WO2016045139A1 - 基于网络医院的孕妇及胎儿体征信息管理系统及方法 - Google Patents

基于网络医院的孕妇及胎儿体征信息管理系统及方法 Download PDF

Info

Publication number
WO2016045139A1
WO2016045139A1 PCT/CN2014/087844 CN2014087844W WO2016045139A1 WO 2016045139 A1 WO2016045139 A1 WO 2016045139A1 CN 2014087844 W CN2014087844 W CN 2014087844W WO 2016045139 A1 WO2016045139 A1 WO 2016045139A1
Authority
WO
WIPO (PCT)
Prior art keywords
fetal
pregnant woman
wearable
examination device
physical examination
Prior art date
Application number
PCT/CN2014/087844
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
王海荣
张少鹏
方静芳
程金兢
梁艳妮
周荣
徐之艳
Original Assignee
深圳市前海安测信息技术有限公司
深圳市易特科信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海安测信息技术有限公司, 深圳市易特科信息技术有限公司 filed Critical 深圳市前海安测信息技术有限公司
Publication of WO2016045139A1 publication Critical patent/WO2016045139A1/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the invention relates to the technical field of medical technology, in particular to a network hospital-based pregnant woman and fetal sign information management system and method.
  • the main object of the present invention is to solve the technical problem in the prior art that it is impossible to provide a safe and comprehensive telemedicine service for pregnant women.
  • the present invention provides a network hospital-based pregnant woman and fetal sign information management system, including a first wearable physical examination device, a second wearable physical examination device, an application terminal, and a remote device, wherein:
  • the first wearable physical examination device is configured to detect vital signs information of the fetus, and after establishing a wireless connection with the application terminal, send the physical sign information of the fetus to the application terminal;
  • the second wearable physical examination device is used for Detecting the vital signs information of the pregnant woman, and after establishing a wireless connection with the application terminal, transmitting the physical sign information of the pregnant woman to the application terminal;
  • the application terminal is configured to send the physical sign information of the pregnant woman and the physical condition information of the pregnant woman to a remote device;
  • the remote device is configured to receive the vital sign information of the fetus and the vital sign information of the pregnant woman, and send recommendation information or prompt information to the application terminal according to the physical sign information of the fetus and the physical sign information of the pregnant woman, to pass the
  • the application terminal sends the first wearable physical examination device or the second wearable physical examination device.
  • the first wearable physical examination apparatus includes a wearing body and a tension sensing module, a thin film pulse sensing module, a microprocessor, a button module and a display module disposed on the wearing body, respectively. Electrically connecting with the tension sensing module, the thin film pulse sensing module, the button module and the display module;
  • the tension sensing module is configured to detect a pressure signal between the wearing body and a pregnant woman, and convert the pressure signal into a digital signal that can be processed by the microprocessor
  • the thin film pulse sensing module is configured to detect Fetal fetal heart rate, fetal movement rate and fetal movement intensity, and convert the fetal heart rate, fetal movement rate and fetal movement intensity into digital signals that can be processed by the microprocessor;
  • the first wearable physical examination device and the second wearable physical examination device further comprise a wireless connection module electrically connected to the microprocessor, for wirelessly connecting with the application terminal.
  • the first wearable physical examination apparatus further includes a prompting module electrically connected to the microprocessor for prompting according to a range in which the pressure signal processed by the microprocessor is located.
  • the tension sensing module comprises a tensile force sensor, a first filter and a first analog to digital conversion circuit, which are electrically connected in sequence
  • the thin film pulse sensing module comprises a thin film pulse sensor and a second filter which are electrically connected in sequence.
  • a second analog-to-digital conversion circuit wherein the outputs of the first analog-to-digital conversion circuit and the second analog-to-digital conversion circuit are respectively electrically connected to an input end of the microprocessor.
  • the first wearable physical examination apparatus further includes a prompting module electrically connected to the microprocessor for prompting according to a range in which the pressure signal processed by the microprocessor is located.
  • the tension sensing module further includes a first differential amplifying circuit electrically connected between the first analog to digital converting circuit and the first filter; the thin film pulse transmitting The sensing module further includes a second differential amplifying circuit electrically connected between the second analog to digital converting circuit and the second filter.
  • the first wearable physical examination apparatus further includes a prompting module electrically connected to the microprocessor for prompting according to a range in which the pressure signal processed by the microprocessor is located.
  • the thin film pulsation sensor is an active thin film pulsation sensor, which comprises a power supply circuit, the power supply circuit has a supply voltage ripple of less than 50 millivolts, and the power supply circuit is a two-stage voltage regulator circuit or a three-stage voltage regulator. Circuit.
  • the second voltage stabilizing circuit includes a first voltage stabilizing unit and a second voltage stabilizing unit that are electrically connected in sequence, and an output stabilizing voltage of the first voltage stabilizing unit is 4.4 volts, and the second voltage stabilizing unit The output stable voltage is 3.3 volts.
  • the three-stage voltage stabilizing circuit comprises a third voltage stabilizing unit, a fourth voltage stabilizing unit and a fifth voltage stabilizing unit which are electrically connected in sequence, and the output voltage of the third voltage stabilizing unit is 5.0 volts, and the fourth voltage regulator The output stability voltage of the unit is 4.4 volts, and the output voltage of the fifth regulator unit is 3.3 volts.
  • the wearing body is a textile.
  • the wearing body includes a first body and a second body connected together, the first filter, the first differential amplifying circuit, the first analog to digital converting circuit, the second filter, the second differential amplifying circuit,
  • the second analog-to-digital conversion circuit and the microprocessor are disposed inside the first body, the button module and the display module are disposed on a surface of the first body, and the tension sensor is disposed on the second body and adjacent to the first body.
  • the plurality of thin film pulsation sensors are disposed on the second body.
  • the wireless connection module is a Bluetooth module or an infrared module.
  • the prompting module is a light emitting diode LED, a liquid crystal display LCD, a digital tube or a tricolor tube.
  • the present invention further provides a method for managing pregnant women and fetal signs based on a network hospital, and the method for managing pregnant women and fetal signs based on a network hospital includes the following steps:
  • the first wearable physical examination device and the second wearable physical examination device When the first wearable physical examination device and the second wearable physical examination device are worn on the pregnant woman, the first wearable physical examination device detects the physical sign information of the fetus, and the second wearable physical examination device detects the physical sign information of the pregnant woman;
  • the first wearable physical examination device and the second wearable physical examination device respectively establish a wireless connection with the application terminal, and send the fetal vital sign information and the physical condition information of the pregnant woman to the application terminal; the application terminal will The vital signs information of the fetus and the vital signs information of the pregnant woman are sent to the remote device;
  • the remote device receives the vital sign information of the fetus and the vital sign information of the pregnant woman, and sends recommendation information or prompt information to the application terminal according to the physical condition information of the fetus and the physical condition information of the pregnant woman, to be sent to the application terminal through the application terminal.
  • the first wearable medical examination device or the second wearable physical examination device receives the vital sign information of the fetus and the vital sign information of the pregnant woman, and sends recommendation information or prompt information to the application terminal according to the physical condition information of the fetus and the physical condition information of the pregnant woman, to be sent to the application terminal through the application terminal.
  • the step of detecting, by the first wearable physical examination device, the vital signs information of the fetus comprises:
  • the first wearable physical examination device detects the vital sign information of the fetus when the pressure signal is within a preset range of strength.
  • the network hospital-based pregnant woman and fetal sign information management method further comprises:
  • the remote device performs data mining according to the fetal vital information and the vital signs information of the pregnant woman, and establishes a mathematical model.
  • the invention relates to a network hospital-based pregnant woman and fetal sign information management system and method
  • the first wearable physical examination device can monitor fetal vital signs information
  • the second wearable physical examination device can monitor pregnant women's vital signs information, and both have wireless
  • the function can wirelessly transmit the vital signs information of the pregnant woman and the fetus to the application terminal, and then send the re-information information to the remote device through the application terminal, and the remote device can feed back the health report, nutrition and sports recommendation information or other such as reminding medical examination according to the information.
  • the information can provide comprehensive remote medical services for pregnant women.
  • the present invention can detect the physical signs of pregnant women and fetuses by wearing the first wearable physical examination device and the second wearable physical examination device at home. Need to go to a special social health and hospital, safe and convenient.
  • FIG. 1 is a schematic diagram of functional modules of an embodiment of a pregnant woman and a fetal sign information management system based on a network hospital according to the present invention
  • FIG. 2 is a schematic diagram of functional modules of the first embodiment of the first wearable physical examination apparatus shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a first wearable physical examination apparatus according to the present invention.
  • FIG. 4 is a circuit diagram of the wireless connection module of FIG. 2;
  • FIG. 5 is a schematic diagram of functional modules of a second embodiment of the first wearable physical examination apparatus shown in FIG. 1;
  • FIG. 6 is a schematic diagram of functional modules of a third embodiment of the first wearable physical examination apparatus shown in FIG. 1;
  • FIG. 7 is a circuit diagram of the second filtering device, the second analog-to-digital conversion circuit, and the second differential amplifying circuit of FIG. 6;
  • FIG. 8 is a schematic flow chart of a first embodiment of a method for managing pregnant women and fetal signs according to a network hospital according to the present invention
  • FIG. 9 is a schematic diagram showing a refinement process of detecting physical signs information of a fetus by the first wearable physical examination apparatus shown in FIG. 8;
