WO2013141419A1 - 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템 - Google Patents

양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템 Download PDF

Info

Publication number
WO2013141419A1
WO2013141419A1 PCT/KR2012/002034 KR2012002034W WO2013141419A1 WO 2013141419 A1 WO2013141419 A1 WO 2013141419A1 KR 2012002034 W KR2012002034 W KR 2012002034W WO 2013141419 A1 WO2013141419 A1 WO 2013141419A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
blood pressure
electrocardiogram
impedance
sensor unit
Prior art date
Application number
PCT/KR2012/002034
Other languages
English (en)
French (fr)
Inventor
조승현
이종수
이계형
정운모
정상오
윤형로
심명헌
김민용
윤찬솔
Original Assignee
연세대학교 원주산학협력단
(주)누가의료기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단, (주)누가의료기 filed Critical 연세대학교 원주산학협력단
Publication of WO2013141419A1 publication Critical patent/WO2013141419A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/085Measuring impedance of respiratory organs or lung elasticity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02208Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the Korotkoff method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle

Definitions

  • the present invention measures ECG, SpO 2 , Blood Pressure (NIBP), and Body-Impedance, using only two hands, and measures body fat rate (BFR). , Multi-dimensional biometric analysis of NIBP, blood vessel elasticity (BVSI), cardiac output (ICG), and pulmonary function tests (IPFT). It relates to a biometric system for evaluating vascular and cardiopulmonary function using both hands capable of function monitoring.
  • NIBP Blood Pressure
  • BFR body fat rate
  • PFTs pulmonary function tests
  • ICGs cardiac output measurements
  • the present invention is a solution to the problems of these cardiovascular diagnostic devices as a system that can measure a number of biological parameters (ECG, PPG, NIBP, Bio-Impedance, etc.) instead of a single parameter, evaluating vascular and cardiopulmonary function using only two hands.
  • ECG ECG
  • PPG PPG
  • NIBP NIBP
  • Bio-Impedance Bio-Impedance
  • Biometric measurement system for evaluating blood vessels and cardiopulmonary function using both hands of the present invention, body fat percentage (BFR), wrist blood pressure measurement (NIBP), vascular elasticity (BVSI), two-handed cardiac output measurement (ICG), two-hand lung function measurement ( IPFT) can be analyzed a plurality of bio-parameters, that is, by comprehensively analyzing through the measurement of a plurality of bio-parameters rather than a single parameter, it is less cost and time constraints and easy access to health information In addition, this enables the evaluation and continuous monitoring of an individual's vascular and cardiopulmonary functions in various places outside the hospital.
  • BFR body fat percentage
  • NIBP wrist blood pressure measurement
  • VBSI vascular elasticity
  • ICG two-handed cardiac output measurement
  • IPFT two-hand lung function measurement
  • the problem to be solved by the present invention by using only two hands, measuring ECG, ECG, PPBP, NIBP, Bio-Impedance, and body fat percentage Multidimensional biometric parameters such as fat rate (BFR), noninvasive blood pressure (NIBP), vascular elasticity (BVSI), cardiac output (ICG), and pulmonary function test (IPFT) are analyzed. It provides a biometric system for evaluating vascular and cardiopulmonary function using both hands, which enables continuous vascular and cardiopulmonary function monitoring.
  • BFR fat rate
  • NIBP noninvasive blood pressure
  • BVSI vascular elasticity
  • ICG cardiac output
  • IPFT pulmonary function test
  • Another problem to be solved by the present invention is a deviation from the constrained measurement method by wearing the device and the electrode in the measurement of cardiac output and lung function using the body impedance, using a two-handed electrode measurement method using only two hands, convenient and unconstrained
  • the present invention provides a biometric system for evaluating blood vessels and cardiopulmonary function using both hands, which can measure and monitor cardiopulmonary function.
  • the present invention provides a biometric system for evaluating blood vessels and cardiopulmonary function using both hands, and having a wrist blood pressure measurement module for detecting wrist blood pressure values (SBP, DBP, MAP) with improved accuracy.
  • the present invention provides a biometric system for evaluating blood vessels and cardiopulmonary function using both hands to detect blood vessel characteristic parameters (BVSI) compensated using information (height), so that the vessel state can be accurately known.
  • VFSI blood vessel characteristic parameters
  • Another object of the present invention is to provide an integrated system capable of simultaneously measuring a impedance, electrocardiogram, oxygen saturation (SpO2) or optical volume pulse wave (PPG) signal using both hands, and an impedance cardiogram of the impedance Impedance Cardiogram (hereinafter referred to as ICG)
  • ICG impedance cardiogram of the impedance Impedance Cardiogram
  • Another object of the present invention is to provide an impedance pulmonary function test (IPFT) module using a sieve impedance, the spirometry (hereinafter referred to as FVC), the maximum exhalation volume for 1 second (that is, exhaling as hard as 1 second) Volume of air, forced expired volume in one second (hereinafter referred to as FEV1), and forced expiratory volume / forced lung capacity ratio for one second (i.e., the amount of air exhaled for one second to the amount of air inhaled for one second (FVC))
  • Pulmonary function evaluation parameter detection algorithm hereinafter referred to as the FEV1 / FVC ratio
  • the FEV1 / FVC ratio which is equipped with a pulmonary function state estimation system with user convenience, and a biometric system for vascular and cardiopulmonary function evaluation using both hands.
  • the present invention is provided with a display unit in the center of the front portion, the left end and the right end is made to hold by hand, the left and right hand contact portion is equipped with a bio-signal detection electrode
  • a biosignal detection electrode is provided with a current electrode for passing a microcurrent to the skin and a voltage electrode for measuring the potential difference between the skin and a pulse signal, which is a body impedance signal reflecting a pulmonary volume.
  • a body impedance sensor unit for detecting;
  • An IPFT (impedance pulmonary function test) preprocessor for amplifying the lung volume signal output from the body impedance sensor and removing noise;
  • Electrocardiogram and chamber impedance MCU Micro Controller Unit
  • FEV1 / FVC ratio forced expiratory volume / forced lung capacity ratio for 1 second
  • the present invention comprises a display unit in the center of the front portion, the left end and the right end is made to hold by hand, the left and right hand contact portion of the biometric measurement system equipped with a bio-signal detection electrode, the light emission Oxygen saturation sensor unit for detecting PPG signal (oxygen saturation signal) reflecting vascular elasticity, and a light-receiving unit, oxygen saturation pre-processing unit for amplifying the PPG signal output from the oxygen saturation sensor unit and removing noise, oxygen saturation pre-processing
  • An oxygen saturation detection module having an oxygen saturation MCU for receiving a PPG signal from a unit and converting the signal into a digital signal;
  • Electrocardiogram sensor unit having an electrocardiogram electrode for detecting an electrocardiogram, electrocardiogram preprocessing unit for amplifying the electrocardiogram signal output from the electrocardiogram sensor unit and removing noise, receiving an electrocardiogram signal from an electrocardiogram preprocessor and receiving a PPG signal from an oxygen saturation MCU
  • an electrocardiogram and chamber impedance measurement module having an electrocardi
  • the present invention comprises a display unit in the center of the front portion, the left end and the right end is made to hold by hand, the left and right end of the biometric system in which the biological signal detection electrode is mounted on the hand contact portion,
  • a signal detection electrode comprising: a current impedance sensor that detects an ICG signal, which is a body impedance signal reflecting cardiac output measurement (ICG), comprising a current electrode through which a microcurrent flows through the skin and a voltage electrode measuring a potential difference between the skin;
  • An ICG preprocessing unit for amplifying the waste volume signal output from the chamber impedance sensor unit and removing noise;
  • an electrocardiogram (ICG) measurement module including an electrocardiogram and a chamber impedance MCU that converts the ICG signal received from the ICG preprocessor into a digital signal and calculates a single ejection amount and a cardiac output amount from the ICG signal.
  • the present invention is provided with a display unit in the center of the front portion, the blood pressure measurement cuff is mounted on one wrist, the left end and the right end is made to hold by hand, the left and right end of the hand contact portion of the bio-signal detection electrode
  • a biometric system comprising: a NIBP (non-invasive wrist blood pressure measurement) sensor unit having a light emitting unit and a light receiving unit, and detecting a blood pressure signal which is a PPG signal reflecting blood pressure; An NIBP preprocessor for amplifying the blood pressure signal output from the NIBP sensor unit; A pressure sensor unit for detecting a Cortkop sound signal, which is a pressure signal reflecting the Cortkop sound from the cuff wound around the wrist; A pressure preprocessor which removes and amplifies noise from the Cortkop sound signal detected by the pressure sensor; Converts the blood pressure signal from the NIBP preprocessor and the Cortkop sound signal from the pressure preprocessor into a digital signal, detects the blood pressure according to the oscill
  • the NIBP MCU corrects the blood pressure according to the oscillometric method by the blood pressure according to the corotocope sound.
  • the electrocardiogram and body impedance measuring module includes an electrocardiogram sensor unit having an electrocardiogram electrode and detecting an electrocardiogram, and an electrocardiogram preprocessor configured to amplify the electrocardiogram signal output from the electrocardiogram sensor unit and remove noise, and the electrocardiogram and chamber impedance MCU includes: From the ECG signal received from the ECG preprocessor, the heart rate, the RR interval, the P wave, the QRS wave, the PR interval, and the QRS interval are detected.
  • the electrocardiogram and body impedance measuring module includes a current electrode for applying a microcurrent to the skin and a voltage electrode for measuring the potential difference between the skin, a body impedance sensor unit for detecting a body fat signal which is a body impedance signal reflecting body fat, and a body impedance sensor A body impedance preprocessor for amplifying the body fat signal output from the unit and removing noise is further provided.
  • the ECG and the body impedance MCU detect the body fat amount from the body fat signal received from the body impedance preprocessor.
  • Oxygen saturation sensor unit for detecting an oxygen saturation signal (PPG signal) with a light emitting unit and a light receiving unit, an oxygen saturation preprocessor for amplifying the oxygen saturation signal output from the oxygen saturation sensor unit and removing noise, and oxygen from the oxygen saturation preprocessor
  • the apparatus further includes an oxygen saturation detection module having an oxygen saturation MCU for receiving a saturation signal and converting the signal into a digital signal.
  • the biometric system may include: a main MCU controlling the driving of the biometric system according to a single measurement mode or a sequential measurement mode set by a user, statistically processing a user's biometric signal, and outputting a result to a display; It further includes a main module including a; Bluetooth unit for transmitting the output of the main MCU wirelessly.
  • ECG ECG
  • oxygen saturation ECG
  • chamber impedance cardiac output
  • blood pressure blood pressure
  • pulmonary function test are sequentially measured according to stored priorities.
  • the blood pressure measurement cuff is mounted on the wrist, the left end and the right end is made to hold the hand, the biometric system in the biometric detection system is equipped with a bio-signal detection electrode on the left and right hand contact portion, Means for measuring body impedance, cardiac output (ICG), impedance pulmonary function test (IPFT), and having an electrocardiogram sensor unit and a body impedance sensor unit to detect an electrocardiogram signal and a body impedance signal, and including an RR interval ECG and body impedance measurement module for measuring the FEV1 / FVC ratio, cardiac output, body fat amount; An oxygen saturation detection module having an oxygen saturation sensor to detect oxygen saturation; A NIBP sensor unit and a pressure sensor unit are provided to detect a blood pressure signal from the NIBP sensor unit and a Cortkop sound signal from the pressure sensor unit, to detect blood pressure according to the oscillometric method from the blood pressure signal, and to detect a Cortkop sound signal.
  • ICG cardiac output
  • IPFT impedance pulmonary function test
  • Blood pressure measurement module for detecting blood pressure according to the corototope sound from; including one or more of the electrocardiogram and body impedance measurement module, oxygen saturation detection module, controlling the operation of the blood pressure measurement module, statistical processing of the user's biometric signal It further comprises a main module for outputting the result to the display unit.
  • the electrocardiogram and body impedance measurement module calculates the FEV1 / FVC ratio (forced expiratory volume / forced lung capacity ratio for 1 second) from the volumetric signal, which is a body impedance signal reflecting the lung volume detected from the chamber impedance sensor unit.
  • IPFT Impedance Pulmonary Function Test
  • the electrocardiogram and body impedance measurement module receives an electrocardiogram signal from an electrocardiogram sensor unit, receives a PPG signal from an oxygen saturation detection module, and detects blood vessel elasticity (BVSI) using an electrocardiogram signal and a PPG signal. It includes an MCU.
  • the electrocardiogram and chamber impedance measurement module includes an electrocardiogram and a chamber impedance MCU that calculates a single ejection volume and a cardiac output volume from an ICG signal, which is a body impedance signal reflecting the cardiac output measurement (ICG) detected from the chamber impedance sensor unit. Includes an ejection rate (ICG) measurement module.
  • ICG ejection rate
  • the ECG and body impedance measurement module detects the body fat amount from the body fat signal which is a body impedance signal reflecting the body fat detected by the body impedance sensor unit.
  • the biosignal detection electrode includes first to fourth electrodes, which are four electrodes for detecting electrocardiogram and body impedance, and includes a first electrode at a lower left side of the front side of the biometric system and a front side of the biometric system.
  • a second electrode is provided on the lower right side of the unit, a third electrode is provided on the left side of the biometric system, and a fourth electrode is provided on the right side of the biometric system.
  • the first to fourth electrodes are chromium plated electrodes.
  • ECG, SpO2, NIBP, and Bio-Impedance are measured instead of a single parameter.
  • Analyzes multidimensional biometric parameters such as body fat rate (BFR), noninvasive blood pressure (NIBP), vascular elasticity (BVSI), cardiac output (ICG), and pulmonary function test (IPFT).
  • BFR body fat rate
  • NIBP noninvasive blood pressure
  • BVSI vascular elasticity
  • ICG cardiac output
  • IPFT pulmonary function test
  • the present invention also provides a convenient and unconstrained measurement of cardiopulmonary function using the two-handed electrode measurement method using only two hands, deviating from the constrained measurement method by wearing the device and the electrode in the measurement of cardiac output and lung function using the body impedance. And monitoring is possible.
  • the present invention by combining the conventional oscillometric method and the algorithm using the power spectrum density of the Korotkoff sound to improve the error according to the wrist measurement, the wrist blood pressure value (SBP, DBP, Wrist blood pressure measurement module for detecting the MAP), thereby improving the accuracy of the wrist blood pressure measurement.
  • the present invention in addition to the existing method of detecting the vascular state, by using the feature points of the PPG quadratic differential waveform (APG) to detect the correction parameters and compensated by using the user information (height) (Height)
  • the parameter (BVSI) is detected so that the vessel state can be known more accurately.
  • the present invention also provides an integrated system capable of simultaneously measuring a chamber impedance, an electrocardiogram, an oxygen saturation (SpO2) or a light volume pulse wave (PPG) signal using both hands, detecting ICG feature points of the chamber impedance, A cardiac output estimation algorithm that detects a single stroke volume through amplitude and time information of the liver is provided, and the cardiac output evaluation can be performed using only two hands.
  • the present invention includes an impedance lung function test (IPFT) module using a sieve impedance, and includes a lung capacity (FVC), maximum breath volume (FEV1) for one second, and forced breath volume / forced lung capacity ratio (FEV1 / FVC ratio) for one second.
  • IPFT impedance lung function test
  • FVC lung capacity
  • FEV1 maximum breath volume
  • FEV1 / FVC ratio forced breath volume / forced lung capacity ratio
  • the present invention can secure the compatibility with various IT devices such as Android phones through the Bluetooth standard wireless profile (Profile), it is possible to expand the E-Health and U-Health.
  • Profile Bluetooth standard wireless profile
  • the biometric system for evaluating vascular and cardiopulmonary function using both hands of the present invention is a comprehensive and continuous vascular and cardiopulmonary function monitoring system, unlike conventional single parameter measurement.
  • Mutual compensation and extraction of new secondary parameters such as body fat measurement (BFR), wrist blood pressure measurement (NIBP), vascular elasticity (BVSI), two-handed cardiac output measurement (ICG) and two-hand lung function measurement (IPFT) Do.
  • BFR body fat measurement
  • NIBP wrist blood pressure measurement
  • BVSI vascular elasticity
  • ICG two-handed cardiac output measurement
  • IPFT two-hand lung function measurement
  • the present invention using only two hands, comprehensive analysis through measurement of multi-dimensional biometric parameters, not a single parameter, less cost and time constraints, and easy access to health information, and also through various places other than a hospital
  • evaluation and continuous monitoring of individual vascular and cardiopulmonary functions are possible.
  • the present invention can easily determine the health status of the individual by self-diagnosing the cardiac output and the mechanical function of the heart at home, and enables the early prevention of diseases and heightened interest in their health status.
  • FIG. 1 is an explanatory diagram schematically illustrating the operation of a biometric system for evaluating blood vessels and cardiopulmonary function of the present invention.
  • FIG. 2 is a block diagram schematically illustrating the configuration of a biometric system for evaluating blood vessels and cardiopulmonary function of the present invention.
  • 3 is an example of the configuration of a biometric system for evaluating blood vessels and cardiopulmonary function of the present invention.
  • FIG. 4A is a front view of the biometric system for vascular and cardiopulmonary function evaluation according to one embodiment of the present invention
  • FIG. 4B is a left side view of the biometric system of FIG. 4A
  • FIG. 4C is a right side view of the biometric system of FIG. 4A. .
  • FIG. 5A is an example of an execution screen of the biometric system for vascular and cardiopulmonary function evaluation of FIG. 4A.
  • 5B is an example of a state diagram of use of the biometric system for vascular and cardiopulmonary function evaluation of FIG. 4A.
  • FIG. 6 is an example of an ECG rhythm analysis characteristic point detection algorithm flowchart in a biometric system for evaluating blood vessels and cardiopulmonary function according to an embodiment of the present invention.
  • FIG. 7 is an example of a flowchart of an ECG rhythm analysis algorithm according to the detected characteristic points of FIG. 6.
  • FIG. 8 is an example of an oxygen saturation detection algorithm flowchart in a biometric system for evaluating blood vessels and cardiopulmonary function according to an embodiment of the present invention.
  • FIG 9 is an example of an oxygen saturation data acquisition timing diagram according to an embodiment of the present invention.
  • FIG. 10 is an example of a wrist blood pressure measurement algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation of an embodiment of the present invention.
  • FIG. 11 is an example of a flow chart of an vascular elasticity (BVSI) detection algorithm in a biometric system for vascular and cardiopulmonary function evaluation according to an embodiment of the present invention.
  • VFSI vascular elasticity
  • SIc corrected SI
  • FIG. 13 is an example of a two-handed cardiac output detection algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation according to an embodiment of the present invention.
  • FIG. 14 is an example of a two-hand lung function evaluation detection algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation of an embodiment of the present invention.
  • 15 is an example of a blood vessel age measurement screen in a biometric system for evaluating blood vessels and cardiopulmonary function according to one embodiment of the present invention.
  • 16 is an example of a blood vessel age measurement result screen in a biometric system for evaluating blood vessels and cardiopulmonary function according to one embodiment of the present invention.
  • 17 is an example of a pulmonary function measurement screen in a biometric system for vascular and cardiopulmonary function evaluation according to an embodiment of the present invention.
  • 19 is an example of a wrist blood pressure measurement result screen in a biometric system for evaluating blood vessels and cardiopulmonary function according to one embodiment of the present invention.
  • FIG. 1 is an explanatory diagram schematically illustrating the operation of a biometric system for evaluating blood vessels and cardiopulmonary function of the present invention.
  • the biometric system that is, the cardiovascular measurement module is initialized by turning on the power switch of the biometric system of the present invention, and the display unit of the biometric system is in the initial screen state (S10).
  • the operation switch of the biometric system of the present invention is turned ON or after the initialization step, the user selection and measurement item selection screen are automatically switched, where the user selection mode, measurement mode, It is possible to select the previous measurement results viewing mode, option setting mode (S20).
  • the user selection mode there are a new user registration mode (S22) and a user selection mode (S23) from the list.
  • a new user registration is directly input from a user list, and user information can be input through a keyboard and a user information popup when adding a list.
  • the user setting mode S23 selects or deletes a user from the list.
  • the stored data is also deleted.
  • the measurement mode one of the single measurement mode (S24) and the sequential measurement mode (S25) is set, and when the single measurement mode (S24) is set, the item to be measured is set.
  • Single measurement mode is to measure only a single item selectively, it is a mode to measure selectively among the five measurement items, that is, blood pressure, ECG and oxygen saturation, body fat, cardiac output, pulmonary function evaluation.
