WO2017000385A1 - 一种用于血压测量的辅助装置及血压测量设备 - Google Patents

一种用于血压测量的辅助装置及血压测量设备 Download PDF

Info

Publication number
WO2017000385A1
WO2017000385A1 PCT/CN2015/089367 CN2015089367W WO2017000385A1 WO 2017000385 A1 WO2017000385 A1 WO 2017000385A1 CN 2015089367 W CN2015089367 W CN 2015089367W WO 2017000385 A1 WO2017000385 A1 WO 2017000385A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
pulse sound
audio
pressure
module
Prior art date
Application number
PCT/CN2015/089367
Other languages
English (en)
French (fr)
Inventor
赵俊峰
Original Assignee
赵俊峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵俊峰 filed Critical 赵俊峰
Priority to JP2018520005A priority Critical patent/JP6692420B2/ja
Priority to US15/741,207 priority patent/US20180184913A1/en
Priority to EP15896915.4A priority patent/EP3318183B1/en
Publication of WO2017000385A1 publication Critical patent/WO2017000385A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • A61B7/045Detection of Korotkoff sounds
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices

Definitions

  • the invention relates to the field of blood pressure monitoring, in particular to an auxiliary device and a blood pressure measuring device for blood pressure measurement.
  • the current sphygmomanometers are based on two main measurement methods: auscultation and oscillometric methods.
  • Auscultation is the main method used in clinical medicine.
  • the mercury sphygmomanometer used by doctors is designed by auscultation.
  • the auscultation method is to judge the blood pressure value by using the stethoscope to listen to the blood pressure of the radial artery and the corresponding pressure when the sphygmomanometer cuff is deflated. 1 Shown.
  • the scale indicated by the mercury column is the systolic pressure; when the pulsation sound suddenly weakens or disappears, the scale indicated by the mercury column is the diastolic pressure.
  • Auscultation is medically known as the gold standard for blood pressure measurement because of its high measurement accuracy.
  • auscultation has great limitations in the use of electronic sphygmomanometers, mainly because the ability of electronic devices to distinguish sound is weaker than human ears in some respects.
  • the auscultation method needs to judge the strength of the sound (the level of the beat sound) and the frequency (whether the beat or the noise), as shown in the figure. 2
  • the electronic sphygmomanometer using the auscultation method is less popular due to design difficulty and cost, and has poor anti-noise ability.
  • Mercury sphygmomanometers or other non-mercury media that use auscultation are convenient, but it is difficult to measure for themselves. Professional training is required. When measuring, the ears and eyes should be highly synchronized to capture sound changes and corresponding pressure values. Data cannot be recorded automatically.
  • the oscillometric method determines the blood pressure value by measuring the amplitude of the pulse vibration wave in combination with the corresponding cuff pressure. Due to the simple implementation of the principle, an electronic sphygmomanometer that uses the oscillometric method to measure blood pressure is a mainstream product on the market. For example, most OMRON electronic sphygmomanometers use the oscillometric method. Many studies have found that the accuracy of oscillometric methods is sometimes poor. According to the report of the US Centers for Disease Control, the measurement deviation of a certain sphygmomanometer of Omron can be reached. 16mmHg the above. A source of inaccuracy in the oscillometric method may be related to the measurement principle itself.
  • the blood pressure cannot flow until the pressure drops to the systolic pressure, so the human ear can not hear the pulsating sound of the blood flow.
  • the oscillometric method the oscillating wave still exists before the blood pressure drops to the systolic pressure, but the amplitude is smaller.
  • the amplitude of the oscillation wave is continuous before and after the systolic pressure and the diastolic pressure. This is not like a clear boundary in auscultation that has a pulsating sound change from scratch.
  • the oscillation method can only establish a certain empirical correlation between the oscillation amplitude change and the blood pressure value through a large number of individual samples.
  • This average association based on a large number of individual samples is not necessarily effective when applied to an individual, which results in a large error in blood pressure measurement for a certain percentage of the population. This error is not due to the quality of the sphygmomanometer itself, but is inherently flawed in the measurement principle.
  • amplitude coefficient method also known as the 'normalization method', as shown in Figure 3. Shown. It normalizes the amplitude of the pulse wave vibration signal to the maximum amplitude of the signal, and identifies the systolic and diastolic pressures by determining the normalized coefficients of systolic and diastolic pressure, as shown in Figure 3.
  • Am is the amplitude of the pulse wave corresponding to the mean pressure
  • Ad is the amplitude of the pulse wave corresponding to the diastolic pressure
  • / Am is the normalized value of the systolic pressure Pd
  • Ad / Am is the normalized value of diastolic pressure Ps
  • Pc is the cuff pressure
  • the abscissa represents the continuous decrease in the pressure inside the cuff during deflation.
  • / Am C1
  • the systolic pressure Ps Based on the measured amplitude of the pulse wave and the corresponding static pressure, the systolic pressure Ps, the diastolic pressure Pd, and the average pressure Pm can be obtained.
  • the amplitude coefficient of general systolic blood pressure is 0.46 ⁇ 0.64
  • the amplitude coefficient of diastolic blood pressure is 0.43 ⁇ 0.73.
  • Source Http://www.eccn.com/design_2011030416272188.htm
  • Different sphygmomanometer manufacturers will use different amplitude coefficients, which also leads to a big difference between the measurements of different manufacturers using the same oscillometric method.
  • the amplitude coefficient corresponding to each measurement individual may be different, and the sphygmomanometer does not use the unused coefficient for each person.
  • the measurement results of the electronic sphygmomanometer differ from the doctor's auscultation measurement results in different people. According to statistics, 40% The difference between the left and right crowds will reach 5mmHg or more, and the difference between 15-20% will reach 10mmHg. the above. This difference affects the diagnosis and treatment of hypertension.
  • different electronic sphygmomanometer manufacturers use different algorithms, and the difference in measurement results of different sphygmomanometer manufacturers is sometimes large in the same person.
  • For the blood pressure measurement how to judge the accuracy of the electronic blood pressure monitor is a big challenge. Medically, the average user brings his own electronic sphygmomanometer to the doctor for comparison at the time of the visit.
  • the sphygmomanometers currently designed using these two methods collect data through the sphygmomanometer itself, perform calculations, and only inform the user by display or voice.
  • the sphygmomanometer directly determines the blood pressure value directly by the sphygmomanometer, or directly judges the blood pressure value directly by the human ear, but does not assist the user to judge the blood pressure value by displaying the original data.
  • the technical problem to be solved by the present invention is to provide a blood pressure measurement technical solution capable of improving the accuracy and convenience of blood pressure measurement, so that the patient can self-measure and obtain accurate measurement results.
  • the present invention provides an auxiliary device for blood pressure measurement, comprising an audio collection component, an image acquisition component, and a terminal device, wherein
  • the audio collection component is configured to collect a pulse sound signal when the blood pressure measurement is taken and transmit the pulse sound signal to the terminal device;
  • the image acquisition component is configured to collect a pressure image signal when the blood pressure measurement is taken and transmit the pressure image signal to the terminal device;
  • the terminal device is arranged to store a pulse sound signal and a pressure image signal.
  • the terminal device is arranged to store and simultaneously play the pulse sound signal and the synchronous display pressure image signal.
  • the terminal device includes a storage module, a display module, and a play module, wherein the storage module is configured to store the pulse sound signal and the pressure image signal; the display module is configured to synchronously display the pressure image signal when the storage module stores the pressure image signal; The play module is arranged to synchronously play the pulse sound signal when the memory module stores the pulse sound signal; the display of the pressure image signal and the play of the pulse sound signal are synchronized.
  • the terminal device is configured to store the pulse sound signal and the pressure image signal, convert the pulse sound signal into pulse sound data, and simultaneously display the pulse sound data and the pressure image signal.
  • the terminal device includes a storage module, a processing module, and a display module, wherein the storage module is configured to store the pulse sound signal and the pressure image signal; the processing module is configured to convert the pulse sound signal into pulse sound data; the display module is set The pulse sound data and the pressure image signal are displayed in synchronization.
  • the storage module is configured to store the pulse sound signal and the pressure image signal
  • the processing module is configured to convert the pulse sound signal into pulse sound data
  • the display module is set The pulse sound data and the pressure image signal are displayed in synchronization.
  • the terminal device is configured to store the pulse sound signal and the pressure image signal, convert the pulse sound signal into pulse sound data, convert the pressure image signal into pressure data, and according to the pulse
  • the sound data and pressure data are derived and displayed as blood pressure values.
  • the terminal device includes a storage module, a processing module, an operation module, and a display module, wherein the storage module is configured to store a pulse sound signal and a pressure image signal; and the processing module is configured to convert the pulse sound signal into pulse sound data, The pressure image signal is converted into pressure data; the arithmetic module is configured to derive a blood pressure value based on the pulse sound data and the pressure data; the display module is configured to display the blood pressure value obtained by the arithmetic module.
  • the terminal device comprises a storage module, a processing module, an operation module and a display module
  • the storage module is configured to store the pulse sound signal and the pressure image signal
  • the processing module is configured to convert the pulse sound signal into pulse sound data, The pressure image signal is converted into pressure data
  • the operation module is configured to derive the blood pressure value according to the pulse sound data and the pressure data
  • the display module is configured to synchronously display the pulse sound signal and the pressure image signal, and display the blood pressure value obtained by the operation module.
  • the image acquisition component is disposed in the terminal device.
  • the audio collection component includes an audio receiving component, an audio pre-processing component, and an audio transmission component, wherein the audio pre-processing component is disposed in the audio receiving component such that the pulse sound signal received by the audio receiving component sequentially passes through the audio pre-processing component, audio The transmission component and the connector disposed at the end of the audio transmission component are transmitted to the terminal device.
  • the audio transmission component is an electrical conductor.
  • the audio collection component includes an audio receiving component, an audio pre-processing component, and an audio transmission component, wherein the audio pre-processing component is disposed in the audio transmission component and located at an end of the audio transmission component, thereby receiving a pulse sound signal received by the audio receiving component
  • the audio transmission component transmits to the audio pre-processing component, and then the audio pre-processing component transmits the pulse sound signal to the terminal device through a connector disposed at the end of the audio transmission component.
  • the audio transmission component is a hollow conduit.
  • the end of the audio transmission component is provided with a connector so that the audio collection component can be electrically connected to the terminal device.