  • FIG. 9 is a schematic diagram showing a refinement process of detecting physical signs information of a fetus by the first wearable physical examination apparatus shown in FIG. 8;
  • FIG. 10 is a schematic flow chart of a second embodiment of a method for managing pregnant women and fetal signs information based on a network hospital according to the present invention.
  • the present invention provides a network hospital-based pregnant woman and fetal sign information management system.
  • the network hospital-based pregnant woman and fetal sign information management system includes a first wearable physical examination device 01, The second wearable medical examination device 02, the application terminal 03, and the remote device 04, wherein:
  • the first wearable physical examination device 01 is configured to detect the vital signs information of the fetus, and after establishing a wireless connection with the application terminal 03, send the physical sign information of the fetus to the application terminal 03; the second wearable physical examination device 02 is used to detect the physical signs of the pregnant woman.
  • the physical condition information of the pregnant woman is sent to the application terminal 03; the application terminal 03 is used to transmit the vital signs information of the fetus and the physical condition information of the pregnant woman to the remote device 04; the remote device 04 is used for Receiving the vital signs information of the fetus and the vital signs information of the pregnant woman, and transmitting the recommendation information or the prompt information to the application terminal 03 according to the physical condition information of the fetus and the vital signs information of the pregnant woman, to be sent to the first wearable physical examination device 01 or the first through the application terminal 03.
  • the vital signs information of the pregnant woman includes body temperature, blood pressure and heart rate, and also includes electrocardiogram, body weight and the like.
  • the fetal sign information includes fetal heart rate, fetal movement rate and fetal movement intensity.
  • the first wearable physical examination device 01 is worn on the pregnant woman near the fetus
  • the second wearable physical examination device 02 can be worn on other positions on the body, such as the wrist.
  • the first wearable physical examination device 01 and the second wearable physical examination device 02 both have a wireless function, for example, have a Bluetooth function or an infrared function, and can be wirelessly connected with the application terminal 03.
  • the remote device 04 can be a computer or a server or the like. After receiving the vital signs information of the fetus and the vital signs information of the pregnant woman, the remote device 04 can feed back health report, nutrition and sports recommendation information or other information such as reminding medical examination according to the information, and can provide comprehensive telemedicine services for pregnant women.
  • the first wearable physical examination device 01 and the second wearable physical examination device 02 are worn on the pregnant woman at home, and the physical signs information of the pregnant woman and the fetus can be separately detected, and it is safe and convenient to go to a special social health and hospital.
  • the first wearable physical examination device 01 includes: a wearable body 001 and a tensile force sensor disposed on the wearable body 001.
  • the module 10 the thin film pulse sensing module 20, the microprocessor 50, the button module 60, and the display module 70.
  • the first wearable physical examination device 01 of the present embodiment is worn on the pregnant woman by the wearing body 001 near the fetus, and the wearable body 001 can adjust the degree of tightness of the wear. When the degree of tightness is appropriate, the fetal sign information can be detected. .
  • the wearing body 001 is a textile.
  • a tension sensing module 10 is disposed on the wearing body 001, and the tension sensing module 10 is configured to detect a pressure signal between the wearing body 001 and the pregnant woman, and convert the pressure signal. It is a digital signal that can be processed by the microprocessor 50. If the first wearable medical examination device 01 is worn too tight, it is easy to damage the fetus, and if it is too loose, the fetal vital information cannot be accurately detected. Only when the pressure between the first wearable medical examination device 01 and the pregnant woman is appropriate can the fetal pulse information module be safely and accurately detected by the thin film pulsation sensing module 20.
  • the film pulsation sensing module 20 includes a film pulsation sensor, which is a dynamic strain sensor, which has greater sensitivity to detection of dynamic signals, 3-5 times that of a common pressure sensor, and is suitable for application to human skin. Detection of vital signals on the surface or inside the body, especially the detection of signals such as respiratory signals, heart rate signals and pulse waves.
  • the output sensitivity of the thin film pulsation sensor is not less than 2 microvolts, and the temperature coefficient is less than 500 PPM.
  • the membrane pulsation sensor is used to detect fetal fetal heart rate, fetal movement rate and fetal movement intensity, and convert fetal heart rate, fetal movement rate and fetal movement intensity into corresponding electrical signals, and then collect through the membrane pulsation sensor through a filter and a digital-to-analog conversion circuit. The resulting fetal heart rate, fetal motion rate, and fetal movement intensity are converted to digital signals that the microprocessor 50 can process, respectively.
  • the membrane pulsation sensor can detect the fetal vital signs without transmitting ultrasonic waves.
  • the pressure sensing module detects the pressure signal between the wearing body and the pregnant woman
  • the film pulsation sensor detects the fetal heart rate, the fetal movement rate and the fetal movement intensity, the fetal heart rate, the fetal movement rate and
  • the fetal movement intensity is sent to the microprocessor after processing, and the microprocessor can process the pressure signal, the fetal heart rate, the fetal movement rate and the fetal movement intensity, and can be displayed on the display module, and the user can input the instruction through the button module. Select to view the fetal heart rate, fetal movement rate and fetal movement intensity.
  • the display module can display the pressure value between the wearer and the pregnant woman, and the fetal fetal heart rate, fetal movement rate and fetal movement intensity.
  • the first wearable physical examination device of the present embodiment can detect the vital signs information of the fetus by wearing it on the pregnant woman at home, and does not need to go to a special social health and hospital, which is safe and convenient.
  • the membrane pulsation sensing module is used to detect fetal fetal sign information.
  • the traditional ultrasonic Doppler fetal heart rate tester since it does not need to emit a certain amplitude of ultrasonic waves, the radiation is greatly reduced and safer.
  • the fetal heart rate, fetal movement rate and fetal movement intensity can be detected at the same time, and comprehensive physical information can be obtained to facilitate the overall evaluation of the vital signs of the fetus.
  • the first wearable physical examination device 01 further includes a wireless connection module 80
  • the second wearable physical examination device 02 also includes a wireless connection module, both for wireless connection with the application terminal 03, and the wireless connection module 80 will be processed by the microprocessor 50.
  • the subsequent fetal heart rate, fetal motion rate, and fetal movement strength are transmitted to the application terminal 03 for transmission to the remote device 04 through the application terminal 03.
  • the wireless connection module may be a Bluetooth module or an infrared module
  • the first wearable medical examination device 01 establishes a wireless connection with the external application terminal 03 through the wireless connection module 80
  • the application terminal 03 may be a mobile phone, a computer or other smart device. Wait.
  • the above wireless connection module is composed of a communication chip SP3232 and an associated 0.1UF/36V capacitor element.
  • USART RX and USART TX It is an interface to the microprocessor 50, and OUT RX and OUT TX are interfaces for communication with an external application terminal 03.
  • the first wearable medical examination device 01 transmits the fetal heart rate, the fetal movement rate and the fetal movement intensity processed by the microprocessor 50 to the application terminal 03 through the wireless connection module, and then transmits it to the remote device 04 by the application terminal 03, the remote device 04 According to the fetal heart rate, fetal movement rate and fetal movement intensity, the relevant medical examination date and other prompt information or nutritional recommendation information can be fed back. Further, the pregnant woman can communicate with the doctor through the application terminal 03.
  • the tension sensing module 10 includes a tensile force sensor 101, a first filter 102, and a first analog to digital conversion that are sequentially electrically connected.
  • the circuit 103, the thin film pulsation sensing module 20 includes a thin film pulsation sensor 201, a second filter 202, and a second analog to digital conversion circuit 203, which are sequentially electrically connected, and outputs of the first analog to digital conversion circuit 103 and the second analog to digital conversion circuit 203.
  • the terminals are electrically coupled to the inputs of microprocessor 50, respectively.
  • the thin film pulsation sensor 201 is closely attached to the pregnant woman's stomach.
  • the input end of the first filter 102 is electrically connected to the tension sensor 101 for filtering the pressure signal; the input end of the second filter 202 is electrically connected to the thin film pulsation sensor 201 for using the fetal heart rate and the fetal movement.
  • the electrical signal corresponding to the rate and the fetal movement intensity is filtered to filter out the interference and clutter signals to improve the signal to noise ratio.
  • the input end of the first analog-to-digital conversion circuit 103 is electrically connected to the output end of the first filter 102, and is configured to respectively convert the analog electrical signals corresponding to the filtered pressure signals into digital signals; the second analog-to-digital conversion circuit 203 The input end is electrically connected to the output end of the second filter 202 for converting the filtered fetal heart rate, the fetal movement rate and the fetal movement intensity into corresponding digital signals, respectively.
  • the microprocessor 50 is electrically connected to the output of the first analog-to-digital conversion circuit 103, the output of the second analog-to-digital conversion circuit 203, the button module 60, and the display module 70.
  • the filtering and analog-to-digital conversion functions corresponding to the first filter 102, the first analog-to-digital conversion circuit 103, the second filter 202, and the second analog-to-digital conversion circuit 203 are the same as those in the prior art, and are no longer Narration.
  • the tension sensing module 10 further includes a first differential amplifying circuit 104, and the first differential amplifying circuit 104 is electrically connected to the first The analog-to-digital conversion circuit 103 and the first filter 102; the thin film ripple sensing module 20 further includes a second differential amplifying circuit 204, and the second differential amplifying circuit 204 is electrically connected to the second analog-to-digital converting circuit 203 and the second filter. Between 202.
  • the signal may be amplified by the differential amplifying circuit, thereby improving the sensitivity of the first wearable physical examination apparatus 01.
  • the first filter 102 receives the pressure signal output by the tension sensor 101 through the first channel composed of two ports AINP1 and AINN1, and performs a filtering network composed of R11, R15, C13, C15, and C19. After filtering, the filtered pressure signal is amplified by the first differential amplifying circuit 104, and the amplified pressure signal is converted into a digital signal that the microprocessor 50 can recognize, analyze, and process through the first analog-to-digital conversion circuit 103, and finally passes through the DOUT. The port is output to the microprocessor 50.