  • the single measurement mode (S24) is set, the item to be measured should be selected from five items including blood pressure, electrocardiogram and oxygen saturation, body fat, cardiac output, and pulmonary function evaluation.
  • the selected item may be one or more.
  • the sequential measurement mode S25 five items are sequentially measured according to previously stored priorities. For example, if the stored priorities are stored in order of electrocardiogram, oxygen saturation, chamber impedance, cardiac output, blood pressure, and pulmonary function test, they are measured in this order.
  • the single measurement step (S32) or the sequential measurement step (S40) according to the setting in the biosignal measurement step Perform (S30), and output the measurement result (S50).
  • the single measurement mode S24 when the single measurement mode S24 is set in the user and measurement item setting step S20 and the item to be measured is set, the measurement of the selected item in the single measurement step S32 of the biosignal measurement step S30. (S34), and outputs and confirms the results for each measurement (S35). At this time, if there are several selected items, the items are sequentially measured according to their priority. In other words, the single measurement mode selectively measures only the parameters you want to measure and displays the results screen for each measurement.
  • the sequential measurement mode (S25) is set in the user and measurement item setting step (S20)
  • the measurement items are sequentially measured according to the priority.
  • ECG and oxygen saturation (S41), chamber impedance (S43), cardiac output (S45), blood pressure (S47), pulmonary function test (S49) can be measured sequentially.
  • the sequential measurement mode is automatically measured in the order of electrocardiogram and oxygen saturation (S41), chamber impedance (S43), cardiac output (S45), blood pressure (S47), and pulmonary function test (S49).
  • the measurement result screen is displayed.
  • the measurement result output step S50 a comprehensive measurement result is output, and data backup of the measurement result can be performed (S55).
  • the previous measurement result is output (S70) or the user and the measurement item setting step S20.
  • the process returns to the biosignal measurement step S30 and continues the measurement. If the biosignal measurement is stopped, the biosignal measurement returns to the biosignal measurement step S30. .
  • the previous measurement result view mode S26 outputs a previous measurement result of the selected user, and may selectively output a graph of the measurement result in units of days, weeks, and months.
  • the previous measurement result view mode S26 For example, if the previous measurement result view mode S26 is selected, the previous measurement result is output (S70). When outputting the previous measurement results, the latest measurement results can be displayed in the latest week, month, and year. Also, the graph can display the trend of the measurement result. By selecting a backup key (button), data backup (S55) to a computer (PC) can also be performed. When the output of the previous measurement result is completed, it returns to the user and the measurement item settings (S20).
  • a PC-based data management software is provided for data backup, and also performs data backup to a PC via Bluetooth.
  • the option setting mode S27 selects an option and can set or adjust various options such as language and sound.
  • option setting mode S27
  • options such as language, time, touch calibration, sound, screen brightness / contrast, Bluetooth on / off, reset, clock, memory management, device calibration, etc.
  • Set S80
  • FIG. 2 is a block diagram for explaining schematically the configuration of the biometric system for vascular and cardiopulmonary function evaluation of the present invention, ECG and body impedance measurement module 100, oxygen saturation detection module 200, blood pressure (NIBP) measurement
  • the module 300 includes a main module 400.
  • ECG and body impedance measurement module 100 is a means for measuring electrocardiogram, chamber impedance, cardiac output (ICG), impedance pulmonary function test (IPFT), ECG sensor unit 110, ECG preprocessing unit 120, chamber impedance
  • the sensor unit 130, the chamber impedance preprocessor 140, the ICG pretreatment unit 150, the IPFT preprocessor 160, and the electrocardiogram and chamber impedance MCU (Micro Controller Unit) 170 are included. That is, the electrocardiogram and body impedance measuring module 100 includes an electrocardiogram measuring module, a body impedance module, a cardiac output (ICG) measuring module, and an impedance lung function test (IPFT) measuring module.
  • ICG cardiac output
  • IPFT impedance lung function test
  • the ECG sensor unit 110 includes an ECG electrode and means for detecting an ECG.
  • the ECG sensor 110 may include a reference electrode and two ECG electrodes.
  • the ECG electrode may be formed of a right hand side (RA) electrode and a left hand side (LA) electrode.
  • the ECG preprocessor 120 includes an amplifier and a filter, amplifies the ECG signal detected by the ECG sensor 110, removes noise, and transmits the ECG signal to the ECG and the body impedance MCU 170.
  • the electrocardiogram and body impedance MCU 170 converts the output signal of the electrocardiogram preprocessor 120 into a digital signal and performs data calculation processing.
  • the ECG preprocessor 120 may output the signal of the ECG LEAD I through differential amplification between the output of the right hand (RA) electrode and the output of the left hand (LA) electrode.
  • the electrocardiogram sensor unit 110, the electrocardiogram preprocessor 120, and the electrocardiogram and chamber impedance MCU 170 constitute an electrocardiogram measurement module.
  • the chamber impedance sensor unit 130 is a sensor for flowing a microcurrent through the skin and measuring impedance by measuring a potential difference of the skin.
  • the chamber impedance sensor unit 130 includes two current electrodes for flowing a microcurrent (high frequency) and a voltage signal having the impedance information. It has two voltage electrodes for detection.
  • the chamber impedance sensor unit 130 further includes a current electrode driver (not shown), and the current electrode driver includes a Wien Bridge Oscillator for generating high frequency, and a stabilizing current power source for constant current injection into the human body.
  • Source for example Howland Constants Current Source.
  • the body impedance preprocessor 140 includes an amplifier, an RMS converter, and a filter to differentially amplify the detected body impedance signal, convert it to RMS, remove noise, and send the ECG and the impedance MCU 170 to send.
  • the chamber impedance sensor unit 130, the chamber impedance preprocessing unit 140, and the electrocardiogram and chamber impedance MCU 170 form a chamber impedance measurement module.
  • ICG pre-lowering unit 150 is composed of a PWM feedback, a low pass filter, an amplifier, etc., through the body impedance sensor unit 130, the impedance cardiogram (ICG) of the impedance, i.e. ICG, to detect and amplify the noise Remove and transmit to ECG and impedance impedance MCU (170).
  • ICG impedance cardiogram
  • PWM feedback sets the PWM by subtracting a certain amount using a base impedance signal.
  • PWM Feedback improves resolution through differential amplification between the base impedance and the signal adjusted according to the user's base impedance value.
  • the lowpass filter can use a 31.2Hz lowpass filter to remove noise due to differential amplification, and an amplifier for ICG signal extraction with 1ohm / volt resolution.
  • the chamber impedance sensor unit 130 and the ICG electrode unit 150 form a cardiac output (ICG) measurement module.
  • ICG cardiac output
  • the IPFT preprocessing unit 160 is composed of a PWM feedback, a low pass filter, an amplifier, and the like, and through the chamber impedance sensor unit 130, detects and amplifies the chamber impedance (waste volume signal) according to respiration changes, and removes noise. And transmits to the ECG and the impedance MCU 170.
  • the PWM feedback sets the PWM by subtracting a certain amount by using a base impedance signal.
  • PWM Feedback improves resolution through differential amplification between the base impedance and the signal adjusted according to the user's base impedance value.
  • the low pass filter can use 5Hz Lowpass Filter to remove noise due to the improvement of resolution through differential amplification.
  • the amplifier achieves resolution of 10ohm / volt unit and extracts the impedance variation according to the breathing change.
  • the impedance sensor unit 130, the IPFT preprocessor 160, and the ECG and the impedance MCU 170 form an impedance lung function test (IPFT) measurement module.
  • IPFT impedance lung function test
  • the electrocardiogram and body impedance MCU 170 converts the received data into a digital signal, performs data operation processing, and transmits the result to the main module 400.
  • the electrocardiogram sensor unit 110 and the body impedance sensor unit 130 constitute the electrocardiogram and the body impedance sensor unit 105.
  • the electrocardiogram and body impedance sensor unit 105 includes first to fourth electrodes, and when detecting an electrocardiogram signal, that is, as the electrocardiogram sensor unit 110, the first electrode and the second electrode detect an electrocardiogram signal.
  • the third electrode may be used as a reference electrode, and when detecting the impedance, the first electrode and the second electrode may be a voltage electrode to detect a voltage, and the third electrode and the fourth electrode may inject a microcurrent. It can be used as a current electrode to
  • Oxygen saturation detection module 200 is a means for detecting the oxygen saturation, light volume pulse wave, and comprises an oxygen saturation sensor unit 210, oxygen saturation pre-processing unit 220, oxygen saturation MCU (230).
  • the oxygen saturation sensor unit 210 includes a light emitting unit made of red and infra-red light sources, and a light receiving unit made of a photosensor and the like, and detects an oxygen saturation signal.
  • the sensor driver (not shown), an analog switch, etc. may be further provided, and red, infra-red, and ambient signals may be output by changing the analog switch according to the switching of the light source.
  • the oxygen saturation preprocessor 220 amplifies the oxygen saturation signal output from the oxygen saturation sensor unit 210 and removes noise.
  • the oxygen saturation degree MCU 230 converts the oxygen saturation degree signal received from the oxygen saturation degree preprocessor 220 into a digital signal, performs data operation processing, and transmits the result to the main module 400.
  • the blood pressure measurement module 300 detects a correction parameter by using feature points of the second derivative waveform (APG) of the PPG, in addition to the existing blood vessel condition detection method, and compensates the blood vessel by using the user information (Height). It is a means for detecting characteristic parameters (BVSI) to more accurately know the vascular state.
  • Blood pressure measurement module 300 is a means for measuring the non-invasive blood pressure (NIBP) by detecting the optical volume pulse wave in the blood vessel, the NIBP sensor unit 310, NIBP pre-processing unit 320 is made of NIBP MCU 350,
  • the detection means by the existing Korotkoff sound (Korotkoff Sound) includes a pressure sensor unit 330, pressure preprocessor 340, NIBP MCU 350.
  • a cuff is worn around one wrist and the NIBP sensor unit 310 is contacted with a finger to measure blood pressure.
  • the NIBP sensor unit 310 includes a light emitting unit and a light receiving unit to detect blood pressure related (light volume) pulse waves. In some cases, the NIBP sensor unit 310 may use the oxygen saturation sensor unit 210 as it is.
  • the NIBP preprocessor 320 amplifies the pulse wave signal output from the NIBP sensor unit 310 and outputs the pulse wave signal to the NIBP MCU 350.
  • the pressure sensor unit 330 is a means for detecting the pressure of the cuff wound around the wrist.
  • the pressure preprocessor 340 removes noise from the pressure signal detected by the pressure sensor 330, amplifies it, and transmits the amplified signal to the NIBP MCU 350. In some cases, the pressure preprocessor 340 may be omitted.
  • the NIBP MCU 350 converts the blood pressure related pulse wave signal received from the NIBP preprocessor 320 and the pressure signal received from the pressure preprocessor 340 into digital signals, and performs calculation processing using the data, and as a result, To the main module 400.
  • the main module 400 is a means for performing the overall control and output of the biometric system for evaluating blood vessels and cardiopulmonary function of the present invention, the main MCU 410 display unit 420, speaker unit 430, Bluetooth unit 440 ), A memory unit (not shown).
  • the main MCU 410 is a means for performing the overall control of the biometric system for the evaluation of blood vessels and cardiopulmonary function of the present invention, ECG and body impedance measurement module 100, oxygen saturation detection module 200, blood pressure (NIBP) measurement The output of the module 300 is received and arithmetic processing is performed.
  • the main MCU 410 may have a built-in memory.
  • the display unit 420 displays the result output to the main MCU 410.
  • the speaker unit 430 is used as a right and left speaker of the blood vessel and cardiopulmonary function diagnosis device, and also informs of the measurement order, measurement results, etc. under the control of the main MCU 410.
  • the Bluetooth unit 440 is a means for extending the E-Health and U-Health by securing compatibility with various IT devices such as Android phones through a Bluetooth standard wireless profile. Positioning the feeding part of the antenna in the middle and placing the ground plane in the feeding part of the antenna may enable an increase in the radiation efficiency of the antenna.
  • the memory unit (not shown) stores the result output to the main MCU 410.
  • the four electrodes of the first electrode to the fourth electrode for the electrocardiogram and the body impedance sensor 105 may be provided, and the sixth electrode may be provided for oxygen saturation and blood pressure detection.
  • 3 is an example of the configuration of a biometric system for evaluating blood vessels and cardiopulmonary function of the present invention.
  • the biometric system for evaluating blood vessel and cardiopulmonary function of the present invention is an electrocardiogram and body impedance measurement module 100 (E & I of FIG. 3), an oxygen saturation detection module 200 (SpoO2 of FIG. 3), a blood pressure (NIBP) measurement module. It consists of a total of five blocks 300 (NIBP of FIG. 3), a main module 400 (Main of FIG. 3), and a power supply unit (Power of FIG. 3).
  • ECG and body impedance measurement module 100 E & I of FIG. 3
  • oxygen saturation detection module 200 Spo2 of FIG. 3
  • blood pressure (NIBP) measurement module 300 NIBP of FIG. 3
  • each block is User information and measurement parameters are shared through serial communication with the main MCU 410 (main controller and support controller of FIG. 3) of the module 400 (Main of FIG. 3). That is, according to the present invention, as four blocks (Main, NIBP, SpO2, and E & I) share the biometric information of the user, the detection of bioparameters limited to the existing primary parameters such as ECG, SpO2, Impedance, and NIBP is a secondary parameter.
  • BFR body fat
  • NIBP wrist blood pressure
  • BVSI vascular elasticity
  • ICG two-handed cardiac output
  • IPFT two-hand lung function
  • ARM's Cortex A8 design-based application processor 32-bit RISC processor
  • the MCU of the electrocardiogram and body impedance measurement module 100, the oxygen saturation detection module 200, and the blood pressure (NIBP) measurement module 300 may use ARM 32-bit MCU (Micro Controller Unit), and individual control is possible. .
  • USB interface unit it can be used when updating the firmware of the user, and it is possible to back up the user information and the measurement result history through the USB communication.
  • the present invention it is possible to induce correct measurement by voice when monitoring a user condition using a blood vessel and a cardiopulmonary function diagnostic device.
  • the support controller (CANTUS) of FIG. 3 was used to facilitate smooth communication and multi-channel communication port expandability between main-sub modules.
  • FIG. 4A is a front view of the biometric system for vascular and cardiopulmonary function evaluation according to one embodiment of the present invention
  • FIG. 4B is a left side view of the biometric system of FIG. 4A
  • FIG. 4C is a right side view of the biometric system of FIG. 4A. .
  • 4A to 4C include first to fifth electrodes 111, 112, 113, 114, and 215, wherein the first to fourth electrodes 111, 112, 113, and 114 are electrocardiogram and The body impedance (body fat (BIA), cardiac output (ICG), pulmonary function evaluation (IPFT)) is for detecting, and the fifth electrode 215 is for detecting oxygen saturation and blood pressure.
  • body fat body fat
  • ICG cardiac output
  • IPFT pulmonary function evaluation
  • the first to fourth electrodes 111, 112, 113, and 114 are composed of four chromium plating electrodes.
  • the ECG is detected by using the first electrode and the second electrode as the ECG signal detection electrode and the third electrode as the reference electrode.
  • the first electrode and the second electrode are used as voltage electrodes for detecting a voltage
  • the third electrode and the fourth electrode are used as current electrodes for injecting a microcurrent to detect the body impedance.
  • the sixth electrode is used to detect the oxygen saturation degree.
  • FIG. 5A is an example of an execution screen of the biometric system for vascular and cardiopulmonary function evaluation of FIG. 4A
  • FIG. 5B is an example of a state diagram of the biometric system for vascular and cardiopulmonary function evaluation of FIG. 4A.
  • the first electrode 111 is in contact with the lower thumb of the left palm
  • the second electrode 112 is in contact with the lower thumb of the right palm
  • the third electrode 113 is in contact with the left palm
  • the fourth electrode 114 is It comes in contact with the palm of your right hand.
  • the first electrode 111 is composed of LA
  • the second electrode 112 is composed of RA
  • the fourth electrode 114 is composed of RL.
  • the first electrode 111 and the second electrode 112 are voltage detection electrodes according to a change in living body, and the third electrode 113 and the fourth electrode 114 are current electrodes.
  • the first to fourth electrodes i.e., four chromium plated electrodes, are used as integrated electrodes of electrocardiogram and body impedance measurement.
  • the fifth electrode 215 has a left thumb as an oxygen saturation measuring sensor and, unlike the forceps-type (permeable) sensor mainly used in conventional oxygen saturation measuring equipment, measures the oxygen saturation of the user with a reflection type sensor. .
  • Start button (455) is a start button (455) for each measurement, in order to eliminate the inconvenience of having to hold the electrode, and press the touch monitor, through the start key (455) can perform the start and step movement, etc.
  • the start key 455 is configured to be in contact with the thumb of the right hand.
  • FIG. 6 is an example of an ECG rhythm analysis characteristic point detection algorithm flowchart in a biometric system for evaluating blood vessels and cardiopulmonary function according to an embodiment of the present invention.
  • the ECG rhythm analysis characteristic point detection algorithm may be performed in the ECG and the impedance MCU 170 or the main MCU 410, and more preferably in the ECG and the impedance MCU 170.
  • ECG raw data ECG raw data
  • LPF low pass filter
  • the first derivative step in order to highlight only the characteristics of the QRS wave (QRS complex) at the output of the power noise canceling step, the first derivative is performed at 6 point intervals (S120), and the high frequency is applied by the first derivative signal. As noise occurs in the band, LPF is obtained to obtain a first derivative waveform of the ECG signal from which the noise is removed (S125).
  • a maximum differential value for the first two seconds is calculated using the first derivative waveform output in the first derivative step, and a threshold calculation factor is calculated for the maximum value for the initial two seconds.
  • a threshold is selected by multiplying (for example, 0.7) (S130).
  • the process In the step of determining whether to select the threshold, it is determined whether the threshold is selected for 2 seconds (S135), and if the threshold is not selected for 2 seconds, the process returns to the initial threshold selection step (S130) and the threshold for 2 seconds thereafter. Set it again.
  • the ECG signal that is, the QRS wave
  • the ECG signal larger than the threshold value is detected in the first derivative waveform, but the ECG signal larger than the threshold value is selected after the threshold value is selected. It is determined whether the time after 200 ms or more has elapsed (S140), and if this condition is not satisfied, the time counter is increased (S143), and the ECG greater than the threshold when the time is 200 ms or more after the threshold is selected (S143). QRS wave) is detected.
  • the zero crossing determination step for detecting the R point if the ECG signal larger than the threshold value is detected after 200 ms or more elapsed time after the threshold value is selected in the 200 ms time determination step, in the first differential signals inputted next, It is determined whether the first differential signal has become a zero crossing (S145), and when it is not satisfied, the first differential signal is waited until the zero crossing is satisfied.
  • the threshold After the threshold is selected, it checks the elapsed time of 200 ms or more and repeats until the ECG signal is larger than the selected threshold, and when the time of 200 ms or more elapses, continuously checks whether the first differential signal after the zero crossing is zero crossing.
  • the ECG signal at the point of zero crossing is designated as R point and detected.
  • zero crossing of the first derivative signal is to find an inflection point.
  • the R point detecting step (S100) improves the accuracy of the R point detection by using the preprocessing and differential and zero crossing methods to determine whether to detect the R point necessary for arrhythmia detection or the like.
  • the R point is detected, the RR interval is calculated using the detected time index value between the R points, and the heart rate is detected.
  • the ECG signal at the point of zero crossing is set to R point (R point) and the time index counter (Cnt) is initialized in the zero crossing determination step for detecting the R point. (S153).
  • the step of determining whether to cross the zero point for detecting the S point it is determined whether the first differential signal is zero crossing in the first differential signals input after the R point set in the R point setting step (S153). If it is not satisfied (S155), if it is not satisfied, the time index counter is increased (S157) to see if the next first derivative signal is zero crossing, and thus the first differential signal is zero crossing. Wait until you are satisfied.
  • the zero point is set as the S point (S160).
  • the step of determining whether to cross the zero point for detecting the T point it is determined whether the first differential signal is zero crossing in the first differential signals input after the S point set in the S point setting step S160. If it is not satisfied (S163), if it is not satisfied, the time index counter is increased (S165) to see if the next first derivative signal is zero crossing, and thus the first differential signal is zero crossing. Wait until you are satisfied.
  • the detected zero crossing point is regarded as a temporary T point, and the time of the point of the T point is less than the previous RR interval value / 10. It is determined whether it is larger and smaller than the previous RR interval value / 2 (S167). If this condition is satisfied, it is determined as a T point within the normal range. If this condition is not satisfied, the counter is incremented (S170) and waited until it is satisfied. .
  • the previous RR interval value is the previous Cnt value stored.
  • the temporary T point is set to the T point (S173).
