WO2022094931A1 - 血压测量装置及血压测量方法 - Google Patents

血压测量装置及血压测量方法 Download PDF

Info

Publication number
WO2022094931A1
WO2022094931A1 PCT/CN2020/127146 CN2020127146W WO2022094931A1 WO 2022094931 A1 WO2022094931 A1 WO 2022094931A1 CN 2020127146 W CN2020127146 W CN 2020127146W WO 2022094931 A1 WO2022094931 A1 WO 2022094931A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pulse wave
signal
blood pressure
dimensional
Prior art date
Application number
PCT/CN2020/127146
Other languages
English (en)
French (fr)
Inventor
蒋鹏
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/127146 priority Critical patent/WO2022094931A1/zh
Publication of WO2022094931A1 publication Critical patent/WO2022094931A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels

Definitions

  • the embodiments of the present application relate to the technical field of electronic equipment, and in particular, to a blood pressure measurement device and a blood pressure measurement method.
  • a commonly used non-invasive blood pressure detection method for existing wearable devices is the PWTT (Pulse Wave Transit Time, pulse wave transit time) method.
  • the principle of PWTT method is to collect ECG signal and pulse wave signal and filter preprocessing, and then use adaptive feature extraction method to extract the R wave peak point of ECG signal and the characteristic point of pulse wave signal;
  • the time difference between the R wave peak point of the ECG signal and the characteristic point of the pulse wave signal is the pulse wave transmission time. Since the pulse wave transmission time is linearly related to the blood pressure value, the specific values of the systolic blood pressure and the diastolic blood pressure can be converted according to the measured pulse wave transmission time, thereby realizing the continuous monitoring of the user's blood pressure.
  • the PWTT method when using the PWTT method to detect blood pressure, it is easily affected by various tiny movements of the user's limbs. For example, when the user's wrist is in contact with the ECG electrodes, the tiny shaking of the wrist will not only be superimposed on the ECG signal, but also cause pulse The peak value of the wave signal is blunted, which makes it difficult to accurately extract the feature points, resulting in a large error in the blood pressure detection results; in addition, the blood pressure calculation model based on the relationship between the pulse wave transit time and the blood pressure value is not accurate and universal. Therefore, the use of PWTT method to detect blood pressure requires periodic calibration to reduce individual test errors, and this method of use will greatly reduce the user's experience.
  • the embodiments of the present application provide a blood pressure measurement device and a blood pressure measurement method, which are used to solve the problems of large errors in blood pressure detection results and low detection accuracy in the prior art.
  • a blood pressure measurement device for measuring the blood pressure of a measured object, including:
  • the pulse wave signal detection module is used to detect the pulse wave signal of the measured object
  • a three-dimensional pressure detection module for detecting the three-dimensional pressure exerted by the measured object on the pulse wave signal detection module, and generating a three-dimensional pressure signal
  • the signal processing module is used for calculating the blood pressure of the measured object according to the pulse wave signal and the three-dimensional pressure signal.
  • the user can press the finger on the pulse wave signal detection module and gradually increase the pressure; during this process, the pressure between the finger and the pulse wave signal detection module is a three-dimensional vector force, and This three-dimensional vector force will have an impact on the arterial blood movement of the fingertip. Therefore, combined with the pressure value between the finger and the pulse wave signal detection module and the pulse wave signal reflecting the blood volume change in the finger, the user can be accurately calculated. blood pressure value.
  • the pulse wave signal is a photoplethysmographic pulse wave signal.
  • the pulse wave signal detection module includes: a light emitting unit for emitting a light signal to the measured object; a light receiving unit for receiving the light signal reflected by the measured object, and converting it into an electrical signal for output; and a signal conditioning module for receiving the electrical signal output by the light receiving unit, and detecting the photoplethysmographic signal.
  • the emission angle at which the light transmitting unit transmits the optical signal to the measured object is less than or equal to 35°
  • the receiving angle at which the light receiving unit receives the optical signal reflected by the measured object is less than or equal to 35°.
  • the length of the window opening of the light emitting unit or the light receiving unit is 2 mm, and the depth is 4 mm.
  • a Fresnel lens is placed above the light emitting unit or the light receiving unit.
  • the distance between the light emitting unit and the light receiving unit is in the range of 2.5mm ⁇ 5.5mm.
  • the three-dimensional pressure detection module includes: an arm beam and at least three force sensors; among the at least three force sensors, at least two force sensors are placed on different sides of the arm beam, and at least one force sensor is placed on the lower bottom surface of the arm beam; the pulse wave signal detection module is placed on the upper bottom surface of the arm beam.
  • the at least three force sensors are placed orthogonally on the side surface and the lower bottom surface of the arm beam.
  • the three-dimensional pressure detection module is driven in a pulsed manner.
  • the signal processing module is further used for:
  • the pulse wave curve is a change curve of the amplitude of the pulse wave signal with respect to time
  • the blood pressure of the measured object is calculated.
  • the signal processing module is further configured to: detect and obtain absolute values of pressure components of the three-dimensional pressure in three orthogonal directions according to the three-dimensional pressure signal; and
  • the absolute value of the three-dimensional pressure is fitted according to the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions.
  • the signal processing module uses the following formula to fit the absolute value of the three-dimensional pressure:
  • P is the absolute value of the three-dimensional pressure
  • k is a linear coefficient
  • b is a correction value
  • A, B, and C are the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions, respectively.
  • the blood pressure calculation model is generated by performing machine learning on training data;
  • the training data includes pulse wave curve data, pressure curve data, and blood pressure data corresponding to the pulse wave curve data and the pressure curve data.
  • an embodiment of the present application provides a blood pressure measurement method, which is applied to a blood pressure measurement device, including:
  • the pulse wave signal detection module detects the pulse wave signal of the measured object
  • the three-dimensional pressure detection module detects a three-dimensional pressure signal corresponding to the three-dimensional pressure exerted by the measured object on the pulse wave signal detection module;
  • the signal processing module calculates the blood pressure of the measured object according to the pulse wave signal and the three-dimensional pressure signal.
  • the three-dimensional pressure detection module uses the three-dimensional pressure detection module to detect the three-dimensional pressure signal corresponding to the three-dimensional pressure applied by the user on the pulse wave signal detection module, the three-dimensional pressure between the user and the pulse wave signal detection module can be calculated value, and then accurately calculate the user's blood pressure.
  • the pulse wave signal is a photoplethysmographic pulse wave signal.
  • the pulse wave signal detection module detects the pulse wave signal of the measured object, further comprising: a light emitting unit transmits a light signal to the measured object; the light receiving unit receives the light signal reflected by the measured object, and converts it into an optical signal. an electrical signal output; and a signal conditioning module receives the electrical signal output by the light receiving unit, and detects the photoplethysmographic pulse wave signal.
  • the signal processing module calculates the blood pressure of the measured object according to the pulse wave signal and the three-dimensional pressure signal, further comprising:
  • the pulse wave curve is a change curve of the amplitude of the pulse wave signal with respect to time
  • the blood pressure of the measured object is calculated.
  • the generating a pressure curve based on the three-dimensional pressure signal further includes:
  • the absolute value of the three-dimensional pressure is fitted according to the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions.
  • the fitting of the absolute value of the three-dimensional pressure according to the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions adopts the following formula:
  • P is the absolute value of the three-dimensional pressure
  • k is a linear coefficient
  • b is a correction value
  • A, B, and C are the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions, respectively.