  • the second filter 202 receives the fetal heart rate, the fetal movement rate and the fetal movement intensity signal outputted by the thin film pulsation sensor 201 through the second channel composed of the two ports AINP2 and AINN2, and passes through a filtering network composed of R10, R14, C12, C14 and C18. After filtering, the filtered fetal heart rate, fetal motion rate and fetal movement intensity signal are amplified by the second differential amplifying circuit 204, and the amplified signal is converted into the microprocessor 50 by the second analog to digital conversion circuit 203 to identify and analyze The processed digital signal is finally output to the microprocessor 50 via the DOUT port.
  • the first differential amplifying circuit 104, the second differential amplifying circuit 204, the first analog to digital converting circuit 103, and the second analog to digital converting circuit 203 are implemented by the chip ADS1232.
  • A0 is the control end of the microprocessor 50, and the microprocessor 50 controls the output terminal DOUT to be the first channel output or the second channel output by controlling A0.
  • the first wearable medical examination device 01 further includes a prompting module 100, and the prompting module 100 is electrically connected to the microprocessor 50 for pressure according to the processing by the microprocessor 50. The range in which the signal is located is prompted accordingly.
  • the prompting module 100 can be an LED, an LCD, a digital tube, or a three-color tube. If it is an LED, an LCD, or a digital tube, it can be multiple, for example, three, which are red, green, and yellow. Each color corresponds to a range of pressure signals. Red can be used to indicate that the pressure is too tight, green is used to indicate moderate pressure, and yellow is used to indicate that the pressure is small. Adjustment is made by adjusting the tightness of the wearing body 001, and then the tightening is performed by the prompting module 100. The degree of prompting finally makes the pressure between the first wearable medical examination device 01 and the pregnant woman's body moderate, and is convenient and intuitive to use.
  • the wearable body 001 includes a first body 011 and a second body 012, wherein the first filter 102, the first differential amplifier circuit 104, the first analog-to-digital conversion circuit 103, and the second
  • the filter 202, the second differential amplifier circuit 204, the second analog-to-digital conversion circuit 203, the microprocessor 50, and the wireless connection module 80 are disposed inside the first body 011, and the button module 60, the display module 70, and the prompt module 100 are placed.
  • the surface of the first body 011, the tension sensor 101 is disposed at the second body 012 and adjacent to the first body 011, and the plurality of thin film pulsation sensors 201 are disposed on the second body 012.
  • the thin film pulsation sensor 201 is an active device that includes a power supply circuit having a supply voltage that is a safe voltage that the human body can withstand, i.e., less than 36 volts and a ripple of less than 50 millivolts.
  • the voltage used by the thin film pulsation sensor 201 of the present embodiment is a stable voltage of 36 volts or less, and the ripple is less than 50 millivolts, which can improve the signal-to-noise ratio of the sensor and reduce the interference of the power supply noise signal on the measurement signal of the thin film pulsation sensor 201.
  • the power supply circuit can adopt a multi-stage voltage regulator circuit or a voltage stabilization unit such as a two-stage voltage regulation or a three-stage voltage regulation, and the voltage stabilization circuit or the voltage stabilization unit can be a DC-DC voltage stabilization circuit in the prior art.
  • the power supply circuit includes a first voltage stabilizing unit and a second voltage stabilizing unit that are electrically connected.
  • the output voltage of the first voltage stabilizing unit is 4.4 volts
  • the output voltage of the second voltage stabilizing unit is 3.3 volts.
  • the power supply circuit includes a first voltage stabilizing unit, a second voltage stabilizing unit, and a third voltage stabilizing unit that are electrically connected in sequence.
  • the output voltage of the first voltage stabilizing unit is 5.0 volts
  • the second voltage stabilizing unit The output stabilized voltage is 4.4 volts
  • the output voltage of the third regulator unit is 3.3 volts.
  • the present invention provides a method for managing pregnant women and fetal signs based on a network hospital.
  • the monitoring method includes:
  • Step S101 when the first wearable physical examination device and the second wearable physical examination device are worn on the pregnant woman, the first wearable physical examination device detects the physical sign information of the fetus, and the second wearable physical examination device detects the physical signs of the pregnant woman. information;
  • the vital signs information of the pregnant woman includes body temperature, blood pressure and heart rate, and also includes electrocardiogram, body weight and the like.
  • the fetal sign information includes fetal heart rate, fetal movement rate and fetal movement intensity.
  • the first wearable physical examination device is worn on the pregnant woman near the fetus
  • the second wearable physical examination device can be worn on other positions on the body, such as the wrist.
  • the first wearable physical examination device of the embodiment can detect the pressure signal between the first wearable physical examination device and the pregnant woman by the tension sensor disposed thereon, and when the pressure between the first wearable physical examination device and the pregnant woman is appropriate,
  • the film pulsation sensor thereon detects the fetal heart rate, the fetal movement rate and the fetal movement intensity.
  • the first wearable physical examination device of the embodiment can be used to detect the fetal vital signs information by wearing the same on the pregnant woman at home, and does not need to specialize.
  • the social health and hospital are safe and convenient.
  • the membrane pulsation sensor is used to detect the fetal sign information.
  • the radiation is greatly reduced, safer, and simultaneously
  • the fetal heart rate, fetal movement rate and fetal movement intensity are detected, and comprehensive physical information is obtained to facilitate the overall estimation of fetal vital signs.
  • Step S102 the first wearable physical examination device and the second wearable physical examination device respectively establish a wireless connection with the application terminal, and send the fetal vital sign information and the physical condition information of the pregnant woman to the application terminal;
  • the first wearable physical examination device and the second wearable physical examination device each have a wireless function, such as a Bluetooth function or an infrared function, and can be wirelessly connected with the application terminal.
  • a wireless function such as a Bluetooth function or an infrared function
  • Step S103 the application terminal sends the vital sign information of the fetus and the vital signs information of the pregnant woman to the remote device;
  • Step S104 the remote device receives the vital sign information of the fetus and the vital sign information of the pregnant woman, and sends recommendation information or prompt information to the application terminal according to the physical sign information of the fetus and the vital sign information of the pregnant woman to pass the application terminal. Sending to the first wearable medical examination device or the second wearable physical examination device.
  • the first wearable physical examination device and the second wearable physical examination device wirelessly transmit the vital signs information of the pregnant woman and the fetus to the application terminal, and the application terminal sends the physical condition information to the remote device.
  • the remote device can be a computer or a server or the like.
  • the remote device After receiving the fetal vital signs information and the pregnant women's physical signs information, the remote device can provide health information, nutrition, prenatal and postnatal care and sports recommendation information or other information such as reminding medical examinations according to the information, and can provide remote and comprehensive medical treatment for pregnant women. service. Further, the pregnant woman can also communicate with the doctor through the application terminal.
  • the first wearable physical examination device and the second wearable physical examination device are worn on the pregnant woman at home, and the physical signs information of the pregnant woman and the fetus can be separately detected, and it is safe and convenient, especially in the special social health and hospital.
  • pregnant women are very inconvenient to move.
  • pregnant women can wear the first wearable physical examination equipment and the second wearable physical examination equipment to detect the physical signs of pregnant women and fetuses, so that the physical examination of pregnant women can be realized.
  • the foregoing step S101 includes:
  • Step S1011 detecting a pressure signal between the first wearable medical examination device and the pregnant woman and displaying the pressure signal;
  • Step S1012 it is determined whether the pressure signal is within a preset range of strength, and if so, proceeds to step S1013, otherwise proceeds to step S1014;
  • Step S1013 the first wearable physical examination device detects physical sign information of the fetus
  • step S1014 the detecting operation is not performed.
  • the pressure signal between the first wearable medical examination device and the pregnant woman can be detected. If the first wearable physical examination device is worn too tight, it is easy to damage the fetus, and if it is too loose, the fetal vital information cannot be accurately detected. Only when the pressure between the first wearable medical examination equipment and the pregnant woman is appropriate can the fetal vital signs information be safely and accurately detected.
  • the pregnant woman can adjust the degree of tightness of wearing the first wearable medical examination device by the pressure value between the pregnant woman and the pregnant woman displayed on the screen of the first wearable physical examination device.
  • the network hospital-based pregnant woman and fetal sign information management method further includes:
  • Step S105 the remote device performs data mining according to the fetal vital information and the physical condition information of the pregnant woman, and establishes a mathematical model.
  • the remote device can establish a database system using the vital signs information of the fetus and the pregnant woman, and then perform data mining and establish a mathematical model; further, a database of three pregnant women can be established: 1. A database of pregnant women's personal information, a history of pregnant women's personal illnesses, and a history of family diseases; 2. A database of signs of pregnant women's signs; 3. A database of pregnant women's outpatient data. Then statistically classify the data in the three databases to separate normal data and abnormal data; perform statistics, analysis and modeling on abnormal data to find the rules of large amounts of data and establish mathematical models; perform clinical statistics on data and mathematical models, Calculate and validate to provide a more accurate and comprehensive medical reference.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Business, Economics & Management (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Dentistry (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种基于网络医院的孕妇及胎儿体征信息管理系统及方法,包括第一穿戴式体检设备(01)、第二穿戴式体检设备(02)、应用终端(03)及远程设备(04),第一穿戴式体检设备(01)用于检测胎儿的体征信息,并在与应用终端(03)建立无线连接后,将胎儿的体征信息发送给应用终端(03);第二穿戴式体检设备(02)用于检测孕妇的体征信息,并在与应用终端(03)建立无线连接后,将孕妇的体征信息发送给应用终端(03);应用终端(03)用于将胎儿的体征信息及孕妇的体征信息发送给远程设备(04);远程设备(04)用于接收胎儿的体征信息及孕妇的体征信息,根据胎儿的体征信息、孕妇的体征信息向应用终端(03)发送推荐信息或提示信息。该基于网络医院的孕妇及胎儿体征信息管理系统及方法能够为孕妇提供安全、全面的远程医疗服务。

