WO2022121192A1 - 血压检测装置、方法和电子设备 - Google Patents

血压检测装置、方法和电子设备 Download PDF

Info

Publication number
WO2022121192A1
WO2022121192A1 PCT/CN2021/086021 CN2021086021W WO2022121192A1 WO 2022121192 A1 WO2022121192 A1 WO 2022121192A1 CN 2021086021 W CN2021086021 W CN 2021086021W WO 2022121192 A1 WO2022121192 A1 WO 2022121192A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure detection
module
pulse wave
detection module
signal
Prior art date
Application number
PCT/CN2021/086021
Other languages
English (en)
French (fr)
Inventor
蔡军
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2022121192A1 publication Critical patent/WO2022121192A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0238Means for recording calibration data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors

Definitions

  • the present application relates to the field of electronic technology, and more particularly, to a blood pressure detection apparatus, method and electronic device.
  • blood pressure as a biometric information to measure the human cardiovascular system, has important significance in disease diagnosis, treatment process and prognosis judgment.
  • the blood pressure value is generally determined based on the detection of the pulse wave, but the detection of the pulse wave is restricted by various environmental factors, and the measurement accuracy is poor.
  • the cuff-type blood pressure monitor based on auscultation or oscillometric method is more accurate in blood pressure measurement, but the device operation is more complicated and it is not easy to carry.
  • the embodiments of the present application provide a blood pressure detection device, method and electronic device, the blood pressure obtained by the detected blood pressure has high accuracy, and is easy to carry and operate.
  • a blood pressure detection device comprising: a pulse wave detection module for detecting the user's photoplethysmography PPG signal when receiving contact from a user; a pressure detection module, which is stacked with the pulse wave detection module , used to detect the contact pressure between the user and the pulse wave detection module to obtain a pressure detection signal; the drive module is used to drive the pulse wave detection module to move toward or away from the user to adjust the user and the pulse wave detection module.
  • the pressure detection module detects at least one target value of the pressure detection signal
  • the target PPG signal corresponding to the at least one target value is used to detect the blood pressure of the user, wherein the target PPG signal is in the The PPG signal detected by the pulse wave detection module when the pressure detection module detects the at least one target value.
  • the pressure detection module can detect the contact pressure between the user and the pulse wave detection module to obtain a pressure detection signal. Further, the pulse wave detection module is driven by the drive module to adjust the contact pressure between the pulse wave detection module and the user, so as to realize automatic pressure control during the blood pressure detection process, without requiring the user to press according to specific requirements, even if the user presses It is unstable and fluctuates greatly. It can also be actively adjusted by the drive module, so that the contact pressure between the user and the pulse wave detection module reaches at least one stable and controllable target value, and the detection is performed under the stable and controllable at least one target value.
  • the quality of the obtained target PPG signal is better, and its waveform can accurately reflect the relationship with the target value, so that a relatively accurate blood pressure detection result can be obtained.
  • the driving module is configured to receive a control signal to drive the pulse wave detection module to move, and the control signal is determined according to the current value of the pressure detection signal and the target value.
  • control signal of the driving module is jointly determined according to the current value of the pressure detection signal and the target value to be achieved, which can make the driving efficiency of the driving module higher, so that the pressure detection module can detect the pressure faster. Detect the target value of the signal, thereby improving the speed and efficiency of the entire blood pressure detection.
  • the current value of the pressure detection signal is greater than the target value
  • the driving module is configured to receive a first control signal to drive the pulse wave detection module to move away from the user; or, the current value of the pressure detection signal If the value is less than the target value, the driving module is used for receiving a second control signal to drive the pulse wave detection module to move towards the user.
  • the number of target values of the pressure detection signal is multiple, and the target value to be measured among the multiple target values of the pressure detection signal is determined according to the waveform characteristics of the target PPG signal corresponding to the measured target value , wherein the measured target value is the target value detected by the pressure detection module, and the target value to be measured is the target value not detected by the pressure detection module.
  • the target value to be measured is determined according to the waveform characteristics of the target PPG signal corresponding to the measured target value and the waveform characteristics of the reference signal; wherein the reference signal includes the user at least one pressure value. the reference PPG signal.
  • the waveform characteristics of the reference signal and the target PPG corresponding to the measured target value are integrated, and the accuracy of blood pressure detection can be improved while taking into account the rapid realization of blood pressure detection.
  • the target value to be measured is determined according to the amplitude variation characteristic of the target PPG signal corresponding to the measured target value and the amplitude variation characteristic of the reference signal.
  • At least one target value of the pressure detection signal is at least one preset value.
  • the user's blood pressure can be detected based on at least one preset target value.
  • the multiple target values can cover a relatively comprehensive pressure range, so that more The target PPG signal corresponding to each target value contains more pressure information, which is beneficial to improve the accuracy of blood pressure detection.
  • the number of target values of the pressure detection signal is multiple, the multiple target values of the pressure detection signal are multiple preset values, and the multiple preset values gradually change according to a preset change manner or a stepwise change.
  • the plurality of preset values linearly increase or decrease linearly.
  • the target PPG signal is also used for storage as a reference signal for subsequent blood pressure detection of the user.
  • the drive module is connected to the pressure detection module, the drive module includes a stepper motor and a drive structure, the drive structure is connected to the stepper motor and the pressure detection module, and is used for the step
  • the rotary motion of the feeding motor is converted into linear motion, so as to drive the entirety of the pressure detection module and the pulse wave detection module to move toward or away from the user.
  • the pressure detection module and the pulse wave detection module are integrated into a whole, and the driving module is connected to the pressure detection module to drive the whole, which can realize the stability of the whole driving, and does not affect the pressure detection module and the pulse wave.
  • the respective function implementations of the wave detection modules are affected.
  • the use of stepper motor and drive structure to realize the drive function can achieve precise position and speed control, and good stability.
  • the driving structure includes: a screw rod, a sliding rail and a movable bracket; the screw rod is connected to the stepping motor, the sliding rail is arranged parallel to one side of the screw rod, and the movable support
  • the bracket is arranged on the screw rod and the slide rail, and is used to connect the pressure detection module; the stepper motor is used to drive the screw rod to rotate, and the screw rod is used to drive the movable bracket on the screw rod and the slide rail.
  • sexual movement so as to drive the entirety of the pressure detection module and the pulse wave detection module to move toward or away from the user.
  • the structure of the driving module is the same as that of the lifting driving module for lifting the camera.
  • the existing lifting module in the related art can be used as the driving module in the present application, therefore, the driving module in the present application has a relatively mature degree of technology and good stability.
  • the pressure detection module includes: a cantilever beam and a strain-type pressure sensor, the cantilever beam is an elastic element, the strain-type pressure sensor is disposed on the surface of the cantilever beam, and at least part of the pulse wave detection module Set at the free end of the cantilever beam, the contact pressure between the user and the pulse wave detection module is transmitted to the free end of the cantilever beam through the pulse wave detection module, so that the strain-type pressure sensor on the surface of the cantilever beam detects This contact pressure forms a pressure detection signal.
  • the pressure detection module adopts a cantilever beam structure, and uses a strain-type pressure sensor to realize pressure detection, which has a simple structure, is easy to implement, and has high detection accuracy at the same time.
  • the driving module is connected to the fixed end of the cantilever beam, and is used to drive the cantilever beam and the pulse wave detection module to move toward or away from the user, so as to adjust the distance between the user and the pulse wave detection module contact pressure.
  • the pulse wave detection module is arranged on the free end of the cantilever beam
  • the driving module is arranged on the fixed end of the cantilever beam, which not only can realize the transmission of the pulse through the free end of the cantilever beam
  • the contact pressure between the wave detection module and the user can be detected by the strain-type pressure sensor on the cantilever beam.
  • the fixed end of the cantilever beam can also drive the overall movement of the pressure detection module and the pulse wave detection module. Therefore, the overall technical solution has a compact structure, the pressure detection module has a thin thickness, and occupies a small space, which is beneficial to the miniaturized development of the detection device.
  • the cantilever beam is a thin-film cantilever beam, and the thickness of the cantilever beam is 0.1 mm to 0.6 mm.
  • the strain gauge pressure sensor includes four strain gauges, and the four strain gauges form a full bridge circuit.
  • the pressure detection module includes: a capacitive pressure sensor; at least a part of the pulse wave detection module is disposed on a pole plate of the capacitive pressure sensor, and the connection between the user and the pulse wave detection module is The contact pressure acts on the one pole plate through the pulse wave detection module, so that the one pole plate is deformed and the capacitance of the capacitive pressure sensor changes, and the capacitive pressure sensor is used to detect the change of its capacitance to detect the formation of the contact pressure Pressure detection signal.
  • the driving module is connected to another pole plate of the capacitive pressure sensor through a mounting member, and the driving module is used for driving the capacitive pressure sensor and the pulse wave detection module as a whole toward or away from the The user moves to adjust the contact pressure between the user and the pulse wave detection module.
  • the electrode plate of the capacitive pressure sensor includes: a flexible circuit board and a reinforcing plate.
  • the capacitive pressure sensor can be directly realized by using the flexible circuit board and the reinforcing plate, and the realization method is simple, the cost is low, and the thickness is relatively thin, so the overall thickness and manufacturing cost of the blood pressure detection device can be reduced.
  • the pulse wave detection module includes: an optical assembly, an electrical assembly, a structural assembly and a transparent cover;
  • the optical assembly includes at least one light source and at least one photodetector for acquiring the user's PPG signal ;
  • the electrical component supports and electrically connects the optical component for transmitting the target PPG signal;
  • the transparent cover plate is arranged on the side of the optical component facing the user, for receiving the touch of the user;
  • the structural component is connected to the A transparent cover plate, and a cavity structure is formed with the transparent cover plate, and the cavity structure is used for accommodating the optical component and the electrical component.
  • a blood pressure detection method is provided, which is applied to a blood pressure detection device including a pulse wave detection module, a pressure detection module and a drive module.
  • the blood pressure detection method includes: obtaining the pressure The pressure detection signal of the detection module, wherein the pressure detection signal is the pressure signal of the contact pressure between the user and the pulse wave detection module; the driving module is controlled to operate to drive the pulse wave detection module to move toward or away from the user until the acquisition of at least one target value of the pressure detection signal; obtaining a target photoplethysmography PPG signal corresponding to the at least one target value, and detecting the user's blood pressure according to the target PPG signal, wherein the target PPG signal is obtained after the target PPG signal is obtained. At least one target value of the pressure detection signal is the PPG signal detected by the pulse wave detection module.
  • the controlling the driving module to operate to drive the pulse wave detection module to move toward or away from the user until at least one target value of the pressure detection signal is acquired including: according to the current value of the pressure detection signal and one of the at least one target value to determine a control signal; sending the control signal to the driving module to drive the pulse wave detection module to move toward or away from the user until the one target value of the pressure detection signal is obtained.
  • the control signal is determined according to the current value of the pressure detection signal and a target value of the at least one target value, and a control signal is sent to the driving module to drive the pulse wave detection module toward or away from the User movement includes: determining a first control signal according to the current value of the pressure detection signal and the one target value, wherein the current value of the pressure detection signal is greater than the one target value, and sending the first control signal to the driving module to drive The pulse wave detection module moves away from the user; or, determines a second control signal according to the current value of the pressure detection signal and the one target value, wherein the current value of the pressure detection signal is less than the one target value, and sends the signal to the drive module The second control signal drives the pulse wave detection module to move toward the user.
  • the blood pressure detection method further includes: according to the waveform of the target PPG signal corresponding to the measured target value among the multiple target values of the pressure detection signal The feature determines the target value to be measured.
  • the determining the target value to be measured according to the waveform characteristic of the target PPG signal corresponding to the measured target value among the multiple target values of the pressure detection signal includes: acquiring a reference signal, the reference signal including at least A reference PPG signal of the user under a reference pressure value; the to-be-measured target value is determined according to the waveform characteristics of the reference signal and the waveform characteristics of the target PPG signal corresponding to the measured target value.
  • the determining the target value to be measured according to the waveform characteristics of the reference signal and the waveform characteristics of the target PPG signal corresponding to the measured target value includes: according to the amplitude variation characteristics of the reference signal and the The amplitude variation characteristic of the target PPG signal corresponding to the measured target value is used to determine the target value to be measured.
  • At least one target value of the pressure detection signal is at least one preset value.
  • the number of target values of the pressure detection signal is multiple, the multiple target values of the pressure detection signal are multiple preset values, and the multiple preset values gradually change according to a preset change manner or a stepwise change.
  • the plurality of preset values linearly increase or decrease linearly.
  • the blood pressure detection method further includes: storing the target PPG signal as a reference signal for subsequent blood pressure detection of the user.
  • a blood pressure detection device including: a processor and a memory, where the memory is used to store a computer program, and the processor is used to call the computer program to execute the second aspect or any one of the embodiments of the second aspect. blood pressure monitoring method.
  • an electronic device comprising: a button disposed on the surface of the electronic device and the blood pressure detection device as in the first aspect, any embodiment of the first aspect, or the third aspect; wherein, the blood pressure detection device
  • the pulse wave detection module in the blood pressure detection device is arranged on the button, the pressure detection module in the blood pressure detection device is stacked with the button, and the drive module in the blood pressure detection device is used to drive the button to move toward or away from the user.
  • the button structure of the electronic device is used, the pulse wave detection module in the blood pressure detection device is arranged on the button, the pressure detection module in the blood pressure detection device is stacked with the button, and the drive in the blood pressure detection device
  • the module is used to drive the button to move toward or away from the user, which is convenient for the installation of the blood pressure detection device in the electronic device, improves the mechanical stability of the electronic device and the blood pressure detection device, and the button can be convenient for the user to contact and press on the surface of the electronic device, further,
  • the blood pressure detected by the blood pressure detection device is relatively accurate, which can improve the user's experience of using the electronic device.
  • the housing of the button forms an accommodating portion, and the optical component and/or the electrical component in the pulse wave detection module is arranged in the accommodating portion, and at least a part of the housing of the button is complex. It is used as a transparent cover plate and/or structural component in the pulse wave detection module.
  • the key is a power key or a volume key of the electronic device.
  • the function keys of the electronic device such as the volume key or the power key, are multiplexed, and a blood pressure detection device and/or a biometric detection device are arranged on the existing function keys of the electronic device, relative to
  • the solution of separately setting the blood pressure detection button can reduce the cost of the electronic device, which is beneficial to the development of the integration, miniaturization and multi-function of the electronic device.
  • the electronic device further includes a biometric detection device, at least part of the biometric detection device is disposed on the button, and the biometric detection device includes a temperature detection device and/or an electrocardiogram detection device.
  • the electronic device is a wearable device or a mobile terminal device.
  • an electronic device comprising: a lifting camera module and the blood pressure detection device as in the first aspect, any embodiment of the first aspect, or the third aspect; wherein, the lifting camera module includes a camera module and a lift drive module, the camera module is integrated with the pulse wave detection module in the blood pressure detection device, and the lift drive module is multiplexed as the drive module in the blood pressure detection device.
  • the electronic device is a mobile terminal device.
  • the lifting driving module of the lifting camera module in the multiplexed electronic equipment is used as the driving module in the blood pressure detection device, which reduces the overall cost of the electronic equipment while ensuring the blood pressure detection accuracy.
  • the same module component can realize various functions such as automatic lifting, taking pictures, and blood pressure detection, which can improve the integration of electronic equipment and is conducive to the miniaturization and multi-functional development of electronic equipment. , so as to further improve the user experience.
  • FIG. 1 is a schematic structural diagram of a blood pressure detection device provided according to an embodiment of the present application.
  • FIG. 2 shows an ideal pressure change situation and the pressure change situation actually pressed by the user during the blood pressure detection process.
  • FIG. 3 is a schematic functional block diagram of a blood pressure detection apparatus provided according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a blood pressure detection method provided according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another blood pressure detection method provided according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another blood pressure detection method provided according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a change of a PPG signal under a changing pressure according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another blood pressure detection method provided according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another blood pressure detection apparatus provided according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another blood pressure detection apparatus provided according to an embodiment of the present application.
  • FIG. 11 is a split exploded view of a pulse wave detection module and a pressure detection module provided according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a drive module provided according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another blood pressure detection apparatus provided according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another blood pressure detection apparatus provided according to an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a blood pressure detection apparatus 100 provided by an embodiment of the present application.
  • the blood pressure detection device 100 includes: a pulse wave detection module 110 and a pressure detection module 120 .
  • the pulse wave detection module includes: a light source 111 , a light detector 112 , a cover plate 113 and a substrate 114 .
  • the substrate 114 can be a circuit board, and the light source 111 and the light detector 112 are disposed on the substrate 114 to realize electrical connection with the substrate 114 .
  • the cover plate 113 may be a transparent cover plate, which is disposed above the light source 111 and the light detector 112 for receiving the user's finger.
  • the light signal emitted by the light source 111 passes through the transparent cover plate 113 to the user's finger, and the light signal is reflected or scattered by the blood vessels in the finger, and then received by the photodetector 112 , and undergoes photoelectric conversion and electrical signals.
  • a photoplethysmography (Photo Plethysmography, PPG) signal can be formed, and after further algorithm processing, the PPG signal can be used to detect various blood pressures.
  • the PPG signal detected by the light source 111 and the photodetector 112 is used to perform blood pressure detection, the PPG signal will be affected by various factors such as the environment and human body differences, and the detected pulse wave will have large interference and poor quality. The blood pressure detected by this poor quality pulse wave is less accurate.
  • a new pressure detection module 120 is added, which can be disposed below the pulse wave detection module 110 .
  • the module 110 applies a pressure, and the pressure detection module 120 located below the pulse wave detection module 110 can be used to detect the pressure. Further, the pressure and the PPG signal can be integrated to realize the detection of various blood pressures.
  • the pressure applied by the user's finger to the pulse wave detection module 110 is a changing pressure.
  • the blood vessels of the finger are squeezed to different degrees, and the blood volume, blood pressure and other related parameters also change accordingly. Therefore,
  • the PPG signal formed by the light detector 112 also changes with the change of pressure. According to the degree of change of the PPG signal under different pressing pressures, the user's blood pressure can be determined. Compared with directly determining the user's blood pressure based on the PPG signal, the blood pressure detection can be improved. accuracy.
  • the pressure detection module 120 is added to detect the changed pressure signal when the user presses, so as to improve the accuracy of blood pressure detection such as blood pressure.
  • the accuracy of blood pressure detection is also related to the stability of the pressure change when the user presses. Under stable and continuously changing pressure, the accuracy of blood pressure detection obtained from the pressure signal and the PPG signal When the pressure is higher, the pressure is unstable and fluctuates greatly, the accuracy of the blood pressure detection obtained from the pressure signal and the PPG signal will be affected.
  • FIG. 2 shows an ideal pressure change situation and a pressure change situation actually pressed by the user during the blood pressure detection process.
  • line A represents an ideal pressure change situation, that is, the pressure changes linearly with the detection time
  • line B represents a pressure change curve actually pressed by the user. It can be seen that during the actual pressing process of the user, the pressure changes It is random and unstable. Uncertain factors such as the sudden change of pressure and the rapid increase of the pressure value will affect the quality of the detected PPG signal, thereby affecting the blood pressure detection.