  • the step of determining whether to cross the zero point for detecting the P point it is determined whether or not the first differential signal is zero crossing in the first differential signals input after the T point set in the T point setting step (S173). If it is not satisfied (S175), if it is not satisfied, the time index counter is increased (S177) to see if the next first derivative signal is zero crossing, and thus the first differential signal is zero crossing. Wait until you are satisfied.
  • the detected zero crossing point is regarded as the temporary P point, and the time of the point of the potential P point is earlier than the previous RR interval value / 20. It is determined whether it is larger and smaller than the previous RR interval value / 3 (S180). If this condition is satisfied, it is determined as a P point within the normal range. If this condition is not satisfied, the counter is incremented (S182) and waited until it is satisfied. .
  • the temporary P point is set to the P point (S183).
  • the step of determining whether to cross the zero point for detecting the Q point it is determined whether the first differential signal is zero crossing in the first differential signals input after the P point set in the P point setting step (S183). If it is not satisfied (S185), if it is not satisfied, the time index counter is incremented (S187) to see if the next first derivative signal is zero crossing, and thus the first differential signal is zero crossing. Wait until you are satisfied.
  • the zero crossing point is set as the Q point (S190).
  • the final data determination step it is determined whether the data is the last data (S195), and if not the last data, the flow returns to the 200ms time-lapse determination step (S140).
  • the characteristic point calculation step if the last data is the final data result, the characteristic point data such as the interval between the RR, PR, and QRS is detected (S197).
  • Characteristic point detection step (S150), R point setting step, zero point crossing determination step for S point detection, S point setting step, zero point crossing determination step for T point detection, T point determination step within the normal range, T Point setting step, zero crossing determination step for P point detection, P point determination step within the normal range, P point setting step, zero crossing determination step for Q point detection step, Q point setting step, last data determination step, Characteristic point calculation step.
  • Cnt value which is the previous RR interval value.
  • the point where zero point is crossed within the normal range is detected as T point, and the normal range of P point is defined by using the factor for P point detection.
  • Detection of P, Q, R, S, and T points is completed by detecting a point crossing the zero point within the defined range as a P point, and then detecting the point crossing the next zero point as a Q point. If the acquisition of data has not been completed, return to the R-Peak detector to start detection of the next P, Q, R, S, T.
  • the RR, PR, and QRS intervals are detected by using each Cn
  • the characteristic point detection step (S150) calculates a time interval of each of the P point and the T point based on the R point, and determines whether it is within the normal range presented on the detection algorithm.
  • the QRS interval parameter is calculated by calculating the time interval between two points through the detection of Q point and S point.
  • the PR interval parameter is calculated by calculating the time interval of each characteristic point using the detected P point and R point.
  • FIG. 7 is an example of a flowchart of an ECG rhythm analysis algorithm according to the detected characteristic points of FIG. 6, including a heartbeat determination step (first step) (S10), an RR interval (RRI) regularity determination step (a second step) (S20), P determination step (third step) (S30), QRS determination step (fourth step) (S40), PR interval determination step (fourth step) (S50), QRS interval determination step (sixth step) (S60) ), Including the electrocardiogram analysis step (S70).
  • Heart rate determination step (first step) (S10) is the detected heart rate is less than 60 (S11), greater than or equal to 60 and less than or equal to 100 (S12), greater than or equal to 100 and less than or equal to 200 ( S13), when larger than 200 (S14), it is determined by dividing into a case where the measurement is not possible (S15).
  • RR interval (RRI) regularity determination step (second step) is determined by dividing into a case where the error rate of the detected RR interval is within 10% (S21), when the error rate is 10% or more (S22).
  • the P determination step (third step) (S30) is determined by dividing the P wave in the detected ECG signal (S31), when there is no P (S32).
  • the QRS determination step (fourth step) (S40) is determined by dividing into a case where there is a QRS wave (S41), there is no QRS (S42) in the detected ECG signal.
  • the PR interval determining step (fourth step) (S50) is determined by dividing the PR interval within the normal range (S51), the PR interval abnormal (S52) in the detected ECG signal.
  • the QRS interval determination step (sixth step) (S60) is determined by dividing the detected ECG signal into the case where the QRS interval is within the normal range (S61) and when the QRS interval is abnormal (S62).
  • the ECG analysis step (S70) analyzes the state according to the ECG.
  • S12, S21, S31, S41, S51, S61 are selected in the electrocardiogram analysis step (S70), it is determined to be normal sinus rhythm, and if S11, S21, S31, S41, S51, S61 are selected, east-west It is determined as Sinus Bradycardia, and when S13, S21, S31, S41, S51, S61 is selected, it is determined as Sinus Tcahycardia.
  • S22, S32, S42, S52, S62 it is determined to be stop (Sinus Pause / Arrest), and if S12, S22, S31, S41, S51, S61 is selected, it is determined to be atrial premature beat (APC).
  • APC atrial premature beat
  • S22, S32, S41, S52, and S61 are determined to be atrial fibrilliation, and S13, S22, S31, S41, S52, and S61 are determined to be ectopic atrial tcahycardia, and S14, S21, S31, S41, S52, S61 are determined to be ventricular flutter, and S22, S32, S42, S52, and S62 are determined to be ventricular fibrilliation.
  • the East-West vein refers to the case where the heart rate is less than 60 times
  • the tachycardia refers to the case where the heart rate exceeds 100 times.
  • Step 3 Determine the presence of P
  • Step 4 Determine the presence of QRS
  • Step 5 Determine the PR interval
  • Step 6 Determine the QRS interval.
  • arrhythmia and cardiac function it is possible to evaluate arrhythmia and cardiac function by comparing the six-level coded items with the developed ECG Rhythm Analysis Case.
  • FIG. 8 is an example of an oxygen saturation detection algorithm flowchart in a biometric system for evaluating blood vessels and cardiopulmonary function according to an embodiment of the present invention.
  • the oxygen saturation detection algorithm may be performed in the oxygen saturation MCU 230 or the main MCU 410, and more preferably in the oxygen saturation MCU 230.
  • red and infrared sensor units are sequentially switched to obtain AC and DC components of infrared (Red) and near infrared (InfraRed) to detect a signal (S210), and from the detected oxygen saturation signal.
  • Preprocessing to remove noise i.e., analog filtering with 0.05 Hz to 10 Hz band width (S215) and A / D conversion (S220, S225) detects AC and DC components of Red and InfraRed (S227).
  • the AMBIENT noise is removed according to sequential control through the timing as shown in FIG. 9 (S235, S240), and the ambient (AMBIENT) AC and DC components are continuously separated and detected,
  • the AMBIENT noise component is removed by subtracting the AMBIENT AC and DC component values corresponding to the AC and DC components, respectively.
  • the AC and DC components of the infrared (Red) and near-infrared (InfraRed) from which the ambient noise components are removed are collected (S245 and S250). 10 Hz low pass filtering is performed to remove noise and set a threshold for detecting characteristic points of the IR signal (S255).
  • the threshold is set (S263), and if not set, it waits until it is set.
  • Peak detection of near-infrared AC signal When the threshold setting is completed, the peak of the near-infrared AC signal is peaked through the first derivative and zero crossing method of the noise-free near-infrared AC signal. If a point is not detected (S265), it is determined whether the peak is detected, and if no peak is detected, it is waited until it is detected (S270).
  • the minimum value of the near infrared AC signal is stored in the near infrared valley buffer (IR valley), and the minimum value of the infrared AC signal is stored in the infrared valley buffer (R valley) (S273). If each valley buffer minimum value is not stored, it waits until it is stored (S276).
  • the amplitude of the near infrared AC signal is stored by subtracting the near infrared valley buffer value (ie, the minimum value of the near infrared AC signal) from the peak signal of the near infrared AC signal, and the amplitude of the infrared AC signal is the infrared valley from the peak signal of the infrared AC signal. Stored by subtracting the buffer value (that is, the minimum value of the infrared AC signal) (S279).
  • the amplitude detection step S260 detects the peak point of the InfraRed AC signal through the first derivative and the Zero Crossing Method of the noise-free InfraRed AC signal when the threshold setting is completed, and minimizes the effect of the diastolic noise.
  • the amplitude detection step S260 detects the peak point of the InfraRed AC signal through the first derivative and the Zero Crossing Method of the noise-free InfraRed AC signal when the threshold setting is completed, and minimizes the effect of the diastolic noise.
  • the red AC signal is also synchronized with the InfraRed AC signal, so the red amplitude is also detected.
  • the DC components of the near infrared and the infrared are detected and stored using the valley buffer values stored in synchronization with the peak detection moment of the InfraRed AC signal (S283). It is determined whether or not data detection is completed (collection completion) (S285), and the process is not completed yet, and the process returns to the peak detection step (S265) of the near infrared AC signal.
  • the detected amplitude and the DC value are averaged and the ratio of ratio is calculated using the value (S287).
  • the SpO2 value is detected by substituting the Ratio of Ratio into the equation obtained through calibration (S298).
  • the oxygen saturation detection step (S280) detects the DC components of InfraRed and Red using the buffer values stored in synchronization with the peak detection moment of the InfraRed AC signal.
  • the Amplitude and DC values of the detected Red and InfraRed are stored, and the process returns to the peak detection step (S265) of the near infrared AC signal and repeats the detection until the measurement for each beat is completed.
  • the averaged amplitude and DC value are averaged and the ratio of ratio is calculated using the value, and the SpO2 value is detected by substituting the ratio of ratio into the equation obtained through calibration.
  • the lean body fat and body fat measurement algorithm may be performed in the ECG and the body impedance MCU 170 or the main MCU 410, and more preferably in the ECG and the body impedance MCU 170.
  • a multiple interpolation algorithm is applied to obtain more accurate impedance value.
  • the multi-interpolation algorithm measures 100 ⁇ (ohm), 1k ⁇ (ohm) and human body in turn through hardware switching, and then calculates linear linear equations between 100 ⁇ and 1k ⁇ to obtain accurate bioimpedance values.
  • the lean body mass (kg) is calculated by combining the user's weight, gender, height, and other parameters.
  • the body fat is calculated using the weight and the measured fat mass.
  • FIG. 10 is an example of a wrist blood pressure measurement algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation of an embodiment of the present invention.
  • Wrist blood pressure measurement algorithm may be performed in the NIBP MCU 350 or the main MCU 410, more preferably in the NIBP MCU 350.
  • an oscillometric signal that is, a blood pressure (NIBP) signal and a pressure signal, that is, a K-SOUND signal is obtained.
  • NIBP blood pressure
  • a pressure signal that is, a K-SOUND signal
  • the obtained blood pressure signal S313 is removed through a 20 Hz low pass filter (LPF) to remove noise (S316), and a peak and a valley for each beat. (S319), and the amplitude (Peak-Valley) which is the difference is detected, respectively.
  • Linear amplitude interpolation (10 Hz up-sampling) is performed to improve the resolution of the detected beat-specific amplitude value (S313) and interpolated through curve fitting (S325).
  • the maximum point of the interpolated signal is detected (S328) and set to MAP (maximum point) (S331).
  • S334 Obtain the value obtained by multiplying the MAP (maximum point) by the characteristic systolic and diastolic ratios (S334), and the pressure values acquired in synchronization with the oscillometric signal corresponding to the value obtained by multiplying the MAP (maximum point) by the characteristic systolic and diastolic ratios, respectively.
  • Systolic blood pressure (SBP), diastolic blood pressure (DBP) is detected (S337).
  • Blood pressure detection step (S360) according to the Korotokko sound, after the initialization (S310), AD conversion is completed (S340, S343), in order to improve the wrist blood pressure measurement accuracy (Korotkoff Sound, K-SOUND) signal (S355), the bit of the K-SOUND signal is detected (S358), and the signal is divided for each beat.
  • Zero padding for power spectrum density (hereinafter, referred to as PSD) of the divided signal is made into 2n pieces (S361), and a power spectrum density (10-50 Hz) of PSD, ie, a characteristic frequency band, is performed (S364). .
  • PSD power spectrum density
  • the PSD result value of the 10 to 50 Hz band which is the optimum frequency band, is detected for each beat (S367), and the maximum point is detected (S370).
  • SBP_K systolic blood pressure
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the blood pressure value is corrected using the MAP (maximum point) (S352).
  • the corrected blood pressure that is, the corrected systolic blood pressure SBPc, the diastolic blood pressure DBPc, and the MAPc (maximum point) are output as a result. This improves the accuracy of blood pressure measurements on the wrist.
  • the SBP and DBP of the oscillometric method are detected using the MAP calculated by the oscillometric method.
  • SBP_K is calculated by the Cortkov sound.
  • the final blood pressure values SBPc, MAPc, and DBPc are calculated from four values calculated by the two methods, MAP, SBP, DBP, and SBP_K.
  • the method for calculating the final blood pressure value first, if SBP_K falls within the range of 110% or more and 160% or less of the MAP, redetects the DBP using MAP and SBP_K, where SBP_K is the corrected systolic blood pressure (SBPc), MAP becomes the corrected maximum point MAPc and DBP becomes the corrected diastolic blood pressure DBPc. If SBP_K does not fall within the range of 110% or more and 160% or less of the MAP, SBP is SBPc, MAP is MAPc, and DBP is set to DBPc using the previously detected SBP.
  • the present invention is an application to the stethoscope method, which is a golden standard of non-invasive blood pressure measurement method, to solve the inaccuracies and other problems of the existing oscillometric method, spectrum analysis in the frequency domain through FFT of Korotkoff Sound signal, Total Power Analysis
  • the developed algorithm is applied to the integrated vascular and cardiopulmonary function system, accurate blood pressure detection is possible.
  • VFSI Vascular Elasticity
  • FIG. 11 is an example of a flow chart of an vascular elasticity (BVSI) detection algorithm in a biometric system for vascular and cardiopulmonary function evaluation according to an embodiment of the present invention.
  • VFSI vascular elasticity
  • the vascular elasticity algorithm may be performed in the electrocardiogram and body impedance MCU 170 or the main MCU 410 or the oxygen saturation MCU 230, and more preferably in the electrocardiogram and the body impedance MCU 170.
  • the BVSI detection algorithm is proposed to detect the vascular state according to the elasticity and stiffness of the blood vessel and applied to the biometric system of the present invention as an integrated system.
  • the present invention provides information on vascular stiffness through vascular age calculation and classification by grade.
  • the pre-processing step for detecting blood vessel elasticity (S400), after initialization (S410), AD-converted (S413, S416) to collect the ECG signal (S419), the oxygen saturation signal (PPG) from the oxygen saturation module in synchronization with the ECG signal Signal) (S422, 425), the oxygen saturation signal (PPG signal) is passed through the 10Hz LPF to detect the characteristic point (S431), and the QRS wave (QRS complex) is detected from the ECG signal (S434).
  • step S435 of detecting the C point it is determined whether the detection of the QRS wave in the ECG signal is completed (S437).
  • the PPG signal is secondly differentiated to obtain an acceleration pulse wave (APG) signal.
  • APG acceleration pulse wave
  • 10Hz LPF is taken to remove the high frequency noise caused by the derivative (S443).
  • Zero cross point (Zp) is continuously detected based on QRS, and it is determined whether the acceleration pulse wave (APG) signal is smaller than the value of the first zero crossing point, and if it is not small, it waits until it is small (S446) and the acceleration pulse wave (APG) Determine whether the signal is greater than the value of the second zero crossing, wait until it is not large (S449), determine whether the acceleration pulse wave (APG) signal is smaller than the value of the third zero crossing, and if it is not small, Wait (S452). In this way, the C point of the APG signal is detected from the three zero crossings (S445).
  • the SIc as the compensated vascular characteristic parameter is calculated (S463), and the BVSI as the vascular characteristic parameter is detected through the SIc (S465).
  • the C point in APG signal indicates the elasticity of blood vessels by late contraction re-increase wave.
  • Existing stiffness index (SI) affects the detection of reflect wave peak due to the phenomenon of reflected wave summing with systolic wave, and thus TDVP (shrinkage wave and expansion wave) Time between peaks) causes an error. Therefore, as shown in FIG. 12, to compensate for the error, the C point, which is a characteristic point of the second derivative waveform of the PPG, is detected, and the time difference ⁇ T and the compensation parameter TI from the forward-going wave peak of the PPG are calculated. .
  • FIG. 13 is an example of a two-handed cardiac output detection algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation according to an embodiment of the present invention.
  • the two-handed cardiac output detection algorithm may be performed at the ECG and the impedance MCU 170 or the main MCU 410, and more preferably at the ECG and the impedance MCU 170.
  • the threshold setting step (S500) after the initialization (S510), when AD conversion of the impedance signal, which is an ICG signal, is completed (S513, S516), the ICG signal is received as a base impedance signal (monitored). (S510), a baseline is set.
  • the PWM is set by subtracting a predetermined amount by using the set base impedance signal (S522). Apply PWM technology to improve resolution.
  • PWM Feedback improves resolution through differential amplification between the base impedance and the signal adjusted according to the user's base impedance value.
  • the LVET detection step S535 it is determined whether the threshold setting is completed (S537).
  • the threshold setting is completed, the ICG signal is firstly differentiated and the LPF is passed (S540). Then, the first zero crossing point of the signal is detected as the C point (S534, S546). As soon as the C point is detected, the B point is detected by the back search (S564, S567, S570).
  • the ICG signal is smaller than the threshold and the point where the first differential waveform crosses zero is detected as the X point (S549, S552).
  • LVET and Dz / dtmax which are one-time calculation parameters, are detected (S555).
  • cardiac output calculation step (S560) user information is input (S558), and a single stroke amount is calculated using the detected parameters LVET and Dz / dt max, and the single stroke amount SV and the heart rate CO are calculated.
  • the cardiac output amount is detected using the detection (S573).
  • IPFT Two-Hand Lung Function Measurement
  • FIG. 14 is an example of a two-hand lung function evaluation detection algorithm flow chart in a biometric system for vascular and cardiopulmonary function evaluation of an embodiment of the present invention.
  • the two-handed lung function evaluation detection algorithm may be performed in the electrocardiogram and body impedance MCU 170 or the main MCU 410, and more preferably in the electrocardiogram and the body impedance MCU 170.
  • the present invention proposes a forward detection algorithm and a backward detection algorithm for detecting pulmonary function evaluation parameters using both hands, and detects atmospheric and small air vehicle evaluation parameters (FVC, FEV1, PIF, PEF, FEV1 / FVC, Ratio). do.
  • FVC atmospheric and small air vehicle evaluation parameters
  • the CH impedance signal which is a volume signal obtained by AD conversion (S613, S614), is output.
  • the same PWM technique as in the measurement of the cardiac output is applied to improve the resolution and acquire the pulmonary volume and the flow signal.
  • FVC, FEV1, PIF, PEF, and FEV1 / FVC Ratio which are parameters for evaluating atmospheric and small and medium airways, are improved by enhancing the characteristic point detection algorithm.
  • FIG. 15 is an example of a blood vessel age measurement screen in the biometric system for evaluating vascular and cardiopulmonary function according to an embodiment of the present invention
  • Figure 16 blood vessel age measurement results in a biometric system for vasculature and cardiopulmonary function evaluation according to an embodiment of the present invention This is an example of the screen.
  • FIG. 15 an ECG signal and an oxygen saturation degree (PPG) signal measured for measuring blood vessel age can be seen, and in FIG. 16, the measured blood vessel age is output.
  • PPG oxygen saturation degree
  • FIG. 17 is an example of a pulmonary function measurement screen in the biometric system for evaluating blood vessels and cardiopulmonary function in one embodiment of the present invention
  • Figure 18 results of measurement of lung function in a biometric system for vasculature and cardiopulmonary function evaluation in an embodiment of the present invention This is an example of the screen.
  • the measured volumetric volume (voiume) signal can be monitored, and in FIG. 18, the detected FVC, FEV1. FEV1 / FVC is output.
  • FIG. 19 is an example of a wrist blood pressure measurement result screen in a biometric system for evaluating blood vessels and cardiopulmonary function according to an embodiment of the present invention.
  • a wrist blood pressure measurement result diastolic blood pressure, diastolic blood pressure, heart rate, and the like are output.
  • the present invention is a biometric system for evaluating vascular and cardiopulmonary function using both hands, and measures body fat percentage, non-vascular blood pressure, vascular elasticity, cardiac output, pulmonary function test, for personal use, or for patient measurement in a hospital. It can be used for vascular and cardiopulmonary function monitoring.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Vascular Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명은, 양손만을 이용하여, 단일 파라미터가 아닌, 심전도, 산소포화도, 혈압, 체임피던스를 측정하고, 체지방율, 비관혈식 혈압(NIBP), 혈관탄성도, 심박출량, 폐기능 검사의 다차원의 생체 파라미터의 분석을 행하여, 비용과 시간의 제약이 적게 들며, 지속적인 혈관 및 심폐기능 모니터링이 가능한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에 관한 것이다. 본 발명은, 손목에 혈압측정용 커프를 장착하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 심전도, 체임피던스, 심박출량, 임피던스 폐기능검사를 측정하는 수단으로, 심전도 센서부과 체임피던스 센서부을 구비하여, 심전도신호와 체임피던스 신호를 검출하여, RR간격을 포함하는 심전도 파라미터, FEV1/FVC 비율, 심박출량, 체지방량, 혈관탄성도을 측정하는 심전도 및 체임피던스 측정모듈; 산소포화도 센서부를 구비하여 산소포화도를 검출하는 산소포화도 검출모듈; NIBP 센서부 및 압력센서부를 구비하여, NIBP센서부로부터의 혈압신호 및 압력센서부로부터의 코르트코프음신호를 검출하여, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 혈압측정모듈; 심전도 및 체임피던스 측정모듈, 산소포화도 검출모듈, 혈압측정모듈의 구동을 제어하고, 사용자의 생체측정신호를 통계처리하여 결과를 디스플레이부로 출력하는 메인 모듈를 포함하여 이루어지는 것을 특징으로 한다.