  • the blood pressure calculation model is generated by performing machine learning on training data;
  • the training data includes pulse wave curve data, pressure curve data, and blood pressure data corresponding to the pulse wave curve data and the pressure curve data.
  • FIG. 1 is a schematic structural diagram of a blood pressure measurement device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a pulse wave signal detection module provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a light emitting unit and a light receiving unit according to an embodiment of the present application
  • FIG. 4A is a schematic three-dimensional structure diagram of a three-dimensional pressure detection module provided by an embodiment of the present application.
  • FIG. 4B is a schematic bottom view structural diagram of a three-dimensional pressure detection module provided by an embodiment of the present application.
  • 5A is a schematic three-dimensional structure diagram of the whole of a pulse wave signal detection module and a three-dimensional pressure detection module provided by an embodiment of the application;
  • 5B is a schematic diagram of the overall circuit structure of a pulse wave signal detection module and a three-dimensional pressure detection module provided by an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a signal processing module provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a pressure curve generation module provided by an embodiment of the present application.
  • 8A is a schematic diagram of a pulse wave curve provided by an embodiment of the present application.
  • FIG. 8B is a schematic diagram of a pressure curve provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a blood pressure measurement method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for detecting a pulse wave signal of a measured object by a pulse wave signal detection module provided by an embodiment of the application;
  • FIG. 11 is a schematic flowchart of a method for a signal processing module to calculate and obtain the blood pressure of a measured object according to a pulse wave signal and a three-dimensional pressure signal according to an embodiment of the application;
  • FIG. 12 is a schematic flowchart of a method for generating a pressure curve based on a three-dimensional pressure signal according to an embodiment of the present application.
  • each step may be performed in the specified order, substantially concurrently. each step, perform each step in the reverse order, or perform each step in a different order.
  • an embodiment of the present application provides a blood pressure measurement device for measuring the blood pressure of a measured object.
  • the blood pressure measurement device can be integrated into various types of wearable devices, and examples of the wearable devices can include, but are not limited to, smart watches, smart bracelets, smart armbands, smart rings, and wireless earphones.
  • the blood pressure measurement device 100 includes a pulse wave signal detection module 110 , a three-dimensional pressure detection module 120 , and a signal processing module 130 .
  • the pulse wave signal detection module 110 can detect the pulse wave signal of the measured object;
  • the three-dimensional pressure detection module 120 can detect the three-dimensional pressure signal corresponding to the three-dimensional pressure exerted on the pulse wave signal detection module 110 by the measured object;
  • the signal processing module 130 can calculate the blood pressure of the subject according to the detected pulse wave signal and the three-dimensional pressure signal.
  • the user can press the finger on the pulse wave signal detection module 110 and gradually increase the pressure; during this process, the pressure exerted by the finger on the pulse wave signal detection module 110 is usually a three-dimensional vector force. If the vertical downward pressure component is ignored, and the horizontal pressure component is ignored, the actual pressure value between the finger and the pulse wave signal detection module 110 cannot be obtained, thereby causing a large error in the blood pressure detection result. Therefore, the blood pressure measurement device 100 in the embodiment of the present application adopts the three-dimensional pressure detection module 120 to detect the three-dimensional pressure between the finger and the pulse wave signal detection module 110, thereby improving the accuracy of the blood pressure detection result.
  • the above-mentioned pulse wave signal is a photoplethysmographic pulse wave signal measured by a photoplethysmography (Photo Plethysmo Graphy, PPG) method, that is, a PPG signal.
  • a photoplethysmographic pulse wave signal measured by a photoplethysmography (Photo Plethysmo Graphy, PPG) method, that is, a PPG signal.
  • the pulse wave signal detection module 200 includes: a light transmitting unit 210 , a light receiving unit 220 , and a signal conditioning module 230 .
  • the light transmitting unit 210 can transmit optical signals to the user's finger;
  • the light receiving unit 220 can receive the optical signal reflected by the user's finger and convert it into an electrical signal containing pulse wave information, that is, the original PPG signal;
  • the signal conditioning module 230 may receive the original PPG signal output by the light receiving unit 220, and detect and obtain the PPG signal.
  • the light emitting unit 210 may be a light emitting diode (Light Emitting Diode, LED), an organic light emitting diode, a phosphor or other light emitting elements, and can emit visible light (such as green light or red light) or infrared light of a specific wavelength to the user's finger and other detection light;
  • the light receiving unit 220 can be a photoelectric conversion element such as a photodiode (Photonic Diode, PD), a phototransistor, an avalanche photodiode or a photomultiplier tube, etc. It is converted to PPG raw signal.
  • the signal conditioning module 230 may include a current/voltage amplifying circuit and a filtering circuit, etc., firstly convert the received PPG original signal from a current signal into a voltage signal, and amplify the voltage signal, and the filtering circuit can perform the amplified voltage signal. Filtering is performed to filter out the DC component, that is, the signal component that does not contain pulse wave information, while retaining the AC component that contains pulse wave information, and finally generates a PPG signal.
  • the emission angle at which the light transmitting unit 210 transmits the light signal to the user's finger is less than or equal to 35°
  • the receiving angle at which the light receiving unit 220 receives the light signal reflected by the user's finger is less than or equal to 35°.
  • Limiting the emission angle of the light-emitting unit and the receiving angle of the light-receiving unit to a small angular range can enable the light-receiving unit to receive optical signals of sufficient intensity, and reduce the ambient light and other noise contained therein, which is beneficial to improve the PPG signal signal quality.
  • the emission angle at which the light transmitting unit 210 transmits the optical signal is less than or equal to 30°
  • the receiving angle at which the light receiving unit 220 receives the reflected optical signal is less than or equal to 30°.
  • the length of the windows of the light emitting unit 210 and the light receiving unit 220 is 2 mm, and the depth is 4 mm.
  • Selecting the appropriate length and depth of the window opening can limit the emission angle of the light emitting unit and the receiving angle of the light receiving unit to an appropriate angle range, so as to ensure that the light receiving unit can receive sufficient strength of the light signal, while reducing the amount of Include noise such as ambient light to improve the signal quality of the PPG signal.
  • FIG. 3 a schematic structural diagram of a light emitting unit and a light receiving unit provided in an embodiment of the present application; wherein, the LED 320 is used as a light emitting unit, and can transmit an optical signal of a specific wavelength to a user's finger; PD 330 is used as a light receiving unit. The unit can receive the light signal transmitted and/or reflected by the user's finger.
  • a light-transmitting cover plate 310 is placed above the LED 320 and the PD 330. When the user measures blood pressure, the user can press their fingers on the upper surface of the light-transmitting cover plate 310.
  • a Fresnel lens may be placed over the LED 320 and the PD 330 to condense the detection light emitted by the LED 320 and the detection light received by the PD 330 and transmitted and/or reflected by the user's finger
  • a Fresnel lens can be placed separately above the LED 320 and the PD 330, or a Fresnel lens can be covered on the LED 320 and the PD 330 at the same time.
  • the light emitting unit is collimated to transmit the optical signal
  • the light receiving unit is collimated to receive the optical signal, which is beneficial to improve the signal quality of the measured PPG signal.
  • the distance between the LED 320 and the PD 330 is in the range of 2.5mm ⁇ 5.5mm.
