WO2019182258A1 - 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템 - Google Patents

인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템 Download PDF

Info

Publication number
WO2019182258A1
WO2019182258A1 PCT/KR2019/002348 KR2019002348W WO2019182258A1 WO 2019182258 A1 WO2019182258 A1 WO 2019182258A1 KR 2019002348 W KR2019002348 W KR 2019002348W WO 2019182258 A1 WO2019182258 A1 WO 2019182258A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood
signal
blood pressure
measuring device
Prior art date
Application number
PCT/KR2019/002348
Other languages
English (en)
French (fr)
Inventor
김득원
Original Assignee
주식회사 메딧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메딧 filed Critical 주식회사 메딧
Priority to EP19771098.1A priority Critical patent/EP3769666A4/en
Priority to US16/959,559 priority patent/US20210076951A1/en
Publication of WO2019182258A1 publication Critical patent/WO2019182258A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms

Definitions

  • the present invention relates to a wearable body information measuring apparatus and a medical support system using the same, and more particularly, to measure physical information including blood pressure and blood sugar, which is difficult to measure in a non-invasive manner.
  • Wearable body information measuring device and medical support system that can continuously observe the required condition and deliver the measurement data in case of emergency so that personnel or organizations related to the wearer can respond, rescue, or provide medical support It is about.
  • Articles related to the healthcare industry are already widespread in our surroundings and in our daily lives.
  • an electronic digital thermometer, a pulse meter, a blood pressure monitor, a low frequency treatment device, a self blood glucose meter, and a self-diagnosis diagnosis and correction program installed in various fitness devices are good examples.
  • Cardiovascular disease or diabetes is not usually accompanied by extreme pain or behavioral discomfort in the affected area, such as trauma or abdominal pain, during development, and progresses slowly by lifestyle and especially by eating habits. Your condition may not be serious. And even after physical symptoms appear and diagnosed, continuous and careful management is required.
  • Cardiovascular disease for example, is a major cause of death along with stroke, and the death toll is increasing, but it is difficult to predict and costly for health care for prevention and care. It is a situation.
  • BPVariability is also an important factor in these conditions and has been shown in many studies and clinical results.
  • diabetes and cardiovascular disease are often not sustained and carefully managed for a variety of reasons.
  • Korean Patent Laid-Open No. 10-2017-0044826 discloses a wearable device capable of measuring a biosignal.
  • a PPG signal detector for detecting a photoplethysmographic (PPG) signal for heart rate measurement
  • an acceleration sensor for detecting a dynamic motion signal
  • a signal processor for amplifying and digitally converting a PPG signal and a dynamic motion signal, and a digital conversion
  • a device including a wireless communication unit which processes and transmits a PPG signal and a dynamic motion signal according to a wireless communication standard, and is mounted on a flexible substrate and attached or worn to a wearer's body.
  • Korean Patent No. 10-0989694 discloses a measurement terminal for measuring a wearer's position and a biosignal and a health control system using the same. In this case, it can communicate with the health control system itself to obtain the monitoring and health information service at all times without limitations in time and space, indoors and out, emergency rescue is made automatically or by emergency call of the wearer. Disclosed is a technique for promptly responding to a medical institution in case of occurrence.
  • Korean Patent Publication No. 10-2017-0012166 discloses biomedical devices for real-time medical condition monitoring using biometric based information communication.
  • a method and apparatus for forming a biometric based information communication system are mentioned, wherein the biometric based information communication system comprises a biomedical device having sensing means, the sensing means generating biometric results.
  • the biometric based information communication system may include a user device such as a smartphone that is paired with a biomedical device during communication.
  • the biometric measurement result may trigger communication of the biometric based information communication message.
  • the measurement device is a non-invasive measurement of blood pressure and blood sugar, which is the most important indicator of the human state, and is easily mounted on the body part. Because it was not possible to measure easily and accurately, it was difficult to provide effective support for those who needed such wearing devices and support systems, such as cardiovascular patients or diabetics.
  • Figure 1 (a) shows the overall shape of the pulse wave that can be measured by the optical blood flow meter (PPG), a biosignal measuring device that is widely used in the body wear type
  • Figure 1 (b) shows the base component (DC) in the overall form of the pulse wave
  • Figure 1 (c) shows a more bloody measurement form that includes the effect of breathing in Figure 1 (b), which is a pure blood flow fluctuation (AC component) excluding components.
  • PPG optical blood flow meter
  • AC component pure blood flow fluctuation
  • Optical blood flow meters are initially limited to measuring the pulse wave to measure heart rate (HR) from changes in blood flow, but recently, the variation of the pulse wave itself using digital signal processing (DSP) technology is used.
  • the pulsation component (AC component) and the base component (DC component) representing the RN may be classified and reanalyzed.
  • the pulsation component is affected by the pulse component of arterial blood, and can be used as a basic data for measuring the blood pressure as well as the pulse rate, and the second derivative of other body state information, such as a pulsation waveform.
  • Vascular Aging information can be obtained from Second Derivative Waveform (SDPPG).
  • Base components are usually affected by skin and tissues, venous blood, and non pulsatilecomponent of arterial blood.
  • the photosensor assembly of an optical blood flow meter used as a human body wear type typically uses green light, red light, and near infrared light (LED) as a light source.
  • Photodiode (PD) is used to measure the change in reflected light intensity according to the blood flow, which is inversely related to the absorption coefficient.
  • the realistic measurement as shown in Fig. 1 (c) shows a change in the general and periodic wave form of the base level by breathing.
  • the total pulse wave waveform combines the fluctuation of a large wave component with a long period due to respiration with a pulse shape fluctuation with a short period due to a heartbeat. Therefore, the total pulse wave waveform can measure respiration rate or respiration rate through the entire pulse wave waveform. have.
  • the optical blood flow meter reflects light toward human blood vessels, and the light receiving element measures the intensity of reflected and scattered light.In the systolic peak where blood flow increases due to heart contraction, blood pressure increases but light is absorbed by the blood so that the reflected light intensity It appears weak and the reflected light is strong during the relaxation period.
  • the output signal of the conventional optical blood flow meter is not reflected light intensity itself, but is inverted up and down (inversed PPG), so that the blood flow or blood pressure level is expressed in the form of pulse wave, high peak in the systolic phase and low valley in the diastolic phase. do. It can be seen that the signal amount display of a conventional photometer is based on this inverted form.
  • the periodic amplitude change of the pulsating component occurs on the base level.
  • the conventional blood pressure measurement method which consists of an electrocardiogram and an optical blood flow meter and mainly measures blood pressure using pulse wave transmission time (PTT) and pulse wave movement speed (PWV), has a human body for measuring an electrocardiogram when measuring blood pressure.
  • Abnormal BP Variability is necessary because it requires two hands to touch the device at the same time to form part of the circuit, which is inadequate or inconvenient for Ambulatory BP Monitoring, and thus becomes an intermittent measurement method instead of constant monitoring. Or intensive monitoring of bioperiodic mutations.
  • the present invention is to solve the problems in the conventional body information measuring apparatus and the related medical support system, the measurement of blood pressure and blood sugar, which is an important indicator of the human state can be made non-invasive, and easily the body part
  • An object of the present invention is to provide a medical information measuring device and a medical information system using the same so that the measurement can be made easily and accurately.
  • Another object of the present invention is to provide a body information measuring device and a medical support system using the same, which are capable of measuring and observing blood pressure and blood sugar continuously and continuously without a separate measuring operation.
  • An object of the present invention is to provide an apparatus and a medical support system using the same.
  • Body wearable body information measuring apparatus of the present invention for achieving the above object
  • a plurality of light sources capable of irradiating different body wavelengths of light onto the wearer's body
  • a light receiving element that receives light reflected and scattered from a plurality of light sources and converts the light into a electrical signal
  • a blood sugar analysis module for calculating a blood sugar level in blood
  • the blood sugar analysis module or the blood pressure analysis module may be provided with a communication device capable of transmitting the blood sugar, blood pressure value, and pattern of the measurement target to the outside through communication means around.
  • the measurement of blood pressure and blood glucose is basically based on the operation principle of the optical blood flow meter (PPG), and forms a light source and a light receiving element and each module, and processes the output signal of the light receiving element to obtain a pulse wave pattern and regenerate the pulse wave.
  • the processor and program configuration that processes and analyzes is basically a common part of PPG.
  • the distinction between the blood sugar analysis module and the blood pressure analysis module substantially represents the difference in the process and calculation method of calculating blood sugar and blood pressure by each program, and physically separate light source, sensor, sensor signal processing circuit, and processor. It does not mean to have.
  • the device of the present invention may have a form of a smart patient care (SPC) wristband.
  • SPC smart patient care
  • the device may comprise a signal generation module and body connection terminals for ECG.
  • the device of the present invention may be equipped with a thermometer for measuring the body temperature of the wearer.
  • the apparatus of the present invention may be provided with a display device capable of displaying at least one of blood sugar and blood pressure values of the subject to be measured obtained by each blood glucose analysis module or blood pressure analysis module, and a change tendency indicated by these values.
  • the device of the present invention is provided with a three-dimensional accelerometer for detecting or measuring the physical activity of the wearer can detect the state of movement, such as falling, walking, running.
  • the apparatus of the present invention is a transimpedance amplifier (TIA), a programmable gain amplifier, disposed in a path for acquiring a signal for signal processing of each sensor, for example, in a path for acquiring a signal for output signal processing of a light receiving element.
  • TIA transimpedance amplifier
  • PGA programmable gain amplifier
  • ADC Analog-to-Digital Converter
  • the processor may include a digital signal processor (DSP) and a micro controller unit (MCU), and the processor may serve to adjust a controller or driver (LED driver) that emits a light signal with a light source (light emitting diode).
  • DSP digital signal processor
  • MCU micro controller unit
  • the processor may also be connected to memory and communication devices.
  • the present invention includes an alarm device that generates a warning signal to at least one of the wearer, the guardian, and the related organ when at least one of the blood glucose and blood pressure values and the change tendency indicated by these values are out of a predetermined allowable range, allowable pattern, or allowable change rate range. It may be provided.
  • the blood pressure calculation program constituting the blood pressure analysis module of the device of the present invention may be based on any one of the following equations or an equation in which the constant e is added to these equations.
  • the proportional constants and constants (a, b, c, d, e) measure blood pressure (BP) and related factors (PA, PRT, GI, I DIA / I SYS ) multiple times for various measurement subjects. And by substituting them in the above formula to derive the most appropriate proportional constant value, the blood pressure was measured by another precise blood pressure monitor, and at the same time the relevant factors were measured by the device of the present invention.
  • the process of finding the proportional constant can be accomplished through statistical techniques such as multivariate statistical techniques and computer simulations, and recently, artificial neural networks obtained by embodying these techniques through machine learning or deep learning based on this type of data. (artificial neural network)
  • An algorithm application program can derive a proportional constant by examining the measured data (blood pressure and related factors) that are test data.
  • a plurality of light sources in the near infrared wavelength range are provided as a light source for measuring blood glucose
  • the program constituting the blood glucose analysis module includes a change in blood flow rate of an electrical signal output by a light receiving element receiving reflection and scattering light caused by the irradiation light of each light source.
  • the value obtained by integrating for one period represented by the pulse wave is obtained as a signal amount
  • a difference value with a predetermined reference signal amount is obtained
  • the derived correlation between the blood sugar value and the difference value is obtained.
  • the blood glucose value may be calculated based on the difference value.
  • the reference may be made by providing a blood component having a blood glucose level of 0 to a biological tissue pile similar to a human body, and may obtain a reference signal amount by light irradiation of each light source.
  • a blood flow measuring device or another optical detecting device that has been proven to be more accurate than the measuring device of the present invention can be used.
  • short-infrared light of 940 nm wavelength band near-infrared light of 1100 nm wavelength, near-infrared light of 1450 nm wavelength, and near-infrared light of 1700 nm wavelength may be used as the plurality of light sources.
  • a green light source in the 530 nm wavelength range and a red light in the 660 nm wavelength range that can be used to acquire a pulse wave for blood pressure measurement can be used as a neutral light source for correcting the pulse wave or the amount of the signal considering the light absorption. That is, in order to reflect attenuation of red light or short-infrared band light due to the skin color of the body (wrist) part to be measured, measuring the reflectance of the wrist part with respect to the green light whose reflectivity is greatly affected by the skin color, etc. It may have a green light source.
  • the device of the present invention may be equipped with a PO (pulse oximetry) function for measuring oxygen saturation.
  • the PPG light source may include a 660 nm band red light source and a short near infrared light source of 940 nm wavelength. .
  • the medical support system of the present invention for achieving the above object is a communication network connected to the communication device of the wearable body information measuring apparatus of the present invention, a measurement device operating server connected via a communication network, connected to the network through the operation server It can be made with a medical institution and a support institution server.
  • the human body-type body information measuring device of the present invention a communication network connected to the communication device of the measuring device, an operation server for acquiring, storing and processing the body information sent by the communication device through the communication network, and an operation server; It may be provided with a support organization such as a medical institution, a fire station, a police station and the like connected through a communication network.
  • a support organization such as a medical institution, a fire station, a police station and the like connected through a communication network.
  • the communication network connecting the communication device and the operation server has at least one communication node, and at least one of the communication node or the measurement device is usually required to be made to send the unique information for recognition of the wearer of the measurement device to the operation server. Done.
  • the communication node in order to easily identify the wearer's position in case of an emergency, the communication node is fixed in position so that its own position information is sent to the operation server along with the measurement data (signal) of the measuring device, thereby realizing the position of the measuring device wearer in real time.
  • a communication node such as a personal digital assistant or a personal information terminal checks its location using a geographic information system such as GPS, and sends the location information along with the measurement data (signal) of the measuring device to the operation server for measurement. It may be made to determine the location of the device wearer in real time.
  • various communication networks such as the Internet or a wireless telephone communication network may be used.
  • the communication device and the communication network of the measuring device may be directly connected by using the communication device of the measuring device, or may be made by a smartphone or other personal information terminal held by the wearer.
  • the communication device may include a Bluetooth device, a modem, a LAN card, and the like, which can connect and interact with various communication networks currently known.
  • the network may be configured in various ways. Since a constant connection is required, intermediate communication nodes may be provided to be connected even indoors, and a form capable of continuously connecting each other is preferable.
  • the NFC chip is provided in the communication device, and the unique information of the wearer of the measuring device is sent along with the measured state information through the communication device, so that the measuring device operating server or the manager can identify the wearer.
  • the human body can easily and easily continue to breathe (beathing rate), heart rate (pulse: heart rate), blood pressure, blood sugar, oxygen without a separate measuring operation. It is possible to measure the key indicators in determining the human condition such as saturation and observe the value and the change in the value, and use it for proper health and disease management of the wearer.
  • the wearer's body information obtained by the measuring device can be delivered periodically or in real time to the relevant nursing institution or medical institution, so that remote management can be performed, thereby reducing the need for the wearer to move directly to a hospital or nursing institution, It can save people, time, and cost for measuring and managing body indicators, and scientific management through continuous data can be achieved, allowing more precise management of targets such as patients.
  • the present invention it is easy to determine the position of the patient through the communication module and identification means of the measuring device, and to quickly contact and rescue related organizations such as a police station or a fire station in case of a shock or a fall accident.
  • the patient can be quickly transferred to the medical institution, and the transfer process and the previous patient's condition can be continuously transmitted to the hospital and the medical staff, the diagnosis and treatment can be made faster upon arrival.
  • this information can be gathered from medical institutions and related organizations to form a single big data that can provide useful data for medical research and health care policies.
  • FIG. 1 are pulsations which are pure blood flow fluctuations excluding the DC component in the overall form and overall form of the pulse wave which can be measured by the optical blood flow meter (PPG) on the wrist, respectively.
  • PPG optical blood flow meter
  • FIG. 2 is a schematic view showing a configuration of an embodiment of the measuring apparatus of the present invention.
  • Figure 3 is a schematic diagram conceptually showing a separate portion of the optical blood flow meter based configuration as another embodiment configuration of the measuring device of the present invention
  • Figure 4 is a bottom view schematically showing the configuration shown on the bottom surface as a component of the optical blood flow meter based of another embodiment of the measuring device of the present invention
  • FIG. 5 is a conceptual cross-sectional view schematically showing a cross section taken along line AA ′ of FIG. 4;
  • Figure 6 shows an example of the shape of the peak portion of the total pulse wave in the forearm, wrist, wrist and blood pressure measurement divided into incident and reflected waves.
  • FIG. 8 is a graph showing pulse wave period integral signal amount variation mode by frequency through a dummy and reference blood, for two different outputs.
  • FIG. 9 is a graph showing a difference signal amount between several frequency-specific signal amounts and wearer measurement signal amounts referring to the graph of FIG. 8;
  • FIG. 10 is a conceptual diagram illustrating a medical support system conceptually supporting the health, structure, and treatment of the wearer of the measuring apparatus together with the measuring apparatus of the present invention
  • 11 and 12 are configuration conceptual diagrams illustrating partial communication networks forming a path for transmitting the measurement data signal of the measuring device of the present invention to an operation server and enabling real-time location determination.
  • Fig. 2 is a schematic conceptual view showing the construction of an embodiment of the measuring apparatus of the present invention.
  • An operating device such as a processor 70 is provided in a measuring device in the form of a wristwatch or wristband, not shown.
  • the terminals constituting one end of the optical sensor assembly, the thermometer, and the ECG device should be facing or contacted by the wearer's body, so that they are installed on the bottom surface, which is the body contact surface of the measuring device, and the other terminals of the display device and the ECG device are placed on the upper surface. Installed to be exposed or in contact.
  • AFE analog front end
  • MUX multiplexer
  • ADC analog-to-digital converter
  • the AFE 12 and the MUX 14 are configured to efficiently operate a plurality of sensors, through which the processor 70 is primarily processed and integrated with the analog signal converted into a digital signal through the ADC 15. Is delivered to.
  • the processor 70 includes a digital signal processor (DSP) 73 and a microcontroller unit (MCU) 71.
  • DSP digital signal processor
  • MCU microcontroller unit
  • the processor 70 typically outputs a result of processing through the DSP 73 to the MCU 71 to provide predetermined processing programs. Is processed by
  • the processor 70 may also transmit signals for operating a driver 17 or a controller that controls each sensor or a trigger device associated with the sensor, and the communication device 80, the display device 100, and the power supply 110. It also plays a role in managing).
  • the optical sensor assembly constitutes a characteristic measuring part of the present invention, and the non-invasive measurement of blood pressure, blood sugar, and oxygen saturation associated with blood by the optical blood flow meter configuration.
  • Configurations such as ECG devices, thermometers, and three-dimensional accelerometers can be used to measure heart rate signals, hospitality, and body motion or motion through well-known configurations.
  • FIG. 3 is a schematic diagram conceptually showing an optical blood flow meter based component as another embodiment of the measuring apparatus of the present invention
  • FIG. 4 is a configuration appearing on the bottom of the optical blood flow meter based component of another embodiment of the measuring apparatus of the present invention. It is a bottom view which shows schematically.
  • the measuring device here has two sets of optical sensor assemblies 10: 10a, 10b.
  • Each light sensor assembly includes three light emitting diodes corresponding to three light sources 30, an LED driver for controlling the blinking or intensity of the light emitting diodes, and scattered and reflected light after the light from these light sources is irradiated to the body part.
  • Two transimpedance amplifiers (TIA) 11 having two photodiodes as light receiving elements 20 and 40 for receiving an electric signal and arranged in a path for acquiring a signal for output signal processing of the light receiving element;
  • a programmable gain amplifier (PGA: 13) and an analog-to-digital converter (ADC: 15) are provided.
  • the upper first optical sensor assembly 10a may be divided into a master, and the lower second optical sensor assembly 10b may be divided into slaves.
  • the converted output signals through these devices (TIA, PGA, ADC) in each optical sensor assembly are input to a common processor 70 and are processed to obtain information for blood pressure, oxygen saturation, and blood glucose measurement from the pulse wave.
  • the processor 70 may be divided into a digital signal processor (DSP) 73 and a micro controller unit (MCU) 71.
  • the processor 70 also controls a controller or driver (LED driver) 17 that emits a light signal through a light emitting diode, and a storage device (memory) 90 and a communication device 80 are connected to the processor.
  • the processor calculates the amount of signal due to the integration of the light source, the output of the light-receiving element, and the waveform integration for each wavelength band for blood sugar calculation and the comparison with the reference data.
  • An operation such as obtaining a blood sugar value by substituting the calculation equation based on the signal amount magnitude is performed.
  • the optical sensor assembly 10 is divided into two regions, and the upper and lower optical sensor assemblies 10a are located at the top and bottom of the upper optical sensor assembly 10a.
  • Three light sources 34, 35, and 36 are installed in the center 10b, and two light receiving elements 20, 40 are provided on the left and right sides of the light source.
  • the light source is provided with a green light source 31 in the 530 nm wavelength band, a red light source 32 in the 660 nm wavelength band, and a short near-infrared light source 33 in the 940 nm wavelength band up and down.
  • Both light receiving elements 20 use a silicon (Si) wafer-based photodiode.
  • the green light source has a large body absorption, and can serve as a reference light source for correcting the effect of human absorption on the light intensity of other light sources.
  • the red light source and the short near infrared light source are pulse wave measurement and pulse wave analysis for blood pressure measurement. It can be used most appropriately to obtain the pulsation component and PRT by.
  • red and short near infrared light sources also form a set of light sources that are most suitable for measuring oxygen saturation.
  • red light wavelength 660 nm
  • strong light absorption by hemoglobin occurs in the short-infrared rays of the 940 nm wavelength range to determine the oxygen concentration or oxygen saturation of blood.
  • near-infrared light sources 34 and 35 in the 1200 nm and 1450 nm wavelength bands and near-infrared light sources 36 in the 1700 nm wavelength band are provided up and down, and the light-receiving elements 40 on both the left and right sides thereof have sensitivity to light rays in these wavelength bands.
  • Indium gallium arsenide (InGaAs) wafer-based photodiode is used.
  • an energy band easily absorbed by a chemical bond such as ROH, AROH, CH, etc. is overlapped at a wavelength range of 940 nm, and H 2 O at a wavelength of 1408 nm.
  • ROH, ArOH, CH 2, CH 3 such as a chemical bond is an energy band which overlaps the absorption easy, there is a chemical bond, such as CH, CH 2, CH 3 overlap the energy band that is easily absorbed in the 1688nm wavelength band.
  • a light source of another near infrared wavelength band it is also possible to add a light source of another near infrared wavelength band, to reduce the number by removing some light sources, or to replace the light sensor assembly with a light source of other wavelengths, for example, the light source in the 1450nm wavelength band 1100nm wavelength band It is also possible to replace the light source.
  • This selection has a light absorption band associated with blood sugar, so that the blood sugar level can be detected most clearly.
  • development considerations may be made.
  • Placing the light-receiving elements on both sides of the light source means that the detection capability of the light-receiving element may not be sufficient as that of conventional commercial light-receiving elements, so that the number can be increased to increase the overall signal for accurate signal analysis.
  • the artery position may be disposed inconsistently with the position of the light source and one light receiving element, thus covering one light receiving Even a device may imply that it can receive reflected and scattered light signals well.
  • FIG. 5 is a side cross-sectional view showing a cross section taken along line AA of FIG. 4.
  • a hemispherical convex lens 60 is formed on the LED used as the red light source 32 to increase the focusing speed of the light irradiated toward the body part, and a kind of condensing light is focused on the photodiode that is the light receiving element 20 to focus the incoming light from the outside.
  • Diffractive optical elements (DOE) lenses 50 which can be referred to as lenses, are provided.
  • the photodiode is installed in a larger area than the LED in order to increase the amount of received light, and when the hemispherical convex lens 60 is installed thereon, the height is considerable, so that the DOE lens 50 is installed because it is difficult to shorten the blood glucose measurement device. It is.