Description

양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템
본 발명은, 양손만을 이용하여, 단일 파라미터가 아닌, 심전도(ECG), 산소포화도(SpO2), 혈압(NIBP), 체임피던스(Bio-Impedance)를 측정하고, 체지방율(Body Fat Rate, BFR), 비관혈식 혈압(NIBP), 혈관탄성도(BVSI), 심박출량(ICG), 폐기능 검사(IPFT)의 다차원의 생체 파라미터의 분석을 행하여, 비용과 시간의 제약이 적게 들며, 지속적인 혈관 및 심폐기능 모니터링이 가능한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에 관한 것이다.
기존의 연구개발되고 있는 대부분의 심혈관계 진단 및 분석 장비들은 주로 개별적 요소, 즉, 심전도, 혈압, 산소포화도, 폐기능 검사 등 중에서 한두개 정도의 파라미터를 이용한 진단 및 분석 시스템의 형태이다.
또한 종합적인 진단 장비들은 대부분이 고가의 병원용 장비들임에 따라 질병을 사전에 예측하고 예방함에 있어 많은 비용이 소요되고 있는 실정이며, 숙련된 검사자들에 의해 검사가 이루어져야만 하므로 한 가지 검사에도 많은 검사 시간이 소요되는 단점을 가지고 있다.
특히, 기존의 임상에서의 폐기능 검사(PFT), 심박출량 측정(ICG)은 긴 측정 시간 및 숙련된 전문가가 필수적으로 동반되어야 하며 고가의 측정 장비의 사용으로 인한 경제적인 부담과 공간 및 시간의 제약이 존재하며, 또한, 혈관탄성도, 체지방 측정, 혈압 측정은 모니터링이 필수적인 항목들이지만 측정의 구속성이 여전히 남아 있기 때문에 지속적인 모니터링에 제한이 있다.
본 발명은 이러한 심혈관 진단장비들이 가지는 문제점들에 대한 해결책으로써 단일 파라미터가 아닌 다수의 생체 파라미터(ECG, PPG, NIBP, Bio-Impedance등)의 측정이 가능한 시스템으로서, 양손만을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제안하였다.
본 발명의 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템은, 체지방율(BFR), 손목혈압측정(NIBP), 혈관탄성도(BVSI), 양손 심박출량측정(ICG), 양손 폐기능측정(IPFT)의 다수의 생체 파라미터의 분석을 행할 수 있어, 즉, 단일 파라미터가 아닌 다수의 생체 파라미터의 측정을 통해 종합적으로 분석함으로써, 비용과 시간의 제약이 적고 건강 정보에 용이한 접근이 가능하게 되며, 또한 이를 통해 병원 이외의 다양한 장소에서도 개인의 혈관 및 심폐 기능의 평가 및 지속적인 모니터링이 가능하다.
본 발명이 해결하고자 하는 과제는, 양손만을 이용하여, 단일 파라미터가 아닌, 심전도(ECG), 광용적맥파(PPG), 혈압(NIBP), 체임피던스(Bio-Impedance)를 측정하고, 체지방율(Body Fat Rate, BFR), 비관혈식 혈압(NIBP), 혈관탄성도(BVSI), 심박출량(ICG), 폐기능 검사(IPFT)의 다차원의 생체 파라미터의 분석을 행하며, 비용과 시간의 제약이 적게 들며, 지속적인 혈관 및 심폐기능 모니터링이 가능한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 체 임피던스를 이용한 심박출량과 폐기능 측정에서 장치 및 전극의 착용에 의한 구속적인 측정 방식에서 벗어나, 양손만을 이용한, 양손전극 측정법을 이용하여 편리하고 무구속적인 심폐기능의 측정 및 모니터링이 가능한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 손목 혈압 측정 정확도 향상을 위해 기존 오실로메트릭 방식과 코로트코프음(Korotkoff Sound)의 파워 스펙트럼 밀도(Power Spectrum Density)를 이용한 알고리즘을 결합함으로써 손목 측정에 따른 오차를 개선하고, 정확도가 향상된 손목 혈압값(SBP, DBP, MAP)을 검출하는 손목혈압 측정모듈을 구비한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 기존의 혈관상태를 검출하는 방식에 추가하여, 산소포화도(SpO2)를 통해 측정된 PPG의 이차미분 파형(APG)의 특징점을 이용하여 보정 파라미터를 검출하고 사용자 정보인 신장(Height)을 이용하여 보상된 혈관특성 파라미터(BVSI)를 검출하여, 혈관상태를 보다 정확하게 알 수 있게 하는, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 체임피던스, 심전도, 산소포화도(SpO2) 또는 광용적맥파(PPG) 신호를 양손을 이용하여 동시 측정이 가능한 통합 시스템을 구비하며, 체임피던스의 임피던스 카디오그램(Impedance Cardiogram)(이하, ICG 라 함) 특징점들을 검출하고, 특징점 간의 진폭과 시간 정보를 통해 일회 심박출량(Stroke Volume)을 검출하는 심박출량(Cardiac Output) 추정 알고리즘을 구비한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 체 임피던스를 이용한 임피던스 폐기능검사(Impedance Pulmonary Function Test, IPFT) 모듈을 구비하고, 폐활량(이하, FVC 라함), 1초간 최대호기량(즉, 1초간 힘껏 내쉬는 공기의 양, forced expired volume in one second)(이하, FEV1 이라함), 1초간 강제호기량/강제폐활량 비율(즉, 1초간 힘껏 들이마시는 공기의 양(FVC)에 대한 1초간 힘껏 내쉬는 공기의 양의 비율)(이하 FEV1/FVC 비율 이라함)의 폐기능 평가 파라미터 검출 알고리즘을 갖추고 있어, 사용자 편의성을 갖춘 폐기능 상태 추정 시스템을 구비한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 블루투스(Bluetooth) 표준 무선 프로파일(Profile)을 통해 안드로이폰 등의 여러 IT 기기와의 호환성을 확보하여 E-Health 및 U-Health의 확장이 가능한, 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템을 제공하는 것이다.
본 발명의 과제를 해결하기 위해서, 본 발명은, 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 생체신호 검출전극으로서, 피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 폐용적(Pulmonary Volume)을 반영한 체임피던스신호인, 페용적 신호를 검출하는 체임피던스 센서부; 체임피던스 센서부에서 출력된 폐용적 신호를 증폭하고 잡음을 제거하는 IPFT(임피던스 폐기능검사) 전처리부; IPFT 전처리부로부터 수신된 폐용적 신호를 디지탈신호로 변환하고, 폐용적 신호로부터 FEV1/FVC 비율(1초간 강제호기량/강제폐활량 비율)을 산출하는 심전도 및 체임피던스 MCU(Micro Controller Unit);를 구비하는 임피던스 폐기능검사(IPFT) 측정모듈을 포함하는 것을 특징으로 한다.
또한, 본 발명은, 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 발광부와 수광부를 구비하여 혈관탄성도를 반영한 PPG신호(산소포화도 신호)를 검출하는 산소포화도 센서부, 산소포화도 센서부에서 출력된 PPG신호를 증폭하고 잡음을 제거하는 산소포화도 전처리부, 산소포화도 전처리부로부터 PPG신호를 수신하여 디지탈신호로 변환하는 산소포화도 MCU를 구비하는 산소포화도 검출모듈; 심전도 전극을 구비하여 심전도를 검출하는 심전도 센서부, 심전도 센서부에서 출력된 심전도 신호를 증폭하고 잡음을 제거하는 심전도 전처리부, 심전도 전처리부로부터 심전도 신호를 수신하고, 산소포화도 MCU로부터 PPG신호를 수신하여, 심전도 신호 및 PPG신호를 이용하여 혈관탄성도(BVSI)를 검출하는 심전도 및 체임피던스 MCU를 구비하는 심전도 및 체임피던스 측정모듈;을 포함하여 이루어진 것을 특징으로 한다.
또한, 본 발명은, 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 생체신호 검출전극으로서, 피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 심박출량측정(ICG)을 반영한 체임피던스신호인, ICG 신호를 검출하는 체임피던스 센서부; 체임피던스 센서부에서 출력된 폐용적 신호를 증폭하고 잡음을 제거하는 ICG 전처리부; ICG 전처리부로부터 수신된 ICG 신호를 디지탈신호로 변환하고, ICG 신호로부터 1회 박출량 및 심박출량을 산출하는 심전도 및 체임피던스 MCU;를 구비하는 심박출량(ICG) 측정모듈을 포함하는 것을 특징으로 한다.
또한, 본 발명은, 전면부에 중앙에 디스플레이부를 구비하고, 일측 손목에 혈압측정용 커프를 장착하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 발광부와 수광부를 구비하여, 혈압을 반영한 PPG 신호인 혈압신호를 검출하는 NIBP(비관혈식 손목혈압측정) 센서부; NIBP 센서부에서 출력한 혈압신호를 증폭하는 NIBP전처리부; 손목에 감겨진 커프로부터 코르트코프음을 반영한 압력신호인 코르트코프음신호를 검출하는 압력센서부; 압력센서부에서 검출된 코르트코프음신호로부터 잡음을 제거하고, 증폭하는 압력전처리부; NIBP전처리부로부터의 혈압신호 및 압력전처리부로부터의 코르트코프음신호를 디지탈 신호로 변환하고, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 NIBP MCU;를 구비하는 혈압검출모듈을 포함하여 이루어진 것을 특징으로 한다.
상기 NIBP MCU는 오실로메트릭법에 따른 혈압을 코로토코프음에 따른 혈압에 의해 보정한다.
상기 심전도 및 체임피던스 측정모듈은, 심전도 전극을 구비하여 심전도를 검출하는 심전도 센서부와 심전도 센서부에서 출력된 심전도 신호를 증폭하고 잡음을 제거하는 심전도 전처리부를 구비하며, 심전도 및 체임피던스 MCU는, 심전도 전처리부로부터 수신된 심전도 신호로 부터, 심박동수, RR간격, P파, QRS파, PR간격, QRS간격을 검출한다.
심전도 및 체임피던스 측정모듈은, 피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 체지방을 반영한 체임피던스신호인 체지방신호를 검출하는 체임피던스 센서부와, 체임피던스 센서부에서 출력된 체지방신호를 증폭하고 잡음을 제거하는 체임피던스 전처리부를 더 구비하며, 심전도 및 체임피던스 MCU는, 체임피던스 전처리부로부터 수신된 체지방신호로부터 체지방량을 검출한다.
발광부와 수광부를 구비하여 산소포화도 신호(PPG신호)를 검출하는 산소포화도 센서부, 산소포화도 센서부에서 출력된 산소포화도 신호를 증폭하고 잡음을 제거하는 산소포화도 전처리부, 산소포화도 전처리부로부터 산소포화도 신호를 수신하여 디지탈신호로 변환하는 산소포화도 MCU를 구비하는 산소포화도 검출모듈을 더 구비한다.
생체 계측 시스템은, 사용자가 설정한 단일 측정모드 또는 순차적 측정모드에 따라, 생체 계측 시스템의 구동을 제어하고, 사용자의 생체측정신호를 통계처리하여 결과를 디스플레이부로 출력하는 메인 MCU; 메인 MCU의 출력을 무선으로 송출하는 블루투스부;를 포함하는 메인 모듈을 더 구비한다.
순차적 측정모드는 기 저장된 우선순위에 따라 심전도 및 산소포화도, 체임피던스, 심박출량, 혈압, 폐기능검사를 순서대로 측정한다.
또한, 본 발명은, 손목에 혈압측정용 커프를 장착하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서, 심전도, 체임피던스, 심박출량(ICG), 임피던스 폐기능검사(IPFT)를 측정하는 수단으로, 심전도 센서부과 체임피던스 센서부을 구비하여, 심전도신호와 체임피던스 신호를 검출하여, RR간격을 포함하는 심전도 파라미터, FEV1/FVC 비율, 심박출량, 체지방량을 측정하는 심전도 및 체임피던스 측정모듈; 산소포화도 센서부를 구비하여 산소포화도를 검출하는 산소포화도 검출모듈; NIBP 센서부 및 압력센서부를 구비하여, NIBP센서부로부터의 혈압신호 및 압력센서부로부터의 코르트코프음신호를 검출하여, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 혈압측정모듈;중 하나 이상을 포함하며, 심전도 및 체임피던스 측정모듈, 산소포화도 검출모듈, 혈압측정모듈의 구동을 제어하고, 사용자의 생체측정신호를 통계처리하여 결과를 디스플레이부로 출력하는 메인 모듈를 더 포함하여 이루어진 것을 특징으로 한다.
심전도 및 체임피던스 측정모듈은, 체임피던스 센서부로부터 검출된, 폐용적(Pulmonary Volume)을 반영한 체임피던스신호인, 페용적 신호로부터 FEV1/FVC 비율(1초간 강제호기량/강제폐활량 비율)을 산출하는 심전도 및 체임피던스 MCU를 포함한 임피던스 폐기능검사(IPFT) 측정모듈를 구비한다.
심전도 및 체임피던스 측정모듈은, 심전도 센서부로부터 심전도 신호를 수신하고, 산소포화도 검출모듈로부터 PPG신호를 수신하여, 심전도 신호 및 PPG신호를 이용하여 혈관탄성도(BVSI)를 검출하는 심전도 및 체임피던스 MCU를 포함한다.
심전도 및 체임피던스 측정모듈은, 체임피던스 센서부로 부터 검출된 심박출량측정(ICG)을 반영한 체임피던스신호인, ICG 신호로부터 1회 박출량 및 심박출량을 산출하는 심전도 및 체임피던스 MCU를 포함하는, 심박출량(ICG) 측정모듈을 포함한다.
심전도 및 체임피던스 측정모듈은, 체임피던스 센서부로부터 검출된, 체지방을 반영한 체임피던스신호인 체지방신호로부터 체지방량을 검출한다.
생체신호 검출전극은, 심전도와 체임피던스 검출을 위한 4개의 전극인, 제1전극 내지 제4전극을 구비하되, 생체 계측 시스템의 전면부 좌측 하단에 제1전극을 구비하고, 생체 계측 시스템의 전면부 우측 하단에 제2전극을 구비하고, 생체 계측 시스템의 좌측면부에 제3전극을 구비하고, 생체 계측 시스템의 우측면부에 제4전극을 구비한다. 제1전극 내지 제4전극은 크롬 도금 전극이다.
본 발명의 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에 의하면, 단일 파라미터가 아닌, 심전도(ECG), 산소포화도(SpO2), 혈압(NIBP), 체임피던스(Bio-Impedance)를 측정하고, 체지방율(Body Fat Rate, BFR), 비관혈식 혈압(NIBP), 혈관탄성도(BVSI), 심박출량(ICG), 폐기능 검사(IPFT)의 다차원 생체 파라미터의 분석을 행하며, 비용과 시간의 제약이 적게 들며, 지속적인 혈관 및 심폐기능 모니터링이 가능하다.
또한, 본 발명은, 체 임피던스를 이용한 심박출량과 폐기능 측정에서 장치 및 전극의 착용에 의한 구속적인 측정 방식에서 벗어나, 양손만을 이용한, 양손전극 측정법을 이용하여 편리하고 무구속적인 심폐기능의 측정 및 모니터링이 가능하다.
또한, 본 발명은, 기존 오실로메트릭 방식과 코로트코프음의 파워 스펙트럼 밀도(Power Spectrum Density)를 이용한 알고리즘을 결합함으로써 손목 측정에 따른 오차를 개선하고, 정확도가 향상된 손목 혈압값(SBP, DBP, MAP)을 검출하는 손목혈압 측정모듈을 구비하여, 손목 혈압 측정의 정확도 향상시켰다.
또한, 본 발명은, 기존의 혈관상태를 검출하는 방식에 추가하여, PPG의 이차미분 파형(APG)의 특징점을 이용하여 보정 파라미터를 검출하고 사용자 정보인 신장(Height)을 이용하여 보상된 혈관특성 파라미터(BVSI)를 검출하여, 혈관상태를 보다 정확하게 알 수 있게 한다.
또한, 본 발명은, 체임피던스, 심전도, 산소포화도(SpO2) 또는 광용적맥파(PPG) 신호를, 양손을 이용하여 동시 측정이 가능한 통합 시스템을 구비하며, 체임피던스의 ICG 특징점들을 검출하고, 특징점 간의 진폭과 시간 정보를 통해 일회 심박출량(Stroke Volume)을 검출하는 심박출량(Cardiac Output) 추정 알고리즘을 구비하여, 양손만을 이용해서 심박출량 평가가 가능하다.
또한, 본 발명은, 체 임피던스를 이용한 임피던스 폐기능검사(IPFT) 모듈을 구비하고, 폐활량(FVC), 1초간 최대호기량(FEV1), 1초간 강제호기량/강제폐활량 비율(FEV1/FVC 비율)의 폐기능 평가 파라미터 검출 알고리즘을 갖추고 있어, 사용자 편의성을 갖추면서 폐기능 상태 추정이 가능하다.
또한, 본 발명은, 블루투스(Bluetooth) 표준 무선 프로파일(Profile)을 통해 안드로이폰 등의 여러 IT 기기와의 호환성을 확보하여 E-Health 및 U-Health의 확장이 가능하다.
특히, 본 발명의 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템은, 종래의 단일 파라미터의 측정과는 다르게, 종합적이고 지속적인 혈관 및 심폐기능 모니터링 시스템으로써, 종합적인 1차 파라미터 측정을 통한 파라미터간의 상호 보상과 새로운 2차적 파라미터인 체지방측정(BFR), 손목혈압측정(NIBP), 혈관탄성도(BVSI), 양손 심박출량측정(ICG), 양손 폐기능측정(IPFT)의 추출 및 분석이 가능하다. 특히 Impedance를 이용한 심박출량과 폐기능 측정에서는 장치 및 전극의 착용에 의한 구속적인 측정 방식에서 벗어나, 양손전극 측정법을 이용하여 종래에는 없던 편리하고 무구속적인 심폐기능의 측정 및 모니터링이 가능하다.
본 발명은, 양손만을 이용하여, 단일 파라미터가 아닌 다차원적 생체 파라미터의 측정을 통해 종합적으로 분석하여 비용과 시간의 제약이 적고 건강 정보에 용이한 접근이 가능하며, 또한 이를 통해 병원 이외의 다양한 장소에서도 개인의 혈관 및 심폐 기능의 평가 및 지속적인 모니터링이 가능하다. 결과적으로 본 발명은 가정에서 손쉽게 심박출량 및 심장의 역학적 기능을 자가진단 하여 개인의 건강상태를 파악할 수 있으며 자신의 건강 상태에 대한 관심 고조와 질병의 초기 예방을 가능하게 한다.
도 1은 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 동작을 개략적으로 설명하기 위한 설명도이다.
도 2는 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 구성을 개략적으로 설명하기 위한 블럭도이다.
도 3은 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 구성의 일예이다.
도 4a는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 정면도이고, 도 4b는 도 4a의 생체 계측 시스템의 좌측면도이고, 도 4c는 도 4a의 생체 계측 시스템의 우측면도이다.
도 5a는 도 4a의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 실행화면의 일예이다.
도 5b는 도 4a의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 사용상태도의 예이다.
도 6은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 심전도 리듬분석 특성점 검출 알고리즘 순서도의 예이다.
도 7은 도 6의 검출된 특성점에 따른 심전도 리듬 분석 알고리즘 순서도의 일예이다
도 8은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 산소포화도 검출 알고리즘 순서도의 예이다.
도 9는 본 발명의 일실시예에 의한 산소포화도 데이타 획득 타이밍도의 일예이다.