  • the present invention also provides a blood pressure measuring apparatus comprising a sphygmomanometer and any of the above-described auxiliary devices for blood pressure measurement.
  • the auxiliary device for blood pressure measurement of the present invention records the screen output of the electronic sphygmomanometer or the mercury column sphygmomanometer by means of image acquisition means by recording or photographing.
  • the pressure value corresponding to the mercury column on the blood pressure meter thereby obtaining a pressure image signal, and obtaining the pulse beat sound of the upper arm through the audio collecting component, so that the blood pressure can be judged according to the recorded pressure value and the sound according to the auscultation method, compared with the prior art,
  • the invention improves the accuracy and convenience of blood pressure measurement, so that most patients can self-measure and obtain accurate measurement results.
  • the working process of the auxiliary device for blood pressure measurement of the present invention includes the following:
  • the auscultation sound that is, the pulse sound
  • the audio collecting means the pulse sound
  • the main difference between the oscillometric method and the auscultatory blood pressure measurement is that the oscillometric method estimates blood pressure based on the pressure fluctuation, and the auscultation method directly determines the blood pressure based on the auscultation sound. If the sound is recorded with the terminal device when measuring with the electronic sphygmomanometer, the blood pressure can be judged based on the sound recorded by the terminal device.
  • the pressure image signal is captured by an image capturing function of an image capturing component in the terminal device such as a camera, a camera, or the like, and the pressure image signal or the pressure data is recorded by the terminal device.
  • the auscultation method determines the blood pressure and needs to find the cuff pressure corresponding to the appearance and disappearance of the auscultation sound.
  • the cuff pressure is usually displayed on the sphygmomanometer screen in real time during the measurement.
  • the pressure sensor image of the sphygmomanometer at the time of measurement (that is, the screen displaying the pressure data) can be photographed by the camera function of the terminal device. Since the sound is recorded while the image is being taken, the pressure image signal displayed on the sphygmomanometer and the phone recording auscultation sound are synchronized.
  • the auscultation sound can be graphically displayed on the screen of the terminal device to assist in judging the position where the auscultation sound appears and disappears.
  • the screen for displaying the pressure data captured by the image acquisition unit in the terminal device can directly extract the pressure value by the image recognition technology. This gives the correspondence between pressure and sound.
  • the pressure and sound data recorded on the terminal device can be judged manually or automatically.
  • the pulse sound signal is collected by the audio collecting component, the pressure image signal is collected by the image collecting component, and the pulse sound signal and the pressure image signal are stored and synchronized by the terminal device, so that the user can independently view the pulse sound signal and the sound pulse that is heard.
  • the pressure data in the resulting pressure image signal yields a pressure value.
  • the pulse sound signal is collected by the audio collecting component, the pressure image signal is collected by the image collecting component, the pulse sound signal and the pressure image signal are stored by the terminal device, the pulse sound signal is converted into pulse sound data, and the pulse sound data and the pressure image are synchronously displayed.
  • the signal allows the user to autonomously derive a pressure value based on the pulsed sound data seen and the pressure data in the pressure image signal.
  • the pulse sound signal is collected by the audio collecting component, the pressure image signal is collected by the image collecting component, the pulse sound signal and the pressure image signal are stored by the terminal device, and the pulse sound signal is converted into pulse sound data to convert the pressure image signal into pressure data, and
  • the blood pressure value can be derived and displayed based on the pulse sound data and the pressure data, so that the user can directly know the blood pressure value according to the result displayed by the terminal device, or autonomously obtain the pressure value based on the seen pulse sound data and the pressure data.
  • the auxiliary device for blood pressure measurement of the present invention is applicable to an electronic blood pressure meter, a blood pressure meter or a mercury millimeter mercury blood pressure meter.
  • Figure 1 is a corresponding diagram of the pulse wave amplitude and cuff pressure in the oscillometric method
  • Figure 2 is a small pulse diagram generated in the cuff
  • Figure 3 is a normalized value graph
  • Figure 4 is a comparison of the absolute difference between the oscillometric method and the auscultation method between different blood pressure measuring devices
  • Figure 5 is a schematic view of an upper arm type electronic sphygmomanometer according to a specific embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a mobile phone according to a specific embodiment of the present invention.
  • Figure 7 is a schematic illustration of an audio capture component of a particular embodiment of the present invention.
  • Figure 8 is a schematic diagram of an operation interface of an APP of Embodiment 3 of the present invention.
  • the embodiment provides a blood pressure measuring device, including a blood pressure meter and an auxiliary device for blood pressure measurement.
  • the blood pressure measuring auxiliary device of the embodiment mainly solves the problem that the user cannot obtain the original when using the existing blood pressure meter product for measurement. Data, so it is not possible to self-measure and get accurate measurement results.
  • This embodiment uses an upper arm type electronic sphygmomanometer (see figure) 5), which includes the main unit 1, the gas line 2 and the cuff air bag 3, and the main unit 1 includes a button 11 and a touch display screen 12 .
  • the auxiliary device for blood pressure measurement of the embodiment includes an audio collection component, an image acquisition component, and a terminal device, wherein the audio collection component is configured to collect a pulse sound signal when blood pressure measurement is taken and transmit the pulse sound signal to the terminal device;
  • the acquisition component is configured to collect a pressure image signal at the time of blood pressure measurement and transmit the pressure image signal to the terminal device.
  • the terminal device of this embodiment is arranged to be capable of storing and synchronizing the playing of the pulse sound signal and the synchronous display of the pressure image signal.
  • the terminal device of this embodiment includes a storage module, a display module, and a play module, wherein the storage module is configured to store a pulse sound signal and a pressure image signal; and the display module is configured to synchronously display when the storage module stores the pressure image signal The pressure image signal; the play module is configured to synchronously play the pulse sound signal when the memory module stores the pulse sound signal; the display of the pressure image signal and the playback of the pulse sound signal are synchronized.
  • the terminal device in this embodiment is a mobile phone (see figure). 6), in other embodiments, it may also be a smart device or a wearable device such as a computer, a tablet, a wristband, or a watch.
  • the image pickup unit of the present embodiment is provided in the terminal device, and may be a component capable of capturing an image such as a camera or a camera.
  • the audio collection unit of the embodiment includes an audio receiving unit, an audio pre-processing unit, and an audio transmission unit.
  • the end of the audio transmission component is provided with a connector (such as a headphone plug) to enable the audio capture component to be electrically connected to the terminal device.
  • the audio collecting unit of this embodiment is a stethoscope including an auscultation head 4 and a microphone 5.
  • the microphone 5 is embedded in the audio transmission unit 6 and is located at the end of the audio transmission unit 6, the headphone plug 7 Connect directly to the microphone 5.
  • the audio transmission unit 6 is a hollow catheter such as a rubber tube, so that the pulse sound signal received by the auscultation head 4 is transmitted to the microphone through the air vibration in the rubber tube. Then the microphone 5 transmits the pulse sound signal to the terminal device through the headphone plug.
  • the microphone 5 can also be placed in the auscultation head, at which time the audio transmission component 6 is an electrical lead, thereby auscultating the head 4
  • the received pulse sound signal is transmitted to the mobile phone through the microphone 5, the electrical lead and the earphone plug 7 in sequence.
  • the stethoscope can also be connected to the mobile phone via a wireless connection, such as via Bluetooth, to transmit a pulse sound signal to the handset.
  • the embodiment provides a blood pressure measuring device, including a blood pressure meter and an auxiliary device for blood pressure measurement.
  • the blood pressure measuring auxiliary device of the embodiment mainly solves the problem that the user cannot obtain the original when using the existing blood pressure meter product for measurement. Data, so it is not possible to self-measure and get accurate measurement results.
  • This embodiment uses an upper arm type electronic sphygmomanometer (see figure) 5), which includes the main unit 1, the gas line 2 and the cuff air bag 3, and the main unit 1 includes a button 11 and a touch display screen 12 .
  • the auxiliary device for blood pressure measurement of the embodiment includes an audio collection component, an image acquisition component, and a terminal device, wherein the audio collection component is configured to collect a pulse sound signal when blood pressure measurement is taken and transmit the pulse sound signal to the terminal device;
  • the acquisition component is configured to collect a pressure image signal at the time of blood pressure measurement and transmit the pressure image signal to the terminal device.
  • the terminal device of this embodiment is configured to store a pulse sound signal and a pressure image signal, convert the pulse sound signal into pulse sound data, and simultaneously display the pulse sound data and the pressure image signal.
  • the terminal device of this embodiment includes a storage module, a processing module, and a display module, wherein the storage module is configured to store a pulse sound signal and a pressure image signal; and the processing module is configured to convert the pulse sound signal into pulse sound data;
  • the display module is arranged to synchronously display the pulse sound data and the pressure image signal.
  • the terminal device in this embodiment is a mobile phone (see figure). 6), in other embodiments, it may also be a smart device or a wearable device such as a computer, a tablet, a wristband, or a watch.
  • the image pickup unit of the present embodiment is provided in the terminal device, and may be a component capable of capturing an image such as a camera or a camera.
  • the audio collection unit of the embodiment includes an audio receiving unit, an audio pre-processing unit, and an audio transmission unit.
  • the end of the audio transmission component is provided with a connector (such as a headphone plug) to enable the audio capture component to be electrically connected to the terminal device.
  • the audio collecting unit of this embodiment is a stethoscope including an auscultation head 4 and a microphone 5.
  • the microphone 5 is embedded in the audio transmission unit 6 and is located at the end of the audio transmission unit 6, the headphone plug 7 Connect directly to the microphone 5.
  • the audio transmission unit 6 is a hollow catheter such as a rubber tube, so that the pulse sound signal received by the auscultation head 4 is transmitted to the microphone through the air vibration in the rubber tube. Then the microphone 5 transmits the pulse sound signal to the terminal device through the headphone plug.
  • the microphone 5 can also be placed in the auscultation head, at which time the audio transmission component 6 is an electrical lead, thereby auscultating the head 4
  • the received pulse sound signal is transmitted to the mobile phone through the microphone 5, the electrical lead and the earphone plug 7 in sequence.