  • the distance between the light-emitting unit and the light-receiving unit can be determined according to the The wavelength of the detection light emitted by the light emitting unit is specifically determined. For example, when the wavelength of the detection light is short, the distance between the light emitting unit and the light receiving unit can be set to be smaller; when the wavelength of the detection light is longer, The distance between the light-emitting unit and the light-receiving unit may be set larger.
  • the number of light emitting units can be one or more; when there are multiple light emitting units, the light signals of different wavelengths can be respectively emitted to the measured object; the light emitting units can also be A light-emitting element composed of a plurality of different light sources packaged together.
  • the number of light receiving units may be one or more, and may be used to obtain at least one PPG signal.
  • the pulse wave signal detection module can include two light emitting units, one is a green LED and the other is a red LED, and the green LED and the red LED are made to emit green light and red light in a time-sharing manner, and are sequentially received by a PD and sent by the user. The green light and the red light reflected by the finger; or, two PDs are set to receive the green light and the red light reflected by the user's finger respectively.
  • the type, quantity, and positional relationship of the light emitting unit and the light receiving unit may be specifically determined according to the actual application scenario, detection purpose, installation position and size of the pulse wave signal detection module, etc., which are not limited in this embodiment of the present application.
  • the pulse wave signal detection module can not only use the PPG method, that is, to measure the PPG signal of the measured object based on optical technology, but also use the method based on acoustics or electromagnetics to detect the pulse wave signal. For example, using electrets Microphone or millimeter wave radar sensor, etc.
  • the three-dimensional pressure detection module 400 includes an arm beam 410 , which is placed on four sides of the arm beam
  • the strain gauge 420, the strain gauge 430, the strain gauge 440 and the strain gauge 450, and the piezoelectric sensor 460 placed on the lower bottom surface of the arm beam.
  • the origin of the coordinate axis is located at the geometric center of the three-dimensional pressure detection module 400, the x-axis and the y-axis are parallel to the bottom surface of the three-dimensional pressure detection module 400, and the z-axis is perpendicular to the bottom surface of the three-dimensional pressure detection module 400; the strain gauge 420 and the strain gauge 440 are respectively Placed in the positive and negative directions of the x-axis; the strain gauge 430 and the strain gauge 450 are placed in the positive and negative directions of the y-axis, respectively; the piezoelectric sensor 460 is placed in the negative direction of the z-axis, and is used to detect along the z-axis Pressure component in the negative direction of the axis.
  • the arm beam 410 can be used as a strain matrix.
  • the strain gauge 420, the strain gauge 430, the strain gauge 440 and the strain gauge 450 are also deformed (tension or compression). ), and at the same time its resistance value will also change, so that the voltage applied to it will change, and finally a three-dimensional pressure signal will be generated.
  • the four strain gauges can be made of metal material or semiconductor material, and the three-dimensional pressure detection module 400 can be integrated inside the wearable device.
  • the three-dimensional pressure detection module can be realized not only in the form shown in Figure 4A and Figure 4B, but also in the form of a piezoelectric film sensor, a millimeter-wave radar sensor or an acceleration sensor or other forms of force sensors.
  • the number, type and placement of force sensors in the 3D pressure detection module can be set according to the actual application scenario, detection purpose, position and size of the 3D pressure detection module, etc.
  • a three-dimensional pressure detection module is formed in the form of a strain base and attached strain gauges
  • one, two or four strain gauges can also be arranged on the four sides of the arm beam respectively, and connected in the structure of a Wheatstone bridge.
  • FIG. 5A a schematic three-dimensional structure diagram of the whole of a pulse wave signal detection module and a three-dimensional pressure detection module provided by an embodiment of the present application; wherein the pulse wave signal detection module 510 can be combined with the pulse wave signal detection module shown in FIG. 2 .
  • the module 200 is basically the same, and the three-dimensional pressure detection module 520 may be basically the same as the three-dimensional pressure detection module 400 shown in FIG. 4A or 4B.
  • the pulse wave signal detection module 510 is placed on the upper bottom surface of the arm beam 521 of the three-dimensional pressure detection module 520; the pulse wave signal detection module 510 may further include: a pressing plate 511, the user can press his finger on the pressing plate 511 when measuring blood pressure
  • the light-transmitting cover plate 512 can transmit the light signal emitted by the light-emitting unit in the pulse wave signal detection module 510 and irradiate it to the user's finger, and make the light signal reflected or transmitted by the user's finger pass through and be transmitted by the light-receiving unit take over.
  • the three-dimensional pressure detection module 520 below can detect the three-dimensional pressure between the finger and the pulse wave signal detection module 510 .
  • the three-dimensional pressure detection module can work by means of a pulse-driven bridge, for example, to detect the three-dimensional pressure between the user's finger and the pulse wave signal detection module at a frequency of 10 times per second, so as to save the static power consumption of the system;
  • Each power supply drives the three-way bridges respectively to detect the pressure signals corresponding to the pressure components in three different directions of the three-dimensional pressure applied by the user on the pulse wave signal detection module; connect the strain gauge in the three-dimensional pressure detection module Or the piezoelectric sensor and the resistor are connected in the structure of a Wheatstone bridge, and are amplified by an amplifier, and a small change in the resistance value can be measured.
  • FIG. 6 it is a schematic structural diagram of a signal processing module provided by an embodiment of the present application; and the signal processing module 600 shown in FIG. 6 may be an example of the signal processing module 130 shown in FIG. 1 .
  • the signal processing module 600 includes: a pulse wave curve generation module 610, which can generate a pulse wave curve based on the PPG signal output by the signal conditioning module 230 shown in FIG. 2, wherein the pulse wave curve can be a change curve of the amplitude of the pulse wave signal with respect to time
  • the pressure curve generation module 620 can generate a pressure curve based on the three-dimensional pressure signal detected by the three-dimensional pressure detection module 520 shown in FIG.
  • the pressure curve can be a change curve of the absolute value of the three-dimensional pressure with respect to time;
  • the blood pressure calculation module 630 A polynomial, single Gaussian or double Gaussian algorithm can be used to fit the relationship curve between the amplitude of the pulse wave signal and the absolute value of the three-dimensional pressure, and can be based on the relationship between the amplitude of the pulse wave signal and the absolute value of the three-dimensional pressure.
  • the relationship curve and the pre-generated blood pressure calculation model can calculate the blood pressure of the measured object; the blood pressure calculation model can be generated by machine learning on the training data, and the training data can include pulse wave curve data, pressure curve data, and pulse wave curve data. Blood pressure data corresponding to the pressure curve data.
  • the three-dimensional pressure itself between the measured object and the pulse wave signal detection module is a vector with both magnitude and direction; here, the absolute value of the three-dimensional pressure can be the force that has an equivalent relationship with the pressure value of the user's arterial blood pressure. size.
  • FIG. 7 a schematic structural diagram of a pressure curve generation module provided in an embodiment of the present application; the pressure curve generation module 700 shown in FIG. 7 may be an example of the pressure curve generation module 620 shown in FIG. 6 .
  • the pressure curve generation module 700 includes: a pressure component acquisition module 710, which can calculate the three-dimensional pressure applied by the user on the pulse wave signal detection module 510 according to the three-dimensional pressure signal detected by the three-dimensional pressure detection module 520 shown in FIG.
  • the absolute values of the pressure components in the orthogonal directions that is, the magnitudes of the pressure components in the three orthogonal directions; the three-dimensional pressure value fitting module 720 can be based on the absolute values of the pressure components of the three-dimensional pressure in the three orthogonal directions Fit the absolute value of the above three-dimensional pressure.