도 10은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 손목혈압측정 알고리즘 순서도의 예이다.
도 11은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관탄성도(BVSI) 검출 알고리즘 순서도의 예이다.
도 12는 본 발명의 보정된 SI(SIc) 파라미터 산출을 설명하는 설명도이다.
도 13은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 양손 심박출량 검출 알고리즘 순서도의 예이다.
도 14는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 양손 폐기능평가 검출 알고리즘 순서도의 예이다.
도 15 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관나이 측정화면의 일예이다.
도 16 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관나이 측정결과화면의 일예이다.
도 17 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 폐기능 측정화면의 일예이다.
도 18 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 페기능 측정 결과화면의 일예이다.
도 19는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 손목 혈압측정 결과화면의 일예이다.
이하, 본 발명의 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 구성 및 동작을 첨부한 도면을 참조하여 상세히 설명한다.
도 1은 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 동작을 개략적으로 설명하기 위한 설명도이다.
초기화단계로, 본 발명의 생체 계측 시스템의 전원스위치를 켬에(ON) 의해 생체 계측 시스템, 즉, 심혈관 측정모듈이 초기화 상태로 되면서, 생체 계측 시스템의 디스플레이부는 초기 화면상태로 된다(S10).
사용자 및 측정 항목 설정단계로, 본 발명의 생체 계측 시스템의 구동스위치를 키거나(ON), 또는 초기화단계 후 자동적으로, 사용자 선택 및 측정 항목 선택화면으로 전환되며, 여기서는 사용자 선택모드, 측정모드, 이전 측정결과 보기모드, 옵션설정 모드를 선택 가능하다(S20).
사용자 선택모드의 경우, 신규사용자 등록모드(S22), 목록에서 사용자 선택모드(S23)가 있다.
신규사용자 등록모드(S22)는, 신규사용자 등록을 사용자 목록에서 직접입력을 행하는 것으로, 목록 추가시 키보드와 사용자 정보 팝업을 통해 사용자 정보를 입력할 수 있다.
목록에서 사용자 설정모드(S23)는, 목록에서 사용자를 선택하거나 삭제하는 것으로, 사용자 삭제시에는 저장되어 있는 데이터도 함께 삭제된다.
측정모드의 경우, 단일 측정모드(S24), 순차적 측정모드(S25) 중 하나를 설정하며, 단일 측정모드(S24)가 설정된 경우는 측정하고자 하는 항목을 설정한다.
단일 측정모드(S24)는 선택적으로 단일 항목만 측정하는 것으로, 5 측정항목, 즉, 혈압, 심전도 및 산소포화도, 체지방, 심박출량, 폐기능평가 중 선택적으로 측정하는 모드이다. 단일 측정모드(S24)가 설정된 경우는 측정하고자 하는 항목, 다시말해 혈압, 심전도 및 산소포화도, 체지방, 심박출량, 폐기능평가을 포함하는 5 항목 중 측정하고자 하는 항목을 선택해야 한다. 선택된 항목은 하나 이상일 수 있다.
순차적 측정모드(S25)는 기 저장된 우선순위에 따라 5 항목을 순차적으로 측정한다. 예를들어 기 저장된 우선순위가 심전도 및 산소포화도, 체임피던스, 심박출량, 혈압, 폐기능검사의 순으로 저장된 경우는 이 순서대로 측정한다.
사용자 및 측정항목 설정단계(S20)에서 단일 측정모드(S24) 또는 순차적 측정모드(S25) 중의 하나를 설정하면, 생체신호 측정단계에서 설정에 따라 단일 측정단계(S32) 또는 순차적 측정단계(S40)을 수행하고(S30), 그 측정결과를 출력한다(S50).
즉, 사용자 및 측정항목 설정단계(S20)에서 단일 측정모드(S24)가 설정되고, 측정하고자 하는 항목이 설정되면, 생체신호 측정단계(S30)의 단일 측정단계(S32)에서, 선택된 항목의 측정을 행하며(S34), 각 측정마다 결과를 출력하여 확인한다(S35). 이때 선택된 항목이 여러개일 경우, 우선순위에 따라 순차적으로 측정한다. 다시말해, 단일 측정 모드는 측정하고자 하는 파라미터만을 선택적으로 측정하며 각 측정 시 마다 결과 화면이 표시한다.
또한, 사용자 및 측정항목 설정단계(S20)에서 순차적 측정모드(S25)가 설정되면, 우선순위에 따라 순차적으로 측정항목을 측정한다. 예를들어, 심전도 및 산소포화도(S41), 체임피던스(S43), 심박출량(S45), 혈압(S47), 폐기능검사(S49)의 순서로 순차적으로 측정할 수 있다. 다시말해, 순차적 측정 모드는 측정 시 심전도 및 산소포화도(S41), 체임피던스(S43), 심박출량(S45), 혈압(S47), 폐기능검사(S49)의 순으로 자동 측정되며 측정 완료 후 종합 측정 결과 화면이 표시된다.
측정결과 출력 단계(S50)에서는 종합적인 측정결과를 출력하며, 측정결과에 대한 데이터 백업을 행할 수 있다(S55).
측정결과 출력 단계(S50) 후, 이전결과 보기의 선택여부(S60)에 따라, 이전 측정결과를 출력하거나(S70), 아니면 사용자 및 측정항목 설정단계(S20)으로 되돌아간다.
만약, 생체신호 측정단계(S30)에서 생체신호 측정 중에 선택적으로 측정 중 정지(S85)가 발생하였다면, 그 후, 정지해제(S90)가 되어졌을 경우, 생체신호 측정을 계속할 것인지 여부(S95)를 선택하며, 만약 생체신호 측정을 계속할 경우는 생체신호 측정단계(S30)로 되돌아가 측정을 계속하며, 만약 생체신호 측정을 중단할 경우는 생체신호 측정단계(S30)로 되돌아가 초기화면 상태로된다.
이전 측정결과 보기모드(S26)는 선택된 사용자의 이전측정결과를 출력하는 것으로, 일 단위, 주 단위, 월 단위로 선택적으로 측정결과 그래프를 출력할 수 있다.
예를들어, 이전 측정결과 보기모드(S26)가 선택되면, 이전 측정결과를 출력한다(S70). 이전 측정결과를 출력시에, 최근 측정결과를 최근 1주 단위, 1달 단위, 1년 단위로 측정결과를 디스플레이할 수 있으며, 또한 그래프를 이용하여 측정결과의 변화 추이를 디스플레이할 수 있으며, 데이터 백업 키(버튼)를 선택하여 컴퓨터(PC)에로 데이터 백업(S55)를 할 수도 있다. 이전 측정결과의 출력이 완료되면, 사용자 및 측정항목 설정(S20)으로 되돌아 온다.
본 발명에서는 데이터 백업을 위해서 PC기반의 데이터 관리 소프트웨어를 구비하고 있으며, 또한 블루투스를 통해 PC로의 데이터 백업을 수행한다.
옵션설정 모드(S27)는 옵션(option)을 선택하는 것으로, 언어, 소리 등 다양한 옵션을 설정하거나, 조정할 수 있다.
예를들어, 옵션설정 모드(S27)가 선택되면, 언어, 시간, 터치 캘리브레이션(touch calibration), 소리, 스크린 밝기/콘트라스트, 블루투스 온/오프, 리셋, 클록, 메모리관리, 장비 캘리브레이션 등의 옵션을 설정한다(S80).
도 2는 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 구성을 개략적으로 설명하기 위한 블럭도로, 심전도 및 체임피던스 측정모듈(100), 산소포화도 검출모듈(200), 혈압(NIBP)측정모듈(300), 메인 모듈(400)를 포함하여 이루어진다.
심전도 및 체임피던스 측정모듈(100)은 심전도, 체임피던스, 심박출량(ICG), 임피던스 폐기능검사(IPFT)를 측정하는 수단으로, 심전도 센서부(110), 심전도 전처리부(120), 체임피던스 센서부(130), 체임피던스 전처리부(140), ICG 전저치부(150), IPFT 전처리부(160), 심전도 및 체임피던스 MCU(Micro Controller Unit)(170)를 포함하여 이루어진다. 즉, 심전도 및 체임피던스 측정모듈(100)은 심전도 측정모듈, 체임피던스 모듈, 심박출량(ICG) 측정모듈, 임피던스 폐기능검사(IPFT) 측정모듈을 포함한다.
심전도 센서부(110)는 심전도 전극을 구비하여 심전도를 검출하는 수단으로서, 기준전극과 2개 심전도 전극으로 이루어질 수 있다. 심전도 전극은 오른손측(RA) 전극과 왼손측(LA) 전극으로 이루질 수 있다.
심전도 전처리부(120)는 증폭기와 필터를 구비하여, 심전도 센서부(110)에서 검출된 심전도 신호를 증폭하고 잡음을 제거하여, 심전도 및 체임피던스 MCU(170)로 전송한다. 심전도 및 체임피던스 MCU(170)는 심전도 전처리부(120)의 출력신호를 디지탈신호로 변환하고, 데이터 연산처리를 행한다.
심전도 전처리부(120)는 오른손측(RA) 전극의 출력과 왼손측(LA) 전극의 출력을 차동 증폭을 통해 ECG LEAD I의 신호를 출력할 수 있다.
심전도 센서부(110), 심전도 전처리부(120) 및 심전도 및 체임피던스 MCU(170)는 심전도 측정모듈을 구성한다.
체임피던스 센서부(130)는 피부에 미세전류를 흘리고, 피부의 전위차를 측정하여 임피던스를 검출하는 센서로, 미세전류(고주파)를 흘리기 위한 2개의 전류 전극과, 체임피던스 정보를 가진 전압신호를 검출하기위한 2개의 전압 전극을 구비한다.
체임피던스 센서부(130)는 전류전극 구동부(미도시)를 더 구비하며, 전류전극 구동부는 고주파 생성을 위해 와인브리지 오실레이터(Wien Bridge Oscillator), 인체에 일정한 전류 주입을 위해 안정화 전류 전원(Constant Current Source), 예를들어 Howland Constants Current Source를 사용할 수도 있다.
체임피던스 전처리부(140)는 증폭기, RMS 변환기, 필터를 포함하여, 검출된 체임피던스 신호를 차동증폭하고, 실효치(RMS)로 변환하고, 잡음을 제거하고, 심전도 및 체임피던스 MCU(170)로 전송한다.
체임피던스 센서부(130)와 체임피던스 전처리부(140)와 심전도 및 체임피던스 MCU(170)는 체임피던스 측정 모듈을 이룬다.
ICG 전저치부(150)는 PWM Feedback, 저역통과필터, 증폭기 등으로 구성되어, 체임피던스 센서부(130)를 통해, 체임피던스의 임피던스 카디오그램(ICG), 즉 ICG를 검출하고 증폭하고, 잡음을 제거하고, 심전도 및 체임피던스 MCU(170)로 전송한다.
PWM Feedback은 임피던스(Base impedance) 신호를 이용하여 일정량을 빼줌으로써 PWM을 세팅한다. PWM Feedback은 사용자의 기저 임피던스 값에 따라 조절된 신호와 기저 임피던스 간의 차동 증폭을 통해 분해능을 향상시킨다.
저역통과 필터는 차동 증폭을 통한 분해능 향상에 따른 잡음제거를 위해 31.2Hz Lowpass Filter 사용할 수 있으며, 1ohm/volt 단위의 분해능 및 ICG 신호 추출을 위한 증폭기를 사용할 수 있다.
체임피던스 센서부(130)와 ICG 전저치부(150)는 심박출량(ICG) 측정모듈을 이룬다.
IPFT 전처리부(160)는 PWM Feedback, 저역통과 필터, 증폭기 등으로 구성되어, 체임피던스 센서부(130)를 통해, 호흡변화에 따른 체임피던스(폐용적 신호)를 검출하고 증폭하고, 잡음을 제거하고, 심전도 및 체임피던스 MCU(170)로 전송한다.
여기서, PWM Feedback은 임피던스(Base impedance) 신호를 이용하여 일정량을 빼줌으로써 PWM을 세팅한다. PWM Feedback은 사용자의 기저 임피던스 값에 따라 조절된 신호와 기저 임피던스 간의 차동 증폭을 통해 분해능을 향상시킨다. 저역통과 필터는 차동 증폭을 통한 분해능 향상에 따른 잡음제거를 위해 5Hz Lowpass Filter 사용할 수 있으며, 증폭기를 사용하여 10ohm/volt단위의 분해능을 구현하였고, 호흡변화에 따른 Impedance 변동을 추출한다.
체임피던스 센서부(130)와 IPFT 전처리부(160)와 심전도 및 체임피던스 MCU(170)는 임피던스 폐기능검사(IPFT) 측정모듈을 이룬다.
심전도 및 체임피던스 MCU(170)는 수신된 데이터를 디지탈신호로 변환하고, 데이터 연산처리를 행하고, 그 결과를 메인 모듈(400)로 전송한다.
심전도 센서부(110)와 체임피던스 센서부(130)로 심전도 및 체임피던스 센서부(105)를 구성한다.
본 발명에서는 심전도 및 체임피던스 센서부(105)는 제1전극 내지 제4전극을 구비하며, 심전도 신호검출시, 즉, 심전도 센서부(110)로서, 제1전극과 제2전극은 심전도 신호검출전극으로, 이때 제3전극은 기준 전극으로 사용될 수 있으며, 또한 체임피던스 검출시, 제1전극과 제2전극은 전압을 검출하기위하 전압전극으로, 제3전극과 제4전극은 미세전류를 주입하기위한 전류전극으로 사용될 수 있다.
산소포화도 검출모듈(200)은 산소포화도, 광용적맥파를 검출하기위한 수단으로, 산소포화도 센서부(210), 산소포화도 전처리부(220), 산소포화도 MCU(230)를 포함하여 이루어진다.
산소포화도 센서부(210)는 Red와 Infra-red의 Light Source으로 이루어진 발광부와, 포토센서 등으로 이루어진 수광부를 구비하여, 산소포화도 신호를 검출한다. 여기서 센서구동부(미도시), 아날로그 스위치 등을 더 구비할 수 있으며, 발광부(Light Source)의 스위칭에 따른 아날로그 스위치의 변경을 통해 Red, Infra-red, Ambient 신호를 출력할 수 있다. 또한, 발광부(Light Source) 파장에 따른 혈액 흡수도의 비율을 이용하기 위해 일정한 전류에 의한 센서구동을 하는 것이 필요하다.
산소포화도 전처리부(220)는 산소포화도 센서부(210)에서 출력된 산소포화도 신호를 증폭하고 잡음을 제거한다.
산소포화도 MCU(230)는 산소포화도 전처리부(220)로부터 수신된 산소포화도 신호를 디지탈신호로 변환하고, 데이터 연산처리를 행하고, 그 결과를 메인 모듈(400)로 전송한다.
혈압측정모듈(300)은 기존의 혈관상태를 검출하는 방식에 추가하여, PPG의 이차미분 파형(APG)의 특징점을 이용하여 보정 파라미터를 검출하고 사용자 정보인 신장(Height)을 이용하여 보상된 혈관특성 파라미터(BVSI)를 검출하여 혈관상태를 보다 정확하게 알 수 있게 하는 수단이다. 혈압측정모듈(300)은 혈관에서 광용적맥파를 검출하여 비관혈적 혈압(NIBP)을 측정하는 수단으로, NIBP 센서부(310) NIBP전처리부(320) NIBP MCU(350)를 포함하여 이루어지며, 기존의 코로트코프음(Korotkoff Sound)에 의한 검출수단으로 압력센서부(330), 압력전처리부(340), NIBP MCU(350)를 포함한다. 혈압측정시, 일측 손목에 커프를 두르고, NIBP 센서부(310)를 손가락을 접촉시켜 혈압을 측정한다.
NIBP 센서부(310)는 발광부와 수광부를 구비하여, 혈압관련 (광용적) 맥파를 검출한다. 경우에 따라서 NIBP 센서부(310)는 산소포화도 센서부(210)를 그대로 사용할 수 있다.
NIBP전처리부(320)는 NIBP 센서부(310)에서 출력한 맥파신호 증폭하여, NIBP MCU(350)로 출력한다.
압력센서부(330)는 손목에 감겨진 커프의 압력을 검출하는 수단이다.
압력전처리부(340)는 압력센서부(330)에서 검출된 압력신호로부터 잡음을 제거하고, 증폭하여 NIBP MCU(350)로 전송한다. 경우에 따라서 압력전처리부(340)는 생략될 수 있다.
NIBP MCU(350)는 NIBP전처리부(320)로부터 수신된 혈압관련 맥파 신호 및 압력전처리부(340)로부터 수신된 압력신호를 디지탈신호로 변환하고, 이 데이터들을 이용하여 연산처리를 행하고, 그 결과를 메인 모듈(400)로 전송한다.
메인 모듈(400)은 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 전반적인 제어 및 출력을 행하는 수단으로, 메인 MCU(410) 디스플레이부(420), 스피커부(430), 블루투스부(440), 메모리부(미도시)를 포함한다.
메인 MCU(410)는 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 전반적인 제어를 행하는 수단으로, 심전도 및 체임피던스 측정모듈(100), 산소포화도 검출모듈(200), 혈압(NIBP)측정모듈(300)의 출력을 수신하여, 연산 처리를 행한다. 메인 MCU(410)는 메모리 등이 내장되어 있을 수 있다.
디스플레이부(420)는 메인 MCU(410)로 출력된 결과를 디스플레이한다.
스피커부(430)는 혈관 및 심폐기능 진단기의 Right와 Left Speaker로 사용되며, 또한, 메인 MCU(410)의 제어에 따라 측정순서의 안내, 측정결과 등을 알린다.
블루투스부(440)는 블루투스(Bluetooth) 표준 무선 프로파일(Profile)을 통해 안드로이폰 등의 여러 IT 기기와의 호환성을 확보하여 E-Health 및 U-Health의 확장이 가능하게 하는 수단으로, Bluetooth Chip은 안테나의 피딩부를 중간에 위치시키고, 접지면을 안테나의 피딩부에 두어 안테나의 방사 효율의 증가를 가능하게 할 수 있다.
메모리부(미도시)는 메인 MCU(410)로 출력된 결과를 저장한다.
본 발명에서는 심전도 및 체임피던스 센서부(105)를 위해 제1전극 내지 제4전극의 4개의 전극을 구비하며, 산소포화도 및 혈압검출을 위해 제6전극을 구비할 수 있다.
도 3은 본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 구성의 일예이다.
본 발명의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템은 심전도 및 체임피던스 측정모듈(100)(도 3의 E&I), 산소포화도 검출모듈(200)(도 3의 SpO2), 혈압(NIBP)측정모듈(300)(도 3의 NIBP), 메인 모듈(400)(도 3의 Main), 및 전원부(도 3의 Power)의 총 5개 블럭으로 이루어진다.
심전도 및 체임피던스 측정모듈(100)(도 3의 E&I), 산소포화도 검출모듈(200)(도 3의 SpO2), 혈압(NIBP)측정모듈(300)(도 3의 NIBP) 각각의 블록은 메인 모듈(400)(도 3의 Main)의 메인 MCU(410)(도 3의 main controller 및 support controller)와 직렬통신(Serial Communication)을 통해 사용자 정보 및 측정 파라미터를 공유한다. 즉, 본 발명은 총 4개의 Block(Main, NIBP, SpO2, E&I)이 사용자의 생체 정보를 공유함에 따라 기존 1차 파라미터인 ECG, SpO2, Impedance, NIBP로 국한되었던 생체파라미터 검출을 2차 파라미터인 체지방(BFR), 손목혈압(NIBP), 혈관탄성도(BVSI), 양손 심박출량(ICG), 양손 폐기능(IPFT)의 종합적 측정이 가능하도록 구현되었으며 생체신호측정 단위모듈들과 Digital 통합 모듈을 통합함으로써 최종적인 혈관 및 심폐기능 모니터링이 가능한 통합시스템을 구성한다.
메인 MCU(410)로서 ARM의 Cortex A8 디자인 기반 어플리케이션 프로세서(32-bit RISC 프로세서)를 사용할 수 있다.
심전도 및 체임피던스 측정모듈(100), 산소포화도 검출모듈(200), 혈압(NIBP)측정모듈(300)의 MCU는, ARM사의 32bit MCU(Micro Controller Unit)를 사용할 수 있으며, 개별 제어가 가능하다.