  • Wrist-band type blood glucose monitoring device adds other functions in addition to Optical Noninvasive Continuous Vital Sign Monitoring, such as Digital Thermometer or 3D Accelerometer. It can monitor other physical conditions, physical condition of the body, falls, etc., and analyzes the correlation with vital sign trends to detect unexpected fluctuations and alerts the wearer and medical personnel of warning or caution signals. Can provide.
  • the blood pressure, blood sugar, and oxygen saturation based on the optical blood flow meter are described mainly based on the present embodiment.
  • a digital thermometer or a 3D accelerometer can be added to monitor other physical conditions, movements of the body, falls, and the like. And detects unexpected fluctuations and alerts the wearer through a warning device, or communicates the status to guardians or medical personnel through the built-in communication device and the surrounding communication network and provides attention signals. It can also play a role.
  • FIGS. 6 and 7 a method and a principle of calculating blood pressure through pulse wave analysis measured by an optical blood flow meter that forms the basis of the measuring device of the present invention will be described.
  • the blood pressure measuring device is filled in the cuff of the blood pressure measurement target and the power is turned on to activate the optical blood flow measuring function.
  • the pulse wave is measured using a cuff of the wrist by irradiating light to the cuff of the light source continuously or at a short time period (so that the measurement can be made longer than the pulse period). Acquire.
  • This measurement uses a red or short near-infrared light source that can penetrate relatively deep into the human body and send a significant amount of reflected or scattered light to the light-receiving device, which can relatively clearly represent and reflect changes in arterial blood flow in pulse wave signals.
  • the same configuration as that of the first optical sensor assembly of FIG. 4 may be used.
  • Analysis of the pulse wave of such a blood pressure measuring device shows the time between peaks and peaks, the difference in the amount of signal between the peak representing the blood pressure elevated by the heart contraction and the valley lowered by the cardiac relaxation, the time between the incident wave and the reflected wave peak at the measurement position.
  • the parts by the base are not important in the pulse wave analysis, so that DC and AC can be distinguished, and the reflected and incident waves can be separated and processed and analyzed.
  • the differential wave form of the pulse wave for the changed part can be obtained and analyzed. This can be done. For this processing, several known digital signal processing (DSP) techniques can be used.
  • DSP digital signal processing
  • Fig. 6 shows the shape of the peak portion of the total pulse wave (composite wave due to the superposition of the incident wave and the reflected wave) on the upper arm (forearm), wrist, and finger, and the incident wave (simple peak with a large peak) and the reflected wave.
  • An example of the form divided by (the simplest waveform with the smallest peak) is shown.
  • the separated incident and reflected wave waveforms are used to calculate the time between the peaks of the two waves or the pulse return time (PRT).
  • the pulse wave propagation speed is obtained by dividing this distance D by PTT. It increases when the arterial stiffness or stiffness is about 6m / sec and 14m / sec in the 60s.
  • the basic expression of blood pressure can be obtained by using pulse pressure and PRT as basic blood pressure factors (factor).
  • the green light source is operated together with a red light source or a short near infrared light source in the first light sensor assembly to measure light absorption due to skin color at the cuff area, and also the DC component and AC component in the pulse wave waveform.
  • a red light source or a short near infrared light source in the first light sensor assembly to measure light absorption due to skin color at the cuff area, and also the DC component and AC component in the pulse wave waveform.
  • the present invention is based on an optical blood flow meter, and the light irradiated to the body is absorbed, reflected or scattered at each part of the body so that a substantial portion of the reflected and scattered light is input to the light receiving device. Therefore, the light input to the light receiving element may vary depending on the physical characteristics of the subject.
  • the blood pressure measuring device of the present invention is produced to measure blood pressure universally, and when it is not tailored to individual characteristics, the measured and calculated blood pressure values are not measured without considering the physical characteristics of the subject. May not be able to indicate the correct blood pressure of the individual.
  • FIG. 7 is a conceptual diagram for explaining that the penetration depth or the light absorption degree of the layer structure of the human body part for each wavelength of light is different.
  • measurement using the green light absorbed relatively well by body tissues can be used as a reference that also indicates the physical light absorption (GI) of the individual to be measured, and reflects this in the blood pressure calculation.
  • GI physical light absorption
  • the measurement target is a large and fat person
  • the amount of light entering the body from the light source, reflected or scattered, and entering the light receiving element will be reduced, and the base level (DC level) will be increased in the signal amount.
  • the IR (I DIA / I SYS ) value will also be higher, and the measured blood pressure may be higher than the actual value.
  • I DIA is the signal value strength of the diastolic phase
  • I SYS is the signal value strength of the systolic phase
  • IR value is the ratio between them. Therefore, in this case, considering the base component, the blood pressure value should be lowered and displayed as in the case of reflecting light absorption.
  • the proportional constant a will be positive because the higher the blood pressure is usually higher blood pressure, the higher the blood vessel stiffness, the higher the blood pressure, but the higher the stiffness of the PRT As it becomes smaller, the scaffold b will be negative, and if the green light absorption (IG) is high or the specific gravity (IR) of the base is high, the blood pressure may be higher than the actual value. Therefore, the values of the proportional constants c and d are negative. It will be common to become
  • Such a blood pressure calculation formula is built into the blood pressure measuring apparatus of the present invention as a kind of program, and when the pulse wave analysis result and the green light absorption measurement result are put into the calculation formula, the blood pressure value is calculated by a predetermined proportional constant or constant.
  • the proportional constant or constant of the calculation formula is used to measure blood pressure and related factors (PA, PRT, GI, IR) multiple times for various measurement subjects and substitute them in the above formula to derive the most appropriate proportional constant value. Can be obtained in such a way.
  • the blood pressure is measured by another precise blood pressure monitor, and at the same time by measuring the relevant factors with an optical blood flow meter such as that adopted in the blood pressure monitor of the present invention, put these values into a calculation formula to make a plurality of equations and simultaneously It goes through the process of finding proportional constant that can be satisfactorily satisfied.
  • This process can be accomplished through statistical techniques such as multivariate statistics techniques and computer simulations.
  • artificial neural networks that embody these techniques through machine learning or deep learning based on this type of data.
  • the algorithm application program can be derived by reviewing (learning) the measured data (blood pressure and related factors) which are the test data.
  • the present invention justifies the idea or paradigm that only PPG can be used to calculate blood pressure by optical method, and influences on the blood pressure value of secondary elements such as light absorption or base in using optical method. Was removed using appropriate standardization.
  • the artificial neural network used is a logical foundation in artificial intelligence that obtains a method for solving a problem by deep learning. Recently, the neural network is developed and a detailed description thereof will be omitted.
  • BP a * PA + b * PRT + c * GI
  • BP a * PAP + b * PRT + d * I DIA / I SYS
  • This formula is also a kind of built-in program that is built into the measuring device of the present invention and installed as a necessary factor (factor), if the pulse pressure (PA), PRT, GI, IR (I DIA / I SYS ) and the like is measured,
  • the measuring device may be configured such that the processor calculates the blood pressure by putting the measured value in the calculation formula.
  • FIGS. 8 and 9 a method and a principle of calculating blood glucose through pulse wave analysis measured by an optical blood flow meter that forms the basis of the measuring device of the present invention will be described.
  • the glucose concentration or blood glucose level in the blood is measured using the data of the infrared spectroscopy.
  • blood contains a wide variety of substances, including water and plasma cells, especially when using a photometer, since there is also skin and other human tissue from the light source to the blood, all of which are measured every time blood glucose is measured.
  • Measuring the concentration of blood glucose by performing infrared spectroscopy, including the target should take into account basic data on these substances and requires a great deal of effort.
  • infrared spectroscopy is used, but for the simpler analysis, without analyzing the blood to be measured, infrared spectroscopy is performed on an object (reference) in the base state based on the standard blood or reference blood without blood glucose.
  • object reference
  • Infrared spectroscopy of the blood of the subject is performed to obtain the subject-related data or the subject-related graph while keeping conditions as different as possible from the reference object.
  • the blood glucose measurement of the subject is performed by irradiating infrared light to the human body and receiving and analyzing light reflected and scattered by a light receiving device using an optical blood flow meter method. Blood flow changes with the time course of the pulse wave due to the heartbeat.
  • the instantaneous signal is assumed on the assumption that the pulse wave has a stable and periodic shape without using instantaneous reflection and scattered light intensity.
  • an integrated value obtained by integrating a light absorption amount for one cycle or a signal amount as a time average value is used (hereinafter, simply referred to as a 'signal amount' as an integral value).
  • the object to be measured by the blood glucose meter of the present invention is prepared for measurement of standard blood from which blood sugar is removed.
  • the near-infrared light irradiated by the blood glucose meter passes through a path made of a material that affects base components such as skin and subcutaneous tissue. Therefore, in order to achieve bloodless blood glucose measurement, values obtained by irradiating near-infrared light only on the standard blood itself and receiving reflected and scattered light (signal quantities) cannot be used as a reference.
  • reference blood (signal quantity) should be obtained by applying standard blood to the measurement target part of the human body.
  • standard blood it is not practical to apply the standard blood to the human body, so that a dummy having conditions similar to those of the human body to be measured is made, and the standard blood is applied to the dummy to construct a base, and a reference measurement value is obtained.
  • These piles can be made using parts of the body with less subcutaneous fat, which are similar in composition to the human body. Blood vessels in this area can be removed from the original blood and injected with standard blood to create a condition similar to human blood vessels.
  • the near-infrared light including the near-infrared band to be used is irradiated to the dummy to receive the reflected and scattered light by the light-receiving element, and the magnitude of the signal amount for each wavelength band using the analysis module.
  • the value obtained by multiplying the constant instantaneous signal amount by the normal pulse wave period (time) can be regarded as the signal amount as an integrated value.
  • the data is a PPG blood glucose meter of the present invention, which may be in the form of a numerical value of a signal amount of a plurality of light sources for each wavelength band to be measured, but more preferably, a signal for a continuous wavelength range (or a very detailed wavelength band) including a band to be used. Try to form a continuous graph curve in the form of a series of numerical values.
  • a NIR spectrometer may be used to measure the continuous wavelength.
  • the graph curve is highly dependent on the sensing characteristics (sensitivity of each wavelength band) of the light receiving device, that is, the photodiode, and the ratio of the signal amount per wavelength band to be measured may not be a simple linear relationship such as a simple proportional relationship.
  • the near infrared spectrometer it is appropriate to use a light receiving element having the same characteristics as the light receiving element of the blood glucose meter of the present invention as a light receiving element for measurement.
  • a number of reference curves are prepared for calculating blood glucose levels by adjusting the amount of signal obtained as a result of adjusting the amount of light of a light source of a measuring device such as a near infrared spectrometer. It is available. By creating reference curves for two adjacent signal quantities, it is possible to estimate the reference curves for the signal quantities between two signal quantities, which is commonly known. It is also possible. Statistical techniques can be applied to this work, and it can be derived using artificial neural networks. This method may be performed using an application program embedded in the analysis module in the blood glucose meter, and the basic data necessary for this may be stored and used in a storage device configuring the blood glucose analysis module as data.
  • FIG. 8 is a diagram illustrating an example of such a reference curve.
  • the reference curve is the sum of the signal amounts in the near infrared region by the various constituent materials forming the base, and the peaks of the signal amounts due to each material are included.
  • the peak pattern of the signal amount change curve according to the near-infrared wavelength for each known component is also confirmed. Acknowledgment and verification may be accompanied.
  • the reference value can be not only a reference curve but also data in the form of a discrete set of values, such as a set of signal quantity values (numbers) for each wavelength band to be measured. Simple numerical data, etc.) can be input to the blood glucose analysis module's storage device and used for blood glucose calculation.
  • the reference value is obtained, and the measurement standard is prepared. Next, the body part of the blood glucose measurement subject is measured.
  • the blood glucose meter of the present invention is used for the measurement, and a signal amount for each wavelength band associated with a plurality of built-in light sources is obtained using the blood glucose meter.
  • the reference signal is subtracted from the signal amount of the measurement target for each wavelength band to obtain a difference signal amount for each wavelength band.
  • the result of such an operation can usually be represented by a peak graph of the form shown in FIG.
  • the amount of signal forming the reference value in the wavelength band not related to blood sugar and the amount of signal measured for the measurement target should be exactly the same and have a value of zero.
  • the difference signal value for the reference light source is difficult to become zero.
  • the measuring device for the reference and the measurement target is qualitatively identical, but the scale is different, for example, the intensity of the light amount of the light source and the sensitivity of the light receiving element may affect the magnitude of the signal amount.
  • the signal value obtained under the same measurement conditions for example, the condition of applying the same output to the light source
  • the reference object for the reference object (dummy) and the measurement object
  • the measurement object is not used.
  • a difference signal amount of each wavelength band associated with a plurality of light sources of the blood glucose meter is obtained and used for calculating the blood glucose level.
  • the blood glucose meter of the present invention by using the blood glucose meter of the present invention under the same conditions, the signal amount of each wavelength band of the dummy and blood glucose measurement subjects are detected, the difference signal amount of each wavelength band is derived and the blood glucose level is calculated by reporting that these values are all related to the blood glucose level.
  • This is a problem because it ignores the physical (physical) or base differences between the dummy and the subject to be measured. In this case, it is required to adjust the level of the signal level using light in a wavelength band not related to blood sugar.
  • the measuring device of the present invention includes a plurality of light sources for generating light in different near infrared regions and a light source for generating light in a visible light region where light is easily absorbed by a human body part, for example, a green light source.
  • a human body part for example, a green light source.
  • the base part may be considered as a general expression of a part that affects the amount of signal in addition to blood sugar, as mentioned earlier in the present invention.
  • the variation in reflectance or absorbance by materials constituting the base is so large that it recognizes the variation in the amount of signal caused by the base and corrects the amount of signal in each wavelength band.
  • reference signal amounts are also obtained for each of these output levels for green light.
  • a signal amount value for the body part of the subject to be measured by green light is also obtained to find a reference signal amount equal to a reference signal amount and a signal amount to the body part of the subject.
  • an output level for representing such a reference signal amount is found, and a set of reference signal amounts for each wavelength band by each of the plurality of light sources when the output level is applied is found.
  • a difference signal amount set is obtained by comparing this with a set of signal amounts for each wavelength band measured by the blood glucose measurement apparatus of the present invention.
  • Adjusting the reference signal amount for each wavelength band also derives the reference signal amount for the green light when deriving the basic data mentioned above, and uses the obtained base data for each wavelength band associated with the appropriate reference signal amount for the green light. This can be done through the process of adopting the reference signal amount.
  • the blood glucose level of the measurement target can be calculated using the magnitude of the difference signal amount.
  • the correlation between the difference signal amount according to the change in blood glucose level can be obtained through clinical or experiment.
  • the difference signal amount is obtained by obtaining the difference signal amount in the blood of various blood glucose levels and using the multiple regression analysis or the artificial neural network, the difference signal amount is obtained and the blood glucose level is calculated directly from the analysis module. You can do that.
  • the difference signal amount may be a problem in which wavelength signal to select the difference signal amount to calculate the blood glucose level. Ideally, the same blood glucose level should be calculated even if the difference signal amount of any wavelength band is selected.
  • the blood glucose amount obtained by the difference signal amount for each wavelength band is different. This may be because the signal amount measurement value of the blood glucose meter for the measurement subject is wrong from the beginning or an element other than blood sugar is involved and thus is not suitable for blood glucose measurement. In this case, accurate blood glucose calculation becomes difficult.
  • the present invention may further have a step of verifying the mutual ratio between the difference signal amount for each wavelength band before calculating the blood glucose level for accurate blood glucose measurement.
  • the number of light sources irradiating different near-infrared wavelength bands the greater the likelihood that accurate mutual blood glucose measurement can be achieved.
  • the number of light sources of this embodiment is limited to three or four wavelength bands specialized for blood sugar detection.
  • infrared spectroscopy uses a light source for irradiating light of continuous wavelengths, but here, a chemical bond having a specificity to blood sugar or a chemical bond in a blood glucose-related substance to simplify the optical configuration and to easily detect and analyze a signal efficiently.
  • the number of infrared light sources that can be absorbed easily and stably can be selected and measured.
  • the light receiving element may also use a plurality of wavelength-specific light receiving elements that are sensitive to these infrared rays.
  • the analysis module itself is controlled by a program and controls four light sources and a light receiving element to turn on a light source having a first wavelength
  • the light detected by the light receiving element is recorded as reflection or scattered light by the first wavelength light.
  • the second, third, and fourth light sources are operated by time, and the light detected by the light-receiving element within the time is sequentially recorded as reflection or scattered light by light of a corresponding wavelength band.
  • the detected light intensity of the light receiving element with the four light sources turned off is measured, and the pure wavelength for each wavelength corrected by subtracting the detected light intensity from the detected intensity at each light source irradiation You can also use the method of obtaining light intensity.
  • the method and the principle of calculating the oxygen saturation through the pulse wave analysis measured by the optical blood flow meter which is the basis of the measuring device of the present invention is not separately described above, but basically the measurement of blood sugar and the method and principle are considered to be common. Can be.
  • FIG. 10 is a conceptual diagram illustrating a support system connected to a communication device included in the measuring device of the present invention and supporting the health, structure, and treatment of the wearer of the measuring device together with the measuring device.
  • FIGS. 11 and 12 are measurements. It is a conceptual diagram illustrating a path scheme in which a device is connected to a public telecommunication network multiplely through a personal information terminal and distributed access points.
  • the measuring device 210 forms a kind of wearable computer including a communication device, which provides the measuring device directly through a network, and manages necessary body and state data of a wearer provided through the communication device. It can be connected to the operation server 250, but most people have a personal information terminal 221, such as a smart phone, so there is no need for duplication of function, so here the communication device is connected to the wearer's smartphone through Bluetooth communication It is assumed that data and signals are sent and received.
  • the personal information terminal 221 is provided with an application program for linking with the measuring device 210, and receives measurement data of the measuring device every time a periodic or unusual event is detected through Bluetooth communication, and is determined in the application program.
  • the measurement data obtained as described above is embedded in its own memory, and transferred to the operation server 250 through the public communication network 240.
  • a fixed relay node 223, which is densely installed in each zone including an indoor space, may be used instead of a personal information terminal such as a smartphone to form a Bluetooth mesh network.
  • the measuring device 210 and the operation server 250 may be connected using various public communication networks 240 and private communication networks.
  • a public communication network an internet communication network including a wireless internet communication network such as Wi-Fi or a mobile phone communication network may be used, and a private communication network may be a Bluetooth mesh network including a fixed relay node 223 mentioned above for a while, such as a hospital or a nursing home. have.
  • the personal information terminal 221 or the fixed relay node 222 transmits the measurement data of the measuring device to the Bluetooth-WiFi Gateway 230 and, in this case, the operation server 250 using the Internet public communication network 240. To transmit measurement data.
  • a personal digital assistant, a fixed relay node, a Bluetooth Wi-Fi gateway, etc. can all be thought of as a type of communication node that relays signals and a type of communication access point.
  • Such an access point not only transmits the received signal but also serves as signal amplification or conversion to increase reception sensitivity, and may be installed and distributed in multiple locations in each region for communication network configuration.
  • Access Points can be installed in a number of indoor buildings where airwaves are easily shielded, and transmits information about its own location along with the transmitted signal to transmit data and signals to the network. It can act as information for determining the position.
  • an RFID tag that can transmit unique information to them is installed or an NFC chip is installed and connected to a communication network.
  • a reader capable of receiving information and data thereof may be installed, and each reader may also use a method of transmitting unique information associated with the measurement apparatus data to the operation server through a communication network.
  • a communication network and a communication method including an access point may have various forms.
  • a plurality of Bluetooth nodes 220 are connected to adjacent Bluetooth nodes 220 through various paths, such as human neurons, to form a Bluetooth mesh and receive data within a communication network. It may have a form that delivers the data signals measured by the measuring device to the local base, such as 230),
  • an access point such as a plurality of fixed relay nodes 223 is installed around one local base Bluetooth Wi-Fi gateway 230, and the measurement data signal is directly transmitted from a nearby measuring device or from the personal information terminal 221. In case of reception, signal transmission is performed between these access points in a single line and in a multipath with a case of redundancy. 230, the measurement data signals may be collected.
  • the communication between the access point can be both wired and wireless, and a communication method such as Zigbee may be used.
  • the measurement data signal transmitted to the local base through signal transmission is transmitted to the operation server 250 through the communication network 240, the public network 240, the operation server 250, these measurement data and the unique information associated with the measurement data, It receives the location information of the access point and stores the bear data and the secondary data obtained by processing the bear data in the database in association with the wearer.
  • the organization operating the operation server 250 compares and analyzes the bare data and the secondary data with a predetermined standard by an analysis program, and if there is a singularity in the result of the comparative analysis, the public communication network 240 or separate as necessary.
  • the communication network Through the communication network, a person who wears the measuring device 210, a registered contact information of an individual, a guardian or a medical institution 260, a public office such as a fire station 270 or a police station 280 that acts as an emergency rescue center, can alert Can be.
  • a person who wears the measuring device 210 a registered contact information of an individual, a guardian or a medical institution 260, a public office such as a fire station 270 or a police station 280 that acts as an emergency rescue center, can alert Can be.
  • a person who wears the measuring device 210 a registered contact information of an individual, a guardian or a medical institution 260, a public office such as a fire station 270 or a police
  • the body temperature, heart rate signal shape, blood pressure, oxygen saturation, blood sugar, pulse rate, respiratory rate at a certain point of time through the measuring device of the present invention, as well as the change form and trends of these values over time, are identified.
  • a program that determines the wearer's condition through comparison and analysis of measurement data which is embedded in the operation server, including the physical state, history and exercise state, and historical data of the wearer, comprehensively judges the blood sugar such as falls, hypoglycemia shock caused by insulin.
  • measurement data which is embedded in the operation server, including the physical state, history and exercise state, and historical data of the wearer.
  • location information may be provided to aid in rescue and first aid.
  • the operating server and the institution that operates the same typically provide the wearer with the measuring device of the present invention in the form of rental or sale to the wearer, register the basic medical history, medical history, precautions, and the like, and transmit various measured data of the measuring device. It may be a company that receives and pays for services for health care or nursing care services, which may be done by public service agencies.
  • this data When this data is accumulated over a large number of people, it can be used to identify and create new items and demands for related services in business, and publicly serve as important policy grounds for social health and health systems. It is possible to proactively take appropriate social measures in case of problems such as hypertension or diabetics at the preventive medical level, thereby saving social care, medical and health costs, and establishing and evaluating social policies. Can serve as
  • such data can be used as data for medical, health, and other relevant academic studies, as a result of observing a change in the status of a person with a history or treatment for a large number of people and for various diseases.

