WO2014157649A1 - ガラス基板製造方法及びガラス基板製造装置 - Google Patents

ガラス基板製造方法及びガラス基板製造装置 Download PDF

Info

Publication number
WO2014157649A1
WO2014157649A1 PCT/JP2014/059233 JP2014059233W WO2014157649A1 WO 2014157649 A1 WO2014157649 A1 WO 2014157649A1 JP 2014059233 W JP2014059233 W JP 2014059233W WO 2014157649 A1 WO2014157649 A1 WO 2014157649A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sheet glass
cooling
glass
cooling rate
Prior art date
Application number
PCT/JP2014/059233
Other languages
English (en)
French (fr)
Inventor
浩幸 苅谷
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201480000251.8A priority Critical patent/CN104395253B/zh
Priority to KR1020147014619A priority patent/KR101611393B1/ko
Priority to JP2014514946A priority patent/JP5819520B2/ja
Publication of WO2014157649A1 publication Critical patent/WO2014157649A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B15/00Drawing glass upwardly from the melt
    • C03B15/02Drawing glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate manufacturing method and a glass substrate manufacturing apparatus.
  • the glass substrate for display is thermally shrunk by heat treatment. At this time, if the thermal contraction rate of the glass substrate is large, a pitch shift in which the arrangement of elements formed on the surface of the glass substrate is shifted easily occurs. For this reason, from the viewpoint of reducing pitch deviation, a glass substrate for display is required to have a low thermal shrinkage rate during heat treatment.
  • Methods for reducing the thermal shrinkage of the glass substrate include (1) adjusting the composition to increase the strain point of the glass, and (2) reducing the cooling rate of the sheet glass after the forming step.
  • Patent Document 1 Japanese Patent Publication No. 2003-503301 discloses a technique for improving the glass composition so that the strain point is 680 ° C. or higher as a technique for reducing the thermal shrinkage of the glass substrate. .
  • Patent Document 2 Japanese Patent No. 5153965 discloses a technique for reducing the heat shrinkage rate while securing productivity, but there is a problem that the heat shrinkage rate is not sufficiently reduced. It was.
  • an object of the present invention is to provide a glass substrate manufacturing method for sufficiently reducing the thermal shrinkage rate of a glass substrate generated during heat treatment in a display panel manufacturing process when the glass substrate is manufactured using a downdraw method, and the glass It is providing the glass substrate manufacturing apparatus which enforces a substrate manufacturing method.
  • the inventors of the present invention considered that the cooling rate in the temperature region lower than the strain point, which has been conventionally considered not to affect the thermal shrinkage rate of the glass substrate, occurs during the heat treatment in the display panel manufacturing process. It was found that the heat shrinkage rate is greatly affected.
  • the glass substrate manufacturing method includes a forming step and a cooling step.
  • the molten glass is formed into a sheet glass by a downdraw method.
  • the cooling step side portions that are regions of both end portions in the width direction of the sheet glass, a central region that is located on the inner side in the width direction of the sheet glass than the side portions, and includes a central portion in the width direction of the sheet glass,
  • the sheet glass containing is cooled.
  • the cooling process includes a first cooling process, a second cooling process, and a third cooling process.
  • the central region is cooled at the first average cooling rate until the temperature of the central portion in the width direction of the sheet glass reaches the annealing point.
  • the central region is cooled at the second average cooling rate until the temperature at the central portion changes from the annealing point to the strain point.
  • the central region is cooled at the third average cooling rate until the temperature of the central portion reaches the strain point of ⁇ 100 ° C. from the strain point.
  • the third average cooling rate is smaller than the second average cooling rate.
  • the thermal contraction rate of the glass substrate generated during the heat treatment in the display panel manufacturing process can be effectively reduced. Moreover, the thermal contraction rate of a glass substrate can be reduced, without reducing the productivity of a glass substrate.
  • the glass substrate manufacturing method includes a forming step and a cooling step.
  • the molten glass is formed into a sheet glass by a downdraw method.
  • the cooling step the sheet glass including the ear part formed on the side part of the sheet glass and the central region closer to the center part in the width direction of the sheet glass than the ear part is cooled.
  • the cooling process includes a first cooling process, a second cooling process, and a third cooling process.
  • the sheet glass is cooled in the central region at the first average cooling rate until the temperature of the central portion in the width direction of the sheet glass reaches the annealing point.
  • the sheet glass is cooled in the central region at the second average cooling rate until the temperature of the central portion changes from the annealing point to the strain point.
  • the sheet glass is cooled in the central region at the third average cooling rate until the temperature at the center reaches the strain point of ⁇ 100 ° C. from the strain point.
  • the third average cooling rate is smaller than the second average cooling rate.
  • the ratio of the third average cooling rate and the second average cooling rate is 0.2 or more and 1 It is preferable that it is less than.
  • the thermal shrinkage rate of the glass substrate can be reduced without reducing the productivity of the glass substrate.
  • At least the first average cooling rate, the second average cooling rate, and the third average cooling rate achieve the target value of the thermal shrinkage rate of the sheet glass.
  • the strain point of the sheet glass is preferably 680 ° C. or higher.
  • the thermal shrinkage rate of the glass substrate with respect to the processing temperature can be reduced more effectively.
  • the glass substrate manufacturing method according to the present invention, the glass substrate, the SiO 2 55mol% ⁇ 80mol%, the Al 2 O 3 3mol% ⁇ 20mol %, 0mol% ⁇ 15mol% of B 2 O 3, RO (The total content of MgO, CaO, SrO, and BaO is 3 mol% to 25 mol%, and the content expressed as mol% of SiO 2 , Al 2 O 3 and B 2 O 3 (SiO 2 + (2 ⁇ Al 2 O 3 )) / ((2 ⁇ B 2 O 3 ) + RO) is preferably 3.0 or more.
  • the thermal contraction rate of the glass substrate with respect to the processing temperature can be reduced more effectively.
  • the glass substrate is preferably a glass substrate for LTPS / TFT display or a glass substrate for organic EL display.
  • the thermal contraction rate of the glass substrate with respect to the heat treatment temperature (for example, 450 ° C. to 600 ° C.) in the panel manufacturing process of a display panel such as LTPS / TFT and organic EL is more effectively reduced. Can do. Moreover, the thermal contraction rate of the glass substrate can be further reduced without further reducing the productivity of the glass substrate.
  • the second average cooling rate is 0.8 ° C./second to 5.0 ° C./second
  • the third average cooling rate is 0.5 ° C. / Second to 4.0 ° C./second is preferable.
  • the thermal contraction rate of the glass substrate can be further reduced without further reducing the productivity of the glass substrate.
  • the thermal contraction rate of the glass substrate obtained from the sheet glass cooled at the said cooling process Comprising: It heats up a glass substrate at 10 degree-C / min from normal temperature, 550 Held at 60 ° C. for 60 minutes, then lowered to room temperature at 10 ° C./minute, heated again at 10 ° C./minute, held at 550 ° C. for 60 minutes, and then lowered to room temperature at 10 ° C./minute.
  • the thermal shrinkage is preferably 70 ppm or less when the thickness of the glass substrate is 0.5 mm to 1.0 mm.
  • the thermal contraction rate is obtained, for example, based on a measured value of the deviation of the marking line.
  • the heat shrinkage rate of the glass substrate during heat treatment in the display panel manufacturing process can be reduced more effectively.
  • the glass substrate manufacturing apparatus which concerns on this invention is equipped with the melting apparatus which melts a glass raw material and manufactures molten glass, and the shaping
  • side portions that are regions at both end portions in the width direction of the sheet glass, and a central region that is located on the inner side in the width direction of the sheet glass from the side portions and includes a center portion in the width direction of the sheet glass;
  • the sheet glass containing is cooled.
  • the molding apparatus has a temperature adjustment unit, a heater, and a control device.
  • the control device cools the central region of the sheet glass at the first average cooling rate in the first cooling step, cools the central region of the sheet glass at the second average cooling rate in the second cooling step, and In the cooling step, the temperature adjustment unit and the heater are controlled so that the central region of the sheet glass is cooled at the third average cooling rate, and the third average cooling rate is smaller than the second average cooling rate.
  • a 1st cooling process cools the said center area
  • the central region is cooled until the temperature at the central portion changes from the annealing point to the strain point.
  • the third cooling step the central region is cooled until the temperature of the central portion becomes from the strain point to ⁇ 100 ° C.
  • a manufacturing apparatus for example, it is possible to manufacture a glass substrate in which the thermal contraction rate of the glass substrate during heat treatment in the display panel manufacturing process is effectively small. Moreover, the thermal contraction rate of a glass substrate can be reduced, without reducing the productivity of a glass substrate.
  • the glass substrate manufacturing method includes a forming step and a cooling step.
  • the molten glass is formed into a sheet glass by a downdraw method.
  • the cooling step the sheet glass is cooled at a cooling rate determined in advance so that the thermal shrinkage of the sheet glass achieves the target value.
  • the cooling rate is determined based on the relationship between the temperature maintenance time and the thermal contraction rate in each temperature region, by dividing the temperatures that the sheet glass can take in the cooling step into a plurality of temperature regions.
  • the glass substrate manufacturing apparatus which concerns on this invention is equipped with the melting apparatus which melts a glass raw material and manufactures molten glass, and the shaping
  • edge part formed in the side part of the sheet glass is cooled.
  • the molding apparatus has a temperature adjustment unit, a heater, and a control device.
  • the control device cools the central region of the sheet glass at the first average cooling rate in the first cooling step, cools the central region of the sheet glass at the second average cooling rate in the second cooling step, and In the cooling step, the temperature adjustment unit and the heater are controlled so that the central region of the sheet glass is cooled at the third average cooling rate, and the third average cooling rate is smaller than the second average cooling rate. .
  • a 1st cooling process cools the said center area
  • the central region is cooled until the temperature at the central portion changes from the annealing point to the strain point.
  • the third cooling step the central region is cooled until the temperature of the central portion changes from the strain point to the strain point of ⁇ 100 ° C.
  • a glass substrate with a reduced thermal shrinkage can be manufactured without reducing the production amount of the glass substrate.
  • a glass substrate is manufactured using a downdraw method.
  • the glass substrate manufacturing method according to the present embodiment will be described with reference to the drawings.
  • the glass substrate manufacturing method mainly includes a melting step S1, a clarification step S2, a forming step S3, and a cooling step S4.
  • the melting step S1 is a step in which the glass raw material is melted.
  • the glass raw material is prepared so as to have a desired composition, and then charged into the melting apparatus 11.
  • the glass raw material is melted by the melting device 11 to become a molten glass FG.
  • the melting temperature is adjusted according to the type of glass. In the present embodiment, heating is performed so that the maximum temperature of the molten glass FG in the melting step S1 is 1500 ° C. to 1650 ° C.
  • the molten glass FG is sent to the refining device 12 through the upstream pipe 23.
  • the clarification step S2 is a step of removing bubbles in the molten glass FG.
  • the molten glass FG from which bubbles have been removed in the refining device 12 is then sent to the forming device 40 through the downstream pipe 24.
  • the forming step S3 is a step of forming the molten glass FG into a sheet-like glass (sheet glass) SG. Specifically, the molten glass FG overflows from the molded body 41 after being continuously supplied to the molded body 41 (see FIG. 3) included in the molding apparatus 40. The overflowed molten glass FG flows down along the surface of the molded body 41. The molten glass FG is then merged at the lower end of the molded body 41 and formed into a sheet glass SG.
  • sheet glass sheet glass
  • Cooling step S4 is a step of cooling the sheet glass SG.
  • the glass sheet is cooled to a temperature close to room temperature through the cooling step S4.
  • the thickness (plate thickness) of the glass substrate, the amount of warpage of the glass substrate, and the plane strain value of the glass substrate are determined according to the cooling state.
  • the cutting step S5 is a step of cutting the sheet glass SG having a temperature close to room temperature into a predetermined size in the cutting device 90.
  • the sheet glass SG (glass plate PG) cut
  • the cutting step S5 may not be provided after the cooling step S4. That is, the sheet glass SG cooled in the cooling step S4 may be shipped as it is after being packed as it is.
  • a panel maker manufactures a display by forming an element on the surface of the sheet glass SG and then cutting the sheet glass SG into a predetermined size and processing the end face.
  • the width direction of the sheet glass SG means a direction intersecting a direction (flow direction) in which the sheet glass SG flows down, that is, a horizontal direction.
  • FIGS. 3 is a cross-sectional view of the molding apparatus 40.
  • FIG. 4 is a side view of the molding apparatus 40.
  • the forming apparatus 40 includes a passage through which the sheet glass SG passes and a space surrounding the passage.
  • the space surrounding the passage is configured by, for example, a molded body chamber 20, a first cooling chamber 30, and a second cooling chamber 80.
  • the molded body chamber 20 is a space in which the molten glass FG sent from the clarification device 12 is formed into a sheet glass SG.
  • the first cooling chamber 30 is a space for adjusting the thickness and the amount of warpage of the sheet glass SG, which is disposed below the molded body chamber 20.
  • a part of 1st cooling process S41 mentioned later is performed.
  • the sheet glass SG in a state where the temperature of the central portion C of the sheet glass SG is higher than the annealing point is cooled.
  • the center portion C of the sheet glass SG is the center portion in the width direction of the sheet glass SG.
  • the temperature of the central portion C of the sheet glass SG is in the first temperature region and the second temperature region.
  • the first temperature region is a temperature region from the temperature at which the central portion C of the sheet glass SG is higher than the softening point to the vicinity of the softening point.
  • the second temperature region is a temperature region from the vicinity of the softening point to the vicinity of the slow cooling point from the temperature at the center C of the sheet glass SG.
  • the second cooling chamber 80 is a space for adjusting the warp, thermal contraction rate, and strain value of the sheet glass SG, which is disposed below the molded body chamber 20.
  • a part of a first cooling step S41, a second cooling step S42, and a third cooling step S43, which will be described later, are executed.
  • the sheet glass SG that has passed through the first cooling chamber 30 is cooled to a temperature that is at least 100 ° C. lower than the strain point through the slow cooling point and the strain point.
  • the sheet glass SG may be cooled to a temperature near room temperature.
  • the inside of the second cooling chamber 80 may be divided into a plurality of spaces by a heat insulating member 80b.
  • the plurality of heat insulating members 80b are arranged on both sides in the thickness direction of the sheet glass SG between the plurality of pull-down rollers 81a to 81g. Thereby, the temperature management of the sheet glass SG can be performed more accurately.
  • the molding apparatus 40 includes, for example, a molded body 41, a partition member 50, a cooling roller 51, a temperature adjustment unit 60, pulling rollers 81a to 81g, and heaters 82a to 82g. Furthermore, the shaping
  • the molded body 41 is provided in the molded body chamber 20.
  • the formed body 41 forms the molten glass FG into a sheet-like glass (sheet glass SG) by overflowing the molten glass FG.
  • the molded body 41 has a substantially pentagonal shape (a shape similar to a wedge shape) in cross-sectional shape.
  • the substantially pentagonal tip corresponds to the lower end portion 41 a of the molded body 41.
  • the molded body 41 has an inlet 42 at the first end (see FIG. 4).
  • a groove 43 is formed on the upper surface of the molded body 41.
  • the inlet 42 is connected to the above-described downstream pipe 24, and the molten glass FG that has flowed out of the refining device 12 is poured into the groove 43 from the inlet 42.
  • the molten glass FG poured into the groove 43 of the molded body 41 overflows from the pair of top portions 41 b and 41 b of the molded body 41 and flows down along the pair of side surfaces (surfaces) 41 c and 41 c of the molded body 41. Thereafter, the molten glass FG joins at the lower end 41a of the molded body 41 to become a sheet glass SG.
  • the partition member 50 is a member that blocks heat transfer from the molded body chamber 20 to the first cooling chamber 30.
  • the partition member 50 is arrange
  • the partition member 50 is a heat insulating material, for example.
  • the cooling roller 51 is provided in the first cooling chamber 30. More specifically, the cooling roller 51 is disposed immediately below the partition member 50. Moreover, the cooling roller 51 is arrange
  • the cooling roller 51 is cooled by an air cooling tube or a water cooling tube passed through the inside.
  • the cooling roller 51 contacts the side portions (ear portions) R and L of the sheet glass SG, and rapidly cools the side portions (ear portions) R and L of the sheet glass SG by heat conduction (rapid cooling step).
  • the viscosities of the side portions (ear portions) R and L of the sheet glass SG in contact with the cooling roller 51 are equal to or higher than a predetermined value (specifically, 10 9.0 poise).
  • the side portions (ear portions) R and L of the sheet glass SG are regions at both end portions in the width direction of the sheet glass SG, and specifically, from the edges in the width direction of the sheet glass SG. Toward the center C of the sheet glass SG in the width direction within 200 mm.
  • the cooling roller 51 is rotationally driven by a cooling roller drive motor 390 (see FIG. 5).
  • the cooling roller 51 cools the side portions (ear portions) R and L of the sheet glass SG and also has a function of lowering the sheet glass SG downward. Note that the cooling of the side portions (ear portions) R and L of the sheet glass SG by the cooling roller 51 affects the uniformity of the width of the sheet glass SG and the thickness of the sheet glass SG.
  • the temperature adjustment unit 60 is a unit that is provided in the first cooling chamber 30 and cools the sheet glass SG to the vicinity of the annealing point.
  • the temperature adjustment unit 60 is disposed below the partition member 50 and above the top plate 80 a of the second cooling chamber 80.
  • the temperature adjustment unit 60 cools the sheet glass SG until the temperature of the central portion C of the sheet glass SG becomes near the annealing point. Thereafter, the central portion C of the sheet glass SG is cooled in the second cooling chamber 80 to a temperature in the vicinity of room temperature via a slow cooling point and a strain point.
  • the temperature adjustment unit 60 may have a cooling unit 61.
  • a plurality of cooling units 61 (three here) are arranged in the width direction of the sheet glass SG and a plurality are arranged in the flow direction.
  • the cooling units 61 are arranged one by one so as to face the surfaces of the side portions (ear portions) R and L of the sheet glass SG, and a central area CA described later (see FIG. 4).
  • One is arranged so as to face the surface.
  • region CA of the sheet glass SG is a center part of the width direction of the sheet glass SG, Comprising: The area