모듈들의 종합적 동작에서는 개별 모듈들이 메인 모듈에 슬롯 방식으로 접합되게 되고, 이때 메인 MCU에 의해 Sub-MCU가 Sleep 상태가 되어 메인 MCU에 의한 통합적인 제어를 수행하도록 되어 있다.
또한, USB 인터페이스부를 구비하여, 사용자의 Firmware Update시 사용할 수 있으며, USB통신을 통해 사용자 정보 및 측정 결과 History에 대한 Back up이 가능하다.
본 발명은 스피커를 통해, 혈관 및 심폐기능 진단기를 이용한 사용자 상태 모니터링시 음성으로 올바른 측정의 유도가 가능하다.
도 3의 support controller(CANTUS)는 Main-Sub 모듈간 원할한 통신 및 다채널 통신포트 확장성에 용이하게 하기 위해 사용되었다.
도 4a는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 정면도이고, 도 4b는 도 4a의 생체 계측 시스템의 좌측면도이고, 도 4c는 도 4a의 생체 계측 시스템의 우측면도이다.
도 4a 내지 도 4c는 제1전극 내지 제5전극(111, 112, 113, 114, 215)을 구비하며, 그 중, 제1전극 내지 제4전극(111, 112, 113, 114)은 심전도 및 체임피던스(체지방(BIA), 심박출량(ICG), 폐기능 평가(IPFT))를 검출하기위한 것이고, 제5전극(215)는 산소포화도 및 혈압을 검출하기 위한 것이다.
제1전극 내지 제4전극(111, 112, 113, 114)은 4개의 크롬 도금 전극으로 이루어져 있다.
심전도 신호검출시, 제1전극과 제2전극을 심전도 신호검출전극으로, 제3전극은 기준 전극으로 사용하여 심전도를 검출한다. 또한, 체임피던스 검출시, 제1전극과 제2전극은 전압을 검출하기위하 전압전극으로, 제3전극과 제4전극은 미세전류를 주입하기위한 전류전극으로 사용하여 체임피던스를 검출한다.
그리고 제6전극은 산소포화도를 검출할 때 사용된다.
도 5a는 도 4a의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 실행화면의 일예이고, 도 5b는 도 4a의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템의 사용상태도의 예이다.
제1전극(111)을 왼손바닥 엄지 하단부로 접촉하고, 제2전극(112)을 오른손바닥 엄지 하단부로 접촉하고, 제3전극(113)을 왼손바닥으로 접촉하고, 제4전극(114)는 오른손바닥으로 접촉하도록 이루어져 있다.
심전도 측정에 있어서, 제1전극(111)은 LA, 제2전극(112)는 RA, 제4전극(114)는 RL 로써 구성된다.
체임피던스 측정에 있어서는 제1전극(111)과 제2전극(112)는 생체 변화에 따른 전압 검출 전극으로, 제3전극(113)과 제4전극(114)는 전류 전극으로 구성된다. 제1전극 내지 제4전극, 즉, 4개의 크롬도금 전극은 심전도와 체임피던스 측정의 통합전극으로써 이용된다.
제5전극(215)는 산소포화도 측정 센서로써 왼손 엄지가 위치하게 되며, 기존의 산소포화도 측정장비에 주로 이용되는 집게형(투과성) 센서와는 달리 반사타입의 센서로 사용자의 산소포화도를 측정한다.
시작키(Start Button)(455)는 각 측정에 있어서 사용자가 전극을 잡고, 터치 모니터를 눌러야 되는 불편함을 제거하기 위해, 시작키(455)을 통해 측정의 시작 및 단계 이동 등을 할 수 있으며, 시작키(455)는 오른손 엄지와 접촉되도록 이루어져 있다.
<심전도 리듬분석 방법>
도 6은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 심전도 리듬분석 특성점 검출 알고리즘 순서도의 예이다.
심전도 리듬분석 특성점 검출 알고리즘은 심전도 및 체임피던스 MCU(170) 또는 메인 MCU(410)에서 수행되어질 수있으며, 보다 바람직하게는 심전도 및 체임피던스 MCU(170)에서 수행된다.
전원잡음제거단계로, 입력된 심전도 데이터(ECG raw 데이터)를 획득하고(S110), 전원 잡음의 제거를 위한 저역통과 필터(Low Pass Filter, LPF)를 통과시킨다(S115).
1차 미분 단계로, 전원잡음제거단계의 출력에서, QRS파(QRS complex)의 특성만을 부각시키기 위해 6포인트 간격(6Point interval)으로 1차 미분하고(S120), 1차 미분된 신호에 의해 고주파 대역의 잡음(Noise)이 발생함에 따라 LPF하여 잡음이 제거된 ECG 신호의 1차 미분 파형을 획득한다(S125).
초기 문턱치 선정단계로, 1차 미분 단계에서 출력된, 1차 미분 파형을 이용하여 초기 2초 동안의 최대값(Max값)을 산출하고, 초기 2초 동안의 최대값에 문턱치 산정계수(factor)(예로, 0.7)를 곱하여 문턱치(Threshold)를 선정한다(S130).
문턱치 선정여부 판단단계로, 2초 동안 문턱치가 선정되었는지 여부를 판단하여(S135), 만약 2초 동안 문턱치가 선정되지 않을 경우, 초기 문턱치 선정단계(S130)로 되돌아가 이 후 2초 동안 문턱치를 다시 설정한다.
200ms 시간경과 여부 판단단계로, 문턱치 선정여부 판단단계에서 문턱치가 선정되면, 1차 미분 파형에서 문턱치보다 큰 심전도 신호(즉, QRS파)를 검출하되, 상기 문턱치보다 큰 심전도 신호가 문턱치 선정된 후 200ms 이상의 시간이 경과된 이후의 것인 지를 판단하며(S140), 만약 이 조건을 만족하지 않는다면, 타임 카운터를 증가하여(S143) 문턱치 선정된 후 200ms 이상의 시간이 경과된 때의 문턱치보다 큰 심전도(QRS파)를 검출한다.
R포인트 검출을 위한 영점 교차여부 판단단계로, 200ms 시간경과 여부 판단단계에서 문턱치 선정된 후 200ms 이상의 시간이 경과된 후 문턱치보다 큰 심전도 신호를 검출하면, 다음에 입력되는 1차 미분 신호들에서, 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지 여부를 판단하며(S145), 이를 만족하지 않을 때는, 1차 미분 신호가 영점 교차(Zero crossing)를 만족할 때까지 기다린다.
즉, 문턱치 선정된 후 200ms 이상의 시간 경과를 확인하고 심전도 신호가 선정된 문턱치보다 클 때까지 반복하며, 200ms 이상의 시간 경과되면, 이 후의 1차 미분 신호가 영점 교차(Zero crossing)되는 가를 계속 확인하여 영점 교차(Zero crossing) 되는 순간의 ECG 신호를 R포인트로 지정하여 검출한다.
본 발명에서 1차 미분 신호의 영점 교차(Zero crossing)는 변곡점을 찾는 것이다.
R포인트 검출단계(S100)는, 전원잡음제거단계, 1차 미분 단계, 초기 문턱치 선정단계, 문턱치 선정여부 판단단계, 200ms 시간경과 여부 판단단계, 영점 교차여부 판단단계로 이루어진다.
즉, R포인트 검출단계(S100)는, 전처리 및 미분과 영점교차 방법을 이용하여 R포인트 검출의 정확도를 향상하여 부정맥 검출 등에 필요한 R포인트의 검출 여부 판단함. R포인트를 검출하고 검출된 R포인트간의 타임 인덱스(Time index)값을 이용하여 RR간격을 산출하고 심박수를 검출한다.
R포인트 설정단계로, R포인트 검출을 위한 영점 교차여부 판단단계에서 영점 교차(Zero crossing) 되는 순간의 심전도 신호를 R포인트(R포인트)로 설정하고 타임 인덱스 카운터(Time Index Count, Cnt)를 초기화한다(S153).
S포인트 검출을 위한 영점 교차여부 판단단계로, R포인트 설정단계(S153)에서 설정된 R포인트 다음에 입력되는 1차 미분 신호들에서, 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지 여부를 판단하며(S155), 이를 만족하지 않을 때는, 타임 인덱스 카운터를 증가하여(S157) 다음 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지를 보며, 이렇게 1차 미분 신호가 영점 교차(Zero crossing)를 만족할 때까지 기다린다.
S포인트 설정단계로, S포인트 검출을 위한 영점 교차여부 판단단계에서, 영점 교차되는 지점이 발견되면 영점 교차되는 지점을 S포인트로 설정한다(S160).
T포인트 검출을 위한 영점 교차여부 판단단계로, S포인트 설정단계(S160)에서 설정된 S포인트 다음에 입력되는 1차 미분 신호들에서, 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지 여부를 판단하며(S163), 이를 만족하지 않을 때는, 타임 인덱스 카운터를 증가하여(S165) 다음 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지를 보며, 이렇게 1차 미분 신호가 영점 교차(Zero crossing)를 만족할 때까지 기다린다.
정상 범위내의 T포인트 판단단계로, T포인트 검출을 위한 영점 교차여부 판단단계에서, 검출된 영점 교차되는 지점을 잠정적 T포인트로 간주하고, 잠정적 T포인트의 지점의 시간이 이전 RR 간격값/10 보다 크고, 이전 RR 간격값/2보다 작은지 여부를 판단하여(S167), 이 조건을 만족하면 정상범위내의 T포인트로 판단하고, 이 조건을 만족하지 않으면 카운터를 증가하며(S170) 만족할때 까지 기다린다. 여기서 이전 RR 간격값은 즉, 저장되어 있는 이전 Cnt값이다.
T포인트 설정단계로, 정상 범위내의 T포인트 판단단계에서 정상범위내의 T포인트로 판단되면, 잠정적 T포인트를 T포인트로 설정한다(S173).
P포인트 검출을 위한 영점 교차여부 판단단계로, T포인트 설정단계(S173)에서 설정된 T포인트 다음에 입력되는 1차 미분 신호들에서, 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지 여부를 판단하며(S175), 이를 만족하지 않을 때는, 타임 인덱스 카운터를 증가하여(S177) 다음 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지를 보며, 이렇게 1차 미분 신호가 영점 교차(Zero crossing)를 만족할 때까지 기다린다.
정상 범위내의 P포인트 판단단계로, P포인트 검출을 위한 영점 교차여부 판단단계에서, 검출된 영점 교차되는 지점을 잠정적 P포인트로 간주하고, 잠정적 P포인트의 지점의 시간이 이전 RR 간격값/20 보다 크고, 이전 RR 간격값/3보다 작은지 여부를 판단하여(S180), 이 조건을 만족하면 정상범위내의 P포인트로 판단하고, 이 조건을 만족하지 않으면 카운터를 증가하며(S182) 만족할때 까지 기다린다.
P포인트 설정단계로, 정상 범위내의 P포인트 판단단계에서 정상범위내의 P포인트로 판단되면, 잠정적 P포인트를 P포인트로 설정한다(S183).
Q포인트 검출을 위한 영점 교차여부 판단단계로, P포인트 설정단계(S183)에서 설정된 P포인트 다음에 입력되는 1차 미분 신호들에서, 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지 여부를 판단하며(S185), 이를 만족하지 않을 때는, 타임 인덱스 카운터를 증가하여(S187) 다음 1차 미분 신호가 영점 교차(Zero crossing)가 되었는 지를 보며, 이렇게 1차 미분 신호가 영점 교차(Zero crossing)를 만족할 때까지 기다린다.
Q포인트 설정단계로, Q포인트 검출을 위한 영점 교차여부 판단단계에서, 영점 교차되는 지점이 발견되면 영점 교차되는 지점을 Q포인트로 설정한다(S190).
마지막 데이터 여부 판단단계로, 마지막 데이터인지 여부를 판단하여(S195), 마지막 데이터가 아니라면, 200ms 시간경과 여부 판단단계(S140)로 되돌아간다.
특성점 연산단계로, 마지막 데이터 여부 판단단계의 결과 마지막 데이터이라면, RR, PR, QRS의 간격 등의 특성점 데이터를 검출한다(S197).
특성점 검출단계(S150)는, R포인트 설정단계, S포인트 검출을 위한 영점 교차여부 판단단계, S포인트 설정단계, T포인트 검출을 위한 영점 교차여부 판단단계, 정상 범위내의 T포인트 판단단계, T포인트 설정단계, P포인트 검출을 위한 영점 교차여부 판단단계, 정상 범위내의 P포인트 판단단계, P포인트 설정단계, Q포인트 검출을 위한 영점 교차여부 판단단계, Q포인트 설정단계, 마지막 데이터 여부 판단단계, 특성점 연산단계로 이루어진다.
즉, 특성점 검출단계(S150)는, 이전 R포인트에서 R포인트까지의 타임 인덱스 카운팅(Cnt)값을 이용하여 RR간격을 산출하고 심박수를 계산하고 R포인트를 기준으로 처음으로 영점 교차되는 지점이 발견되면 S포인트로 간주하고 이전 RR간격 값인 Cnt 값에 factor를 줌으로써 T포인트의 정상 범위를 설정한다. 정상 범위 내에서 영점 교차 되는 지점을 T포인트로 검출하고 P포인트 검출에 대한 factor를 이용하여 P포인트의 정상 범위를 정의한다. 정의된 범위 내에 영점 교차되는 지점을 P포인트로 검출하고 연이은 다음 영점 교차되는 지점을 Q포인트로 검출하여 P,Q,R,S,T 포인트의 검출 완료한다. 데이터의 획득이 끝나지 않았다면 다시 R-Peak검출부로 돌아가 다음 P,Q,R,S,T의 검출을 시작한다. 측정이 완료되면 검출 시 각각의 Cnt 값을 이용하여 RR, PR, QRS 간격을 검출한다.
다시말해, 특성점 검출단계(S150)는, R포인트를 기준으로 P포인트, T포인트 각각의 시간 간격(Time Interval)을 계산하여 검출 알고리즘 상에 제시한 정상범위 안에 포함되는 가에 대한 여부를 판단하여 P포인트 및 T포인트의 존재 여부를 판단하며 Q포인트, S포인트 검출을 통해 두 포인트간 시간 간격을 계산하여 QRS 간격 파라미터를 산출한다. 또한, 검출된 P포인트와 R포인트를 이용하여 각 특성점의 시간 간격을 계산하여 PR 간격 파라미터를 산출한다.
도 7은 도 6의 검출된 특성점에 따른 심전도 리듬 분석 알고리즘 순서도의 예로, 심박동 판단단계(제1단계)(S10), RR간격(RRI) 규칙성판단 단계(제2단계)(S20), P여부 판단단계(제3단계)(S30), QRS여부 판단단계(제4단계)(S40), PR간격 판단단계(제4단계)(S50), QRS간격 판단단계(제6단계)(S60), 심전도 분석단계(S70)를 포함하여 이루어진다.
심박동 판단단계(제1단계)(S10)는 검출된 심박동수가 60 미만인 경우(S11), 60 보다 크거나 같고 100보다 작거나 같은 경우(S12), 100보다 크거나 같고 200보다 작거나 같은 경우(S13), 200보다 큰 경우(S14), 측정불가인 경우(S15)로 나뉘어 판단된다.
RR간격(RRI) 규칙성판단 단계(제2단계)(S20)는 검출된 RR간격의 에러율이 10% 이내인 경우(S21), 에러율 10%이상인 경우(S22)로 나뉘어 판단된다.
P여부 판단단계(제3단계)(S30)는 검출된 심전도 신호에서 P파가 있는 경우(S31), P가 없는 경우(S32)로 나뉘어 판단된다.
QRS여부 판단단계(제4단계)(S40)는 검출된 심전도 신호에서 QRS파가 있는 경우(S41), QRS가 없는 경우(S42)로 나뉘어 판단된다.
PR간격 판단단계(제4단계)(S50)는 검출된 심전도 신호에서 PR간격이 정상범위내에 있는 경우(S51), PR간격 비정상인 경우(S52)로 나뉘어 판단된다.
QRS간격 판단단계(제6단계)(S60)는 검출된 심전도 신호에서 QRS간격이 정상범위내에 있는 경우(S61), QRS간격 비정상인 경우(S62)로 나뉘어 판단된다.
이렇게 심박동 판단단계(제1단계)(S10) 내지 QRS간격 판단단계(제6단계)(S60)를 거치고 난 후, 심전도 분석단계(S70)에서 심전도에 따른 상태를 분석한다.
심전도 분석단계(S70)에서 S12, S21, S31, S41, S51, S61가 선택된 경우에는 정상 동율동(Normal sinus rhythm)이라고 판정하고, S11, S21, S31, S41, S51, S61이 선택된 경우에는 동서맥(Sinus Bradycardia)이라고 판정하고, S13, S21, S31, S41, S51, S61이 선택된 경우에는 동빈맥(Sinus Tcahycardia)이라고 판정한다.
또한, S22, S32, S42, S52, S62이 선택된 경우에는 동정지 (Sinus Pause/Arrest)이라고 판정하고, S12, S22, S31, S41, S51, S61가 선택된 경우에는 심방 조기 박동(APC)이라 판정하고, S14, S21, S41, S51, S61이 선택된 경우에는 심방조동(Atrial flutter)이라 판정한다.
또한, S22, S32, S41, S52, S61는 심방세동(atrial fibrilliation)이라 판정하고, S13, S22, S31, S41, S52, S61은 이소성 심방빈맥(ectopic atrial tcahycardia)이라 판정하고, S14, S21, S31, S41, S52, S61은 심실 조동 (ventricular flutter)이라 판정하고, S22, S32, S42, S52, S62는 심실세동 (ventricular fibrilliation)이라 판정한다.
여기서 동서맥은 심박동수 60회 미만 경우를 말하며, 동빈맥은 심박동수가 100회 초과하는 경우를 말한다.
즉, 여기서는 검출된 P,Q,R,S,T 각 포인트와 시간 간격(Time Interval)을 이용하여 총 6 단계(Stage)(제1단계:심박동 판단, 제2단계:RRI 규칙성 판단, 제3단계:P 존재 여부 판단, 제4단계:QRS 존재 여부 판단, 제5단계:PR간격 판단, 제6단계:QRS간격 판단)로 분할된 각 항목의 조건을 설정하고 항목과 측정치를 비교하여 코드화하고, 이렇게 코드화된 6단계의 항목을 개발된 심전도 리듬 분석 케이스(ECG Rhythm Analysis Case)와 비교하여 부정맥 및 심기능에 대한 평가가 가능한다.
<PPG(SpO2) 검출 방법>
도 8은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 산소포화도 검출 알고리즘 순서도의 예이다.
산소포화도 검출 알고리즘은 산소포화도 MCU(230) 또는 메인 MCU(410)에서 수행되어질 수있으며, 보다 바람직하게는 산소포화도 MCU(230)에서 수행된다.
산소포화도 초기 처리단계(S100)로, 적외선(Red)과 근적외선(InfraRed)의 AC, DC 성분을 얻기 위해 Red와 InfraRed 센서부를 순차적으로 스위칭시켜 신호를 검출하고(S210), 검출된 산소포화도 신호에서 잡음을 제거하는 전처리, 즉, 0.05Hz ~ 10Hz 밴드 폭을 가지는 아날로그 필터링을 행하고(S215), A/D 변환을 행하여(S220, S225) Red, InfraRed의 AC, DC성분을 검출한다(S227).
주변잡음제거 단계(S230)로, 도 9와 같은 타이밍을 통해 순차적 제어함에 따라 주변(AMBIENT) 잡음 제거를 행하되(S235, S240), 주변(AMBIENT) AC, DC성분을 각각 연속적으로 분리 검출하고, AC, DC 성분 각각에 해당하는 상기 주변(AMBIENT) AC, DC성분 값을 뺌으로써 주변(AMBIENT) 잡음 성분을 제거한다. 이렇게 주변(AMBIENT) 잡음 성분을 제거한 적외선(Red)과 근적외선(InfraRed)의 AC, DC성분을 수집한다(S245, S250). 10Hz 저역통과 필터링을 행하여 잡음을 제거하고, IR신호의 특성점 검출을 위해 문턱치를 설정한다(S255).