Description

基于网络医院的孕妇及胎儿体征信息管理系统及方法
技术领域
本发明涉及医疗技术领域,尤其涉及一种基于网络医院的孕妇及胎儿体征信息管理系统及方法。
背景技术
随着生活质量的提高,人们的健康意识也随着提高,人们越来越重视对个人的生命体征的检测与健康状态的跟踪和评价。目前,孕妇的健康检查及临产期健康检查大多在社康和医院进行定期体检,还有使用各种各样的监护仪,如血压仪或体温计等进行体检。在社康和医院进行体检时,使用体检设备进行身体检查,体检设备与一台主机有线连接,最终将体检数据录入主机上并显示与保存。这种体检方式做不到家庭化的、随时随地的进行体征信息的检查和测量,孕妇无法在家中进行体检,而使用监护仪进行体检的方式较单一,无法全面进行体检,体检后也不能获得专业的指导信息,具有一定的局限性。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于解决现有技术中无法为孕妇提供安全、全面的远程医疗服务的技术问题。
为实现上述目的,本发明提供一种基于网络医院的孕妇及胎儿体征信息管理系统,包括第一穿戴式体检设备、第二穿戴式体检设备、应用终端及远程设备,其中:
所述第一穿戴式体检设备用于检测胎儿的体征信息,并在与应用终端建立无线连接后,将所述胎儿的体征信息发送给所述应用终端;所述第二穿戴式体检设备用于检测孕妇的体征信息,并在与应用终端建立无线连接后,将所述孕妇的体征信息发送给所述应用终端;所述应用终端用于将所述胎儿的体征信息及孕妇的体征信息发送给远程设备;所述远程设备用于接收所述胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向所述应用终端发送推荐信息或提示信息,以通过所述应用终端发送给所述第一穿戴式体检设备或第二穿戴式体检设备。
优选地,所述第一穿戴式体检设备包括穿戴本体及设置于所述穿戴本体上的拉力传感模块、薄膜脉动传感模块、微处理器、按键模块及显示模块,所述微处理器分别与所述拉力传感模块、薄膜脉动传感模块、按键模块及显示模块电连接;
所述拉力传感模块用于检测所述穿戴本体与孕妇之间的压力信号,并将所述压力信号转换为所述微处理器能处理的数字信号,所述薄膜脉动传感模块用于检测胎儿的胎心率、胎动率及胎动强度,并将所述胎心率、胎动率及胎动强度分别转换为所述微处理器能处理的数字信号;
其中,所述第一穿戴式体检设备及第二穿戴式体检设备还分别包括与所述微处理器电连接的无线连接模块,用于与应用终端无线连接。
优选地,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
优选地,所述拉力传感模块包括依次电连接的拉力传感器、第一滤波器及第一模数转换电路,所述薄膜脉动传感模块包括依次电连接的薄膜脉动传感器、第二滤波器及第二模数转换电路,所述第一模数转换电路及第二模数转换电路的输出端分别与所述微处理器的输入端电连接。
优选地,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
优选地,所述拉力传感模块还包括第一差分放大电路,所述第一差分放大电路电连接于所述第一模数转换电路及所述第一滤波器之间;所述薄膜脉动传感模块还包括第二差分放大电路,所述第二差分放大电路电连接于所述第二模数转换电路及所述第二滤波器之间。
优选地,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
优选地,所述薄膜脉动传感器为有源薄膜脉动传感器,其包括一电源电路,所述电源电路的供电电压纹波小于50毫伏,所述电源电路为二级稳压电路或三级稳压电路。
优选地,所述二级稳压电路包括依次电连接的第一稳压单元及第二稳压单元,所述第一稳压单元的输出稳定电压为4.4伏,所述第二稳压单元的输出稳定电压为3.3伏。
优选地,所述三级稳压电路包括依次电连接的第三稳压单元、第四稳压单元及第五稳压单元,第三稳压单元的输出稳定电压为5.0伏,第四稳压单元的输出稳定电压为4.4伏,第五稳压单元的输出稳定电压为3.3伏。
优选地,所述穿戴本体为纺织品。
优选地,所述穿戴本体包括相连接的第一本体及第二本体,所述第一滤波器、第一差分放大电路、第一模数转换电路及第二滤波器、第二差分放大电路、第二模数转换电路、微处理器置于第一本体的内部,所述按键模块、显示模块置于第一本体的表面,所述拉力传感器设置于第二本体且靠近第一本体的位置,所述薄膜脉动传感器为多个,所述多个薄膜脉动传感器设置于第二本体上。
优选地,所述无线连接模块为蓝牙模块或红外模块。
优选地,所述提示模块为发光二极管LED、液晶显示器LCD、数码管或者三色管。
此外,为实现上述目的,本发明还提供一种基于网络医院的孕妇及胎儿体征信息管理方法,所述基于网络医院的孕妇及胎儿体征信息管理方法包括以下步骤:
当将第一穿戴式体检设备及第二穿戴式体检设备穿戴在孕妇身上时,所述第一穿戴式体检设备检测胎儿的体征信息,所述第二穿戴式体检设备检测孕妇的体征信息;
所述第一穿戴式体检设备及所述第二穿戴式体检设备分别与应用终端建立无线连接,并将所述胎儿的体征信息及孕妇的体征信息发送给所述应用终端;所述应用终端将所述胎儿的体征信息及孕妇的体征信息发送给远程设备;
所述远程设备接收所述胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向所述应用终端发送推荐信息或提示信息,以通过所述应用终端发送给所述第一穿戴式体检设备或第二穿戴式体检设备。
优选地,所述第一穿戴式体检设备检测胎儿的体征信息的步骤包括:
检测所述第一穿戴式体检设备与孕妇之间的压力信号并显示;
判断所述压力信号是否在预设的力度范围内;
当所述压力信号在预设的力度范围内时,所述第一穿戴式体检设备检测胎儿的体征信息。
优选地,所述基于网络医院的孕妇及胎儿体征信息管理方法还包括:
所述远程设备根据所述胎儿的体征信息、孕妇的体征信息进行数据挖掘,并建立数学模型。
本发明一种基于网络医院的孕妇及胎儿体征信息管理系统及方法,第一穿戴式体检设备能够监测胎儿的体征信息,第二穿戴式体检设备能监测孕妇的体征信息,且两者均具有无线功能,能够将孕妇及胎儿的体征信息无线发送给应用终端,然后通过应用终端将其再发送给远程设备,远程设备可以根据这些信息反馈健康报告、营养及运动的推荐信息或者其他的如提醒体检等信息,能够为孕妇提供全面的远程的医疗服务,另外,本发明在家中将第一穿戴式体检设备、第二穿戴式体检设备穿戴于孕妇身上即可以分别检测孕妇及胎儿的体征信息,不需要去专门的社康和医院,安全方便。
附图说明
图1为本发明基于网络医院的孕妇及胎儿体征信息管理系统一实施例的功能模块示意图;
图2为图1所示第一穿戴式体检设备第一实施例的功能模块示意图;
图3为本发明第一穿戴式体检设备的结构示意图;
图4为图2中无线连接模块的电路图;
图5为图1所示第一穿戴式体检设备第二实施例的功能模块示意图;
图6为图1所示第一穿戴式体检设备第三实施例的功能模块示意图;
图7为图6中第二滤波装置、第二模数转换电路及第二差分放大电路的电路图;
图8为本发明基于网络医院的孕妇及胎儿体征信息管理方法第一实施例的流程示意图;
图9为图8所示第一穿戴式体检设备检测胎儿的体征信息的细化流程示意图;