  • the central area CA of the sheet glass SG is a portion sandwiched between the side portions (ear portions) R and L of the sheet glass SG.
  • region CA of the sheet glass SG is an area
  • the pull-down rollers 81a to 81g are provided in the second cooling chamber 80, and pull down the sheet glass SG that has passed through the first cooling chamber 30 in the flow direction of the sheet glass SG.
  • the pulling rollers 81a to 81g are arranged in the second cooling chamber 80 at a predetermined interval along the flow direction.
  • a plurality of pulling rollers 81a to 81g are arranged on both sides in the thickness direction of the sheet glass SG (see FIG. 3) and on both sides in the width direction of the sheet glass SG (see FIG. 4). That is, the pulling rollers 81a to 81g pull down the sheet glass SG while contacting the side portions (ear portions) R and L in the width direction of the sheet glass SG and both sides in the thickness direction of the sheet glass SG.
  • the pulling rollers 81a to 81g are driven by a pulling roller driving motor 391 (see FIG. 5). Further, the pulling rollers 81a to 81g rotate inward with respect to the sheet glass SG.
  • the peripheral speed of the pulling rollers 81a to 81g is preferably increased as the lowering rollers 81a to 81g are installed on the downstream side. That is, among the plurality of lowering rollers 81a to 81g, the peripheral speed of the lowering roller 81a is the smallest, and the peripheral speed of the lowering roller 81g is the highest.
  • the pull-down rollers 81a to 81g arranged on both sides in the thickness direction of the sheet glass SG operate in pairs, and the pair of pull-down rollers 81a, 81a, ... pulls the sheet glass SG downward.
  • the heaters 82 a to 82 g are provided inside the second cooling chamber 80 and adjust the temperature of the internal space of the second cooling chamber 80. Specifically, a plurality of heaters 82a to 82g are arranged in the flow direction of the sheet glass SG and the width direction of the sheet glass SG. For example, seven heaters are arranged in the flow direction of the sheet glass SG, and three heaters are arranged in the width direction of the sheet glass. The three heaters arranged in the width direction respectively control the temperature of the central region CA of the sheet glass SG and the side portions (ear portions) R and L of the sheet glass SG. The outputs of the heaters 82a to 82g are controlled by a control device 91 described later.
  • the atmospheric temperature in the vicinity of the sheet glass SG passing through the inside of the second cooling chamber 80 is controlled.
  • the temperature of the sheet glass SG is controlled by controlling the atmospheric temperature in the second cooling chamber 80 by the heaters 82a to 82g. Further, the sheet glass SG transitions from the viscous region to the elastic region through the viscoelastic region by temperature control.
  • the temperature of the sheet glass SG is cooled from the temperature near the annealing point to the temperature near room temperature by the control of the heaters 82a to 82g.
  • an atmospheric temperature detecting means (in this embodiment, a thermocouple) 380 for detecting the atmospheric temperature may be provided.
  • the several thermocouple 380 is arrange
  • the thermocouple 380 can detect the temperature of the surface of the sheet glass SG.
  • the thermocouple 380 detects the temperature of the center portion C of the sheet glass SG and the temperatures of the side portions (ear portions) R and L of the sheet glass SG.
  • the outputs of the heaters 82a to 82g are controlled based on the ambient temperature detected by the thermocouple 380.
  • the cutting device 90 cuts the sheet glass SG cooled to a temperature near room temperature in the second cooling chamber 80 into a predetermined size. Thereby, the sheet glass SG becomes a plurality of glass plates PG.
  • the cutting device 90 is driven by a cutting device drive motor 392 (see FIG. 5). Note that the cutting device is not necessarily provided directly below the second cooling chamber 80.
  • the control device 91 includes a CPU, a RAM, a ROM, a hard disk, and the like, and controls various devices included in the glass plate manufacturing apparatus 100. Specifically, as shown in FIG. 5, the control device 91 receives signals from various sensors (eg, thermocouple 380) and switches (eg, main power switch 381) included in the glass substrate manufacturing apparatus 100.
  • the temperature adjustment unit 60, heaters 82a to 82g, cooling roller drive motor 390, pulling roller drive motor 391, cutting device drive motor 392, and the like are controlled.
  • cooling process S4 consists of several cooling process S41, S42, S43, S44. Specifically, the first cooling step S41, the second cooling step S42, the third cooling step S43, and the fourth cooling step S44 are sequentially performed along the flow direction of the sheet glass SG.
  • temperature control is performed in the flow direction and the width direction of the sheet glass SG.
  • the temperature management is performed based on a plurality of temperature profiles TP1 to TP10.
  • the temperature profiles TP1 to TP10 are temperature distributions along the width direction of the sheet glass SG with respect to the ambient temperature in the vicinity of the sheet glass SG.
  • the temperature profiles TP1 to TP10 are target temperature distributions. That is, the temperature management is performed so as to realize a plurality of temperature profiles TP1 to TP10.
  • the temperature management is performed using the cooling roller 51, the temperature adjustment unit 60, and the heaters 82a to 82g described above.
  • the temperature of the sheet glass SG is managed by controlling the atmospheric temperature of the sheet glass SG.
  • the actual temperature of the sheet glass SG may be used as the temperature of the sheet glass SG, and a value calculated by simulation based on the ambient temperature of the sheet glass SG controlled by the heaters 82a to 82g is used. May be.
  • the sheet glass SG is cooled at a predetermined cooling rate to perform temperature management in the flow direction of the sheet glass SG.
  • the predetermined cooling rate is a cooling rate corresponding to each of the cooling steps S41 to S44.
  • the average cooling rate in the case where the average cooling rate is referred to without particular notice, it means the average cooling rate in the central area CA of the sheet glass SG in principle.
  • the cooling rate (third cooling rate) of the third cooling step S43 is the slowest. That is, the cooling rate (second cooling rate) of the second cooling step S42 is faster than the third cooling rate.
  • the average cooling rate (first cooling rate) of the first cooling step S41 is preferably the fastest.
  • the average cooling rate (fourth cooling rate) in the fourth cooling step S44 is preferably slower than the first cooling rate and faster than the second cooling rate. That is, it is preferable that the relational expression of the first cooling rate> the fourth cooling rate> the second cooling rate> the third cooling rate is satisfied with respect to the cooling rates of all the cooling steps S41 to S44.
  • cooling rate (center part cooling rate) of the center part C of the sheet glass SG and the cooling rate (ear part cooling) of the side parts (ear part) R and L of the sheet glass SG are demonstrated.
  • (Speed) is set to a different speed.
  • the center part cooling rate is calculated based on the amount of temperature change of the center part C of the sheet glass SG and the time required for the temperature change.
  • the ear portion cooling rate is calculated based on the amount of temperature change of the side portions (ear portions) R and L of the sheet glass SG and the time required for the temperature change.
  • FIG. 6 shows a temperature profile at a predetermined height position of the sheet glass SG.
  • the side portions (ear portions) R and L of the sheet glass SG are simply referred to as the ear portions R and L of the sheet glass SG.
  • the first cooling step S41 is a step of cooling the molten glass joined immediately below the molded body 41 until the temperature of the central portion C reaches the annealing point.
  • the annealing point is the temperature at which the viscosity is 10 13 poise.
  • the sheet glass SG having the temperature of the central portion C of 1100 ° C. to 1300 ° C. is cooled until the temperature of the central portion C reaches the annealing point.
  • the annealing point in the “cooling to the annealing point” includes the vicinity of the annealing point, and may be, for example, a temperature of annealing point ⁇ 15 ° C.
  • the temperature management of the sheet glass SG is performed based on the first temperature profile TP1 to the fifth temperature profile TP5.
  • the temperature profiles TP1 to TP5 executed in the first cooling step S41 and the cooling rate (first cooling rate) of the first cooling step S41 will be described in detail.
  • the first temperature profile TP1 is a temperature distribution realized on the most upstream side of the sheet glass SG (see FIG. 6).
  • the temperature of the central region CA of the sheet glass SG is uniform, and the ear portions R and L of the sheet glass SG are lower than the temperature of the central region CA of the sheet glass SG.
  • that the temperature of the central area CA is uniform means that the temperature of the central area CA is included in a predetermined temperature range.
  • the predetermined temperature range is a range of the reference temperature ⁇ 20 ° C.
  • the reference temperature is an average temperature in the width direction of the central area CA.
  • the first temperature profile TP1 is realized by controlling the cooling roller 51 and the temperature adjustment unit 60 in the first cooling chamber 30. Specifically, the ears R and L of the sheet glass SG are cooled by the cooling roller 51. The temperature of the ears R and L of the sheet glass SG is cooled to a temperature lower than the temperature of the central area CA by a predetermined temperature (for example, 200 ° C. to 250 ° C.). The first temperature profile TP1 reduces the thickness deviation of the sheet glass SG.
  • the temperature management based on the first temperature profile TP1 is preferably performed directly under the molded body in order to further reduce the thickness deviation of the sheet glass SG, and the sheet glass SG is cooled to the vicinity of the glass softening point. It is preferable to be carried out by this time.
  • “near the glass softening point” is preferably a temperature region from “glass softening point ⁇ 20 ° C.” to “glass softening point + 20 ° C.”.
  • the second temperature profile TP2 and the third temperature profile TP3 are temperature distributions realized after the first temperature profile TP1 (see FIG. 6). Specifically, with respect to the flow direction of the sheet glass SG, the second temperature profile TP2 is located on the upstream side, and the third temperature profile TP3 is located on the downstream side.
  • the second temperature profile TP3 and the third temperature profile TP3 have the highest temperature at the center C of the central area CA and the lowest temperatures at the ears R and L.
  • the temperature gradually decreases from the center C toward the ears R and L. That is, a gradient (temperature gradient) is formed between the temperature of the central portion C and the temperatures of the ear portions R and L.
  • the second profile TP2 and the third temperature profile TP3 form a gentle parabola having an upward convexity.
  • the temperature gradient is a value obtained by dividing the width W of the sheet glass SG (for example, 1650 mm, see FIG.
  • the temperature gradient TG3 in the third temperature profile TP3 is larger than the temperature gradient TG2 in the second temperature profile TP2.
  • the difference (width direction temperature difference) between the ambient temperature of the ear portions R and L of the sheet glass SG and the ambient temperature of the center portion C in the third temperature profile TP3 is more than the width direction temperature difference in the second temperature profile TP2.
  • the third temperature profile TP3 is a parabola that is larger than the second temperature profile TP2.
  • large parabolic profiles are realized so that the ear portions R and L are cooled earlier than the center portion C.
  • the second temperature profile TP2 and the third temperature profile TP3 are realized by controlling the temperature adjustment unit 60 in the first cooling chamber 30.
  • the fourth temperature profile TP4 is a temperature distribution realized after the third temperature profile TP3 (see FIG. 6).
  • the fourth temperature profile TP4 also has the highest temperature at the center C of the central area CA and the lowest temperatures at the ears R and L.
  • the fourth temperature profile TP4 also gradually decreases in temperature from the center C toward the ears R and L, and forms a gentle parabola having a convex upward.
  • the temperature gradient TG4 in the fourth temperature profile TP4 is smaller than the temperature gradient TG3 in the upstream third temperature profile TP3. That is, the fourth temperature profile TP4 is a parabola that is smaller than the third temperature profile TP3.
  • the fourth temperature profile TP4 is realized by controlling the heater 82a in the second cooling chamber 80.
  • the fifth temperature profile TP5 is a temperature distribution realized after the fourth temperature profile TP4 (see FIG. 6).
  • the fifth temperature profile TP5 also has the highest temperature at the center C and the lowest temperatures at the ears R and L. Further, the fifth temperature profile TP5 also has a gradually decreasing temperature from the center C toward the ears R and L, and forms a gentle parabola having a convex upward.
  • the temperature gradient TG5 in the fifth temperature profile TP5 is smaller than the temperature gradient TG4 in the fourth temperature profile TP4. That is, the fifth temperature profile TP5 is a parabola smaller than the fourth temperature profile TP4.
  • the fifth temperature profile TP5 is realized by controlling the heater 82b in the second cooling chamber 80.
  • the cooling rate of the central portion C is always faster than the cooling rates of the ear portions R and L. Becomes larger than the heat shrinkage of the ears R and L. Therefore, since the tension
  • the ambient temperature of the ear portions R and L is cooled at an average cooling rate faster than the ambient temperature of the central region CA. That is, the average cooling rate (first ear cooling rate) of the ears R and L is higher than the average cooling rate (first average cooling rate) of the central area CA.
  • the first average cooling rate of the central area CA in the first cooling step S41 is 5.0 ° C./second to 50.0 ° C./second.
  • the productivity is deteriorated.
  • the first average cooling rate exceeds 50 ° C./second, the sheet glass SG may be cracked. Moreover, the curvature amount and plate
  • the first average cooling rate of the central area CA is 8.0 ° C./second to 16.5 ° C./second.
  • the first ear cooling rate in the first cooling step S41 is 5.5 ° C./second to 52.0 ° C./second.
  • the first ear cooling rate is 8.3 ° C./sec to 17.5 ° C./sec.
  • the second cooling step S42 is a step of cooling the sheet glass SG in which the temperature of the central portion C has become a slow cooling point until the temperature of the central portion C becomes a strain point.
  • the strain point is a temperature at which the viscosity becomes 10 14.5 poise.
  • the strain point in “cool to the strain point” includes the vicinity of the strain point, and may be, for example, a temperature of strain point ⁇ 15 ° C.
  • the temperature management of the sheet glass SG is performed based on the sixth temperature profile TP6.
  • the temperature profile TP6 executed in the second cooling step S42 and the cooling rate (second cooling rate) of the second cooling step S42 will be described in detail.
  • the sixth temperature profile TP6 has a uniform atmosphere temperature in the width direction of the sheet glass SG (atmosphere temperature from the edge portions R and L in the width direction to the center portion C).
  • the sixth temperature profile TP6 has the smallest temperature gradient between the ambient temperature around the ear portions R and L and the ambient temperature around the center portion C in the width direction of the sheet glass SG, and around the ear portions R and L. This is a temperature profile in which the ambient temperature and the ambient temperature around the center C are approximately the same.
  • uniform means that the ambient temperature around the ears R and L and the ambient temperature around the central area CA are included in a predetermined temperature range.
  • the predetermined temperature range is a range of reference temperature ⁇ 5 ° C.
  • the reference temperature is an average temperature in the width direction of the sheet glass SG.
  • the sixth temperature profile TP6 is realized by controlling the heater 82c in the second cooling chamber 80.
  • the sixth temperature profile TP6 is realized in the vicinity of the strain point.
  • the vicinity of the strain point means a predetermined temperature region including the strain point.
  • the predetermined temperature region is a region from “(annealing point + strain point) / 2” to “strain point ⁇ 50 ° C.”.
  • the sixth temperature profile TP6 is realized at at least one point in the vicinity of the strain point (one place in the flow direction). By realizing the sixth temperature profile TP6, the internal strain of the sheet glass SG can be reduced.
  • the ambient temperature of the central region CA of the sheet glass SG and the ear portion R are set so that the ambient temperature in the width direction of the sheet glass SG becomes substantially constant.
  • L atmosphere temperature is controlled. That is, the average cooling rate (second average cooling rate) in the central area CA is slightly higher than the average cooling rate (second ear cooling rate) of the ears R and L.
  • the average cooling rate (second average cooling rate) of the temperature in the central region CA of the sheet glass SG in the second cooling step S42 is preferably 5.0 ° C./second or less, and 0.8 ° C./second to 5 ° C. More preferably, it is 0 ° C./second. If the second average cooling rate is less than 0.8 ° C./second, the productivity tends to deteriorate. Moreover, if the second average cooling rate exceeds 5.0 ° C./second, precise temperature control of the sheet glass SG becomes difficult, and the thermal shrinkage rate of the sheet glass SG tends to increase. Moreover, the curvature and distortion of the sheet glass SG tend to increase.
  • the third cooling step S43 is a step of cooling the sheet glass SG in which the temperature of the central portion C is at the strain point until (strain point ⁇ 100 ° C.).
  • “strain point ⁇ 100 ° C.” in “cooling to (strain point ⁇ 100 ° C.)” includes the vicinity of (strain point ⁇ 100 ° C.), for example, (strain point ⁇ 100 ° C.) ⁇ 15 ° C. May be the temperature.
  • the temperature management of the sheet glass SG is performed based on the sixth temperature profile TP6, similarly to the second cooling step S42.
  • the average cooling rate (third average cooling rate) of the temperature in the central region CA of the sheet glass SG in the third cooling step S43 is smaller than the second average cooling rate and is preferably 5 ° C./second or less.
  • the third average cooling rate is smaller than the second average cooling rate, the thermal contraction rate generated during heat treatment (for example, 450 ° C. to 600 ° C.) in the panel manufacturing process of the glass substrate display is sufficiently reduced. Can do.
  • the third average cooling rate exceeds 5 ° C./second, the sheet glass SG may be cracked, and the warp of the sheet glass SG is also deteriorated. More preferably, the third average cooling rate is 0.5 ° C./second to 4.0 ° C./second.
  • the fourth cooling step S44 is a step of cooling the sheet glass SG having a temperature near the strain point of ⁇ 100 ° C. to a temperature near the strain point of ⁇ 200 ° C.
  • the temperature near the strain point of ⁇ 200 ° C. may be, for example, a temperature of (strain point of ⁇ 200 ° C.) ⁇ 15 ° C.
  • the temperature management of the sheet glass SG is performed based on the seventh temperature profile TP7 to the tenth temperature profile TP10.
  • the temperature profiles TP7 to TP10 executed in the fourth cooling step S44 and the cooling rate (fourth cooling rate) of the fourth cooling step S44 will be described in detail.
  • the seventh temperature profile TP7 to the tenth temperature profile TP10 are temperature distributions realized after the sixth temperature profile TP6 (see FIG. 6). Specifically, the seventh temperature profile TP7 to the tenth temperature profile TP10 are each realized along the flow direction of the sheet glass SG. More specifically, the seventh temperature profile TP7 is realized on the upstream side, and then the eighth temperature profile TP8 is realized. Next to the eighth temperature profile TP8, a ninth temperature profile TP9 is realized, and a tenth temperature profile TP10 is realized downstream.
  • the temperature of the central portion C of the central region CA is the lowest, and the temperatures of the ear portions R and L are the highest.
  • the temperature gradually increases from the central portion C toward the ear portions R and L. That is, a gradient (temperature gradient) is formed between the temperature of the central portion C and the temperatures of the ear portions R and L.
  • the seventh temperature profile TP7 to the tenth temperature profile TP10 form a gentle parabola having a convex downward.