  • the accuracy of blood pressure detection is limited by the user's pressing conditions. If the user is required to provide a relatively stable and continuously changing pressing pressure, it will cause an additional burden on the user, resulting in a poor user experience. In addition, the elderly, children and other user groups also It is difficult to provide the above-mentioned high-required and varied pressing pressure as shown by the line A in FIG. 2 , and in this case, the accuracy of blood pressure detection will be greatly affected.
  • the present application proposes a blood pressure detection device, which can reduce the pressing requirements for the user, is easy to operate, and has portability and high blood pressure detection accuracy.
  • FIG. 3 shows a schematic functional block diagram of a blood pressure detection apparatus provided by an embodiment of the present application.
  • the blood pressure detection device 200 may include:
  • the pulse wave detection module 210 is used for detecting the user's photoplethysmography PPG signal when receiving the user's contact;
  • the pressure detection module 220 is stacked with the pulse wave detection module 210, and is used for detecting the contact pressure between the user and the pulse wave detection module 210 to obtain a pressure detection signal;
  • the driving module 230 is configured to drive the pulse wave detection module 210 to move towards or away from the user, so as to adjust the contact pressure between the user and the pulse wave detection module 210, so that the pressure detection module 220 detects at least one target value of the pressure detection signal, which is The target PPG signal corresponding to the at least one target value is used to detect the blood pressure of the user, wherein the target PPG signal is the PPG signal detected by the pulse wave detection module 210 when the pressure detection module 220 detects the at least one target value.
  • the pulse wave detection module 210 may include a light source and a light detector, which are used to detect the PPG signal after passing through the user's human body.
  • the pulse wave detection module further provides a receiving interface for receiving the user's contact, and the receiving interface includes but is not limited to the interface facing the user side in the transparent cover shown in FIG. 1 .
  • the pressure detection module 220 is stacked with the pulse wave detection module 210. Specifically, when the user contacts the pulse wave detection module 210, the contact pressure between the pulse wave detection module 210 and the user is transmitted to the pressure transmitter through the pulse wave detection module 210.
  • the sensing module 220 further, the pressure detection module 220 may include a pressure sensor for sensing the contact pressure between the pulse wave detection module 210 and the user to form a pressure detection signal.
  • the pressure sensors in the pressure detection module 220 include but are not limited to: strain pressure sensors, piezoelectric pressure sensors, piezoresistive pressure sensors, capacitive pressure sensors, inductive pressure sensors, or other types of pressure sensor, which is not specifically limited in this embodiment of the present application.
  • the driving module 230 can be indirectly or directly connected to the pulse wave detection module 210 to drive the pulse wave detection module 210 to move towards or away from the user, thereby adjusting the contact pressure between the pulse wave detection module 210 and the user. Specifically, if the pulse wave detection module 210 moves toward the user, the contact pressure between the pulse wave detection module 210 and the user increases. Conversely, if the pulse wave detection module 210 moves away from the user, the contact pressure between the pulse wave detection module 210 and the user decreases.
  • the driving module 230 can be fixedly connected to the pulse wave detection module 210 directly through a connector, or, in other embodiments, the pulse wave detection module 210 can be connected to the pressure detection module 220, and the driving module 230 can be It is connected to the pressure detection module 220, and then the pressure detection module 220 is driven, so that the whole of the pressure detection module 220 and the pulse wave detection module 210 is moved toward or away from the user.
  • the driving module 230 may include any type of motor, that is, convert electric power into power to drive the pulse wave detection module 210 to move.
  • the pressure detection module 220 can continue to detect the adjusted contact pressure until it detects the pressure At least one target value of the detection signal.
  • the at least one target value is determined and changed.
  • the at least one target value may be a pressure value within a predetermined pressure range.
  • the detected pulse wave hardly includes pressure information, which will also affect the detection of the pulse wave. Therefore, at least one target value needs to be within a suitable pressure range in order to detect a PPG signal with better quality.
  • a preset suitable pressure range can be determined through experiments or simulation data to determine the at least one target value to ensure the quality of the target PPG signal corresponding to the target value, thereby improving the accuracy of blood pressure detection.
  • a new driving module 230 is added, which can be used to drive the pulse wave detection module 210 to adjust the contact pressure between the pulse wave detection module 210 and the user, so as to achieve blood pressure
  • the pressure during the detection process is automatically controlled without the need for the user to press according to specific requirements. Even if the user's pressure is unstable and fluctuates greatly, it can be actively adjusted by the driving module, so that the pressure between the user and the pulse wave detection module 210 can be adjusted automatically.
  • the contact pressure reaches at least one stable and controllable target value
  • the quality of the PPG signal detected under the stable and controllable at least one target value is better, and its waveform can accurately reflect the relationship with the target value, so that a more accurate blood pressure can be obtained. Test results.
  • FIG. 4 shows a schematic flowchart of a blood pressure detection method 300 provided by the embodiment of the application.
  • the blood pressure detection method 300 in the embodiment of the present application may correspond to the technical solution of the blood pressure detection device 200 above, and the relevant technical features in the embodiment of the present application may refer to the above related description.
  • the execution body of the detection method 300 may be the processor or controller of the above-mentioned detection device 200, and the processor or controller may be integrated with the detection device 200, or may also be provided outside the detection device 200, As an example, the processor or controller of the detection apparatus 200 is the main controller or central processing unit of the electronic device where the detection apparatus 200 is located.
  • the blood pressure detection method 300 may include the following steps.
  • S310 Acquire a pressure detection signal of the pressure detection module, where the pressure detection signal is a pressure signal of the contact pressure between the user and the pulse wave detection module.
  • the user when the user needs to perform blood pressure detection, the user presses the pulse wave detection module, at this time, a contact pressure is formed between the user and the pulse wave detection module, and the contact pressure is transmitted to the pressure detection module through the pulse wave detection module, So that the pressure detection module detects a pressure detection signal, and the pressure detection signal can be transmitted to the processor through an electrical component, so that the processor acquires the pressure detection signal.
  • S320 Control the driving module to operate to drive the pulse wave detection module to move toward or away from the user until at least one target value of the pressure detection signal is acquired.
  • the processor may further control the operation of the driving module to drive the pulse wave detection module to move toward or away from the user, so as to adjust the contact pressure between the pulse wave detection module and the user, and further, the pressure detection module can continuously detect the contact pressure , until the pressure detection module detects at least one target value of the pressure detection signal, and then the processor can obtain at least one target value of the pressure detection signal.
  • S330 Acquire a target PPG signal corresponding to at least one target value, and detect the user's blood pressure according to the target PPG signal.
  • the target PPG signal is a PPG signal detected by the pulse wave detection module when the processor acquires at least one target value of the pressure detection signal.
  • the processor when the processor acquires at least one target value of the pressure detection signal, the touch pressure between the user and the pulse wave detection module is in an appropriate pressure range, in this case, the processor Further control the pulse wave detection module to detect the user's current PPG signal, that is, control the operation of the light source and the light detector in the pulse wave detection module, and receive the light signal after passing through the user's body to detect the user's PPG signal, that is, the target PPG signal. After the target PPG signal detected by the wave detection module is transmitted to the processor through the electrical component, the processor can perform blood pressure detection of the user based on the PPG signal.
  • the pulse wave detection module can also continuously detect the PPG signal of the user, and the processor only acquires the PPG signal detected by the pulse wave detection module at this time when at least one target value of the pressure detection signal is acquired, as Target PPG signal.
  • FIG. 5 shows a schematic flowchart of another blood pressure detection method 300 provided by the embodiment of the present application.
  • step S320 may include the following steps.
  • S321 Determine a control signal according to one of the current value of the pressure detection signal and at least one target value.
  • S322 Send a control signal to the driving module to drive the pulse wave detection module to move toward or away from the user until the one target value is obtained.
  • the processor may specifically determine a control signal according to the current value of the pressure detection signal and the target value to control the moving direction of the drive module , so that the pressure detection module can detect the target value of the pressure detection signal faster, that is, the contact pressure between the pulse wave detection module and the user can reach the target value.
  • the processor may obtain each target value of the multiple target values according to the above process. Specifically, after the processor obtains a target value of the pressure detection signal, A new control signal is determined according to the current value and the next target value of the pressure detection signal, and the moving direction of the driving module is controlled according to the new control signal, so that the pressure detection module can detect the next target value of the pressure detection signal. By repeating the cycle and so on, the pressure detection module can sequentially detect and obtain multiple target values of the pressure detection signal.
  • the current value of the pressure detection signal will change with the movement of the drive module, user pressing, etc.
  • the current value of the detection signal is adjusted so that the pressure detection module can sequentially detect and obtain at least one target value of the pressure detection signal.
  • the driving module is configured to receive a control signal to drive the pulse wave detection module to move, and the control signal is determined according to the current value and the target value of the pressure detection signal. Therefore, through the technical solutions of the embodiments of the present application, the driving mode of the driving module is jointly determined according to the current value of the pressure detection signal and the target value to be achieved, so that the driving efficiency of the driving module can be higher, and the pressure detection module can be faster. The target value of the pressure detection signal is detected, thereby improving the speed and efficiency of the entire blood pressure detection.
  • FIG. 6 shows a schematic flowchart of another blood pressure detection method 300 provided by an embodiment of the present application.
  • the above steps S321 and S322 may include the following steps.
  • S3212 Send a first control signal to the driving module to drive the pulse wave detection module to move away from the user.
  • S3222 Send a second control signal to the driving module to drive the pulse wave detection module to move toward the user.
  • the processor determines a first control signal according to the current value of the pressure detection signal and a target value, and sends the first control signal to the drive module to control the drive module to run
  • the contact pressure between the pulse wave detection module and the user decreases, and then at the next moment, the value of the pressure detection signal detected by the pressure detection module decreases.
  • the processor determines a second control signal according to the current value of the pressure detection signal and a target value, and sends the second control signal to the drive module, then controls the drive module to operate to drive
  • the pulse wave detection module moves toward the user, the contact pressure between the pulse wave detection module and the user increases, and then at the next moment, the value of the pressure detection signal detected by the pressure detection module increases.
  • the processor can determine whether the obtained pressure detection signal value of the pressure detection module is the target value according to the obtained value, and if not, repeat the above process until the value of the pressure detection signal obtained by the processor is the target value.
  • the control signal of the stepping motor can be determined according to the absolute value of the difference between the current value of the pressure detection signal and the target value.
  • the absolute value of the difference between the current value and the target value is smaller, the number of pulses in the pulse control signal is smaller, and the rotation of the stepping motor is smaller, so that the linear displacement of the pulse wave detection module driven by it is smaller. Small.
  • the direction control signal of the stepper motor can be determined according to the sign of the difference between the current value and the target value. As an example, if the difference between the current value and the target value is negative, then step The direction control signal of the incoming motor is at a high level, which controls the stepping motor to rotate in the forward direction, and the pulse wave detection module with arteries moves in the direction toward the user. On the contrary, if the difference between the current value and the target value is positive, the direction control signal of the stepper motor is low level, which controls the stepper motor to rotate in the reverse direction, and the pulse wave detection module moves in the direction away from the user.
  • the above-mentioned method can be used.
  • the driving module is configured to receive a first control signal to drive the pulse wave The detection module moves away from the user; or, when the current value of the pressure detection signal is less than the target value, the driving module is configured to receive the second control signal to drive the pulse wave detection module to move towards the user, thereby realizing the relationship between the pulse wave detection module and the user.
  • the indirect contact pressure is adjusted until the pressure detection module detects the target value of the pressure detection signal.
  • the at least one target value may be at least one preset value
  • the at least one preset value is stored in a memory
  • the processor may acquire the at least one preset value from the memory.
  • the multiple preset values can be changed according to a preset change manner, such as multiple The preset values can be changed gradually or in steps.
  • the plurality of preset values can be a plurality of values that can be linearly increased or decreased, or the plurality of preset values can be a plurality of values that can be increased or decreased in a stepwise manner value, or alternatively, a plurality of preset values can also increase or decrease in a curve.
  • the embodiment of the present application does not specifically limit the variation trends of the plurality of preset values, and a series of multiple target values with transformations within a suitable pressure range can be determined according to actual requirements and experimental data.
  • FIG. 7 shows a schematic diagram of the change of the PPG signal of the user when the changing pressure acts on the user.
  • the processor may detect the current blood pressure of the user according to the envelopes of the target PPG signals corresponding to the plurality of preset values; in other words, the envelopes of the target PPG signals corresponding to the plurality of preset values Can be used to detect the user's current blood pressure.
  • the processor may Other waveform characteristics of the target PPG signal corresponding to the set value detect the current blood pressure of the user.
  • the processor may, according to the waveform characteristics of the target PPG signal corresponding to at least one preset value, perform pulse wave analysis (Pulse Wave Analysis, PWA) and other related The detection method analyzes the waveform characteristics of the target PPG signal to detect the current blood pressure of the user.
  • PWA Pulse Wave Analysis
  • the user's blood pressure can be detected based on at least one preset target value, and when the number of at least one target value is multiple, the multiple target values can cover a relatively comprehensive pressure range , so that the waveform features of the target PPG signals corresponding to multiple target values contain more pressure information, and the envelope formed by the target PPG signals is relatively complete and accurate.
  • the multiple target values can cover a relatively comprehensive pressure range , so that the waveform features of the target PPG signals corresponding to multiple target values contain more pressure information, and the envelope formed by the target PPG signals is relatively complete and accurate.
  • the target PPG signal corresponding to at least one preset value and/or its related waveform characteristics, such as the envelope of the target PPG signal, etc.
  • the target PPG signal can also be stored and used as a reference signal for the user's subsequent blood pressure detection.
  • the at least one target value of the pressure detection signal may optionally, in other embodiments, be determined according to the PPG signal during the actual blood pressure detection process. In this embodiment , the number of target values of the pressure detection signal is multiple.
  • FIG. 8 shows a schematic flowchart of another blood pressure detection method 300 provided by an embodiment of the present application.
  • S310 Acquire a pressure detection signal of the pressure detection module, where the pressure detection signal is a pressure signal of the contact pressure between the user and the pulse wave detection module.
  • S323 According to the target value to be measured, control the driving module to operate to drive the pulse wave detection module to move toward or away from the user.
  • S324 Acquire the target value to be measured of the pressure detection signal, so that the target value to be measured is changed to a measured target value.
  • S340 Determine the target value to be measured according to the waveform characteristics of the target PPG signal corresponding to the measured target value.
  • S333 Acquire target PPG signals corresponding to multiple target values, and detect the user's blood pressure according to the target PPG signals.
  • step S323 and step S324 aims to operate by controlling the driving module according to the target value to be measured.
  • the pressure detection module can detect the target value to be measured, and then the processor can obtain the target value to be measured.
  • the target value to be measured changes. is the measured target value.
  • a target PPG signal corresponding to the at least one measured target value may be acquired.
  • the processor may determine a new target value to be measured according to the target PPG signal corresponding to the measured target value, and the target value to be measured is a target value not detected by the pressure detection module at the current moment.
  • step S323 After determining the new target value to be measured, go back to step S323, and control the driving module to operate according to the target value to be measured to drive the pulse wave detection module to move towards or away from the user until the pressure detection signal detects the target to be measured At this time, the target value to be measured is changed to the measured target value, and the corresponding target PPG signal is further obtained, and then the next or more target values to be measured can be determined according to the PPG signal corresponding to the latest measured target value.
  • the technical solution of the embodiment of the present application is a cyclic process, and the measured target value and the target value to be measured are relative concepts at a certain moment in the detection process. After the target value to be measured is detected by the pressure detection module, that is, Change to the measured target value.
  • the target value to be measured is detected by the pressure detection module, that is, Change to the measured target value.
  • any other target value other than the first target value among the multiple target values of the pressure detection signal can be determined, and the first target value can be a preset target value.
  • the size of the at least one target value to be measured may be determined according to waveform characteristics of the target PPG signal corresponding to the at least one measured target value, such as amplitude variation characteristics.
  • a reference signal can be further obtained, and according to the waveform characteristics of the reference signal and the waveform characteristics of the target PPG signal corresponding to the at least one measured target value , and jointly determine at least one target value to be measured.
  • the reference signal may include a reference PPG signal of the user under at least one reference pressure value. It can be understood that the reference pressure value may be a pressure value suitable for blood pressure detection determined through experiments or simulations, and the user's reference PPG signal detected under the reference pressure value has better signal quality.
  • the reference PPG signal may be a target PPG signal corresponding to a plurality of preset values of the pressure detection signal in the previous blood pressure detection process.
  • the reference PPG signal may also be a reference signal obtained through a large amount of experimental data and statistics.
  • the reference PPG signal may cover a relatively comprehensive pressure range, and is relatively complete and can more accurately reflect the user's blood pressure information.
  • At least one target value to be measured is jointly determined according to the amplitude variation characteristic of the reference PPG signal and the amplitude variation characteristic of the target PPG signal corresponding to at least one measured target value.
  • the amplitude variation characteristic of the reference PPG signal and the amplitude variation characteristic of the target PPG signal may include the local amplitude variation characteristic and the global amplitude variation characteristic of the PPG signal.
  • the local amplitude variation characteristics include: the amplitude variation characteristics of diploid waves or other characteristic waveforms in each PPG signal corresponding to different pressures
  • the global amplitude variation characteristics include: the overall amplitude variation characteristics of all PPG signals corresponding to different pressures, such as the The envelope can be understood as a global amplitude variation feature.
  • the at least one target value to be measured may be jointly determined according to the envelope curve of the reference PPG signal and the envelope curve of the target PPG signal corresponding to at least one measured target value.
  • the reference signal may also be a characteristic signal obtained from the reference PPG signal.
  • the reference signal includes, but is not limited to, the envelope of the reference PPG signal or other characteristic signals obtained based on the reference PPG signal. .
  • the technical solutions of the embodiments of the present application compared with the technical solutions in which multiple target values are preset values, it is possible to avoid long-term and wide-ranging detection of PPG signals under different pressures, and it can be targeted based on the current PPG According to the measurement situation, the pressure in the subsequent detection process can be determined, so that the rapid detection of blood pressure can be realized.
  • the reference signal and the current PPG measurement situation can be integrated, so that the accuracy of blood pressure detection can be improved.
  • the schematic flow chart of the blood pressure detection method provided by the present application is described above with reference to FIG. 4 to FIG. 8 .
  • the structure of the blood pressure detection apparatus 400 provided by the embodiment of the present application will be described with reference to FIG. 9 to FIG. 14 .
  • FIG. 9 shows a schematic structural diagram of a blood pressure detection apparatus 400 provided by an embodiment of the present application.
  • the blood pressure detection device 400 may include: a pulse wave detection module 410 , a pressure detection module 420 and a driving module 430 .
  • the pulse wave detection module 410, the pressure detection module 420 and the driving module 430 in this embodiment of the present application may be an implementation manner of the pulse wave detection module 210, the pressure detection module 220 and the driving module 230 in FIG. 2 above. .
  • the pressure detection module 420 in this embodiment of the present application may be a cantilever beam type pressure detection module, which may include a cantilever beam 421 and a strain-type pressure sensor 422 , wherein the cantilever beam 421 is composed of an elastic element After preparation, the strain-type pressure sensor 422 is disposed on the surface of the cantilever beam 421 .
