冷却速度は、前記冷却工程の中の、前記温度領域以外の温度領域における前記中央領域の平均冷却速度に比べて小さい。
 前記冷却工程は、
 前記シートガラスに成形された後、前記シートガラスの幅方向の中心部の温度が徐冷点以上であるとき、前記シートガラスの幅方向の両端部よりも前記シートガラスの幅方向内側にあり、前記中心部を含む領域である中央領域を第1平均冷却速度で冷却する第1冷却工程と、
 前記中心部の温度が、前記徐冷点未満、前記処理温度よりも100℃低い温度以上、すなわち(前記処理温度-100℃)以上であるとき、前記中央領域を第2平均冷却速度で冷却する第2冷却工程と、
 前記中心部の温度が、前記処理温度よりも100℃低い温度未満、すなわち(前記処理温度-100℃)未満、前記処理温度よりも250℃低い温度以上、すなわち(前記処理温度-250℃)以上であるとき、前記中央領域を第3平均冷却速度で冷却する第3冷却工程と、を含み、
 前記第3平均冷却速度は、前記第1平均冷却速度及び前記第2平均冷却速度より小さい、ことが好ましい。
 前記冷却工程は、さらに、前記中心部の温度が、前記処理温度よりも250℃低い温度未満、すなわち前記処理温度(℃)-250℃未満、前記処理温度よりも450℃低い温度以上、すなわち前記処理温度(℃)-450℃以上であるとき、前記中央領域を第4平均冷却速度で冷却する第4冷却工程を含み、
 前記第4平均冷却速度は、前記第3平均冷却速度よりも大きい、ことが好ましい。
 前記第1の態様及び第2の態様のいずれにおいても、前記第1平均冷却速度は、前記第2平均冷却速度より大きい、ことが好ましい。
 前記第1の態様及び第2の態様のいずれにおいても、前記第3平均冷却速度は、5.0℃/秒以下である、ことが好ましい。
 前記第1の態様及び第2の態様のいずれにおいても、前記ガラス基板の熱収縮率は15ppm以下である、ことが好ましい。
 ただし、前記熱収縮率とは、500℃で30分保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
 熱収縮率(ppm)
  ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
 前記第1の態様及び第2の態様のいずれにおいても、前記ガラス基板の歪点は、680℃以上である、ことが好ましい。
 上述のディスプレイ用ガラス基板の製造方法によれば、従来に比べて熱収縮率を低減することができる。
本実施形態のディスプレイ用ガラス基板の製造方法の工程の一例を示す図である。 本実施形態のディスプレイ用ガラス基板の製造方法に用いるガラス基板製造装置の一例の模式図である。 本実施形態のディスプレイ用ガラス基板の製造方法における成形装置の一例を示す断面図である。 本実施形態のディスプレイ用ガラス基板の製造方法で用いる成形装置の一例を示す側面図である。 本実施形態のディスプレイ用ガラス基板の製造方法で用いる制御装置の構成の一例を示す図である。 本実施形態のディスプレイ用ガラス基板の製造方法の冷却工程で用いる温度プロファイルの例を示す図である。 本実施形態のディスプレイ用ガラス基板の製造方法におけるシートガラスの流れ方向に沿った温度履歴の一例を示す図である。 ディスプレイ用ガラス基板の製造方法で用いるシートガラスの冷却工程における複数の温度履歴の例の模式図である。
 以下、本実施形態のディスプレイ用ガラス基板の製造方法について説明する。本実施形態のディスプレイ用ガラス基板の製造方法では、オーバーフローダウンドロー法を用いてガラス基板が製造される。なお、本明細書では、(処理温度-X℃)は、処理温度(℃)よりX℃低い温度を表す(Xは正数)。
 (1)ガラス基板の製造方法の概要
 まず、図1および図2を参照して、ディスプレイ用ガラス基板製造方法に含まれる複数の工程および複数の工程に用いられるガラス基板製造装置100を説明する。図1は、本実施形態のディスプレイ用ガラス基板の製造方法の工程の一例を示す図であり、図2は、本実施形態のディスプレイ用ガラス基板の製造方法に用いるガラス基板製造装置の一例の模式図である。
 ガラス基板製造方法は、図1に示すように、主として、熔融工程S1と、清澄工程S2と、成形工程S3と、冷却工程S4とを含む。
 熔融工程S1は、ガラスの原料が熔融される工程である。ガラスの原料は、所望の組成になるように調合された後、熔融装置11に投入される。ガラスの原料は、熔融装置11で熔融されて、熔融ガラスFGになる。熔融温度は、ガラスの種類に応じて調整される。本実施形態では、熔融工程S1における熔融ガラスFGの最高温度が1500℃~1650℃となるように加熱される。熔融ガラスFGは、上流パイプ23を通って清澄装置12に送られる。
 清澄工程S2は、熔融ガラスFG中の気泡の除去を行う工程である。清澄装置12内で気泡が除去された熔融ガラスFGは、その後、下流パイプ24を通って、成形装置40へと送られる。
 成形工程S3は、熔融ガラスFGをシート状のガラスであるシートガラスSGに成形する工程である。具体的に、熔融ガラスFGは、成形装置40に含まれる成形体41(図3参照)に連続的に供給された後、成形体41からオーバーフローする。オーバーフローした熔融ガラスFGは、成形体41の表面に沿って流下する。熔融ガラスFGは、その後、成形体41の下端部で合流してシートガラスSGへと成形される。
 冷却工程S4は、シートガラスSGを冷却する工程である。ガラスシートは、冷却工程S4を経て室温に近い温度へと冷却される。なお、冷却工程S4における、冷却の状態に応じて、ガラス基板の厚み(板厚)、ガラス基板の反り量、およびガラス基板の平面歪の値が決まる。
 なお、冷却工程S4の後に、切断工程を設けてもよい。例えば、切断工程は、室温に近い温度になったシートガラスSGを、切断装置90において所定の大きさに切断する工程である。
 なお、切断工程で所定の大きさに切断されたシートガラスSGは、その後、端面加工等の工程を経て、ガラス基板となる。ガラス基板は、梱包された後、パネルメーカー等に出荷される。パネルメーカーは、ガラス基板の表面に素子を形成して、ディスプレイを製造する。
 なお、冷却工程S4の後に、切断工程を設けなくてもよい。すなわち、冷却工程S4で冷却されたシートガラスSGは、そのまま梱包された後、パネルメーカー等に出荷されてもよい。この場合、パネルメーカーは、シートガラスSGの表面に素子を形成した後に、シートガラスSGを所定の大きさに切断して端面加工することで、ディスプレイを製造する。