  • the stethoscope can also be connected to the mobile phone via a wireless connection, such as via Bluetooth, to transmit a pulse sound signal to the handset.
  • the embodiment provides a blood pressure measuring device, including a blood pressure meter and an auxiliary device for blood pressure measurement.
  • the blood pressure measuring auxiliary device of the embodiment mainly solves the problem that the user cannot obtain the original when using the existing blood pressure meter product for measurement. Data, so it is not possible to self-measure and get accurate measurement results.
  • This embodiment uses an upper arm type electronic sphygmomanometer (see figure) 5), which includes the main unit 1, the gas line 2 and the cuff air bag 3, and the main unit 1 includes a button 11 and a touch display screen 12 .
  • the auxiliary device for blood pressure measurement of the embodiment includes an audio collection component, an image acquisition component, and a terminal device, wherein the audio collection component is configured to collect a pulse sound signal when blood pressure measurement is taken and transmit the pulse sound signal to the terminal device;
  • the acquisition component is configured to collect a pressure image signal at the time of blood pressure measurement and transmit the pressure image signal to the terminal device.
  • the terminal device of this embodiment is configured to store a pulse sound signal and a pressure image signal, convert the pulse sound signal into pulse sound data, convert the pressure image signal into pressure data, and obtain the pressure sound data and the pressure data according to the pulse sound data and the pressure data. Displays the blood pressure value.
  • the terminal device of this embodiment includes a storage module, a processing module, an operation module, and a display module, wherein the storage module is configured to store a pulse sound signal and a pressure image signal; and the processing module is configured to convert the pulse sound signal into a pulse
  • the sound data converts the pressure image signal into pressure data; the operation module is configured to derive the blood pressure value according to the pulse sound data and the pressure data; and the display module is configured to display the blood pressure value obtained by the operation module.
  • the terminal device in this embodiment is a mobile phone (see figure). 6), in other embodiments, it may also be a smart device or a wearable device such as a computer, a tablet, a wristband, or a watch.
  • the image pickup unit of the present embodiment is provided in the terminal device, and may be a component capable of capturing an image such as a camera or a camera.
  • the audio collection unit of the embodiment includes an audio receiving unit, an audio pre-processing unit, and an audio transmission unit.
  • the end of the audio transmission component is provided with a connector (such as a headphone plug) to enable the audio capture component to be electrically connected to the terminal device.
  • the audio collecting unit of this embodiment is a stethoscope including an auscultation head 4 and a microphone 5.
  • the microphone 5 is embedded in the audio transmission unit 6 and is located at the end of the audio transmission unit 6, the headphone plug 7 Connect directly to the microphone 5.
  • the audio transmission unit 6 is a hollow catheter such as a rubber tube, so that the pulse sound signal received by the auscultation head 4 is transmitted to the microphone through the air vibration in the rubber tube. Then the microphone 5 transmits the pulse sound signal to the terminal device through the headphone plug.
  • the microphone 5 can also be placed in the auscultation head, at which time the audio transmission component 6 is an electrical lead, thereby auscultating the head 4
  • the received pulse sound signal is transmitted to the mobile phone through the microphone 5, the electrical lead and the earphone plug 7 in sequence.
  • the stethoscope can also be connected to the mobile phone via a wireless connection, such as via Bluetooth, to transmit a pulse sound signal to the handset.
  • the embodiment provides a blood pressure measuring device, including a blood pressure meter and an auxiliary device for blood pressure measurement.
  • the blood pressure measuring auxiliary device of the embodiment mainly solves the problem that the user cannot obtain the original when using the existing blood pressure meter product for measurement. Data, so it is not possible to self-measure and get accurate measurement results.
  • This embodiment uses an upper arm type electronic sphygmomanometer (see figure) 5), which includes the main unit 1, the gas line 2 and the cuff air bag 3, and the main unit 1 includes a button 11 and a touch display screen 12 .
  • the auxiliary device for blood pressure measurement of the embodiment includes an audio collection component, an image acquisition component, and a terminal device, wherein the audio collection component is configured to collect a pulse sound signal when blood pressure measurement is taken and transmit the pulse sound signal to the terminal device;
  • the acquisition component is configured to collect a pressure image signal at the time of blood pressure measurement and transmit the pressure image signal to the terminal device.
  • the terminal device of this embodiment is configured to store a pulse sound signal and a pressure image signal, convert the pulse sound signal into pulse sound data, convert the pressure image signal into pressure data, and obtain the pressure sound data and the pressure data according to the pulse sound data and the pressure data. Displays the blood pressure value.
  • the terminal device of the present implementation includes a storage module, a processing module, an operation module, and a display module, wherein the storage module is configured to store a pulse sound signal and a pressure image signal; and the processing module is configured to convert the pulse sound signal into a pulse sound Data, converting the pressure image signal into pressure data; the operation module is configured to derive the blood pressure value according to the pulse sound data and the pressure data; the display module is configured to synchronously display the pulse sound signal and the pressure image signal, and display the calculation module Blood pressure value.
  • the terminal device in this embodiment is a mobile phone (see figure). 6), in other embodiments, it may also be a smart device or a wearable device such as a computer, a tablet, a wristband, or a watch.
  • the image pickup unit of the present embodiment is provided in the terminal device, and may be a component capable of capturing an image such as a camera or a camera.
  • the audio collection unit of the embodiment includes an audio receiving unit, an audio pre-processing unit, and an audio transmission unit.
  • the end of the audio transmission component is provided with a connector (such as a headphone plug) to enable the audio capture component to be electrically connected to the terminal device.
  • the audio collecting unit of this embodiment is a stethoscope including an auscultation head 4 and a microphone 5.
  • the microphone 5 is embedded in the audio transmission unit 6 and is located at the end of the audio transmission unit 6, the headphone plug 7 Connect directly to the microphone 5.
  • the audio transmission unit 6 is a hollow catheter such as a rubber tube, so that the pulse sound signal received by the auscultation head 4 is transmitted to the microphone through the air vibration in the rubber tube. Then the microphone 5 transmits the pulse sound signal to the terminal device through the headphone plug.
  • the microphone 5 can also be placed in the auscultation head, at which time the audio transmission component 6 is an electrical lead, thereby auscultating the head 4
  • the received pulse sound signal is transmitted to the mobile phone through the microphone 5, the electrical lead and the earphone plug 7 in sequence.
  • the stethoscope can also be connected to the mobile phone via a wireless connection, such as via Bluetooth, to transmit a pulse sound signal to the handset.
  • the functions of storing, processing, computing, and displaying of the terminal device of the embodiment can be performed by the APP set in the terminal device ( Application, application) to achieve.
  • the measurement procedure of the sphygmomanometer will be the same as that of the ordinary sphygmomanometer.
  • the sphygmomanometer controls the inflation and deflation.
  • the stethoscope is fixed inside the cuff balloon of the sphygmomanometer and is close to the radial artery to collect the auscultation sound (pulse sound).
  • Start up on your phone App APP running interface is shown in Figure 8. Align the camera on the phone with the display of the electronic blood pressure monitor, and start recording the image on the display on the sphygmomanometer and the sound in the stethoscope during the blood pressure measurement.
  • the APP processes the image data and the sound data, such as displaying the intensity of the sound, obtaining pressure readings based on the pattern recognition, and further determining the blood pressure.
  • the app on the phone can also perform further data analysis: display the sound data and pressure image signals on the same timeline.
  • Figure 8 As shown, the vertical line 14 on the left in the figure indicates the time point corresponding to the systolic pressure determined by the auscultation method, and the vertical line on the right 15 The time point corresponding to the diastolic pressure is indicated. This makes it possible to correspond to the image at the point in time and the pressure values shown above, namely the systolic and diastolic pressures.
  • the vertical line 16 in the middle moves with the progress of the sound playback, vertical line 16
  • the intensity curve of the passing sound will help people to make more accurate judgments on the sound heard by the ear.
  • the graphics of the audio signal can be not only in the time domain, but also in the frequency domain or both.
  • the graphic is not limited to a graph, but may be a column chart or the like. It can also be set to pause, continue, and set the loop playback between two time points during the playback of the sound.
  • the blood pressure value can also be determined by auscultation by artificially displaying the pulse sound data and the pressure image signal on the same time axis.
  • APP It is also possible to derive blood pressure values by oscillometric calculation based on pressure data, such as parameters used in the oscillometric method (such as C1 and C2 in the amplitude parameter method). ) can be adjusted directly through the operator interface (not shown). For a general user, it can be set to input a blood pressure value that is confirmed to be accurate after confirmation (such as a blood pressure value determined by auscultation).
  • the input blood pressure value is compared with the blood pressure value determined by the oscillometric method, and the parameter adjustment is performed based on the comparison result, so that the parameter adjustment can be easily performed without a professional. It is also possible to automatically calibrate the parameters used in the oscillometric method based on the blood pressure values determined by the auscultation method (eg C1 and C2 ), this calibration can also be set to periodic, such as auto-calibration after setting it for a period of time or a certain number of times. Since the modification of the parameters is a calibration for individual situations, the measurement accuracy is generally higher than the direct reading on a conventional electronic sphygmomanometer. And after calibration, a relatively accurate blood pressure value can be obtained even without using a stethoscope (without auscultation to determine the blood pressure value).
  • this calibration can also be set to periodic, such as auto-calibration after setting it for a period of time or a certain number of times. Since the modification of the parameters is a calibration for individual situations, the measurement accuracy is generally higher than
  • the blood pressure measuring device of the present embodiment is also the same as the ordinary electronic sphygmomanometer, and the sphygmomanometer automatically performs the charging and discharging operation of the cuff airbag while recording the measured data. After the end of the measurement, the oscillometric method is automatically displayed. / or the blood pressure value determined by the auscultation method, the recorded pressure image signal (or pressure data) and the sound data can also be played back on the terminal device (the mobile phone in this embodiment), and the blood pressure value is artificially determined by auscultation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Hematology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种用于血压测量的辅助装置和一种血压测量设备,其中,用于血压测量的辅助装置包括音频采集部件、图像采集部件和终端设备。用于血压测量的辅助装置是通过图像采集部件以录像或拍照的方式记录电子血压计的屏幕输出或水银柱血压计/血压表上水银柱对应的压强值,从而得到压强图像信号,并通过音频采集部件得到上臂的脉搏搏动声,从而能够根据记录的压强值和声音并根据听诊法判断血压,提高了血压测量的精度和便利性,使得绝大多数患者可以自助测量并得到准确的测量结果。