  • the three-dimensional pressure value fitting module 720 may use the following formula to fit the absolute value of the above three-dimensional pressure:
  • P is the absolute value of the three-dimensional pressure
  • k is the linear coefficient
  • b is the correction value
  • A, B, and C are the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions.
  • FIGS. 8A and 8B schematic diagrams of a pulse wave curve and a pressure curve provided in an embodiment of the present application.
  • the schematic diagram of the pulse wave curve shown in FIG. 8A may be a periodic change curve generated based on the PPG signal output by the signal conditioning module 230 shown in FIG. 2 , which includes pulse wave information; the horizontal axis of the pulse wave curve represents time, The vertical axis represents the amplitude of the PPG signal.
  • the blood in the pressed part of the finger is gradually squeezed to other positions, so the amplitude of the pulse wave signal will show from small to large and then to small trends.
  • the schematic diagram of the pressure curve shown in FIG. 8B may be an aperiodic variation curve generated based on the three-dimensional pressure signal corresponding to the three-dimensional pressure detected by the three-dimensional pressure detection module 520 shown in FIG. 5A and applied to the pulse wave signal detection module 510 by the user ;
  • the horizontal axis of the pressure curve represents time, and the vertical axis represents the absolute value of three-dimensional pressure.
  • the applied pressure does not increase uniformly, but exhibits certain fluctuations.
  • FIG. 9 a schematic flowchart of a blood pressure measurement method provided in an embodiment of the present application can be applied to the blood pressure measurement device 100 shown in FIG. 1 ; the blood pressure measurement method specifically includes the following steps:
  • Step S101 the pulse wave signal detection module 110 detects the pulse wave signal of the measured object.
  • Step S102 the three-dimensional pressure detection module 120 detects a three-dimensional pressure signal corresponding to the three-dimensional pressure applied by the measured object on the pulse wave signal detection module 110 .
  • Step S103 The signal processing module 130 calculates and obtains the blood pressure of the measured object according to the pulse wave signal and the three-dimensional pressure signal.
  • the pulse wave signal detection module 110 and the three-dimensional pressure detection module 120 can start the detection synchronously, and end the detection synchronously.
  • Using the three-dimensional pressure detection module 120 can detect the three-dimensional pressure exerted by the user on the pulse wave signal detection module 110, thereby improving the accuracy of the blood pressure detection result.
  • the above-mentioned pulse wave signal is a PPG signal measured by photoplethysmography.
  • the detection of the pulse wave signal of the measured object by the pulse wave signal detection module may include the following steps, which are described below in conjunction with the schematic structural diagram of the pulse wave signal detection module shown in FIG. 2 :
  • Step S201 the light emitting unit 210 emits a light signal to the measured object.
  • Step S202 The light receiving unit 220 receives the light signal reflected by the measured object, and converts it into an electrical signal for output.
  • Step S203 The signal conditioning module 230 receives the electrical signal output by the light receiving unit 220, and detects and obtains the PPG signal.
  • the number of light emitting units can be one or more; when there are multiple light emitting units, the light signals of different wavelengths can be respectively emitted to the measured object; the light emitting units can also be A light-emitting element composed of a plurality of different light sources packaged together.
  • the number of light receiving units may be one or more, and may be used to obtain at least one PPG signal.
  • the above-mentioned signal processing module calculates and obtains the blood pressure of the measured object according to the pulse wave signal and the three-dimensional pressure signal, and may specifically include the following steps, which are described below in conjunction with the schematic structural diagram of the signal processing module shown in Figure 6:
  • Step S301 the pulse wave curve generation module 610 generates a pulse wave curve based on the pulse wave signal, and the pulse wave curve is a curve of the amplitude of the pulse wave signal with respect to time.
  • Step S302 the pressure curve generating module 620 generates a pressure curve based on the three-dimensional pressure signal, where the pressure curve is a change curve of the absolute value of the three-dimensional pressure with respect to time.
  • the above-mentioned pulse wave curve and pressure curve can be generated simultaneously; wherein, the horizontal axis of the pulse wave curve can be expressed as time, and the vertical axis can be expressed as the amplitude of the PPG signal; the horizontal axis of the pressure curve can be expressed as time, and the vertical axis can be expressed as time. Expressed as the absolute value of the three-dimensional pressure.
  • Step S303 The blood pressure calculation module 630 uses a polynomial, single-Gaussian or double-Gaussian algorithm to fit the relationship curve between the amplitude of the pulse wave signal and the absolute value of the three-dimensional pressure, and based on the relationship between the amplitude of the pulse wave signal and the three-dimensional pressure The relationship curve between the absolute values and the generated blood pressure calculation model are used to calculate the blood pressure of the measured object.
  • the blood pressure calculation model can be generated by performing machine learning on training data; the training data includes pulse wave curve data, pressure curve data, and blood pressure data corresponding to the pulse wave curve data and the pressure curve data.
  • the above-mentioned generation of the pressure curve based on the three-dimensional pressure signal may include the following steps, which are described below with reference to the structural schematic diagram of the pressure curve generation module shown in FIG. 7 :
  • Step S401 the pressure component acquisition module 710 calculates and obtains the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions according to the three-dimensional pressure signal.
  • Step S402 The three-dimensional pressure value fitting module 720 fits the absolute value of the three-dimensional pressure according to the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions.