 以下、図3~図5を参照して、ガラス基板製造装置100に含まれる成形装置40の構成を説明する。なお、本実施形態において、シートガラスSGの幅方向とは、シートガラスSGの表面の面内方向のうち、シートガラスSGが流下する方向(流れ方向)に交差する方向、すなわち、水平方向を意味する。
 (2)成形装置の構成
 まず、図3および図4に、成形装置40の概略構成を示す。図3は、成形装置40の断面図である。図4は、成形装置40の側面図である。
 成形装置40は、シートガラスSGが通過する経路と、経路を取り囲む空間とを有する。通路を取り囲む空間は、例えば、成形体室20、第1冷却室30、および第2冷却室80で構成されている。
 本実施形態では、成形体41の下端部41aで熔融ガラスFGが合流してシートガラスSGが形成された位置から、シートガラスSGが下方に流れるときに、シートガラスSGの流れ方向に沿った温度領域のうち、シートガラスSGの中心部C(図4参照)の温度が450℃未満300℃以上の温度領域における平均冷却速度が、後述するように、冷却工程S4の中の、中心部Cの温度が450℃未満300℃以上である温度領域以外の温度領域における平均冷却速度に比べて小さい。この点は後述する。なお、中心部Cの温度が450℃未満300℃以上である温度領域の平均冷却速度と平均冷却速度が比較される温度領域は、例えば上流側と下流側の温度差が少なくとも10℃以上である温度領域である。
 なお、シートガラスSGの幅方向の両端部とは、シートガラスSGの両側の端からシートガラスSGの幅方向の内側に向かって200mm進んだ位置までの幅方向の範囲内の領域をいい、両端部の幅方向の内側の領域をシートガラスSGの中央領域CA(図4参照)という。シートガラスSGの両端部R,Lは、製造後に切断除去される対象の部分を含む領域であるのに対し、シートガラスSGの中央領域CAは、板厚を均一にする対象の部分を含む領域である。シートガラスSGの中央領域CAは、シートガラスSGの幅方向の幅のうちシートガラスSGの幅方向の中心から幅の半分の例えば85%以内の範囲である。中心部Cとは、シートガラスSGの幅方向の中心位置をいう。平均冷却速度とは、中心部Cを含んだ中央領域CAの平均冷却速度であり、定められる温度領域における同じ幅方向の位置での流れ方向の温度差を、シートガラスSGがこの温度領域を通過する通過時間で割った値である。450℃未満300℃以上の温度領域のように、X1℃未満X2℃以上と表される温度領域では、中心部Cの温度差はX1-X2(℃)と扱われて、中心部Cにおける平均冷却速度が算出される。中央領域CAの中心部C以外の部分の平均冷却速度も、その温度領域における温度差を通過時間で割った値である。
 成形体室20は、前述の清澄装置12から送られる熔融ガラスFGがシートガラスSGに成形される空間である。
 第1冷却室30は、成形体室20の下方に配置され、シートガラスSGの厚みおよび反り量を調整するための空間である。第1冷却室30では、シートガラスSGの中心部Cの温度が徐冷点より高い状態のシートガラスSGが冷却される。シートガラスSGの中心部Cは、シートガラスSGの幅方向の中心である。
 第2冷却室80は、成形体室20及び第1冷却室30の下方に配置され、シートガラスSGの反り、熱収縮率、および歪値を調整するための空間である。第2冷却室80では、第1冷却室30内を通過したシートガラスSGが、徐冷点、歪点を経て、少なくとも、歪点より100℃低い温度まで冷却される。しかし、第2冷却室80では、シートガラスSGが、室温付近の温度まで冷却されてもよい。なお、第2冷却室80の内部は、断熱部材80bによって、複数の空間に区分けされていてもよい。複数の断熱部材80bは、複数の引下げローラ81a~81gのそれぞれの間で、シートガラスSGの厚み方向の両側に配置される。これにより、シートガラスSGの温度管理を、より精度よく行うことができる。
 また、成形装置40は、例えば、成形体41と、仕切り部材50と、冷却ローラ51と、温度調整ユニット60と、引下げローラ81a~81gと、ヒータ82a~82gと、を備える。さらに、成形装置40は、制御装置91を備える(図5参照)。制御装置91は、成形装置40に含まれる各構成の駆動部を制御する。
 以下、成形装置40に含まれる各構成について詳細に説明する。
 (2-1)成形体
 成形体41は、成形体室20内に設けられる。成形体41は、熔融ガラスFGをオーバーフローさせることによって、熔融ガラスFGをシート状のガラスであるシートガラスSGへと成形する。図3に示すように、成形体41は、断面形状に関して略五角形の形状(楔形に類似する形状)を有する。略五角形の先端は、成形体41の下端部41aに相当する。
 また、成形体41は、第1端部に流入口42を有する(図4参照)。成形体41の上面には、溝43が形成されている。流入口42は、上述の下流パイプ24と接続されており、清澄装置12から流れ出た熔融ガラスFGは、流入口42から溝43に流し込まれる。成形体41の溝43に流し込まれた熔融ガラスFGは、成形体41の一対の頂部41b,41bからオーバーフローし、成形体41の一対の側面(表面)41c,41cを沿いながら流下する。その後、熔融ガラスFGは、成形体41の下端部41aで合流してシートガラスSGになる。
 (2-2)仕切り部材
 仕切り部材50は、成形体室20から第1冷却室30への熱の移動を遮断する部材である。仕切り部材50は、熔融ガラスFGの合流ポイントの近傍に配置されている。また、図3に示すように、仕切り部材50は、合流ポイントで合流した熔融ガラスFG(シートガラスSG)の厚み方向両側に配置される。仕切り部材50は、例えば、断熱材である。仕切り部材50は、熔融ガラスFGの合流ポイントの上側雰囲気および下側雰囲気を仕切ることにより、仕切り部材50の上側と下側との間の熱の移動を遮断する。
 (2-3)冷却ローラ
 冷却ローラ51は、第1冷却室30内に設けられる。より具体的に、冷却ローラ51は、仕切り部材50の直下に配置されている。また、冷却ローラ51は、シートガラスSGの厚み方向両側で、且つ、シートガラスSGの幅方向の両端部R,Lの位置に配置される。シートガラスSGの厚み方向両側に配置された冷却ローラ51は対で動作する。すなわち、シートガラスSGの幅方向両端部は、二対の冷却ローラ51によって挟み込まれる。
 例えば、冷却ローラ51は、内部に通された空冷管や水冷管により冷却されている。冷却ローラ51は、シートガラスSGの両端部R,Lに接触し、熱伝導によりシートガラスSGの両端部R,Lを急冷する。冷却ローラ51に接触したシートガラスSGの両端部R,Lの粘度は、例えば、109.0poise以上である。