  • the temperature gradients TG7 to TG10 in the seventh temperature profile TP7 to the tenth temperature profile TP10 gradually increase along the flow direction of the sheet glass SG.
  • the difference (width direction temperature difference) between the ambient temperature of the ear portions R and L of the sheet glass SG and the ambient temperature of the center portion C in the tenth temperature profile TP10 is greater than the width direction temperature difference in the seventh temperature profile TP7.
  • the tenth temperature profile TP10 is a larger parabola than the seventh temperature profile TP7.
  • the central portion C is cooled earlier than the ear portions R and L.
  • the seventh temperature profile TP7 to the tenth temperature profile TP10 are realized by controlling the heaters 82d to 82g in the second cooling chamber 80. Specifically, the heater 82d implements the seventh temperature profile TP7, the heater 82e implements the eighth temperature profile TP8, the heater 82f implements the ninth temperature profile TP9, and the heater 82g implements the tenth temperature profile TP10. Realized.
  • the ambient temperature in the central region CA is cooled at a faster rate than the ambient temperature in the ear portions R and L. That is, the average cooling rate (fourth average cooling rate) of the central area CA is higher than the average cooling rate (fourth ear cooling rate) of the ears R and L.
  • the cooling rate of the central portion C is always faster than the cooling rates of the ear portions R and L. Becomes larger than the heat shrinkage of the ears R and L. Therefore, since the tension
  • the fourth average cooling rate in the fourth cooling step S44 is preferably 1.5 ° C./second to 20 ° C./second.
  • the productivity is deteriorated.
  • a 4th average cooling rate exceeds 20 degrees C / second, a crack may generate
  • the fourth average cooling rate is 2.0 ° C./second to 15 ° C./second.
  • the fourth ear cooling rate in the fourth cooling step S44 is 1.3 ° C./second to 13 ° C./second.
  • the fourth ear cooling rate is 1.5 ° C./second to 8.0 ° C./second.
  • the cooling rate in the flow direction of the sheet glass SG affects the thermal shrinkage rate that occurs during the heat treatment of the glass substrate in the temperature range of 450 ° C. to 600 ° C.
  • the influence of the cooling rate of the third cooling step S43 on the heat shrinkage rate is large. Therefore, by making the average cooling rate of the third cooling step S43 the smallest among the four cooling steps S41 to S44, the thermal contraction rate of the sheet glass SG can be effectively reduced. Thereby, while being able to improve the production amount of a glass substrate, the glass substrate which has a suitable thermal contraction rate can be obtained.
  • the speed ratio between the second average cooling rate and the third average cooling rate is preferably 0.2 or more and less than 1.
  • the speed ratio is more preferably 0.3 or more and less than 0.8, and further preferably 0.4 or more and less than 0.6.
  • the second average cooling rate tends to influence the heat shrinkage rate next to the third average cooling rate.
  • the second average cooling rate in the second cooling step S42 for cooling the sheet glass SG in the range from the slow cooling point to the strain point is the average of the first cooling step S41 and the fourth cooling step S44. It is preferable to make it smaller than the cooling rate. Thereby, a thermal contraction rate can be reduced.
  • the thickness deviation, the amount of warpage, and the value of plane strain can be suppressed within a certain range.
  • the second average cooling rate in the second cooling step S42 for cooling the sheet glass SG in the range from the slow cooling point to the strain point is the first cooling rate. It is preferable to make it smaller than the average cooling rate of process S41 and 4th cooling process S44. Thereby, since the precision of the temperature control of the width direction of the sheet glass SG in 2nd cooling process S42 can be improved, the amount of curvature and a distortion value can be reduced.
  • the sheet glass SG has a ribbon shape continuous in the vertical direction, temperature control from the strain point to the strain point in the range of ⁇ 100 ° C. also affects the warpage amount and the strain value.
  • the third average cooling rate in the third cooling step S43 for cooling the sheet glass SG in the range from the strain point to the strain point of ⁇ 100 ° C. is minimized.
  • the fourth average cooling rate in the fourth cooling step S44 for cooling the sheet glass SG in the range from the strain point ⁇ 100 ° C. to the strain point ⁇ 200 ° C. is the first average in the first cooling step S41. It is preferable to make it smaller than the average cooling rate.
  • the thermal shrinkage of the glass substrate obtained from the sheet glass SG is determined by the characteristics of the glass and the cooling rate of the sheet glass SG. That is, when the glass composition is the same, the thermal shrinkage rate of the glass substrate depends on the cooling rate of the sheet glass SG in the cooling step S4.
  • the thermal contraction rate of the glass substrate is smaller. This is because the glass substrate is heat-treated in the manufacturing process of the display. Therefore, if the thermal contraction rate of the glass substrate is large, it becomes difficult to accurately arrange the elements on the surface of the glass substrate. Moreover, the variation in the thermal shrinkage rate for each glass substrate is more preferable as it is smaller.
  • the thermal contraction rate of the glass substrate obtained from the sheet glass SG varies depending on the temperature range that the sheet glass SG can take in the cooling step S4 of the sheet glass SG. Therefore, the target value of the heat shrinkage rate of the glass substrate obtained from the sheet glass SG is set in advance, and the sheet glass SG is cooled in each temperature region that the sheet glass SG can take so that the heat shrinkage rate achieves this target value.
  • the target value of the heat shrinkage rate of the glass substrate obtained from the sheet glass SG is set in advance, and the sheet glass SG is cooled in each temperature region that the sheet glass SG can take so that the heat shrinkage rate achieves this target value.
  • the temperature profile in the conveyance direction of the sheet glass SG can be determined based on, for example, a calibration curve created based on the actual measurement value of the thermal contraction rate of the sheet glass SG, or determined using computer simulation. Can do. Further, the temperature profile in the conveyance direction of the sheet glass SG may be determined using an actual measurement value of the thermal shrinkage rate while confirming by computer simulation.
  • the determination of the temperature profile by computer simulation is preferably performed using various techniques used in computational fluid dynamics (CFD) calculations.
  • CFD computational fluid dynamics
  • the computer simulation can be executed using customized software or a commercially available software package.
  • the thermal contraction rate of the sheet glass SG is actually measured under various slow cooling conditions, and a calibration curve is created based on the obtained measurement values. Then, by using the calibration curve, for example, when the temperature profile in the conveyance direction of the sheet glass SG is changed, the thermal contraction rate of the sheet glass SG when the sheet glass SG is cooled with the new temperature profile is estimated. be able to. Conversely, the temperature profile in the conveyance direction of the sheet glass SG can be appropriately determined so that the thermal shrinkage rate of the sheet glass SG achieves a predetermined target value.
  • This heat shrinkage rate calculation method mainly includes a basic data measurement step, a normalized heat shrinkage-maintenance temperature relationship acquisition step, a total area calculation step, a heat shrinkage amount-total area relationship acquisition step, and a heat shrinkage rate. And an estimation process. Next, each step will be described.
  • FIG. 7 is a graph of the temperature-time relationship of the sheet glass SG when measuring the thermal shrinkage of the sheet glass SG.
  • the sheet glass SG is cooled from a temperature higher than the annealing point to at least a strain point of ⁇ 200 ° C.
  • the slow cooling process includes a first temperature decreasing unit having a first temperature decreasing gradient, and a temperature maintaining unit that maintains a constant maintaining temperature for a predetermined maintaining time following the first temperature decreasing unit. And a second temperature-decreasing unit having a second temperature-gradient gradient following the temperature maintaining unit.
  • FIG. 7 shows data measured under five slow cooling conditions C1 to C5.
  • the first temperature decrease gradient, the second temperature decrease gradient, and the maintenance time are all the same, and the maintenance temperatures are all different.
  • the maintenance temperature is set to T1 to T5 in descending order, and the slow cooling conditions corresponding to the maintenance temperatures T1 to T5 are set to C1 to C5.
  • the thermal shrinkage amounts A1 to A5 of the sheet glass SG that has been gradually cooled under the slow cooling conditions C1 to C5 are measured.
  • the heat shrinkage amounts A1 to A5 represent the degree of heat shrinkage of the sheet glass SG in the temperature maintaining portion. That is, the smaller the heat shrinkage amount A1 to A5, the more the sheet glass SG does not heat shrink.
  • the heat shrinkage amounts A1 to A5 measured in the basic data measurement process are normalized based on the minimum heat shrinkage amount, and the normalized heat shrinkage amounts B1 to B5 are obtained. calculate. Specifically, when the heat shrinkage amount A3 is the minimum, the normalized heat shrinkage amount B1 is a value obtained by dividing the heat shrinkage amount A3 by the heat shrinkage amount A1. Therefore, the normalized heat shrinkage amounts B1 to B5 are always 1 or less, and the smaller the normalized heat shrinkage amounts B1 to B5, the more the sheet glass SG is thermally shrunk. Then, as shown in FIG. 8, the normalized heat shrinkage amounts B1 to B5 are plotted against the maintenance temperatures T1 to T5 to obtain an approximate curve of the normalized heat shrinkage amount-maintenance temperature graph.
  • a normalized heat shrinkage-time graph in which the normalized heat shrinkage amounts B1 to B5 are plotted against the elapsed time under the slow cooling conditions C1 to C5 is obtained.
  • FIG. 9 is an example of a normalized heat shrinkage-time graph. Since the sheet glass SG shrinks as the temperature of the sheet glass SG decreases with time, the normalized heat shrinkage-time graph shows a monotonous decrease. Then, in each graph corresponding to the slow cooling conditions C1 to C5, the total area S that is the sum of the areas S1, S2, and S3 represented by the following formula is calculated.
  • S1 (standardized thermal contraction amount of temperature at start of temperature decrease in first temperature-decreasing part + normalized thermal contraction amount of temperature at end of temperature decrease in first temperature-decreasing part) ⁇ required time of first temperature-decreasing part / 2
  • S2 normalized heat shrinkage of the maintenance temperature in the temperature maintenance part x maintenance time of the temperature maintenance part
  • S3 (Standardized thermal contraction amount of temperature at start of temperature decrease in second temperature-decreasing part + Normalized thermal contraction amount of temperature at end of temperature decrease in second temperature-decreasing part) ⁇ Required time of second temperature-decreasing part / 2
  • the total areas S1 to S5 are calculated for the slow cooling conditions C1 to C5, respectively.
  • FIG. 10 is an example of a heat shrinkage-total area graph.
  • the heat shrinkage rate of the sheet glass SG is estimated based on the temperature profile of the sheet glass SG corresponding to a preset slow cooling condition. Specifically, first, a normalized heat shrinkage-time graph is obtained by the same method as described above using a preset temperature profile and a normalized heat shrinkage-maintenance graph. The total area Sx of the normalized heat shrinkage-time graph is calculated. Next, as shown in FIG. 10, a heat shrinkage amount Ax corresponding to the calculated total area Sx is obtained using a heat shrinkage amount-total area graph. And the estimated value of the thermal contraction rate in the case where the sheet glass SG is gradually cooled with the basic temperature profile is calculated from the thermal contraction amount Ax.
  • the maximum maintenance temperature T1 is preferably in the vicinity of the annealing point.
  • the minimum maintenance temperature T5 is preferably in the vicinity of the strain point of ⁇ 200 ° C. Further, it is preferable that the temperature intervals of the maintenance temperatures T1 to T5 are all set to be the same.
  • the method for estimating the thermal shrinkage rate of the sheet glass SG based on the five slow cooling conditions has been described.
  • the number of the basic slow cooling conditions is any number as long as it is two or more. There may be.
  • the cooling rates of the first cooling step S41 to the fourth cooling step S44 are determined using a calibration curve prepared in advance. Further, it is preferable that the cooling rates of the first cooling step S41 to the fourth cooling step S44 are determined using computer simulation.
  • the thermal shrinkage rate of the glass substrate is preferably 70 ppm or less, preferably 5 ppm to 70 ppm when the strain point is 680 ° C. or more and the thickness of the glass substrate is 0.5 mm to 1.0 mm. More preferred is 10 ppm to 50 ppm.
  • the thermal shrinkage rate of the glass substrate changes depending on the total time in the cooling process. As the plate thickness of the glass substrate is thinner, it is necessary to increase the conveying speed of the sheet glass SG in the cooling process, so the time for the slow cooling process is shortened and the thermal contraction rate tends to increase. Therefore, for example, when the thickness of the glass substrate is 0.01 mm or more and less than 0.5 mm, the thermal shrinkage rate is preferably 5 ppm to 100 ppm, more preferably 10 ppm to 70 ppm. Alternatively, when the strain point of the glass substrate is less than 680 ° C., the thermal shrinkage rate is preferably 5 ppm to 100 ppm, more preferably 10 ppm to 70 ppm.
  • the strain point of the glass substrate is preferably 680 ° C. or higher, more preferably 690 ° C. or higher, and further preferably 730 ° C. or higher. The higher the strain point, the smaller the thermal contraction rate of the glass substrate.
  • the average coefficient of thermal expansion when the glass substrate is changed from 100 ° C. to 300 ° C. is preferably 50 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 30 ⁇ 10 ⁇ 7 / ° C. to 45 ⁇ 10 ⁇ 7 / ° C.
  • the smaller the average thermal expansion coefficient the smaller the thermal contraction rate of the glass substrate.
  • the average coefficient of thermal expansion becomes too small, the difference from the average coefficient of thermal expansion of other members constituting the panel becomes too large, which is not preferable.
  • composition of a glass substrate is not specifically limited, The following (A) and (B) are mentioned as an example as a glass substrate for flat panel displays.
  • the following glass compositions (A) and (B) are suitable for an LTPS / TFT display glass substrate or an organic EL display glass substrate.
  • the content expressed as mol% of SiO 2 , Al 2 O 3, and B 2 O 3 is 3 (SiO 2 + (2 ⁇ Al 2 O 3 )) / ((2 ⁇ B 2 O 3 ) + RO). 0.0 or more is preferable. Thereby, the strain point of the glass substrate can be increased.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO is 5 or more.
  • the strain point is preferably 688 ° C. or higher.
  • the plane strain value of the glass substrate is preferably 1.0 nm or less, more preferably from 0 nm to 0.95 nm, and even more preferably from 0 nm to 0.90 nm.
  • the value of the plane strain is preferably 0kg / mm 2 ⁇ 0.07kg / mm 2, more preferably 0kg / mm 2 ⁇ 0.04kg / mm 2, 0kg / mm 2 ⁇ 0.02kg / mm 2 is Further preferred.
  • the warp amount of the glass substrate is preferably 0.15 mm or less, more preferably 0 mm to 0.10 mm, and further preferably 0 mm to 0.05 mm.
  • the thickness deviation of the glass substrate is preferably 15 ⁇ m or less, more preferably 0 ⁇ m to 14 ⁇ m, and even more preferably 0 ⁇ m to 13 ⁇ m.
  • the glass substrate manufactured in the present embodiment is suitable for manufacturing a glass substrate for a flat panel display. Particularly, it is suitable for the production of a glass substrate for LTPS / TFT display which is a glass substrate for high-definition display or a glass substrate for organic EL display. Moreover, it is suitable also for the glass substrate for oxide semiconductor displays which mounts oxide semiconductor TFT as TFT.
  • the devitrification temperature of the glass substrate is preferably 1250 ° C. or lower and the liquidus viscosity is preferably 10 4.7 dPa ⁇ s or higher. This is suitable for the overflow downdraw method.
  • Examples 1 to 3 and Comparative Example Using the glass substrate manufacturing apparatus 100 and the glass substrate manufacturing method, glass substrates of Examples 1 to 3 and a comparative example were manufactured under the following conditions.
  • the composition of the glass (mol%) is, SiO 2 70.5%, B 2 O 3 7.2%, Al 2 O 3 11.0%, K 2 O 0.2%, CaO 11.0%, SnO 2 0.07% was Fe 2 O 3 0.03%.
  • the liquidus temperature of the glass was 1206 ° C., and the liquidus viscosity was 1.9 ⁇ 10 5 dPa ⁇ s.
  • the annealing point of the glass was 758 ° C., and the strain point was 699 ° C.
  • variety of sheet glass SG was 1600 mm, and thickness was 0.7 mm (Example 1, comparative example), 0.6 mm (Example 2), and 0.5 mm (Example 3).
  • the molten glass was cooled until the temperature at the center became a slow cooling point of 758 ° C.
  • the sheet glass having a central temperature of 758 ° C. was cooled until the central temperature reached a strain point of 699 ° C.
  • the sheet glass having a central temperature of 699 ° C. was cooled until the central temperature reached 599 ° C., which is a strain point of ⁇ 100 ° C.
  • the fourth cooling step S44 the sheet glass having a central temperature of 599 ° C. was cooled until the central temperature reached 499 ° C., which is a strain point of ⁇ 200 ° C.
  • Table 1 shows the average cooling rate (° C./second) of the central region CA of the sheet glass SG and the heat of the cooled glass substrate in the first cooling step S41 to the fourth cooling step S44 of Examples 1 to 3 and the comparative example.
  • the measured values of shrinkage rate, strain value, warpage amount, and thickness deviation are shown.
  • the first average cooling rate in the first cooling step S41 has the largest value
  • the fourth average cooling rate in the fourth cooling step S44 has the next largest value
  • the second average in the second cooling step S42 The average cooling rate was the next largest value
  • the third average cooling rate in the third cooling step S43 was the smallest value.
  • the shrinkage rate is 70 ppm or less
  • the strain value is 0.90 nm or less
  • the warpage is 0.15 mm or less
  • the thickness deviation is 10.6 ⁇ m or less. It became the value of.
  • the thermal contraction rate of the glass substrate was obtained by the marking line method. Specifically, a marking line serving as a reference line was attached to both ends of a glass substrate serving as a sample, and then the sample was cut in half. Thereafter, one of the samples cut in half and heat-treated into two pieces was heat-treated, and attached to the other sample that had not been heat-treated, and the deviation of the marking line was measured. The heat treatment was performed twice at 550 ° C. ⁇ 60 minutes. More specifically, the temperature is raised from room temperature at 10 ° C./min, held at 550 ° C.
  • the amount of heat shrinkage (heat shrinkage rate) of the glass substrate was obtained.
  • the strain value of the glass substrate is a value related to plane strain.
  • the strain value was determined based on the magnitude of the birefringence.
  • the birefringence was measured by using a birefringence measuring instrument ABR-10A manufactured by UNIOPT, and the maximum value was adopted as the strain value.
  • the warpage amount of the glass substrate was obtained by the following method. First, a plurality of glass pieces were cut out from the glass plate PG having a predetermined effective width cut out from the sheet glass. Next, the glass piece was placed on a glass surface plate. The gap between each glass piece and the glass surface plate (in this example, four corners of the glass piece, two central portions on the long side, and two central portions on the short side) are measured using a clearance gauge. did.
  • the thickness deviation was measured at an interval of 5 mm in the width direction using a displacement meter made by Keyence in the effective area of the glass plate.
  • the present invention is applicable to a glass substrate manufacturing method using a downdraw method. Moreover, it can apply to manufacture of the glass substrate for flat panel displays. Furthermore, it is suitable for manufacturing a glass substrate for LTPS / TFT display or a glass substrate for organic EL display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Liquid Crystal (AREA)