Description

一种用于血压测量的辅助装置及血压测量设备
技术领域
本发明涉及血压监测领域,尤其涉及一种用于血压测量的辅助装置及血压测量设备。
背景技术
目前市面上的血压计主要基于两种主要的测量方法:听诊法和示波法。
听诊法是在临床医疗上主要使用的方法。医生使用的水银血压计就是通过听诊法设计的。听诊法是通过在血压计袖带气囊放气时用听诊器去听肱动脉的血压流动的声音结合对应的压强来判断血压值,如图 1 所示。当听诊器中出现第一声搏动声,此时水银柱所指刻度即为收缩压;当搏动声突然变弱或消失,此时水银柱所指刻度即为舒张压。听诊法由于其测量准确性高,在医学上被称作血压测量的黄金标准。一般对其他类型的血压计测量准确性的研究都是通过和使用水银血压计的听诊法进行对照研究的。但是听诊法在电子血压计的使用上还有很大的局限性,主要是因为电子设备对声音的辨别能力在某些方面比人耳要弱。听诊法需要判断声音的强弱(搏动声的高低)和频率(是搏动声还是噪音),如图 2 所示,使用听诊法的电子血压计由于设计难度和成本的缘故不太普及,抗噪音干扰能力差。使用听诊法的水银血压计(或者其他非水银介质)虽然方便,但很难自己给自己测量,需要专业训练,测量的时候耳朵和眼睛要高度同步才能捕捉到声音变化和对应的压强值,而且数据不能自动记录。
示波法通过测量脉搏振动波的幅度结合对应的袖带压强来判断血压值。由于原理实现简单,使用示波法测量血压的电子血压计是市场上的主流产品,比如大部分欧姆龙的电子血压计都使用示波法。很多研究对比发现示波法准确度有时会很差。根据美国疾控中心的报告,欧姆龙的某款血压计的测量偏差可以达到 16mmHg 以上。示波法的一个不准确性的来源可能与测量原理本身有关。在听诊法中,袖带气囊放气的过程中,当压强下降到收缩压以前,血压是不能流动的,所以人耳听不到血液流动的搏动声。而示波法中,在血压下降到收缩压以前,振荡波还是存在的,只是幅度要小一些。而在袖带放气或者气囊压力下降的过程中,振荡波的变化幅度在收缩压和舒张压的前后是连续的。这并不像听诊法中存在一个搏动声音变化从无到有的清晰界限。所以振荡法只能够通过大量的个体样本在振荡幅度变化和血压值之间建立某种经验关联。这种基于大量个体样本建立的平均关联在适用在某个个体上时却未必有效,这就导致了对于一定比例的人群,血压值测量的误差很大。这种误差并不是血压计本身的质量引起的,而是测量原理内在的缺陷。
示波法中比较常用的一种方法是幅度系数法又称 ' 归一法 ' ,如图 3 所示。它是将脉搏波振动信号的幅值与信号的最大幅值相比进行归一化处理,通过确定收缩压和舒张压的归一化系数来识别收缩压与舒张压,如图 3 所示。其中, As 为收缩压对应的脉搏波幅度, Am 为平均压所对应的脉搏波的幅度, Ad 为舒张压对应的脉搏波幅度, As / Am 为收缩压 Pd 的归一化值, Ad / Am 为舒张压 Ps 的归一化值, Pc 为袖带压力,横坐标代表放气过程中袖带内压力的不断减小。 As / Am=C1 , Ad / Am=C2 ,分别对应收缩压和舒张压的位置。根据测得的脉搏波幅值和对应的静压力,就可以得出收缩压 Ps 、舒张压 Pd 和平均压 Pm 。一般收缩压的幅度系数为 0.46 ~ 0.64 ,舒张压的幅度系数为 0.43 ~ 0.73 。(出处 http://www.eccn.com/design_2011030416272188.htm )不同血压计厂商会使用不同的幅度系数,这也导致即使不同厂家使用了相同的示波法,其测量值也可能会有挺大区别。每个测量个体对应的幅度系数可能都是不一样的,血压计并没有针对每个人采用不用的系数。
电子血压计的测量结果和医生的听诊法测量结果相比,在不同人身上差别也不相同。根据统计数据显示, 40% 左右的人群测量差值会达到 5mmHg 以上, 15-20% 左右的人群差值会达到 10mmHg 以上。这种差别会影响到高血压的诊断和治疗。另外不同电子血压计厂家由于使用了不同的算法,在同一个人身上,不同血压计厂家的测量结果差别有时也会很大。对血压被测量者而言,如何判断电子血压计的准确性是一个很大的挑战。医学上,一般用户将自己的电子血压计在就诊时带给医生进行对照比较。这在操作上有一定难度,同时由于人体自身的血压也是波动的,当电子血压计读数和医生测量读数不同时,会产生干扰,影响电子血压计准确性判断。如图 4 所示,为了判断一个电子血压计在特定用户身上是否测量准确,需要在这一特定用户身上在同一时刻用两种方法(电子血压计本身使用的示波法和医生使用的听诊法)进行测量对照并进行记录,计算差值。
目前使用这两种方法设计的血压计都是通过血压计本身采集数据,进行计算,只把结果通过显示或者语音告知使用者。血压计在测量过程中要么是血压计直接判断血压值,要么是人直接耳听目测直接判断血压值,而没有通过展示原始数据辅助用户判断血压值。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种能提高血压测量的精度和便利性的血压测量技术方案,使患者可以自助测量并得到准确的测量结果。
为实现上述目的,本发明提供了一种用于血压测量的辅助装置,包括音频采集部件、图像采集部件和终端设备,其中,
音频采集部件被设置为采集血压测量时的脉搏声音信号并将脉搏声音信号传输至终端设备;
图像采集部件被设置为采集血压测量时的压强图像信号并将压强图像信号传输至终端设备;
终端设备被设置为能存储脉搏声音信号和压强图像信号。
在本发明的一个较佳实施例中,终端设备被设置为能存储并同步播放脉搏声音信号和同步显示压强图像信号。
进一步地,终端设备包括存储模块、显示模块和播放模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;显示模块被设置为在存储模块存储压强图像信号时同步显示压强图像信号;播放模块被设置为在存储模块存储脉搏声音信号时同步播放脉搏声音信号;压强图像信号的显示和脉搏声音信号的播放是同步的。
在本发明的另一较佳实施例中,终端设备被设置为能存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,并能同步显示脉搏声音数据和压强图像信号。
进一步地,终端设备包括存储模块、处理模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据;显示模块被设置为同步显示脉搏声音数据和压强图像信号。
在本发明的又一较佳实施例中,终端设备被设置为能存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据,并能根据脉搏声音数据和压强数据得出并显示血压值。
进一步地,终端设备包括存储模块、处理模块、运算模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据;运算模块被设置为根据脉搏声音数据和压强数据得出血压值;显示模块被设置为显示运算模块得出的血压值。
优选地,终端设备包括存储模块、处理模块、运算模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据;运算模块被设置为根据脉搏声音数据和压强数据得出血压值;显示模块被设置为同步显示脉搏声音信号和压强图像信号,并显示运算模块得出的血压值。
进一步地,图像采集部件设置在终端设备中。
进一步地,音频采集部件包括音频接收部件、音频预处理部件和音频传输部件,其中音频预处理部件设置在音频接收部件中,使得音频接收部件所接收的脉搏声音信号依次通过音频预处理部件、音频传输部件和设置在音频传输部件端部的连接件传输至终端设备。
优选地,音频传输部件为电导线。
进一步地,音频采集部件包括音频接收部件、音频预处理部件和音频传输部件,其中音频预处理部件设置在音频传输部件中并位于音频传输部件的端部,从而音频接收部件所接收的脉搏声音信号通过音频传输部件传输至音频预处理部件,然后音频预处理部件将脉搏声音信号通过设置在音频传输部件端部的连接件传输至终端设备。
优选地,音频传输部件为中空的导管。
进一步地,音频传输部件的端部设置有连接件,使得音频采集部件能够与终端设备电连接。
本发明还提供了一种血压测量设备,包括血压计和上述任意一种用于血压测量的辅助装置。本发明的用于血压测量的辅助装置是通过图像采集部件以录像或拍照的方式记录电子血压计的屏幕输出或水银柱血压计 / 血压表上水银柱对应的压强值,从而得到压强图像信号,并通过音频采集部件得到上臂的脉搏搏动声,从而能够根据记录的压强值和声音根据听诊法判断血压,与现有技术相比,本发明提高了血压测量的精度和便利性,使得绝大多数患者可以自助测量并得到准确的测量结果。