 冷却ローラ51は、冷却ローラ駆動モータ390(図5を参照)により回転駆動される。冷却ローラ51は、シートガラスSGの両端部R,Lを冷却すると共に、シートガラスSGを下方に引き下げる機能も有する。なお、冷却ローラ51によるシートガラスSGの両端部R,Lの冷却は、シートガラスSGの幅およびシートガラスSGの厚みの均一化に影響を与える。
 (2-4)温度調整ユニット
 温度調整ユニット60は、第1冷却室30内に設けられ、シートガラスSGを徐冷点近傍まで冷却するユニットである。温度調整ユニット60は、仕切り部材50の下方であって、第2冷却室80の天板80aの上方に配置される。
 温度調整ユニット60は、シートガラスSGの中心部Cの温度が徐冷点近傍になるまで、シートガラスSGを冷却する。シートガラスSGの中心部Cは、その後、第2冷却室80内で、徐冷点、歪点を経て、室温近傍の温度まで冷却される。
 温度調整ユニット60は、冷却ユニット61を有してもよい。冷却ユニット61は、シートガラスSGの幅方向に複数(ここでは、3つ)及びその流れ方向に複数配置される。具体的には、冷却ユニット61は、シートガラスSGの両端部R,Lの各表面に対向するように、1つずつ配置され、且つ、後述する中央領域CA(図4を参照)の各表面に対向するように1つ配置されている。
 (2-5)引下げローラ
 引下げローラ81a~81gは、第2冷却室80内に設けられ、第1冷却室30内を通過したシートガラスSGを、シートガラスSGの流れ方向へ引き下げる。引下げローラ81a~81gは、第2冷却室80の内部で、流れ方向に沿って所定の間隔を空けて配置される。引下げローラ81a~81gは、シートガラスSGの厚み方向両側(図3参照)、および、シートガラスSGの幅方向の両端部R,Lの位置に(図4参照)に複数配置される。すなわち、引下げローラ81a~81gは、シートガラスSGの幅方向の両端部R,Lの位置で、かつ、シートガラスSGの厚み方向の両側に接触しながらシートガラスSGを下方に引き下げる。
 引下げローラ81a~81gは、引下げローラ駆動モータ391(図5参照)によって駆動される。引下げローラ81a~81gの周速度は、引下げローラ81a~81gが下流側に設置されている程、大きくすることが好ましい。すなわち、複数の引下げローラ81a~81gのうち、引下げローラ81aの周速度が最も小さく、引下げローラ81gの周速度が最も大きい。シートガラスSGの厚み方向両側に配置された引下げローラ81a~81gは、対で動作し、対の引下げローラ81a,81a,・・・が、シートガラスSGを下方向に引き下げる。
 (2-6)ヒータ
 ヒータ82a~82gは、第2冷却室80の内部に設けられ、第2冷却室80の内部空間の温度を調整する。具体的に、ヒータ82a~82gは、シートガラスSGの流れ方向およびシートガラスSGの幅方向に複数配置される。例えば、シートガラスSGの流れ方向には、7つのヒータが配置され、シートガラスの幅方向には3つのヒータが配置される。幅方向に配置される3つのヒータは、シートガラスSGの中央領域CAと、シートガラスSGの両端部R,Lとをそれぞれ温度制御する。ヒータ82a~82gの出力は、後述する制御装置91によって制御される。これにより、第2冷却室80内部を通過するシートガラスSGの近傍の雰囲気温度が制御される。ヒータ82a~82gによって第2冷却室80内の雰囲気温度が制御されることによって、シートガラスSGの温度制御が行われる。また、温度制御により、シートガラスSGは、粘性域から粘弾性域を経て弾性域へと推移する。このように、ヒータ82a~82gの制御により、第2冷却室80では、シートガラスSGの温度が、徐冷点近傍の温度から室温付近の温度まで冷却される。
 なお、シートガラスSGの近傍には、雰囲気温度を検出する雰囲気温度検出手段(本実施形態では、熱電対)380(図5参照)が設けられていてもよい。例えば、複数の熱電対380が、シートガラスSGの流れ方向およびシートガラスSGの幅方向に配置される。熱電対380は、シートガラスSGの表面の温度を検出することができる。例えば、熱電対380は、シートガラスSGの中心部Cの温度と、シートガラスSGの両端部R,Lの温度とをそれぞれ検出する。ヒータ82a~82gの出力は、熱電対380によって検出される雰囲気温度に基づいて制御される。
 (2-7)切断装置
 切断装置90は、第2冷却室80内で室温付近の温度まで冷却されたシートガラスSGを、所定のサイズに切断する。これにより、シートガラスSGは、複数のガラス板になる。切断装置90は、切断装置駆動モータ392(図5を参照)によって駆動される。なお、切断装置90は、必ずしも第2冷却室80の直下に設けられていなくてもよい。また、シートガラスSGは切断装置90で切断されなくてもよく、シートガラスSGをロール状に巻き回してロール状のシートガラスを作製してもよい。
 (2-8)制御装置
 図5は、制御装置91の構成の一例を示す図である。
 制御装置91は、CPU、RAM、ROM、およびハードディスク等から構成されており、ガラス基板製造装置100に含まれる種々の機器の制御を行う。具体的には、図5に示すように、制御装置91は、ガラス基板製造装置100に含まれる各種のセンサ(例えば、熱電対380)やスイッチ(例えば、主電源スイッチ381)等による信号を受けて、温度調整ユニット60、ヒータ82a~82g、冷却ローラ駆動モータ390、引下げローラ駆動モータ391、切断装置駆動モータ392等の制御を行う。
 (3)温度管理
 本実施形態に係るガラス基板の製造方法の冷却工程S4では、中央領域CAの冷却速度であって、中心部Cの温度が450℃未満300℃以上の温度領域における平均冷却速度が、冷却工程S4の中の、中心部Cの温度が450℃未満300℃以上である上記温度領域以外の温度領域における中央領域CAの平均冷却速度に比べて小さい。すなわち、冷却工程S4において、中心部Cの温度が450℃未満300℃以上である温度領域において、中央領域CAにおける平均冷却速度は最も小さい。このように平均冷却速度を調整することにより、ガラス基板の製造ライン上で、極めて低い熱収縮率を達成することができる。この場合、平均冷却速度の調整は、上述した、冷却ローラ51、温度調整ユニット60、およびヒータ82a~82gを用いて行われる。勿論、このとき、図6に示すようなシートガラスSGの幅方向の温度プロファイルTP1~TP10を流れ方向の各温度領域における目標温度プロファイルとして、第1冷却室30及び第2冷却室80の温度を制御することにより、シートガラスSGの厚み、反り量、及び歪を調整することができる。