진폭(Amplitude) 검출단계(S260)로, 문턱치가 설정되어 있는지 여부를 판단하여(S263), 설정되어 있지 않다면 설정될때까지 기다린다. 근적외선 AC신호의 피크검출단계로, 문턱치의 설정이 완료되면 잡음이 제거된 근적외선(InfraRed) AC신호의 1차 미분과 영점교차(Zero Crossing Method)를 통해 근적외선(InfraRed) AC신호의 피크(Peak)점을 검출하고(S265), 피크 검출여부를 판단하여 피크가 검출되지 않았다면 검출될때 까지 기다린다(S270). 근적외선 밸리 버퍼(IR valley)에 근적외선 AC신호의 최소값을 저장하고, 적외선 밸리 버퍼(R valley)에 적외선 AC신호의 최소값을 저장한다(S273). 각 밸리 버퍼 최소값이 저장되지 않았으면 저장될때 까지 기다린다(S276). 근적외선 AC신호의 진폭은, 근적외선 AC신호의 피크 신호에서 근적외선 밸리 버퍼값(즉, 근적외선 AC신호의 최소값)을 뺀 것으로 하여 저장하며, 적외선 AC신호의 진폭은, 적외선 AC신호의 피크 신호에서 적외선 밸리 버퍼값(즉, 적외선 AC신호의 최소값)을 뺀 것으로 하여 저장한다(S279).
즉, 진폭 검출단계(S260)는 문턱치(Threshold)의 설정이 완료되면 잡음이 제거된 InfraRed AC신호의 1차 미분과 Zero Crossing Method를 통해 InfraRed AC신호의 Peak점을 검출하고 이완기 잡음 영향을 최소화하기 위해 Valley 버퍼를 사용하여 최소 값을 계속적으로 저장하고, Peak가 검출 할때까지 검출되는 순간 이전에 저장해놨던 Valley값을 R, IR의 Valley로 바꾸고 바뀐 값이 저장되었는가를 확인한 뒤, IR의 진폭 값을 저장한다. 이때 Red의 AC신호도 InfraRed의 AC 신호와 동기화 되었으므로 동시에 Red 진폭도 함께 검출한다.
산소포화도 검출단계(S280)로, 근적외선과 적외선의 DC성분을 InfraRed AC신호의 Peak 검출 순간과 동기화하여 저장되었던 밸리버퍼의 값을 이용하여 검출하여 저장한다(S283). 데이터 검출 완료(수집완료) 여부를 판단하여(S285), 아직 완료되지 않았으며 근적외선 AC신호의 피크검출단계(S265)로 되돌아간다. 데이터 검출이 완료되었다면, 검출된 진폭과 DC값을 평균내고 그 값을 이용해 Ratio of Ratio를 산출한다(S287). 보정(Calibration)를 통해 얻는 수식에 Ratio of Ratio를 대입하여 사용자의 산소포화도 값(SpO2 Value)을 검출한다(S298)
즉, 산소포화도 검출단계(S280)는 InfraRed와 Red의 DC성분을 InfraRed AC신호의 Peak 검출 순간과 동기화하여 저장되었던 버퍼의 값을 이용하여 검출한다. 검출된 Red와 InfraRed의 Amplitude, DC 값을 저장하고 근적외선 AC신호의 피크검출단계(S265)로 돌아가 beat별로 측정이 완료 될 때까지 검출을 반복한다. 검출이 완료 되면 검출된 Amplitude와 DC값을 평균내고 그 값을 이용해 Ratio of Ratio를 산출하고 Calibration를 통해 얻는 수식에 Ratio of Ratio를 대입하여 사용자의 SpO2 Value를 검출한다.
<제지방 및 체지방 측정 방법>
제지방 및 체지방 측정 알고리즘은 심전도 및 체임피던스 MCU(170) 또는 메인 MCU(410)에서 수행되어질 수있으며, 보다 바람직하게는 심전도 및 체임피던스 MCU(170)에서 수행된다.
본 발명에서, 보다 정확한 체임피던스 값을 얻기 위해 복수보간 알고리즘을 적용한다. 복수보간 알고리즘은 하드웨어적인 스위칭을 통하여 100Ω(ohm), 1kΩ(ohm) 그리고 인체를 차례로 측정한 후, 100Ω과 1kΩ 사이의 1차 선형 방정식을 계산하여 측정 시 정확한 생체 체임피던스 값을 얻을 수 있다.
복수 보간을 거쳐 체임피던스 값을 획득 한 후 사용자의 체중, 성별, 키 등의 파라미터와 조합하여 제지방량(kg)을 계산한다.
Figure PCTKR2012002034-appb-I000001
(단, 성명은 남자는 1이고, 여자는 0 임)
체중과 측정된 제지방량을 이용하여 체지방량을 계산한다.
따라서
Figure PCTKR2012002034-appb-I000002
이다.
위와 같은 과정에 따라
Figure PCTKR2012002034-appb-I000003
으로 계산되며,
Figure PCTKR2012002034-appb-I000004
으로 계산된다.
<손목혈압측정(Wrist-NIBP)>
도 10은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 손목혈압측정 알고리즘 순서도의 예이다.
손목혈압측정 알고리즘은 NIBP MCU(350) 또는 메인 MCU(410)에서 수행되어질 수있으며, 보다 바람직하게는 NIBP MCU(350)에서 수행된다.
초기화(S310) 후, AD 변환이 완료되면(S340, S343), 오실로메트릭 신호, 즉 혈압(NIBP) 신호와 압력 신호, 즉 코로토코프음(K-SOUND) 신호를 획득한다.
오실로메트릭 방법에 따른 혈압검출단계(S300)는, 획득된 혈압신호(S313)를 20Hz 저역통과 필터(LPF)를 통하여 잡음을 제거하고(S316), beat 별로 피크(peak)와 밸리(valley)를 검출하고(S319), 그 차이인 진폭(Peak-Valley)를 각각 검출한다. 검출된 beat별 진폭 값을 분해능 향상을 위하여 선형 보간 (10Hz Up-Sampling)하고(S313), 커브 피팅을 통하여 보간한다(S325). 보간된 신호의 최대 지점을 검출하여(S328), MAP(최대지점)으로 설정한다(S331). MAP(최대지점)에 특성 수축기, 이완기 비율을 곱한 값을 구하고(S334), MAP(최대지점)에 특성 수축기, 이완기 비율을 곱한 값에 각각 해당하는 오실로메트릭 신호에 동기 되어 획득된 압력값을 각각 수축기 혈압(SBP), 이완기 혈압(DBP)으로 검출한다(S337).
코로토코프음에 따른 혈압검출단계(S360)는, 손목 혈압 측정 정확도 향상을 위해, 초기화(S310) 후, AD 변환이 완료되면(S340, S343), 코로토코프음(Korotkoff Sound, K-SOUND) 신호를 획득하고(S355), 코로토코프음(K-SOUND) 신호의 비트를 검출하고(S358), 각 beat별로 신호를 분할한다. 분할된 신호의 Power Spectrum Density (이하 PSD)를 위하여 제로 패딩(Zero Padding)하여 2n 개로 맞추고(S361), PSD, 즉, 특성적 주파수 밴드의 파워 스팩트럼 밀도(10-50Hz)를 시행한다(S364). 최적 주파수 대역인 10~50Hz 대역의 PSD결과 값을 beat별로 검출하고(S367) 그 중 최대가 되는 지점을 검출한다(S370).
PSD 최대값의 50%보다 적어지는 지점을 검출하여(S373), PSD 최대값의 50% 보다 작아지는 지점의 값을 수축(Systolic) 지점으로 하여, 이를 코로토코프음으로 구한 수축기혈압(SBP_K)으로 설정한다(S376).
사용자 정보인 Age, Gender(성), Weight, Height를 전달받고(S346, S349), 코로토코프음으로 구한 수축기혈압(SBP_K), 오실로메트릭 방법으로 구한 수축기 혈압(SBP)과 이완기 혈압(DBP)과 MAP(최대지점)를 이용하여 혈압 값을 보정한다(S352). 보정된 혈압, 즉 보정된 수축기 혈압(SBPc)과 이완기 혈압(DBPc)과 MAPc(최대지점)를 결과로 디스플레이로 출력한다. 이를 통해 손목에서의 혈압 측정의 정확도가 향상된다.
즉, 오실로메트릭 방법에 의해 산출되어진 MAP를 이용하여, 오실로메트릭 방법의 SBP와 DBP를 검출한다. 또한 코르트코프사운드음에 의하여 SBP_K를 산출한다. 두 방법에 의해 산출되어진 총 4개의 값, MAP, SBP, DBP 그리고 SBP_K를 통해 최종 혈압값인 SBPc, MAPc, DBPc를 산출하게 된다.
최종 혈압값에 대한 산출방법은, 우선 MAP의 110%이상 160%이하 범위에 SBP_K가 해당되는 경우는, MAP, SBP_K를 이용해 DBP를 재검출하며, 이때 SBP_K는 보정된 수축기 혈압(SBPc)되고, MAP은 보정된 최대지점(MAPc)이 되고, DBP은 보정된 이완기 혈압(DBPc)가 된다. 만약, MAP의 110%이상 160%이하 범위에 SBP_K가 해당되지 않는 경우라면, 기존 검출되었던 SBP를 사용해, SBP는 SBPc이고, MAP는 MAPc이고, DBP는 DBPc로 설정한다.
본 발명은 기존 Oscillometric 방법의 부정확함 및 기타 문제들을 해결하기 위하여 비침습적인 혈압 측정 방법의 Golden Standard인 청진법에 대한 응용으로써, Korotkoff Sound 신호의 FFT를 통한 Frequency Domain에서의 스펙트럼 분석, Total Power Analysis 등을 통하여 Korotkoff Sound의 대표적인 특징을 나타내주는 특성점의 검출을 통해 기존의 Oscillometic Method를 보상해주는 알고리즘을 제안하였다. 개발된 알고리즘을 혈관 및 심폐기능 통합시스템에 적용함에 따라 정확한 혈압의 검출이 가능하다.
<혈관탄성도(BVSI)>
도 11은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관탄성도(BVSI) 검출 알고리즘 순서도의 예이다.
혈관탄성도 알고리즘은 심전도 및 체임피던스 MCU(170) 또는 메인 MCU(410) 또는 산소포화도 MCU(230)에서 수행되어질 수 있으며, 보다 바람직하게는 심전도 및 체임피던스 MCU(170)에서 수행된다.
본 발명에서 혈관의 탄성도 및 경직도 따른 혈관 상태를 검출하기 위해 BVSI 검출 알고리즘을 제안하고 이를 통합시스템인 본 발명의 생체 계측 시스템에 적용하였다. 본 발명에서는 혈관 나이 산출 및 등급별 분류를 통한 혈관 경직도에 대한 정보를 제공한다.
혈관 탄성도 검출을 위한 전처리단계(S400)로, 초기화(S410) 후, AD변환된(S413, S416) ECG신호를 수집하며(S419), ECG신호에 동기되어 산소포화도 모듈로부터 산소포화도 신호(PPG신호)를 전달받고(S422, 425), 특성점을 검출하기 위해 산소포화도 신호(PPG신호)를 10Hz LPF를 통과시키고(S431), ECG신호에서 QRS파(QRS complex)를 검출한다(S434).
C포인트의 검출단계(S435)로, ECG신호에서 QRS파의 검출이 완료되었는지 판단하여(S437), ECG의 QRS파 검출이 완료되었으면 PPG 신호를 2차 미분하여, 가속도 맥파(APG) 신호를 획득하고(S440), 미분으로 인해 발생한 고주파 잡음 제거를 위해 10Hz LPF를 취한다(S443). QRS를 기준으로 연속적으로 영점교차점(zero cross point, Zp)를 검출하되, 가속도 맥파(APG) 신호가 첫번째 영점교차점의 값 보다 작은가 여부를 판단하여, 작지 않다면 작을 때까지 기다리고(S446), 가속도 맥파(APG) 신호가 두번째 영점교차점의 값 보다 큰지 여부를 판단하여, 크지 않다면 클때까지 기다리고(S449), 가속도 맥파(APG) 신호가 세번째 영점교차점의 값 보다 작은가 여부를 판단하여, 작지 않다면 작을 때까지 기다린다(S452). 이렇게 3개의 영점교차점으로부터 APG신호의 C포인트를 검출한다(S445).
사용자 정보인 Height를 수신받고(S467, S469), PPG의 2차 미분 파형의 특징점인 C 포인트로부터 PPG의 순방향 파형의 피크(Forward-going wave peak)를 검출하고(S470), 또한 반사 파형 피크(Reflect wave peak)도 검출하여(S473), SI(Stiffness Index)를 구한다(S476).
PPG의 2차 미분 파형의 특징점인 C 포인트를 이용하여, PPG의 순방향 파형의 피크(Forward-going wave peak)와의 시간차이 ΔT와 보상 파라미터 TI를 검출하고, ΔTDVP, TI, 사용자 정보인 Height를 이용하여 보상된 혈관특성 파라미터인 SIc를 산출하고(S463), SIc를 통해 혈관 특성 파라미터인 BVSI를 검출한다(S465).
일반적으로 APG 신호에서 C포인트는 후기 수축 재증가파로 혈관의 탄력성을 나타낸다. 기존 SI(Stiffness Index)는 반사파(Reflect wave)가 수축기 파(systolic wave)에 합하여(summing)지는 현상으로 인하여 반사파 피크(reflect wave Peak) 검출에 영향을 미치고, 그로인해 TDVP(수축기파와 확장기파의 피크 사이 시간)는 오차가 발생한다. 따라서 도 12와 같이, 이 오차를 보상하기 위해 PPG의 2차 미분 파형의 특징점인 C 포인트를 검출하여 PPG의 순방향 파형의 피크(Forward-going wave peak)와의 시간차이 ΔT와 보상 파라미터 TI를 산출한다.
<양손 심박출량측정(ICG)>
도 13은 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 양손 심박출량 검출 알고리즘 순서도의 예이다.
양손 심박출량 검출 알고리즘은 심전도 및 체임피던스 MCU(170) 또는 메인 MCU(410)에서 수행되어질 수 있으며, 보다 바람직하게는 심전도 및 체임피던스 MCU(170)에서 수행된다.
여기서는, 양손을 이용한 심박출량 검출의 정확성 향상을 위해 1차 미분 체임피던스(1`st Dev Bio-Impedance)의 특성점들 간의 x축 정보인 시간과 y축 정보인 진폭을 검출하였으며, 이를 통해 LVET(좌심실 수축 시간, left ventricular ejection time), (dZ/dt)max를 정량화하였으며, 1회 박출량 및 심박출량을 검출한다.
문턱치 설정단계(S500)로, 초기화(S510) 후, ICG 신호인 체임피던스 신호의 AD 변환이 완료되면(S513, S516)는, ICG 신호를 기초 임피던스(Base impedance) 신호로서 수신하여(모니터링하여)(S510), 베이스라인(Baseline)를 설정한다. 설정된 기초 임피던스(Base impedance) 신호를 이용하여 일정량을 빼줌으로써 PWM을 세팅한다(S522). PWM 기술을 적용하여 분해능을 향상시킨다. PWM Feedback은 사용자의 기저 임피던스 값에 따라 조절된 신호와 기저 임피던스 간의 차동 증폭을 통해 분해능을 향상시킨다.
분해능이 향상된 ICG 신호를 획득하고(S528), 20Hz LPF를 통해 잡음을 제거한다(S531). 노이즈가 제거된 신호를 이용하여 4초간의 중간값을 이용하여 문턱치를 설정한다(S534).
LVET 검출단계(S535)로, 문턱치 설정이 완료되었는 지를 판단하여(S537), 문턱치 설정이 완료되면 ICG 신호를 1차 미분하고 LPF를 통과시킨다(S540). 그 다음 그 신호의 첫 영점교차(Zero crossing)되는 지점을 C포인트로 검출한다(S534, S546). C포인트가 검출되는 순간 Back Search하여 B 포인트를 검출한다(S564, S567, S570).
C포인트로부터 ICG 신호가 문턱치보다 작고 1차 미분 파형이 영점교차(Zero crossing)을 할 경우의 지점을 X포인트로 검출한다(S549, S552). 순차적으로 검출된 C포인트, B포인트, X포인트의 각 지점의 시간간격(Time Interval)과 진폭(Amplitude)을 이용하여 1회 박출량 산출 파라미터인 LVET, Dz/dtmax를 검출한다(S555).
심박출량 연산단계(S560)로, 사용자 정보를 입력받고(S558), 검출된 파라미터(LVET, Dz/dt max)를 이용하여 1회 박출량을 산출하고 1회 박출량(SV)과 심박수(CO)를 이용하여 심박출량을 검출한다(S573).
<양손 폐기능측정(IPFT)>
도 14는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 양손 폐기능평가 검출 알고리즘 순서도의 예이다.
양손 폐기능평가 검출 알고리즘은 심전도 및 체임피던스 MCU(170) 또는 메인 MCU(410)에서 수행되어질 수 있으며, 보다 바람직하게는 심전도 및 체임피던스 MCU(170)에서 수행된다.
본 발명은, 여기서, 양손을 이용한 폐기능 평가 파라미터 검출을 위해 Forward Detection 알고리즘과 Backward Detection 알고리즘을 제안하고 대기도 및 중소기도 평가 파라미터(FVC, FEV1, PIF, PEF, FEV1/FVC, Ratio)를 검출한다.
초기화(S610)후, AD 변환(S613, S614)된 Volume 신호인 체임피던스 신호를
기초 임피던스(Base impedance) 신호로서 수신하며(S616), 수신된 기초 임피던스(Base impedance) 신호를 이용하여 일정량을 빼줌으로써 PWM을 세팅하고(S619), 폐용적(Pulmonary Volume)과 Flow신호를 획득한다(S625).
즉, 여기서는 심박출량 측정시와 동일한 PWM 기술을 적용하여 분해능을 향상시키고 폐용적(Pulmonary Volume)과 Flow신호를 획득한다.
정확한 특성점 검출을 위하여 20Hz LPF를 취하고(S628), Volume 신호의 초기 문턱치 선정을 위해 2Hz샘플(9 Point 검출)로 5초간 Volume 신호를 획득하고, Quick Sorting를 거쳐 중간점(Middle Point)을 검출하여 Base Line값을 설정한다(S634).
BaseLine에 일정한 Factor(1.1)을 곱한 값과 비교하여(S637), Flow 신호가 더 큰 상태에서 일정 시간(500ms) 이상을 초과할 경우(S643) 신호의 Zero Crossing 되는 지점을 Peak로 검출한다(S646, S649). 그 후 또 다시 Zero Crossing되는 순간의 Volume값을 Valley로 선정하여(S655), FVC(노력성 폐활량)를 검출한다(S658). Peak 검출 이 후 1초 지난 이후의 지점을 이용하여 FEV1을 검출하고(S676, 679) FEV1/FVC Ratio를 산출한다(S661).
또한 Flow 신호가 BaseLine*1.1 의 값보다 작다면(S637), Flow의 최대 값을 검출하고(S667), Flow의 valley를 검출하여(S670), PIF를 산출하고, Volume 신호의 Peak가 산출된 이후에 오는 Flow 신호의 최소 지점을 이용하여 PEF를 검출한다(S673).
여기서는, 특성점 검출알고리즘의 보강을 통해 정확성을 높여 대기도 및 중소기도를 평가하는 파라미터인 FVC, FEV1, PIF, PEF, FEV1/FVC Ratio를 검출한다.
도 15 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관나이 측정화면의 일예이고, 도 16 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 혈관나이 측정결과화면의 일예이다.
도 15에서는 혈관나이 측정을 위해 계측된 심전도 신호와 산소포화도(PPG) 신호를 볼 수 있으며, 도 16에서는 측정된 혈관나이를 출력하고 있다.
도 17 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 폐기능 측정화면의 일예이고, 도 18 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 페기능 측정 결과화면의 일예이다.
도 17에서는 측정되고 있는 폐용적(voiume) 신호를 모니터할 수 있으며, 도 18에서는 검출된 FVC, FEV1. FEV1/FVC를 출력하고 있다.
도 19는 본 발명의 일실시예의 혈관 및 심폐기능 평가를 위한 생체 계측 시스템에서 손목 혈압측정 결과화면의 일예로, 손목 혈압측정 결과로서, 확장기 혈압, 이완기혈압, 심박동수 등을 출력한다.
본 발명은 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템으로, 체지방율, 비관혈식 혈압, 혈관탄성도, 심박출량, 폐기능 검사를 측정하여, 개인용으로, 또는 병원에서 환자측정용으로, 지속적인 혈관 및 심폐기능 모니터링을 위해 이용될 수 있다.