Abstract

ガラス基板製造方法は、成形工程と、冷却工程とを備える。成形工程では、ダウンドロー法によって、熔融ガラスをシートガラスに成形する。冷却工程では、シートガラスの幅方向の両端部の領域である側部と、側部よりもシートガラスの幅方向内側にあり、シートガラスの幅方向の中心部を含む領域である中央領域とを含むシートガラスを冷却する。冷却工程は、第1冷却工程と、第2冷却工程と、第3冷却工程とを含む。第1冷却工程では、シートガラスの幅方向の中心部の温度が徐冷点になるまで、中央領域を第1の平均冷却速度で冷却する。第2冷却工程では、上記中心部の温度が徐冷点から歪点になるまで、中央領域を第2の平均冷却速度で冷却する。第3冷却工程では、上記中心部の温度が歪点から歪点-100℃になるまで、中央領域を第3の平均冷却速度で冷却する。第3の平均冷却速度は、第2の平均冷却速度より小さい。

Description

ガラス基板製造方法及びガラス基板製造装置
 本発明は、ガラス基板製造方法及びガラス基板製造装置に関する。
 ディスプレイを製造する工程において、ディスプレイ用のガラス基板は、熱処理により熱収縮する。このとき、ガラス基板の熱収縮率が大きいと、ガラス基板の表面に形成される素子の配置がずれるピッチズレが生じやすくなる。このため、ピッチズレを低減する観点から、ディスプレイ用のガラス基板には、熱処理時における熱収縮率が小さいことが求められている。
 ガラス基板の熱収縮率を小さくする方法としては、(1)組成を調整することで、ガラスの歪点を高くすること、(2)成形工程後のシートガラスの冷却速度を低減することなどが挙げられる。例えば、特許文献1(特表2003-503301号公報)には、ガラス基板の熱収縮率を小さくする技術として、歪点が680℃以上になるようにガラス組成を改良する技術が開示されている。
 しかし、(1)歪点が高くなるように組成を調整すると、失透及び難熔解という問題が生じやすいため、歪点を高くするには限界があり、また、(2)冷却速度を低減しすぎると、生産性が低下するという問題があった。
 そのため、例えば、特許文献2(特許第5153965号公報)には、生産性を確保しつつ熱収縮率を小さくする技術が開示されているが、熱収縮率の低減が十分ではないという問題があった。
 また、携帯電話等のモバイル機器に搭載されるディスプレイには、益々高精細化及び低消費電力化が求められている。そのため、近年、ディスプレイの製造工程における熱処理時に生じるガラス基板の熱収縮率をさらに小さくすることが益々求められている。
 従って、本発明の課題は、ダウンドロー法を用いてガラス基板を製造する場合に、ディスプレイのパネル製造工程における熱処理時に生じるガラス基板の熱収縮率を十分に小さくするガラス基板製造方法ならびに、上記ガラス基板製造方法を実施するガラス基板製造装置を提供することにある。
 本発明者らは、従来はガラス基板の熱収縮率には影響を与えないと考えられていた、歪点よりも低い温度領域の冷却速度が、ディスプレイのパネル製造工程における熱処理時に生じるガラス基板の熱収縮率に大きな影響を与えることを突き止めた。
 本発明に係るガラス基板製造方法は、成形工程と、冷却工程とを備える。成形工程では、ダウンドロー法によって、熔融ガラスをシートガラスに成形する。冷却工程では、シートガラスの幅方向の両端部の領域である側部と、側部よりもシートガラスの幅方向内側にあり、シートガラスの幅方向の中心部を含む領域である中央領域と、を含むシートガラスを冷却する。冷却工程は、第1冷却工程と、第2冷却工程と、第3冷却工程とを含む。第1冷却工程では、シートガラスの幅方向の中心部の温度が徐冷点になるまで、中央領域を第1の平均冷却速度で冷却する。第2冷却工程では、中心部の温度が徐冷点から歪点になるまで、中央領域を第2の平均冷却速度で冷却する。第3冷却工程では、中心部の温度が歪点から歪点-100℃になるまで、中央領域を第3の平均冷却速度で冷却する。第3の平均冷却速度は、第2の平均冷却速度より小さい。
 第3の平均冷却速度を第2の平均冷却速度より小さくすることにより、ディスプレイのパネル製造工程における熱処理時に生じるガラス基板の熱収縮率を効果的に小さくすることができる。また、ガラス基板の生産性を低下させることなく、ガラス基板の熱収縮率を低減できる。
 また、本発明に係るガラス基板製造方法は、成形工程と、冷却工程とを備える。成形工程では、ダウンドロー法によって、熔融ガラスをシートガラスに成形する。冷却工程では、シートガラスの側部に形成された耳部と耳部よりもシートガラスの幅方向の中心部に近い中央領域とを含むシートガラスを冷却する。また、冷却工程は、第1の冷却工程と、第2の冷却工程と、第3の冷却工程とを含む。第1の冷却工程では、シートガラスの幅方向の中心部の温度が、徐冷点になるまで、中央領域を第1の平均冷却速度でシートガラスを冷却する。第2の冷却工程では、中心部の温度が、徐冷点から歪点になるまで、中央領域を第2の平均冷却速度でシートガラスを冷却する。第3の冷却工程では、中心部の温度が、歪点から歪点-100℃になるまで、中央領域を第3の平均冷却速度でシートガラスを冷却する。第3の平均冷却速度は、第2の平均冷却速度より小さい。
 また、本発明に係るガラス基板製造方法では、第3の平均冷却速度と第2の平均冷却速度の速度比(第3の平均冷却速度/第2の平均冷却速度)は、0.2以上1未満であることが好ましい。
 速度比をこのように設定することにより、ガラス基板の生産性を低下させることなく、ガラス基板の熱収縮率を低減できる。
 また、本発明に係るガラス基板製造方法では、冷却工程において、少なくとも第1の平均冷却速度、第2の平均冷却速度および第3の平均冷却速度は、シートガラスの熱収縮率が目標値を達成するように、コンピュータシミュレーションに基づいて予め決定されることが好ましい。
 また、本発明に係るガラス基板製造方法では、シートガラスの歪点は680℃以上であることが好ましい。
 このような歪点を有するガラスを使用することにより、上記処理温度に対するガラス基板の熱収縮率をより効果的に小さくできる。
 また、本発明に係るガラス基板製造方法では、上記ガラス基板は、SiO2を55mol%~80mol%、Al23を3mol%~20mol%、B23を0mol%~15mol%、RO(MgO、CaO、SrO、BaOの合量)を3mol%~25mol%含有し、SiO2、Al23およびB23のmol%で表す含有率(SiO2+(2×Al23))/((2×B23)+RO)が3.0以上であることが好ましい。
 ガラス基板の組成をこのようにすることにより、上記処理温度に対するガラス基板の熱収縮率をより効果的に小さくできる。
 また、本発明に係るガラス基板製造方法では、上記ガラス基板は、LTPS・TFTディスプレイ用ガラス基板又は有機ELディスプレイ用ガラス基板であることが好ましい。
 このような用途に使用した場合に、LTPS・TFTや有機ELなどのディスプレイのパネル製造工程における熱処理温度(例えば、450℃~600℃)に対するガラス基板の熱収縮率をより効果的に小さくすることができる。また、ガラス基板の生産性をより低下させることなく、ガラス基板の熱収縮率をより低減できる。
 また、本発明に係るガラス基板製造方法では、上記第2の平均冷却速度は、0.8℃/秒~5.0℃/秒であり、上記第3の平均冷却速度は、0.5℃/秒~4.0℃/秒であることが好ましい。
 第2と第3の平均冷却速度をこのように設定することで、ガラス基板の生産性をより低下させることなく、ガラス基板の熱収縮率をより低減できる。
 さらに、本発明に係るガラス基板製造方法では、上記冷却工程で冷却されたシートガラスから得られたガラス基板の熱収縮率であって、ガラス基板を常温から10℃/分で昇温し、550℃で60分保持し、その後、10℃/分で常温まで降温し、再び10℃/分で昇温し、550℃で60分保持し、その後、10℃/分で常温まで降温した時の熱収縮率は、ガラス基板の板厚が0.5mm~1.0mmの場合において、好ましくは70ppm以下である。熱収縮率は、例えば、ケガキ線のズレの測定値に基づいて得られたものである。
 このような熱収縮率のガラス基板を製造することにより、ディスプレイのパネル製造工程における熱処理時におけるガラス基板の熱収縮率をより効果的に小さくすることができる。
 また、本発明に係るガラス基板製造装置は、ガラス原料を熔融して熔融ガラスを製造する熔融装置と、上記熔融ガラスをシートガラスに成形し、上記シートガラスを冷却する成形装置とを備えている。上記成形装置では、シートガラスの幅方向の両端部の領域である側部と、側部よりもシートガラスの幅方向内側にあり、シートガラスの幅方向の中心部を含む領域である中央領域と、を含むシートガラスを冷却する。成形装置は、温度調整ユニットと、ヒータと、制御装置とを有している。制御装置は、第1冷却工程において第1の平均冷却速度でシートガラスの上記中央領域を冷却し、第2冷却工程において第2の平均冷却速度でシートガラスの上記中央領域を冷却し、第3冷却工程において第3の平均冷却速度でシートガラスの上記中央領域を冷却し、且つ第3の平均冷却速度は、第2の平均冷却速度より小さくなるように、温度調整ユニットとヒータを制御する。第1冷却工程は、シートガラスの幅方向の中心部の温度が徐冷点になるまで、上記中央領域を冷却する。第2冷却工程は、中心部の温度が徐冷点から歪点になるまで、上記中央領域を冷却する。第3冷却工程は、中心部の温度が歪点から歪点-100℃になるまで、上記中央領域を冷却する。
 このような製造装置によれば、例えば、ディスプレイのパネル製造工程における熱処理時におけるガラス基板の熱収縮率が効果的に小さいガラス基板を製造できる。また、ガラス基板の生産性を低下させることなく、ガラス基板の熱収縮率を低減できる。
 また、本発明に係るガラス基板製造方法は、成形工程と、冷却工程とを備える。成形工程では、ダウンドロー法によって、熔融ガラスをシートガラスに成形する。冷却工程では、シートガラスの熱収縮率が目標値を達成するように予め決定された冷却速度でシートガラスを冷却する。冷却速度は、冷却工程においてシートガラスが取り得る温度を複数の温度領域に区分けし、当該各温度領域における温度の維持時間と熱収縮率との間の関係に基づいて決定される。
 また、本発明に係るガラス基板製造装置は、ガラス原料を熔融して熔融ガラスを製造する熔融装置と、上記熔融ガラスをシートガラスに成形し、上記シートガラスを冷却する成形装置とを備えている。上記成形装置では、シートガラスの側部に形成された耳部と耳部よりもシートガラスの幅方向の中心部に近い中央領域とを含むシートガラスを冷却する。成形装置は、温度調整ユニットと、ヒータと、制御装置とを有している。制御装置は、第1冷却工程において第1の平均冷却速度でシートガラスの上記中央領域を冷却し、第2冷却工程において第2の平均冷却速度でシートガラスの上記中央領域を冷却し、第3の冷却工程において第3の平均冷却速度でシートガラスの上記中央領域を冷却し、且つ第3の平均冷却速度は、第2の平均冷却速度より小さくなるように、温度調整ユニットとヒータを制御する。第1冷却工程は、シートガラスの幅方向の中心部の温度が徐冷点になるまで、上記中央領域を冷却する。第2冷却工程は、中心部の温度が徐冷点から歪点になるまで、上記中央領域を冷却する。第3の冷却工程は、中心部の温度が歪点から歪点-100℃になるまで、上記中央領域を冷却する。
 本発明に係るガラス基板製造方法ならびにガラス基板製造装置では、ガラス基板の生産量を低下させることなく、熱収縮率を低減したガラス基板を製造することができる。
本実施形態に係るガラス基板製造方法のフローチャートである。 ガラス基板製造方法で用いられるガラス基板製造装置を示す模式図である。 成形装置の概略の概略図(断面図)である。 成形装置の概略の概略図(側面図)である。 制御装置の制御ブロック図である。 シートガラスの所定の高さ位置における温度プロファイルを示す図である。 シートガラスの温度-時間グラフである。 シートガラスの規格化熱収縮率-維持温度グラフである。 シートガラスの規格化熱収縮率-時間グラフである。 シートガラスの熱収縮率-総面積グラフである。
 本実施形態に係るガラス基板製造方法では、ダウンドロー法を用いてガラス基板が製造される。以下、図面を参照しながら、本実施形態に係るガラス基板製造方法について説明する。
 (1)ガラス基板製造方法の概要
 まず、図1および図2を参照して、ガラス基板製造方法に含まれる複数の工程および複数の工程に用いられるガラス基板製造装置100を説明する。ガラス基板製造方法は、図1に示すように、主として、熔融工程S1と、清澄工程S2と、成形工程S3と、冷却工程S4とを含む。
 熔融工程S1は、ガラスの原料が熔融される工程である。ガラスの原料は、所望の組成になるように調合された後、熔融装置11に投入される。ガラスの原料は、熔融装置11で熔融されて、熔融ガラスFGになる。熔融温度は、ガラスの種類に応じて調整される。本実施形態では、熔融工程S1における熔融ガラスFGの最高温度が1500℃~1650℃となるように加熱される。熔融ガラスFGは、上流パイプ23を通って清澄装置12に送られる。
 清澄工程S2は、熔融ガラスFG中の気泡の除去を行う工程である。清澄装置12内で気泡が除去された熔融ガラスFGは、その後、下流パイプ24を通って、成形装置40へと送られる。
 成形工程S3は、熔融ガラスFGをシート状のガラス(シートガラス)SGに成形する工程である。具体的に、熔融ガラスFGは、成形装置40に含まれる成形体41(図3参照)に連続的に供給された後、成形体41からオーバーフローする。オーバーフローした熔融ガラスFGは、成形体41の表面に沿って流下する。熔融ガラスFGは、その後、成形体41の下端部で合流してシートガラスSGへと成形される。
 冷却工程S4は、シートガラスSGを冷却する工程である。ガラスシートは、冷却工程S4を経て室温に近い温度へと冷却される。なお、冷却工程S4における、冷却の状態に応じて、ガラス基板の厚み(板厚)、ガラス基板の反り量、およびガラス基板の平面歪の値が決まる。
 なお、冷却工程S4の後に、切断工程S5を設けてもよい。例えば、切断工程S5は、室温に近い温度になったシートガラスSGを、切断装置90において所定の大きさに切断する工程である。
 なお、切断工程S5で所定の大きさに切断されたシートガラスSG(ガラス板PG)は、その後、端面加工等の工程を経て、ガラス基板となる。ガラス基板は、梱包された後、パネルメーカー等に出荷される。パネルメーカーは、ガラス基板の表面に素子を形成して、ディスプレイを製造する。
 なお、冷却工程S4の後に、切断工程S5を設けなくてもよい。すなわち、冷却工程S4で冷却されたシートガラスSGは、そのまま梱包された後、パネルメーカー等に出荷されてもよい。この場合、パネルメーカーは、シートガラスSGの表面に素子を形成した後に、シートガラスSGを所定の大きさに切断して端面加工することで、ディスプレイを製造する。
 以下、図3~図5を参照して、ガラス基板製造装置100に含まれる成形装置40の構成を説明する。なお、本実施形態において、シートガラスSGの幅方向とは、シートガラスSGが流下する方向(流れ方向)に交差する方向、すなわち、水平方向を意味する。
 (2)成形装置の構成
 まず、図3および図4に、成形装置40の概略構成を示す。図3は、成形装置40の断面図である。図4は、成形装置40の側面図である。
 成形装置40は、シートガラスSGが通過する通路と、通路を取り囲む空間とを有する。通路を取り囲む空間は、例えば、成形体室20、第1冷却室30、および第2冷却室80で構成されている。
 成形体室20は、前述の清澄装置12から送られる熔融ガラスFGがシートガラスSGに成形される空間である。
 第1冷却室30は、成形体室20の下方に配置され、シートガラスSGの厚みおよび反り量を調整するための空間である。第1冷却室30では、後述する第1冷却工程S41の一部が実行される。第1冷却室30では、シートガラスSGの中心部Cの温度が徐冷点より高い状態のシートガラスSGが冷却される。シートガラスSGの中心部Cは、シートガラスSGの幅方向の中心部である。第1冷却室30では、シートガラスSGの中心部Cの温度は、第1温度領域および第2温度領域にある。第1温度領域は、シートガラスSGの中心部Cの温度が軟化点より高い温度から軟化点近傍になるまでの温度領域である。また、第2温度領域とは、シートガラスSGの中心部Cの温度が軟化点近傍から徐冷点近傍になるまでの温度領域である。シートガラスSGは、第1冷却室30内を通過した後、後述の第2冷却室80内を通過する。