 図6は、冷却工程における目標温度プロファイルの一例である温度プロファイルTP1~TP10を説明する図である。温度プロファイルTP1では、シートガラスSGの中央領域CAの温度が均一であり、シートガラスSGの両端部R,Lは、中央領域CAの温度よりも低い。シートガラスSGが、この温度プロファイルTP1になるように、成形後の冷却ローラ51を用いてシートガラスSGの両端部R,Lの冷却が行なわれる。温度プロファイルTP2~TP5では、シートガラスSG全体の温度を下げながら、中央領域CAの温度分布を矩形形状から上に凸の略放物線形状にし、略放物線形状の凸の程度を徐々に小さくする。温度プロファイルTP6において両端部R,L及び中央領域CAにおける温度を一定にする。この後、温度プロファイルTP7~TP10では、下に凸の略放物線形状の温度分布にし、シートガラスSG全体の温度を下げながら、中央領域CAの温度分布を下に凸の程度を大きくする。シートガラスSGの温度が、このような温度プロファイルになるように、冷却ユニット61及びヒータ82a~82gを用いて第1冷却室30及び第2冷却室80の温度調整を行なう。
 なお、第1冷却室30及び第2冷却室80の温度調整を行なう場合、シートガラスSGの温度は、シートガラスSGの温度の実測値を用いてもよく、また、ヒータ82a~82gによって制御されるシートガラスSGの雰囲気温度に基づいてシミュレーションにより算出された値を用いてもよい。
 図7は、本実施形態における中心部CのシートガラスSGの流れ方向に沿った温度履歴(温度の時間変化)の一例を示す図である。図7において、時点Aで、成形体41の下端部41aにおいてシートガラスSGが形成される。このときのシートガラスSGの温度は、例えば1200℃である。時点Bでは、シートガラスSGの温度は徐冷点(ガラスの粘度が1013poiseのときの温度、例えば775℃)になり、時点Cでは、シートガラスSGの温度は450℃になる。時点Dでは、シートガラスSGの温度は300℃になり、時点Eでは、シートガラスSGの温度は200℃以下になり切断装置90で切断される。このとき、時点Aから時点BまでのシートガラスSGの温度領域(シートガラスSGの形成後徐冷点以上の温度領域)を第1温度領域R1とし、時点B経過後時点CまでのシートガラスSGの温度領域(徐冷点未満450℃以上の温度領域)を第2温度領域R2とし、時点C経過後時点DまでのシートガラスSGの温度領域(450℃未満300℃以上の温度領域)を第3温度領域R3とし、時点D経過後時点EまでのシートガラスSGの温度領域(300℃未満100℃以上の温度領域)を第4温度領域R4としている。このとき、第1~4温度領域R1~R4において、第3温度領域R3における第3平均冷却速度が、他の第1,2,4温度領域R1、R2,R4の第1,2,4平均冷却速度に比べて小さい。第1温度領域R1におけるシートガラスSGの冷却工程は、第1冷却工程であり、第2~4温度領域R2~R4におけるシートガラスSGの冷却工程は、それぞれ第2~4冷却工程である。
 本実施形態では、温度領域R3における第3平均冷却速度は、温度領域R3以外の範囲を任意に区切って温度領域(10℃以上の温度差を有する温度領域)を定めた場合であっても、最も小さい。
 なお、第1温度領域R1における第1平均冷却速度は、第2温度領域における第2平均冷却速度より大きいことが、効率的に熱収縮率を低減させることができる点で好ましい。具体的には、第1温度領域R1におけるガラスの緩和は素早く進行するため、第1温度領域R1よりも第2~4温度領域R2~R4の冷却速度を遅くした方が熱収縮率を効率的に低減させるという観点から好ましい。
 また、第4冷却工程の第4温度領域R4における第4平均冷却速度は、第3温度領域における第3平均冷却速度よりも大きいことが、冷却工程S4のシートガラスSGの経路の長さを変更しないで済む点及びガラス基板の生産効率の低下を抑える点で好ましい。
 また、第3温度領域R3における第3平均冷却速度は、5℃/秒以下であることが、熱収縮率を低減させることができる点から好ましい。また、第3平均冷却速度の下限は特に制限されないが、シートガラスSGの経路の長さを変更しない点から、あるいはガラス基板の生産効率の低下を抑えることができる点から、例えば0.5℃/秒以上であることが好ましい。さらに、生産性を保ちつつ熱収縮率を低減させるという観点からは、第3平均冷却速度は、1℃/秒~4.5℃/秒であることが好ましい。
 また、第1温度領域R1における第1平均冷却速度は、例えば、5℃/秒~50℃/秒であることが好ましく、より好ましくは15℃/秒~35℃/秒である。第2温度領域R2における第2平均冷却速度は、例えば5℃/秒以下であり、1℃/秒~5℃/秒であることが好ましく、2℃/秒~5℃/秒であることがより好ましい。
 また、本実施形態のように、中心部Cの温度が300℃未満100℃以上である第4温度領域R4における第4平均冷却速度は、第3温度領域R3における第3平均冷却速度よりも大きいことが、シートガラスSGの経路を長くせず、熱収縮率を低くする点で、好ましい。
 図7に示す温度履歴は、中心部Cにおける温度履歴であるが、中心部Cから外れた中央領域CAの他の部分の幅方向の同じ位置における温度の時間履歴も同様に、第3温度領域R3における平均冷却速度が最も小さい。
 第1温度領域R1~第4温度領域R4における第1~4平均冷却速度は、第1冷却室30及び第2冷却室80の雰囲気温度を調整することに得られるものであり、常温における自然放冷に比べて小さい速度である。
 一般的に、ガラスは非晶質であり、高温のガラスは、熱によって分子構造が最適な構造に向かって変化し、すなわち熱緩和して収縮しようとする。このため、熱収縮率の小さいガラス基板を作製するには、シートガラスSGの熱緩和が十分に進行するように、ゆっくり冷却することが好ましい。シートガラスSGの冷却速度が速く、熱緩和が十分になされずにシートガラスSGが冷却されると、熱緩和の途中でガラス内の分子構造の変化は高い粘性によって抑制あるいは阻止される。このため、このようなシートガラスSGから得られるガラス基板を熱処理のために再加熱すると、熱緩和の抑制あるいは阻止が解除されて熱緩和の途中から再開し始める。