  • the three-dimensional pressure value fitting module 720 fits the absolute value of the three-dimensional pressure according to the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions, and specifically adopts the following formula:
  • P is the absolute value of the three-dimensional pressure
  • k is the linear coefficient
  • b is the correction value
  • A, B, and C are the absolute values of the pressure components of the three-dimensional pressure in three orthogonal directions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量装置(100)及血压测量方法,用于测量被测对象的血压,其中,该血压测量装置(100)包括:脉搏波信号检测模块(110),用于检测被测对象的脉搏波信号;三维压力检测模块(120),用于检测被测对象施加于脉搏波信号检测模块(110)上的三维压力,并生成三维压力信号;以及信号处理模块(130),用于根据脉搏波信号和三维压力信号,计算得到被测对象的血压。该血压测量装置(100)可以根据检测到的三维压力信号解算出被测对象与脉搏波信号检测模块(110)之间的三维压力值大小,从而提高血压测量结果的准确度。

Description

血压测量装置及血压测量方法 技术领域
本申请实施例涉及电子设备技术领域,尤其涉及一种血压测量装置及血压测量方法。
背景技术
目前,高血压是造成心脑血管疾病最主要的一项危险因素。随着移动健康产业的发展,具有无创血压检测功能的可穿戴设备获得了广泛应用,以便于用户在日常生活中对血压进行连续监测。
现有可穿戴设备常用的无创血压检测方法为PWTT(Pulse Wave Transit Time,脉搏波传输时间)法。PWTT法的原理是,采集心电信号和脉搏波信号并进行滤波预处理,而后采用自适应特征提取方法,提取出心电信号的R波峰值点以及脉搏波信号的特征点;在同一心动周期内,心电信号的R波峰值点与脉搏波信号的特征点之间的时间差,即为脉搏波传输时间。由于脉搏波传输时间与血压值线性相关,所以根据测得的脉搏波传输时间便可以换算出收缩压和舒张压的具体数值,进而实现对用户血压的连续监测。
但是,采用PWTT法检测血压时容易受到用户肢体的各种微小活动的影响,例如,当用户的手腕与心电电极接触时,手腕处的微小抖动不但会叠加在心电信号上,也会造成脉搏波信号的峰值钝化,导致难以准确地提取特征点,进而造成血压检测结果的误差偏大;此外,基于脉搏波传输时间与血压值的关系建立的血压计算模型精度不高,普适性也较差,所以采用PWTT法检测血压需要进行定期校准,以减小个体测试误差,而这种使用方式则会大大降低用户的体验感。
发明内容
本申请实施例提供了一种血压测量装置及血压测量方法,用于解决现有技术存在的血压检测结果误差较大,检测精度不高的问题。
有鉴于此,本申请实施例第一方面提供了一种血压测量装置,用于测量被测对象的血压,包括:
脉搏波信号检测模块,用于检测被测对象的脉搏波信号;
三维压力检测模块,用于检测被测对象施加于所述脉搏波信号检测模块上的三维压力,并生成三维压力信号;以及
信号处理模块,用于根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压。
在血压测量过程中,用户可以将手指按压于所述脉搏波信号检测模块上并逐渐增加压力;在此过程中,手指与所述脉搏波信号检测模块之间的压力是一个三维矢量力,并且这个三维矢量力会对手指指尖的动脉血运动产生影响,所以结合手指与所述脉搏波信号检测模块之间的压力值以及反映手指内血液容积变化的脉搏波信号,可以准确地计算得到用户的血压值大小。
可选地,所述脉搏波信号为光电容积脉搏波信号。
可选地,所述脉搏波信号检测模块包括:光发射单元,用于向被测对象发射光信号;光接收单元,用于接收经被测对象反射的光信号,并转换为电信号输出;以及信号调理模块,用于接收所述光接收单元输出的电信号,并检测得到所述光电容积脉搏波信号。
可选地,所述光发射单元向被测对象发射光信号的发射角小于等于35°,所述光接收单元接收经被测对象反射的光信号的接收角小于等于35°。
可选地,所述光发射单元或所述光接收单元的开窗长度为2mm,深度为4mm。
可选地,所述光发射单元或所述光接收单元的上方放置有菲涅尔透镜。
可选地,所述光发射单元与所述光接收单元之间的距离在2.5mm~5.5mm范围内。
可选地,所述三维压力检测模块包括:臂梁和至少三个力传感器;所述至少三个力传感器中有至少两个力传感器放置于所述臂梁的不同侧面,至少一个力传感器放置于所述臂梁的下底面;所述脉搏波信号检测模块放置于所述臂梁的上底面。
可选地,所述至少三个力传感器正交放置于所述臂梁的侧面和下底面。
可选地,所述三维压力检测模块采用脉冲方式驱动。
可选地,所述信号处理模块进一步用于:
基于所述脉搏波信号生成脉搏波曲线,所述脉搏波曲线为所述脉搏波信号的幅值关于时间的变化曲线;
基于所述三维压力信号生成压力曲线,所述压力曲线为所述三维压力的绝对值关于时间的变化曲线;
采用多项式、单高斯或双高斯算法中的至少一种对所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线进行拟合;以及
基于所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线和生成的 血压计算模型,计算得到被测对象的血压。
可选地,所述信号处理模块进一步用于:根据所述三维压力信号检测得到所述三维压力在三个正交方向上的压力分量的绝对值;以及
根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟合。
可选地,所述信号处理模块采用如下公式对所述三维压力的绝对值进行拟合:
Figure PCTCN2020127146-appb-000001
其中,P为所述三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为所述三维压力在三个正交方向上的压力分量的绝对值。
可选地,所述血压计算模型通过对训练数据进行机器学习生成;所述训练数据包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
第二方面,本申请实施例提供一种血压测量方法,应用于血压测量装置,包括:
脉搏波信号检测模块检测被测对象的脉搏波信号;
三维压力检测模块检测与被测对象施加于所述脉搏波信号检测模块上的三维压力对应的三维压力信号;以及
信号处理模块根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压。
采用所述三维压力检测模块检测与用户施加于所述脉搏波信号检测模块上的所述三维压力对应的所述三维压力信号,可以解算出用户与所述脉搏波信号检测模块之间的三维压力值,进而准确地计算出用户的血压。
可选地,所述脉搏波信号为光电容积脉搏波信号。
可选地,所述脉搏波信号检测模块检测被测对象的脉搏波信号,进一步包括:光发射单元向被测对象发射光信号;光接收单元接收经被测对象反射的光信号,并转换为电信号输出;以及信号调理模块接收所述光接收单元输出的电信号,并检测得到所述光电容积脉搏波信号。
可选地,所述信号处理模块根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压,进一步包括:
基于所述脉搏波信号生成脉搏波曲线,所述脉搏波曲线为所述脉搏波信号的幅值关于时间的变化曲线;
基于所述三维压力信号生成压力曲线,所述压力曲线为所述三维压力的绝对值关于时间的变化曲线;
采用多项式、单高斯或双高斯算法中的至少一种对所述脉搏波信号的幅值与所 述三维压力的绝对值之间的关系曲线进行拟合;以及
基于所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线和生成的血压计算模型,计算得到被测对象的血压。
可选地,所述基于所述三维压力信号生成压力曲线,进一步包括:
根据所述三维压力信号检测得到所述三维压力在三个正交方向上的压力分量的绝对值;以及
根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟合。
可选地,所述根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟合,采用如下公式:
Figure PCTCN2020127146-appb-000002
其中,P为所述三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为所述三维压力在三个正交方向上的压力分量的绝对值。
可选地,所述血压计算模型通过对训练数据进行机器学习生成;所述训练数据包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元器件表示为基本相同的元器件。除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的一种血压测量装置的结构示意图;
图2为本申请实施例提供的一种脉搏波信号检测模块的结构示意图;
图3为本申请实施例提供的一种光发射单元和光接收单元的结构示意图;
图4A为本申请实施例提供的一种三维压力检测模块的立体结构示意图;
图4B为本申请实施例提供的一种三维压力检测模块的仰视结构示意图;
图5A为本申请实施例提供的一种脉搏波信号检测模块和三维压力检测模块整体的立体结构示意图;
图5B为本申请实施例提供的一种脉搏波信号检测模块和三维压力检测模块整体的电路结构示意图;
图6为本申请实施例提供的一种信号处理模块的结构示意图;
图7为本申请实施例提供的一种压力曲线生成模块的结构示意图;
图8A为本申请实施例提供的一种脉搏波曲线的示意图;
图8B为本申请实施例提供的一种压力曲线的示意图;
图9为本申请实施例提供的一种血压测量方法的流程示意图;
图10为本申请实施例提供的一种脉搏波信号检测模块检测被测对象的脉搏波信号的方法流程示意图;
图11为本申请实施例提供的一种信号处理模块根据脉搏波信号和三维压力信号计算得到被测对象的血压的方法流程示意图;
图12为本申请实施例提供的一种基于三维压力信号生成压力曲线的方法流程示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
另外,除非在本申请的上下文中清楚地说明了指定的顺序,否则可与指定的顺序不同地执行在此描述的处理步骤,即,可以以指定的顺序执行每个步骤、基本上同时执行每个步骤、以相反的顺序执行每个步骤或者以不同的顺序执行每个步骤。
现有技术中,采用手指压力示波法测量用户的血压时,仅利用一维压力传感器来检测用户施加于血压测量装置上的垂直向下的压力,然而,本申请发明人发现,用户在血压测量过程中施加的压力并非只有垂直方向上的分量,若仅检测垂直向下的压力分量,并用以计算用户的血压值,会导致测得的血压值结果具有明显的误差。
为了提高血压检测结果的准确度,第一方面,本申请实施例提供一种血压测量装置,用于测量被测对象的血压。该血压测量装置可集成于各类可穿戴设备中,可穿戴设备的示例可以包括:智能手表、智能手环、智能臂带、智能指环以及无线耳机等,并且不限于此。
如图1所示,为本申请实施例提供的一种血压测量装置的结构示意图;血压测量装置100包括:脉搏波信号检测模块110、三维压力检测模块120以及信号处理模块130。其中,脉搏波信号检测模块110可以检测被测对象的脉搏波信号;三维压力检测模块120可以检测与被测对象施加于脉搏波信号检测模块110上的三维压力对应的三维压力信号;信号处理模块130可以根据检测到的脉搏波信号和三维压力信号计算出被测对象的血压。
测量血压时,用户可以将手指按压在脉搏波信号检测模块110上,并逐渐增加 压力;在此过程中,手指施加于脉搏波信号检测模块110上的压力通常是一个三维矢量力,若仅检测垂直向下的压力分量,而忽略横向的压力分量,则无法获得手指与脉搏波信号检测模块110之间真实的压力值大小,进而导致血压检测结果存在较大误差。因此,本申请实施例中的血压测量装置100采用三维压力检测模块120,以检测出手指与脉搏波信号检测模块110之间的三维压力,从而提高血压检测结果的准确度。
在一种可能的实施方式中,上述脉搏波信号为采用光电容积脉搏波描计(Photo Plethysmo Graphy,PPG)法测得的光电容积脉搏波信号,即PPG信号。
如图2所示,为本申请实施例提供的一种脉搏波信号检测模块的结构示意图;脉搏波信号检测模块200包括:光发射单元210、光接收单元220以及信号调理模块230。其中,光发射单元210可以向用户手指发射光信号;光接收单元220可以接收经用户手指反射的光信号,并将其转换为包含有脉搏波信息的电信号,即PPG原始信号;信号调理模块230可以接收光接收单元220输出的PPG原始信号,并检测得到PPG信号。
具体的,光发射单元210可以为发光二极管(Light Emitting Diode,LED)、有机发光二极管、荧光体等发光元件,并且能够向用户手指发射特定波长的可见光(如绿光或红光)或红外光等检测光;光接收单元220可以为光电二极管(Photonic Diode,PD)、光电三极管、雪崩光电二极管或光电倍增管等光电转换元件,能够接收经用户手指反射或透过手指的检测光,并将其转换为PPG原始信号。
信号调理模块230中可以包括电流/电压放大电路和滤波电路等,先将接收到的PPG原始信号由电流信号转换为电压信号,并对该电压信号进行放大,滤波电路可以对放大后的电压信号进行滤波,以滤除其中的直流分量,即不含有脉搏波信息的信号分量,同时保留其中包含有脉搏波信息的交流分量,最终生成PPG信号。
在一种可能的实施方式中,光发射单元210向用户手指发射光信号的发射角小于等于35°,光接收单元220接收经用户手指反射的光信号的接收角小于等于35°。
将光发射单元的发射角和光接收单元的接收角限制在较小的角度范围内,可以使光接收单元接收到足够强度的光信号,并减少其中包含的环境光等噪声,有利于提高PPG信号的信号质量。
优选地,光发射单元210发射光信号的发射角小于等于30°,光接收单元220接收反射的光信号的接收角小于等于30°。
在一种可能的实施方式中,光发射单元210和光接收单元220的开窗长度为2mm,深度为4mm。
选择合适的开窗长度和深度可以将光发射单元的发射角和光接收单元的接收角分别限制在合适的角度范围内,从而在保证光接收单元能够接收到足够强度的光信号 的同时,减少其中包含的环境光等噪声,以提高PPG信号的信号质量。
如图3所示,为本申请实施例提供的一种光发射单元和光接收单元的结构示意图;其中,LED 320作为光发射单元,可以向用户手指发射特定波长的光信号;PD 330作为光接收单元,可以接收经用户手指透射和/或反射的光信号。LED 320和PD 330的上方放置有透光盖板310,当用户进行血压测量时,可以将手指按压于透光盖板310的上表面。
在一种可能的实施方式中,可以在LED 320和PD 330的上方放置菲涅尔透镜,以对LED 320发射的检测光和PD 330接收的经用户手指透射和/或反射的检测光进行汇聚;具体的,可以是在LED 320和PD 330的上方分别单独放置一块菲涅尔透镜,也可以将一块菲涅尔透镜同时覆盖于LED 320和PD 330的上方。
使光发射单元准直发射光信号,光接收单元准直接收光信号,有利于提高测得的PPG信号的信号质量。
在一种可能的实施方式中,LED 320和PD 330之间的距离在2.5mm~5.5mm范围内。
将光发射单元和光接收单元以合适的间距进行放置,有利于使光发射单元发射的检测光经用户手指反射后被光接收单元充分地接收;光发射单元与光接收单元之间的距离可以根据光发射单元发射的检测光的波长来具体地确定,例如,当检测光的波长较短时,可以设置光发射单元与光接收单元之间的距离较小;当检测光的波长较长时,可以设置光发射单元与光接收单元之间的距离较大。
需要说明的是,光发射单元的个数可以为一个,也可以为多个;当有多个光发射单元时,可以分别向被测对象发射不同波长的光信号;光发射单元也可以为将多个不同光源封装在一起构成的一个发光元件。另外,光接收单元的个数可以为一个,也可以为多个,并且可用于获得至少一个PPG信号。例如,脉搏波信号检测模块可以包括两个光发射单元,一个为绿色LED,另一个为红色LED,并使绿色LED和红色LED分时发射绿光和红光,由一个PD顺序地接收经用户手指反射后的绿光和红光;或者,设置两个PD分别接收经用户手指反射后的绿光和红光。
光发射单元和光接收单元的种类、数量以及位置关系可以根据实际的应用场景、检测目的、脉搏波信号检测模块的安装位置和尺寸大小等来具体地确定,本申请实施例对此不作限定。