  • At least part of the pulse wave detection module 410 is disposed at the free end of the cantilever beam 421, for receiving the user's touch, and detecting the user's PPG signal when the user presses;
  • the driving module 430 connected to the fixed end of the cantilever beam 421, is used to drive the pressure detection module 420 and the pulse wave detection module 410 to move toward or away from the user to adjust the contact pressure between the user and the pulse wave detection module 410.
  • the contact pressure between the user and the pulse wave detection module 410 is transmitted to the free end of the cantilever beam 421 through the pulse wave detection module 410, so that the strain-type pressure sensor 422 on the surface of the cantilever beam 421 detects
  • the contact pressure forms a pressure detection signal, and the pressure detection signal is used to control the driving module 430 to adjust the moving distance of the pressure detection module 420 and the pulse wave detection module 410 .
  • the pressure detection module 420 adopts a cantilever beam structure, and uses a strain-type pressure sensor to detect pressure, which is simple in structure, easy to implement, and has high detection accuracy. Further, in the embodiment of the present application, the characteristics of the cantilever beam are fully utilized, the pulse wave detection module 410 is arranged on the free end of the cantilever beam, and the driving module is arranged on the fixed end of the cantilever beam, which not only can realize the The free end transmits the contact pressure between the pulse wave detection module 410 and the user, so as to realize the detection of the contact pressure by the strain-type pressure sensor on the cantilever beam, and can also drive the pressure detection module 420 and the pulse wave detection module through the fixed end of the cantilever beam 410 overall movement. Therefore, the overall technical solution has a compact structure, the cantilever beam-type pressure detection module 420 has a thin thickness and occupies a small space, which is beneficial to the miniaturization development of the detection device.
  • FIG. 10 shows a schematic structural diagram of another detection apparatus 400 provided by an embodiment of the present application.
  • the overall thickness of the pressure detection module 420 is relatively small, the pulse wave detection module 410 and the pressure detection module 420 can be modularly integrated, and the fixed end of the cantilever beam in the pressure detection module 420 can be connected to the drive module 430 .
  • FIG. 11 shows a split exploded view of the pulse wave detection module 410 and the pressure detection module 420 provided by the embodiment of the present application.
  • the pulse wave detection module 410 includes: an optical component 411 , an electrical component 412 , a structural component 413 and a transparent cover 414 .
  • the optical component 411 includes the above-mentioned light source and light detector.
  • the light source includes but is not limited to a point light source, for example, a light-emitting diode (Light-Emitting Diode, LED), a laser diode ( Laser Diode, LD) or an infrared emitting diode, which may also be a linear light source or a planar light source, which is not specifically limited in this embodiment of the present application.
  • the number of the light sources may be one or more, and each light source may be used to emit light signals of one or more target wavelength bands.
  • the target wavelength band may be a red light wavelength band or a green light wavelength band.
  • the photodetector includes, but is not limited to, photodiode (PD), phototransistor, etc., which are used for photoelectric conversion, and convert the received optical signal reflected or scattered by the user's body into a corresponding electrical signal.
  • the signal can be used to form a PPG signal.
  • the number of the photodetectors can also be one or more, and the response wavelength band of the photodetector needs to include the target wavelength band of the light source.
  • the electrical components 412 include circuit boards, connectors, and related electronic components.
  • the circuit board may include a printed circuit board (Printed Circuit Board, PCB), a flexible printed circuit board (Flexible Printed Circuit, FPC), or one or more types of circuit boards.
  • a printed circuit board PCB is used as a support board, and the optical components 411 and other related electrical components are disposed on the printed circuit board.
  • the flexible circuit board FPC is connected to the printed circuit board through connectors, and is used for The signal detected by the optical component 411 is transmitted to other electrical units such as a processor.
  • the optical component 411 can also be directly disposed on the flexible circuit board FPC, and the area where the optical component 411 is located is supported and reinforced by a reinforcing plate.
  • the structural assembly 413 may include a bottom structural member, a side structural member and a spacer, wherein one side of the bottom structural member is used to support the above-mentioned optical assembly 411 and the electrical assembly 412 , and the other side of the bottom structural member is at least partially disposed on the cantilever beam in the pressure detection module 420 , which is used to transmit pressure to the cantilever beam.
  • the side structure is used to connect with the bottom structure, and is arranged around the optical component 411 and the electrical component 412.
  • a spacer is formed between the light source and the light detector in the optical component 411 to prevent the light source from being reflected by the user's body. Or the scattered light signal directly enters the photodetector, which affects the detection of the PPG signal.
  • the transparent cover plate 414 is arranged opposite to the bottom structural member, and the bottom structural member and the transparent cover plate 414 are connected to the two ends of the side structural member oppositely, and the three can form a cavity structure, and the optical component 411 and the electrical component 412 are accommodated in the structure. in the cavity structure.
  • the pressure detection module 420 may further include an electrical connector 423 for electrically connecting with the strain-type pressure sensor 422 , and is used to transmit the pressure detection signal detected by the strain-type pressure sensor 422 to other electrical units such as the processor.
  • the electrical connector 423 includes, but is not limited to, a flexible circuit board FPC or a connecting wire.
  • the electrical connector 423 is a The flexible circuit board FPC, with its thin thickness and soft material, will not introduce a large pressure detection error, which can ensure the accuracy of the pressure signal detected by the pressure detection module 420, and further ensure the accuracy of the detected user's blood pressure.
  • the cantilever beam 421 may be a sheet-type cantilever beam structure, and for example, its thickness may be 0.1 mm-0.6 mm. Since the thickness of the cantilever beam 411 can be designed to be thinner, the size of the detection device 400 can be further reduced, so that the detection device 400 can be applied to miniaturized electronic devices, such as watches, wristbands and other wearable electronic devices.
  • the strain-type pressure sensor 422 may be a resistance strain-type pressure sensor, which uses the strain effect of a conductor or semiconductor material to convert pressure into resistance change to measure pressure.
  • the metal resistance strain sensor can also be called a strain gauge, which can be used to stick on an elastic element.
  • the resistance of the strain gauge sticking on it will occur.
  • the number of strain gauges may be one or more, and the one or more strain gauges may be disposed on the upper surface, the lower surface, or the upper and lower surfaces of the cantilever beam 421 , in addition, the one or more strain gauges may form a single Arm bridge circuit, double arm bridge circuit or full bridge circuit, etc.
  • the number of strain gauges is 4, and the 4 strain gauges can form a full-bridge circuit, so that the problem of pressure eccentric load can be overcome, the sensitivity of the full-bridge circuit is high, and temperature self-compensation can also be realized.
  • FIG. 12 shows a schematic structural diagram of the driving module 430 provided by the embodiment of the present application.
  • the driving module 430 may include a stepping motor 431 (or also referred to as a stepping motor) and a driving structural member, the driving structural member is connected to the stepping motor 431 and the pressure detection module, and is used to rotate the stepping motor The motion is converted into linear motion to drive the entirety of the pressure detection module and the pulse wave detection module to move toward or away from the user.
  • the above-mentioned driving structure may include: a movable bracket 433 , a screw rod 434 and a sliding rail 435 .
  • the stepper motor 431 (Stepper motor) is a type of DC brushless motor, and has a stator and a rotor that are engaged with each other such as gear-shaped protrusions (small teeth).
  • the rotor can be A motor that rotates gradually at a certain angle. The stepper motor rotates correctly in proportion to the pulse signal, thus achieving precise position and speed control with good stability.
  • a screw rod 435 can be further arranged on the rotor (rotation shaft) of the stepper motor 431, so that the stepper motor 431 can further control the rotation of the screw rod 435. amount of rotation.
  • one end of the movable bracket 433 is arranged on the screw rod 434
  • the other end of the movable bracket 433 is arranged on the slide rail 435
  • the slide rail 435 and the screw rod 434 are arranged in parallel.
  • the screw rod 434 and the sliding rail 435 pass through the two ends of the movable bracket 433 respectively.
  • the stepping motor 431 drives the screw rod 435 to rotate
  • the movable bracket 433 can be further pushed on the screw rod 434 and the sliding rail 435. Lift and move.
  • the movable bracket 433 moves upward to move toward the user; when the stepping motor 431 drives the screw rod 435 to rotate in the reverse direction, the movable bracket 433 moves downward, to move away from the user.
  • the forward rotation may be clockwise or counterclockwise rotation of the screw rod 435 along its central axis, and the direction of reverse rotation is opposite to the direction of forward rotation.
  • forward and reverse are only used to indicate The relative directions of the two are not limited in the embodiments of the present application.
  • the conversion from rotary motion to linear motion can be realized, that is, by controlling the rotation of the stepper motor 431, the linear motion of the movable bracket 433 can be controlled, and the movable bracket 433 can be Reciprocate in the direction towards the user and away from the user.
  • the driving module 430 may further include: an adapter bracket 432 , a motor base 436 and other related structural components.
  • the adapter bracket 432 is used to connect the movable bracket 433 and the pressure detection module, and the pressure detection module and the pulse wave detection module can be driven in the direction toward the user and the direction away from the user through the movable bracket 433 and the adapter bracket 432 Reciprocating motion.
  • the movable bracket 433 and the adapter bracket 432 are separate structures, and the two can be fixedly connected to each other through a connecting piece.
  • the movable bracket 433 can also be integrally formed with the adapter bracket 432, and the movable bracket 433 is directly and fixedly connected to the pressure detection module.
  • FIG. 12 takes the driving module 430 including the stepping motor 431 as an example to illustrate an embodiment of an apparatus for driving the pressure detection module and the pulse wave detection module to move linearly.
  • its related structural components can refer to the mechanical structural components that can realize the conversion of rotary motion into linear motion in the related art, and the specific structure thereof is not limited in the embodiments of the present application.
  • the drive module 430 may also use other motors, such as a servo motor, as the drive source. No specific limitation is made.
  • the specific structure of the driving module 430 may be the same as or similar to the structure of the lifting driving module of the lifting camera in the mobile phone.
  • the lifting driving module of the lifting camera may be directly reused as the implementation of this application.
  • the driving module 430 in the example, and further, the pulse wave detection module and the pressure detection module can be integrated into the module of the lifting camera to realize various functions of automatic lifting, photographing and blood pressure detection.
  • the original driving module in the electronic device where the blood pressure detection device 400 is located is reused as the driving module 430 in the detection device 400, which reduces the overall cost of the electronic device while ensuring the blood pressure detection accuracy.
  • the same module assembly can implement multiple functions, which can improve the integration of electronic devices, facilitate the development of miniaturization and multi-functionality of electronic devices, and further improve user experience.
  • the pressure detection module 420 is a cantilever beam pressure detection module.
  • the pressure detection module 420 may also be other types of pressure detection modules, for example, It may be a capacitive pressure detection module as shown in Figure 13 below.
  • FIG. 13 shows a schematic structural diagram of another blood pressure detection apparatus 500 provided by an embodiment of the present application.
  • the blood pressure detection device 500 may include: a pulse wave detection module 510 , a pressure detection module 520 and a driving module 530 .
  • the pulse wave detection module 510, the pressure detection module 520 and the driving module 530 in this embodiment of the present application may be another implementation of the pulse wave detection module 210, the pressure detection module 220 and the driving module 230 in FIG. 2 above. Way.
  • the pressure detection module 520 in the embodiment of the present application may be a capacitive pressure detection module, and may also be directly referred to as a capacitive pressure sensor, wherein the capacitive pressure sensor includes two opposite pole plates, forming a The two poles of the capacitor are provided with a dielectric layer between the two pole plates, and optionally, an air gap is formed between the two pole plates.
  • the capacitive pressure sensor can be a mutual capacitive capacitive sensor or a self-capacitive capacitive sensor. If the capacitive pressure sensor is a mutual capacitive capacitive sensor, one of its pole plates is a transmitting (Tx) pole. The other plate is the receiving (Rx) plate, the emitter plate is used to send the coding signal, and the receiver plate is used to detect the capacitance signal.
  • Tx transmitting
  • Rx receiving
  • At least part of the pulse wave detection module 510 is disposed on a pole plate of the capacitive pressure sensor, and the contact pressure between the user and the pulse wave detection module 510 acts on the pulse wave detection module 510 through the pulse wave detection module 510 .
  • a pole plate is used to deform the one pole plate and the capacitance of the capacitive pressure sensor changes. Therefore, the capacitance sensor can be used to detect the capacitance change to detect the contact pressure to form a pressure detection signal.
  • the pulse wave detection module 510 is disposed on one pole plate of the capacitive pressure sensor, when the user acts on the pulse wave detection module 510, the contact pressure between the user and the pulse wave detection module 510 makes one pole of the capacitive pressure sensor The plate deforms and the air gap between it and the other plate becomes smaller, thus causing the capacitance of the capacitive pressure sensor to change.
  • the driving module 530 is arranged on another pole plate of the capacitive pressure sensor, and the driving module 530 can be directly or indirectly connected and fixed to another pole plate of the capacitive pressure sensor, for The entirety of the capacitive pressure sensor and the pulse wave detection module 510 is driven to move toward or away from the user, so as to adjust the contact pressure between the user and the pulse wave detection module 510 .
  • the specific principles of the pulse wave detection module 510 and the driving module 530 in this embodiment of the present application may be the same as the pulse wave detection module 410 and the driving module 430 in the above embodiments, and the pulse wave detection module 510 and the driving module 530
  • the specific structure can be similar to the pulse wave detection module 410 and the driving module 430 in the above embodiment, for example, some structural components in the above-mentioned pulse wave detection module 410 and the driving module 430 are appropriately adjusted, so that they are convenient for the connection with the capacitive pressure sensor.
  • the polar plate structure is installed and connected, and the relevant technical solutions can be found in the specific description above, which will not be repeated here.
  • FIG. 14 shows a schematic structural diagram of another blood pressure detection apparatus 500 provided by an embodiment of the present application.
  • the electrode plate may include a flexible circuit board 522 and a reinforcing plate 521 , and the reinforcing plate 521 may be a reinforcing steel sheet with a relatively thin thickness and Not only has a certain rigidity to support the pulse wave detection module 510 located above it, but also when the user acts on the pulse wave detection module 510, the reinforcing plate 521 and the flexible circuit board 522 can produce a certain deformation, so that the capacitive pressure sensor Changed capacitance detected.
  • the two pole plates of the capacitive pressure sensor can be connected by a support member 523, so that an air gap is formed between the two pole plates, the support member 523 includes but is not limited to a welding Including the pads on the two flexible circuit boards and the solder balls between the pads, etc.
  • the capacitive pressure sensor can be directly realized by using a flexible circuit board and a reinforcing plate, the realization method is simple, the cost is low, and the thickness is relatively thin, so the overall thickness and manufacturing cost of the blood pressure detection device can be reduced .
  • the pressure detection module 520 may further include a mounting member 524, and a groove is formed in the mounting member 524, and the above-mentioned capacitive pressure sensor may be arranged in the groove to ensure the Mechanical stability and reliability of capacitive pressure sensors.
  • the drive module 530 can be connected to the mount 524 through which the drive module 530 achieves its fixed connection with the capacitive pressure sensor.
  • the mounting member 524 can also be in other structural forms besides the one shown in FIG. 14 , and is intended to protect and fix the capacitive pressure sensor.
  • the drive module 530 is connected to the capacitive pressure sensor through the mounting member. The capacitive detection of capacitive pressure sensors has less effect.
  • An embodiment of the present application further provides a blood pressure detection device, including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call the computer program to execute the blood pressure detection method in any of the above application embodiments.
  • An embodiment of the present application further provides an electronic device, which may include a button disposed on the surface of the electronic device and the blood pressure detection device in any of the above application embodiments, wherein at least part of the blood pressure detection device is disposed on the button.
  • the pulse wave detection module in the blood pressure detection device is arranged on the button, the pressure detection module in the blood pressure detection device can be stacked with the button, and the drive module in the blood pressure detection device is used to drive the button to move toward or away from the user.
  • the electronic device includes, but is not limited to, a wearable device or a mobile terminal device.
  • the wearable device is, for example, a smart watch, a wristband, etc.
  • the mobile terminal device is, for example, a mobile phone, a notebook computer, a tablet computer, etc. Wait.
  • the surface of the electronic device may be provided with a button that can be touched and pressed by the user, so that the blood pressure detection device arranged on the button can easily detect the blood pressure of the user.
  • the housing of the button forms an accommodating portion, and the optical components and/or electrical components in the pulse wave detection module can be arranged in the accommodating portion.
  • at least part of the housing of the button is reusable It is the transparent cover and/or structural component in the pulse wave detection module.
  • the transparent cover 414 can reuse part of the casing of the button of the electronic device, and the structural component 413 can reuse another part of the casing of the button of the electronic device
  • the pulse wave detection module 410 can be understood as a pulse wave detection button, which can be arranged on the side surface of the electronic device or any other surface.
  • buttons of the electronic device may be dedicated buttons for user blood pressure detection and/or other biometric information detection, or, in other embodiments, the buttons of the electronic device may also be It is a function key of the electronic device itself, such as a power key or a volume key, which is used to realize the detection of the user's blood pressure and/or other biometric information in addition to its own related functions.
  • the electronic device may also include other biometric detection devices, and at least part of the biometric detection device is disposed on the buttons of the above-mentioned electronic device, and the biometric detection device includes: a temperature detection device, an electrocardiogram (Electrocardiography, ECG) detection device, or other types of biometric detection devices.
  • biometric detection device includes: a temperature detection device, an electrocardiogram (Electrocardiography, ECG) detection device, or other types of biometric detection devices.
  • the button structure of the electronic device is used, the pulse wave detection module in the blood pressure detection device is arranged on the button, the pressure detection module in the blood pressure detection device is stacked with the button, and the drive in the blood pressure detection device
  • the module is used to drive the button to move toward or away from the user, which is convenient for the installation of the blood pressure detection device in the electronic device, improves the mechanical stability of the electronic device and the blood pressure detection device, and the button can be convenient for the user to contact and press on the surface of the electronic device, further,
  • the blood pressure detected by the blood pressure detection device is relatively accurate, which can improve the user's experience of using the electronic device.
  • a blood pressure detection device and/or a biometric detection device are installed on the existing function keys of the electronic device.
  • the cost of the electronic device can be reduced, which is beneficial to the development of the integration, miniaturization and multi-function of the electronic device.
  • the embodiment of the present application further provides an electronic device, which may include: a lift camera module and the blood pressure detection device in any of the above application embodiments, wherein the lift camera module includes a camera module and a lift drive module, the camera The module is integrated with the pulse wave detection module in the blood pressure detection device, and the lift driving module is multiplexed as the driving module in the blood pressure detection device, which is used to drive the pulse wave detection module and the camera module to move up and down.
  • the lift camera module includes a camera module and a lift drive module
  • the camera The module is integrated with the pulse wave detection module in the blood pressure detection device
  • the lift driving module is multiplexed as the driving module in the blood pressure detection device, which is used to drive the pulse wave detection module and the camera module to move up and down.
  • the electronic device includes, but is not limited to, a mobile terminal device, such as a mobile phone, a notebook computer, a tablet computer, and the like.
  • the electronic device may include a lifting camera module, which can be lifted and lowered on the top or other parts of the electronic device.
  • the electronic device may further include other biometric detection devices, at least a part of the biometric detection device is integrated with the above-mentioned camera module, and the biometric detection device includes: a temperature detection device, an electrocardiogram (electrocardiogram (ECG). Electrocardiography, ECG) detection device, or other types of biometric detection devices.
  • biometric detection devices at least a part of the biometric detection device is integrated with the above-mentioned camera module, and the biometric detection device includes: a temperature detection device, an electrocardiogram (electrocardiogram (ECG). Electrocardiography, ECG) detection device, or other types of biometric detection devices.
  • ECG electrocardiogram
  • the lifting driving module of the lifting camera module in the multiplexed electronic equipment is used as the driving module in the blood pressure detection device, which reduces the overall cost of the electronic equipment while ensuring the blood pressure detection accuracy.
  • the same module component can realize various functions such as automatic lifting, taking pictures, and blood pressure detection, which can improve the integration of electronic equipment and is conducive to the miniaturization and multi-functional development of electronic equipment. , so as to further improve the user experience. It should be understood that the specific examples herein are only for helping those skilled in the art to better understand the embodiments of the present application, rather than limiting the scope of the embodiments of the present application.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated in one processor, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or can be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种血压检测装置(200)、方法和电子设备,该血压检测装置(200)包括:脉搏波检测模块(210),用于在接收用户接触时,检测用户的光电容积脉搏波描记PPG信号;压力检测模块(220),与脉搏波检测模块(210)堆叠设置,用于检测用户与脉搏波检测模块(210)之间的接触压力得到压力检测信号;驱动模块(230),用于驱使脉搏波检测模块(210)朝向或背离用户移动,以调整用户与脉搏波检测模块(210)之间的接触压力,使得压力检测模块(220)检测到压力检测信号的至少一个目标值,该至少一个目标值对应的目标PPG信号用于检测用户的血压,其中,目标PPG信号为在压力检测模块(220)检测到至少一个目标值时脉搏波检测模块(210)检测的PPG信号。其检测得到的血压具有较高的准确度,且便于携带和易于操作。