 ところで、ガラスは速度の異なる複数の緩和を有しており、ガラスの緩和は異なる緩和速度をもつ緩和の重ね合わせで表すことができる(以下、緩和速度の異なる緩和を、緩和の「成分」と呼ぶ)。上述したようにガラスの緩和成分として、すばやく熱緩和して収縮する成分、緩やかに熱緩和して収縮する成分、さらに、中間の速さで熱緩和して収縮する成分等が多数存在する。このため、冷却工程では、これらの成分全てにおいて熱緩和が十分に進行するような温度履歴を設定することが好ましい。しかし、冷却工程S4におけるシートガラスSGの経路は、図4に示すように、成形装置40の鉛直上方から下方に向かう経路であり、建物等の構造物内に設けられているので、経路を延長することは建物等の構造物を改修、増築等をする必要があるため、経路を延長することは難しい。このため、既存の搬送経路において、シートガラスSGの温度履歴を適切に行なって冷却工程S4におけるガラス基板の熱収縮率を効率よく小さくすることが好ましい。本実施形態では、第3温度領域R3における平均冷却速度を、冷却工程S4の中の、第3温度領域R3以外の温度領域における平均冷却速度に比べて小さくすることにより、ガラス基板の熱収縮率を効率よく小さくすることができる。この理由は、以下のように想定される。
 図8は、横軸に時間、縦軸に温度を表した冷却工程S4におけるシートガラスSGの冷却工程における温度履歴T1~T3(実線)の模式図である。図中の時点A,Eは、図7における時点A,Eに対応する。ここで、温度履歴T1は、本実施形態の温度履歴の一例であり、温度履歴T2は、高温状態で温度履歴T1に対して冷却速度を小さくし、その後、冷却速度を温度履歴T1に対して大きくし、その後、冷却速度を温度履歴T1と同等の冷却速度にする形態であり、温度履歴T3は、高温状態で、温度履歴T1と同等の冷却速度にし、その後、温度履歴T1に対して冷却速度を小さくし、その後、温度履歴T1に対して冷却速度を大きくする形態である。
 温度履歴T1、T3では、上述した緩やかに熱緩和して収縮する成分(この成分を成分Xという)は、高温状態における冷却速度に追従できなくなり、点P1において、成分Xに関する分子構造の変化は粘性によって抑制あるいは阻止される。温度履歴T2では、高温状態の冷却速度は小さいため、点P2において、成分Xに関する分子構造の変化は粘性によって抑制あるいは阻止される。
 一方、温度履歴T1では、すばやく熱緩和して収縮する成分(この成分を成分Yという)は、点P3において冷却速度に追従できなくなり、点P3で、成分Yに関する分子構造の変化(熱緩和)は粘性によって抑制あるいは阻止される。温度履歴T2では、成分Yは、点P4において冷却速度に追従できなくなり、点P4で成分Yに関する分子構造の変化(熱緩和)は粘性によって抑制あるいは阻止される。温度履歴T3では、成分Yは、点P5において冷却速度に追従できなくなり、点P5で成分Yに関する分子構造の変化(熱緩和)は粘性によって抑制あるいは阻止される。
 このような温度履歴T1~T3において、点P1,P2の、分子構造の変化(熱緩和)が抑制あるいは阻止されるときの温度は、点P1,P2間であまり異ならないが、成分Yに関する分子構造の変化が抑制される点P3~P5における温度は大きく異なる。具体的には、点P3における温度が最も低い。したがって、温度履歴T1~T3において、熱緩和が抑制あるいは阻止される温度が低いほど、熱緩和が進んでいることから、成分Yに関する分子構造の変化が抑制あるいは阻止される時点の温度が低い程、熱収縮率を小さくすることができる。したがって、温度履歴T1~T3のうち、最も低い温度で成分Yに関する分子構造の変化を抑制あるいは阻止する温度履歴T1が、シートガラスSGの切断前に、熱緩和を十分に行わせることができ、これによって、効率よく熱収縮率を低減したシートガラスSGを提供することができる。
 なお、シートガラスSGの熱収縮率が所定の目標値を達成するように第1~4温度領域における第1~4平均冷却速度を設定することができる。例えば、シートガラスSGの熱収縮率を複数種種の冷却条件の下で実際に測定し、得られた測定値に基づいて検量線を作成する。さらに、シートガラスSGの熱収縮率が所定の目標値を達成するように、作成した検量線を用いて、設定されているシートガラスSGの幅方向の目標となる温度プロファイルTP1~TP10の流れ方向に沿った温度分布を調整することで、第1~4温度領域における第1~4平均冷却速度を設定することができる。
 本実施形態では、第3温度領域R3の温度範囲を450℃未満300℃以上としているが、所定の処理温度で熱処理を施して表面に薄膜を形成するためのディスプレイ用ガラス基板に適用する場合、第3温度領域R3を(処理温度-100℃)未満(前記処理温度-250℃)以上の温度領域とすることもできる。この場合、処理温度は、300℃以上、さらには400℃以上であることが好ましい。
 例えば、ガラス基板の表面に、低温ポリシリコンTFT(Thin Film Transistor)等のTFT、あるいはIGZO(インジウム、ガリウム、亜鉛、酸素)等の酸化物半導体に代表される薄膜が形成される。この半導体等の薄膜の形成時に、ガラス基板は、例えば、300℃以上、あるいは400℃以上の処理温度で熱処理される。したがって、ガラス基板は、この熱処理の処理温度に応じて、第3温度領域R3の温度範囲を定めるとよい。なお、薄膜の形成時の熱処理の処理温度は、例えば、300℃~700℃であり、あるいは、400℃~650℃である。
 この場合、シートガラスSGの形成後、中心部Cの温度が徐冷点以上の温度領域を第1温度領域R1とし、中心部Cの温度が徐冷点未満(処理温度(℃)-100℃)以上の温度領域を第2温度領域R2としたとき、第3温度領域R3における第3平均冷却速度は、第1温度領域R1における第1平均冷却速度及び第2温度領域R2における第2平均冷却速度より小さいことが好ましい。
 また、中心部Cの温度が(処理温度(℃)-250℃)未満(処理温度(℃)-450℃以上である温度領域を第4温度領域R4とし、第4温度領域R4における第4平均冷却速度は、第3温度領域R3における第3平均冷却速度よりも大きいことが、搬送経路を長くせず、熱収縮率を低くする点で好ましい。
 本実施形態では、このような温度履歴を冷却工程S4で定めることにより、ガラス基板の熱収縮率を15ppm以下にすることが、ディスプレイ用ガラス基板に適したガラス基板を提供できる点から好ましい。ガラス基板の熱収縮率を10ppm以下にすることがより好ましい。
 また、ガラス基板の歪点(ガラスの粘度が1014.5poiseのときの温度)は、ガラス基板の熱収縮率を小さくするという観点から680℃以上であることが好ましく、700℃以上であることがより好ましく、720℃以上であることがさらに好ましい。ただし、歪点が高くなるようにガラス組成を調整すると、失透温度が高くなる傾向にあるため、ガラス基板の歪点の上限は780℃以下であることが好ましく、760℃以下であることがより好ましい。