Abstract

서로 다른 복수 파장의 광을 조사할 수 있는 복수 광원과, 복수 광원에서 조사되어 신체부위에서 반사 산란된 광을 받아 전기신호로 변환시키는 수광소자, 전기신호를 분석하여 각 파장에 대한 맥파형태의 신호에서 신호량을 얻고 측정 대상자의 신체에 대해 얻은 신호량과 사전 입력된 기준과의 차이 신호량을 이용하여 측정 대상의 혈당 농도를 산출하는 혈당분석모듈과, 맥파를 분석하여 입사파와 반사파를 구분하고, PRT 및 맥압을 검출하여, 일정의 연산과정을 통하여 혈압값을 도출하는 혈압분석모듈, 이들 모듈이 획득한 혈당 및 혈압 수치 등을 외부로 전송할 수 있는 통신장치를 구비하는 인체착용형 신체정보 측정장치와 이를 기반으로 하는 의료지원 시스템이 개시된다.

Description

인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템
본 발명은 인체착용형 신체정보 측정 장치 및 이를 이용한 의료지원 시스템에 관한 것으로, 보다 상세하게는 기존에 비침습식으로 실질적 측정이 어렵던 혈압 및 혈당을 포함한 신체정보를 측정하고, 이를 통해 착용자의 주의를 요하는 상태를 지속적으로 관찰할 수 있으며, 응급시 측정 자료를 전달하여 착용자와 관련된 인원이나 기관이 대응, 구조 활동이나 의료 지원을 할 수 있도록 하는 인체착용형 신체정보 측정 장치 및 이를 이용한 의료지원 시스템에 관한 것이다.
산업경제 발전과 의료기술 및 위생의식 발전에 의해 인류의 평균수명은 급속도로 늘고 있고 그에 따른 인구 고령화 역시 급속도로 이루어지고 있다. 인류의 삶의 수준이 높아지고 기대수명이 연장되면서 건강에 대한 관심 또한 증가하고 있다. 건강에 대한 관심 증가에 따라 헬스케어(Healthcare) 산업과 관련된 물품과 서비스 산업의 발전도 급속히 이루어지고 있다.
헬스케어 산업과 관련된 물품은 우리 주변 및 실생활에 이미 널리 보급되어 있다. 예를 들면 전자 디지털 체온계, 맥박계, 혈압계, 저주파 치료기, 자가 혈당 측정기, 각종 헬스기기에 탑재된 자가 체형 진단 및 보정 프로그램 등이 그 좋은 예이다.
이들 헬스케어 관련 물품들은 독립된 하나의 제품으로 보급되어 있는 것이 일반적인 형태이며, 간단한 기초적 맥박이나 호흡수, 체온 등의 측정 기구를 제외하면 자유로운 신체 활동이 가능한 형태의 인체착용형 제품은 아직 충분한 만족도를 가질 정도로 개발되지 못하고 있다.
한편, 산업 발전에 따른 경제적 상태가 개선되고 육체적 활동량은 줄어들고 있지만 식생활에 있어서 과거에는 섭취하기 어려운 육류와 고열량 식품이 큰 제한없이 다량 섭취되고 있으며, 이는 현대인에게 당뇨병과 심혈관계 질환의 발생 증가 및 이로 인한 사망율을 높이게 한다.
심혈관계 질병이나 당뇨병은 발병 단계에서 외상이나 복통과 같은 환부의 극심한 고통이나 거동이 불편할 정도의 신체기능 저하를 통상적으로 동반하는 것은 아니며, 생활습관과 특히 식습관에 의해 서서히 진행되고, 환자는 자신의 병증을 심각하게 느끼지 못할 수도 있다. 그리고, 신체 증상이 나타나 진단을 받은 후에도 지속적이고 주의 깊은 관리가 요청된다.
가령, 심혈관질환(Cardiovascular Disease: CVD)은 뇌졸중(Stroke)과 함께 사망의 주요 요인이며, 이로 인한 사망자가 증가하고 있으나, 예견하기 힘들고 예방과 진료를 위한 건강 진단(Health Care)에 많은 비용이 사용되는 실정이다.
고혈압(Hypertension)은 심혈관질환과 뇌졸중의 가장 중요한 위험요인(Risk Factor)으로 간주되고 있으며 혈압 수준에 많은 영향을 받고 있다. 혈압 절대치와 함께 혈압 변이(BP Variability: BPV) 역시 이들 병증의 중요한 요인으로 많은 연구와 임상결과로 밝혀지고 있다.
따라서 혈압 변이를 지속적으로 모니터링하여 위험을 최소화하고 초기부터 위험 요인들을 조절하는 것이 매우 중요한 것으로 인식되고 있으며, 따라서 지속적으로 주의를 요하는 환자의 혈압을 측정하는 것이 요청되고 있다.
그러나, 당뇨병과 심혈관질환은 여러 가지 이유로 지속적이고 주의 깊게 관리되지 못하는 경우가 많다.
또한, 최근의 인구 고령화와 함께 사회문화의 변화에 따라 노령자가 자손들과 함께 거주하지 않고 노령자 혹은 노령자 부부만 따로 거주하는 경우가 많고, 비혼이나 미혼자가 단독으로 거주하는 경우가 늘어나, 이들의 경우, 주거 내에서 긴급한 발병 등의 비상시에 쇼크가 오거나 신체가 불편하게 되면 신속하고 효과적으로 비상 상황에 대처하기가 어렵다.
따라서, 개인적으로나 사회적으로 이런 병증 및 환자의 신체 상태에 대한 지속적 관찰과 꾸준한 관리를 통하여 발병하거나 병세가 심각하게 되는 것을 예방하고 환자의 응급 상황이 발생하는 경우 신속히 이를 감지하여 응급적인 처치가 가능하고, 환자와 관련된 의료기관의 대처 및 치료가 적정하고 신속하게 이루어질 수 있도록 하는 측정장치 및 지원 시스템이 요청된다.
또한, 신체가 불편한 환자나 노인들이 병원에 입원하지 않고 외래를 통해 빈번히 혹은 정기적으로 질환에 대한 진단을 받는 경우가 많은데, 대개의 경우 간단한 측정만 이루어지는 경우가 많고, 이런 데이터만으로는 환자의 쉽게 변화할 수 있는 상태를 측정하기 어렵다. 이런 상황은 환자나 노인들에게도 매우 불편하고 효율성도 떨어지며, 사회적으로도 많은 비용을 초래하는 일이 된다. 그러므로 이런 불편함과 다수 노인의 내원 진료에 의한 사회적 비용을 줄일 수 있는 기본적 원격적 진료가 가능한 측정장치 및 지원 시스템이 있다면 바람직할 것이다.
대한민국 공개특허 제10-2017-0044826호에는 생체신호 측정 가능한 웨어러블 디바이스가 개시된다. 여기서는 심박수 측정용 PPG(photoplethysmographic) 신호를 검출하기 위한 PPG신호 검출부와, 동적 움직임 신호를 검출하기 위한 가속도 센서와, PPG 신호와 동적 움직임 신호를 증폭 및 디지털 변환하기 위한 신호 처리부와, 디지털 변환된
PPG 신호와 동적 움직임 신호를 무선 통신 규격에 따라 처리하여 전송하는 무선 통신부를 포함하여 이루어지고 이들이 유연 기판에 실장되어 착용자의 신체에 부착 혹은 착용되는 장치가 개시된다.
대한민국 등록특허 제10-0989694호에는 착용자의 위치 및 생체신호를 측정하기 위한 측정단말기 및 이를 이용하는 건강관제시스템이 개시된다. 여기서는 건강관제시스템과 자체 통신이 가능하여 실내외의 시공간상 제약없이 상시 모니터링 건강관리 및 생체 정보서비스를 얻고, 위급시 자동으로 혹은 착용자의 응급 호출에 의해 응급 구조가 이루어지고, 착용자의 건강상 이상 징후 발생시 관련 의료기관에 알려서 신속한 대처를 할 수 있도록 하는 기술이 개시된다.
대한민국 특허공개 10-2017-0012166호에는 바이오메트릭 기반 정보 통신을 이용한 실시간 의학적 상태 모니터링을 위한 생의학 디바이스들이 개시된다. 이 발명에 따르면 바이오메트릭 기반 정보 통신 시스템을 형성하기 위한 방법 및 장치가 언급되며, 바이오메트릭 기반 정보 통신 시스템은 감지 수단을 갖는 생의학 디바이스를 포함하고, 감지 수단은 바이오메트릭 결과를 생성한다. 일부 예에서, 바이오메트릭 기반 정보 통신 시스템은 통신 중에 생의학 디바이스와 페어링되는 스마트폰과 같은 사용자 디바이스를 포함할 수 있다. 바이오메트릭 측정 결과는 바이오메트릭 기반 정보 통신 메시지의 통신을 트리거할 수 있다.
그러나, 기존의 선행기술들은 다소 막연한 개념들의 나열을 통해 이루어지는 경우가 많고, 무엇보다 측정장치가 인체상태의 가장 중요한 지표가 되는 혈압 및 혈당의 측정이 비침습식으로 이루어지지 못하고, 쉽게 신체 부위에 장착하여 간편하고 정확하게 측정이 이루어지지 못하고 있으므로 심혈관질환자나 당뇨병자 등 이런 착용장치 및 지원시스템을 절실하게 요하는 사람들에 대해 충분히 효과적인 지원을 하기 어려웠다.
도1(a)는 신체착용형으로 많이 사용되는 생체신호 측정장치인 광혈류 측정기(PPG)로 측정할 수 있는 맥파의 전체적 형태를, 도1(b)는 맥파의 전체적 형태에서 베이스 성분(DC component)을 제외한 순수한 혈류 변동인 맥동 성분(AC componet) 형태를, 도1(c)는 도1(b)에서 호흡의 영향이 포함된 보다 혈실적인 측정 형태를 나타내고 있다.
광혈류 측정기는 초기에 맥파 파형을 분석하여 혈류량의 변화로부터 맥박(Heart Rate: HR)을 측정하기 위한 것으로 국한되어 있으나 근래에는 디지털 신호처리(Digital Signal Processing: DSP) 기술을 이용하여 맥파 자체의 변동을 나타내는 맥동 성분(AC Component)과 베이스 성분(DC Component)을 구분하여 재분석할 수 있다.
광혈류 측정기를 이용할 때 맥동 성분은 동맥혈의 펄스 성분의 영향을 받는 부분이며, 맥박수는 물론 혈압(BP)을 측정할 수 있는 기초 자료로 사용될 수 있으며, 다른 신체 상태 정보, 가령 맥동 파형의 이차 미분(Second Derivative Waveform: SDPPG)으로부터 혈관 노화(Vascular Aging) 정보를 얻을 수 있다. 베이스 성분은 대개 피부 및 피하 조직(skin and tissues), 정맥혈(venous blood), 동맥혈 가운데 비펄스 성분(non pulsatilecomponent of arterial blood) 등의 영향을 받는 부분이다.
인체착용형으로 사용하는 광혈류 측정기의 광센서 어셈블리(Photosensor Assembly)에는 통상 녹색(Green)광이나 적색(Red)광, 근적외선(Near Infrared: NIR)광 엘이디(LED)를 광원으로 사용하며 포토다이오드(Photodiode: PD)를 이용해 혈류량에 따른 반사광 세기(Reflected Light Intensity)의 변화를 측정하는데, 반사광 세기는 흡수 계수(Absorption Coefficient)와 반비례 관계에 있다.
한편, 도1(c)와 같은 현실적 측정에서는 호흡에 의한 베이스 수준의 전반적이고 주기적인 파동 형태의 변화가 나타난다. 여기서 전체 맥파 파형은 호흡에 의한 주기가 긴 커다란 파동 성분의 변동에 심장박동에 의한 주기가 짧은 펄스 형태의 변동을 결합한 형태를 보이고, 따라서, 이런 전체 맥파 파형을 통해 호흡율 혹은 호흡수를 측정할 수 있다.
광혈류 측정기는 인체 혈관을 향해 빛을 비추고 반사 및 산란된 광의 세기를 수광소자가 측정하는데, 심장수축에 의한 혈류량이 증가하는 수축기 피크에서는 혈압은 높아지나 빛은 혈액에 의해 많이 흡수되어 반사광 세기는 약하게 나타나고 이완기에는 반사광은 강하게 나타난다. 이를 감안하여 통상 광혈류 측정기에서 출력신호는 반사광 세기 자체가 아니고 이를 상하 반전시킨 형태(inversed PPG)로 나오도록 하여, 혈류량이나 혈압 수준을 맥파 형태로 수축기에는 높은 피크로 이완기에는 낮은 골짜기 형태로 나타내게 된다. 통상적인 광혈류 측정기의 신호량 표시는 이러한 반전시킨 형태를 기반으로 하여 이루어지는 것으로 볼 수 있다.
한편, 이완기에도 혈압은 0이 아니므로 베이스 레벨(base level) 위에서 맥동성분의 주기적 진폭 변화가 이루어지게 된다.
그런데, 심전도계와 광혈류 측정기로 구성되고 주로 맥파 전달 시간(PTT), 맥파 이동속도(PWV)를 이용해 혈압을 측정하는 기존의 혈압 측정 방식은 혈압을 측정할 때 심전도계의 계측을 위해 인체가 회로 일부를 구성하도록 두 손을 동시에 기기에 접촉하는 동작이 필요하여 이동형 혈압 측정(Ambulatory BP Monitoring)에 부적합한 혹은 불편한 측면이 있고, 결국 상시 모니터링이 아닌 간헐적 측정 방식이 되므로 비정상적인 혈압 변이(Abnormal BP Variability)나 생체주기적 변이의 집접적 모니터링이 어려웠다.
따라서 여전히 인체착용형으로 별도로 환자가 측정 동작을 취하지 않으면서 손쉽게 그리고 지속적으로 혈압을 측정할 수 있는 혈압측정장치가 요망된다.
본 발명은 상술한 종래의 신체정보 측정장치 및 그와 관련된 의료지원 시스템에서의 문제점을 해결하기 위한 것으로, 인체상태의 중요한 지표가 되는 혈압 및 혈당의 측정이 비침습식으로 이루어질 수 있고, 쉽게 신체 부위에 장착하여 간편하고 정확하게 측정이 이루어질 수 있도록 하는 신체정보 측정장치 및 이를 이용한 의료지원 시스템을 제공하는 것을 목적으로 한다.
본 발명은 또한, 인체착용형으로 별도의 측정을 위한 동작 없이 지속적, 상시적으로 혈압 및 혈당을 측정, 관찰할 수 있도록 하는 신체정보 측정장치 및 이를 이용한 의료지원 시스템을 제공하는 것을 목적으로 한다.
본 발명 일 측면에 따르면, 착용자의 신체적 특성이나 변이 요소에 불구하고 정확한 혈압 및 혈당을 측정하고, 신체 움직임 상태를 측정하여 쇼크나 낙상 등 긴급시에 신속하고 적절한 조치를 취할 수 있도록 하는 신체정보 측정장치 및 이를 이용한 의료지원 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 인체착용형 신체정보 측정장치는
서로 다른 복수 파장의 광을 착용자 신체부위에 조사할 수 있는 복수 광원과,
복수 광원에서 조사되어 착용자 신체부위에서 반사 및 산란된 광을 받아들여 전기신호로 변환시키는 수광소자,
수광소자의 전기신호를 분석하되 각 파장에 대한 맥파 형태의 신호에서 신호량을 얻고 측정 대상자의 신체에 대해 얻은 신호량과 사전 입력된 기준(레퍼런스 신호량)과의 차이 신호량을 이용하여 대상물의 혈액 내의 혈당 농도를 산출하는 혈당분석모듈과,
수광소자의 감지신호가 이루는 맥파를 분석하여 입사파와 반사파를 구분하고, PRT 및 맥압을 검출하여, 맥압에 제1 계수를 곱하고 PRT에 제2 계수를 곱하고 합산하는 과정을 포함하는 연산과정을 통하여 혈압값을 도출하는 혈압분석모듈,
혈당분석모듈이나 혈압분석모듈이 획득한 측정 대상자의 혈당 및 혈압 수치, 패턴을 주변의 통신 수단을 통해 외부로 전송할 수 있는 통신장치를 구비하여 이루어지는 것일 수 있다.
본 발명에서 혈압 및 혈당의 측정은 기본적으로 광혈류 측정기(PPG)의 동작 원리에 기반을 둔 것으로서, 광원과 수광소자와 각 모듈을 이루며 수광소자의 출력신호를 처리하여 맥파 패턴을 얻고 맥파를 다시 처리, 분석하는 프로세서 및 프로그램 구성은 상당 부분이 기본적으로 PPG와 공통된 것이라 할 수 있다.
또한, 혈당분석모듈과 혈압분석모듈을 구분한 것은 실질적으로는 각 프로그램에 의해 혈당 및 혈압을 산출하는 과정 및 산출방식의 차이를 나타내는 것이며, 물리적으로 별도의 광원, 센서, 센서 신호처리회로, 프로세서를 가지는 것을 의미하는 것은 아니다.
본 발명 장치는 일종의 SPC(smart patient care) 손목밴드 형태를 가질 수 있다.
본 발명 장치는 ECG를 위한 신호발생모듈과 신체 접속 단자들을 구비할 수 있다.
본 발명 장치는 착용자의 체온을 측정하기 위한 온도계를 구비할 수 있다.
본 발명 장치에는 통상 각 혈당분석모듈이나 혈압분석모듈이 획득한 측정 대상자의 혈당 및 혈압 수치와 이들 수치가 나타내는 변화 경향 가운데 적어도 하나를 표시할 수 있는 표시장치가 구비될 수 있다.
본 발명 장치는 착용자의 신체 활동을 감지 혹은 측정하기 위한 3차원 가속계를 구비하여 낙상이나 걷기, 뛰기 등의 운동 상태를 감지할 수 있다.
본 발명 장치는 각 센서의 신호 처리를 위해, 신호를 획득하는 경로에, 가령 수광소자의 출력 신호 처리를 위해 신호를 획득하는 경로에 배치되는 트랜스임피던스증폭기(TIA), 프로그래머블 게인 증폭기(Programmable Gain Amplifier : PGA), 아날로그 디지털 변환기(Analog-to-Digital Convertor : ADC)를 구비할 수 있으며, 이들 소자(TIA, PGA, ADC)를 거친 변환된 출력 신호는 프로세서로 입력되어 맥파로부터 혈당, 혈압 등 생체지수 측정을 위한 정보를 얻는 처리과정을 수행할 수 있다.
이때, 프로세서는 디지털신호처리기(DSP)와 마이크로 콘트롤러 유닛(MCU)를 구비하여 이루어질 수 있고, 프로세서는 광원(발광다이오드)로 발광 신호를 주는 콘트롤러 혹은 드라이버(LED driver)를 조절하는 역할을 할 수 있다. 프로세서에는 또한 저장장치(memory) 및 통신장치가 연결될 수 있다.
본 발명 장치에는 혈당 및 혈압 수치와 이들 수치가 나타내는 변화 경향 가운데 적어도 하나가 정해진 허용범위나 허용패턴 혹은 허용변화율 범위를 벗어나는 경우 착용자나 보호자, 관련 기관 가운데 적어도 하나에게 경고신호를 발생시키는 경보장치가 구비될 수 있다.
본 발명 장치의 혈압분석모듈을 구성하는 혈압산출 프로그램은 다음 식들 가운데 어느 하나 혹은 이들 식에 상수 e를 더한 식에 기반을 둔 것일 수 있다.
BP=a*PA+b*PRT
BP=a*PA+b*PRT+c*GI
BP=a*PA+b*PRT+d*IDIA/ISYS
BP=a*PA+b*PRT+c*GI+d*IR(IDIA/ISYS)
이때 비례상수들 및 상수(a, b, c, d, e)는 다양한 측정 대상자를 상대로 다수 회에 걸쳐 혈압(BP) 및 관련 팩터들(PA, PRT, GI, IDIA/ISYS)을 측정하고 위의 산출식에 이들을 대입하여 가장 적절한 비례상수 값을 도출하는 방식으로 구해진 것이며, 이때, 혈압은 다른 정밀한 혈압계로 측정된 것이고, 동시에 관련 팩터들은 본 발명 장치로 측정된 것이다.
이때, 비례상수를 찾는 과정은 기존에 알려진 다변량통계기법 등 통계적 기법 및 컴퓨터 시뮬레이션을 통해 이루어질 수 있고, 근래에는 이런 유형의 자료를 바탕으로 기계학습이나 딥러닝을 통해 이런 기법을 체화시켜 얻는 인공신경망(artificial neural network) 알고리즘 적용 프로그램을 통해 테스트 데이터인 이상의 측정값 자료(혈압 및 관련 팩터들)를 검토하도록 함으로써 비례상수를 도출할 수도 있다.