另外,脉搏波信号检测模块不仅可以采用PPG方法,即基于光学技术测得被测对象的PPG信号,也可以采用基于声学或电磁学等的方法对脉搏波信号进行检测,例如,采用驻极体传声器或毫米波雷达传感器等。
如图4A和4B所示,分别为本申请实施例提供的一种三维压力检测模块的立体 结构示意图和仰视结构示意图;三维压力检测模块400包括臂梁410,放置于臂梁的四个侧面上的应变片420、应变片430、应变片440和应变片450,以及放置于臂梁的下底面上的压电传感器460。
其中,坐标轴原点位于三维压力检测模块400的几何中心,x轴和y轴平行于三维压力检测模块400的底面,z轴垂直于三维压力检测模块400的底面;应变片420和应变片440分别放置于x轴的正方向和负方向上;应变片430和应变片450分别放置于y轴的正方向和负方向上;压电传感器460放置于z轴的负方向上,并用于检测沿z轴负方向的压力分量。臂梁410可以作为应变基体,当臂梁410在用户施加的三维压力的作用下发生形变时,应变片420、应变片430、应变片440和应变片450也随之发生形变(拉伸或压缩),同时其阻值也会发生改变,进而使得加在其上的电压发生改变,最终生成三维压力信号。四个应变片可以采用金属材料或半导体材料制成,并且三维压力检测模块400可集成于可穿戴设备的内部。
需要说明的是,三维压力检测模块不仅可以通过图4A和图4B所示的形式实现,也可以通过压电薄膜传感器、毫米波雷达传感器或加速度传感器等形式的力传感器或多种形式的力传感器的组合实现;并且,三维压力检测模块中力传感器的数量、种类以及放置位置等可以根据实际的应用场景、检测目的、三维压力检测模块的位置和尺寸等进行设置,例如,当采用将臂梁作为应变基体并贴附应变片的形式构成三维压力检测模块时,也可以在臂梁的四个侧面上分别设置一个、两个或四个应变片,并且以惠斯通电桥的结构进行连接。
如图5A所示,为本申请实施例提供的一种脉搏波信号检测模块和三维压力检测模块整体的立体结构示意图;其中,脉搏波信号检测模块510可与图2所示的脉搏波信号检测模块200基本相同,三维压力检测模块520可与图4A或图4B所示的三维压力检测模块400基本相同。脉搏波信号检测模块510放置于三维压力检测模块520的臂梁521的上底面;脉搏波信号检测模块510还可以包括:按压板511,用户在测量血压时,可以将手指按压在按压板511上;透光盖板512,可以使脉搏波信号检测模块510中的光发射单元发射的光信号透过并照射到用户手指,以及使得经用户手指反射或透射的光信号穿过并被光接收单元接收。用户将手指按压在按压板511上时,下方的三维压力检测模块520可以检测出手指与脉搏波信号检测模块510之间的三维压力。
如图5B所示,为本申请实施例提供的一种脉搏波信号检测模块和三维压力检测模块整体的电路结构示意图。其中,三维压力检测模块可以采用脉冲驱动电桥的方式工作,例如,以每秒10次的频率检测用户手指与脉搏波信号检测模块之间的三维压力,以节约系统的静态功耗;由三个电源分别对三路电桥进行驱动,以分别检测得到用户施加于脉搏波信号检测模块上的三维压力在三个不同方向上的压力分量对应的压力信 号;将三维压力检测模块中的应变片或压电传感器与电阻以惠斯通电桥的结构进行连接,并经过放大器进行放大,可以测得较小的电阻值变化。
如图6所示,为本申请实施例提供的一种信号处理模块的结构示意图;并且,图6所示的信号处理模块600可以为图1所示的信号处理模块130的一种示例。
信号处理模块600包括:脉搏波曲线生成模块610,可以基于图2所示的信号调理模块230输出的PPG信号生成脉搏波曲线,其中脉搏波曲线可以为脉搏波信号的幅值关于时间的变化曲线;压力曲线生成模块620,可以基于图5A所示的三维压力检测模块520检测到的三维压力信号生成压力曲线,其中压力曲线可以为三维压力的绝对值关于时间的变化曲线;血压计算模块630,可以采用多项式、单高斯或双高斯算法对脉搏波信号的幅值与三维压力的绝对值之间的关系曲线进行拟合,并且可以根据脉搏波信号的幅值与三维压力的绝对值之间的关系曲线以及预先生成的血压计算模型,计算得到被测对象的血压;血压计算模型可以通过对训练数据进行机器学习生成,而训练数据可以包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
被测对象与脉搏波信号检测模块之间的三维压力本身是一个既有大小,又有方向的矢量;这里,三维压力的绝对值可以是与用户动脉血压的压力值具有等效关系的力的大小。
如图7所示,为本申请实施例提供的一种压力曲线生成模块的结构示意图;图7所示的压力曲线生成模块700可以为图6所示的压力曲线生成模块620的一种示例。压力曲线生成模块700包括:压力分量获取模块710,可以根据图5A所示的三维压力检测模块520检测到的三维压力信号,计算得到用户施加于脉搏波信号检测模块510上的三维压力在三个正交方向上的压力分量的绝对值,即在三个正交方向上的压力分量的大小;三维压力值拟合模块720,可以根据三维压力在三个正交方向上的压力分量的绝对值对上述三维压力的绝对值进行拟合。
在一种可能的实施方式中,三维压力值拟合模块720可以采用如下公式对上述三维压力的绝对值进行拟合:
Figure PCTCN2020127146-appb-000003
其中,P为三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为三维压力在三个正交方向上的压力分量的绝对值。
如图8A和8B所示,为本申请实施例提供的一种脉搏波曲线和压力曲线的示意图。图8A所示的脉搏波曲线的示意图可以是基于图2所示的信号调理模块230输出的PPG信号生成的周期性变化曲线,其中包含有脉搏波信息;脉搏波曲线的横轴表示为时间,纵轴表示为PPG信号的幅值。
由于在用户将手指按压于脉搏波信号检测模块上方并逐渐增加压力的过程中,手指内按压处的血液被逐渐挤压至其他位置,所以脉搏波信号的幅值会呈现由小到大再到小的变化趋势。
图8B所示的压力曲线的示意图可以是基于图5A所示的三维压力检测模块520检测到的用户施加于脉搏波信号检测模块510上的三维压力对应的三维压力信号生成的非周期性变化曲线;压力曲线的横轴表示为时间,纵轴表示为三维压力的绝对值。
因为用户手指在逐渐增加压力的过程中会出现微小的抖动,所以施加的压力不是均匀增加的,而是呈现一定的波动。
第二方面,如图9所示,为本申请实施例提供的一种血压测量方法的流程示意图,可应用于图1所示的血压测量装置100;该血压测量方法具体包括如下步骤:
步骤S101:脉搏波信号检测模块110检测被测对象的脉搏波信号。
步骤S102:三维压力检测模块120检测与被测对象施加于脉搏波信号检测模块110上的三维压力对应的三维压力信号。
步骤S103:信号处理模块130根据脉搏波信号和三维压力信号,计算得到被测对象的血压。
在上述血压测量过程中,脉搏波信号检测模块110和三维压力检测模块120可以同步开启检测,并同步结束检测。采用三维压力检测模块120可以检测出用户施加于脉搏波信号检测模块110上的三维压力,从而提高血压检测结果的准确度。
作为一种可能的实施方式,上述脉搏波信号为采用光电容积脉搏波描计法测得的PPG信号。
具体的,如图10所示,脉搏波信号检测模块检测被测对象的脉搏波信号可以包括如下步骤,下面结合图2所示的脉搏波信号检测模块的结构示意图进行描述:
步骤S201:光发射单元210向被测对象发射光信号。
步骤S202:光接收单元220接收经被测对象反射的光信号,并转换为电信号输出。
步骤S203:信号调理模块230接收光接收单元220输出的电信号,并检测得到PPG信号。
需要说明的是,光发射单元的个数可以为一个,也可以为多个;当有多个光发射单元时,可以分别向被测对象发射不同波长的光信号;光发射单元也可以为将多个不同光源封装在一起构成的一个发光元件。另外,光接收单元的个数可以为一个,也可以为多个,并且可用于获得至少一个PPG信号。
如图11所示,上述信号处理模块根据脉搏波信号和三维压力信号,计算得到被测对象的血压具体可以包括如下步骤,下面结合图6所示的信号处理模块的结构示意 图进行描述:
步骤S301:脉搏波曲线生成模块610基于脉搏波信号生成脉搏波曲线,脉搏波曲线为脉搏波信号的幅值关于时间的变化曲线。
步骤S302:压力曲线生成模块620基于三维压力信号生成压力曲线,压力曲线为三维压力的绝对值关于时间的变化曲线。
上述脉搏波曲线和压力曲线可以是同时生成的;其中,脉搏波曲线的横轴可以表示为时间,纵轴可以表示为PPG信号的幅值;压力曲线的横轴可以表示为时间,纵轴可以表示为三维压力的绝对值。