 なお、失透温度は、1280℃以下であることが好ましく、熱収縮率の低減と耐失透性を両立するという観点からは、1100℃~1270℃であることが好ましく、1150℃~1240℃であることがより好まししい。
(ガラス組成)
 本実施形態で製造されるガラス基板のガラス組成として、例えば以下のガラス組成がモル%表示で例示される。
SiO55~80%、
 0~18%、
Al 3~20%、
MgO 0~20%、
CaO 0~20%、
SrO 0~20%、
BaO 0~20%、
RO 5~25%
(ただしRはMg、Ca、SrおよびBaから選ばれる少なくとも1種である)、
R’O 0%~2.0%
(ただしR’はLi、NaおよびKから選ばれる少なくとも1種である)
を含む。
 熔融ガラス中で価数変動する金属の酸化物の合計含有率は特に制限されないが、例えば、0.05~1.5%含んでもよい。また、As、SbおよびPbOを実質的に含まないことが好ましい。
(ガラス基板の適用例)
 本実施形態のガラス基板の製造方法によって製造されるガラス基板は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のディスプレイ用ガラス基板やディスプレイを保護するカバーガラスとして、特に適している。ディスプレイ用ガラス基板を用いるディスプレイには、ディスプレイ表面がフラットなフラットパネルディスプレイの他、有機ELディスプレイ、液晶ディスプレイであって、ディスプレイ表面が湾曲した曲面ディスプレイが含まれる。ガラス基板は、高精細ディプレイ用ガラス基板として、例えば液晶ディスプレイ用ガラス基板、有機EL(Electro-Luminescence)ディスプレイ用ガラス基板、LTPS(Low Temperature Poly-silicon)薄膜半導体、あるいはIGZO(Indium,Gallium,Zinc,Oxide)等の酸化物半導体を用いたディプレイ用ガラス基板として用いることが好ましい。
 ディスプレイ用ガラス基板としては、無アルカリガラス、または、アルカリ微量含有ガラスが用いられる。ディスプレイ用ガラス基板は、高温時における粘性が高い。例えば、102.5ポアズの粘性を有する熔融ガラスの温度は、1500℃以上である。なお、無アルカリガラスは、アルカリ金属酸化物(R’O)を実質的に含まない組成のガラスである。アルカリ金属酸化物を実施的に含まないとは、原料等から混入する不純物を除き、ガラス原料としてアルカリ金属酸化物を添加しない組成のガラスであり、例えば、アルカリ金属酸化物の含有量は0.1質量%未満である。
(熱収縮率)
 本実施形態における熱収縮率は、熱処理を行って測定される。
 ガラス基板を所定のサイズの長方形に切りだし、長辺両端部にケガキ線を入れ、短辺中央部で半分に切断し、2つのガラスサンプルを得る。このうちの一方のガラスサンプルを、熱処理(500℃で30分)する。熱処理をしない他方のガラスサンプルの長さを計測する。さらに、熱処理したガラスサンプルと未処理のガラスサンプルとをつき合わせてケガキ線のずれ量を、レーザ顕微鏡等で測定して、ガラスサンプルの長さの差分を求めることでサンプルの熱収縮量を求めることができる。この熱収縮量である差分と、熱処理前のガラスサンプルの長さを用いて、以下の式により熱収縮率が求められる。このガラスサンプルの熱収縮率をガラス基板の熱収縮率とする。
 熱収縮率(ppm)=(差分)/(熱処理前のガラスサンプルの長さ)×10
(実験例)
 上記ガラス基板製造装置100およびガラス基板の製造方法を用いて、以下の条件で実施例1~3ならびに比較例のガラス基板を製造した。ガラスの組成(モル%)は、SiO2 70.5%,B23 7.2%,Al23 11.0%,K2O 0.2%,CaO 11.0%,SnO2 0.09%,Fe230.01%であった。ガラスの失透温度は、1206℃であり、液相粘度は、1.9×105dPa・sであった。ガラスの徐冷点は758℃であり、歪点は699℃であった。また、シートガラスSGの幅は1600mm、厚みは、0.7mm(実施例1、比較例1)、0.5mm(実施例2、比較例2)、0.4mm(実施例3、比較例3)とした。また、ガラス基板に薄膜を形成するための熱処理温度は550℃であった。
 シートガラスSGの幅方向の中心部Cの温度が徐冷点以上であるときの平均冷却速度を第1平均冷却速度とし、中心部Cの温度が徐冷点未満450℃以上であるときの平均冷却速度を第2平均冷却速度とし、中心部Cの温度が450℃未満300℃以上であるときの平均冷却速度を第3平均冷却速度とした。実施例1~3では、第3平均冷却速度は、第1平均冷却速度及び第2平均冷却速度よりも遅かった。一方、比較例1~3では、第2平均冷却速度を実施例1~3の第2平均冷却速度より遅くし、第3平均冷却速度を実施例1~3の第3平均冷却速度より速くしたため、比較例1~3の第2平均冷却速度は、比較例1~3の第3平均冷却速度より遅かった。その結果、実施例1~3の熱収縮率は15ppm以下であったが、比較例1~3の熱収縮率は15ppmを超えた。
 これより、本実施形態の効果は明らかである。
 以上、本発明のガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 11          熔融装置
 12          清澄装置
 20          成形体室
 30          第1冷却室
 40          成形装置
 41          成形体
 51          冷却ローラ
 60          温度調整ユニット
 80          第2冷却室
 80a         天板
 80b         断熱部材
 81a~81g     引下げローラ
 82a~82g     ヒータ
 90          切断装置
 91          制御装置
 100         ガラス基板製造装置

Claims (10)

  1.  熔融ガラスをダウンドロー法によってシートガラスに成形する成形工程と、
     成形された前記シートガラスを流すときに、前記シートガラスの流れ方向と直交する幅方向の中心部の温度が300℃になるまで冷却する冷却工程と、を備え、