Description

血压检测装置、方法和电子设备
本申请要求2020年12月9日提交至中国国家知识产权局、申请号为PCT/CN2020/135009、发明名称为“血压检测方法、装置以及电子设备”的国际申请的优先权,其全部内容通过应用结合在本申请中。
技术领域
本申请涉及电子技术领域,并且更为具体地,涉及一种血压检测装置、方法和电子设备。
背景技术
近年来,随着电子技术的快速发展,如何实时监测人体的生物特征信息,以便于用户随时了解其自身的身体状态,以起到预防疾病的作用,受到人们的广泛关注。
例如,血压作为衡量人体心血管系统的生物特征信息,在疾病诊断、治疗过程和预后判断中有重要的意义。目前,市面上便携的血压检测装置中,一般都是基于脉搏波的检测确定的血压值,但脉搏波的检测受到多种环境因素制约,测量准确度较差。或者,在一些医用场景下,基于听诊法或者示波法的袖套式的血压计,虽血压测量较为准确,但设备操作较为复杂,也不易携带。
因此,提供一种便于携带、易于操作且具有高准确度的血压检测装置,具有很大的应用前景以及市场价值。
发明内容
本申请实施例提供一种血压检测装置、方法和电子设备,其检测得到的血压具有较高的准确度,且便于携带和易于操作。
第一方面,提供一种血压检测装置,包括:脉搏波检测模块,用于在接收用户接触时,检测该用户的光电容积脉搏波描记PPG信号;压力检测模块,与该脉搏波检测模块堆叠设置,用于检测该用户与该脉搏波检测模块之间的接触压力得到压力检测信号;驱动模块,用于驱使该脉搏波检测模块朝向或背离该用户移动,以调整该用户与该脉搏波检测模块之间的接触压力, 使得该压力检测模块检测到该压力检测信号的至少一个目标值,该至少一个目标值对应的目标PPG信号用于检测该用户的血压,其中,该目标PPG信号为在该压力检测模块检测到该至少一个目标值时该脉搏波检测模块检测的PPG信号。
基于本申请的技术方案,通过脉搏波检测模块和压力检测模块的堆叠设置,可以使得压力检测模块检测到用户与脉搏波检测模块之间的接触压力,以得到压力检测信号。进一步地,通过驱动模块驱动脉搏波检测模块以调整脉搏波检测模块与用户之间的接触压力,以实现血压检测过程中的压力自动控制,而不需要用户按照特定要求进行按压,即使用户的按压不稳定且波动很大,也可以通过驱动模块的主动调整,以使得用户与脉搏波检测模块之间的接触压力达到稳定可控的至少一个目标值,在稳定可控的至少一个目标值下检测得到的目标PPG信号的质量较佳,其波形能够准确反映与目标值的关系,进而能够得到较为准确的血压检测结果。相比于现有技术中直接检测无压力作用下的脉搏波信号以检测血压,或者借助血压计等设备来检测血压的方案,能够直接根据检测装置本身测量较为准确的血压,因而具有较高的准确度,易于操作且便于携带。
在一些可能的实施方式中,该驱动模块用于接收控制信号以驱使该脉搏波检测模块移动,该控制信号是根据该压力检测信号的当前值和该目标值确定得到的。
通过该实施方式的技术方案,根据压力检测信号的当前值和要达成的目标值共同确定驱动模块的控制信号,可以使得驱动模块的驱动效率更高,使得压力检测模块可以更快的检测得到压力检测信号的目标值,从而提升整个血压检测的速度和效率。
在一些可能的实施方式中,该压力检测信号的当前值大于该目标值,该驱动模块用于接收第一控制信号以驱使该脉搏波检测模块背离该用户移动;或者,该压力检测信号的当前值小于该目标值,该驱动模块用于接收第二控制信号以驱使该脉搏波检测模块朝向该用户移动。
在一些可能的实施方式中,压力检测信号的目标值的数量为多个,该压力检测信号的多个目标值中的待测目标值是根据已测目标值对应的目标PPG信号的波形特征确定的,其中,该已测目标值为该压力检测模块已检测到的目标值,该待测目标值为该压力检测模块未检测到的目标值。
通过该实施方式的技术方案,能够避免长时间、大范围的检测不同压力下的PPG信号,而可以有针对性的,基于已测目标值对应的目标PPG的波形特征,确定后续检测过程中的待测目标值的大小,从而可以实现血压检测的快速进行。
在一些可能的实施方式中,该待测目标值是根据该已测目标值对应的目标PPG信号的波形特征以及参考信号的波形特征确定的;其中,该参考信号包括至少一个压力值下该用户的参考PPG信号。
通过该实施方式的技术方案,在具有参考信号的基础上,综合参考信号和已测目标值对应的目标PPG的波形特征,在兼顾快速实现血压检测的同时,能够提高血压检测的准确度。
在一些可能的实施方式中,该待测目标值是根据该已测目标值对应的目标PPG信号的幅度变化特征以及该参考信号的幅度变化特征确定的。
在一些可能的实施方式中,该压力检测信号的至少一个目标值为至少一个预设值。
通过本申请实施例的技术方案,可以基于预设的至少一个目标值进行用户的血压检测,在目标值的数量为多个情况下,该多个目标值可覆盖较为全面的压力范围,使得多个目标值对应的目标PPG信号包含的压力信息较多,有利于提高血压检测的准确度。
在一些可能的实施方式中,压力检测信号的目标值的数量为多个,该压力检测信号的多个目标值为多个预设值,该多个预设值按照预设的变化方式逐渐变化或者呈阶梯式的变化。
在一些可能的实施方式中,该多个预设值线性增大或者线性减小。
在一些可能的实施方式中,该目标PPG信号还用于存储以作为该用户后续的血压检测的参考信号。
在一些可能的实施方式中,该驱动模块连接于该压力检测模块,该驱动模块包括步进电机和驱动结构件,该驱动结构件连接该步进电机和该压力检测模块,并用于将该步进电机的旋转运动转换为线性运动,以带动该压力检测模块和该脉搏波检测模块的整体朝向或背离该用户移动。
通过该实施方式的技术方案,压力检测模块和脉搏波检测模块集成为整体,驱动模块连接于压力检测模块,以驱使该整体,能够实现整体驱动的稳定性,且不会对压力检测模块和脉搏波检测模块各自的功能实现造成影响。 且利用步进电机和驱动结构件实现驱动功能,可达成精确的位置和速度控制,且稳定性佳。
在一些可能的实施方式中,该驱动结构件包括:螺旋杆、滑轨和可移动支架;该螺旋杆连接于该步进电机,该滑轨平行设置于该螺旋杆的一侧,该可移动支架设置于该螺旋杆和该滑轨,并用于连接该压力检测模块;该步进电机用于驱动该螺旋杆旋转,该螺旋杆用于带动该可移动支架在该螺旋杆和该滑轨上线性移动,以驱使该压力检测模块和该脉搏波检测模块的整体朝向或背离该用户移动。
在一些可能的实施方式中,该驱动模块的结构与升降摄像头的升降驱动模块的结构相同。
通过该实施方式的技术方案,可以利用相关技术中已有的升降模块作为本申请中的驱动模块,因此,本申请中的驱动模块具有较为成熟的工艺程度且稳定性好。
在一些可能的实施方式中,该压力检测模块包括:悬臂梁和应变式压力传感器,该悬臂梁为弹性元件,该应变式压力传感器设置于该悬臂梁的表面,该脉搏波检测模块的至少部分设置于该悬臂梁的自由端,该用户与该脉搏波检测模块之间的接触压力通过该脉搏波检测模块传递至该悬臂梁的自由端,以使该悬臂梁表面的该应变式压力传感器检测该接触压力形成压力检测信号。
通过该实施方式的技术方案,压力检测模块采用悬臂梁式的结构,并利用应变式压力传感器实现压力的检测,其结构简单、便于实现且同时具有较高的检测精度。
在一些可能的实施方式中,该驱动模块连接于该悬臂梁的固定端,用于驱使该悬臂梁和该脉搏波检测模块朝向或背离用户移动,以调整该用户与该脉搏波检测模块之间的接触压力。
通过该实施方式的技术方案,充分利用悬臂梁的特点,将脉搏波检测模块设置于悬臂梁的自由端,且驱动模块设置于悬臂梁的固定端,不仅能够实现通过悬臂梁的自由端传递脉搏波检测模块与用户之间接触压力,以实现悬臂梁上应变式压力传感器对于该接触压力的检测,还能够通过悬臂梁的固定端,带动压力检测模块和脉搏波检测模块整体的移动。因此,整体技术方案结构紧凑,压力检测模块厚度薄,占用空间小,有利于检测装置的小型化发 展。
在一些可能的实施方式中,该悬臂梁为薄片式悬臂梁,该悬臂梁的厚度为0.1mm至0.6mm。
在一些可能的实施方式中,该应变式压力传感器包括四个应变片,该四个应变片组成全桥电路。
在一些可能的实施方式中,该压力检测模块包括:电容式压力传感器;该脉搏波检测模块的至少部分设置于该电容式压力传感器的一个极板,该用户与该脉搏波检测模块之间的接触压力通过该脉搏波检测模块作用于该一个极板,以使该一个极板形变且该电容式压力传感器的电容变化,该电容式压力传感器用于检测其电容的变化以检测该接触压力形成压力检测信号。
在一些可能的实施方式中,该驱动模块通过安装件连接于该电容式压力传感器的另一个极板,该驱动模块用于驱使该电容式压力传感器和该脉搏波检测模块的整体朝向或背离该用户移动,以调整该用户与该脉搏波检测模块之间的接触压力。
在一些可能的实施方式中,该电容式压力传感器的极板包括:柔性电路板和补强板。
通过该实施方式的技术方案,电容式压力传感器可直接利用柔性电路板和补强板实现,实现方式简单,成本低且厚度较薄,因此能够降低该血压检测装置的整体厚度及其制造成本。
在一些可能的实施方式中,该脉搏波检测模块包括:光学组件、电学组件、结构组件以及透明盖板;该光学组件包括至少一个光源和至少一个光检测器,用于获取该用户的PPG信号;该电学组件支撑并电连接该光学组件,用于传输该目标PPG信号;该透明盖板设置于该光学组件朝向该用户的一侧,用于接收该用户的触摸;该结构组件连接于该透明盖板,并与该透明盖板形成腔体结构,该腔体结构用于容纳该光学组件和该电学组件。
第二方面,提供一种血压检测方法,应用于包括脉搏波检测模块、压力检测模块和驱动模块的血压检测装置,当用户接触于该脉搏波检测模块时,该血压检测方法包括:获取该压力检测模块的压力检测信号,其中,该压力检测信号为用户与该脉搏波检测模块之间接触压力的压力信号;控制该驱动模块运行以驱使该脉搏波检测模块朝向或背离用户移动,直至获取到该压力检测信号的至少一个目标值;获取该至少一个目标值对应的目标光电容积脉 搏波描记PPG信号,并根据该目标PPG信号检测该用户的血压,其中,该目标PPG信号为在获取到该压力检测信号的至少一个目标值时该脉搏波检测模块检测的PPG信号。
在一些可能的实施方式中,该控制该驱动模块运行以驱使该脉搏波检测模块朝向或背离用户移动,直至获取到该压力检测信号的至少一个目标值,包括:根据该压力检测信号的当前值和该至少一个目标值中的一个目标值确定控制信号;向该驱动模块发送该控制信号以驱使该脉搏波检测模块朝向或背离该用户移动,直至获取到该压力检测信号的该一个目标值。
在一些可能的实施方式中,该根据该压力检测信号的当前值和该至少一个目标值中的一个目标值确定控制信号,向该驱动模块发送控制信号以驱使该脉搏波检测模块朝向或背离该用户移动,包括:根据该压力检测信号的当前值和该一个目标值确定第一控制信号,其中该压力检测信号的当前值大于该一个目标值,向该驱动模块发送该第一控制信号以驱使该脉搏波检测模块背离该用户移动;或者,根据该压力检测信号的当前值和该一个目标值确定第二控制信号,其中该压力检测信号的当前值小于该一个目标值,向该驱动模块发送该第二控制信号以驱使该脉搏波检测模块朝向该用户移动。
在一些可能的实施方式中,压力检测信号的目标值的数量为多个,该血压检测方法还包括:根据该压力检测信号的多个目标值中的已测目标值对应的目标PPG信号的波形特征确定待测目标值。
在一些可能的实施方式中,该根据该压力检测信号的多个目标值中的已测目标值对应的目标PPG信号的波形特征确定待测目标值,包括:获取参考信号,该参考信号包括至少一个参考压力值下所述用户的参考PPG信号;根据该参考信号的波形特征以及该已测目标值对应的目标PPG信号的波形特征,确定该待测目标值。
在一些可能的实施方式中,该根据该参考信号的波形特征以及该已测目标值对应的目标PPG信号的波形特征,确定该待测目标值,包括:根据该参考信号的幅度变化特征以及该已测目标值对应的目标PPG信号的幅度变化特征,确定该待测目标值。
在一些可能的实施方式中,该压力检测信号的至少一个目标值为至少一个预设值。
在一些可能的实施方式中,压力检测信号的目标值的数量为多个,该压 力检测信号的多个目标值为多个预设值,该多个预设值按照预设的变化方式逐渐变化或者呈阶梯式的变化。
在一些可能的实施方式中,该多个预设值线性增大或者线性减小。
在一些可能的实施方式中,该血压检测方法还包括:存储该目标PPG信号以作为该用户后续的血压检测的参考信号。
第三方面,提供一种血压检测装置,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用该计算机程序,执行上述第二方面或第二方面中任一实施方式中的血压检测方法。
第四方面,提供一种电子设备,包括:设置于电子设备表面的按键以及如第一方面、第一方面中任一实施方式、或第三方面中的血压检测装置;其中,该血压检测装置中的脉搏波检测模块设置于该按键,该血压检测装置中的压力检测模块与该按键堆叠设置,该血压检测装置中的驱动模块用于驱使该按键朝向或背离用户移动。
通过该申请实施例的技术方案,利用电子设备的按键结构,将血压检测装置中的脉搏波检测模块设置于按键,血压检测装置中的压力检测模块与按键堆叠设置,且血压检测装置中的驱动模块用于驱使按键朝向或背离用户移动,便于血压检测装置在电子设备中的安装,提高电子设备以及血压检测装置的机械稳定性,且按键可便于用户在电子设备表面进行接触按压,进一步的,血压检测装置检测的血压较为准确,可以提高用户对于电子设备的使用体验。
在一些可能的实施方式中,该按键的壳体包围形成容置部,该脉搏波检测模块中的光学组件和/或电学组件设置于该容置部中,该按键的壳体的至少部分复用为该脉搏波检测模块中的透明盖板和/或结构组件。
在一些可能的实施方式中,该按键为该电子设备的电源键或音量键。
在本申请实施例的技术方案中,复用电子设备的功能按键,例如音量键或者电源键,在该电子设备的现有的功能按键上设置血压检测装置和/或生物特征检测装置,相对于单独设置血压检测按键的方案,可以降低电子设备的成本,有利于电子设备的集成化、小型化和多功能化的发展。
在一些可能的实施方式中,该电子设备还包括生物特征检测装置,该生物特征检测装置的至少部分设置于该按键,该生物特征检测装置包括:温度检测装置和/或心电图检测装置。
在一些可能的实施方式中,该电子设备为可穿戴设备或移动终端设备。
第五方面,提供一种电子设备,包括:升降摄像头模组以及如第一方面、第一方面中任一实施方式、或第三方面中的血压检测装置;其中,该升降摄像头模组包括摄像头模块和升降驱动模块,该摄像头模块与该血压检测装置中的脉搏波检测模块集成设置,该升降驱动模块复用为该血压检测装置中的驱动模块。
在一些可能的实施方式中,该电子设备为移动终端设备。
通过该实施方式的技术方案,复用电子设备中升降摄像头模组的升降驱动模块作为血压检测装置中的驱动模块,在保证血压检测准确度的同时,降低电子设备的整体成本。另外,将脉搏波检测模块和摄像头模块集成设置,同一模块组件可实现自动升降、拍照以及血压检测等多种功能,可提高电子设备的集成度,有利于电子设备的小型化和多功能化发展,从而进一步提升用户体验。
附图说明
图1为根据本申请实施例提供的一种血压检测装置的示意性结构图。
图2示出了血压检测过程中,一种理想的压力变化情况和用户实际按压的压力变化情况。
图3为根据本申请实施例提供的一种血压检测装置的示意性功能框图。
图4为根据本申请实施例提供的一种血压检测方法的示意性流程框图。
图5为根据本申请实施例提供的另一血压检测方法的示意性流程框图。
图6为根据本申请实施例提供的另一血压检测方法的示意性流程框图。
图7为根据本申请实施例提供的一种在变化的压力下,PPG信号的变化示意图。
图8为根据本申请实施例提供的另一血压检测方法的示意性流程框图。
图9为根据本申请实施例提供的另一血压检测装置的示意性结构图。
图10为根据本申请实施例提供的另一血压检测装置的示意性结构图。
图11为根据本申请实施例提供的脉搏波检测模块和压力检测模块的一种分体爆炸图。
图12为根据本申请实施例提供的驱动模块的一种示意性结构图。
图13为根据本申请实施例提供的另一血压检测装置的示意性结构图。
图14为根据本申请实施例提供的另一血压检测装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1示出了本申请实施例提供的一种血压检测装置100的示意性结构图。
如图1所示,本申请实施例的血压检测装置100包括:脉搏波检测模块110和压力检测模块120。
其中,脉搏波检测模块包括:光源111、光检测器112、盖板113和基板114。具体地,基板114可为电路板,光源111和光检测器112设置于基板114上,实现与基板114的电连接。另外,盖板113可为透明盖板,其设置于光源111和光检测器112的上方,用于接收用户手指。
当用户手指放置于盖板113时,光源111发射的光信号通过透明盖板113至用户手指,光信号通过手指内血管的反射或者散射后,被光检测器112接收,经过光电转换以及电信号处理之后可形成光电容积脉搏波描记(Photo Plethysmography,PPG)信号,该PPG信号经过进一步的算法处理后,可实现多种血压的检测。
若仅利用光源111和光检测器112检测得到的PPG信号执行血压的检测,该PPG信号会受到环境、人体差异等多种因素的影响,检测得到的脉搏波干扰较大,质量较差,因此基于该质量较差的脉搏波检测得到的血压准确度较低。