本发明的用于血压测量的辅助装置的工作过程包括如下:
( 1 )在用户使用电子血压计时,通过音频采集部件采集听诊音(柯氏音),即脉搏声音,通过终端设备记录脉搏声音。
示波法和听诊法血压测量的主要差别在于,示波法根据压强波动推算血压,而听诊法直接根据听诊音判断血压。如果在使用电子血压计测量时将声音用终端设备录制下来,则可以根据终端设备录制的声音来判断血压。
( 2 )通过终端设备中的图像采集部件比如摄像头、照相机等的摄像功能拍摄压强图像信号,通过终端设备记录压强图像信号或压强数据。
听诊法对血压的判断需要找到听诊音出现和消失时对应的袖带压强。袖带压强通常在测量过程中会实时显示在血压计的屏幕上。通过终端设备的摄像功能可以将血压计在测量时的压强图像信号(即显示压强数据的画面)拍摄下来。由于摄像的同时记录了声音,拍摄的血压计上显示的压强图像信号和手机记录听诊音是同步的。
( 3 )听诊音的图形化显示
听诊音在终端设备的屏幕上可以进行图形化显示,辅助判断听诊音出现和消失的位置。
( 4 )通过终端设备实现压强数字的图像识别
终端设备中的图像采集部件拍摄的显示压强数据的画面可以通过图像识别技术直接提取压强值。这样就得到了压强和声音之间的对应关系。
( 5 )在终端设备上对血压值进行手动或者自动的判断
对终端设备上记录下来的压强和声音数据,可以进行手动或者自动的血压值判断。
本发明的技术效果包括如下:
( 1 )通过音频采集部件采集脉搏声音信号,通过图像采集部件采集压强图像信号,通过终端设备存储并同步播放脉搏声音信号和压强图像信号,使得用户可以自主地根据所听到的脉搏声音信号和所看到的压强图像信号中的压强数据得出压强值。
( 2 )通过音频采集部件采集脉搏声音信号,通过图像采集部件采集压强图像信号,通过终端设备存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,并同步显示脉搏声音数据和压强图像信号,使得用户可以自主地根据所看到的脉搏声音数据和压强图像信号中的压强数据得出压强值。
( 3 )通过音频采集部件采集脉搏声音信号,通过图像采集部件采集压强图像信号,通过终端设备存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据将压强图像信号转化为压强数据,并能根据脉搏声音数据和压强数据得出并显示血压值,使得用户能够根据终端设备显示的结果直接知道血压值,或者自主地根据所看到的脉搏声音数据和压强数据得出压强值。
( 4 )通过音频采集部件和终端设备根据听诊法获得普通电子血压计测量时的血压值;由于听诊法是无创血压测量的金标准,得到的血压值可以评估此特定电子血压计在此特定用户身上的测量准确性;
( 5 )本发明的用于血压测量的辅助装置对电子血压仪,血压表或水银毫米汞柱血压仪都适用。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图 1 是示波法中脉搏波波幅与袖带压力的对应关系图;
图 2 是袖带内产生的小脉冲图;
图 3 是归一化值曲线图;
图 4 是示波法和听诊法在不同血压测量设备间的绝对值差值对照图;
图 5 是本发明的具体实施例的上臂式电子血压计的示意图;
图 6 是本发明的具体实施例的手机的示意图;
图 7 是本发明的具体实施例的音频采集部件的示意图;
图 8 是本发明的实施例 3 的 APP 的运行界面的示意图。
具体实施方式
实施例 1
本实施例提供了一种血压测量设备,包括血压计和用于血压测量的辅助装置,本实施例的血压测量辅助装置主要是解决使用者在使用现有血压计产品进行测量时,无法获得原始数据,因而无法自助测量并得到准确的测量结果的问题。本实施例使用上臂式电子血压计(参见图 5 ),其包括主机 1 、气体管路 2 和袖带气囊 3 ,主机 1 上包括按键 11 和触摸显示屏 12 。但不限于上臂式电子血压计,也可以采用水银血压计、腕式电子血压计等和针对不同测定部位的其他血压计。
本实施例的用于血压测量的辅助装置包括音频采集部件、图像采集部件和终端设备,其中,音频采集部件被设置为采集血压测量时的脉搏声音信号并将脉搏声音信号传输至终端设备;图像采集部件被设置为采集血压测量时的压强图像信号并将压强图像信号传输至终端设备。
本实施例的终端设备被设置为能存储并同步播放脉搏声音信号和同步显示压强图像信号。具体地,本实施例的终端设备包括存储模块、显示模块和播放模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;显示模块被设置为在存储模块存储压强图像信号时同步显示压强图像信号;播放模块被设置为在存储模块存储脉搏声音信号时同步播放脉搏声音信号;压强图像信号的显示和脉搏声音信号的播放是同步的。本实施例的终端设备为手机(参见图 6 ),在其它实施例中也可以为电脑、平板电脑、手环、手表等智能设备或可穿戴设备。
本实施例的图像采集部件被设置在终端设备中,可以为摄像头或照相机等能够拍摄图像的部件。本实施例的音频采集部件包括音频接收部件、音频预处理部件和音频传输部件。音频传输部件的端部设置有连接件(比如耳机插头),使得音频采集部件能够与终端设备电连接。具体地,如图 7 所示,本实施例的音频采集部件为听诊器,包括听诊头 4 和麦克风 5 。麦克风 5 嵌在音频传输部件 6 中并位于音频传输部件 6 的端部,耳机插头 7 直接与麦克风 5 连接。此时,音频传输部件 6 为中空的导管,比如橡胶管,从而听诊头 4 所接收的脉搏声音信号通过橡胶管中的空气振动传输至麦克风 5 ,然后麦克风 5 将脉搏声音信号通过耳机插头传输至终端设备。
在其它实施例中,麦克风 5 也可以设置在听诊头中,此时音频传输部件 6 为电导线,从而听诊头 4 所接收的脉搏声音信号依次通过麦克风 5 、电导线和耳机插头 7 传输至手机。
在其它实施例中,听诊器也可以通过无线连接方式与手机连接,比如通过蓝牙,将脉搏声音信号传输至手机。
实施例 2
本实施例提供了一种血压测量设备,包括血压计和用于血压测量的辅助装置,本实施例的血压测量辅助装置主要是解决使用者在使用现有血压计产品进行测量时,无法获得原始数据,因而无法自助测量并得到准确的测量结果的问题。本实施例使用上臂式电子血压计(参见图 5 ),其包括主机 1 、气体管路 2 和袖带气囊 3 ,主机 1 上包括按键 11 和触摸显示屏 12 。但不限于上臂式电子血压计,也可以采用水银血压计、腕式电子血压计等和针对不同测定部位的其他血压计。
本实施例的用于血压测量的辅助装置包括音频采集部件、图像采集部件和终端设备,其中,音频采集部件被设置为采集血压测量时的脉搏声音信号并将脉搏声音信号传输至终端设备;图像采集部件被设置为采集血压测量时的压强图像信号并将压强图像信号传输至终端设备。
本实施例的终端设备被设置为能存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,并能同步显示脉搏声音数据和压强图像信号。具体地,本实施例的终端设备包括存储模块、处理模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据;显示模块被设置为同步显示脉搏声音数据和压强图像信号。本实施例的终端设备为手机(参见图 6 ),在其它实施例中也可以为电脑、平板电脑、手环、手表等智能设备或可穿戴设备。
本实施例的图像采集部件被设置在终端设备中,可以为摄像头或照相机等能够拍摄图像的部件。本实施例的音频采集部件包括音频接收部件、音频预处理部件和音频传输部件。音频传输部件的端部设置有连接件(比如耳机插头),使得音频采集部件能够与终端设备电连接。具体地,如图 7 所示,本实施例的音频采集部件为听诊器,包括听诊头 4 和麦克风 5 。麦克风 5 嵌在音频传输部件 6 中并位于音频传输部件 6 的端部,耳机插头 7 直接与麦克风 5 连接。此时,音频传输部件 6 为中空的导管,比如橡胶管,从而听诊头 4 所接收的脉搏声音信号通过橡胶管中的空气振动传输至麦克风 5 ,然后麦克风 5 将脉搏声音信号通过耳机插头传输至终端设备。
在其它实施例中,麦克风 5 也可以设置在听诊头中,此时音频传输部件 6 为电导线,从而听诊头 4 所接收的脉搏声音信号依次通过麦克风 5 、电导线和耳机插头 7 传输至手机。
在其它实施例中,听诊器也可以通过无线连接方式与手机连接,比如通过蓝牙,将脉搏声音信号传输至手机。
实施例 3 :