     前記冷却工程において、前記シートガラスの幅方向の両端部よりも前記シートガラスの前記幅方向の内側にあり、前記中心部を含む領域である中央領域の冷却速度であって、前記中心部の温度が450℃未満300℃以上の温度領域における平均冷却速度は、前記冷却工程の中の、前記温度領域以外の温度領域における前記中央領域の平均冷却速度に比べて小さい、ディスプレイ用ガラス基板の製造方法。
  2.  所定の処理温度で熱処理を施して表面に薄膜を形成するためのディスプレイ用ガラス基板の製造方法であって、
     熔融ガラスをダウンドロー法によってシートガラスに成形する成形工程と、
     成形された前記シートガラスを流すときに、前記シートガラスの流れ方向と直交する幅方向の中心部の温度が、前記処理温度よりも250℃低い温度になるまで冷却する冷却工程と、を備え、
     前記冷却工程において、前記シートガラスの幅方向の両端部よりも前記シートガラスの前記幅方向の内側にあり、前記中心部を含む領域である中央領域の冷却速度であって、前記中心部の温度が、前記処理温度よりも100℃低い温度未満、前記処理温度よりも250℃低い温度以上の温度領域における平均冷却速度は、前記冷却工程の中の、前記温度領域以外の温度領域における前記中央領域の平均冷却速度に比べて小さい、ディスプレイ用ガラス基板の製造方法。
  3.  前記冷却工程は、
     前記シートガラスに成形された後、前記シートガラスの前記幅方向の中心部の温度が徐冷点以上であるとき、前記シートガラスの幅方向の両端部よりも前記シートガラスの幅方向内側にあり、前記中心部を含む領域である中央領域を第1平均冷却速度で冷却する第1冷却工程と、
     前記中心部の温度が前記徐冷点未満450℃以上であるとき、前記中央領域を第2平均冷却速度で冷却する第2冷却工程と、
     前記中心部の温度が450℃未満300℃以上であるとき、前記中央領域を第3平均冷却速度で冷却する第3冷却工程と、を含み、
     前記第3平均冷却速度は、前記第1平均冷却速度及び前記第2平均冷却速度より小さい、請求項1に記載のディスプレイ用ガラス基板の製造方法。
  4.  前記冷却工程は、さらに、前記中心部の温度が300℃未満100℃以上であるとき、前記中央領域を第4平均冷却速度で冷却する第4冷却工程を含み、
     前記第4平均冷却速度は、前記第3平均冷却速度よりも大きい、請求項3に記載のディスプレイ用ガラス基板の製造方法。
  5.  前記冷却工程は、
     前記シートガラスに成形された後、前記シートガラスの幅方向の中心部の温度が徐冷点以上であるとき、前記シートガラスの幅方向の両端部よりも前記シートガラスの幅方向内側にあり、前記中心部を含む領域である中央領域を第1平均冷却速度で冷却する第1冷却工程と、
     前記中心部の温度が、前記徐冷点未満、前記処理温度よりも100℃低い温度以上であるとき、前記中央領域を第2平均冷却速度で冷却する第2冷却工程と、
     前記中心部の温度が、前記処理温度よりも100℃低い温度未満、前記処理温度よりも250℃低い温度以上であるとき、前記中央領域を第3平均冷却速度で冷却する第3冷却工程と、を含み、
     前記第3平均冷却速度は、前記第1平均冷却速度及び前記第2平均冷却速度より小さい、請求項2に記載のディスプレイ用ガラス基板の製造方法。
  6.  前記冷却工程は、さらに、前記中心部の温度が、前記処理温度よりも250℃低い温度未満、前記処理温度よりも450℃低い温度以上であるとき、前記中央領域を第4平均冷却速度で冷却する第4冷却工程を含み、
     前記第4平均冷却速度は、前記第3平均冷却速度よりも大きい、請求項5に記載のディスプレイ用ガラス基板の製造方法。
  7.  前記第1平均冷却速度は、前記第2平均冷却速度より大きい、請求項3~6のいずれか1項に記載のディスプレイ用ガラス基板の製造方法。
  8.  前記第3平均冷却速度は、5.0℃/秒以下である、請求項3~7のいずれか1項に記載のディスプレイ用ガラス基板の製造方法。
  9.  前記ガラス基板の熱収縮率は15ppm以下である、請求項1~8のいずれか1項に記載のディスプレイ用ガラス基板の製造方法。
     ただし、前記熱収縮率とは、500℃で30分保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
    熱収縮率(ppm)
      ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
  10.  前記ガラス基板の歪点は、680℃以上である、請求項1~9のいずれか1項に記載のディスプレイ用ガラス基板の製造方法。
     
PCT/JP2016/067889 2015-06-30 2016-06-16 ディスプレイ用ガラス基板の製造方法 WO2017002632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177035631A KR102006563B1 (ko) 2015-06-30 2016-06-16 디스플레이용 유리 기판의 제조 방법
CN201680036348.3A CN107709254A (zh) 2015-06-30 2016-06-16 显示器用玻璃基板的制造方法
JP2016544180A JP6823457B2 (ja) 2015-06-30 2016-06-16 ディスプレイ用ガラス基板の製造方法
TW105120828A TWI696590B (zh) 2015-06-30 2016-06-30 顯示器用玻璃基板之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-130716 2015-06-30
JP2015130716 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002632A1 true WO2017002632A1 (ja) 2017-01-05

Family

ID=57608211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067889 WO2017002632A1 (ja) 2015-06-30 2016-06-16 ディスプレイ用ガラス基板の製造方法

Country Status (5)

Country Link
JP (1) JP6823457B2 (ja)
KR (1) KR102006563B1 (ja)
CN (1) CN107709254A (ja)