본 발명 장치에서 혈당 측정을 위해 광원으로 근적외선 파장대의 복수 광원 이 구비되며, 혈당분석모듈을 이루는 프로그램은 각 광원의 조사광에 기인하는 반사 및 산란 광을 받는 수광소자가 출력하는 전기신호가 혈류량 변화에 따른 맥파 형태로 나타날 때 맥파가 나타내는 하나의 주기에 대해 적분하여 얻는 값을 신호량으로 파악하고, 미리 정해진 레퍼런스 신호량과의 차이값을 얻고, 혈당값과 차이값 사이의 도출된 연관관계를 이용하여, 이 차이값을 기준으로 혈당값을 산출하도록 이루어질 수 있다.
이때, 레퍼런스는 인체와 유사한 생체조직 더미에 혈당량 0의 혈액 성분을 제공하여 만들 수 있으며, 이에 대한 각 광원의 광 조사에 의하여 레퍼런스 신호량을 획득할 수 있다. 레퍼런스 신호량 획득에는 본 발명 측정장치보다 더욱 정밀한 것으로 검증된 광혈류 측정장치 기타 광학적 검출장치를 사용할 수 있다.
이때 복수 광원으로는 혈당 내의 화학결합과 관련하여 특징적 흡수 피크를 나타내는 940nm 파장대의 짧은 근적외선광과, 1100nm 파장대의 근적외선광, 1450nm 파장대의 근적외선광 및 1700nm 파장대의 근적외선광이 사용될 수 있다.
이런 복수 광원에 더하여 광흡수도를 고려한 맥파나 신호량 크기 보정을 위한 중성 광원으로서 530nm 파장대의 녹색광 광원, 혈압 측정을 위한 맥파 획득에 사용될 수 있는 660nm 파장대의 적색광을 위한 이 사용될 수 있다. 즉, 계측 대상의 신체(손목) 부분의 피부색 등에 의한 적색광 혹은 짧은 근적외선 대역의 광의 감쇄를 반영하기 위해, 그 반사도가 피부색 등에 큰 영향을 받는 녹색광에 대한 손목 부분의 반사도를 측정하고 보정에 반영하기 위해 녹색광 광원을 가질 수 있다.
본 발명의 PPG 기반 구성을 통해 본 발명 장치는 산소포화도를 측정하는 PO(pulse oximetry) 기능을 구비할 수 있으며, 이를 위해 PPG 광원으로서 660nm 대역 적색광원과 940nm 파장대의 짧은 근적외선광원을 구비할 수 있다.
상기 목적을 달성하기 위한 본 발명의 의료지원 시스템은 본 발명의 인체착용형 신체정보 측정장치의 통신장치와 접속되는 통신 네트워크, 통신 네트워크를 통해 연결되는 측정장치 운영 서버, 운영 서버를 통해 네트워크로 접속되는 의료기관 및 지원기관 서버를 구비하여 이루어질 수 있다.
가령, 본 발명의 인체작용형 신체정보 측정장치와, 이 측정장치의 통신장치와 접속되는 통신망과, 이 통신망을 통해 통신장치가 보내는 신체정보를 입수, 저장하고 처리하는 운영 서버와, 운영 서버와 통신망을 통해 접속되는 의료기관, 소방서, 경찰서 등의 지원기관을 구비하여 이루어질 수 있다.
이때, 통신장치와 운영서버를 연결하는 통신망은 적어도 하나의 통신 노드를 가지며, 통신 노드나 측정장치 가운데 적어도 하나는 측정장치 착용자의 인식을 위한 고유 정보를 운영 서버로 발송할 수 있도록 이루어진 것이 통상적으로 필요하게 된다.
한편, 비상시를 대비하여 착용자 위치를 쉽게 파악하기 위해, 통신 노드는 위치가 고정되어 자신의 고유 위치 정보를 측정장치의 측정 데이터(신호)와 함께 운영 서버로 발송하여 측정장치 착용자의 위치를 실시간으로 파악할 수 있도록 이루어지거나, 개인정보 단말기와 같은 통신 노드는 GPS와 같은 지리정보시스템을 이용하여 자신의 위치를 확인하고, 그 위치 정보를 측정장치의 측정 데이터(신호)와 함께 운영 서버로 발송하여 측정장치 착용자의 위치를 실시간으로 파악할 수 있도록 이루어질 수 있다.
본 발명의 의료지원 시스템에서 통신 네트워크는 이상에 언급된 형태 외에도 기존에 알려진 인터넷이나 무선전화용 통신망 등 다양한 통신망이 이용될 수 있다.
측정장치의 통신장치와 통신 네트워크의 연결은 측정장치의 통신장치를 이용하여 직접 이루어지거나, 착용자가 보유하는 스마트폰 기타 개인정보단말기를 매개하여 이루어질 수 있다. 통신장치는 현재 알려진 다양한 통신 네트워크와 접속, 교류할 수 있는 블루투스 장치, 모뎀, 랜카드 등을 포함할 수 있다.
네트워크의 구성은 다양하게 이루어질 수 있으며, 항시적 연결이 요청되므로 실내에서도 연결될 수 있도록 중간의 통신 노드들이 구비되고, 통신 노드 사이의 상호 연속적 연결을 할 수 있는 형태가 바람직하다.
본 발명의 측정장치에는 통신장치 내에 NFC 칩이 구비되어 통신장치를 통해 측정장치 착용자의 고유정보를 측정된 상태정보와 함께 발송함으로써 측정장치 운영 서버 혹은 관리자가 착용자를 확인하도록 이루어질 수 있다.
본 발명에 따르면 소형화가 용이하여 인체착용이 간편한 PPG 기반 측정장치를 이용하여 별도의 측정 동작 없이 편리하고 용이하게 지속적으로 호흡수(beathing rate), 심박수(맥박: heart rate), 혈압, 혈당, 산소포화도 등 인체 상태 판단에 핵심적 지표를 측정하고 그 값 및 그 값의 변동 추이를 관찰할 수 있고, 이를 착용자의 적절한 건강 및 질병 관리에 사용할 수 있다.
본 발명에 따르면, 측정장치가 얻은 착용자 신체 정보를 주기적으로 혹은 실시간으로 관련 요양기관이나 의료기관에 전달할 수 있어서 원격적 관리가 이루어질 수 있으므로 착용자가 병원이나 요양기관으로 직접 움직일 필요를 줄이고, 정기적 검진이나 신체 지표 측정, 관리를 위한 인원, 시간, 비용을 절약할 수 있으며, 지속적인 데이터를 통한 과학적 관리가 이루어질 수 있으므로 훨씬 정확한 환자 등 대상인원 관리가 이루어질 수 있다.
본 발명에 따르면 측정장치의 통신 모듈 및 신원확인 수단을 통해 환자의 위치를 파악하기 용이하며, 환자에게 쇼크나 낙상 사고가 발생하는 등의 유사시에 경찰서나 소방서 등의 유관기관 연락 및 구조를 빠르게 하고, 환자의 의료기관 이송을 빠르게 할 수 있고, 이송과정 및 그 이전의 환자 상태가 지속적으로 병원 및 의료진에 전달될 수 있으므로 도착과 함께 더욱 빠른 진단, 치료가 이루어질 수 있다.
장기적으로 이런 정보는 의료기관이나 관련 기관에서 취합되어 하나의 빅데이터를 이루어 의료 연구, 의료 복지 정책에 유용한 자료를 제공할 수 있다.
도1의 (a), (b), (c)는 각각 손목에서 광혈류 측정기(PPG)로 측정할 수 있는 맥파의 전체적 형태, 전체적 형태에서 베이스 성분(DC component)을 제외한 순수한 혈류 변동인 맥동 성분(AC componet) 형태, 맥동 성부에 현실적으로 호흡의 영향이 나타난 형태를 나타내는 그래프,
도2는 본 발명 측정장치의 일 실시예 구성을 개략적으로 나타내는 구성개념도,
도3은 본 발명 측정장치의 다른 실시예 구성으로서 광혈류 측정기 기반의 구성 부분을 별도로 개념적으로 나타내는 구성도,
도4는 본 발명 측정장치의 다른 실시예의 광혈류 측정기 기반의 구성 부분으로서 저면에 나타나는 구성을 개략적으로 나타내는 저면도,
도5는 도4의 AA'선을 따라 절단한 단면을 개략적으로 나타낸 개념적 단면도,
도6은 혈압 측정시 팔뚝, 팔목, 손목에서의 전체 맥파의 피크 부분의 형태 및 이를 입사파와 반사파로 구분한 형태의 한 예를 나타내고 있다.
도7은 본 발명에서 신체 부위에 대한 각 파장대 광의 신체 침투 정도를 나타내는 설명도,
도8은 더미 및 기준 혈액을 통해 주파수별로 맥파 주기 적분 신호량 변동 태양을 나타내는 그래프로서 서로 다른 두 출력에 대한 것.
도9는 도8의 그래프를 참조한 몇 가지 주파수별 신호량과 착용자 대상 측정 신호량의 차이 신호량을 나타내는 그래프,
도10은 본 발명의 측정장와 함께 이 측정장치 착용자의 건강, 구조, 치료를 지원하는 의료지원 시스템을 개념적으로 나타내는 구성개념도,
도11 및 도12는 본 발명 측정장치의 측정 데이터 신호를 운영 서버로 전달하는 경로를 이루며 실시간 위치 파악이 가능하게 하는 부분적 통신망들을 예시하는 구성개념도이다.
이하 도면을 참조하면서 본 발명의 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.
도2는 본 발명 측정장치의 일 실시예 구성을 개략적으로 나타내는 구성개념도이다.
여기에는 광혈류 측정기를 구성하기 위한 LED 광원(32, 33, 35, 36)과 수광소자(20, 40)를 이루는 포토다이오드를 가진 광센서 어셈블리, 심박 측정용 ECG장치(131, 133), 체온계(141), 착용자의 동작상태 혹은 운동상태 측정을 위한 3차원 가속계(151), 표시장치(100), 통신장치(80), 전원(110), 저장장치(memory: 90) 및 이들을 통제하기 위한 프로세서(70) 등 운영장치가 미도시된 손목시계 혹은 손목밴드 형태의 측정장치에 구비된다.
통상, 광센서 어셈블리, 온도계, ECG 장치의 일단을 구성하는 단자는 착용자의 신체를 향하거나 접촉되어야하므로 측정장치의 신체접촉면인 저면에 설치되며, 표시장치 및 ECG 장치의 다른 단자는 상부 표면에 잘 노출되거나 접촉되도록 설치된다.
측정을 위한 각종 센서는 아날로그 프론트 엔드(AFE: 12)를 통해 메인보드 내의 다수 요소들로 이루어진 회로장치에 접속된다. 가령, 아날로그 프론트 엔드를 거친 각 센서 신호는 멀티플렉서(MUX: 14) 및 아날로그 디지털 컨버터(ADC: 15)를 통해 프로세서로 전달된다. AFE(12)와 MUX(14)는 다수의 센서를 효율적으로 운영하기 위한 구성이며, 이들을 통해 일차적으로 처리, 통합된 아날로그 신호는 ADC(15)를 통해 디지털 신호로 변환된 상태에서 프로세서(70)로 전달된다.
프로세서(70)는 디지털 시그널 프로세서(DSP: 73)와 마이크로 콘트롤러 유닛(MCU; 71)를 구비하여 통상 일단 DSP(73)를 통해 처리된 결과가 MCU(71)로 입력되어 미리 정해진 처리 프로그램들에 의해 처리된다.
프로세서(70)는 각 센서나 센서와 연관된 트리거 장치를 조절하는 드라이버(17)나 콘트롤러를 운영하기 위한 신호를 전달하는 역할도 하게 되며, 통신장치(80), 표시장치(100), 전원(110)을 운영하는 역할도 담당한다.
여기서 광센서 어셈블리는 본 발명의 특징적 측정부분을 구성하며, 광혈류 측정기 구성에 의해 혈액과 관련된 혈압, 혈당, 산소포화도를 비침습식으로 측정할 수 있다.
ECG 장치, 체온계, 3차원 가속계 등의 구성은 기존에 잘 알려진 구성을 통해 심박 신호, 체원 및 신체 동작이나 운동 상태를 측정할 수 있다.
도3은 본 발명 측정장치의 다른 실시예 구성으로서 광혈류 측정기 기반 구성 부분을 별도로 개념적으로 나타내는 구성도이며, 도4는 본 발명 측정장치의 다른 실시예의 광혈류 측정기 기반 구성 부분으로서 저면에 나타나는 구성을 개략적으로 나타내는 저면도이다.
도3을 참조하면, 여기서 측정장치는 두 세트의 광센서 어셈블리(10: 10a, 10b)를 가진다. 각 광센서 어셈블리는 세 가지 광원(30)에 해당하는 발광다이오드 3개와 이들 발광다이오드의 점멸이나 세기를 조절하는 LED 드라이버(driver), 이들 광원의 빛이 신체부위에 조사된 후 산란, 반사된 빛을 받아서 전기신호를 발생시키는 수광소자(20, 40)로서의 포토다이오드 2개를 구비하고, 수광소자의 출력 신호 처리를 위해 신호를 획득하는 경로에 배치되는 두 개의 트랜스임피던스증폭기(TIA: 11), 프로그래머블 게인 증폭기(Programmable Gain Amplifier : PGA: 13), 아날로그 디지털 변환기(Analog-to-Digital Convertor : ADC: 15)를 구비하여 이루어진다. 위쪽 제1 광센서 어셈블리(10a)를 마스터(master), 아래쪽 제2 광센서 어셈블리(10b)를 슬레이브(slave)로 구분할 수 있다.
각 광센서 어셈블리에서 이들 소자(TIA, PGA, ADC)를 거친 변환된 출력 신호는 공통의 프로세서(70)로 입력되어 맥파로부터 혈압, 산소포화도 및 혈당 측정을 위한 정보를 얻는 처리과정을 거치게 된다. 프로세서(70)는 디지털신호처리기(DSP: 73)와 마이크로 콘트롤러 유닛(MCU: 71)으로 구분될 수 있다. 프로세서(70)는 발광다이오드로 발광 신호를 주는 콘트롤러 혹은 드라이버(LED driver: 17)를 조절하는 역할도 하며, 프로세서에는 저장장치(memory: 90) 및 통신장치(80)가 연결되어 있다.
프로세서는 미리 입력된 프로그램 및 레퍼런스 자료에 의해 각 광원의 점등, 수광소자의 출력 구분, 혈당 산출을 위한 각 파장대별 파형 적분에 의한 신호량 산출과 레퍼런스 자료와의 비교를 통해 얻어진 혈당 관련 주파수대별 차이 신호량 크기를 기초로 산출식에 대입하여 혈당값을 얻는 등의 동작을 수행하게 된다.
도4를 참조하면, 광센서 어셈블리(10)가 두 영역으로 나누어져 있고, 저면 상의 상하에 위치하고 위쪽 광센서 어셈블리(10a)에는 가운데 광원(31, 32, 33)이 세 개, 아래쪽 광센서 어셈블리(10b)에는 가운데 광원(34, 35, 36)이 세 개 설치되고, 광원 좌우에 수광소자(20, 40)가 하나씩 모두 두 개가 설치된다.
위쪽 광센서 어셈블리(10a)에서 광원은 가시광선 영역의 530nm 파장대의 녹색광 광원(31), 660nm 파장대의 적색광 광원(32), 940nm 파장대의 짧은 근적외선광 광원(33)이 상하로 설치되고, 그 좌우 양쪽의 수광소자(20)는 실리콘(Si)웨이퍼 기반의 포토다이오드를 사용한다.
이들 가운데 녹색광 광원은 인체 흡수가 커서 다른 광원의 빛의 세기에서 인체 흡수의 영향을 보정하기 위한 레퍼런스 광원의 역할을 할 수 있고, 적색광 광원과 짧은 근적외선광 광원은 혈압 측정을 위한 맥파 측정 및 맥파 분석에 의한 맥동성분과 PRT 획득에 가장 적절하게 사용될 수 있다.
이들 적색광 및 짧은 근적외선광 광원은 또한 산소포화도를 측정하는 데 가장 적합한 광원 세트를 형성한다. 즉, 적색광(파장 660nm)을 사용하면 산화헤모글로빈에 의한 강한 광흡수가 발생하며, 940nm 파장범위의 짧은 근적외선에 대해서는 헤모글로빈에 의한 강한 광흡수가 발생하여 혈액의 산소농도 혹은 산소포화도를 알 수 있다.
아래쪽 광센서 어셈블리에서는 1200nm 및 1450nm 파장대의 근적외선 광원(34, 35), 1700nm 파장대의 근적외선광의 광원(36)이 상하로 설치되고, 그 좌우 양쪽의 수광소자(40)는 이들 파장대의 광선에 대한 감도가 우수한 인듐갈륨비소(InGaAs) 웨이퍼 기반의 포토다이오드를 사용한다.
잘 알려진 적외선 분광학 데이터에 의하면 이들 광원의 파장과 비슷한 파장대역의 근적외선광에 대해, 가령 940nm 파장대에 ROH, AROH, CH 등의 화학결합이 쉽게 흡수하는 에너지 대역이 겹쳐있고, 1408nm 파장대에 H2O, ROH, ArOH, CH2, CH3 등의 화학결합이 쉽게 흡수하는 에너지 대역이 겹쳐있고, 1688nm 파장대에 CH, CH2, CH3 등의 화학결합이 쉽게 흡수하는 에너지 대역이 겹쳐있다. 글루코스를 비롯한 다수 물질에 대한 이들 파장대에서의 흡수도는 기존 적외선 분광학에 의해 잘 알려져 있으며, 이들 파장대에서의 흡수도의 상호 비율도 거의 일정한 형태를 가지게 된다. 본 실시예에서는 이들 파장대와 비슷한 파장대역의 실용적 적외선 광원을 구비하고, 적외선 분광학의 데이터를 이용하여 혈액 중의 글루코스 농도 혹은 혈당수치를 측정하게 된다.
물론, 실시예에 따라 다른 근적외선 파장대의 광원을 추가하거나, 일부 광원을 제거하여 수를 줄이거나, 다른 파장대의 광원으로 교체하여 광센서 어셈블리를 구성하는 것도 가능하며, 가령 1450nm 파장대의 광원을 1100nm 파장대의 광원으로 대체 설치하는 것도 가능하다. 이런 선택은 혈당과 관련된 광 흡수대를 가져 뚜렷하게 가장 잘 혈당량을 검출할 수 있는 것이 통상적 기준이 되지만, 현실적으로 비용이나 소자 안정성, 상용화 정도 등 개발용이성 및 상용화를 위한 고려가 이루어질 수도 있다.
수광소자를 광원 양쪽에 배치한 것은 수광소자의 감지 능력을 기존의 상용 수광소자의 감지 능력이 충분하지 않을 수 있으므로 숫자를 늘려 전체 신호를 키워 신호 분석을 정확히 할 수 있도록 한다는 의미가 있다.
또한, 혈당 측정기를 손목 밴드나 시계 형태로 착용할 때 약간의 착용 위치 변화가 있을 수 있고, 동맥 위치가 광원 및 하나의 수광소자 위치와 잘 맞지 않게 배치될 수 있으므로 이런 문제를 커버하여 하나의 수광소자라도 반사 및 산란광 신호를 잘 수신할 수 있도록 한다는 의미도 부여할 수 있다.
도5는 도4의 AA선에 따라 자른 단면을 나타내는 측단면도이다.
적색광 광원(32)으로 사용된 LED 위에는 반구형 볼록렌즈(60)가 형성되어 신체부위 쪽으로 조사되는 광의 집속도를 높이고, 수광소자(20)인 포토다이오드 위에는 외부에서 인입되는 광을 집속하기 위해 일종의 집광 렌즈라 할 수 있는 DOE(diffractive optical elements) 렌즈(50)가 설치된다. 포토다이오드는 수광량을 높이기 위해 LED에 비해 넓은 면적으로 설치되며, 이 위에 반구형 볼록렌즈(60)를 설치할 경우 높이가 상당하여 혈당 측정장치의 경소단박화에 어려움이 있기 때문에 DOE 렌즈(50)를 설치한 것이다.
손목 밴드 형태의 혈당 측정장치는 광학적 비침습식 연속 생체 신호 관측기(Optical Noninvasive Continuous Vital Sign Monitoring) 기능 외에 다른 기능부를 추가하여, 가령 디지털 온도계(Digital Thermometer)나 3차원 가속계(3D Accelerometer) 기능을 추가하여 다른 신체 상태나 신체의 운동 상태, 낙상 등을 감시할 수 있고, 이를 생체 신호 추이(Vital Sign Trend)와 연관성을 분석하여 비정상적 변이(Unexpected Fluctuation)를 감지하고 착용자 및 의료담당자에게 경고나 주의신호를 제공할 수 있다.