本实施例提供了一种血压测量设备,包括血压计和用于血压测量的辅助装置,本实施例的血压测量辅助装置主要是解决使用者在使用现有血压计产品进行测量时,无法获得原始数据,因而无法自助测量并得到准确的测量结果的问题。本实施例使用上臂式电子血压计(参见图 5 ),其包括主机 1 、气体管路 2 和袖带气囊 3 ,主机 1 上包括按键 11 和触摸显示屏 12 。但不限于上臂式电子血压计,也可以采用水银血压计、腕式电子血压计等和针对不同测定部位的其他血压计。
本实施例的用于血压测量的辅助装置包括音频采集部件、图像采集部件和终端设备,其中,音频采集部件被设置为采集血压测量时的脉搏声音信号并将脉搏声音信号传输至终端设备;图像采集部件被设置为采集血压测量时的压强图像信号并将压强图像信号传输至终端设备。
本实施例的终端设备被设置为能存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据,并能根据脉搏声音数据和压强数据得出并显示血压值。具体地,本实施例的终端设备包括存储模块、处理模块、运算模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据;运算模块被设置为根据脉搏声音数据和压强数据得出血压值;显示模块被设置为显示运算模块得出的血压值。本实施例的终端设备为手机(参见图 6 ),在其它实施例中也可以为电脑、平板电脑、手环、手表等智能设备或可穿戴设备。
本实施例的图像采集部件被设置在终端设备中,可以为摄像头或照相机等能够拍摄图像的部件。本实施例的音频采集部件包括音频接收部件、音频预处理部件和音频传输部件。音频传输部件的端部设置有连接件(比如耳机插头),使得音频采集部件能够与终端设备电连接。具体地,如图 7 所示,本实施例的音频采集部件为听诊器,包括听诊头 4 和麦克风 5 。麦克风 5 嵌在音频传输部件 6 中并位于音频传输部件 6 的端部,耳机插头 7 直接与麦克风 5 连接。此时,音频传输部件 6 为中空的导管,比如橡胶管,从而听诊头 4 所接收的脉搏声音信号通过橡胶管中的空气振动传输至麦克风 5 ,然后麦克风 5 将脉搏声音信号通过耳机插头传输至终端设备。
在其它实施例中,麦克风 5 也可以设置在听诊头中,此时音频传输部件 6 为电导线,从而听诊头 4 所接收的脉搏声音信号依次通过麦克风 5 、电导线和耳机插头 7 传输至手机。
在其它实施例中,听诊器也可以通过无线连接方式与手机连接,比如通过蓝牙,将脉搏声音信号传输至手机。
实施例 4 :
本实施例提供了一种血压测量设备,包括血压计和用于血压测量的辅助装置,本实施例的血压测量辅助装置主要是解决使用者在使用现有血压计产品进行测量时,无法获得原始数据,因而无法自助测量并得到准确的测量结果的问题。本实施例使用上臂式电子血压计(参见图 5 ),其包括主机 1 、气体管路 2 和袖带气囊 3 ,主机 1 上包括按键 11 和触摸显示屏 12 。但不限于上臂式电子血压计,也可以采用水银血压计、腕式电子血压计等和针对不同测定部位的其他血压计。
本实施例的用于血压测量的辅助装置包括音频采集部件、图像采集部件和终端设备,其中,音频采集部件被设置为采集血压测量时的脉搏声音信号并将脉搏声音信号传输至终端设备;图像采集部件被设置为采集血压测量时的压强图像信号并将压强图像信号传输至终端设备。
本实施例的终端设备被设置为能存储脉搏声音信号和压强图像信号,将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据,并能根据脉搏声音数据和压强数据得出并显示血压值。具体地,本实施的终端设备包括存储模块、处理模块、运算模块和显示模块,其中,存储模块被设置为存储脉搏声音信号和压强图像信号;处理模块被设置为将脉搏声音信号转化为脉搏声音数据,将压强图像信号转化为压强数据;运算模块被设置为根据脉搏声音数据和压强数据得出血压值;显示模块被设置为同步显示脉搏声音信号和压强图像信号,并显示运算模块得出的血压值。本实施例的终端设备为手机(参见图 6 ),在其它实施例中也可以为电脑、平板电脑、手环、手表等智能设备或可穿戴设备。
本实施例的图像采集部件被设置在终端设备中,可以为摄像头或照相机等能够拍摄图像的部件。本实施例的音频采集部件包括音频接收部件、音频预处理部件和音频传输部件。音频传输部件的端部设置有连接件(比如耳机插头),使得音频采集部件能够与终端设备电连接。具体地,如图 7 所示,本实施例的音频采集部件为听诊器,包括听诊头 4 和麦克风 5 。麦克风 5 嵌在音频传输部件 6 中并位于音频传输部件 6 的端部,耳机插头 7 直接与麦克风 5 连接。此时,音频传输部件 6 为中空的导管,比如橡胶管,从而听诊头 4 所接收的脉搏声音信号通过橡胶管中的空气振动传输至麦克风 5 ,然后麦克风 5 将脉搏声音信号通过耳机插头传输至终端设备。
在其它实施例中,麦克风 5 也可以设置在听诊头中,此时音频传输部件 6 为电导线,从而听诊头 4 所接收的脉搏声音信号依次通过麦克风 5 、电导线和耳机插头 7 传输至手机。
在其它实施例中,听诊器也可以通过无线连接方式与手机连接,比如通过蓝牙,将脉搏声音信号传输至手机。
本实施例的终端设备的存储、处理、运算和显示等功能均可以通过设置在终端设备内的 APP ( Application ,应用程序)来实现。
本实施例的血压测量设备使用过程如下:
使用时先将听诊器的耳机插头将插入手机。血压计的测量过程将和普通血压计一样,由血压计控制充气放气,听诊器固定在血压计的袖带气囊内侧,并紧贴肱动脉处以采集听诊音(脉搏声音)。启动手机上的 App , APP 运行界面如图 8 所示。将手机上的摄像头对准电子血压仪的显示屏,在血压测量过程中开始记录血压计上显示屏上的图像和听诊器中的声音。手机中的 APP 会对图像数据和声音数据进行处理,比如显示声音的强弱幅度,根据图形识别获得压强读数,并进一步判断血压等。
手机上的 App 还可以进行进一步的数据分析:将声音数据、压强图像信号显示在同一个时间轴上。如图 8 所示,图中左边的竖线 14 标出了根据听诊法确定的收缩压对应的时间点,右边的竖线 15 标出了舒张压对应的时间点。由此可以对应时间点的图像以及上面显示的压强值,即为收缩压和舒张压。数据回放时,中间的竖线 16 会随着声音的播放进度移动,竖线 16 经过的声音强弱幅度曲线会帮助人来对耳朵听到的声音做更准确的判断。
APP 对音频信号的图形化不仅可以是时域的,也可以是频域的或二者皆有。图形也不限于是曲线图,也可以是柱形图等。还可以设置在声音的回放过程中可随时进行暂停、继续、设置在两个时间点间循环播放等操作。
另外,用户基于 APP 将脉搏声音数据和压强图像信号在同一个时间轴上图形化显示的结果,也可以人为地通过听诊法确定血压值。 APP 也可以根据压强数据通过示波法运算得出血压值,其中示波法中使用的参数(比如幅度参数法中的 C1 和 C2 )可以直接通过操作界面(未示出)被进行调整。对于一般的使用者,可以设置为,针对某一次的测量,输入经确认后认为是准确的血压值(如人为通过听诊法确定的血压值),由专用 APP 将输入的血压值和由示波法确定的血压值进行比较,依据比较结果进行参数调整,从而无需专业人士也可简单进行参数调整。也可以以听诊法确定的血压值为基准自动校准示波法中使用的参数(如 C1 和 C2 ),这种校准也可以设置为周期性的,如设定为一段时间或一定次数后进行自动校准。由于参数的修改是针对个人情况而进行的校准,测量精度一般会高于普通电子血压计上的直接读数。并且在经过校准后,即使不使用听诊器(不进行听诊法确定血压值),也可以获得相对较为准确的血压值。
以上界面功能的实施,皆在现有技术的可实现范围内,并且在有数据源的前提下,对于数据的处理和显示的方式多种多样,如对数据进行相关性分析、将图像加入动态元素等等,可以根据实际需要做进一步地设计或改进。
在使用时,本实施例的血压测量设备也与普通电子血压计一样,只需一键启动,血压计自动对袖带气囊进行充放气操作,同时记录测量到的数据。待测量结束后,自动显示由示波法和 / 或听诊法确定的血压值,也可在终端设备(本实施例中的手机)上回放记录的压强图像信号(或压强数据)和声音数据,人为通过听诊法确定血压值。
以上详细描述了本 发明 的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本 发明 的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本 发明 的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (15)