基于此,在本申请实施例中,新增了压力检测模块120,其可设置于脉搏波检测模块110的下方,当手指按压于盖板113时,其会向盖板113所在的脉搏波检测模块110施加一个压力,而位于脉搏波检测模块110下方的压力检测模块120可用于检测该压力。进一步地,可综合该压力以及PPG信号共同实现多种血压的检测。
具体地,用户手指向脉搏波检测模块110施加的压力是变化的压力,变化的压力下,手指血管受到不同程度的挤压,其血液容积、血液压力以及其它相关参数也随之变化,因此,光检测器112形成的PPG信号也随着压力的变化而变化,根据不同按压压力下的PPG信号的变化程度,确定用户的血压,相比于直接根据PPG信号确定用户的血压,能够提高血压检测的准确 度。
虽然在该技术方案中,增加了压力检测模块120用于检测用户按压时的变化的压力信号,以提高血压等血压检测的准确度。但在实际的应用操作过程中,发现血压检测的准确度还与用户按压时的压力变化的稳定性相关,稳定且持续变化的压力下,根据该压力信号和PPG信号得到的血压检测的准确度较高,而不稳定变化,波动较大的压力下,根据该压力信号和PPG信号得到的血压检测的准确度则会受到影响。
作为示例,图2示出了血压检测过程中,一种理想的压力变化情况和用户实际按压的压力变化情况。
如图2所示,线条A代表一种理想的压力变化情况,即压力随检测时间线性变化,线条B代表一种用户实际按压的压力变化曲线,可以看出,用户实际按压过程中,压力变化是随机且不稳定的,时大时小的压力突变、以及压力值快速增长等不确定性因素均会对检测得到PPG信号质量造成影响,从而影响血压检测。
换言之,血压检测的准确度受制于用户按压的情况,若需要用户提供较为稳定且持续变化的按压压力,会对用户造成额外的使用负担,造成用户体验不佳,另外老人、儿童等用户群体也难以提供上述如图2中线A所示的较高要求的变化的按压压力,在这种情况下,血压检测的准确度会受到较大的影响。
基于上述问题,本申请提出一种血压检测装置,能够降低对用户的按压要求,其既易于操作,还具有便携性和较高的血压检测准确度。
图3示出了本申请实施例提供的一种血压检测装置的示意性功能框图。
如图3所示,该血压检测装置200可包括:
脉搏波检测模块210,用于在接收用户接触时,检测用户的光电容积脉搏波描记PPG信号;
压力检测模块220,与脉搏波检测模块210堆叠设置,用于检测用户与脉搏波检测模块210之间的接触压力得到压力检测信号;
驱动模块230,用于驱使脉搏波检测模块210朝向或背离用户移动,以调整用户与脉搏波检测模块210之间的接触压力,使得压力检测模块220检测到压力检测信号的至少一个目标值,该至少一个目标值对应的目标PPG信号用于检测用户的血压,其中,目标PPG信号为在压力检测模块220检 测到至少一个目标值时脉搏波检测模块210检测的PPG信号。
具体地,在本申请实施例中,脉搏波检测模块210中的基本结构可参见上文图1中脉搏波检测模块110的相关技术方案。即本申请实施例中,脉搏波检测模块210可包括光源以及光检测器,用于检测经过用户人体后的PPG信号。另外,脉搏波检测模块还提供一接收界面,用于接收用户的接触,该接收界面包括但不限于为图1中所示的透明盖板中朝向用户侧的界面。
对于压力检测模块220,与脉搏波检测模块210堆叠设置,具体地,用户接触于脉搏波检测模块210时,脉搏波检测模块210和用户之间的接触压力通过脉搏波检测模块210传输至压力传感模块220,进一步地,该压力检测模块220中可包括压力传感器(Pressure sensor),用于感测脉搏波检测模块210和用户之间的接触压力,以形成压力检测信号。
可选地,压力检测模块220中的压力传感器包括但不限于是:应变式压力传感器、压电式压力传感器,压阻式压力传感器、电容式压力传感器、电感式压力传感器、或者其它类型的压力传感器,本申请实施例对此不做具体限定。
对于驱动模块230,其可间接或者直接的连接于脉搏波检测模块210,以驱使脉搏波检测模块210朝向或背离用户移动,进而调整脉搏波检测模块210和用户之间的接触压力。具体地,若脉搏波检测模块210朝向用户移动,脉搏波检测模块210和用户之间的接触压力增加。反之,若脉搏波检测模块210背离用户移动,脉搏波检测模块210和用户之间的接触压力减小。
在一些实施方式中,驱动模块230可直接通过连接件与脉搏波检测模块210进行固定连接,或者,在另一些实施方式中,脉搏波检测模块210可与压力检测模块220连接,驱动模块230可连接至压力检测模块220,再通过驱使压力检测模块220,从而使得压力检测模块220和脉搏波检测模块210的整体朝向或者背离用户移动。
可选地,驱动模块230可包括任意类型的电动机,即将电力转换为动力,以驱使脉搏波检测模块210移动。
基于驱动模块230驱使脉搏波检测模块210朝向或背离用户移动,进而调整脉搏波检测模块210和用户之间的接触压力后,压力检测模块220可持续检测该调整的接触压力,直至其检测到压力检测信号的至少一个目标值。在本申请实施例中,该至少一个目标值是确定且变化的。可选地,在一些实 施例中,该至少一个目标值可为某预设压力范围内的压力值。对于用户与脉搏波检测模块之间的接触压力而言,在过大的接触压力下,用户人体的血管受到挤压程度较大,因而会对脉搏波的检测造成影响,而过小的接触压力下,检测得到的脉搏波又几乎不包括压力信息,也会对脉搏波的检测造成影响,因此,至少一个目标值需要处于合适的压力范围内,才能检测得到质量较佳的PPG信号。可选地,可通过实验或者仿真数据,确定预设的合适的压力范围,以确定上述至少一个目标值,以保证在该目标值对应的目标PPG信号的质量,进而提升血压检测的准确度。
基于本申请实施例的技术方案,在相关技术的基础上,新增了驱动模块230,其可用于驱动脉搏波检测模块210以调整脉搏波检测模块210与用户之间的接触压力,以实现血压检测过程中的压力自动控制,而不需要用户按照特定要求进行按压,即使用户的按压不稳定且波动很大,也可以通过驱动模块的主动调整,以使得用户与脉搏波检测模块210之间的接触压力达到稳定可控的至少一个目标值,在稳定可控的至少一个目标值下检测得到的PPG信号的质量较佳,其波形能够准确反映与目标值的关系,进而能够得到较为准确的血压检测结果。
基于上述申请实施例的血压检测装置200,图4示出了本申请实施例提供的一种血压检测方法300的示意性流程框图。需要说明的是,本申请实施例中的血压检测方法300可与上文血压检测装置200的技术方案相互对应,本申请实施例中的相关技术特征可参见上文的相关描述。
可选地,该检测方法300的执行主体可为上述检测装置200的处理器或者控制器,该处理器或者控制器可与检测装置200集成设置,或者,也可以设置于检测装置200之外,作为一种示例,该检测装置200的处理器或者控制器,即为检测装置200所在的电子设备的主控制器或者中央处理器。
如图4所示,当用户接触于上述脉搏波检测模块时,该血压检测方法300可包括以下步骤。
S310:获取压力检测模块的压力检测信号,其中,该压力检测信号为用户与脉搏波检测模块之间接触压力的压力信号。
具体地,当用户需要进行血压检测时,用户对脉搏波检测模块进行按压,此时,用户与脉搏波检测模块之间形成接触压力,且该接触压力通过脉搏波检测模块传递至压力检测模块,以使得压力检测模块检测得到压力检测信 号,该压力检测信号可通过电学件传输至处理器,以使得处理器获取到该压力检测信号。
S320:控制驱动模块运行以驱使脉搏波检测模块朝向或背离用户移动,直至获取到压力检测信号的至少一个目标值。
具体地,处理器还可控制驱动模块运行,以驱使脉搏波检测模块朝向或背离用户移动,从而调整脉搏波检测模块与用户之间的接触压力,进一步地,压力检测模块可持续检测该接触压力,直至压力检测模块检测到压力检测信号的至少一个目标值,进而处理器可获取到该压力检测信号的至少一个目标值。
S330:获取至少一个目标值对应的目标PPG信号,并根据该目标PPG信号检测用户的血压。
具体地,该目标PPG信号为在处理器获取到压力检测信号的至少一个目标值时,脉搏波检测模块检测的PPG信号。
可选地,在一些实施方式中,当处理器获取到压力检测信号的至少一个目标值时,此时用户与脉搏波检测模块之间的触摸压力处于合适的压力范围,该情况下,处理器进一步控制脉搏波检测模块检测用户当前的PPG信号,即控制脉搏波检测模块中的光源以及光检测器运行,接收经过用户人体后的光信号以检测用户的PPG信号,即目标PPG信号,该脉搏波检测模块检测得到的目标PPG信号通过电学件传输至处理器后,处理器可基于该PPG信号执行用户的血压检测。
或者,在其它实施方式中,脉搏波检测模块也可持续检测用户的PPG信号,处理器仅在获取到压力检测信号的至少一个目标值时,获取此时脉搏波检测模块检测的PPG信号,作为目标PPG信号。
基于上文图4中血压检测方法300的设计思想,图5示出了本申请实施例提供的另一血压检测方法300的示意性流程框图。
如图5所示,上述步骤S320可包括以下步骤。
S321:根据压力检测信号的当前值和至少一个目标值中的一个目标值确定控制信号。
S322:向驱动模块发送控制信号以驱使脉搏波检测模块朝向或背离用户移动,直至获取到该一个目标值。
具体地,在压力检测信号具有一个目标值的情况下,为了获取该一个目 标值,处理器具体的可根据压力检测信号的当前值与该一个目标值确定控制信号,以控制驱动模块的移动方向,从而能够更快使得压力检测模块能够检测得到压力检测信号的该一个目标值,即脉搏波检测模块与用户之间的接触压力能够达到该一个目标值。
在压力检测信号具有多个目标值的情况下,则处理器可按照上述过程获取多个目标值中的每个目标值,具体地,当处理器获取到压力检测信号的一个目标值后,再根据压力检测信号的当前值与下一个目标值确定新的控制信号,并根据新的控制信号控制驱动模块的移动方向,以使得压力检测模块能够检测得到压力检测信号的下一个目标值。依次类推的循环进行,可以使得压力检测模块能够依次检测得到压力检测信号的多个目标值。
需要说明的是,在血压检测过程中,压力检测信号的当前值会随着驱动模块的移动、用户按压等变化而随之变化,对于至少一个目标值中的每个目标值,都可以根据压力检测信号的当前值进行调整,以使得压力检测模块能够依次检测得到压力检测信号的至少一个目标值。
在本申请实施例中,驱动模块用于接收控制信号以驱使脉搏波检测模块移动,该控制信号是根据压力检测信号的当前值和目标值确定得到的。因此,通过本申请实施例的技术方案,根据压力检测信号的当前值和要达成的目标值共同确定驱动模块的驱动方式,可以使得驱动模块的驱动效率更高,使得压力检测模块可以更快的检测得到压力检测信号的目标值,从而提升整个血压检测的速度和效率。
基于上文图5中血压检测方法300的设计思想,图6示出了本申请实施例提供的另一血压检测方法300的示意性流程框图。
如图6所示,上述步骤S321和S322可包括以下步骤。
S3211:压力检测信号的当前值大于一个目标值,确定第一控制信号。
S3212:向驱动模块发送第一控制信号以驱使脉搏波检测模块背离用户移动。
S3212:压力检测信号的当前值小于一个目标值,确定第二控制信号。
S3222:向驱动模块发送第二控制信号以驱使脉搏波检测模块朝向用户移动。
具体地,若压力检测信号的当前值大于一个目标值,处理器根据压力检测信号的当前值和一个目标值确定第一控制信号,并将该第一控制信号发送 至驱动模块,控制驱动模块运行以驱使脉搏波检测模块向背离于用户的方向移动,则脉搏波检测模块与用户之间的接触压力减小,继而在下一时刻,压力检测模块检测得到的压力检测信号的值减小。
若压力检测信号的当前值小于一个目标值,处理器根据压力检测信号的当前值和一个目标值确定第二控制信号,并将该第二控制信号发送至驱动模块,则控制驱动模块运行以驱使脉搏波检测模块向朝向于用户的方向移动,则脉搏波检测模块与用户之间的接触压力增大,继而在下一时刻,压力检测模块检测得到的压力检测信号的值增大。
持续的,处理器可根据获取到的压力检测模块的压力检测信号的值判断其是否为目标值,若不是,则重复上述过程,直至处理器获取到的压力检测信号的值为目标值。
可选地,在本步骤中,若驱动模块中包括步进电机,则可根据压力检测信号的当前值与目标值之差的绝对值,确定步进电机的控制信号,例如脉冲控制信号,若当前值与目标值之差的绝对值越大,则脉冲控制信号中的脉冲数则越多,步进电机的转动量越多,从而使得其带动的脉搏波检测模块的线性位移越大。反之,若当前值与目标值之差的绝对值越小,则脉冲控制信号中的脉冲数则越少,步进电机的转动量越少,从而使得其带动的脉搏波检测模块的线性位移越小。
可选地,对于脉搏波检测模块方向的控制,可根据当前值与目标值之差的符号,确定步进电机的方向控制信号,作为示例,若当前值与目标值之差为负,则步进电机的方向控制信号为高电平,控制步进电机正向转动,带动脉搏波检测模块向朝向于用户的方向移动。反之,若当前值与目标值之差为正,则步进电机的方向控制信号为低电平,控制步进电机反向转动,带动脉搏波检测模块向背离于用户的方向移动。
对于本申请实施例的至少一个目标值中的每个目标值,均可采用上述方式执行,压力检测信号的当前值大于目标值时,驱动模块用于接收第一控制信号以驱使所述脉搏波检测模块背离所述用户移动;或者,压力检测信号的当前值小于目标值时,驱动模块用于接收第二控制信号以驱使脉搏波检测模块朝向用户移动,从而实现对脉搏波检测模块和用户之间接触压力的调整,直至使得压力检测模块检测到压力检测信号的该目标值。
上文结合图5和图6说明了如何通过控制驱动模块运行,使得压力检测 模块检测得到压力检测信号的至少一个目标值的过程。可选地,在一些实施方式中,该至少一个目标值可以为至少一个预设值,该至少一个预设值存储于存储器中,处理器可从存储器中获取该至少一个预设值。
可选地,在压力检测信号的目标值为多个目标值,且多个目标值为多个预设值的情况下,该多个预设值可按照预设的变化方式的变化,例如多个预设值可逐渐变化或者呈阶梯式的变化。
作为示例而非限定,多个预设值可为可线性增大或者线性减小的多个值,或者,多个预设值可为可呈阶梯式增大或者呈阶梯式减小的多个值,又或者,多个预设值还可呈曲线式的增大或者减小。具体的,本申请实施例对该多个预设值的变化趋势不做具体限定,其可根据实际需求和实验数据,确定合适压力范围内一系列具有变换的多个目标值。
作为一种示例,图7中示出了一种在变化的压力作用于用户时,用户的PPG信号的变化示意图。
由图7可以看出,在较小的压力作用于用户时,随着压力的逐渐增大,用户的PPG信号的幅度逐渐增强,幅度达到最大时,继续增大压力,则PPG信号的幅度逐渐减弱,直至消失。因此,PPG信号形成的包络线可体现该PPG信号与压力之间的关系,因而,可根据该包络线的波形参数确定用户较为准确的血压信息或者其它生物特征信息。
基于此,在本申请实施例中,处理器可根据多个预设值对应的目标PPG信号的包络线检测用户当前的血压;换言之,多个预设值对应的目标PPG信号的包络线可用于检测所述用户当前的血压。
当然,除了利用目标PPG信号的包络线检测用户的血压以外,在其它实施方式中,在压力检测信号的目标值为一个预设值或者多个预设值时,处理器可根据至少一个预设值对应的目标PPG信号的其它波形特征检测用户当前的血压,例如,处理器可根据至少一个预设值对应的目标PPG信号的波形特征,通过脉搏波分析(Pulse Wave Analysis,PWA)等相关检测方法对该目标PPG信号的波形特征进行分析,以检测用户当前的血压。
通过本申请实施例的技术方案,可以基于预设的至少一个目标值进行用户的血压检测,在至少一个目标值的数量为多个的情况下,该多个目标值可覆盖较为全面的压力范围,使得多个目标值对应的目标PPG信号的波形特征中包含的压力信息较多,目标PPG信号形成的包络线较为完善、准确, 通过对该多个目标值对应的PPG信号的波形特征进行分析和检测,能够得到当前用户较为准确的血压信息。
在上述技术方案的基础上,可选地,在本申请实施例中,至少一个预设值对应的目标PPG信号和/或其相关的波形特征,例如目标PPG信号的包络线等,除了可用于进行用户的血压检测以外,还可以进行存储,将其作为用户后续的血压检测的参考信号。
该压力检测信号的至少一个目标值除了可以为至少一个预设值以外,可选地,在另一些实施方式中,其还可以根据实际血压检测过程中的PPG信号确定得到,在该实施方式中,压力检测信号的目标值的数量为多个。
图8示出了本申请实施例提供的另一血压检测方法300的示意性流程框图。
S310:获取压力检测模块的压力检测信号,该压力检测信号为用户与脉搏波检测模块之间接触压力的压力信号。
S323:根据待测目标值,控制驱动模块运行以驱使脉搏波检测模块朝向或背离用户移动。
S324:获取到压力检测信号的该待测目标值,使得该待测目标值变更为已测目标值。
S340:根据该已测目标值对应的目标PPG信号的波形特征,确定待测目标值。
S333:获取多个目标值对应的目标PPG信号,并根据该目标PPG信号检测用户的血压。