도3 내지 도5와 관련된 본 실시예에서 광혈류 측정기를 기반으로 한 혈압, 혈당, 산소포화도 위주로 설명이 이루어지고 있지만 이 실시예에서도 도2와 같이
다른 측정 기능부를 추가하여, 가령 디지털 온도계(Digital Thermometer)나 3차원 가속계(3D Accelerometer) 기능을 추가하여 다른 신체 상태나 신체의 운동 상태, 낙상 등을 감시할 수 있고, 이를 생체 신호 추이(Vital Sign Trend)와 연관성을 분석하여 비정상적 변이(Unexpected Fluctuation)를 감지하고 경고장치를 통해 착용자에게 경고를 주거나, 내장된 통신 장치 및 주변의 통신 네트워크를 통해 보호자나 의료담당자에게 상태를 전달하고 주의신호를 제공하는 역할도 할 수 있다.
이하에서는 도6 및 7을 참조하면서 본 발명 측정장치의 기반을 이루는 광혈류 측정기로 측정된 맥파 분석을 통해 혈압을 산출하는 방법 및 원리를 설명한다.
(혈압산출의 방법 및 원리)
본 실시예의 광혈류 측정기 기반의 측정장치를 통한 혈압 측정방법을 살펴보면, 먼저, 혈압 측정 대상자의 팔목에 이 혈압 측정장치를 채우고 전원을 켜서 광혈류 측정 기능을 활성화시킨다. 이로써 지속적으로 혹은 짧은 시간 주기로(단 맥박 주기보다는 충분히 긴 시간 측정을 할 수 있도록) 광원에서 광을 팔목 부분에 조사하여 팔목 혈관을 이용하여 맥파를 측정하여 도1의 (b)와 같은 맥파 파형을 획득한다.
이런 측정에는 비교적 인체 깊이 침투하여 상당량의 반사광이나 산란광을 수광소자로 보낼 수 있고 이를 통해 맥파 신호량에 동맥혈의 혈류량 변화를 비교적 명확하게 나타내고 반영할 수 있는 적색광이나 짧은 근적외선광 광원을 사용하며, 따라서, 도4의 제1 광센서 어셈블리와 같은 구성을 사용할 수 있다.
이런 혈압 측정장치의 맥파를 분석하면 피크와 피크 사이의 시간, 심장 수축에 의해 높아진 혈압을 나타내는 피크와 심장 이완에 의해 낮아진 골짜기 사이의 신호량 차이, 측정 위치에서의 입사파와 반사파 피크 사이의 시간 등을 알아낼 수 있다. 이를 위해 맥파 분석에서는 베이스에 의한 부분은 중요하지 않으므로 DC와 AC를 구분하고, 반사파와 입사파를 분리하여 나타내는 처리 및 분석이 이루어질 수 있고, 변화하는 부분에 대한 맥파의 미분파형을 얻고 분석하는 작업이 이루어질 수 있다. 이런 처리를 위해 기존에 알려진 여러 디지털 신호 처리(Digital Signal Processing :DSP) 기법이 사용될 수 있다.
광혈류 측정기에서 얻어진 맥파 가운데 고점과 저점 사이(Peak-to-Valley)의 맥파 진폭(Pulse Hight:PA=IDIA-ISYS)을 맥압으로 칭하며 혈압 지표(BP Indicator) 가운데 가장 중요한 지표가 된다. 맥압은 통상적으로 혈압을 산출하는 팩터의 가장 중요한 하나로 사용되며, 통상적으로 맥압이 높으면 혈압은 높은 경향을 가질 것이다.
도6은 이런 과정을 통해 상완(팔뚝), 팔목, 손가락에서의 전체 맥파(입사파와 반사파의 중첩에 의한 복합적 형태의 파형)의 피크 부분의 형태 및 이를 입사파(피크가 큰 단순 파형)와 반사파(가장 피크가 작은 단순 파형)로 구분한 형태의 한 예를 나타내고 있다. 구분된 입사파와 반사파 파형을 이용하여 두 파의 피크 사이의 시간 혹은 반사파가 돌아오는데 걸리는 시간(Pulse return time: PRT)를 산출한다.
ECG와 PPG의 PTT를 이용하여 혈압을 예측할 수 있다고 할 때, PTT와 PRT(압축기 입사파 피크와 반사파 피크 사이의 시간)은 모두 혈관(동맥)의 경직도 혹은 탄력성에 의존하는 바가 크고, 이들 사이의 비례관계를 전제하고 고려하면 ECG없이 PPG 파형을 분석하여 혈압을 산출할 가능성이 도출된다.
가령, 종래 ECG를 이용하는 혈압측정에서 D를 심장으로부터 혈압측정 위치(주로 상완) 사이의 거리라고 하면 맥파의 전파속도(PWV)는 이 거리 D를 PTT로 나눈 값이고, PWV는 건강한 20-30대 6m/sec, 60대 14m/sec 정도로 동맥의 경직도 혹은 경화도가 커지면 증가한다. 단순 이론상 PRT = 2d / PWV = 2d/D * PTT로 나타내질 수 있고, PRT는 PTT와 비례하고 PWV와 반비례 관계를 이룰 수 있다.
이런 가능성에 의거하여 실험을 통해 데이터를 얻고, 이를 통해 PTT와 PRT 사이의 연관성을 직접 확인할 수 있었다.
현실적인 측정 범위에서 PRT가 짧아져 심박 주기(Beat Interval)의 1/3에 근접하면 입사파와 반사파 파형 중첩(wave overlap)이 심해져 혈류저항이 높아지고 결과적으로 혈압을 상승시키는 효과가 있다.
따라서, 이상의 내용을 고려하면 기본적인 혈압 요소(factor)로서 맥압과 PRT를 이용하여 앞서의 수학식 1과 같은 혈압의 기본산출식을 얻을 수 있다.
(수학식 1) BP=a*PA+b*PRT
아울러 이 실시예에서는 제1 광센서 어셈블리에서 녹색광원을 적색광원 혹은 짧은 근적외선광원과 함께 가동하여 팔목 부위에서의 피부색 등의 영향에 의한 광흡수도를 측정하고, 맥파 파형에서 또한 DC성분과 AC성분의 상호 비율을 산출하여 이 값을 통해 팔목 부위의 피부, 근육조직, 혈관벽, 체액 등 맥파의 베이스 성분에 영향을 미치는 요소들에 의한 혈압값의 변이를 보정할 수 있게 한다. 이런 보정은 개개인의 신체적 특성이 통상적 광혈류 측정기의 측정에 미치는 영향을 상쇄하도록 하여 정확한 혈압값을 얻을 수 있도록 하기 위한 것이다.
즉, 본원 발명은 광혈류 측정기를 기반으로 하며, 신체에 조사된 빛이 신체 각 부위에서 흡수, 반사 혹은 산란되어 반사 및 산란된 빛은 상당 부분이 수광소자에 투입되도록 이루어진다. 따라서, 수광소자에 투입되는 광은 측정 대상자의 신체적 특성에 따라 달라질 수 있다.
본 발명의 혈압 측정장치는 범용적으로 혈압을 측정할 수 있도록 생산되며, 개개인의 특성에 맞추어진 것이 아니라고 할 때, 이런 측정대상자의 신체적 특성 요소를 고려하지 않으면 측정되고 계산된 혈압값은 측정 대상자 개인의 정확한 혈압을 나타내지 못할 수 있다.
도7은 광의 파장대별 인체 부위의 층구조에 대한 침투 깊이 혹은 광흡수도가 서로 다른 것을 설명하기 위한 개념도이다.
도6을 참조하면, 개인차를 고려하기 위해 신체 조직에 비교적 잘 흡수되는 녹색광을 이용하여 측정 대상자 개인의 신체적 광흡수(GI)도 특징을 나타내는 레퍼런스로 사용할 수 있는 측정을 하고, 이를 혈압 계산에 반영토록 한다. 즉, 광흡수도가 크면 적색광이나 근적외선광에 대한 흡수도도 클 것이고 반사광이나 산란광으로 수광소자에 투입되는 광은 약화되어 결국 광혈류 측정기에서 표시하는 (상하 반전된) 신호량 수준을 높이게 될 것이므로 혈압값 계산에서 이런 영향을 감하여 혈압값을 낮추어 표시하도록 해야 한다.
그리고 도1을 다시 참조하면, 측정 대상자가 몸집이 크고 뚱뚱한 사람이라면 광원에서 신체로 들어가고 반사나 산란되어 나와 수광소자로 들어가는 빛의 양도 줄어들고, 신호량에서 베이스 수준(DC 수준)을 높이게 할 것이고, IR(IDIA / ISYS) 값도 높게 할 것이며, 측정된 혈압값을 실제값보다 높게 할 가능성이 있다. 이때 IDIA는 이완기의 신호값 세기, ISYS는 수축기의 신호값 세기이며, IR값은 이들 사이의 비율이다. 따라서, 이런 경우 베이스 성분을 고려하면 광흡수도를 반영할 때와 마찬가지로 혈압값을 낮추어 표시하도록 해야한다.
이상의 신체적 광흡수도(GI) 및 신체 특성에 의한 베이스 및 맥동성분 사이의 비율 IR(IDIA / ISYS)에 의한 변이 가능성을 모두 반영하면 혈압 산출식은 위에서 언급된 수학식 1과 같은 기본산출식에서 수학식 2 혹은 수학식 2의 우변에 상수 e를 더한 수학식 3과 같은 형태가 될 것이다.
(수학식 2) BP=a*PA+b*PRT+c*GI+d*IR
(수학식 3) BP=a*PA+b*PRT+c*GI+d*IR+e
한편, 이들 수학식의 비례상수와 관련하여 이상의 언급을 고려하면 가령, 비례상수 a는 맥압이 높으면 통상 혈압도 높게 되므로 양수가 될 것이며, 혈관경직도가 높을수록 혈압은 높아지는데 PRT는 혈관경직도가 높으면 작아지므로 비계상수 b는 음수값이 될 것이고, 녹색광 흡수도(IG)가 높거나 베이스의 비중(IR)이 높은 경우 혈압은 실제값보다 높게 나올 수 있으므로 이와 관련된 비례상수 c, d의 값은 음수가 되는 것이 통상적일 것이다.
이런 혈압 산출식은 본 발명의 혈압 측정장치에 일종의 프로그램 형태로 내장되어, 맥파 분석 결과와 녹색광 광흡수도 측정 결과를 이 산출식에 넣으면 미리 정해진 비례상수나 상수에 의해 혈압값을 산출하게 된다.
이때 산출식의 비례상수나 상수는 다양한 측정 대상자를 상대로 다수 회에 걸쳐 혈압 및 관련 팩터들(PA, PRT, GI, IR)을 측정하고 위의 산출식에 이들을 대입하여 가장 적절한 비례상수 값을 도출하는 방식으로 구해질 수 있다. 이때, 혈압은 정밀한 다른 정밀한 혈압계로 혈압을 측정하고, 동시에 본 발명의 혈압계에 채택되는 것과 같은 광혈류 측정기로 관련 팩터들을 측정하여 이들 값을 산출식에 넣어 다수의 식을 만들고 이 식들을 동시에 가장 근사적으로 만족시킬 수 있는 비례상수를 찾는 과정을 거치게 된다.
이런 과정은 기존에 알려진 다변량통계기법 등 통계적 기법 및 컴퓨터 시뮬레이션을 통해 이루어질 수 있고, 근래에는 이런 유형의 자료를 바탕으로 기계학습이나 딥러닝을 통해 이런 기법을 체화시켜 얻는 인공신경망(artificial neural network) 알고리즘 적용 프로그램을 통해 테스트 데이터인 이상의 측정값 자료(혈압 및 관련 팩터들)를 검토(학습)하도록 함으로써 도출될 수 있다.
이런 과정을 통해 본 발명에서는 오직 PPG만을 이용하여 광학적 방법으로 혈압을 산정할 수 있다는 아이디어 혹은 패러다임을 정당화시키고 있으며, 광학적 방법을 이용함에 있어서의 광흡수도나 베이스 등의 부차적 요소의 혈압 값에 대한 영향을 적절한 표준화를 이용하여 제거하였다.
이때 이용되는 인공신경망은 딥러닝을 통해 스스로 문제를 해결하는 방법을 얻는 인공지능에서의 논리적 토대가 되는 것으로, 근래에 많이 개발되며, 그 상세한 부분에 대한 설명은 여기서는 생략하기로 한다.
물론 실시예에 따라서는 이상 실시예와 달리 측정장치를 통해서 얻은 맥압에 비례상수 a를 곱하고 측정장치를 통해서 얻은 PRT에 비례상수 b를 곱한 것을 더하여 혈압이 산출되도록 기본 산출식(BP=a*PA+b*PRT)에 인체 광 흡수도 영향만 포함시킨 산출식(BP=a*PA+b*PRT+c*GI)을 사용하거나, 인체 광 흡수도 대신 맥파의 베이스에 의한 영향만을 반영하도록 산출식(BP=a*PAP+b*PRT+d*IDIA/ISYS)을 이용할 수 있다.
이런 산출식도 일종의 내장 프로그램 형태로 본 발명의 측정장치에 내장, 설치되어 필요한 요소(펙터)로서 맥압(PA), PRT, GI, IR(IDIA/ISYS) 등이 측정되면, 측정장치의 내장 프로세서가 산출식에 그 측정값을 넣어 혈압을 산출하도록 측정장치가 이루어질 수 있다.
이하에서는 도8 및 도9를 참조하면서 본 발명 측정장치의 기반을 이루는 광혈류 측정기로 측정된 맥파 분석을 통해 혈당을 산출하는 방법 및 원리를 설명한다.
(혈당 산출의 방법 및 원리)
글루코스를 비롯한 다수 물질에 대한 이들 파장대에서의 흡수도는 기존 적외선 분광학에 의해 잘 알려져 있으며, 이들 파장대에서의 흡수도의 상호 비율도 거의 일정한 형태를 가지게 된다.
본 발명에서는 이런 적외선 분광학의 데이터를 이용하여 혈액 중의 글루코스 농도 혹은 혈당수치를 측정하게 된다. 단, 혈액은 물과 혈장 혈구를 비롯하여 매우 다양한 물질을 포함하는 것이며, 특히 광혈류 측정기를 이용하는 경우, 광원에서 나온 빛이 혈액에 이르기까지의 피부 및 기타 인체 조직도 있으므로 혈당을 측정할 때마다 이들 모두를 대상으로 포함하는 적외선 분광을 실시하여 혈당의 농도를 측정하는 것은 이들 물질에 대한 기본 데이터를 감안하여야 하고 매우 많은 노력이 필요한 것이다.
따라서, 본 발명에서는 적외선 분광학을 이용하되 좀 더 간단한 분석을 위해 측정대상 혈액을 절대적으로 분석하지 않고, 혈당을 제거한 상태의 표준혈액 혹은 기준혈액을 기준으로 베이스 상태의 대상물(레퍼런스)에 적외선 분광을 실시하여 기준 데이터 혹은 기준 그래프를 얻고, 분석 모듈에 미리 데이터로 입력시킨다.
그리고 레퍼런스 대상물과 다른 조건을 최대한 근사하게 유지하면서 혈당을 포함한 측정대상자의 혈액에 대한 적외선 분광을 실시하여 대상자 관련 데이터 혹은 대상자 관련 그래프를 얻는다.
여기서 대상자의 혈당량 측정은 광혈류 측정기 방식을 이용하여, 인체 부분에 적외선광을 조사하고 반사 및 산란되어 나온 광을 수광소자가 받아서 분석하여 이루어지는 것인데, 측정시에 순간적 반사 및 산란 광의 세기는 혈류량에 따라 변화하고, 혈류량은 심장 박동에 의한 맥파의 시간에 따른 변동 양상을 따라 변화한다.
그러나, 맥파의 변동 향상에 불구하고 혈당량은 일정한 것이므로 안정된 값을 취하기 위해 여기서의 혈당량 측정에서는 순간적인 반사 및 산란광의 세기를 이용하지 않고, 맥파가 안정적이고 주기적인 형태를 가지는 상태를 전제하여 순간 신호량 가령 광흡수량을 한 주기에 대해 적분한 적분값이나 그 시간평균값으로서의 신호량을 사용하게 된다(이하 단순히 '신호량'이라 함은 적분값의 의미로 사용하기로 한다).
먼저 혈당이 제거된 표준혈액에 대한 측정을 위해 본 발명의 혈당계가 측정할 대상물을 준비한다. 그런데, 인체의 손목에 혈당계를 설치하는 경우를 생각할 때 혈당계에서 조사한 근적외선광은 피부, 피하조직 등 베이스 성분에 영향을 끼치는 물질로 이루어진 경로를 지나게 된다. 그러므로 무채혈 방식 혈당 측정을 이루기 위해서는, 표준혈액 자체만에 대해 근적외선광을 조사하고 반사 및 산란광을 받아 측정을 하여 얻은 값(신호량)을 레퍼런스로 사용할 수 없다.
따라서, 이상적으로는 인체의 측정 대상 부분에 표준혈액을 적용하여 레퍼런스 측정값(신호량)을 얻는 것이 좋다. 그러나, 인체에 표준혈액을 적용하는 것이 현실적으로 가능하지 않아 인체의 측정 대상 부분과 비슷한 조건을 가진 더미를 만들고 이 더미에 표준혈액을 적용하여 베이스를 구성하도록 하고, 이를 대상으로 레퍼런스 측정값을 얻게 되다. 이런 더미는 인체와 성분상 유사성이 많은 돼지의 피하지방이 적은 신체부위를 이용하여 만들 수 있다. 이 부위의 혈관에 원래의 혈액을 제거하고 표준혈액을 주입하여 인체 혈관과 유사한 상태를 조성할 수 있다.
이 더미에 적외선 분광법을 적용하여 레퍼런스 값을 측정을 하기 위해 먼저 사용하려는 근적외선 대역을 포함하는 근적외선광을 더미에 조사하여 수광소자로 반사 및 산란광을 받아들이고, 분석모듈을 이용하여 파장대별 신호량의 크기 데이터를 얻고 저장한다. 이때 맥파 형태의 변동은 없으므로 일정한 순간 신호량을 단순히 통상 맥파 주기(시간)로 곱한 값을 적분값으로서의 신호량으로 볼 수 있다.
데이터는 본 발명의 PPG 방식의 혈당계로, 측정하는 파장대별 복수 광원에 대한 신호량 수치 형태로 이루어질 수도 있지만 보다 바람직하게는 사용하려는 대역을 포함하는 연속적 파장범위(혹은 매우 세분화된 파장대)에 대해 신호량 수치를 이어가는 형태의 연속적인 그래프 곡선을 이루도록 한다. 이때, 연속적인 파장에 대한 측정을 위해서는 근적외선 스펙트로메터(NIR spectrometer)를 사용할 수 있다.
그래프 곡선은 수광소자 즉 포토다이오드의 감지 특성(파장대별 감도)에 많이 의존하며 측정하려는 파장대별 신호량의 비율은 단순 비례관계와 같은 단순한 선형관계를 이루지 않을 수 있다. 이런 측면에서 근적외선 스펙트로메터를 사용할 때에는 측정을 위한 수광소자는 본 발명 혈당계의 수광소자와 같은 특성의 수광소자를 이용하는 것이 적절하다.
레퍼런스 커브(그래프 곡선)을 만들 때에는 근적외선 스펙트로메터 등 측정장치의 광원의 광량을 조절하는 등의 방법을 통해 결과적으로 얻어지는 신호량을 조절하면서 신호량의 크기별로 다수의 레퍼런스 커브를 작성하여 혈당량 산출에 이용할 수 있다. 인접한 두 신호량에 대한 레퍼런스 커브를 작성하면 두 신호량 사이의 신호량에 대한 레퍼런스 커브는 추정적으로 작성하는 것이 가능하며, 통상적으로 알려져 있는 이런 작업을 통해 모든 신호량 수준에서의 레퍼런스 커브를 얻는 것도 가능하다. 이런 작업에는 통계적 기법이 적용될 수 있고, 인공신경망을 이용한 도출도 가능하다. 이런 방법은 혈당계 내의 분석모듈에 내장되는 어플리케이션 프로그램을 이용하여 이루어질 수 있고, 이에 필요한 기초 자료는 데이터로서 혈당분석 모듈을 구성하는 저장장치에 저장되어 이용될 수 있다.
도8은 이러한 레퍼런스 커브의 예를 나타내는 도면이다.
레퍼런스 커브는 베이스를 이루는 다양한 구성 물질에 의한 근적외선 영역에서의 신호량들의 총합이며 각 물질에 의한 신호량 피크들이 모두 내포된 것이라 볼 수 있다. 레퍼런스 커브를 정확하고 정교하게 만들기 위해 더미에 근적외선 대역에서 파장을 바꾸어가면서 신호량 측정을 하는 작업 외에 이미 알려진 구성 물질 각각에 대한 근적외선 파장에 따른 신호량 변화 곡선의 피크 양상도 확인하여 측정이 정확히 이루어지고 있는지 확인, 검증하는 작업도 동반될 수 있다.