图10为本发明基于网络医院的孕妇及胎儿体征信息管理方法第二实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种基于网络医院的孕妇及胎儿体征信息管理系统,如图1所示,在一实施例中,该基于网络医院的孕妇及胎儿体征信息管理系统包括第一穿戴式体检设备01、第二穿戴式体检设备02、应用终端03及远程设备04,其中:
第一穿戴式体检设备01用于检测胎儿的体征信息,并在与应用终端03建立无线连接后,将胎儿的体征信息发送给应用终端03;第二穿戴式体检设备02用于检测孕妇的体征信息,并在与应用终端03建立无线连接后,将孕妇的体征信息发送给应用终端03;应用终端03用于将胎儿的体征信息及孕妇的体征信息发送给远程设备04;远程设备04用于接收胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向应用终端03发送推荐信息或提示信息,以通过应用终端03发送给第一穿戴式体检设备01或第二穿戴式体检设备02。
本实施例中,孕妇的体征信息包括体温、血压和心率,还包括心电、体重等等。胎儿的体征信息包括胎心率、胎动率及胎动强度。
本实施例中,第一穿戴式体检设备01穿戴在孕妇身上靠近胎儿的位置,第二穿戴式体检设备02可以穿戴在身体上其他的位置,如手腕上等。
本实施例中,第一穿戴式体检设备01及第二穿戴式体检设备02均具有无线功能,例如具有蓝牙功能或者红外功能等,能够与应用终端03进行无线连接。
本实施例中,远程设备04可以是计算机或者服务器等等。远程设备04接收到胎儿的体征信息及孕妇的体征信息后,可以根据这些信息反馈健康报告、营养及运动的推荐信息或者其他的如提醒体检等信息,能够为孕妇提供全面的远程医疗服务。
本实施例在家中将第一穿戴式体检设备01、第二穿戴式体检设备02穿戴于孕妇身上即可以分别检测孕妇及胎儿的体征信息,不需要去专门的社康和医院,安全方便。
在一优选的实施例中,如图2及3所示,在上述图1的实施例的基础上,第一穿戴式体检设备01包括:穿戴本体001及设置于穿戴本体001上的拉力传感模块10、薄膜脉动传感模块20、微处理器50、按键模块60及显示模块70。本实施例的第一穿戴式体检设备01通过穿戴本体001穿戴在孕妇身上靠近胎儿的位置,并且通过穿戴本体001可以调节穿戴的松紧程度,当松紧程度合适时,可以对胎儿的体征信息进行检测。
优选地,穿戴本体001为纺织品。
为了更安全、准确地检测胎儿的体征信息,在穿戴本体001上设置了一拉力传感模块10,拉力传感模块10用于检测穿戴本体001与孕妇之间的压力信号,并将压力信号转换为微处理器50能处理的数字信号。如果第一穿戴式体检设备01穿戴过紧,易伤害胎儿,而过松则不能准确地检测胎儿的体征信息。只有当第一穿戴式体检设备01与孕妇之间的压力适当时,才能通过薄膜脉动传感模块20安全、准确地检测胎儿的体征信息。
薄膜脉动传感模块20包括薄膜脉动传感器,薄膜脉动传感器是一种动态应变式传感器,对动态信号的检测具有较大的灵敏性,为普通压力传感器的3-5倍,适合应用于对人体皮肤表面或人体内部的生命信号检测,尤其是对呼吸信号、心率信号和脉博等信号的检测。本实施例中,薄膜脉动传感器的输出灵敏度不小于2微伏,温度系数小于500PPM。薄膜脉动传感器用于检测胎儿的胎心率、胎动率及胎动强度,将胎心率、胎动率及胎动强度转换为对应的电信号,然后通过滤波器、数模转换电路将通过薄膜脉动传感器采集到的胎心率、胎动率及胎动强度分别转换为微处理器50能处理的数字信号。其中,薄膜脉动传感器不需要发射超声波即可以检测到胎儿的体征信息。
本实施例的第一穿戴式体检设备,由拉力传感模块检测穿戴本体与孕妇之间的压力信号,薄膜脉动传感器检测胎儿的胎心率、胎动率及胎动强度,胎心率、胎动率及胎动强度经处理后发送给微处理器,微处理器对该压力信号及胎心率、胎动率及胎动强度处理后,可显示于显示模块上,并通过按键模块,使用者可以进行输入指令,选择查看胎心率、胎动率及胎动强度等操作,通过显示模块可以显示穿戴本体与孕妇之间的压力值、及胎儿的胎心率、胎动率及胎动强度。
本实施例的第一穿戴式体检设备,在家中将其穿戴于孕妇身上即可以检测胎儿的体征信息,不需要去专门的社康和医院,安全方便。
另外,通过薄膜脉动传感模块来检测胎儿的体征信息,相比于传统的超声多普勒的胎心测试仪而言,由于其不需要发射一定幅度的超声波,辐射大大减小,更加安全,且能够同时检测到胎儿的胎心率、胎动率及胎动强度,得到较全面的体征信息,方便对胎儿的生命体征进行整体评估。
其中,第一穿戴式体检设备01还包括无线连接模块80,第二穿戴式体检设备02也包括无线连接模块,均用于与应用终端03无线连接,无线连接模块80将经微处理器50处理后的胎心率、胎动率及胎动强度发送给应用终端03,以通过应用终端03发送至远程设备04。
本实施例中,无线连接模块可以是蓝牙模块或红外模块,第一穿戴式体检设备01通过无线连接模块80与外部的应用终端03建立无线连接,应用终端03可以是手机、计算机或者其他智能设备等。
请结合参阅图4,上述的无线连接模块由通讯芯片SP3232及相关的0.1UF/36V电容元件组成。其中,USART RX 和USART TX 是和微处理器50连接的接口,OUT RX 和 OUT TX是和外部的应用终端03通信的接口。
第一穿戴式体检设备01通过无线连接模块将经微处理器50处理后的胎心率、胎动率及胎动强度发送给应用终端03,然后由应用终端03将其发送给远程设备04,远程设备04可根据胎心率、胎动率及胎动强度反馈相关的体检日期等提示信息或者营养推荐信息等,进一步的,孕妇还可以通过应用终端03与医生进行交流沟通。
在一优选的实施例中,如图5所示,在上述图2的实施例的基础上,拉力传感模块10包括依次电连接的拉力传感器101、第一滤波器102及第一模数转换电路103,薄膜脉动传感模块20包括依次电连接的薄膜脉动传感器201、第二滤波器202及第二模数转换电路203,第一模数转换电路103及第二模数转换电路203的输出端分别与微处理器50的输入端电连接。
其中,薄膜脉动传感器201为多个,孕妇穿戴第一穿戴式体检设备01后,薄膜脉动传感器201紧贴在孕妇肚子上。
其中,第一滤波器102的输入端与拉力传感器101电连接,用于将压力信号进行滤波;第二滤波器202的输入端与及薄膜脉动传感器201电连接,用于将胎心率、胎动率及胎动强度对应的电信号进行滤波,滤除干扰和杂波信号以提高信噪比。
第一模数转换电路103的输入端与第一滤波器102的输出端电连接,用于将经滤波后的压力信号对应的模拟电信号分别转换为数字信号;第二模数转换电路203的输入端与第二滤波器202的输出端电连接,用于将滤波后的胎心率、胎动率及胎动强度分别转换为对应的数字信号。
微处理器50与第一模数转换电路103的输出端、第二模数转换电路203的输出端、按键模块60及显示模块70电连接。
本实施例中,第一滤波器102、第一模数转换电路103、第二滤波器202及第二模数转换电路203对应的滤波与模数转换功能与现有技术相同,此处不再赘述。
在一优选的实施例中,如图6所示,在上述图5的实施例的基础上,拉力传感模块10还包括第一差分放大电路104,第一差分放大电路104电连接于第一模数转换电路103及第一滤波器102之间;薄膜脉动传感模块20还包括第二差分放大电路204,第二差分放大电路204电连接于第二模数转换电路203及第二滤波器202之间。
本实施例中,考虑到胎心率信号可能比较弱小,通过差分放大电路可以将信号放大,进而提高第一穿戴式体检设备01的灵敏度。