具体地,在本申请实施例中,步骤S323和步骤S324的实现方式可参见上文中图5或图6所示实施例的相关描述,其旨在根据待测目标值,通过控制驱动模块运行,使得压力检测模块可检测得到该待测目标值,进而使得处理器可获取该待测目标值,当待测目标值被压力检测模块检测得到且被处理器获取到之后,该待测目标值变更为已测目标值。进一步的,可获取该至少一个已测目标值对应的目标PPG信号。
在步骤S340中,处理器可根据该已测目标值对应的目标PPG信号,确定新的待测目标值,该待测目标值为压力检测模块在当前时刻未检测到的目标值。
在确定该新的待测目标值之后,返回继续执行步骤S323,根据该待测 目标值,控制驱动模块运行以驱使脉搏波检测模块朝向或背离用户移动,直至压力检测信号检测到该待测目标值,此时该待测目标值变更为已测目标值,进一步获取其对应的目标PPG信号,进而又可以根据最新的已测目标值对应的PPG信号确定下一个或者多个待测目标值。
通过上述说明可知,本申请实施例的技术方案为循环过程,已测目标值和待测目标值为检测过程中某一时刻的相对概念,待测目标值在被压力检测模块检测得到后,即变更为已测目标值。通过本申请实施例的技术方案,可以确定压力检测信号的多个目标值中除第一个目标值以外的其它任意目标值,该第一个目标值可以为预设的目标值。
可选地,在一些可能的实施方式中,可根据至少一个已测目标值对应的目标PPG信号的波形特征,例如幅度变化特征,确定至少一个待测目标值的大小。
可选地,基于上述至少一个已测目标值对应的目标PPG信号的波形特征,可进一步获取参考信号,并根据该参考信号的波形特征以及至少一个已测目标值对应的目标PPG信号的波形特征,共同确定至少一个待测目标值。其中,该参考信号可包括至少一个参考压力值下用户的参考PPG信号。可以理解的是,参考压力值可以为通过实验或者仿真确定的适合于血压检测的压力值,在该参考压力值下检测得到的用户的参考PPG信号具有较佳的信号质量。
可选地,该参考PPG信号可为在前期的血压检测过程中,基于压力检测信号的多个预设值对应的目标PPG信号。或者,该参考PPG信号也可以为通过大量的实验数据,统计得到的参考信号,该参考PPG信号可覆盖较为全面的压力范围,其较为完善且能够较为准确反映用户的血压信息。
作为一种示例,在一些实施方式中,根据参考PPG信号的幅度变化特征以及至少一个已测目标值对应的目标PPG信号的幅度变化特征,共同确定至少一个待测目标值。其中,该参考PPG信号的幅度变化特征和目标PPG信号的幅度变化特征可包括PPG信号的局部幅度变化特征和全局幅度变化特征。局部幅度变化特征包括:不同压力对应的每个PPG信号中重搏波或者其它特征波形的幅度变化特征,全局幅度变化特征包括:不同压力对应的全部PPG信号的整体幅度变化特征,例如PPG信号的包络线可理解为一种全局幅度变化特征。
在更为具体的一种示例中,可根据参考PPG信号的包络线以及至少一个已测目标值对应的目标PPG信号的包络线,共同确定至少一个待测目标值。
当然,参考信号除了可以为参考PPG信号以外,还可以为根据参考PPG信号得到的特征信号,例如参考信号包括但不限于是参考PPG信号的包络线或者是基于参考PPG信号得到的其它特征信号。
通过本申请实施例的技术方案,相较于多个目标值为预设值的技术方案,能够避免长时间、大范围的检测不同压力下的PPG信号,而可以有针对性的,基于当前PPG的测量情况,确定后续检测过程中的压力大小,从而可以实现血压检测的快速进行。另外,在具有参考信号的基础上,综合参考信号和当前PPG的测量情况,能够提高血压检测的准确度。
上文结合图4至图8,说明了本申请提供的血压检测方法的示意性流程图。下面,结合图9至图14说明本申请实施例提供的血压检测装置400的结构。
图9示出了本申请实施例提供的一种血压检测装置400的示意性结构图。
如图9所示,在本申请实施例中,血压检测装置400可包括:脉搏波检测模块410,压力检测模块420和驱动模块430。
可选地,本申请实施例中的脉搏波检测模块410,压力检测模块420和驱动模块430可以为上文图2中脉搏波检测模块210,压力检测模块220和驱动模块230的一种实现方式。
可选地,如图9所示,本申请实施例中的压力检测模块420可为悬臂梁式压力检测模块,其可包括悬臂梁421和应变式压力传感器422,其中,悬臂梁421由弹性元件制备形成,应变式压力传感器422设置于悬臂梁421的表面。
脉搏波检测模块410的至少部分设置于悬臂梁421的自由端,用于接收用户的触摸,并在用户按压时检测用户的PPG信号;
驱动模块430,连接于悬臂梁421的固定端,用于驱使压力检测模块420和脉搏波检测模块410的整体朝向或背离用户移动,以调整用户与脉搏波检测模块410之间的接触压力。
在用户按压脉搏波检测模块410时,用户与脉搏波检测模块410之间的 接触压力通过脉搏波检测模块410传递至悬臂梁421的自由端,以使悬臂梁421表面的应变式压力传感器422检测该接触压力形成压力检测信号,该压力检测信号用于控制驱动模块430,以调整压力检测模块420和脉搏波检测模块410的移动距离。
通过本申请实施例的技术方案,压力检测模块420采用悬臂梁式的结构,并利用应变式压力传感器实现压力的检测,其结构简单、便于实现且同时具有较高的检测精度。进一步地,在本申请实施例中,充分利用了悬臂梁的特点,将脉搏波检测模块410设置于悬臂梁的自由端,且驱动模块设置于悬臂梁的固定端,不仅能够实现通过悬臂梁的自由端传递脉搏波检测模块410与用户之间接触压力,以实现悬臂梁上应变式压力传感器对于该接触压力的检测,还能够通过悬臂梁的固定端,带动压力检测模块420和脉搏波检测模块410整体的移动。因此,整体技术方案结构紧凑,悬臂梁式的压力检测模块420厚度薄,占用空间小,有利于检测装置的小型化发展。
基于图9中所示的检测装置400的基本结构,图10示出了本申请实施例提供的另一检测装置400的结构示意图。
如图10所示,压力检测模块420整体厚度较小,脉搏波检测模块410和压力检测模块420可模块化集成设置,压力检测模块420中悬臂梁的固定端可与驱动模块430连接。
对应于图10中的脉搏波检测模块410和压力检测模块420,图11示出本申请实施例提供的脉搏波检测模块410和压力检测模块420的一种分体爆炸图。
如图11所示,脉搏波检测模块410包括:光学组件411、电学组件412、结构组件413以及透明盖板414。
其中,光学组件411即包括上文所述的光源和光检测器,在本申请实施例中,光源包括但不限于是点状光源,例如,发光二极管(Light-Emitting Diode,LED),激光二极管(Laser Diode,LD)或者红外发射二极管,其还可以为线状光源或者面状光源,本申请实施例对此不做具体限定。另外,该光源的数量可以为一个或多个,每个光源可以用于发出一个或者多个目标波段的光信号,作为示例,目标波段可以是红光波段或者是绿光波段。光检测器包括但不限于是光电二极管(Photodiode,PD)、光电三极管等等,其用于进行光电转换,将接收的经过用户人体反射或散射后的光信号转换为对应 的电信号,该电信号可用于形成PPG信号。另外,该光检测器的数量同样可以为一个或多个,其响应波段需包含光源的目标波段。
电学组件412包括电路板、连接器以及相关电子元器件。具体地,电路板可包括印刷电路板(Printed Circuit Board,PCB)、柔性电路板(Flexible Printed Circuit,FPC)或者软硬结合板中一种或者多种类型的电路板。可选地,作为一种示例,印刷电路板PCB作为支撑板,光学组件411以及其它相关电学组件设置于该印刷电路板上,另外,柔性电路板FPC通过连接器连接至印刷电路板,并用于将光学组件411检测到的信号传输至处理器等其它电学单元。当然,在其它示例中,光学组件411也可直接设置于柔性电路板FPC,另外通过补强板对该光学组件411所在区域进行支撑和补强。
结构组件413可包括底部结构件、侧面结构件和间隔件,其中,底部结构件的一面用于支撑上述光学组件411和电学组件412,另一面的至少部分设置于压力检测模块420中的悬臂梁,以用于向悬臂梁传输压力。侧面结构件用于与底部结构件连接,并包围设置于光学组件411和电学组件412的四周,另外,间隔件形成于光学组件411中光源和光检测器之间,防止光源中未经过用户人体反射或散射的光信号直接进入光检测器,影响PPG信号的检测。
透明盖板414与底部结构件相对设置,底部结构件和透明盖板414相对的连接于侧面结构件的两端,三者可形成腔体结构,将光学组件411和电学组件412等容纳于该腔体结构中。
继续参见图11,在本申请实施例的血压检测装置中,压力检测模块420除了包括悬臂梁421和应变式压力传感器422以外,还可包括电连接件423用于与应变式压力传感器422电连接,并用于将应变式压力传感器422检测的压力检测信号传输至处理器等其它电学单元,该电连接件423包括但不限于是柔性电路板FPC或者是连接线,优选地,电连接件423为柔性电路板FPC,其厚度较薄且材质较软,不会引入较大的压力检测误差,可保证压力检测模块420检测得到的压力信号的准确率,进一步保证检测的用户血压的准确率。
可选地,在本申请实施例中,悬臂梁421可以为薄片式悬臂梁结构,示例性地,其厚度可以为0.1mm-0.6mm。由于悬臂梁411的厚度可以设计的较薄,从而能够进一步减小检测装置400的尺寸,使得检测装置400可以应用 于小型化的电子设备,例如手表、手环等穿戴式的电子设备。
可选地,在本申请实施例中,应变式压力传感器422可以电阻应变式压力传感器,利用导体或者半导体材料的应变效应,把压力转换为电阻变化以进行压力的测量。具体地,金属电阻应变式传感器也可称为应变片(strain gauge),其可用于贴在弹性元件上,当外界压力作用于弹性元件使得弹性元件变形时,粘在其上的应变片电阻发生相应变化,从而根据该电阻变化进行外界压力的检测。
可选地,应变片的数量可以为一个或者多个,该一个或者多个应变片可设置于悬臂梁421的上表面、下表面或者上下表面,另外,该一个或者多个应变片可以组成单臂电桥电路、双臂电桥电路或全桥电路等。优选地,应变片的数量为4个,该4个应变片能够组成全桥电路,从而可以克服压力偏载问题,且全桥电路的灵敏度较高,并且还能实现温度自补偿。
对应于图10中的驱动模块430,图12示出本申请实施例提供的驱动模块430的一种示意性结构图。
如图12所示,驱动模块430可包括步进电机431(或者也称步进马达)和驱动结构件,该驱动结构件连接步进电机431和压力检测模块,并用于将步进电机的旋转运动转换为线性运动,以带动压力检测模块和脉搏波检测模块的整体朝向或背离用户移动。可选地,上述驱动结构件可包括:可移动支架433、螺旋杆434和滑轨435。
具体地,步进电机431(Stepper motor)为直流无刷电动机的一种,具有如齿轮状突起(小齿)相锲合的定子和转子,可借由切换流向定子线圈中的电流,转子以一定角度逐步转动的电动机。步进电机可正确地依比例随脉冲信号而转动,因此达成精确的位置和速度控制,且稳定性佳。
通过控制信号控制步进电机431,可实现较为精确的转动量,基于此,可在步进电机431的转子(转轴)上进一步设置螺旋杆435,从而通过步进电机431进一步控制螺旋杆435的转动量。
进一步地,可移动支架433的一端设置于螺旋杆434,且可移动支架433的另一端设置于滑轨435,滑轨435和螺旋杆434平行设置。具体地,螺旋杆434和滑轨435分别从可移动支架433的两端穿过,步进电机431带动螺旋杆435转动后,可进一步推动可移动支架433在螺旋杆434和滑轨435上的升降移动。示例性的,步进电机431带动螺旋杆435正向转动时,可移动 支架433向上升,以朝向用户移动;步进电机431带动螺旋杆435反向转动时,可移动支架433向下将,以背离用户移动。其中,正向转动可以为螺旋杆435沿其中心轴线顺时针转动或者逆时针转动,反向转动的方向与正向转动的方向相反,本申请实施例中,正向和反向仅用于表示二者的相对方向,本申请实施例对其绝对方向不做限定。
基于此,通过步进电机431以及驱动结构件,可实现旋转运动到线性运动的转换,即通过控制步进电机431的转动量,可控制可移动支架433的线性运动量,该可移动支架433可在朝向用户的方向和背离用户的方向上往复运动。
在一些可能的实施方式中,如图12所示,驱动模块430中除了包括上述驱动结构件以外,还可以包括:转接支架432、电机基座436以及其它相关的结构件。
具体地,转接支架432用于连接可移动支架433以及压力检测模块,通过可移动支架433和转接支架432可带动压力检测模块以及脉搏波检测模块在朝向用户的方向和背离用户的方向上往复运动。在该实施方式中,可移动支架433和转接支架432为分体结构,二者之间可通过连接件相互固定连接。当然,在另一些可能的实施方式中,该可移动支架433也可与转接支架432为一体成型结构,可移动支架433直接与压力检测模块固定连接。
需要说明的是,作为示例而非限定,图12以驱动模块430包括步进电机431为例,说明了一种驱动压力检测模块以及脉搏波检测模块线性移动的装置实施例,在驱动模块430设置有步进电机的前提下,其相关的结构件可参见相关技术中可实现将旋转运动转化为线性运动的机械结构件,本申请实施例对其具体结构不做限定。
另外,还需要说明的是,驱动模块430中除了可采用步进电机作为驱动源以外,还可采用其它电机,例如伺服电机作为驱动源,本申请实施例对该驱动模块430中的电机类型也不做具体限定。
可选地,在一些实施方式中,驱动模块430的具体结构可与手机中的升降摄像头的升降驱动模块的结构相同或相近,例如,可直接复用该升降摄像头的升降驱动模块作为本申请实施例中的驱动模块430,且进一步地,可将脉搏波检测模块和压力检测模块集成于升降摄像头的模块中,实现自动升降、拍照以及血压检测的多种功能。
通过该实施方式的技术方案,复用血压检测装置400所在的电子设备中原有的驱动模块作为检测装置400中的驱动模块430,在保证血压检测准确度的同时,降低电子设备的整体成本。另外,将脉搏波检测模块410和摄像头组件集成设置,同一模块组件可实现多种功能,可提高电子设备的集成度,有利于电子设备的小型化和多功能化发展,从而进一步提升用户体验。
上文图9至图12所示的血压检测装置400中,压力检测模块420为悬臂梁式压力检测模块,除了该实施方式以外,压力检测模块420还可以为其它类型的压力检测模块,例如,可为下文图13中所示的电容式的压力检测模块。
图13示出了本申请实施例提供的另一血压检测装置500的示意性结构图。
如图13所示,在本申请实施例中,血压检测装置500可包括:脉搏波检测模块510,压力检测模块520和驱动模块530。
可选地,本申请实施例中的脉搏波检测模块510,压力检测模块520和驱动模块530可以为上文图2中脉搏波检测模块210,压力检测模块220和驱动模块230的另一种实现方式。
如图13所示,本申请实施例中的压力检测模块520可为电容式压力检测模块,也可直接称之为电容式压力传感器,其中,电容式压力传感器包括相对的两个极板,形成电容的两极,两个极板之间设置有介质层,可选地,该两个极板之间为空气间隙。
可选地,该电容式压力传感器可为互容式电容传感器或者也可为自容式电容传感器,若该电容式压力传感器为互容式电容传感器,则其一个极板为发射(Tx)极板,另一个极板为接收(Rx)极板,发射极板用于发送打码信号,接收极板上用于检测电容信号。
可选地,如图13所示,脉搏波检测模块510的至少部分设置于电容式压力传感器的一个极板,用户与脉搏波检测模块510之间的接触压力通过脉搏波检测模块510作用于该一个极板,以使该一个极板形变且电容式压力传感器的电容变化,因而,电容式传感器可用于检测该电容变化以检测接触压力形成压力检测信号。
具体地,由于脉搏波检测模块510设置于电容式压力传感器的一个极板,用户作用于脉搏波检测模块510时,用户与脉搏波检测模块510之间的接触 压力使得电容式压力传感器的一个极板发生形变,其与另一个极板之间的空气间隙变小,因而造成电容式压力传感器的电容产生变化。
可选地,如图13所示,驱动模块530设置于电容式压力传感器的另一个极板,该驱动模块530可直接或间接的连接固定于该电容式压力传感器的另一个极板,用于驱使电容式压力传感器和脉搏波检测模块510的整体朝向或背离用户移动,以调整用户与脉搏波检测模块510之间的接触压力。
可选地,本申请实施例中的脉搏波检测模块510和驱动模块530的具体原理可以与上文实施例中的脉搏波检测模块410和驱动模块430相同,脉搏波检测模块510和驱动模块530的具体结构可以与上文实施例中的脉搏波检测模块410和驱动模块430相近,例如适当调整上述脉搏波检测模块410和驱动模块430中的部分结构件,使得其便于与电容式压力传感器的极板结构进行安装连接,相关技术方案可以参见上文具体描述,此处不做过多赘述。
基于图13的设计思想,图14示出了本申请实施例提供的另一血压检测装置500的示意性结构图。
如图14所示,压力检测模块520的电容式压力传感器中,极板可包括柔性电路板522及其补强板521,该补强板521可为补强钢片,其厚度较薄,其不仅具有一定的刚性可支撑位于其上方的脉搏波检测模块510,且在用户作用于脉搏波检测模块510时,该补强板521和柔性电路板522可产生一定的形变,使得电容式压力传感器检测到变化的电容。