 第2冷却室80は、成形体室20の下方に配置され、シートガラスSGの反り、熱収縮率、および歪値を調整するための空間である。成形体室20では、後述する第1冷却工程S41の一部、第2冷却工程S42、および第3冷却工程S43が実行される。第2冷却室80では、第1冷却室30内を通過したシートガラスSGが、徐冷点、歪点を経て、少なくとも、歪点より100℃低い温度まで冷却される。しかし、第2冷却室80では、シートガラスSGが、室温付近の温度まで冷却されてもよい。なお、第2冷却室80の内部は、断熱部材80bによって、複数の空間に区分けされていてもよい。複数の断熱部材80bは、複数の引下げローラ81a~81gのそれぞれの間で、シートガラスSGの厚み方向の両側に配置される。これにより、シートガラスSGの温度管理を、より精度よく行うことができる。
 また、成形装置40は、例えば、成形体41と、仕切り部材50と、冷却ローラ51と、温度調整ユニット60と、引下げローラ81a~81gと、ヒータ82a~82gと、を備える。さらに、成形装置40は、制御装置91を備える(図5参照)。制御装置91は、成形装置40に含まれる各構成の駆動部を制御する。
 以下、成形装置40に含まれる各構成について詳細に説明する。
  (2-1)成形体
 成形体41は、成形体室20内に設けられる。成形体41は、熔融ガラスFGをオーバーフローさせることによって、熔融ガラスFGをシート状のガラス(シートガラスSG)へと成形する。図3に示すように、成形体41は、断面形状で略五角形の形状(楔形に類似する形状)を有する。略五角形の先端は、成形体41の下端部41aに相当する。
 また、成形体41は、第1端部に流入口42を有する(図4参照)。成形体41の上面には、溝43が形成されている。流入口42は、上述の下流パイプ24と接続されており、清澄装置12から流れ出た熔融ガラスFGは、流入口42から溝43に流し込まれる。成形体41の溝43に流し込まれた熔融ガラスFGは、成形体41の一対の頂部41b,41bからオーバーフローし、成形体41の一対の側面(表面)41c,41cを沿いながら流下する。その後、熔融ガラスFGは、成形体41の下端部41aで合流してシートガラスSGになる。
  (2-2)仕切り部材
 仕切り部材50は、成形体室20から第1冷却室30への熱の移動を遮断する部材である。仕切り部材50は、熔融ガラスFGの合流ポイントの近傍に配置されている。また、図3に示すように、仕切り部材50は、合流ポイントで合流した熔融ガラスFG(シートガラスSG)の厚み方向両側に配置される。仕切り部材50は、例えば、断熱材である。仕切り部材50は、熔融ガラスFGの合流ポイントの上側雰囲気および下側雰囲気を仕切ることにより、仕切り部材50の上側から下側への熱の移動を遮断する。
  (2-3)冷却ローラ
 冷却ローラ51は、第1冷却室30内に設けられる。より具体的に、冷却ローラ51は、仕切り部材50の直下に配置されている。また、冷却ローラ51は、シートガラスSGの厚み方向両側、且つ、シートガラスSGの幅方向両側に配置される。シートガラスSGの厚み方向両側に配置された冷却ローラ51は対で動作する。すなわち、シートガラスSGの幅方向両端部は、二対の冷却ローラ51によって挟み込まれる。
 例えば、冷却ローラ51は、内部に通された空冷管や水冷管により冷却されている。冷却ローラ51は、シートガラスSGの側部(耳部)R,Lに接触し、熱伝導によりシートガラスSGの側部(耳部)R,Lを急冷する(急冷工程)。冷却ローラ51に接触したシートガラスSGの側部(耳部)R,Lの粘度は、所定値(具体的には、109.0poise)以上である。ここで、シートガラスSGの側部(耳部)R,Lとは、シートガラスSGの幅方向の両端部の領域であり、具体的には、シートガラスSGの幅方向の縁からシートガラスSGの中心部Cに向かって、シートガラスSGの幅方向200mm以内の範囲をいう。
 冷却ローラ51は、冷却ローラ駆動モータ390(図5を参照)により回転駆動される。冷却ローラ51は、シートガラスSGの側部(耳部)R,Lを冷却すると共に、シートガラスSGを下方に引き下げる機能も有する。なお、冷却ローラ51によるシートガラスSGの側部(耳部)R,Lの冷却は、シートガラスSGの幅およびシートガラスSGの厚みの均一化に影響を与える。
  (2-4)温度調整ユニット
 温度調整ユニット60は、第1冷却室30内に設けられ、シートガラスSGを徐冷点近傍まで冷却するユニットである。温度調整ユニット60は、仕切り部材50の下方であって、第2冷却室80の天板80aの上方に配置される。
 温度調整ユニット60は、シートガラスSGの中心部Cの温度が徐冷点近傍になるまで、シートガラスSGを冷却する。シートガラスSGの中心部Cは、その後、第2冷却室80内で、徐冷点、歪点を経て、室温近傍の温度まで冷却される。
 温度調整ユニット60は、冷却ユニット61を有してもよい。冷却ユニット61は、シートガラスSGの幅方向に複数(ここでは、3つ)及びその流れ方向に複数配置される。具体的には、冷却ユニット61は、シートガラスSGの側部(耳部)R,Lの表面に対向するように、1つずつ配置され、且つ、後述する中央領域CA(図4を参照)の表面に対向するように1つ配置されている。ここで、シートガラスSGの中央領域CAとは、シートガラスSGの幅方向中央部分であって、シートガラスSGの有効幅およびその近傍を含む領域である。言い換えると、シートガラスSGの中央領域CAは、シートガラスSGの側部(耳部)R,Lに挟まれた部分である。なお、シートガラスSGの中央領域CAは、板厚を均一にする対象の部分を含む領域であり、シートガラスSGの側部(耳部)R,Lは、製造後に切断される対象の部分を含む領域である。より具体的には、シートガラスSGの中央領域CAとは、シートガラスSGの側部(耳部)R,LよりもシートガラスSGの幅方向内側の領域であって、シートガラスSGの幅方向の中心部Cを含む領域である。本明細書では、シートガラスSGの幅方向の幅のうちシートガラスSGの幅方向の中心から幅の85%以内の範囲をいう。
  (2-5)引下げローラ
 引下げローラ81a~81gは、第2冷却室80内に設けられ、第1冷却室30内を通過したシートガラスSGを、シートガラスSGの流れ方向へ引き下げる。引下げローラ81a~81gは、第2冷却室80の内部で、流れ方向に沿って所定の間隔を空けて配置される。引下げローラ81a~81gは、シートガラスSGの厚み方向両側(図3参照)、および、シートガラスSGの幅方向両側(図4参照)に複数配置される。すなわち、引下げローラ81a~81gは、シートガラスSGの幅方向の側部(耳部)R,L、かつ、シートガラスSGの厚み方向の両側に接触しながらシートガラスSGを下方に引き下げる。
 引下げローラ81a~81gは、引下げローラ駆動モータ391(図5参照)によって駆動される。また、引下げローラ81a~81gは、シートガラスSGに対して内側に回転する。引下げローラ81a~81gの周速度は、引下げローラ81a~81gが下流側に設置されている程、大きくすることが好ましい。すなわち、複数の引下げローラ81a~81gのうち、引下げローラ81aの周速度が最も小さく、引下げローラ81gの周速度が最も大きい。シートガラスSGの厚み方向両側に配置された引下げローラ81a~81gは、対で動作し、対の引下げローラ81a,81a,・・・が、シートガラスSGを下方向に引き下げる。
  (2-6)ヒータ
 ヒータ82a~82gは、第2冷却室80の内部に設けられ、第2冷却室80の内部空間の温度を調整する。具体的に、ヒータ82a~82gは、シートガラスSGの流れ方向およびシートガラスSGの幅方向に複数配置される。例えば、シートガラスSGの流れ方向には、7つのヒータが配置され、シートガラスの幅方向には3つのヒータが配置される。幅方向に配置される3つのヒータは、シートガラスSGの中央領域CAと、シートガラスSGの側部(耳部)R,Lとをそれぞれ温度制御する。ヒータ82a~82gは、後述する制御装置91によって出力が制御される。これにより、第2冷却室80内部を通過するシートガラスSGの近傍の雰囲気温度が制御される。ヒータ82a~82gによって第2冷却室80内の雰囲気温度が制御されることによって、シートガラスSGの温度制御が行われる。また、温度制御により、シートガラスSGは、粘性域から粘弾性域を経て弾性域へと推移する。このように、ヒータ82a~82gの制御により、第2冷却室80では、シートガラスSGの温度が、徐冷点近傍の温度から室温付近の温度まで冷却される。
 なお、シートガラスSGの近傍には、雰囲気温度を検出する雰囲気温度検出手段(本実施形態では、熱電対)380が設けられていてもよい。例えば、複数の熱電対380が、シートガラスSGの流れ方向およびシートガラスSGの幅方向に配置される。熱電対380は、シートガラスSGの表面の温度を検出することができる。例えば、熱電対380は、シートガラスSGの中心部Cの温度と、シートガラスSGの側部(耳部)R,Lの温度とをそれぞれ検出する。ヒータ82a~82gの出力は、熱電対380によって検出される雰囲気温度に基づいて制御される。
  (2-7)切断装置
 切断装置90は、第2冷却室80内で室温付近の温度まで冷却されたシートガラスSGを、所定のサイズに切断する。これにより、シートガラスSGは、複数のガラス板PGになる。切断装置90は、切断装置駆動モータ392(図5を参照)によって駆動される。なお、切断装置は、必ずしも第2冷却室80の直下に設けられていなくてもよい。
  (2-8)制御装置
 制御装置91は、CPU、RAM、ROM、およびハードディスク等から構成されており、ガラス板の製造装置100に含まれる種々の機器の制御を行う。具体的には、図5に示すように、制御装置91は、ガラス基板製造装置100に含まれる各種のセンサ(例えば、熱電対380)やスイッチ(例えば、主電源スイッチ381)等による信号を受けて、温度調整ユニット60、ヒータ82a~82g、冷却ローラ駆動モータ390、引下げローラ駆動モータ391、切断装置駆動モータ392等の制御を行う。
 (3)温度管理
 本実施形態に係るガラス基板製造方法では、冷却工程S4は、複数の冷却工程S41,S42,S43,S44からなる。具体的には、シートガラスSGの流れ方向に沿って、第1冷却工程S41、第2冷却工程S42、第3冷却工程S43、および第4冷却工程S44が順に実行される。
 また、冷却工程S4では、シートガラスSGの流れ方向および幅方向の温度管理を行っている。温度管理は、複数の温度プロファイルTP1~TP10に基づいて行われる。温度プロファイルTP1~TP10とは、シートガラスSG近傍の雰囲気温度についての、シートガラスSGの幅方向に沿った温度分布である。言い換えると、温度プロファイルTP1~TP10は、目標の温度分布である。すなわち、温度管理は、複数の温度プロファイルTP1~TP10を実現させるように行われる。温度管理は、上述した、冷却ローラ51、温度調整ユニット60、およびヒータ82a~82gを用いて行われる。
 シートガラスSGの温度は、シートガラスSGの雰囲気温度を制御することにより、管理される。なお、シートガラスSGの温度は、シートガラスSGの温度の実測値を用いてもよく、また、ヒータ82a~82gによって制御されるシートガラスSGの雰囲気温度に基づいてシミュレーションにより算出された値を用いてもよい。
 さらに、各冷却工程S41~S44は、所定の冷却速度で、シートガラスSGを冷却することにより、シートガラスSGの流れ方向の温度管理を行っている。ここで、所定の冷却速度とは、各冷却工程S41~S44に応じた冷却速度である。以下、特に断らずに平均冷却速度という場合には、原則として、シートガラスSGの中央領域CAにおける平均の冷却速度を指す。具体的に、全冷却工程S41~S44の平均冷却速度のうち、第3冷却工程S43の冷却速度(第3冷却速度)が最も遅い。つまり、第2冷却工程S42の冷却速度(第2冷却速度)は、第3冷却速度より速い。また、全冷却工程S41~S44の冷却速度のうち、第1冷却工程S41の平均冷却速度(第1冷却速度)が最も速いことが好ましい。また、第4冷却工程S44における平均冷却速度(第4冷却速度)は、第1冷却速度より遅く、かつ、第2冷却速度より速いことが好ましい。すなわち、全冷却工程S41~S44の冷却速度に関して、第1冷却速度>第4冷却速度>第2冷却速度>第3冷却速度の関係式が成り立つことが好ましい。
 また、本実施形態に係る冷却工程S4では、シートガラスSGの中心部Cの冷却速度(中心部冷却速度)と、シートガラスSGの側部(耳部)R,Lの冷却速度(耳部冷却速度)とを異なる速度に設定している。中心部冷却速度は、シートガラスSGの中心部Cの温度変化の量と、温度変化に要する時間とに基づいて算出される。耳部冷却速度は、シートガラスSGの側部(耳部)R,Lの温度変化の量と、温度変化に要する時間とに基づいて算出される。
 以下、図6を参照して、各冷却工程S41~S44におけるシートガラスSGの温度管理について詳細に説明する。図6は、シートガラスSGの所定の高さ位置における温度プロファイルを示す。以下において、シートガラスSGの側部(耳部)R,Lを、単に、シートガラスSGの耳部R,Lと記載する。
  (3-1)第1冷却工程
 第1冷却工程S41は、成形体41の直下で合流した熔融ガラスを、中心部Cの温度が徐冷点になるまで冷却する工程である。徐冷点は、粘度が1013ポワズとなるときの温度である。具体的に、第1冷却工程S41では、例えば、中心部Cの温度が1100℃~1300℃のシートガラスSGを、中心部Cの温度が徐冷点になるまで冷却する。ここで「徐冷点になるまで冷却する」における徐冷点とは、徐冷点近傍を含み、例えば徐冷点±15℃の温度であってもよい。
 第1冷却工程S41では、第1温度プロファイルTP1~第5温度プロファイルTP5に基づいて、シートガラスSGの温度管理が行われる。以下、第1冷却工程S41で実行される各温度プロファイルTP1~TP5と、第1冷却工程S41の冷却速度(第1冷却速度)とを詳細に説明する。
   (3-1-1)第1温度プロファイル
 第1温度プロファイルTP1は、シートガラスSGの最も上流側で実現される温度分布である(図6参照)。第1温度プロファイルTP1は、シートガラスSGの中央領域CAの温度が均一であり、シートガラスSGの耳部R,Lは、シートガラスSGの中央領域CAの温度よりも低い。ここで、中央領域CAの温度が均一であるとは、中央領域CAの温度が、所定の温度域に含まれることをいう。所定の温度域とは、基準温度±20℃の範囲である。基準温度は、中央領域CAの幅方向の平均温度である。
 第1温度プロファイルTP1は、第1冷却室30内の冷却ローラ51および温度調整ユニット60を制御することにより実現される。具体的には、冷却ローラ51によってシートガラスSGの耳部R,Lが冷却される。シートガラスSGの耳部R,Lの温度は、中央領域CAの温度よりも所定温度(例えば、200℃~250℃)低い温度に冷却する。第
1温度プロファイルTP1は、シートガラスSGの板厚偏差を低減する。
 なお、第1温度プロファイルTP1に基づく温度管理は、シートガラスSGの板厚偏差をより低減するために成形体直下で行われることが好ましく、また、シートガラスSGがガラス軟化点の近傍まで冷却されるまでに行われることが好ましい。ここで、「ガラス軟化点の近傍」は、「ガラス軟化点-20℃」から「ガラス軟化点+20℃」までの温度領域であることが好ましい。
   (3-1-2)第2温度プロファイルおよび第3温度プロファイル
 第2温度プロファイルTP2および第3温度プロファイルTP3は、第1温度プロファイルTP1の後に実現される温度分布である(図6参照)。具体的には、シートガラスSGの流れ方向に対して、上流側に第2温度プロファイルTP2が位置し、下流側に第3温度プロファイルTP3が位置する。
 第2温度プロファイルTP3および第3温度プロファイルTP3は、中央領域CAの中心部Cの温度が最も高く、耳部R,Lの温度が最も低い。また、第2温度プロファイルTP2および第3温度プロファイルTP3では、中心部Cから耳部R,Lに向かって温度が徐々に低くなる。すなわち、中心部Cの温度と耳部R,Lの温度とには勾配(温度勾配)が形成されている。言い換えると、第2プロファイルTP2および第3温度プロファイルTP3は、上に凸を有するなだらかな放物線を形成する。なお、ここで、温度勾配とは、シートガラスSGの幅W(例えば、1650mm、図6を参照)を2で除した値で、中心部Cの雰囲気温度から耳部R,Lの雰囲気温度を引いた値を、除したもの((中心部Cの雰囲気温度―耳部R,Lの雰囲気温度)/(シートガラスの幅W/2))である。