在一优选的实施例中,第一滤波器102通过AINP1和AINN1两个端口组成的第一通道接收拉力传感器101输出的压力信号,经过由R11、R15、C13、C15、C19组成的滤波网络进行滤波,滤波后的压力信号经第一差分放大电路104放大后,将放大后的压力信号经第一模数转换电路103转换为微处理器50可以识别、分析并处理的数字信号,最后经DOUT端口输出至微处理器50。
第二滤波器202通过AINP2和AINN2两个端口组成的第二通道接收薄膜脉动传感器201输出的胎心率、胎动率及胎动强度信号,经过由R10、R14、C12、C14、C18组成的滤波网络进行滤波,滤波后的胎心率、胎动率及胎动强度信号经第二差分放大电路204放大后,将放大后的信号经第二模数转换电路203转换为微处理器50可以识别、分析并处理的数字信号,最后经DOUT端口输出至微处理器50。
在本实施例中,第一差分放大电路104、第二差分放大电路204、第一模数转换电路103及第二模数转换电路203通过芯片ADS1232实现。
其中,A0为微处理器50的控制端,微处理器50通过控制A0来控制输出端DOUT为第一通道输出或第二通道输出。
在一优选的实施例中,如图6所示,第一穿戴式体检设备01还包括提示模块100,提示模块100与微处理器50电连接,用于根据经微处理器50处理后的压力信号所处的范围进行相应的提示。
本实施例中,提示模块100可以是LED、LCD、数码管或者三色管等,若是LED、LCD、数码管时,其可以为多个,例如为三个,其分别为红色、绿色和黄色,每种颜色对应一压力信号的范围,可用红色表示压力过紧,用绿色表示压力适中,用黄色表示压力较小,通过调节穿戴本体001的松紧程度进行调节,然后还以提示模块100进行松紧程度的提示,最终使第一穿戴式体检设备01与孕妇身体之间的压力适中,使用方便且直观。
优选地,请结合参阅图3,穿戴本体001包括第一本体011及第二本体012,其中,上述的第一滤波器102、第一差分放大电路104、第一模数转换电路103及第二滤波器202、第二差分放大电路204、第二模数转换电路203、微处理器50、无线连接模块80置于第一本体011的内部,按键模块60、显示模块70及提示模块100置于第一本体011的表面,拉力传感器101设置于第二本体012且靠近第一本体011的位置,多个薄膜脉动传感器201设置于第二本体012上。
在一优选的实施例中,薄膜脉动传感器201为有源器件,其包括一电源电路,电源电路的供电电压为人体可承受的安全电压,即小于36伏,纹波小于50毫伏。本实施例的薄膜脉动传感器201使用的电压为稳定的36伏以下的电压,且纹波小于50毫伏,能够提高传感器的信噪比,降低电源噪声信号对薄膜脉动传感器201测量信号的干扰。
优选地,电源电路中可采用二级稳压或三级稳压等多级稳压电路或稳压单元,稳压电路或稳压单元可以是现有技术中的DC-DC稳压电路,在一实施例中,电源电路包括电连接的第一稳压单元及第二稳压单元,第一稳压单元的输出稳定电压为4.4伏,所述第二稳压单元的输出稳定电压为3.3伏。在另一实施例中,电源电路包括依次电连接的第一稳压单元、第二稳压单元及第三稳压单元,第一稳压单元的输出稳定电压为5.0伏,第二稳压单元的输出稳定电压为4.4伏,第三稳压单元的输出稳定电压为3.3伏。
本发明提供一种基于网络医院的孕妇及胎儿体征信息管理方法,参照图8,在一实施例中,该监测方法包括:
步骤S101,当将第一穿戴式体检设备及第二穿戴式体检设备穿戴在孕妇身上时,所述第一穿戴式体检设备检测胎儿的体征信息,所述第二穿戴式体检设备检测孕妇的体征信息;
本实施例中,孕妇的体征信息包括体温、血压和心率,还包括心电、体重等等。胎儿的体征信息包括胎心率、胎动率及胎动强度。
本实施例中,第一穿戴式体检设备穿戴在孕妇身上靠近胎儿的位置,第二穿戴式体检设备可以穿戴在身体上其他的位置,如手腕上等。
本实施例的第一穿戴式体检设备,可通过设置于其上的拉力传感器检测其与孕妇之间的压力信号,当第一穿戴式体检设备与孕妇之间的压力适当时,再通过设置于其上的薄膜脉动传感器检测胎儿的胎心率、胎动率及胎动强度,本实施例的第一穿戴式体检设备,在家中将其穿戴于孕妇身上即可以检测胎儿的体征信息,不需要去专门的社康和医院,安全方便。
另外,通过薄膜脉动传感器来检测胎儿的体征信息,相比于传统的超声多普勒的胎儿测试仪而言,由于其不需要发射一定幅度的超声波,辐射大大减小,更加安全,且能够同时检测到胎儿的胎心率、胎动率及胎动强度,得到较全面的体征信息,方便对胎儿的生命体征进行整体估计。
步骤S102,所述第一穿戴式体检设备及所述第二穿戴式体检设备分别与应用终端建立无线连接,并将所述胎儿的体征信息及孕妇的体征信息发送给所述应用终端;
本实施例中,第一穿戴式体检设备及第二穿戴式体检设备均具有无线功能,例如具有蓝牙功能或者红外功能等,能够与应用终端进行无线连接。
步骤S103,所述应用终端将所述胎儿的体征信息及孕妇的体征信息发送给远程设备;
步骤S104,所述远程设备接收所述胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向所述应用终端发送推荐信息或提示信息,以通过所述应用终端发送给所述第一穿戴式体检设备或第二穿戴式体检设备。
本实施例中,第一穿戴式体检设备及第二穿戴式体检设备通过无线的方式将孕妇及胎儿的体征信息发送给应用终端,应用终端再将其发送给远程设备。远程设备可以是计算机或者服务器等等。
远程设备接收到胎儿的体征信息及孕妇的体征信息后,可以根据这些信息反馈健康报告、营养、优生优育及运动的推荐信息或者其他的如提醒体检等信息,能够为孕妇提供远程、全面的医疗服务。进一步的,孕妇还可以通过应用终端与医生进行交流沟通。
本实施例在家中将第一穿戴式体检设备、第二穿戴式体检设备穿戴于孕妇身上即可以分别检测孕妇及胎儿的体征信息,不需要去专门的社康和医院,安全方便,尤其是在围产期,孕妇行动很不方便,这时孕妇可以穿戴第一穿戴式体检设备、第二穿戴式体检设备来检测孕妇及胎儿的体征信息,使孕妇体检实现家庭化。
在一优选的实施例中,如图9所示,在上述图8的实施例的基础上,上述步骤S101包括:
步骤S1011,检测所述第一穿戴式体检设备与孕妇之间的压力信号并显示;
步骤S1012,判断所述压力信号是否在预设的力度范围内,若是,则进入步骤S1013,否则进入步骤S1014;
步骤S1013,所述第一穿戴式体检设备检测胎儿的体征信息;
步骤S1014,不执行检测操作。
为了更安全、准确地检测胎儿的体征信息,可检测第一穿戴式体检设备与孕妇之间的压力信号。如果第一穿戴式体检设备穿戴过紧,易伤害胎儿,而过松则不能准确地检测胎儿的体征信息。只有当第一穿戴式体检设备与孕妇之间的压力适当时,才能安全、准确地检测胎儿的体征信息。
本实施例中,通过显示在第一穿戴式体检设备的屏幕上的其与孕妇之间的压力值,孕妇可以调节穿戴第一穿戴式体检设备的松紧程度。
在一优选的实施例中,如图10所示,在上述图8的实施例的基础上,该基于网络医院的孕妇及胎儿体征信息管理方法还包括:
步骤S105,所述远程设备根据所述胎儿的体征信息、孕妇的体征信息进行数据挖掘,并建立数学模型。