  1. 一种用于血压测量的辅助装置,其特征在于,包括音频采集部件、图像采集部件和终端设备,其中,
    所述音频采集部件被设置为采集血压测量时的脉搏声音信号并将所述脉搏声音信号传输至所述终端设备;
    所述图像采集部件被设置为采集血压测量时的压强图像信号并将所述压强图像信号传输至所述终端设备;
    所述终端设备被设置为能存储所述脉搏声音信号和所述压强图像信号。
  2. 如权利要求1所述的用于血压测量的辅助装置,其特征在于,所述终端设备被设置为能存储并同步播放所述脉搏声音信号和同步显示所述压强图像信号。
  3. 如权利要求2中任意一项所述的用于血压测量的辅助装置,其特征在于,所述终端设备包括存储模块、显示模块和播放模块,其中,所述存储模块被设置为存储所述脉搏声音信号和所述压强图像信号;所述显示模块被设置为在所述存储模块存储所述压强图像信号时同步显示所述压强图像信号;所述播放模块被设置为在所述存储模块存储所述脉搏声音信号时同步播放所述脉搏声音信号;所述压强图像信号的显示和所述脉搏声音信号的播放是同步的。
  4. 如权利要求1所述的用于血压测量的辅助装置,其特征在于,所述终端设备被设置为能存储所述脉搏声音信号和所述压强图像信号,将所述脉搏声音信号转化为脉搏声音数据,并能同步显示所述脉搏声音数据和所述压强图像信号。
  5. 如权利要求4中任意一项所述的用于血压测量的辅助装置,其特征在于,所述终端设备包括存储模块、处理模块和显示模块,其中,所述存储模块被设置为存储所述脉搏声音信号和所述压强图像信号;所述处理模块被设置为将所述脉搏声音信号转化为脉搏声音数据;所述显示模块被设置为同步显示所述脉搏声音数据和所述压强图像信号。
  6. 如权利要求1所述的用于血压测量的辅助装置,其特征在于,所述终端设备被设置为能存储所述脉搏声音信号和所述压强图像信号,将所述脉搏声音信号转化为脉搏声音数据,将所述压强图像信号转化为压强数据,并能根据所述脉搏声音数据和所述压强数据得出并显示血压值。
  7. 如权利要求6所述的用于血压测量的辅助装置,其特征在于,所述终端设备包括存储模块、处理模块、运算模块和显示模块,其中,所述存储模块被设置为存储所述脉搏声音信号和所述压强图像信号;所述处理模块被设置为将所述脉搏声音信号转化为脉搏声音数据,将所述压强图像信号转化为压强数据;所述运算模块被设置为根据所述脉搏声音数据和所述压强数据得出血压值;所述显示模块被设置为显示所述运算模块得出的所述血压值。
  8. 如权利要求6所述的用于血压测量的辅助装置,其特征在于,所述终端设备包括存储模块、处理模块、运算模块和显示模块,其中,所述存储模块被设置为存储所述脉搏声音信号和所述压强图像信号;所述处理模块被设置为将所述脉搏声音信号转化为脉搏声音数据,将所述压强图像信号转化为压强数据;所述运算模块被设置为根据所述脉搏声音数据和所述压强数据得出血压值;所述显示模块被设置为同步显示所述脉搏声音信号和所述压强图像信号,并显示所述运算模块得出的所述血压值。
  9. 如权利要求1~8中任意一项所述的用于血压测量的辅助装置,其特征在于,所述图像采集部件设置在所述终端设备中。
  10. 如权利要求1~8中任意一项所述的用于血压测量的辅助装置,其特征在于,所述音频采集部件包括音频接收部件、音频预处理部件和音频传输部件,其中所述音频预处理部件设置在所述音频接收部件中,使得所述音频接收部件所接收的所述脉搏声音信号依次通过所述音频预处理部件、所述音频传输部件和设置在所述音频传输部件端部的连接件传输至所述终端设备。
  11. 如权利要求10所述的用于血压测量的辅助装置,其特征在于,所述音频传输部件为电导线。
  12. 如权利要求1~8中任意一项所述的用于血压测量的辅助装置,其特征在于,所述音频采集部件包括音频接收部件、音频预处理部件和音频传输部件,其中所述音频预处理部件设置在所述音频传输部件中并位于所述音频传输部件的端部,从而所述音频接收部件所接收的所述脉搏声音信号通过所述音频传输部件传输至所述音频预处理部件,然后所述音频预处理部件将所述脉搏声音信号通过设置在所述音频传输部件端部的连接件传输至所述终端设备。
  13. 如权利要求12所述的用于血压测量的辅助装置,其特征在于,所述音频传输部件为中空的导管。
  14. 如权利要求10所述的用于血压测量的辅助装置,其特征在于,所述音频传输部件的端部设置有连接件,使得所述音频采集部件能够与所述终端设备电连接。
  15. 一种血压测量设备,其特征在于,包括血压计和如权利要求1~8中任意一项所述的用于血压测量的辅助装置。
PCT/CN2015/089367 2015-07-02 2015-09-10 一种用于血压测量的辅助装置及血压测量设备 WO2017000385A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018520005A JP6692420B2 (ja) 2015-07-02 2015-09-10 血圧測定のための補助デバイス及び血圧測定装置
US15/741,207 US20180184913A1 (en) 2015-07-02 2015-09-10 Auxiliary device for blood pressure measurement and blood pressure measuring equipment
EP15896915.4A EP3318183B1 (en) 2015-07-02 2015-09-10 Auxiliary device for blood pressure measurement and blood pressure measuring equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510383288.X 2015-07-02
CN201510383288 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017000385A1 true WO2017000385A1 (zh) 2017-01-05