可选地,电容式压力传感器的两个极板之间可通过支撑件523连接,以使得两个极板之间形成空气间隙,该支撑件523包括但不限于是焊接件,该焊接件可包括两个柔性电路板上的焊盘以及焊盘之间的焊球等。
利用本申请实施例的技术方案,电容式压力传感器可直接利用柔性电路板和补强板实现,实现方式简单,成本低且厚度较薄,因此能够降低该血压检测装置的整体厚度及其制造成本。
可选地,在图14所示实施例中,压力检测模块520还可包括安装件524,该安装件524中形成有凹槽,上述电容式压力传感器可设置于该凹槽中,以保证该电容式压力传感器的机械稳定性和可靠性。
另外,驱动模块530可连接至安装件524,驱动模块530通过安装件524实现其与电容式压力传感器的固定连接。
当然,安装件524除了可以为图14所示的以外,其还可以为其它的结 构形态,旨在用于保护和固定安装电容式压力传感器,驱动模块530通过安装件连接电容式压力传感器,对电容式压力传感器的电容检测影响较小。
本申请实施例还提供一种血压检测装置,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用所述计算机程序,执行上述任一申请实施例中的血压检测方法。
本申请实施例还提供一种电子设备,该电子设备可以包括设置于电子设备表面的按键和上述任一申请实施例中的血压检测装置,其中,血压检测装置的至少部分设置于该按键。
可选地,血压检测装置中的脉搏波检测模块设置于该按键,血压检测装置中的压力检测模块可与按键堆叠设置,血压检测装置中的驱动模块用于驱使该按键朝向或背离用户移动。
可选地,该电子设备包括但不限于是可穿戴设备或移动终端设备,该可穿戴设备例如是:智能手表、手环等等,该移动终端设备例如是:手机、笔记本电脑、平板电脑等等。该电子设备的表面可设置有可供用户接触按压的按键,以方便设置于该按键的血压检测装置对用户的血压进行检测。
在一些实施方式中,按键的壳体包围形成容置部,脉搏波检测模块中的光学组件和/或电学组件可设置于该容置部中,另外,按键的壳体的至少部分可复用为脉搏波检测模块中的透明盖板和/或结构组件。
作为示例,图9至图11中所示的脉搏波检测模块410中,透明盖板414可复用电子设备的按键的部分壳体,结构组件413可复用电子设备的按键的另一部分壳体,在该示例中,脉搏波检测模块410可理解为脉搏波检测按键,其可设置于电子设备的侧面或者其它任意表面。
可选地,在一些实施方式中,该电子设备的按键可为用于用户血压检测和/或其它生物特征信息检测的专用按键,或者,在另一些实施方式中,该电子设备的按键也可为电子设备本身的功能按键,例如电源键或音量键,其用于实现自身的相关功能以外,还用于实现用户的血压和/或其它生物特征信息的检测。
可选地,除了血压检测装置以外,该电子设备还可包括其它生物特征检测装置,该生物特征检测装置的至少部分设置于上述电子设备的按键,该生物特征检测装置包括:温度检测装置、心电图(Electrocardiography,ECG)检测装置,或者其它类型的生物特征的检测装置。
通过该申请实施例的技术方案,利用电子设备的按键结构,将血压检测装置中的脉搏波检测模块设置于按键,血压检测装置中的压力检测模块与按键堆叠设置,且血压检测装置中的驱动模块用于驱使按键朝向或背离用户移动,便于血压检测装置在电子设备中的安装,提高电子设备以及血压检测装置的机械稳定性,且按键可便于用户在电子设备表面进行接触按压,进一步的,血压检测装置检测的血压较为准确,可以提高用户对于电子设备的使用体验。
另外,在本申请实施例的技术方案中,若复用电子设备的功能按键,例如音量键或者电源键,在该电子设备的现有的功能按键上设置血压检测装置和/或生物特征检测装置,相对于单独设置血压检测按键的方案,可以降低电子设备的成本,有利于电子设备的集成化、小型化和多功能化的发展。
本申请实施例还提供一种电子设备,该电子设备可以包括:升降摄像头模组和上述任一申请实施例中的血压检测装置,其中,升降摄像头模组包括摄像头模块和升降驱动模块,该摄像头模块与血压检测装置中的脉搏波检测模块集成设置,该升降驱动模块复用为血压检测装置中的驱动模块,用于驱动脉搏波检测模块和摄像头模块升降移动。
可选地,该电子设备包括但不限于是移动终端设备,例如:手机、笔记本电脑、平板电脑等等。该电子设备中可包括升降摄像头模组,其可升降的设置于电子设备的顶部或其它部位。
可选地,除了血压检测装置以外,该电子设备还可包括其它生物特征检测装置,该生物特征检测装置的至少部分与上述摄像头模块集成设置,该生物特征检测装置包括:温度检测装置、心电图(Electrocardiography,ECG)检测装置,或者其它类型的生物特征的检测装置。
通过该实施方式的技术方案,复用电子设备中升降摄像头模组的升降驱动模块作为血压检测装置中的驱动模块,在保证血压检测准确度的同时,降低电子设备的整体成本。另外,将脉搏波检测模块和摄像头模块集成设置,同一模块组件可实现自动升降、拍照以及血压检测等多种功能,可提高电子设备的集成度,有利于电子设备的小型化和多功能化发展,从而进一步提升用户体验。应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着 执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。本申请所使用的术语“和/或”包括一个或多个相关的所列项的任意的和所有的组合。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能 单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种血压检测装置,其特征在于,包括:
    脉搏波检测模块,用于在接收用户接触时,检测所述用户的光电容积脉搏波描记PPG信号;
    压力检测模块,与所述脉搏波检测模块堆叠设置,用于检测所述用户与所述脉搏波检测模块之间的接触压力得到压力检测信号;
    驱动模块,用于驱使所述脉搏波检测模块朝向或背离所述用户移动,以调整所述用户与所述脉搏波检测模块之间的接触压力,使得所述压力检测模块检测到所述压力检测信号的至少一个目标值,所述至少一个目标值对应的目标PPG信号用于检测所述用户的血压,其中,所述目标PPG信号为在所述压力检测模块检测到所述至少一个目标值时所述脉搏波检测模块检测的PPG信号。
  2. 根据权利要求1所述的血压检测装置,其特征在于,所述驱动模块用于接收控制信号以驱使所述脉搏波检测模块移动,所述控制信号是根据所述压力检测信号的当前值和所述目标值确定得到的。
  3. 根据权利要求2所述的血压检测装置,其特征在于,当所述压力检测信号的当前值大于所述目标值,所述驱动模块用于接收第一控制信号以驱使所述脉搏波检测模块背离所述用户移动;或者,
    当所述压力检测信号的当前值小于所述目标值,所述驱动模块用于接收第二控制信号以驱使所述脉搏波检测模块朝向所述用户移动。
  4. 根据权利要求1至3中任一项所述的血压检测装置,其特征在于,所述压力检测信号的目标值的数量为多个,所述压力检测信号的多个目标值中的待测目标值是根据已测目标值对应的目标PPG信号的波形特征确定的;
    其中,所述已测目标值为所述压力检测模块已检测到的目标值,所述待测目标值为所述压力检测模块未检测到的目标值。
  5. 根据权利要求4所述的血压检测装置,其特征在于,所述待测目标值是根据所述已测目标值对应的目标PPG信号的波形特征以及参考信号的波形特征确定的;其中,所述参考信号包括至少一个参考压力值下所述用户的参考PPG信号。
  6. 根据权利要求5所述的血压检测装置,其特征在于,所述待测目标值是根据所述已测目标值对应的目标PPG信号的幅度变化特征以及所述参 考信号的幅度变化特征确定的。
  7. 根据权利要求1至3中任一项所述的血压检测装置,其特征在于,所述压力检测信号的至少一个目标值为至少一个预设值。
  8. 根据权利要求7所述的血压检测装置,其特征在于,所述压力检测信号的目标值的数量为多个,所述压力检测信号的多个目标值为多个预设值;所述多个预设值按照预设的变化方式逐渐变化或者呈阶梯式的变化。
  9. 根据权利要求1至8中任一项所述的血压检测装置,其特征在于,所述驱动模块连接于所述压力检测模块,所述驱动模块包括步进电机和驱动结构件,所述驱动结构件连接所述步进电机和所述压力检测模块,并用于将所述步进电机的旋转运动转换为线性运动,以带动所述压力检测模块和所述脉搏波检测模块的整体朝向或背离所述用户移动。
  10. 根据权利要求9所述的血压检测装置,其特征在于,所述驱动结构件包括:螺旋杆、滑轨和可移动支架;
    所述螺旋杆连接于所述步进电机,所述滑轨平行设置于所述螺旋杆的一侧,所述可移动支架设置于所述螺旋杆和所述滑轨,并用于连接所述压力检测模块;
    所述步进电机用于驱动所述螺旋杆旋转,所述螺旋杆用于带动所述可移动支架在所述螺旋杆和所述滑轨上线性移动,以驱使所述压力检测模块和所述脉搏波检测模块的整体朝向或背离所述用户移动。
  11. 根据权利要求1至10中任一项所述的血压检测装置,其特征在于,所述驱动模块的结构与升降摄像头的升降驱动模块的结构相同。
  12. 根据权利要求1至11中任一项所述的血压检测装置,其特征在于,所述压力检测模块包括:悬臂梁和应变式压力传感器,所述悬臂梁为弹性元件,所述应变式压力传感器设置于所述悬臂梁的表面,
    所述脉搏波检测模块的至少部分设置于所述悬臂梁的自由端,所述用户与所述脉搏波检测模块之间的接触压力通过所述脉搏波检测模块传递至所述悬臂梁的自由端,以使所述悬臂梁表面的所述应变式压力传感器检测所述接触压力形成压力检测信号。
  13. 根据权利要求12所述的血压检测装置,其特征在于,所述驱动模块连接于所述悬臂梁的固定端,用于驱使所述悬臂梁和所述脉搏波检测模块朝向或背离所述用户移动,以调整所述用户与所述脉搏波检测模块之间的接 触压力。
  14. 根据权利要求12或13所述的血压检测装置,其特征在于,所述悬臂梁为薄片式悬臂梁,所述悬臂梁的厚度为0.1mm至0.6mm。
  15. 根据权利要求12至14中任一项所述的血压检测装置,其特征在于,所述应变式压力传感器包括四个应变片,所述四个应变片组成全桥电路。
  16. 根据权利要求1至11中任一项所述的血压检测装置,其特征在于,所述压力检测模块包括:电容式压力传感器;
    所述脉搏波检测模块的至少部分设置于所述电容式压力传感器的一个极板,所述用户与所述脉搏波检测模块之间的接触压力通过所述脉搏波检测模块作用于所述一个极板,以使所述一个极板形变且所述电容式压力传感器的电容变化,所述电容式压力传感器用于检测其电容的变化以检测所述接触压力形成压力检测信号。
  17. 根据权利要求16所述的血压检测装置,其特征在于,所述电容式压力传感器的极板包括:柔性电路板和补强板。
  18. 根据权利要求1至17中任一项所述的血压检测装置,其特征在于,所述脉搏波检测模块包括:光学组件、电学组件、结构组件以及透明盖板;
    所述光学组件包括至少一个光源和至少一个光检测器,用于获取所述用户的PPG信号;
    所述电学组件支撑并电连接所述光学组件,用于传输所述目标PPG信号;
    所述透明盖板设置于所述光学组件朝向所述用户的一侧,用于接收所述用户的触摸;
    所述结构组件连接于所述透明盖板,并与所述透明盖板形成腔体结构,所述腔体结构用于容纳所述光学组件和所述电学组件。
  19. 一种血压检测方法,其特征在于,应用于包括脉搏波检测模块、压力检测模块和驱动模块的血压检测装置,当用户接触于所述脉搏波检测模块时,所述血压检测方法包括:
    获取所述压力检测模块的压力检测信号,其中,所述压力检测信号为用户与所述脉搏波检测模块之间接触压力的压力信号;
    控制所述驱动模块运行以驱使所述脉搏波检测模块朝向或背离用户移动,直至获取到所述压力检测信号的至少一个目标值;
    获取所述至少一个目标值对应的目标光电容积脉搏波描记PPG信号,并根据所述目标PPG信号检测所述用户的血压,其中,所述目标PPG信号为在获取到所述压力检测信号的至少一个目标值时所述脉搏波检测模块检测的PPG信号。
  20. 根据权利要求19所述的血压检测方法,其特征在于,所述控制所述驱动模块运行以驱使所述脉搏波检测模块朝向或背离用户移动,直至获取到所述压力检测信号的至少一个目标值,包括:
    根据所述压力检测信号的当前值和所述至少一个目标值中的一个目标值确定控制信号;
    向所述驱动模块发送所述控制信号以驱使所述脉搏波检测模块朝向或背离所述用户移动,直至获取到所述压力检测信号的所述一个目标值。
  21. 根据权利要求20所述的血压检测方法,其特征在于,所述根据所述压力检测信号的当前值和所述至少一个目标值中的一个目标值确定控制信号,向所述驱动模块发送控制信号以驱使所述脉搏波检测模块朝向或背离所述用户移动,包括:
    根据所述压力检测信号的当前值和所述一个目标值确定第一控制信号,其中所述压力检测信号的当前值大于所述一个目标值,向所述驱动模块发送所述第一控制信号以驱使所述脉搏波检测模块背离所述用户移动;或者,
    根据所述压力检测信号的当前值和所述一个目标值确定第二控制信号,其中所述压力检测信号的当前值小于所述一个目标值,向所述驱动模块发送所述第二控制信号以驱使所述脉搏波检测模块朝向所述用户移动。
  22. 根据权利要求19至21中任一项所述的血压检测方法,其特征在于,所述压力检测信号的目标值的数量为多个,所述血压检测方法还包括:
    根据所述压力检测信号的多个目标值中的已测目标值对应的目标PPG信号的波形特征确定待测目标值。
  23. 根据权利要求22所述的血压检测方法,其特征在于,所述根据所述压力检测信号的多个目标值中的已测目标值对应的目标PPG信号的波形特征确定待测目标值,包括:
    获取参考信号,所述参考信号包括至少一个参考压力值下所述用户的参考PPG信号;
    根据所述参考信号的波形特征以及所述已测目标值对应的目标PPG信 号的波形特征,确定所述待测目标值。
  24. 根据权利要求23所述的血压检测方法,其特征在于,所述根据所述参考信号的波形特征以及所述已测目标值对应的目标PPG信号的波形特征,确定所述待测目标值,包括:
    根据所述参考信号的幅度变化特征以及所述已测目标值对应的目标PPG信号的幅度变化特征,确定所述待测目标值。
  25. 根据权利要求19至21中任一项所述的血压检测方法,其特征在于,所述压力检测信号的至少一个目标值为至少一个预设值。
  26. 根据权利要求25所述的血压检测方法,其特征在于,所述压力检测信号的目标值的数量为多个,所述压力检测信号的多个目标值为多个预设值;所述多个预设值按照预设的变化方式逐渐变化或者呈阶梯式的变化。
  27. 一种血压检测装置,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求19至26中任一项所述的血压检测方法。
  28. 一种电子设备,其特征在于,包括:设置于所述电子设备表面的按键以及如权利要求1至18和27中任一项所述的血压检测装置;
    其中,所述血压检测装置中的脉搏波检测模块设置于所述按键,所述血压检测装置中的压力检测模块与所述按键堆叠设置,所述血压检测装置中的驱动模块用于驱使所述按键朝向或背离用户移动。
  29. 根据权利要求28所述的电子设备,其特征在于,所述按键的壳体包围形成容置部,所述脉搏波检测模块中的光学组件和/或电学组件设置于所述容置部中,所述按键的壳体的至少部分复用为所述脉搏波检测模块中的透明盖板和/或结构组件。
  30. 根据权利要求28或29所述的电子设备,其特征在于,所述按键为所述电子设备的电源键或音量键。
  31. 根据权利要求28至30中任一项所述的电子设备,其特征在于,所述电子设备还包括生物特征检测装置,所述生物特征检测装置的至少部分设置于所述按键,所述生物特征检测装置包括:温度检测装置和/或心电图检测装置。
  32. 根据权利要求28至31中任一项所述的电子设备,其特征在于,所述电子设备为可穿戴设备或移动终端设备。
  33. 一种电子设备,其特征在于,包括:升降摄像头模组以及如权利要求1至18和27中任一项所述的血压检测装置;
    其中,所述升降摄像头模组包括摄像头模块和升降驱动模块,所述摄像头模块与所述血压检测装置中的脉搏波检测模块集成设置,所述升降驱动模块复用为所述血压检测装置中的驱动模块。
  34. 根据权利要求33所述的电子设备,其特征在于,所述电子设备为移动终端设备。
PCT/CN2021/086021 2020-12-09 2021-04-08 血压检测装置、方法和电子设备 WO2022121192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/135009 2020-12-09
PCT/CN2020/135009 WO2022120656A1 (zh) 2020-12-09 2020-12-09 血压检测方法、装置以及电子设备