 また、第3温度プロファイルTP3における温度勾配TG3は、第2温度プロファイルTP2における温度勾配TG2よりも大きい。言い換えると、第3温度プロファイルTP3におけるシートガラスSGの耳部R,Lの雰囲気温度と中心部Cの雰囲気温度との差(幅方向温度差)は、第2温度プロファイルTP2における幅方向温度差よりも大きい。すなわち、第3温度プロファイルTP3は、第2温度プロファイルTP2よりも大きな放物線となる。第2温度プロファイルTP2および第3温度プロファイルTP3では、耳部R,Lが中心部Cよりも早く冷却されるように、大きな放物線状のプロファイルが実現される。
 なお、第2温度プロファイルTP2および第3温度プロファイルTP3は、第1冷却室30内の温度調整ユニット60を制御することにより実現される。
   (3-1-3)第4温度プロファイル
 第4温度プロファイルTP4は、第3温度プロファイルTP3の後に実現される温度分布である(図6参照)。第4温度プロファイルTP4もまた、中央領域CAの中心部Cの温度が最も高く、耳部R,Lの温度が最も低い。また、第4温度プロファイルTP4も、中心部Cから耳部R,Lに向かって温度が徐々に低くなり、上に凸を有するなだらかな放物線を形成する。
 なお、第4温度プロファイルTP4における温度勾配TG4は、上流の第3温度プロファイルTP3における温度勾配TG3よりも小さい。すなわち、第4温度プロファイルTP4は、第3温度プロファイルTP3よりも小さな放物線となる。
 なお、第4温度プロファイルTP4は、第2冷却室80内のヒータ82aを制御することにより実現される。
   (3-1-4)第5温度プロファイル
 第5温度プロファイルTP5は、第4温度プロファイルTP4の後に実現される温度分布である(図6参照)。第5温度プロファイルTP5もまた、中心部Cの温度が最も高く、耳部R,Lの温度が最も低い。また、第5温度プロファイルTP5も、中心部Cから耳部R,Lに向かって温度が徐々に低くなり、上に凸を有するなだらかな放物線を形成する。
 第5温度プロファイルTP5における温度勾配TG5は、第4温度プロファイルTP4における温度勾配TG4よりも小さい。すなわち、第5温度プロファイルTP5は、第4温度プロファイルTP4よりも小さな放物線となる。
 なお、第5温度プロファイルTP5は、第2冷却室80内のヒータ82bを制御することにより実現される。
 このように、第2温度プロファイルTP2~第5温度プロファイルTP5を実現することにより、中心部Cの冷却速度は耳部R、Lの冷却速度よりも常に速くなるため、中心部Cの熱収縮量は耳部R,Lの熱収縮量よりも大きくなる。そのため、シートガラスSGの中心部Cから耳部R,Lに向かう張力が常に働くので、シートガラスSGの反り等を低減することができる。
   (3-1-5)第1冷却速度
 第1冷却工程S41では、中央領域CAの雰囲気温度よりも、耳部R,Lの雰囲気温度を速い平均冷却速度で冷却している。すなわち、中央領域CAの平均冷却速度(第1の平均冷却速度)と比較して、耳部R,Lの平均冷却速度(第1の耳部冷却速度)が速い。
 第1冷却工程S41における中央領域CAの第1の平均冷却速度は、5.0℃/秒~50.0℃/秒である。第1の平均冷却速度が、5.0℃/秒より低いと、生産性が悪くなる。第1の平均冷却速度が、50℃/秒を超えると、シートガラスSGに割れが発生する場合がある。また、シートガラスSGの反り量および板厚偏差が悪くなる。好ましくは、中央領域CAの第1の平均冷却速度は、8.0℃/秒~16.5℃/秒である。また、第1冷却工程S41における第1の耳部冷却速度は、5.5℃/秒~52.0℃/秒である。好ましくは、第1の耳部冷却速度は、8.3℃/秒~17.5℃/秒である。
  (3-2)第2冷却工程
 第2冷却工程S42は、中心部Cの温度が徐冷点になったシートガラスSGを、中心部Cの温度が歪点になるまで冷却する工程である。ここで、歪点は、粘度が1014.5ポワズとなる温度である。ここで「歪点になるまで冷却する」における歪点とは、歪点近傍を含み、例えば歪点±15℃の温度であってもよい。
 第2冷却工程S42では、第6温度プロファイルTP6に基づいて、シートガラスSGの温度管理が行われる。以下、第2冷却工程S42で実行される温度プロファイルTP6と、第2冷却工程S42の冷却速度(第2冷却速度)とを詳細に説明する。
   (3-2-1)第6温度プロファイル
 第6温度プロファイルTP6は、シートガラスSGの幅方向の雰囲気温度(幅方向の耳部R,Lから中心部Cにかけての雰囲気温度)が均一である。言い換えると、第6温度プロファイルTP6は、シートガラスSGの幅方向において、耳部R,L周辺の雰囲気温度と中心部C周辺の雰囲気温度との温度勾配が最も小さく、耳部R,L周辺の雰囲気温度と中心部C周辺の雰囲気温度とが、同程度になる温度プロファイルである。
 ここで、均一とは、耳部R,L周辺の雰囲気温度と中央領域CA周辺の雰囲気温度とが、所定の温度域に含まれることをいう。所定の温度域とは、基準温度±5℃の範囲である。基準温度は、シートガラスSGの幅方向の平均温度である。
 なお、第6温度プロファイルTP6は、第2冷却室80内のヒータ82cを制御することにより実現される。また、第6温度プロファイルTP6は、歪点近傍で実現されるものとする。ここで、歪点近傍とは、歪点を含む所定の温度領域を意味する。所定の温度領域とは、「(徐冷点+歪点)/2」から「歪点-50℃」までの領域である。第6温度プロファイルTP6は、歪点近傍の少なくとも一点(流れ方向における一箇所)において実現される。第6温度プロファイルTP6を実現することにより、シートガラスSGの内部歪を低減することができる。
   (3-2-2)第2冷却速度
 第2冷却工程S42では、シートガラスSGの幅方向の雰囲気温度がほぼ一定になるように、シートガラスSGの中央領域CAの雰囲気温度と、耳部R,Lの雰囲気温度とを制御している。すなわち、耳部R,Lの平均冷却速度(第2の耳部冷却速度)と比較して、中央領域CAの平均冷却速度(第2の平均冷却速度)が若干速い。
 第2冷却工程S42におけるシートガラスSGの中央領域CAの温度の平均冷却速度(第2の平均冷却速度)は、5.0℃/秒以下であることが好ましく、0.8℃/秒~5.0℃/秒であることがより好ましい。第2の平均冷却速度が、0.8℃/秒よりも小さいと、生産性が悪くなりやすい。また、第2の平均冷却速度が、5.0℃/秒を超えると、シートガラスSGの精密な温度制御が困難となり、シートガラスSGの熱収縮率が大きくなりやすい。また、シートガラスSGの反りおよび歪が大きくなりやすい。
  (3-3)第3冷却工程
 第3冷却工程S43は、中心部Cの温度が歪点になったシートガラスSGを、(歪点-100℃)になるまで冷却する工程である。ここで「(歪点-100℃)になるまで冷却する」における(歪点-100℃)とは、(歪点-100℃)の近傍を含み、例えば(歪点-100℃)±15℃の温度であってもよい。第3冷却工程S43においても、第2冷却工程S42と同様に、第6温度プロファイルTP6に基づいて、シートガラスSGの温度管理が行われる。
 第3冷却工程S43におけるシートガラスSGの中央領域CAの温度の平均冷却速度(第3の平均冷却速度)は第2の平均冷却速度より小さく、且つ好ましくは5℃/秒以下である。第3の平均冷却速度を第2の平均冷却速度より小さくすることにより、ガラス基板のディスプレイのパネル製造工程における熱処理時(例えば、450℃~600℃)に生じる熱収縮率を十分に小さくすることができる。また、第3の平均冷却速度が5℃/秒を超えると、シートガラスSGに割れが発生する場合もあり、シートガラスSGの反りも悪くなる。より好ましくは、第3の平均冷却速度は、0.5℃/秒~4.0℃/秒である。
  (3-4)第4冷却工程
 第4冷却工程S44は、歪点-100℃近傍の温度になったシートガラスSGを、歪点-200℃近傍の温度まで冷却する工程である。ここで、歪点-200℃近傍の温度とは、例えば(歪点-200℃)±15℃の温度であってもよい。
 第4冷却工程S44では、第7温度プロファイルTP7~第10温度プロファイルTP10に基づいて、シートガラスSGの温度管理が行われる。以下、第4冷却工程S44で実行される温度プロファイルTP7~TP10と、第4冷却工程S44の冷却速度(第4冷却速度)とを詳細に説明する。
   (3-4-1)第7温度プロファイル~第10温度プロファイル
 第7温度プロファイルTP7~第10温度プロファイルTP10は、第6温度プロファイルTP6の後に実現される温度分布である(図6参照)。具体的に、第7温度プロファイルTP7~第10温度プロファイルTP10は、シートガラスSGの流れ方向に沿ってそれぞれ実現される。より具体的には、上流側で第7温度プロファイルTP7が実現され、次に、第8温度プロファイルTP8が実現される。第8温度プロファイルTP8の次には、第9温度プロファイルTP9が実現され、下流側で第10温度プロファイルTP10が実現される。
 第7温度プロファイルTP7~第10温度プロファイルTP10は、中央領域CAの中心部Cの温度が最も低く、耳部R,Lの温度が最も高い。また、第7温度プロファイルTP7~第10温度プロファイルTP10では、中心部Cから耳部R,Lに向かって温度が徐々に高くなる。すなわち、中心部Cの温度と耳部R,Lの温度とには勾配(温度勾配)が形成されている。言い換えると、第7温度プロファイルTP7~第10温度プロファイルTP10は、下に凸を有するなだらかな放物線を形成する。
 また、第7温度プロファイルTP7~第10温度プロファイルTP10における温度勾配TG7~10は、シートガラスSGの流れ方向に沿って、徐々に大きくなっている。言い換えると、第10温度プロファイルTP10におけるシートガラスSGの耳部R,Lの雰囲気温度と中心部Cの雰囲気温度との差(幅方向温度差)は、第7温度プロファイルTP7における幅方向温度差よりも大きい。すなわち、第10温度プロファイルTP10は、第7温度プロファイルTP7よりも大きな放物線となる。第7温度プロファイルTP7~第10温度プロファイルTP10でも、中心部Cが耳部R,Lよりも早く冷却される。
 なお、第7温度プロファイルTP7~第10温度プロファイルTP10は、第2冷却室80内のヒータ82d~82gを制御することにより実現される。具体的には、ヒータ82dによって第7温度プロファイルTP7が実現され、ヒータ82eによって第8温度プロファイルTP8が実現され、ヒータ82fによって第9温度プロファイルTP9が実現され、ヒータ82gによって第10温度プロファイルTP10が実現される。
   (3-4-2)第4冷却速度
 第4冷却工程S44では、中央領域CAの雰囲気温度を、耳部R,Lの雰囲気温度よりも早い速度で冷却している。すなわち、耳部R,Lの平均冷却速度(第4の耳部冷却速度)と比較して、中央領域CAの平均冷却速度(第4の平均冷却速度)が速い。
 また、第4冷却工程S44では、シートガラスSGの流れ方向の下流側に向かうにつれて、シートガラスSGの耳部R,Lの雰囲気温度の冷却速度と中央領域CAの雰囲気温度の冷却速度との差を大きくする。
 このように、第7温度プロファイルTP7~第10温度プロファイルTP10を実現することにより、中心部Cの冷却速度は耳部R、Lの冷却速度よりも常に速くなるため、中心部Cの熱収縮量は耳部R,Lの熱収縮量よりも大きくなる。そのため、シートガラスSGの中心部Cから耳部R,Lに向かう張力が常に働くので、シートガラスSGの反り等を低減することができる。
 第4冷却工程S44における第4の平均冷却速度は、1.5℃/秒~20℃/秒であることが好ましい。第4の平均冷却速度が、1.5℃/秒よりも遅いと、生産性が悪くなる。また、第4の平均冷却速度が、20℃/秒を超えると、シートガラスSGに割れが発生する場合もあり、シートガラスSGの反りも悪くなる。好ましくは、第4の平均冷却速度は、2.0℃/秒~15℃/秒である。また、第4冷却工程S44における第4の耳部冷却速度は、1.3℃/秒~13℃/秒である。好ましくは、第4の耳部冷却速度は、1.5℃/秒~8.0℃/秒である。
 シートガラスSGの流れ方向の冷却速度は、ガラス基板の450℃~600℃という温度域の熱処理時に生じる熱収縮率に影響を与える。特に、第3冷却工程S43の冷却速度が上記熱収縮率に与える影響が大きい。そのため、4つの冷却工程S41~S44の内、第3冷却工程S43の平均冷却速度を最も小さくすることで、シートガラスSGの上記熱収縮率を効果的に小さくすることができる。これにより、ガラス基板の生産量を向上させることができると共に、好適な熱収縮率を有するガラス基板を得ることができる。
 さらに、第2の平均冷却速度と第3の平均冷却速度の速度比(第3の平均冷却速度/第2の平均冷却速度)は、0.2以上1未満であることが好ましい。
 速度比が0.2未満であると、生産性が悪くなりやすい。速度比は、0.3以上0.8未満であることがより好ましく、0.4以上0.6未満であることがさらに好ましい。
 また、第2の平均冷却速度は、第3の平均冷却速度の次に上記熱収縮率に影響を及ぼし易い。本実施形態では、徐冷点から歪点までの範囲でのシートガラスSGの冷却を行う第2冷却工程S42における第2の平均冷却速度を、第1冷却工程S41及び第4冷却工程S44の平均冷却速度よりも小さくすることが好ましい。これにより、熱収縮率を低減することができる。
 さらに、本実施形態に係るガラス基板製造方法によれば、板厚偏差、反り量および平面歪の値も一定の範囲に抑えることができる。
 シートガラスSGの温度制御において、歪点以上の温度制御が、シートガラスSGの反り量および歪値に影響を及ぼし易い。本実施形態では、4つの冷却工程S41~S44のうち、徐冷点から歪点までの範囲でのシートガラスSGの冷却を行う第2冷却工程S42における第2の平均冷却速度を、第1冷却工程S41及び第4冷却工程S44の平均冷却速度よりも小さくすることが好ましい。これにより、第2冷却工程S42におけるシートガラスSGの幅方向の温度制御の精度を向上させることができるので、反り量および歪値を低減することができる。
 また、シートガラスSGは上下方向に連続するリボン状であるため、歪点から歪点-100℃の範囲までの温度制御もまた、反り量および歪値に影響を及ぼす。本実施形態では、歪点から歪点-100℃のまでの範囲でのシートガラスSGの冷却を行う第3冷却工程S43における第3の平均冷却速度を最も小さくしている。これにより、第3冷却工程S43におけるシートガラスSGの温度制御の精度をさらに上げることができるので、反り量および平面歪を低減することができる。
 さらに、シートガラスSGは上下方向に連続するリボン状であるため、歪点-100℃から歪点-200℃の範囲までの温度制御もまた、反り量および平面歪に影響を及ぼす。本実施形態では、歪点-100℃から歪点-200℃のまでの範囲でのシートガラスSGの冷却を行う第4冷却工程S44における第4の平均冷却速度を第1冷却工程S41における第1の平均冷却速度よりも小さくすることが好ましい。これにより、第4冷却工程S44におけるシートガラスSGの温度制御の精度をさらに上げることができるので、反り量および平面歪を低減することができる。
 (4)温度プロファイルの決定方法
 シートガラスSGから得られるガラス基板の熱収縮率は、ガラスの特性、及び、シートガラスSGの冷却速度によって決定される。すなわち、ガラスの組成が同じである場合、ガラス基板の熱収縮率は、冷却工程S4におけるシートガラスSGの冷却速度に依存する。
 また、ガラス基板がディスプレイの製造に用いられる場合、ガラス基板の熱収縮率は、小さいほど好ましい。なぜなら、ディスプレイの製造工程において、ガラス基板は熱処理されるので、ガラス基板の熱収縮率が大きいと、ガラス基板の表面に素子を精度良く配置することが困難になるからである。また、ガラス基板ごとの熱収縮率のバラツキは、小さいほどより好ましい。
 しかし、シートガラスSGの冷却工程S4においてシートガラスSGが取り得る温度領域によって、シートガラスSGから得られるガラス基板の熱収縮率が異なる。そこで、シートガラスSGから得られるガラス基板の熱収縮率の目標値を予め設定し、熱収縮率がこの目標値を達成するように、シートガラスSGが取り得る各温度領域におけるシートガラスSGの冷却速度を決定し、シートガラスSGの搬送方向の温度プロファイルを決定することで、生産性を低下させることなく、熱収縮率が小さいガラス基板を製造することができる。また、決定された温度プロファイルを精度良く実現することにより、ガラス基板ごとの熱収縮率のバラツキを小さくすることができる。