Claims (23)

  1. 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서,
    생체신호 검출전극으로서, 피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 폐용적(Pulmonary Volume)을 반영한 체임피던스신호인, 페용적 신호를 검출하는 체임피던스 센서부;
    체임피던스 센서부에서 출력된 폐용적 신호를 증폭하고 잡음을 제거하는 IPFT(임피던스 폐기능검사) 전처리부;
    IPFT 전처리부로부터 수신된 폐용적 신호를 디지탈신호로 변환하고, 폐용적 신호로부터 FEV1/FVC 비율(1초간 강제호기량/강제폐활량 비율)을 산출하는 심전도 및 체임피던스 MCU(Micro Controller Unit);
    를 구비하는 임피던스 폐기능검사(IPFT) 측정모듈을 포함하는 것을 특징으로 하는 생체 계측 시스템.
  2. 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서,
    발광부와 수광부를 구비하여 혈관탄성도를 반영한 PPG신호(산소포화도 신호)를 검출하는 산소포화도 센서부,
    산소포화도 센서부에서 출력된 PPG신호를 증폭하고 잡음을 제거하는 산소포화도 전처리부,
    산소포화도 전처리부로부터 PPG신호를 수신하여 디지탈신호로 변환하는 산소포화도 MCU를 구비하는 산소포화도 검출모듈;
    심전도 전극을 구비하여 심전도를 검출하는 심전도 센서부,
    심전도 센서부에서 출력된 심전도 신호를 증폭하고 잡음을 제거하는 심전도 전처리부,
    심전도 전처리부로부터 심전도 신호를 수신하고, 산소포화도 MCU로부터 PPG신호를 수신하여, 심전도 신호 및 PPG신호를 이용하여 혈관탄성도(BVSI)를 검출하는 심전도 및 체임피던스 MCU를 구비하는 심전도 및 체임피던스 측정모듈;
    을 포함하여 이루어진 것을 특징으로 하는 생체 계측 시스템.
  3. 전면부에 중앙에 디스플레이부를 구비하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서,
    생체신호 검출전극으로서, 피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 심박출량측정(ICG)을 반영한 체임피던스신호인, ICG 신호를 검출하는 체임피던스 센서부;
    체임피던스 센서부에서 출력된 폐용적 신호를 증폭하고 잡음을 제거하는 ICG 전처리부;
    ICG 전처리부로부터 수신된 ICG 신호를 디지탈신호로 변환하고, ICG 신호로부터 1회 박출량 및 심박출량을 산출하는 심전도 및 체임피던스 MCU;
    를 구비하는 심박출량(ICG) 측정모듈을 포함하는 것을 특징으로 하는 생체 계측 시스템.
  4. 전면부에 중앙에 디스플레이부를 구비하고, 일측 손목에 혈압측정용 커프를 장착하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서,
    발광부와 수광부를 구비하여, 혈압을 반영한 PPG 신호인 혈압신호를 검출하는 NIBP(비관혈식 손목혈압측정) 센서부;
    NIBP 센서부에서 출력한 혈압신호를 증폭하는 NIBP전처리부;
    손목에 감겨진 커프로부터 코르트코프음을 반영한 압력신호인 코르트코프음신호를 검출하는 압력센서부;
    압력센서부에서 검출된 코르트코프음신호로부터 잡음을 제거하고, 증폭하는 압력전처리부;
    NIBP전처리부로부터의 혈압신호 및 압력전처리부로부터의 코르트코프음신호를 디지탈 신호로 변환하고, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 NIBP MCU;
    를 구비하는 혈압검출모듈을 포함하여 이루어진 것을 특징으로 하는 생체 계측 시스템.
  5. 제4항에 있어서,
    상기 NIBP MCU는 오실로메트릭법에 따른 혈압을 코로토코프음에 따른 혈압에 의해 보정하는 것을 특징으로 하는 생체 계측 시스템.
  6. 제1항 또는 제3항 또는 제4항 중 어느 한 항에 있어서,
    상기 심전도 및 체임피던스 측정모듈은,
    심전도 전극을 구비하여 심전도를 검출하는 심전도 센서부와
    심전도 센서부에서 출력된 심전도 신호를 증폭하고 잡음을 제거하는 심전도 전처리부를 더 구비하는 것을 특징으로 하는 생체 계측 시스템.
  7. 제6항에 있어서,
    심전도 및 체임피던스 MCU는, 심전도 전처리부로부터 수신된 심전도 신호로 부터, 심박동수, RR간격, P파, QRS파, PR간격, QRS간격을 검출하는 것을 특징으로 하는 생체 계측 시스템.
  8. 제2항에 있어서,
    심전도 및 체임피던스 측정모듈은
    피부에 미세전류를 흘리는 전류전극과 피부의 전위차를 측정하는 전압전극을 구비하여, 체지방을 반영한 체임피던스신호인 체지방신호를 검출하는 체임피던스 센서부와,
    체임피던스 센서부에서 출력된 체지방신호를 증폭하고 잡음을 제거하는 체임피던스 전처리부를 더 구비하는 것을 특징으로 하는 생체 계측 시스템.
  9. 제8항에 있어서,
    심전도 및 체임피던스 MCU는, 체임피던스 전처리부로부터 수신된 체지방신호로부터 체지방량을 검출하는 것을 특징으로 하는 생체 계측 시스템.
  10. 제1항 또는 제3항 또는 제4항 중 어느 한 항에 있어서,
    발광부와 수광부를 구비하여 산소포화도 신호(PPG신호)를 검출하는 산소포화도 센서부,
    산소포화도 센서부에서 출력된 산소포화도 신호를 증폭하고 잡음을 제거하는 산소포화도 전처리부,
    산소포화도 전처리부로부터 산소포화도 신호를 수신하여 디지탈신호로 변환하는 산소포화도 MCU를 구비하는 산소포화도 검출모듈을 더 구비하는 것을 특징으로 하는 생체 계측 시스템.
  11. 제1항 내지 제4항 중 어느 한 항에 있어서,
    사용자가 설정한 단일 측정모드 또는 순차적 측정모드에 따라, 생체 계측 시스템의 구동을 제어하고, 사용자의 생체측정신호를 통계처리하여 결과를 디스플레이부로 출력하는 메인 MCU;
    메인 MCU의 출력을 무선으로 송출하는 블루투스부;
    를 포함하는 메인 모듈을 더 구비하는 것을 특징으로 하는 생체 계측 시스템.
  12. 제11항에 있어서
    순차적 측정모드는 기 저장된 우선순위에 따라 심전도 및 산소포화도, 체임피던스, 심박출량, 혈압, 폐기능검사를 순서대로 측정하는 것을 특징으로 하는 생체 계측 시스템.
  13. 제1항 내지 제4항 중 어느 한 항에 있어서,
    발광부와 수광부를 구비하여, 혈압을 반영한 PPG 신호인 혈압신호를 검출하는 NIBP(비관혈식 손목혈압측정) 센서부;
    NIBP 센서부에서 출력한 혈압신호를 증폭하는 NIBP전처리부;
    손목에 감겨진 커프로부터 코르트코프음을 반영한 압력신호인 코르트코프음신호를 검출하는 압력센서부;
    압력센서부에서 검출된 코르트코프음신호로부터 잡음을 제거하고, 증폭하는 압력전처리부;
    NIBP전처리부로부터의 혈압신호 및 압력전처리부로부터의 코르트코프음신호를 디지탈 신호로 변환하고, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 NIBP MCU;
    를 구비하는 혈압검출모듈을 더 포함하여 이루어진 것을 특징으로 하는 생체 계측 시스템.
  14. 제13항에 있어서,
    NIBP 센서부는 산소포화도 센서부인 것을 특징으로 하는 생체 계측 시스템.
  15. 손목에 혈압측정용 커프를 장착하고, 좌측단과 우측단을 손으로 잡도록 이루어지되, 좌측단과 우측단의 손접촉부에는 생체신호 검출전극이 장착되어 있는 생체 계측 시스템에 있어서,
    심전도, 체임피던스, 심박출량(ICG), 임피던스 폐기능검사(IPFT)를 측정하는 수단으로, 심전도 센서부과 체임피던스 센서부을 구비하여, 심전도신호와 체임피던스 신호를 검출하여, RR간격을 포함하는 심전도 파라미터, FEV1/FVC 비율, 심박출량, 체지방량을 측정하는 심전도 및 체임피던스 측정모듈;
    산소포화도 센서부를 구비하여 산소포화도를 검출하는 산소포화도 검출모듈;
    NIBP 센서부 및 압력센서부를 구비하여, NIBP센서부로부터의 혈압신호 및 압력센서부로부터의 코르트코프음신호를 검출하여, 혈압 신호로부터 오실로메트릭법에 따른 혈압을 검출하고, 코르트코프음신호로부터 코로토코프음에 따른 혈압을 검출하는 혈압측정모듈;
    중 하나 이상을 포함하며,
    심전도 및 체임피던스 측정모듈, 산소포화도 검출모듈, 혈압측정모듈의 구동을 제어하고, 사용자의 생체측정신호를 통계처리하여 결과를 디스플레이부로 출력하는 메인 모듈를 더 포함하여 이루어진 것을 특징으로 하는 생체 계측 시스템.
  16. 제15항에 있어서,
    심전도 및 체임피던스 측정모듈 및 산소포화도 검출모듈을 이용하여 혈관탄성도(BVSI)를 검출하는 것을 특징으로 하는 생체 계측 시스템.
  17. 제16항에 있어서, 심전도 및 체임피던스 측정모듈은,
    체임피던스 센서부로부터 검출된, 폐용적(Pulmonary Volume)을 반영한 체임피던스신호인, 페용적 신호로부터 FEV1/FVC 비율(1초간 강제호기량/강제폐활량 비율)을 산출하는 심전도 및 체임피던스 MCU를 포함한 임피던스 폐기능검사(IPFT) 측정모듈를 구비하는 것을 특징으로 하는 생체 계측 시스템.
  18. 제16항에 있어서, 심전도 및 체임피던스 측정모듈은,
    심전도 센서부로부터 심전도 신호를 수신하고, 산소포화도 검출모듈로부터 PPG신호를 수신하여, 심전도 신호 및 PPG신호를 이용하여 혈관탄성도(BVSI)를 검출하는 심전도 및 체임피던스 MCU를 포함하는 것을 특징으로 하는 생체 계측 시스템.
  19. 제16항에 있어서, 심전도 및 체임피던스 측정모듈은,
    체임피던스 센서부로 부터 검출된 심박출량측정(ICG)을 반영한 체임피던스신호인, ICG 신호로부터 1회 박출량 및 심박출량을 산출하는 심전도 및 체임피던스 MCU를 포함하는, 심박출량(ICG) 측정모듈을 포함하는 것을 특징으로 하는 생체 계측 시스템.
  20. 제16항에 있어서, 심전도 및 체임피던스 측정모듈은,
    심전도 센서부로부터 검출된 심전도 신호로부터, 심박동수, RR간격, P파, QRS파, PR간격, QRS간격을 검출하는 것을 특징으로 하는 생체 계측 시스템.
  21. 제16항에 있어서, 심전도 및 체임피던스 측정모듈은,
    체임피던스 센서부로부터 검출된, 체지방을 반영한 체임피던스신호인 체지방신호로부터 체지방량을 검출하는 것을 특징으로 하는 생체 계측 시스템.
  22. 제1항 내지 제4항, 제15항 중 어느 한 항에 있어서,
    생체신호 검출전극은,
    심전도와 체임피던스 검출을 위한 4개의 전극인, 제1전극 내지 제4전극을 구비하되,
    생체 계측 시스템의 전면부 좌측 하단에 제1전극을 구비하고,
    생체 계측 시스템의 전면부 우측 하단에 제2전극을 구비하고,
    생체 계측 시스템의 좌측면부에 제3전극을 구비하고,
    생체 계측 시스템의 우측면부에 제4전극을 구비하는 것을 특징으로 하는 생체 계측 시스템.
  23. 제23항에 있어서,
    제1전극 내지 제4전극은 크롬 도금 전극인 것을 특징으로 하는 생체 계측 시스템.
PCT/KR2012/002034 2012-03-21 2012-03-21 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템 WO2013141419A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0028864 2012-03-21
KR1020120028864A KR101402134B1 (ko) 2012-03-21 2012-03-21 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템

Publications (1)

Publication Number Publication Date
WO2013141419A1 true WO2013141419A1 (ko) 2013-09-26

Family

ID=49222856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002034 WO2013141419A1 (ko) 2012-03-21 2012-03-21 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템

Country Status (2)

Country Link
KR (1) KR101402134B1 (ko)
WO (1) WO2013141419A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109480873A (zh) * 2018-10-25 2019-03-19 苏州润心医疗器械有限公司 基于肺动脉ct图像的血管排序方法
KR20200075625A (ko) 2018-12-18 2020-06-26 한국 한의학 연구원 스마트밴드형 양팔맥 동시 측정 장치 및 방법
EP4035596A1 (en) * 2021-01-27 2022-08-03 Wistron Corporation Method, computer programming product and electronic device for calculating blood oxygen saturation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290277B1 (ko) 2014-08-27 2021-08-17 삼성전자주식회사 생체 정보 처리 방법 및 그 장치
TWI610655B (zh) * 2015-11-13 2018-01-11 慶旺科技股份有限公司 具有心率分析模組之血壓計
KR102626585B1 (ko) 2018-08-20 2024-01-17 삼성전자주식회사 혈압 추정 장치 및 방법
WO2020054893A1 (ko) * 2018-09-14 2020-03-19 연세대학교 산학협력단 생체신호 기반 통증심도 분류 장치 및 방법
KR102281745B1 (ko) * 2019-07-02 2021-07-26 울산대학교 산학협력단 심박출량 추정 방법 및 장치
KR20220015538A (ko) * 2020-07-31 2022-02-08 삼성전자주식회사 생체 신호를 이용한 기능을 수행하는 방법 및 이를 지원하는 전자 장치
WO2024158155A1 (ko) * 2023-01-25 2024-08-02 자이메드 주식회사 생체신호 측정장치 및 이를 포함한 생체신호 측정시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100001360A (ko) * 2008-06-26 2010-01-06 연세대학교 산학협력단 생체신호 계측 휴대용 단말기
KR20100042566A (ko) * 2008-10-16 2010-04-26 연세대학교 산학협력단 마우스형 다중 생체신호 측정장치
KR20100094059A (ko) * 2009-02-18 2010-08-26 전북대학교산학협력단 오실로메트릭 방법과 케이-음 방법을 동시에 적용하는 무선데이터 전송 자동혈압 측정 장치 및 방법
KR20110115302A (ko) * 2010-04-15 2011-10-21 주식회사 누가의료기 양손 임피던스를 이용한 폐기능 모니터링장치 및 방법
KR20110115340A (ko) * 2010-04-15 2011-10-21 주식회사 누가의료기 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100001360A (ko) * 2008-06-26 2010-01-06 연세대학교 산학협력단 생체신호 계측 휴대용 단말기
KR20100042566A (ko) * 2008-10-16 2010-04-26 연세대학교 산학협력단 마우스형 다중 생체신호 측정장치
KR20100094059A (ko) * 2009-02-18 2010-08-26 전북대학교산학협력단 오실로메트릭 방법과 케이-음 방법을 동시에 적용하는 무선데이터 전송 자동혈압 측정 장치 및 방법
KR20110115302A (ko) * 2010-04-15 2011-10-21 주식회사 누가의료기 양손 임피던스를 이용한 폐기능 모니터링장치 및 방법
KR20110115340A (ko) * 2010-04-15 2011-10-21 주식회사 누가의료기 양손 임피던스를 이용한 심박출량 모니터링장치 및 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109480873A (zh) * 2018-10-25 2019-03-19 苏州润心医疗器械有限公司 基于肺动脉ct图像的血管排序方法
CN109480873B (zh) * 2018-10-25 2021-08-10 苏州润迈德医疗科技有限公司 基于肺动脉ct图像的血管排序方法
KR20200075625A (ko) 2018-12-18 2020-06-26 한국 한의학 연구원 스마트밴드형 양팔맥 동시 측정 장치 및 방법
EP4035596A1 (en) * 2021-01-27 2022-08-03 Wistron Corporation Method, computer programming product and electronic device for calculating blood oxygen saturation
US12070309B2 (en) 2021-01-27 2024-08-27 Wistron Corp. Method, computer programming product and electronic device for calculating blood oxygen saturation

Also Published As

Publication number Publication date
KR20130107066A (ko) 2013-10-01
KR101402134B1 (ko) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2013141419A1 (ko) 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템
WO2019108044A1 (ko) 심전도 측정 장치
US10390716B2 (en) Pulse transmission time measuring apparatus and biological state estimating apparatus
WO2012128407A1 (ko) 다중 생체 신호 측정을 이용하여 손목혈압의 정확도를 향상시키는 방법 및 장치
CN112040846A (zh) 基于光电体积描记(ppg)信号估计血压和动脉硬化度的方法
WO2011090274A9 (ko) 손목 착용형 맥박 측정 장치 및 그 제어 방법
WO2022231132A1 (ko) 인공지능형 스마트 리모컨 장치 및 이를 이용한 자가 검사 방법
WO2010038993A2 (ko) 심혈관 분석 장치
WO2020246758A1 (ko) 카메라를 이용한 비접촉 ppg 신호 측정 시스템 및 그 구동 방법
WO2017099374A1 (ko) 혈압 측정 장치 및 이를 이용한 혈압 측정 방법
GB2490594A (en) Apparatus and methods for electrocardiogram assisted blood pressure measurement
WO2021132933A1 (ko) 심전도를 이용한 바이오피드백 장치 및 그의 제어 방법
KR100697211B1 (ko) 무구속 맥파도달시간 측정을 이용한 혈압측정시스템 및방법
EP1041923A1 (en) Artefact reduction in photoplethysmography
WO2021075693A1 (ko) 전기 임피던스 단층촬영을 이용한 심폐기능 모니터링 방법 및 시스템
WO2017099426A1 (en) Electronic apparatus and control method thereof
WO2020005027A1 (ko) 웨어러블 디바이스를 이용하는 심전도 측정 방법 및 시스템
WO2016045139A1 (zh) 基于网络医院的孕妇及胎儿体征信息管理系统及方法
CN113261972B (zh) 心电检测装置、电路及方法
WO2017000385A1 (zh) 一种用于血压测量的辅助装置及血压测量设备
WO2018221865A1 (ko) 신체 부착형 맥파 측정 장치
WO2021194047A1 (ko) 체온 측정이 가능한 심전계 및 그의 제어 방법
EP3337391A1 (en) Electronic apparatus and control method thereof
WO2020231064A1 (ko) 혈압 측정 시스템 및 이를 이용한 혈압 측정 방법
CN113951849B (zh) 生物信号采集电路及鼠标

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871811

Country of ref document: EP

Kind code of ref document: A1