물론, 레퍼런스 값은 레퍼런스 커브뿐 아니라 측정하려는 파장대별 신호량 값(수치)의 세트와 같은 개별 수치(discrete value) 세트 형태의 데이터가 될 수 있으며, 레퍼런스 값은 이상과 같이 다양한 형식(그래프 곡선이나 단순 수치 데이터 등)으로 혈당분석 모듈의 저장장치에 기초 자료로 입력되어 혈당량 산출 작업에 사용될 수 있다.
레퍼런스 값을 얻어 측정의 기준을 준비한 상태에서 다음으로 혈당량 측정 대상자의 신체부위에 대한 측정을 한다. 측정에는 본 발명의 혈당계를 사용하며, 혈당계를 이용하여 내장된 복수 광원과 관련된 각 파장대별 신호량을 얻는다.
그리고, 각 파장대별로 측정 대상자의 신호량에서 레퍼런스 신호량을 감하여 각 파장대별 차이 신호량을 얻는 연산을 한다.
이런 연산의 결과는 통상 도9와 같은 형태의 피크 그래프로 나타낼 수 있다.
이때, 이상적으로 혈당과 관련되지 않은 파장대에서 레퍼런스 값을 이루는 신호량과 측정 대상자에 대해 측정한 신호량은 정확히 동일하여 0의 값을 가져야 한다.
그런데 더미와 인체의 정량적 정성적 측면에서의 차이점들로 인하여 같은 측정조건에서 얻은 신호값이라도 레퍼런스 광원에 대한 차이 신호값이 0이 되기 어렵다. 레퍼런스와 측정 대상에 대한 측정장치가 정성적으로는 동일성이 있지만 가령 스케일이 다른 경우, 광원의 광량의 세기, 수광소자의 감도 등이 신호량의 크기에 영향을 미칠 수 있다.
따라서, 차이 신호량을 얻기 위해서는 레퍼런스 대상물(더미)과 측정 대상자에 대하여 같은 측정조건(가령 광원에 같은 출력을 인가하는 조건)에서 얻은 신호값을 이용하지 않고, 레퍼런스 광의 파장대에서 측정 대상자에 대해 본 발명의 혈당계로 측정한 결과로 얻은 신호량과 같은 신호량을 갖는 레퍼런스 커브나 레퍼런스 신호량 세트를 선택하여 혈당계의 복수 광원과 관련된 각 파장대의 차이 신호량을 얻고, 이를 혈당량 산출에 이용한다.
다시 말하면, 본 발명의 혈당계를 이용하여 같은 조건으로 더미와 혈당 측정 대상자의 각 파장대별 신호량을 검출하고, 각 파장대별 차이 신호량을 도출하여 이들 값이 모두 혈당량과 관계된다고 보고 혈당량을 산출하는 것은 더미와 측정 대상자의 신체적(물성적) 차이 혹은 베이스의 차이를 무시하는 것이므로 문제가 있으며, 이런 경우, 혈당과 관련성이 없는 파장대의 광을 이용하여 신호량의 수준을 맞추는 작업이 요청된다.
이를 위해 본 발명의 측정장치에는 서로 다른 근적외선 영역의 광을 발생시키는 복수 광원과 함께 인체 베이스 부분에 의한 광흡수가 쉽게 이루어지는 가시광선 영역의 광을 발생시키는 광원, 가령 녹색 광원이 제1 광센서 어셈블리에 레퍼런스 광원으로 더 설치되어 있다. 이때 베이스 부분은 앞서도 개념적으로 잠깐 언급하였듯이 혈당 외에 신호량 크기에 영향을 미치는 부분을 총괄적으로 나타내는 것으로 생각할 수 있다.
녹색광은 혈당과 관련된 화학결합에 대하여 별다른 흡수도를 나타내지 못하지만 베이스를 구성하는 물질들에 의한 반사도 혹은 흡수도의 변동폭이 커서 베이스에 의한 신호량 변동을 인식하고 각 파장대의 신호량을 보정하는 작업에서의 기준이 될 수 있다.
가령, 앞에서 복수 광원에 대해 광원의 광 세기 혹은 광원에 인가되는 출력 레벨을 달리하면서 광원의 출력별로 레퍼런스 커브(연속적 형태)나 개별 레퍼런스 신호량 세트(비연속적인 특정값들) 형태로 레퍼런스 신호량 데이터를 얻을 때, 녹색 광에 대해서도 이들 출력 레벨별로 레퍼런스 신호량도 얻는다. 그리고, 녹색 광에 의한 측정 대상자 신체부위에 대한 신호량 값도 얻어 레퍼런스 신호량과 대상자 신체부위에 대한 신호량을 대등한 수준이 되는 레퍼런스 신호량을 찾는다. 다음으로 이런 레퍼런스 신호량을 나타내도록 하는 출력 레벨을 찾고, 이런 출력 레벨을 적용했을 때의 복수 광원 각각에 의한 파장대별 레퍼런스 신호량 세트를 찾는다. 그리고 이것을 본 발명의 혈당 측정장치에 의해 측정 대상자 신체부위에 대해 측정한 파장대별 신호량 세트와 비교한 차이 신호량 세트를 얻게 된다.
파장대별 레퍼런스 신호량 조절(선택)은 앞서 언급된 기초 자료를 도출할 때 녹색 광에 대한 레퍼런스 신호량도 도출하고, 이렇게 얻은 기초 자료를 이용하여 녹색 광에 대한 적정한 레퍼런스 신호량과 연관된 각 파장대별 레퍼런스 신호량을 채택하는 과정을 통해 이루어질 수 있다.
물론, 이런 작업은 혈당분석 모듈 내의 내장된 어플리케이션 프로그램을 통해 자동적으로 이루어질 수 있을 것이다.
이상의 과정을 통해 각 파장대별 차이 신호량을 얻은 상태에서는 이 차이 신호량의 크기를 이용하여 측정 대상자의 혈당량을 산출할 수 있다. 이를 위해서는 사전 작업으로 기초 자료의 하나로서 혈당량의 변화에 따른 차이 신호량의 연관 관계를 임상이나 실험을 통해 얻을 수 있다.
즉, 다양한 혈당량의 혈액에 차이 신호량을 획득하고, 이들 다중회귀분석이나 인공신경망을 이용하는 등의 방법으로 혈당량과 차이 신호량 사이의 연관관계를 얻어 차이 신호량을 얻으면 분석 모듈에서 바로 혈당량을 산출하도록 할 수 있다.
이때 혈당량 산출을 위해 차이 신호량은 어느 파장 대역에서의 차이 신호량을 선택할 것인가가 문제될 수 있다. 이상적으로 어느 파장 대역의 차이 신호량을 선택하여도 동일한 혈당량이 산출되어야 할 것이다.
그러나, 파장 대역별 차이 신호량에 의해 얻어지는 혈당량이 서로 다르게 될 가능성이 있다. 이는 측정 대상자에 대한 혈당계의 신호량 측정값이 처음부터 잘못되거나 혈당 외의 요소가 개입되어 혈당량 측정에 적합하지 않은 상태가 되었기 때문일 수 있다. 이런 경우, 정확한 혈당량 산출이 어렵게 된다.
따라서, 정확한 혈당량 측정을 위해 본 발명에서는 혈당량 산출 전에 파장대별 차이 신호량 사이의 상호 비율을 검증하는 단계를 더 가질 수 있다.
서로 다른 근적외선 파장대의 광을 조사하는 광원의 숫자가 많을수록 다양한 상호 비율 검증이 이루어질 수 있으므로 상호 비교를 통해 정확한 혈당량 측정을 확보할 가능성이 커진다. 그러나 장치 제작의 비용 효과를 고려하여 본 실시예의 광원 숫자는 혈당 검출에 특화된 파장 대역의 3개 혹은 4개 정도의 한정된 숫자로 하고 있다.
즉, 통상 적외선 분광을 위해서는 연속되는 파장의 광을 조사하는 광원을 이용하지만, 여기서는 광학적 구성을 단순화하고 효율적으로 신호를 감지하여 분석하기 용이하도록 혈당에 대해 특이성을 가지는, 혹은 혈당 관련 물질 내의 화학결합에 대해 흡수가 쉽게 그리고 안정적으로 이루어질 수 있는 갯수의 적외선 광원을 선택하여 측정을 실시한다.
수광소자 역시 이들 적외선광에 민감하게 만들어진 파장별 복수 수광소자를 사용할 수 있다. 물론 단일 특성의 수광소자를 이용하면서 시분할 방법으로 특정 파장대의 광에 대한 대상자 혈액의 흡수도를 측정하는 것도 가능하다. 가령 분석모듈 자체가 프로그램에 의해 제어되면서 4개의 광원 및 수광소자를 조절하여 제1 파장의 광원을 점등시킬 때에 수광소자가 감지하는 빛은 제1 파장광에 의한 반사 혹은 산란광임으로 기록하도록 하며, 일정 시간씩 제2, 제3, 제4 광원을 가동하고 그 시간 내에서 수광소자가 감지하는 빛은 차례로 해당 파장대의 광에 의한 반사 혹은 산란광임을 기록하도록 한다.
이들 광원 외의 주변광에 의한 영향을 보정하기 위해 4 개의 광원을 끈 상태에서의 수광소자의 감지 광 세기를 측정하고, 이를 각 광원 조사시의 감지 세기에서 그 감지 광 세기를 빼서 보정된 순수한 파장별 광세기를 얻는 방법을 사용할 수도 있다.
한편, 본 발명 측정장치의 기반을 이루는 광혈류 측정기로 측정된 맥파 분석을 통해 산소포화도를 산출하는 방법 및 원리는 이상에서 별도로 설명되지 않지만, 기본적으로는 혈당 측정과 방법 및 원리를 공통으로 한다고 볼 수 있다.
단, 혈당을 검출하기에 적합한 적외선 파장대와 산화헤모글로빈 및 헤모글로빈을 검출하기에 적합한 광선의 파장대가 차이가 있고, 레퍼런스 커버나 레퍼런스 데이터를 작성하기 위해 더미에 혈당 0의 기준혈액을 사용하는 대신 완전히 환원된 헤모글로빈을 가진 기준혈액 및 각 산소포화도의 혈액을 사용하는 등에서 차이가 있을 수 있다.
도10은 본 발명의 측정장치 내에 포함되는 통신장치와 연결되어 측정장치와 함께 이 측정장치 착용자의 건강, 구조, 치료를 지원하는 지원시스템을 개념적으로 나타내는 구성개념도이며, 도11, 도12는 측정장치가 개인 정보단말기 및 분포된 억세스 포인트들을 통해 다중적으로 공공 통신망에 접속되는 경로 방식을 나타내는 개념도이다.
이들 도면을 참조하면, 측정장치(210)는 통신장치를 포함하는 일종의 웨어러블 컴퓨터를 이루어 자체가 직접 네트워크를 통해 이 측정장치를 제공하고 통신장치를 통해 제공받는 착용자의 필요한 신체 및 상태 데이터를 관리하는 운영 서버(250)와 연결될 수 있지만 대부분의 사람들이 스마트폰 등 개인정보 단말기(221)를 지참하는 경우가 많으므로 기능 중복의 필요가 없으므로 여기서는 통신장치는 블루투스 통신을 통해 착용자의 스마트폰과 연결되고 데이터나 신호를 주고받는 것으로 한다.
개인정보 단말기(221)에는 측정장치(210)와의 연계를 위한 어플리케이션 프로그램을 구비하며, 블루투스 통신을 통해 주기적으로 혹은 일상적이지 않은 이벤트를 감지할 때마다 측정장치의 측정 데이터를 받고, 어플리케이션 프로그램에서 정해진 대로 입수한 측정 데이터를 자체 메모리에 내장하는 한편, 공공 통신망(240)을 통해 운영 서버(250)로 전달한다.
요양원이나 병원 등의 한정된 공간에서는 스마트폰과 같은 개인정보 단말기 대신에 실내를 포함하여 구역마다 조밀하게 설치되어 블루투스 메시 네트워크를 이루는 고정형 릴레이 노드(223)가 사용될 수 있다.
즉, 측정장치(210)와 운영 서버(250)는 다양한 공공 통신망(240) 및 사설 통신망을 이용하여 연결될 수 있다. 공공 통신망으로는 와이파이 등 무선 인터넷 통신망을 포함한 인터넷 통신망이나 휴대전화 통신망이 사용될 수 있고, 사설 통신망은 병원이나 요양원 등에 앞서 잠시 언급한 고정형 릴레이 노드(223) 등으로 이루어진 블루투스 메시 네트워크 등을 예시할 수 있다.
개인정보 단말기(221)나 고정형 릴레이 노드(222)는 블루투스-와이파이 게이트웨이(Bluetooth-WiFi Gateway: 230)로 측정장치의 측정 데이터를 전송하고, 여기서는 인터넷 공중 통신망(240)을 이용하여 운영 서버(250)로 측정 데이터를 전달하게 된다.
넓게 볼 때에는 개인정보 단말기, 고정형 릴레이 노드, 블루투스 와이파이 게이트 웨이 등이 모두 신호를 중계하는 통신용 노드, 통신용 억세스 포인트의 일종으로 생각될 수 있다. 이런 억세스 포인트는 입수된 신호를 단순히 전달할 뿐 아니라 수신감도를 높이기 위한 신호 증폭이나 변환의 역할을 할 수도 있고, 통신망 구성을 위해 각 지역에 다수로 설치, 분포될 수 있다. 억세스 포인트(AP)는 공중 전파가 차폐되기 쉬운 큰 건물의 실내에도 다수 설치될 수 있으며, 자체의 고유 위치에 대한 정보를, 전달되는 신호와 함께 전달하여 네트워크에 데이터, 신호가 접수된 측정장치의 위치를 판단하는 정보로서 작용할 수 있다.
측정장치나 개인용 정보단말기의 고유정보, 억세스 포인트의 위치 등 고유 정보를 전달하는 방법으로서 이들에 대해 보조적으로 고유 정보를 송신할 수 있는 RFID 태그를 설치하거나, NFC 칩을 설치하고, 통신망에 연결되면서 이들의 정보, 데이터를 수신할 수 있는 리더기를 설치하고, 각 리더기는 통신망을 통해 측정장치 데이터와 함께 연관된 고유정보도 운영 서버로 전달하는 방법이 사용될 수 있다.
이상에 설명된 형태 외에도 억세스 포인트로 이루어지는 통신망 및 통신방법은 매우 다양한 형태를 가질 수 있다.
하나의 예시로서 도11에 도시된 것과 같이 다수의 블루투스 노드(220)들이 인접한 블루투스 노드(220)들과 인체 뉴런처럼 다양한 경로로 연결되어 블루투스 메시를 이루고 수신 자료를 통신망 내의, 여기서는 블루투스 와이파이 게이트웨이(230)와 같은 해당 지역 거점으로 측정장치가 측정한 데이터 신호들을 전달하는 형태를 가질 수 있고,
도12와 같이 하나의 지역 거점 블루투스 와이파이 게이트웨이(230) 주변에 다수의 고정형 릴레이 노드(223)와 같은 억세스 포인트가 설치되고, 주변의 측정장치에서 직접 혹은 개인정보 단말기(221)로부터 측정 데이터 신호를 접수할 경우, 이들 억세스 포인트 사이에는 신호 전달은 단선적으로 이루어지는 경우와 가외성을 가지고 복수 경로로 이루어지는 경우가 혼재된 블루투스-하이브리드 토포로지(Hybrid Topology)타입을 이루고, 결과적으로는 모두 블루투스 와이파이 게이트웨이(230)로 측정 데이터 신호가 모이도록 하는 형태도 가질 수 있다.
이런 억세스 포인트간의 통신에는 유선과 무선 모두가 가능하며, 지그비 등 통신방법이 사용될 수도 있다.
신호 전달을 통해 지역 거점으로 전달된 측정 데이터 신호는 통신망 대개는 공공 통신망(240)을 통해 운영 서버(250)로 전달되고, 운영 서버(250)는 이들 측정 데이터와, 측정 데이터에 연관된 고유 정보, 억세스 포인트의 위치 정보를 받아 베어 데이터와 베어 데이터를 가공한 이차 데이터를 데이터 베이스에 그 착용자와 관련하여 저장한다.
이런 과정에서 운영 서버(250)를 운영하는 기관에서 분석프로그램에 의해 베어 데이터와 이차 데이터를 일정 기준과 비교, 분석하고, 비교 분석 결과에 특이점이 있는 경우, 필요에 따라 공공 통신망(240)이나 별도 통신망을 통해 측정장치(210)를 착용한 개인, 개인의 등록된 연락처로서 보호자나 의료기관(260), 긴급구조센터 역할을 하는 소방서(270)나 경찰서(280)와 같은 관공서에 통지, 경고를 할 수 있다. 물론, 주치의나 연관된 의료기관에는 특이성이 없어도 관리차원에서 지속적으로 측저 데이터가 전송되어 기록되게 할 수 있다. 경고와 함께 현재 필요한 처치나 요구되는 조치, 바람직한 대응요령 등을 프로그램에 따라 함께 전송하는 것도 가능하다.
이런 신체 정보 데이터를 통한 개인의 신체 이상 파악이나 관리는 다양한 형태의 프로그램으로 현재 다양하게 개발되고 있으며, 이에 대한 구체적인 내용은 여기서는 생략하도록 한다.
본 발명의 지원시스템에서는 본 발명의 측정장치를 통해 착용자의 일정 시점에서의 체온, 심박신호 형태, 혈압, 산소포화도, 혈당, 맥박수, 호흡수 뿐만 아니라 이들 값의 시간에 따른 변화 형태, 트랜드를 확인할 수 있고, 3차원 가속계에 의한 착용자의 운동상태나 움직임 등도 함께 알 수 있어서 본 발명 이외의 다른 모바일 타입 혹은 웨어러블 타입의 측정장치를 이용하는 경우에 비해 착용자 상태의 정상여부 및 문제점을 더욱 신속하고 정확하게 판단할 수 있고, 오류로 인한 시행착오에서 오는 비용 및 노력을 절약할 수 있다.
가장 긴급하게 착용자의 여러 신체 상태, 이력 및 운동 상태, 이력 데이터를 운영서버 등에 내장된, 측정 데이터 비교, 분석을 통해 착용자 상태를 판정하는 프로그램이 종합적으로 판단하여 낙상, 인슐린에 의한 저혈당 쇼크 등 혈당에 의한 쇼크, 저혈압이나 고혈압에 의한 쇼크, 뇌졸중 의심 상태 등 비상상황이 예측되는 경우, 미리 등록되거나 공공적으로 운영되는 관공서나 기관을 통해 신속한 구조 활동을 요구할 수 있고, 등록된 인적 사항 및 신체 상태, 위치 정보에 대한 정보를 주어 구조 및 응급처치에 도움이 되도록 할 수 있다.
또한, 구조된 측정장치 착용자가 의료기관으로 운송되는 경우, 의료기관에 진단, 처치에 필요한 기본 신체 상태 데이터 및 병력과 같은 등록된 데이터를 제공하여 별도의 다수의 검사를 없애거나 줄인 상태로 빠르고 경제적이며, 의료기관의 환자 처리 용량 능력을 절약할 수 있는 진단, 치료 등의 처리가 이루어질 수 있도록 한다.
운영 서버 및 이를 운영하는 기관은 통상 본 발명의 측정장치를 착용자에게 대여나 판매 형태로 제공하고, 인적 사항이나 의료, 구조에 필요한 기초 병력, 주의점 등을 등록하고, 측정장치의 전송된 각종 측정 데이터를 보관, 분석하면서 이를 통해 건강 관리나 요양 서비스 업무에 대한 서비스 비용을 받는 업체가 될 수 있으며, 이는 공공 서비스 기관에서 이루어질 수도 있다.
이런 운영 기관에서는 오랜 기간에 걸쳐 지속적으로 전송되는 그 착용자의 신체 상태 측정 데이터를 평가하여 등록사항을 업데이트하면서 가장 적절한 상태로 관리할 수 있다.
이런 정리된 데이터가 다수 인원에 걸쳐 누적되면 사업적으로는 관련 서비스의 새로운 아이템, 수요를 발굴, 창출하는 자료가 될 수 있고, 공공적으로는 사회 의료, 보건 체계에 있어서 중요한 정책적 근거로서 활용될 수 있으며, 예방의학적 차원에서 고혈압 환자나 당뇨 환자 등 문제가 되는 경우에 적절한 사회적 조치를 사전적으로 취하는 것을 가능하게 하고, 이로써 사회적 요양, 의료, 보건 비용을 절약하고, 사회 정책을 세우고 평가하는 기초 자료로서 역할을 할 수 있다.
또한, 이런 데이터는 오랜 시간 다수의 인원에 대해 그리고 다양한 질병에 대해, 어떤 병력을 가지거나 처치를 받은 사람의 상태 변화를 관찰하는 결과이므로 의학 보건 기타 관련 학술 연구의 자료로 사용될 수 있다.
이상에서는 한정된 실시예를 통해 본 발명을 설명하고 있으나, 이는 본 발명의 이해를 돕기 위해 예시적으로 설명된 것일 뿐 본원 발명은 이들 특정의 실시예에 한정되지 아니한다.
따라서, 당해 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명을 토대로 다양한 변경이나 응용예를 실시할 수 있을 것이며 이러한 변형례나 응용예는 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (8)