Family

ID=55835767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089367 WO2017000385A1 (zh) 2015-07-02 2015-09-10 一种用于血压测量的辅助装置及血压测量设备

Country Status (5)

Country Link
US (1) US20180184913A1 (zh)
EP (1) EP3318183B1 (zh)
JP (1) JP6692420B2 (zh)
CN (2) CN106308783A (zh)
WO (1) WO2017000385A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010415A (ja) * 2017-06-30 2019-01-24 ヤマハ株式会社 電子血圧計、血圧測定方法、及び電子聴診器
CN109171673A (zh) * 2018-09-14 2019-01-11 康然 一种多功能人体信号采集仪及采集系统
CN109805945B (zh) * 2019-01-30 2021-12-14 北京津发科技股份有限公司 记录回放装置及方法
CN110090040A (zh) * 2019-04-19 2019-08-06 周军臣 一种方便医疗诊断的多功能听诊器
CN110680298B (zh) * 2019-11-01 2022-12-27 徐州市双惠医疗设备有限公司 柯氏音电子血压测量仪及其主动降噪拾音装置、系统、方法
CN111904405B (zh) * 2020-08-31 2021-09-07 江苏盖睿健康科技有限公司 一种血压测量装置
CN115486826B (zh) * 2022-10-11 2023-09-08 广东省妇幼保健院 柯式音血压测量仪
CN117100240B (zh) * 2023-10-23 2024-03-29 广州逆熵电子科技有限公司 一种基于机器视觉的全自动血压模拟测试方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302585A (zh) * 2000-11-28 2001-07-11 胡复培 电脑网络型水银柱式血压检测仪
CN101248990A (zh) * 2008-04-09 2008-08-27 杨福生 对电子血压计准确性的柯氏音可视化评价方法及装置
CN101385642A (zh) * 2008-09-17 2009-03-18 上海上达医用仪表厂有限公司 人体血压柯氏音强度图像仪
CN101664307A (zh) * 2009-09-24 2010-03-10 北京航空航天大学 一种用于听诊法测血压的柯氏音信息的获取处理方法和装置
CN203074686U (zh) * 2013-03-06 2013-07-24 宁波宏健康复科技发展有限公司 网络型水银柱式血压检测仪
KR101313496B1 (ko) * 2011-08-25 2013-10-01 김상철 전자혈압계의 정확성 평가 기법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909495A (en) * 1996-11-05 1999-06-01 Andrea Electronics Corporation Noise canceling improvement to stethoscope
JP3225907B2 (ja) * 1997-11-28 2001-11-05 松下電工株式会社 在宅健康管理システム
JP3587775B2 (ja) * 1999-09-09 2004-11-10 松下電器産業株式会社 表示データ解析装置および記録媒体
US6848537B2 (en) * 2000-04-25 2005-02-01 Deslauriers Richard J. Stethoscope
US7300406B2 (en) * 2003-09-30 2007-11-27 Carter Vandette B Medical examination apparatus
US20060253040A1 (en) * 2005-02-28 2006-11-09 Canamet Canadian National Medical Technologies Inc Method and device for measuring systolic and diastolic blood pressure and heart rate
US8265291B2 (en) * 2005-11-15 2012-09-11 Active Signal Technologies, Inc. High sensitivity noise immune stethoscope
JP5176850B2 (ja) * 2008-10-06 2013-04-03 オムロンヘルスケア株式会社 生体情報表示装置、生体情報表示システム、統計処理方法および統計処理プログラム
JP5182036B2 (ja) * 2008-11-20 2013-04-10 オムロンヘルスケア株式会社 電子血圧計
CN201641992U (zh) * 2009-08-03 2010-11-24 管晓毅 Usb图示血压计
WO2011043815A1 (en) * 2009-10-09 2011-04-14 Ferzli George S Stethoscope, stethoscope attachment and collected data analysis method and system
CN101810475B (zh) * 2010-04-27 2012-02-15 哈尔滨工业大学 基于柯氏音法和示波法相结合的电子听诊血压计
CN102283638A (zh) * 2011-09-27 2011-12-21 江苏鱼跃信息系统有限公司 智能系数匹配的血压测量方法
JP2013233279A (ja) * 2012-05-09 2013-11-21 Tss Co Ltd 脈波解析装置
US9934701B2 (en) * 2013-05-17 2018-04-03 Kbport Llc Universal sphygmomanometer simulator for live training and evaluation
US20170238825A9 (en) * 2013-06-25 2017-08-24 Qardio, Inc. Devices and methods for measuring blood pressure
US20160235353A1 (en) * 2013-09-22 2016-08-18 Momsense Ltd. System and method for detecting infant swallowing
US9414155B2 (en) * 2013-10-15 2016-08-09 Stratoscientific, Inc. Acoustic collection system for handheld electronic devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302585A (zh) * 2000-11-28 2001-07-11 胡复培 电脑网络型水银柱式血压检测仪
CN101248990A (zh) * 2008-04-09 2008-08-27 杨福生 对电子血压计准确性的柯氏音可视化评价方法及装置
CN101385642A (zh) * 2008-09-17 2009-03-18 上海上达医用仪表厂有限公司 人体血压柯氏音强度图像仪
CN101664307A (zh) * 2009-09-24 2010-03-10 北京航空航天大学 一种用于听诊法测血压的柯氏音信息的获取处理方法和装置
KR101313496B1 (ko) * 2011-08-25 2013-10-01 김상철 전자혈압계의 정확성 평가 기법
CN203074686U (zh) * 2013-03-06 2013-07-24 宁波宏健康复科技发展有限公司 网络型水银柱式血压检测仪

Also Published As

Publication number Publication date
EP3318183A1 (en) 2018-05-09
JP6692420B2 (ja) 2020-05-13
US20180184913A1 (en) 2018-07-05
EP3318183A4 (en) 2019-03-13
EP3318183B1 (en) 2021-01-27
CN205198018U (zh) 2016-05-04
JP2018525184A (ja) 2018-09-06
CN106308783A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017000385A1 (zh) 一种用于血压测量的辅助装置及血压测量设备
WO2014146552A1 (zh) 一种多普勒超声拾音分析处理方法及装置
WO2016028056A1 (en) Wearable biometric information measurement device
WO2017099426A1 (en) Electronic apparatus and control method thereof
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
RU2743026C2 (ru) Система наблюдения сердечной активности с использованием датчиков электрического потенциала
US20010041845A1 (en) Stethoscope mouse
US20200138399A1 (en) Wearable stethoscope patch
WO2016029546A1 (zh) 血压测量辅助装置和血压测量设备及其设计方法
AU2014248464A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
WO2013141419A1 (ko) 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템
WO2009127091A1 (zh) 血压计
WO2016045140A1 (zh) 可穿戴式生命体征监测仪及监测方法
WO2017075841A1 (zh) 无创血压检测方法、装置及设备
WO2022231132A1 (ko) 인공지능형 스마트 리모컨 장치 및 이를 이용한 자가 검사 방법
US20210236011A1 (en) Method and apparatus for estimating blood pressure
WO2019071878A1 (zh) 一种手表腕带
WO2018030665A1 (ko) 혈압 측정 방법 및 이에 따른 장치
EP3337391A1 (en) Electronic apparatus and control method thereof
WO2020231064A1 (ko) 혈압 측정 시스템 및 이를 이용한 혈압 측정 방법
WO2019156433A1 (ko) 복수의 필터를 이용하여 외부 객체와 관련된 심박변이도 정보를 생성하기 위한 방법 및 이를 위한 장치
WO2019132115A1 (ko) 혈압 모니터링을 위한 이어폰 및 이를 이용한 혈압 모니터링 방법
CN115633947A (zh) 一种可穿戴血压监测装置及血压监测方法
WO2022120656A1 (zh) 血压检测方法、装置以及电子设备
JP2024502997A (ja) 血圧の測定のための方法およびシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018520005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015896915

Country of ref document: EP