本实施例中,远程设备可以利用胎儿及孕妇的体征信息建立数据库系统,然后进行数据挖掘,并建立数学模型;进一步的,还可以建立孕妇三大数据库:1. 孕妇的个人信息、孕妇的个人疾病史及家簇疾病史等资料形成的数据库;2.孕妇的体征信息形成的数据库;3. 孕妇的门诊数据形成的数据库。然后对这三大数据库中的数据进行统计分类,分离出正常数据和异常数据;对异常数据进行统计、分析和建模找到大量数据的规律和建立数学模型;对数据和数学模型进行临床统计、计算和验证,以提供较准确全面的医疗参考。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,包括第一穿戴式体检设备、第二穿戴式体检设备、应用终端及远程设备,其中:
    所述第一穿戴式体检设备用于检测胎儿的体征信息,并在与应用终端建立无线连接后,将所述胎儿的体征信息发送给所述应用终端;所述第二穿戴式体检设备用于检测孕妇的体征信息,并在与应用终端建立无线连接后,将所述孕妇的体征信息发送给所述应用终端;所述应用终端用于将所述胎儿的体征信息及孕妇的体征信息发送给远程设备;所述远程设备用于接收所述胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向所述应用终端发送推荐信息或提示信息,以通过所述应用终端发送给所述第一穿戴式体检设备或第二穿戴式体检设备。
  2. 如权利要求1所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述第一穿戴式体检设备包括穿戴本体及设置于所述穿戴本体上的拉力传感模块、薄膜脉动传感模块、微处理器、按键模块及显示模块,所述微处理器分别与所述拉力传感模块、薄膜脉动传感模块、按键模块及显示模块电连接;
    所述拉力传感模块用于检测所述穿戴本体与孕妇之间的压力信号,并将所述压力信号转换为所述微处理器能处理的数字信号,所述薄膜脉动传感模块用于检测胎儿的胎心率、胎动率及胎动强度,并将所述胎心率、胎动率及胎动强度分别转换为所述微处理器能处理的数字信号;
    其中,所述第一穿戴式体检设备及第二穿戴式体检设备还分别包括与所述微处理器电连接的无线连接模块,用于与应用终端无线连接。
  3. 如权利要求2所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
  4. 如权利要求2所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述拉力传感模块包括依次电连接的拉力传感器、第一滤波器及第一模数转换电路,所述薄膜脉动传感模块包括依次电连接的薄膜脉动传感器、第二滤波器及第二模数转换电路,所述第一模数转换电路及第二模数转换电路的输出端分别与所述微处理器的输入端电连接。
  5. 如权利要求4所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
  6. 如权利要求4所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述拉力传感模块还包括第一差分放大电路,所述第一差分放大电路电连接于所述第一模数转换电路及所述第一滤波器之间;所述薄膜脉动传感模块还包括第二差分放大电路,所述第二差分放大电路电连接于所述第二模数转换电路及所述第二滤波器之间。
  7. 如权利要求6所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述第一穿戴式体检设备还包括提示模块,所述提示模块与所述微处理器电连接,用于根据经微处理器处理后的压力信号所处的范围进行相应的提示。
  8. 如权利要求4所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述薄膜脉动传感器为有源薄膜脉动传感器,其包括一电源电路,所述电源电路的供电电压纹波小于50毫伏,所述电源电路为二级稳压电路或三级稳压电路。
  9. 如权利要求8所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述二级稳压电路包括依次电连接的第一稳压单元及第二稳压单元,所述第一稳压单元的输出稳定电压为4.4伏,所述第二稳压单元的输出稳定电压为3.3伏。
  10. 如权利要求8所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述三级稳压电路包括依次电连接的第三稳压单元、第四稳压单元及第五稳压单元,第三稳压单元的输出稳定电压为5.0伏,第四稳压单元的输出稳定电压为4.4伏,第五稳压单元的输出稳定电压为3.3伏。
  11. 如权利要求2所述的基于网络医院的孕妇及胎儿体征信息管理系统,其特征在于,所述穿戴本体为纺织品。
  12. 如权利要求6所述的可穿戴式生命体征监测仪,其特征在于,所述穿戴本体包括相连接的第一本体及第二本体,所述第一滤波器、第一差分放大电路、第一模数转换电路及第二滤波器、第二差分放大电路、第二模数转换电路、微处理器置于第一本体的内部,所述按键模块、显示模块置于第一本体的表面,所述拉力传感器设置于第二本体且靠近第一本体的位置,所述薄膜脉动传感器为多个,所述多个薄膜脉动传感器设置于第二本体上。
  13. 如权利要求2所述的可穿戴式生命体征监测仪,其特征在于,所述无线连接模块为蓝牙模块或红外模块。
  14. 如权利要求3所述的可穿戴式生命体征监测仪,其特征在于,所述提示模块为发光二极管LED、液晶显示器LCD、数码管或者三色管。
  15. 一种基于网络医院的孕妇及胎儿体征信息管理方法,其特征在于,所述基于网络医院的孕妇及胎儿体征信息管理方法包括以下步骤:
    当将第一穿戴式体检设备及第二穿戴式体检设备穿戴在孕妇身上时,所述第一穿戴式体检设备检测胎儿的体征信息,所述第二穿戴式体检设备检测孕妇的体征信息;
    所述第一穿戴式体检设备及所述第二穿戴式体检设备分别与应用终端建立无线连接,并将所述胎儿的体征信息及孕妇的体征信息发送给所述应用终端;
    所述应用终端将所述胎儿的体征信息及孕妇的体征信息发送给远程设备;
    所述远程设备接收所述胎儿的体征信息及孕妇的体征信息,根据所述胎儿的体征信息、孕妇的体征信息向所述应用终端发送推荐信息或提示信息,以通过所述应用终端发送给所述第一穿戴式体检设备或第二穿戴式体检设备。
  16. 如权利要求15所述的基于网络医院的孕妇及胎儿体征信息管理方法,其特征在于,所述第一穿戴式体检设备检测胎儿的体征信息的步骤包括:
    检测所述第一穿戴式体检设备与孕妇之间的压力信号并显示;
    判断所述压力信号是否在预设的力度范围内;
    当所述压力信号在预设的力度范围内时,所述第一穿戴式体检设备检测胎儿的体征信息。
  17. 如权利要求15所述的基于网络医院的孕妇及胎儿体征信息管理方法,其特征在于,所述基于网络医院的孕妇及胎儿体征信息管理方法还包括:
    所述远程设备根据所述胎儿的体征信息、孕妇的体征信息进行数据挖掘,并建立数学模型。
PCT/CN2014/087844 2014-09-23 2014-09-29 基于网络医院的孕妇及胎儿体征信息管理系统及方法 WO2016045139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410491692.4 2014-09-23
CN201410491692.4A CN104361540B (zh) 2014-09-23 2014-09-23 基于网络医院的孕妇及胎儿体征信息管理系统及方法