 シートガラスSGの搬送方向の温度プロファイルは、例えば、シートガラスSGの熱収縮率の実測値に基づいて作成された検量線に基づいて決定することができ、又は、コンピュータシミュレーションを用いて決定することができる。また、コンピュータシミュレーションで確認しつつ、熱収縮率の実測値を利用して、シートガラスSGの搬送方向の温度プロファイルが決定されてもよい。
 コンピュータシミュレーションによる温度プロファイルの決定は、数値流体力学(CFD)計算において利用される種種の技術を使用して行われることが好ましい。コンピュータシミュレーションを用いることで、上述の検量線、シートガラスSGが冷却される徐冷空間(例えば、第2冷却室80に相当する空間)の形状、徐冷空間を形成する部材(例えば、天板80aおよび断熱部材80bに相当する部材)の熱的特性、当該部材の組み合わせ、種種の入力データ(例えば、徐冷空間におけるシートガラスSGの温度、モデル化された徐冷空間の種種のポイントにおける温度、および、ガラスの組成等)等に基づいて、ガラス基板の熱収縮率を精度良く算出することができる。すなわち、コンピュータシミュレーションを用いることで、熱収縮率が所定の目標値を達成するように、シートガラスSGの搬送方向の温度プロファイルを容易に決定することができる。なお、コンピュータシミュレーションは、カスタマイズソフトウェアや、市販のソフトウェアパッケージを用いて実行することができる。
 次に、検量線を用いた熱収縮率の具体的な算出方法の一例について、図7~10を参照しながら説明する。この方法では、シートガラスSGの熱収縮率を種種の徐冷条件の下で実際に測定し、得られた測定値に基づいて検量線を作成する。そして、当該検量線を用いることで、例えば、シートガラスSGの搬送方向の温度プロファイルを変更した場合に、新しい温度プロファイルでシートガラスSGを冷却する際における、シートガラスSGの熱収縮率を推定することができる。逆に、シートガラスSGの熱収縮率が所定の目標値を達成するように、シートガラスSGの搬送方向の温度プロファイルを適切に決定することができる。
 この熱収縮率の算出方法は、主として、基礎データ測定工程と、規格化熱収縮量-維持温度関係取得工程と、総面積算出工程と、熱収縮量-総面積関係取得工程と、熱収縮率推定工程とから構成される。次に、各工程について説明する。
 基礎データ測定工程では、本実施形態に係るガラス基板製造方法を用いて、複数の条件の下で実際に徐冷されたシートガラスSGの熱収縮量を測定する。図7は、シートガラスSGの熱収縮量の測定時における、シートガラスSGの温度-時間関係のグラフである。シートガラスSGは、徐冷点より高い温度から、少なくとも、歪点-200℃になるまで冷却される。図7に示されるように、徐冷工程は、第1の降温勾配を有する第1降温部と、第1降温部に続いて一定の維持温度を所定の維持時間に亘って維持する温度維持部と、温度維持部に続いて第2の降温勾配を有する第2降温部とから構成される。図7には、5つの徐冷条件C1~C5の下で測定されたデータが示されている。図7に示されるように、5つの徐冷条件C1~C5において、第1の降温勾配、第2の降温勾配および維持時間は全て同じであり、維持温度は全て異なっている。以下、維持温度を高い順にT1~T5として、維持温度T1~T5にそれぞれ対応する徐冷条件をC1~C5とする。基礎データ採取工程では、徐冷条件C1~C5の下でそれぞれ徐冷されたシートガラスSGの熱収縮量A1~A5が測定される。熱収縮量A1~A5は、温度維持部におけるシートガラスSGの熱収縮の程度を表す。すなわち、熱収縮量A1~A5が小さいほど、シートガラスSGは熱収縮しない。
 規格化熱収縮量-維持温度関係取得工程では、基礎データ測定工程で測定された熱収縮量A1~A5を、最小の熱収縮量を基準として規格化して、規格化熱収縮量B1~B5を算出する。具体的には、熱収縮量A3が最小である場合、規格化熱収縮量B1は、熱収縮量A3を熱収縮量A1で除した値になる。そのため、規格化熱収縮量B1~B5は、常に1以下であり、規格化熱収縮量B1~B5が小さいほど、シートガラスSGは熱収縮している。そして、図8に示されるように、維持温度T1~T5に対して規格化熱収縮量B1~B5をプロットして、規格化熱収縮量-維持温度グラフの近似曲線を求める。
 総面積算出工程では、徐冷条件C1~C5における経過時間に対して規格化熱収縮量B1~B5をプロットした規格化熱収縮量-時間グラフを得る。図9は、規格化熱収縮量-時間グラフの一例である。時間が経過してシートガラスSGの温度が低下するほどシートガラスSGは収縮するので、規格化熱収縮量-時間グラフは、単調減少を示す。そして、徐冷条件C1~C5にそれぞれ対応する各グラフにおいて、下記の式で表される面積S1、S2、S3の合計である総面積Sを算出する。
  S1=(第1降温部における降温開始時温度の規格化熱収縮量+第1降温部における降温終了時温度の規格化熱収縮量)×第1降温部の所要時間/2、
  S2=温度維持部における維持温度の規格化熱収縮量×温度維持部の維持時間、
  S3=(第2降温部における降温開始時温度の規格化熱収縮量+第2降温部における降温終了時温度の規格化熱収縮量)×第2降温部の所要時間/2
 総面積算出工程では、各徐冷条件C1~C5について、それぞれ総面積S1~S5が算出される。
 熱収縮量-総面積関係取得工程では、総面積算出工程で算出された総面積S1~S5に対して、基礎データ測定工程で測定された熱収縮量A1~A5がプロットされた熱収縮量-総面積グラフの対数近似曲線を求める。図10は、熱収縮量-総面積グラフの一例である。
 熱収縮率推定工程では、予め設定された徐冷条件に対応するシートガラスSGの温度プロファイルに基づいて、シートガラスSGの熱収縮率を推定する。具体的には、最初に、予め設定された温度プロファイル、および、規格化熱収縮量-維持温度グラフを用いて、上述と同じ方法によって、規格化熱収縮量-時間グラフを得て、得られた規格化熱収縮量-時間グラフの総面積Sxを算出する。次に、図10に示されるように、熱収縮量-総面積グラフを用いて、算出された総面積Sxに対応する熱収縮量Axを求める。そして、この熱収縮量Axから、基礎となる温度プロファイルでシートガラスSGを徐冷した場合における熱収縮率の推定値を算出する。
 また、最大の維持温度T1は、徐冷点近傍であることが好ましい。また、最小の維持温度T5は、歪点-200℃の近傍であることが好ましい。また、維持温度T1~T5の温度間隔は、全て同じに設定されることが好ましい。
 また、上記の例では、5つの徐冷条件に基づいてシートガラスSGの熱収縮率を推定する方法について説明したが、基礎とする徐冷条件の数は、2以上であれば任意の数であってもよい。
 本実施形態では、上述のように、予め作成された検量線を用いて、第1冷却工程S41~第4冷却工程S44の冷却速度が決定されることが好ましい。また、コンピュータシミュレーションを用いて、第1冷却工程S41~第4冷却工程S44の冷却速度が決定されることが好ましい。
 (5)ガラス基板
 ガラス基板の熱収縮率は、歪点が680℃以上であり、ガラス基板の板厚が0.5mm~1.0mmである場合には、70ppm以下が好ましく、5ppm~70ppmがより好ましく、10ppm~50ppmがさらに好ましい。
 なお、ガラス基板の熱収縮率は、冷却工程における時間の総和によって変化する。ガラス基板の板厚が薄いほど、冷却工程におけるシートガラスSGの搬送速度を速くする必要があるので、徐冷工程の時間が短くなり、熱収縮率が大きくなりやすい。そのため、例えば、ガラス基板の板厚が0.01mm以上0.5mm未満の場合には、熱収縮率が5ppm~100ppmが好ましく、10ppm~70ppmがより好ましい。あるいは、ガラス基板の歪点が680℃未満の場合には、熱収縮率は5ppm~100ppmが好ましく、10ppm~70ppmがより好ましい。
 ガラス基板の歪点は、680℃以上であることが好ましく、690℃以上であることがより好ましく、730℃以上であることがさらに好ましい。歪点が高いほど、ガラス基板の熱収縮率を小さくすることができる。
 ガラス基板を100℃~300℃に変化させた場合の平均熱膨張係数は、好ましくは50×10-7/℃以下であり、より好ましくは30×10-7/℃~45×10-7/℃である。平均熱膨張係数が小さいほど、ガラス基板の熱収縮率を小さくすることができる。他方、平均熱膨張係数が小さくなり過ぎると、パネルを構成する他の部材の平均熱膨張係数との差が大きくなりすぎるため好ましくない。
 ガラス基板の組成は特に限定されないが、フラットパネルディスプレイ用ガラス基板としては、下記(A)および(B)が例として挙げられる。下記(A)および(B)のガラス組成は、LTPS・TFTディスプレイ用ガラス基板あるいは、有機ELディスプレイ用ガラス基板に好適である。
(A)SiO2を55mol%~80mol%、Al23を3mol%~20mol%、B23を0mol%~15mol%、RO(MgO、CaO、SrO、BaOの合量)を3mol%~25mol%含有する。また、SiO2、Al23およびB23のmol%で表す含有率は、(SiO2+(2×Al23))/((2×B23)+RO)が3.0以上であることが好ましい。これにより、ガラス基板の歪点を高くすることができる。
(B)SiO2を52質量%~78質量%、Al23を3質量%~25質量%、B23を0質量%~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量)を3質量%~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量)を0.01質量%~0.8質量%、Sb23を0質量%~0.3質量%、を含有し、As23は実質的に含有せず、質量比CaO/ROは0.65以上であり、質量比(SiO2+Al23)/B23は7~30の範囲であり、かつ質量比(SiO2+Al23)/ROは5以上である。このとき、歪点は688℃以上が好ましい。
 ガラス基板の平面歪の値は、1.0nm以下が好ましく、0nm~0.95nmがより好ましく、0nm~0.90nmがさらに好ましい。言い換えると、平面歪の値は、0kg/mm2~0.07kg/mm2が好ましく、0kg/mm2~0.04kg/mm2がより好ましく、0kg/mm2~0.02kg/mm2がさらに好ましい。また、ガラス基板の反り量は、0.15mm以下が好ましく、0mm~0.10mmがより好ましく、0mm~0.05mmがさらに好ましい。さらに、ガラス基板の板厚偏差は、15μm以下が好ましく、0μm~14μmがより好ましく、0μm~13μmがさらに好ましい。
 また、本実施形態で製造されるガラス基板は、フラットパネルディスプレイ用ガラス基板の製造に好適である。特に、高精細ディスプレイ用ガラス基板であるLTPS・TFTディスプレイ用ガラス基板あるいは、有機ELディスプレイ用ガラス基板の製造に好適である。また、TFTとして酸化物半導体TFTを搭載した酸化物半導体ディスプレイ用ガラス基板にも好適である。
 また、ガラス基板の失透温度を1250℃以下、液相粘度を104.7dPa・s以上とすることが好ましい。これにより、オーバーフローダウンドロー法に好適となる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの例によりなんら限定されるものではない。
 実施例1~3ならびに比較例
 上記ガラス基板製造装置100およびガラス基板製造方法を用いて、以下の条件で実施例1~3ならびに比較例のガラス基板を製造した。
 ガラスの組成(mol%)は、SiO2 70.5%,B23 7.2%,Al23 11.0%,K2O 0.2%,CaO 11.0%,SnO2 0.07%,Fe23 0.03%であった。ガラスの液相温度は、1206℃であり、液相粘度は、1.9×105dPa・sであった。ガラスの徐冷点は758℃であり、歪点は699℃であった。また、シートガラスSGの幅は1600mm、厚みは、0.7mm(実施例1、比較例)、0.6mm(実施例2)、0.5mm(実施例3)とした。
 第1冷却工程S41では、熔融ガラスを、中心部の温度が徐冷点758℃になるまで冷却した。第2冷却工程S42では、中心部の温度が758℃のシートガラスを、中心部の温度が歪点699℃になるまで冷却した。第3冷却工程S43では、中心部の温度が699℃のシートガラスを、中心部の温度が歪点-100℃の599℃になるまで冷却した。第4冷却工程S44では、中心部の温度が599℃のシートガラスを、中心部の温度が歪点-200℃の499℃になるまで冷却した。
 表1に、実施例1~3ならびに比較例の第1冷却工程S41~第4冷却工程S44における、シートガラスSGの中央領域CAの平均冷却速度(℃/秒)、冷却されたガラス基板の熱収縮率、歪値、反り量、および板厚偏差の実測値を示す。冷却工程S4は、第1冷却工程S41における第1の平均冷却速度が最も大きい値となり、第4冷却工程S44における第4の平均冷却速度が次に大きい値となり、第2冷却工程S42における第2の平均冷却速度が次に大きい値となり、第3冷却工程S43における第3の平均冷却速度が最も小さい値となるように実施した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、収縮率は、70ppm以下の値となり、歪値は、0.90nm以下の値となり、反り量は、0.15mm以下の値となり、板厚偏差は、10.6μm以下の値となった。
 なお、上記実施例において、ガラス基板の熱収縮率は、ケガキ線法により得た。具体的には、サンプルとなるガラス基板の両端に基準線となるケガキ線をつけ、その後、サンプルを半分に切断した。その後、半分に切断されて二枚になったサンプルのうち、一方のサンプルを熱処理し、熱処理をしていない他方のサンプルと付き合わせて、ケガキ線のズレを測定した。熱処理は、550℃×60分×2回行った。より詳細には、常温から10℃/分で昇温し、550℃で60分保持し、その後、10℃/分で常温まで降温し、再び10℃/分で昇温し、550℃で60分保持し、10℃/分で常温まで降温した。ケガキ線のズレの測定値に基づいて、ガラス基板の熱収縮量(熱収縮率)を得た。
 また、ガラス基板の歪値は、平面歪に関する値である。歪値は、複屈折率の大きさに基づいて決定した。複屈折率は、ユニオプト製の複屈折率測定器ABR-10Aを使用して測定し、最大値を歪値として採用した。
 さらに、ガラス基板の反り量は、次の方法により得た。まず、シートガラスから切り出された、所定有効幅を有するガラス板PGから、複数枚のガラス片を切り出した。次に、ガラス片をガラス定盤に置いた。各ガラス片とガラス定盤との隙間(本実施例では、ガラス片の角4箇所と、長辺の中央部2箇所と、短辺の中央部2箇所と)を、隙間ゲージを用いて測定した。
 また、板厚偏差は、ガラス板の有効領域において、キーエンス社製の変位計を使用して、幅方向に5mmの間隔で測定した。
 以上、本実施形態について図面に基づいて説明したが、具体的な構成は、上記の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 本発明は、ダウンドロー法を用いたガラス基板製造方法に適用可能である。また、フラットパネルディスプレイ用ガラス基板の製造に適用できる。さらに、LTPS・TFTディスプレイ用ガラス基板あるいは、有機ELディスプレイ用ガラス基板の製造に好適である。
  11          熔融装置
  12          清澄装置
  40          成形装置
  41          成形体
  51          冷却ローラ
  60          温度調整ユニット
  81a~81g     引下げローラ
  82a~82g     ヒータ
  90          切断装置
  91          制御装置
  100         ガラス基板製造装置
  CA          シートガラスの中央領域
  C           シートガラスの中心部
  R,L         シートガラスの側部(シートガラスの耳部)
  SG          シートガラス
  S3          成形工程
  S4          冷却工程
  S41         第1冷却工程
  S42         第2冷却工程
  S43         第3冷却工程
  S44         第4冷却工程
特表2003-503301号公報 特許第5153965号公報