  1. 서로 다른 복수 파장의 광을 착용자 신체부위에 조사할 수 있는 복수 광원과,
    상기 복수 광원에서 조사되어 착용자 신체부위에서 반사 및 산란된 광을 받아들여 전기신호로 변환시키는 수광소자와,
    상기 수광소자의 전기신호를 분석하되 각 파장에 대한 맥파 형태의 신호에서 신호량을 얻고 측정 대상자의 신체에 대해 얻은 신호량과 사전 입력된 기준(레퍼런스 신호량)과의 차이 신호량을 이용하여 대상물의 혈액 내의 혈당 농도를 산출하는 혈당분석모듈과,
    상기 수광소자의 전기신호가 이루는 맥파를 분석하여 입사파와 반사파를 구분하고, PRT 및 맥압을 검출하여, 맥압에 제1 계수를 곱하고 PRT에 제2 계수를 곱하고 합산하는 과정을 포함하는 연산과정을 통하여 혈압값을 도출하는 혈압분석모듈과,
    상기 혈당분석모듈이나 상기 혈압분석모듈이 획득한 측정 대상자의 혈당 및 혈압 수치를 포함하는 신체 상태 측정 데이터를 주변의 통신망을 통해 외부로 전송할 수 있는 통신장치를 구비하여 이루어지는 인체착용형 신체정보 측정장치.
  2. 제 1 항에 있어서,
    착용자의 ECG를 위한 신호검출모듈과 신체 접속 단자들,
    착용자의 체온을 측정하기 위한 온도계,
    착용자의 신체 동작을 감지, 측정하기 위한 3차원 가속계 가운데 적어도 하나를 구비하는 것을 특징으로 하는 인체착용형 신체정보 측정장치.
  3. 제 1 항에 있어서,
    상기 혈압분석모듈을 구성하는 혈압산출 프로그램은 다음 산출식들 가운데 어느 하나 혹은 이들 산출식에 상수 e를 더한 식에 기반을 둔 것임을 특징으로 하는 인체착용형 신체정보 측정장치.
    BP=a*PA+b*PRT
    BP=a*PA+b*PRT+c*GI
    BP=a*PA+b*PRT+d*IDIA/ISYS
    BP=a*PA+b*PRT+c*GI+d*IR(IDIA/ISYS)
    이때, a, b, c, d는 비례상수, e는 상수이며, 다양한 측정 대상자를 상대로 다수 회에 걸쳐 혈압(BP)과 팩터들인 맥압(PA), 펄스리턴타임(PRT), 신체적 광흡수도(GI) 및 신체 특성에 의한 베이스 및 맥동성분 사이의 비율 IR(IDIA / ISYS)을 측정하고 상기 산출식에 대입하여 가장 편차가 적도록 하는 비례상수 값을 도출하는 방식으로 구해진 것이며, 이때 혈압(BP)은 검증된 정밀한 혈압계로 측정된 것이고, 상기 팩터들은 본 발명의 인체착용형 신체정보 측정장치로 측정된 값을 사용하여 얻은 것이다.
  4. 제 1 항에 있어서,
    상기 혈당분석모듈을 이루기 위해 상기 복수 광원으로 혈당 내의 화학결합과 관련하여 특징적 흡수 피크를 나타내는 940nm 파장대의 짧은 근적외선광과, 1100nm 파장대의 근적외선광, 1450nm 파장대의 근적외선광 및 1700nm 파장대의 근적외선광 가운데 적어도 두 가지가 사용되고,
    상기 혈당분석모듈을 위한 프로그램은 상기 적어도 두 가지 광원의 조사광에 기인하는 반사 및 산란 광을 받는 상기 수광소자가 출력하는 전기신호가 혈류량 변화에 따른 맥파 형태로 나타날 때 맥파가 나타내는 하나의 주기에 대해 적분하여 얻는 값을 신호량으로 파악하고, 미리 정해진 레퍼런스 신호량과의 차이값을 얻고, 상기 차이값을 기준으로 혈당을 산출하도록 이루어진 것이고,
    상기 레퍼런스 신호량은 인체와 유사한 생체조직 더미에 혈당량 0의 혈액 성분을 제공하여 만든 레퍼런스 대상물에 기존의 검증된 근적외선 스펙트로메터의 광원의 광량을 조절하는 방법으로 상기 적어도 두 가지 광원을 포함한 복수 광원의 광 조사를 하고 결과적으로 얻어지는 신호량(레퍼런스 대상물에 맥파 형태의 변동은 없으므로 일정한 순간 신호량을 단순히 맥파 주기로 곱한 값)을 조절하면서 신호량의 크기별로 다수의 레퍼런스 커브를 작성하거나 레퍼런스 데이터 세트를 작성하여 얻어지는 것을 특징으로 하는 인체착용형 신체정보 측정장치.
  5. 제1 항 내지 제4 항 가운데 어느 한 항의 인체작용형 신체정보 측정장치와,
    상기 통신장치와 접속되는 통신망과,
    상기 통신망을 통해 상기 통신장치가 보내는 신체정보를 입수, 저장하고 처리하는 운영 서버와,
    상기 운영 서버와 통신망을 통해 접속되는 지원 기관을 구비하며,
    상기 지원 기관은 의료기관, 소방서, 경찰서 가운데 적어도 하나를 구비하여 이루어지며,
    상기 통신장치와 상기 운영서버를 연결하는 통신망은 적어도 하나의 통신 노드를 가지며, 상기 통신 노드나 상기 측정장치 가운데 적어도 하나는 상기 측정장치 착용자의 고유 정보를 상기 운영 서버로 발송할 수 있도록 이루어진 것을 특징으로 하는 의료지원 시스템.
  6. 제 5 항에 있어서,
    상기 통신 노드는 위치가 고정되며, 자신의 고유 위치 정보를 상기 측정장치의 측정 데이터(신호)와 함께 상기 운영 서버로 발송하여 상기 측정장치 착용자의 위치를 실시간으로 파악할 수 있도록 이루어진 것을 특징으로 하는 의료지원 시스템.
  7. 제 5 항에 있어서,
    상기 통신 노드는 상기 측정장치의 통신장치와 연결될 수 있는 개인정보 단말기나 고정형 릴레이 노드이고, 블루투스 통신을 이용하는 것으로서,
    상기 통신장치와 상기 운영서버를 연결하는 통신망은 일부가 블루투스 메시나 블루투스 하이브리드 토폴로지 형태로 구성된 것을 특징으로 하는 의료지원 시스템.
  8. 제 7 항에 있어서,
    상기 블루투스 메시나 블루투스 하이브리드 토폴로지는 블루투스 와이파이 게이트웨이를 통해 공공 통신망과 연결되는 것을 특징으로 하는 의료지원 시스템.
PCT/KR2019/002348 2018-03-21 2019-02-27 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템 WO2019182258A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19771098.1A EP3769666A4 (en) 2018-03-21 2019-02-27 Human body wearable body information measuring device and medical support system using same
US16/959,559 US20210076951A1 (en) 2018-03-21 2019-02-27 Wearable device for measuring vital signs and medical support system based on same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0032868 2018-03-21
KR1020180032868A KR102062646B1 (ko) 2018-03-21 2018-03-21 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템