Publications (1)

Publication Number Publication Date
WO2016045139A1 true WO2016045139A1 (zh) 2016-03-31

Family

ID=52528798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087844 WO2016045139A1 (zh) 2014-09-23 2014-09-29 基于网络医院的孕妇及胎儿体征信息管理系统及方法

Country Status (2)

Country Link
CN (1) CN104361540B (zh)
WO (1) WO2016045139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107242858A (zh) * 2017-07-10 2017-10-13 郑州航空工业管理学院 一种个性化孕婴监护方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104352226B (zh) * 2014-09-23 2017-03-29 深圳市前海安测信息技术有限公司 可穿戴式生命体征监测仪及监测方法
CN104997498A (zh) * 2015-05-23 2015-10-28 深圳市前海安测信息技术有限公司 基层医疗平台及基于基层医疗平台的高血压病人监控方法
BR112018010832A2 (pt) * 2015-11-30 2018-11-21 Koninklijke Philips Nv sistema de monitoramento da posição fetal, e método para monitoramento da posição fetal
CN108663108A (zh) * 2018-07-20 2018-10-16 上海市嘉定区妇幼保健院 一种孕妇体重监测电子秤及其监测方法
CN109102880A (zh) * 2018-10-11 2018-12-28 京东方科技集团股份有限公司 健康监测方法及其装置、系统和计算机可读存储介质
CN116077065B (zh) * 2023-04-12 2023-07-11 苏州维伟思医疗科技有限公司 穿戴式心电装置的监测方法及穿戴式心电监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564287A (zh) * 2008-04-23 2009-10-28 财团法人工业技术研究院 孕妇居家实时监测与通信系统及其方法
WO2013019941A2 (en) * 2011-08-02 2013-02-07 Reproductive Research Technologies, Lp Method and system to monitor, detect, diagnose and predict the separation/rupture of the uterine scar associated with vaginal birth after cesarean procedures
US20130281861A1 (en) * 2012-03-01 2013-10-24 Syracuse University Enhanced Electronic External Fetal Monitoring System
WO2014002823A1 (ja) * 2012-06-29 2014-01-03 日本電気株式会社 妊婦・胎児心電計測装置、妊婦・胎児心電計測システム、腹帯、妊婦・胎児心電計測方法およびプログラムを記録したコンピュータ読み取り可能な記録媒体
CN103845060A (zh) * 2012-11-30 2014-06-11 中国科学院理化技术研究所 便携式胎动信号检测及分析装置
CN103908247A (zh) * 2014-04-08 2014-07-09 北京邮电大学 一种可穿戴式心电信号实时采集装置
CN104053401A (zh) * 2011-12-01 2014-09-17 阿尔堡大学 多因素的远程医疗护理妊娠和分娩监测

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059103A (ja) * 2004-08-19 2006-03-02 Olympus Corp 医療サービスシステム
CN103222863B (zh) * 2013-05-22 2016-05-18 哈尔滨工业大学 一种基于压电薄膜传感器的阵列式胎心监测腹带

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564287A (zh) * 2008-04-23 2009-10-28 财团法人工业技术研究院 孕妇居家实时监测与通信系统及其方法
WO2013019941A2 (en) * 2011-08-02 2013-02-07 Reproductive Research Technologies, Lp Method and system to monitor, detect, diagnose and predict the separation/rupture of the uterine scar associated with vaginal birth after cesarean procedures
CN104053401A (zh) * 2011-12-01 2014-09-17 阿尔堡大学 多因素的远程医疗护理妊娠和分娩监测
US20130281861A1 (en) * 2012-03-01 2013-10-24 Syracuse University Enhanced Electronic External Fetal Monitoring System
WO2014002823A1 (ja) * 2012-06-29 2014-01-03 日本電気株式会社 妊婦・胎児心電計測装置、妊婦・胎児心電計測システム、腹帯、妊婦・胎児心電計測方法およびプログラムを記録したコンピュータ読み取り可能な記録媒体
CN103845060A (zh) * 2012-11-30 2014-06-11 中国科学院理化技术研究所 便携式胎动信号检测及分析装置
CN103908247A (zh) * 2014-04-08 2014-07-09 北京邮电大学 一种可穿戴式心电信号实时采集装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107242858A (zh) * 2017-07-10 2017-10-13 郑州航空工业管理学院 一种个性化孕婴监护方法及系统
CN107242858B (zh) * 2017-07-10 2023-08-25 郑州航空工业管理学院 一种个性化孕婴监护方法及系统

Also Published As

Publication number Publication date
CN104361540B (zh) 2017-12-26
CN104361540A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2016045139A1 (zh) 基于网络医院的孕妇及胎儿体征信息管理系统及方法
WO2016045140A1 (zh) 可穿戴式生命体征监测仪及监测方法
WO2019108044A1 (ko) 심전도 측정 장치
WO2019088769A1 (ko) 개방형 api 기반 의료 정보 제공 방법 및 시스템
WO2016036114A1 (en) Electronic device and method for measuring vital signal
WO2011090274A2 (ko) 손목 착용형 맥박 측정 장치 및 그 제어 방법
US7395105B2 (en) Wearable device for bioelectrical interaction with motion artifact correction means
WO2019103187A1 (ko) 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법
WO2017082525A1 (ko) 식습관 정보를 제공하는 방법 및 이를 위한 웨어러블 장치
WO2014157896A1 (ko) 필름형 생체신호 측정장치, 이를 이용한 혈압 측정장치, 심폐지구력 추정장치 및 개인인증 장치
WO2020246758A1 (ko) 카메라를 이용한 비접촉 ppg 신호 측정 시스템 및 그 구동 방법
WO2020190060A1 (en) Electronic device for measuring blood pressure and method for measuring blood pressure
US20200060555A1 (en) Monitoring devices and methods
WO2019182258A1 (ko) 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템
WO2017000385A1 (zh) 一种用于血压测量的辅助装置及血压测量设备
KR101576147B1 (ko) 스마트기기를 이용한 결합형 체온계 시스템
WO2018123275A1 (ja) 血圧計および血圧測定方法並びに機器
WO2016112559A1 (zh) 医生端、患者端辅助诊疗设备以及远程诊疗系统和方法
WO2018221865A1 (ko) 신체 부착형 맥파 측정 장치
JPWO2019073756A1 (ja) 生体情報計測装置および生体情報計測システム
WO2016187957A1 (zh) 基层医疗平台及基于基层医疗平台的高血压病人监控方法
WO2016029546A1 (zh) 血压测量辅助装置和血压测量设备及其设计方法
US11969236B2 (en) Device for measuring blood pressure
JP6615970B1 (ja) 血圧推定装置および血圧推定プログラム
WO2023075253A1 (ko) 수면 모니터링을 위한 전자 장치 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14902729

Country of ref document: EP

Kind code of ref document: A1