Publications (1)

Publication Number Publication Date
WO2022121192A1 true WO2022121192A1 (zh) 2022-06-16

Family

ID=76675594

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/135009 WO2022120656A1 (zh) 2020-12-09 2020-12-09 血压检测方法、装置以及电子设备
PCT/CN2021/086021 WO2022121192A1 (zh) 2020-12-09 2021-04-08 血压检测装置、方法和电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135009 WO2022120656A1 (zh) 2020-12-09 2020-12-09 血压检测方法、装置以及电子设备

Country Status (5)

Country Link
US (1) US20220175261A1 (zh)
EP (1) EP4039182B1 (zh)
KR (1) KR102595148B1 (zh)
CN (1) CN113080913A (zh)
WO (2) WO2022120656A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120658A1 (zh) * 2020-12-09 2022-06-16 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN113425269A (zh) * 2021-07-16 2021-09-24 维沃移动通信有限公司 生物特征信息的测量方法、装置和电子设备
CN113397513B (zh) * 2021-07-21 2022-11-18 杭州电子科技大学 一种基于微电磁驱动的便携式血压传感器固定装置
WO2023092587A1 (zh) * 2021-11-29 2023-06-01 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN117481625A (zh) * 2022-07-25 2024-02-02 荣耀终端有限公司 可穿戴设备的血压测量方法和可穿戴设备
CN117045217A (zh) * 2023-10-13 2023-11-14 深圳市奋达智能技术有限公司 一种无袖带血压测量方法及其相关设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330434A1 (en) * 1988-02-23 1989-08-30 Colin Electronics Co., Ltd. Pulse wave detecting apparatus
CN206473309U (zh) * 2016-11-01 2017-09-08 耿东晛 全自动便携式脉诊仪
CN107773231A (zh) * 2016-08-26 2018-03-09 京东方科技集团股份有限公司 一种心率测量装置及其测量方法
CN109288507A (zh) * 2017-07-25 2019-02-01 三星电子株式会社 用于测量生物测量学信息的设备和方法
CN109717844A (zh) * 2017-10-31 2019-05-07 三星电子株式会社 生物信息测量设备和其外壳以及生物信息测量方法
CN109864719A (zh) * 2017-12-05 2019-06-11 深圳市前海安测信息技术有限公司 中医脉象检测分析系统及方法
US20190239758A1 (en) * 2018-02-05 2019-08-08 Samsung Electronics Co., Ltd. Blood pressure measuring apparatus and blood pressure measuring method
WO2019182258A1 (ko) * 2018-03-21 2019-09-26 주식회사 메딧 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템
CN110327028A (zh) * 2019-07-22 2019-10-15 嘉兴冷暮熙贸易有限公司 一种血压检测仪器及其血压检测方法
CN210038817U (zh) * 2019-01-22 2020-02-07 深圳市汇顶科技股份有限公司 光学指纹识别装置、生物特征识别的装置和电子设备
CN210402039U (zh) * 2018-10-11 2020-04-24 上海亲看慧智能科技有限公司 一种身体监测智能手表
CN111166312A (zh) * 2018-11-12 2020-05-19 三星电子株式会社 血压测量设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2420975Y (zh) * 2000-04-07 2001-02-28 上海中医药大学 智能化中医脉象检测装置
US8313439B2 (en) * 2009-03-20 2012-11-20 Massachusetts Institute Of Technology Calibration of pulse transit time measurements to arterial blood pressure using external arterial pressure applied along the pulse transit path
AT512304B1 (de) * 2012-05-31 2013-07-15 Cnsystems Medizintechnik Ag Verfahren und Vorrichtung zur kontinuierlichen, nicht-invasiven Bestimmung des Blutdruckes
CN107405090B (zh) * 2015-03-17 2021-06-29 皇家飞利浦有限公司 用于测量血压的方法和装置
GB201509792D0 (en) * 2015-06-04 2015-07-22 Sensixa Ltd A system and wearable sensing device
CN104970803A (zh) * 2015-07-08 2015-10-14 中国医学科学院生物医学工程研究所 一种同时具有脉搏血氧检测和肌松监测功能的探头
KR102655738B1 (ko) * 2016-12-27 2024-04-05 삼성전자주식회사 접촉형 혈압 측정 장치
CN109480805B (zh) * 2017-09-13 2023-08-15 三星电子株式会社 生物信息测量设备和生物信息测量方法
WO2019053276A1 (en) * 2017-09-18 2019-03-21 Koninklijke Philips N.V. DEVICE FOR DETERMINING THE DIASTOLIC ARTERIAL PRESSURE OF A SUBJECT
CN110123294B (zh) * 2018-02-02 2022-11-04 深圳市理邦精密仪器股份有限公司 无创血压测量方法、装置、无创血压测量仪器和存储介质
CN108523867B (zh) * 2018-03-28 2020-12-29 武汉麦咚健康科技有限公司 一种自校准ppg无创血压测量方法及系统
KR20200005445A (ko) * 2018-07-06 2020-01-15 삼성전자주식회사 생체 정보 측정 장치 및 방법
KR102655878B1 (ko) * 2018-11-23 2024-04-09 삼성전자주식회사 Pwv 알고리즘을 이용하여 혈압 값을 산출하는 전자 장치 및 그 혈압 값 산출 방법
CN109793507A (zh) * 2019-03-06 2019-05-24 桂林电子科技大学 一种基于手指压力示波法的无袖套血压测量装置及测量方法
CN110464316A (zh) * 2019-08-01 2019-11-19 浙江清华柔性电子技术研究院 血压测量装置及具有其的智能手表
CN110974197A (zh) * 2019-12-13 2020-04-10 中国人民解放军63919部队 一种无创血液动力学多参数测量装置
CN111990980B (zh) * 2020-08-17 2023-07-07 中孚医疗(深圳)有限公司 血压测量方法及血压测量设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330434A1 (en) * 1988-02-23 1989-08-30 Colin Electronics Co., Ltd. Pulse wave detecting apparatus
CN107773231A (zh) * 2016-08-26 2018-03-09 京东方科技集团股份有限公司 一种心率测量装置及其测量方法
CN206473309U (zh) * 2016-11-01 2017-09-08 耿东晛 全自动便携式脉诊仪
CN109288507A (zh) * 2017-07-25 2019-02-01 三星电子株式会社 用于测量生物测量学信息的设备和方法
CN109717844A (zh) * 2017-10-31 2019-05-07 三星电子株式会社 生物信息测量设备和其外壳以及生物信息测量方法
CN109864719A (zh) * 2017-12-05 2019-06-11 深圳市前海安测信息技术有限公司 中医脉象检测分析系统及方法
US20190239758A1 (en) * 2018-02-05 2019-08-08 Samsung Electronics Co., Ltd. Blood pressure measuring apparatus and blood pressure measuring method
WO2019182258A1 (ko) * 2018-03-21 2019-09-26 주식회사 메딧 인체착용형 신체정보 측정장치 및 이를 이용한 의료지원 시스템
CN210402039U (zh) * 2018-10-11 2020-04-24 上海亲看慧智能科技有限公司 一种身体监测智能手表
CN111166312A (zh) * 2018-11-12 2020-05-19 三星电子株式会社 血压测量设备
CN210038817U (zh) * 2019-01-22 2020-02-07 深圳市汇顶科技股份有限公司 光学指纹识别装置、生物特征识别的装置和电子设备
CN110327028A (zh) * 2019-07-22 2019-10-15 嘉兴冷暮熙贸易有限公司 一种血压检测仪器及其血压检测方法

Also Published As

Publication number Publication date
US20220175261A1 (en) 2022-06-09
KR102595148B1 (ko) 2023-10-26
EP4039182A1 (en) 2022-08-10
EP4039182B1 (en) 2023-09-13
EP4039182A4 (en) 2022-08-10
WO2022120656A1 (zh) 2022-06-16
KR20220083972A (ko) 2022-06-21
CN113080913A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022121192A1 (zh) 血压检测装置、方法和电子设备
US11000193B2 (en) Blood pressure measurement system using force resistive sensor array
TWI688368B (zh) 穿戴式健康監測裝置
CN204520647U (zh) 家庭智能健康监控一体机
WO2022121162A1 (zh) 生物特征信息的检测装置和电子设备
CN103263336A (zh) 基于远程控制的电动式关节康复训练系统及其实现方法
CN204147018U (zh) 一种动脉搏动检测装置、压力传感器组件、智能腕带、智能手表和通信系统
WO2019015595A1 (zh) 血压检测手表
CN112190245A (zh) 血压测量装置及血压测量方法
CN215584127U (zh) 生物特征信息的检测装置和电子设备
CN106264603A (zh) 超声波感测贴片以及使用该超声波感测贴片的感测装置
CN104887213A (zh) 一种与手机建立连接的低功耗心率检测装置和方法
CN212346513U (zh) 可穿戴设备
CN205072850U (zh) 一种与手机建立连接的低功耗心率检测装置
WO2022094931A1 (zh) 血压测量装置及血压测量方法
CN112782962A (zh) 一种机械式智能手表
CN216495266U (zh) 生物特征信息的检测装置和电子设备
EP4039183B1 (en) Biometric information detection device and electronic apparatus
CN220675977U (zh) 一种具有提示功能的皮肤检测终端
CN215874639U (zh) 生物特征信息的检测装置和电子设备
CN1778270A (zh) 压力信号无线传输的血压装置及血压监测系统
WO2023092587A1 (zh) 生物特征信息的检测装置和电子设备
CN215344637U (zh) 一种具有医疗辅助功能的老人手机
CN219921032U (zh) 一种具有支撑结构的皮肤检测设备
CN217852944U (zh) 体温检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901908

Country of ref document: EP

Kind code of ref document: A1