Publications (1)

Publication Number Publication Date
WO2019182258A1 true WO2019182258A1 (ko) 2019-09-26

Family

ID=67987902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002348 WO2019182258A1 (ko) 2018-03-21 2019-02-27 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템

Country Status (4)

Country Link
US (1) US20210076951A1 (ko)
EP (1) EP3769666A4 (ko)
KR (1) KR102062646B1 (ko)
WO (1) WO2019182258A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043894A1 (en) * 2020-08-26 2022-03-03 Senbiosys Stacked oximeter and operation method
WO2022121192A1 (zh) * 2020-12-09 2022-06-16 深圳市汇顶科技股份有限公司 血压检测装置、方法和电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326554B1 (ko) * 2020-02-11 2021-11-15 부경대학교 산학협력단 혈당계에서 피부색 감지기를 이용한 ppg 맥동주기신호 품질 향상을 위한 장치 및 방법
CN113616201A (zh) * 2021-07-12 2021-11-09 深圳市脉度科技有限公司 一种ppg传感器、生理参数传感器及智能可穿戴设备
KR102385869B1 (ko) * 2021-09-16 2022-04-15 주식회사 스카이랩스 생체 신호 감지 반지를 이용한 생체 데이터 모니터링 플랫폼
CN117440563A (zh) * 2022-07-22 2024-01-23 华为技术有限公司 一种光源调光方法和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
KR20090099147A (ko) * 2008-03-17 2009-09-22 한국전기연구원 손목형 건강관리장치
KR100989694B1 (ko) 2008-06-25 2010-10-26 재단법인 첨단산업개발원 착용자의 위치 및 생체신호를 측정하기 위한 측정단말기 및이를 이용하는 건강관제시스템
JP2016087209A (ja) * 2014-11-07 2016-05-23 Jsr株式会社 生体情報測定システム、及びそれに用いられる生体情報測定用血管脈波データ取得装置
KR20160119612A (ko) * 2015-04-06 2016-10-14 삼성전자주식회사 데이터 처리 방법 및 그 전자 장치
KR20170012166A (ko) 2015-07-24 2017-02-02 존슨 앤드 존슨 비젼 케어, 인코포레이티드 바이오메트릭 기반 정보 통신을 이용한 실시간 의학적 상태 모니터링을 위한 생의학 디바이스들
KR20170044826A (ko) 2015-10-16 2017-04-26 전자부품연구원 생체신호 측정 가능한 웨어러블 디바이스
KR20170063275A (ko) * 2015-11-30 2017-06-08 폴스타헬스케어(주) 웨어러블 기기를 이용한 환자 관리 시스템 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68902738T2 (de) * 1989-05-23 1993-01-28 Biosensors Technology Inc Verfahren zur bestimmung mittels strahlungsabsorption von substanzen in absorbierenden und streuenden matrixmaterialien.
WO2004091387A2 (en) * 2003-04-15 2004-10-28 Optiscan Biomedical Corporation Dual measurement analyte detection system
KR100650044B1 (ko) 2005-01-07 2006-11-27 학교법인연세대학교 광혈류 측정신호를 이용한 혈압측정시스템을 내장한휴대용 무선단말기
WO2017096314A1 (en) * 2015-12-02 2017-06-08 Echo Labs, Inc. Systems and methods for non-invasive blood pressure measurement
KR101764527B1 (ko) 2016-02-18 2017-08-14 삼성전자주식회사 휴대용 혈압측정 장치 및 방법
GB2552455B8 (en) * 2016-06-16 2022-06-15 Digital & Future Tech Limited Blood monitoring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
KR20090099147A (ko) * 2008-03-17 2009-09-22 한국전기연구원 손목형 건강관리장치
KR100989694B1 (ko) 2008-06-25 2010-10-26 재단법인 첨단산업개발원 착용자의 위치 및 생체신호를 측정하기 위한 측정단말기 및이를 이용하는 건강관제시스템
JP2016087209A (ja) * 2014-11-07 2016-05-23 Jsr株式会社 生体情報測定システム、及びそれに用いられる生体情報測定用血管脈波データ取得装置
KR20160119612A (ko) * 2015-04-06 2016-10-14 삼성전자주식회사 데이터 처리 방법 및 그 전자 장치
KR20170012166A (ko) 2015-07-24 2017-02-02 존슨 앤드 존슨 비젼 케어, 인코포레이티드 바이오메트릭 기반 정보 통신을 이용한 실시간 의학적 상태 모니터링을 위한 생의학 디바이스들
KR20170044826A (ko) 2015-10-16 2017-04-26 전자부품연구원 생체신호 측정 가능한 웨어러블 디바이스
KR20170063275A (ko) * 2015-11-30 2017-06-08 폴스타헬스케어(주) 웨어러블 기기를 이용한 환자 관리 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3769666A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043894A1 (en) * 2020-08-26 2022-03-03 Senbiosys Stacked oximeter and operation method
WO2022121192A1 (zh) * 2020-12-09 2022-06-16 深圳市汇顶科技股份有限公司 血压检测装置、方法和电子设备

Also Published As

Publication number Publication date
KR102062646B1 (ko) 2020-01-06
KR20190110874A (ko) 2019-10-01
EP3769666A1 (en) 2021-01-27
US20210076951A1 (en) 2021-03-18
EP3769666A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2019182258A1 (ko) 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템
US11367525B2 (en) Calibration for continuous non-invasive blood pressure monitoring using artificial intelligence
US10226183B2 (en) Devices and methods for temperature determination
US10105101B2 (en) Methods, systems, and devices for optimal positioning of sensors
TWI623298B (zh) 穿戴式生理量測儀
US9867513B1 (en) Medical toilet with user authentication
US20050245831A1 (en) Patch sensor for measuring blood pressure without a cuff
US20070185393A1 (en) System for measuring vital signs using an optical module featuring a green light source
CN110856653A (zh) 基于生命体征数据的健康监测预警系统
US20060009698A1 (en) Hand-held monitor for measuring vital signs
US20050261598A1 (en) Patch sensor system for measuring vital signs
US20130072807A1 (en) Health monitoring appliance
US11737669B2 (en) System and method for remote monitoring of a user's vital signs and bodily functions
KR20020009724A (ko) 원격진료측정장치 및 진료방법
US10264971B1 (en) System and methods for integrating feedback from multiple wearable sensors
WO2019172569A1 (ko) 광혈류 측정기 기반의 인체착용형 혈압 측정장치 및 혈압 측정방법
US20230050179A1 (en) Biological measurement device, pulse wave sensor, sphygmomanometer, and meeting support system
Abd El Ghany et al. Efficient wearable real-time vital signs monitoring system
JP2006026209A (ja) ロボット
Ahmed et al. Design of an Arrhythmia Detection System Using Wearable PPG Sensor
US20230355145A1 (en) Health sensor using multiple light emitting diodes
US20210217531A1 (en) Cloud-connected ring-based sensor system
US20230301524A1 (en) Monitoring assistance system and monitoring assistance method
US20230110673A1 (en) Light emitting diode temperature estimation
Holz Continuous and Passive Blood Pressure Monitoring Throughout the Day and Night

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771098

Country of ref document: EP

Effective date: 20201021