Claims (8)

  1.  ダウンドロー法によって、熔融ガラスをシートガラスに成形する成形工程と、
     前記シートガラスの幅方向の両端部の領域である側部と、前記側部よりも前記シートガラスの幅方向内側にあり、前記シートガラスの幅方向の中心部を含む領域である中央領域と、を含む前記シートガラスを冷却する冷却工程と、
    を備え、
     前記冷却工程は、
      前記中心部の温度が徐冷点になるまで、前記中央領域を第1の平均冷却速度で冷却する第1冷却工程と、
      前記中心部の温度が前記徐冷点から歪点になるまで、前記中央領域を第2の平均冷却速度で冷却する第2冷却工程と、
      前記中心部の温度が前記歪点から前記歪点-100℃になるまで、前記中央領域を第3の平均冷却速度で冷却する第3冷却工程と
     を含み、
     前記第3の平均冷却速度は、前記第2の平均冷却速度より小さい、
    ガラス基板製造方法。
  2.  ダウンドロー法によって、熔融ガラスをシートガラスに成形する成形工程と、
     前記シートガラスの側部に形成された耳部と前記耳部よりもシートガラスの幅方向の中心部に近い中央領域とを含む前記シートガラスを冷却する冷却工程と
    を備え、
     前記冷却工程は、
     前記シートガラスの幅方向の中心部の温度が徐冷点になるまで、前記中央領域を第1の平均冷却速度でシートガラスを冷却する第1冷却工程と、
     前記中心部の温度が前記徐冷点から歪点になるまで、前記中央領域を第2の平均冷却速度でシートガラスを冷却する第2冷却工程と、
     前記中心部の温度が前記歪点から前記歪点-100℃になるまで、前記中央領域を第3の平均冷却速度でシートガラスを冷却する第3の冷却工程と
    を含み、
     前記第3の平均冷却速度は、前記第2の平均冷却速度より小さい、
    ガラス基板製造方法。
  3.  前記第3の平均冷却速度と前記第2の平均冷却速度の比は、0.2以上1未満である、
    請求項1または2に記載のガラス基板製造方法。
  4.  前記冷却工程において、少なくとも前記第1の平均冷却速度、前記第2の平均冷却速度および前記第3の平均冷却速度は、前記シートガラスの熱収縮率が目標値を達成するように、コンピュータシミュレーションに基づいて予め決定される、
    請求項1から3の何れか1項に記載のガラス基板製造方法。
  5.  前記歪点は、680℃以上である、
    請求項1から4の何れか1項に記載のガラス基板製造方法。
  6.  前記第2の平均冷却速度は、0.8℃/秒~5.0℃/秒であり、
     前記第3の平均冷却速度は、0.5℃/秒~4.0℃/秒である、
    請求項1から5の何れか1項に記載のガラス基板製造方法。
  7.  前記冷却工程で冷却された前記シートガラスから得られたガラス基板の熱収縮率であって、前記ガラス基板を常温から10℃/分で昇温し、550℃で60分保持し、その後、10℃/分で常温まで降温し、再び10℃/分で昇温し、550℃で60分保持し、その後、10℃/分で常温まで降温した時の熱収縮率が、前記ガラス基板の板厚が0.5mm~1.0mmの場合において70ppm以下である、
    請求項1から6の何れか1項に記載のガラス基板製造方法。
  8.  ガラス原料を熔融して熔融ガラスを製造する熔融装置と、
     前記熔融ガラスをシートガラスに成形し、前記シートガラスの幅方向の両端部の領域である側部と、前記側部よりも前記シートガラスの幅方向内側にあり、前記シートガラスの幅方向の中心部を含む領域である中央領域と、を含む前記シートガラスを冷却する成形装置と、
    を備え、
     前記成形装置は、
      前記中心部の温度が徐冷点になるまで、前記中央領域を第1の平均冷却速度で冷却し、
      前記中心部の温度が前記徐冷点から歪点になるまで、前記中央領域を第2の平均冷却速度で冷却し、
      前記中心部の温度が前記歪点から前記歪点-100℃になるまで、前記中央領域を第3の平均冷却速度で冷却し、
     前記第3の平均冷却速度は、前記第2の平均冷却速度より小さい、
    ガラス基板製造装置。
PCT/JP2014/059233 2013-03-29 2014-03-28 ガラス基板製造方法及びガラス基板製造装置 WO2014157649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480000251.8A CN104395253B (zh) 2013-03-29 2014-03-28 玻璃基板制造方法及玻璃基板制造装置
KR1020147014619A KR101611393B1 (ko) 2013-03-29 2014-03-28 유리 기판 제조 방법 및 유리 기판 제조 장치
JP2014514946A JP5819520B2 (ja) 2013-03-29 2014-03-28 ガラス基板製造方法及びガラス基板製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072354 2013-03-29
JP2013072354 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157649A1 true WO2014157649A1 (ja) 2014-10-02

Family

ID=51624605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059233 WO2014157649A1 (ja) 2013-03-29 2014-03-28 ガラス基板製造方法及びガラス基板製造装置

Country Status (5)

Country Link
JP (1) JP5819520B2 (ja)
KR (1) KR101611393B1 (ja)
CN (1) CN104395253B (ja)
TW (1) TWI522324B (ja)
WO (1) WO2014157649A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002632A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板の製造方法
JP2017186227A (ja) * 2016-03-31 2017-10-12 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
JP2019011225A (ja) * 2017-06-30 2019-01-24 AvanStrate株式会社 ガラスシートの製造方法
NL2021322B1 (en) * 2018-06-28 2020-01-06 Corning Inc Continuous methods of making glass ribbon and as-drawn glass articles from the same
US10906831B2 (en) 2018-06-28 2021-02-02 Corning Incorporated Continuous methods of making glass ribbon and as-drawn glass articles from the same
US11739018B2 (en) 2019-09-13 2023-08-29 Corning Incorporated Continuous methods of forming glass ribbon using a gyrotron microwave heating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519221B2 (ja) * 2015-02-23 2019-05-29 日本電気硝子株式会社 ガラス基板及びこれを用いた積層体
CN107428581A (zh) * 2015-03-30 2017-12-01 安瀚视特控股株式会社 玻璃衬底的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502706A (ja) * 2005-07-21 2009-01-29 コーニング インコーポレイテッド 制御された冷却を用いた板ガラス製造方法
JP5107481B2 (ja) * 2011-03-31 2012-12-26 AvanStrate株式会社 ガラス板の製造方法
JP5153965B2 (ja) * 2011-03-31 2013-02-27 AvanStrate株式会社 ガラス基板の製造方法
WO2013047585A1 (ja) * 2011-09-30 2013-04-04 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板の製造方法
WO2014051003A1 (ja) * 2012-09-28 2014-04-03 AvanStrate株式会社 ガラス基板の製造方法及びガラス基板製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417255B (zh) * 2011-06-30 2013-12-01 Avanstrate Inc A manufacturing method of a glass plate and a manufacturing apparatus for a glass plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502706A (ja) * 2005-07-21 2009-01-29 コーニング インコーポレイテッド 制御された冷却を用いた板ガラス製造方法
JP5107481B2 (ja) * 2011-03-31 2012-12-26 AvanStrate株式会社 ガラス板の製造方法
JP5153965B2 (ja) * 2011-03-31 2013-02-27 AvanStrate株式会社 ガラス基板の製造方法
WO2013047585A1 (ja) * 2011-09-30 2013-04-04 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板の製造方法
WO2014051003A1 (ja) * 2012-09-28 2014-04-03 AvanStrate株式会社 ガラス基板の製造方法及びガラス基板製造装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002632A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板の製造方法
JPWO2017002632A1 (ja) * 2015-06-30 2018-04-12 AvanStrate株式会社 ディスプレイ用ガラス基板の製造方法
JP2017186227A (ja) * 2016-03-31 2017-10-12 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
JP2019011225A (ja) * 2017-06-30 2019-01-24 AvanStrate株式会社 ガラスシートの製造方法
NL2021322B1 (en) * 2018-06-28 2020-01-06 Corning Inc Continuous methods of making glass ribbon and as-drawn glass articles from the same
US10906831B2 (en) 2018-06-28 2021-02-02 Corning Incorporated Continuous methods of making glass ribbon and as-drawn glass articles from the same
EP3792226A1 (en) * 2018-06-28 2021-03-17 Corning Incorporated Glass ribbons from low liquidus viscosity glass compositons and continuous methods of making the same
US11912605B2 (en) 2018-06-28 2024-02-27 Corning Incorporated Glass articles
US11739018B2 (en) 2019-09-13 2023-08-29 Corning Incorporated Continuous methods of forming glass ribbon using a gyrotron microwave heating device

Also Published As

Publication number Publication date
KR101611393B1 (ko) 2016-04-11
CN104395253B (zh) 2016-12-14
KR20140127204A (ko) 2014-11-03
TW201441167A (zh) 2014-11-01
JP5819520B2 (ja) 2015-11-24
TWI522324B (zh) 2016-02-21
CN104395253A (zh) 2015-03-04
JPWO2014157649A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5819520B2 (ja) ガラス基板製造方法及びガラス基板製造装置
JP5352728B2 (ja) ガラス基板の製造方法
JP5733639B2 (ja) ガラス基板
JP5375385B2 (ja) ガラス基板の製造方法
JP5952311B2 (ja) ガラス基板の製造方法及びガラス基板製造装置
JP5848329B2 (ja) ガラス板の製造方法及びガラス板製造装置
JP6031613B2 (ja) シートガラスの製造方法及びシートガラス製造装置
JP6823457B2 (ja) ディスプレイ用ガラス基板の製造方法
JP2017066000A (ja) ディスプレイ用ガラス基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514946

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014619

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772901

Country of ref document: EP

Kind code of ref document: A1