TW (1) TWI696590B (ja)
WO (1) WO2017002632A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131668A1 (ja) * 2019-12-23 2021-07-01 日本電気硝子株式会社 ガラス基板の製造方法及びガラス基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502706A (ja) * 2005-07-21 2009-01-29 コーニング インコーポレイテッド 制御された冷却を用いた板ガラス製造方法
WO2012133838A1 (ja) * 2011-03-31 2012-10-04 AvanStrate株式会社 ガラス基板の製造方法
JP2012197185A (ja) * 2010-03-23 2012-10-18 Nippon Electric Glass Co Ltd ガラス基板の製造方法及びガラス基板
WO2014157649A1 (ja) * 2013-03-29 2014-10-02 AvanStrate株式会社 ガラス基板製造方法及びガラス基板製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544445B (en) 1999-06-29 2003-08-01 Hoya Corp Glass substrate and glass composition for use in a liquid crystal panel
JP5327702B2 (ja) * 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法
JP5648635B2 (ja) * 2009-07-13 2015-01-07 旭硝子株式会社 ガラス板の製造方法及び製造装置
JP5375385B2 (ja) * 2009-07-13 2013-12-25 日本電気硝子株式会社 ガラス基板の製造方法
KR101850164B1 (ko) * 2010-05-26 2018-04-18 코닝 인코포레이티드 흐르는 녹은 유리 리본의 두께를 제어하는 장치 및 방법
EP2695863A1 (en) * 2011-04-08 2014-02-12 Asahi Glass Company, Limited Non-alkali glass for substrates and process for manufacturing non-alkali glass for substrates
JP2013139342A (ja) * 2011-12-28 2013-07-18 Avanstrate Inc ガラス板の製造方法
CN104010981B (zh) * 2012-09-28 2017-07-18 安瀚视特控股株式会社 玻璃基板的制造方法及玻璃基板制造装置
JP5805602B2 (ja) * 2012-09-28 2015-11-04 AvanStrate株式会社 ガラス基板の製造方法、および、冷却器
JP2014189483A (ja) * 2013-03-28 2014-10-06 Avanstrate Inc ガラス板製造方法、および、ガラス板製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502706A (ja) * 2005-07-21 2009-01-29 コーニング インコーポレイテッド 制御された冷却を用いた板ガラス製造方法
JP2012197185A (ja) * 2010-03-23 2012-10-18 Nippon Electric Glass Co Ltd ガラス基板の製造方法及びガラス基板
WO2012133838A1 (ja) * 2011-03-31 2012-10-04 AvanStrate株式会社 ガラス基板の製造方法
WO2014157649A1 (ja) * 2013-03-29 2014-10-02 AvanStrate株式会社 ガラス基板製造方法及びガラス基板製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131668A1 (ja) * 2019-12-23 2021-07-01 日本電気硝子株式会社 ガラス基板の製造方法及びガラス基板
CN114845962A (zh) * 2019-12-23 2022-08-02 日本电气硝子株式会社 玻璃基板的制造方法以及玻璃基板

Also Published As

Publication number Publication date
CN107709254A (zh) 2018-02-16
KR20180005239A (ko) 2018-01-15
JP6823457B2 (ja) 2021-02-03
JPWO2017002632A1 (ja) 2018-04-12
KR102006563B1 (ko) 2019-08-01
TW201710196A (zh) 2017-03-16
TWI696590B (zh) 2020-06-21

Similar Documents

Publication Publication Date Title
US9533908B2 (en) Glass-substrate manufacturing method
TWI427044B (zh) Glass substrate manufacturing method and glass substrate
JP6067778B2 (ja) ガラス基板の製造方法及びガラス基板製造装置
KR101608896B1 (ko) 글래스 기판의 제조 방법 및 글래스 기판 제조 장치
KR101611393B1 (ko) 유리 기판 제조 방법 및 유리 기판 제조 장치
JP6031613B2 (ja) シートガラスの製造方法及びシートガラス製造装置
WO2017002632A1 (ja) ディスプレイ用ガラス基板の製造方法
JP2017066000A (ja) ディスプレイ用ガラス基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177035631

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817741

Country of ref document: EP

Kind code of ref document: A1