步骤S303:血压计算模块630采用多项式、单高斯或双高斯算法对脉搏波信号的幅值与三维压力的绝对值之间的关系曲线进行拟合,并基于脉搏波信号的幅值与三维压力的绝对值之间的关系曲线和生成的血压计算模型,计算得到被测对象的血压。
作为一种可能的实施方式,血压计算模型可以通过对训练数据进行机器学习生成;训练数据包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
具体的,如图12所示,上述基于三维压力信号生成压力曲线可以包括如下步骤,下面结合图7所示的压力曲线生成模块的结构示意图进行描述:
步骤S401:压力分量获取模块710根据三维压力信号计算得到三维压力在三个正交方向上的压力分量的绝对值。
步骤S402:三维压力值拟合模块720根据三维压力在三个正交方向上的压力分量的绝对值对三维压力的绝对值进行拟合。
作为一种可能的实施方式,三维压力值拟合模块720根据三维压力在三个正交方向上的压力分量的绝对值对三维压力的绝对值进行拟合,具体采用如下公式:
Figure PCTCN2020127146-appb-000004
其中,P为三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为三维压力在三个正交方向上的压力分量的绝对值。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (21)

  1. 一种血压测量装置,用于测量被测对象的血压,其特征在于,包括:
    脉搏波信号检测模块,用于检测被测对象的脉搏波信号;
    三维压力检测模块,用于检测被测对象施加于所述脉搏波信号检测模块上的三维压力,并生成三维压力信号;以及
    信号处理模块,用于根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压。
  2. 根据权利要求1所述的血压测量装置,其特征在于,所述脉搏波信号为光电容积脉搏波信号。
  3. 根据权利要求1或2所述的血压测量装置,其特征在于,所述脉搏波信号检测模块包括:
    光发射单元,用于向被测对象发射光信号;
    光接收单元,用于接收经被测对象反射的光信号,并转换为电信号输出;以及
    信号调理模块,用于接收所述光接收单元输出的电信号,并检测得到所述光电容积脉搏波信号。
  4. 根据权利要求3所述的血压测量装置,其特征在于,所述光发射单元向被测对象发射光信号的发射角小于等于35°,所述光接收单元接收经被测对象反射的光信号的接收角小于等于35°。
  5. 根据权利要求3所述的血压测量装置,其特征在于,所述光发射单元或所述光接收单元的开窗长度为2mm,深度为4mm。
  6. 根据权利要求3所述的血压测量装置,其特征在于,所述光发射单元或所述光接收单元的上方放置有菲涅尔透镜。
  7. 根据权利要求3所述的血压测量装置,其特征在于,所述光发射单元与所述光接收单元之间的距离在2.5mm~5.5mm范围内。
  8. 根据权利要求1所述的血压测量装置,其特征在于,所述三维压力检测模块包括:臂梁和至少三个力传感器;所述至少三个力传感器中有至少两个力传感器放置于所述臂梁的不同侧面,至少一个力传感器放置于所述臂梁的下底面;
    所述脉搏波信号检测模块放置于所述臂梁的上底面。
  9. 根据权利要求8所述的血压测量装置,其特征在于,所述至少三个力传感器正交放置于所述臂梁的侧面和下底面。
  10. 根据权利要求1所述的血压测量装置,其特征在于,所述三维压力检测模块采用脉冲方式驱动。
  11. 根据权利要求1-10任一项所述的血压测量装置,其特征在于,所述信号处理模块进一步用于:
    基于所述脉搏波信号生成脉搏波曲线,所述脉搏波曲线为所述脉搏波信号的幅值关于时间的变化曲线;
    基于所述三维压力信号生成压力曲线,所述压力曲线为所述三维压力的绝对值关于时间的变化曲线;
    采用多项式、单高斯或双高斯算法中的至少一种对所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线进行拟合;以及
    基于所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线和生成的血压计算模型,计算得到被测对象的血压。
  12. 根据权利要求11所述的血压测量装置,其特征在于,所述信号处理模块进一步用于:
    根据所述三维压力信号检测得到所述三维压力在三个正交方向上的压力分量的绝对值;以及
    根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟合。
  13. 根据权利要求12所述的血压测量装置,其特征在于,所述信号处理模块采用如下公式对所述三维压力的绝对值进行拟合:
    Figure PCTCN2020127146-appb-100001
    其中,P为所述三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为所述三维压力在三个正交方向上的压力分量的绝对值。
  14. 根据权利要求11所述的血压测量装置,其特征在于,所述血压计算模型通过对训练数据进行机器学习生成;
    所述训练数据包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
  15. 一种血压测量方法,应用于血压测量装置,其特征在于,包括:
    脉搏波信号检测模块检测被测对象的脉搏波信号;
    三维压力检测模块检测与被测对象施加于所述脉搏波信号检测模块上的三维压力对应的三维压力信号;以及
    信号处理模块根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压。
  16. 根据权利要求15所述的血压测量方法,其特征在于,所述脉搏波信号为光电容积脉搏波信号。
  17. 根据权利要求16所述的血压测量方法,其特征在于,所述脉搏波信号检测模块检测被测对象的脉搏波信号,进一步包括:
    光发射单元向被测对象发射光信号;
    光接收单元接收经被测对象反射的光信号,并转换为电信号输出;以及
    信号调理模块接收所述光接收单元输出的电信号,并检测得到所述光电容积脉搏波信号。
  18. 根据权利要求15-17任一项所述的血压测量方法,其特征在于,所述信号处理模块根据所述脉搏波信号和所述三维压力信号,计算得到被测对象的血压,进一步包括:
    基于所述脉搏波信号生成脉搏波曲线,所述脉搏波曲线为所述脉搏波信号的幅值关于时间的变化曲线;
    基于所述三维压力信号生成压力曲线,所述压力曲线为所述三维压力的绝对值关于时间的变化曲线;
    采用多项式、单高斯或双高斯算法中的至少一种对所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线进行拟合;以及
    基于所述脉搏波信号的幅值与所述三维压力的绝对值之间的关系曲线和生成的血压计算模型,计算得到被测对象的血压。
  19. 根据权利要求18所述的血压测量方法,其特征在于,所述基于所述三维压力信号生成压力曲线,进一步包括:
    根据所述三维压力信号检测得到所述三维压力在三个正交方向上的压力分量的绝对值;以及
    根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟合。
  20. 根据权利要求19所述的血压测量方法,其特征在于,所述根据所述三维压力在三个正交方向上的压力分量的绝对值对所述三维压力的绝对值进行拟 合,采用如下公式:
    Figure PCTCN2020127146-appb-100002
    其中,P为所述三维压力的绝对值,k为线性系数,b为修正值,A、B、C分别为所述三维压力在三个正交方向上的压力分量的绝对值。
  21. 根据权利要求18所述的血压测量方法,其特征在于,所述血压计算模型通过对训练数据进行机器学习生成;
    所述训练数据包括脉搏波曲线数据、压力曲线数据以及与脉搏波曲线数据和压力曲线数据对应的血压数据。
PCT/CN2020/127146 2020-11-06 2020-11-06 血压测量装置及血压测量方法 WO2022094931A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127146 WO2022094931A1 (zh) 2020-11-06 2020-11-06 血压测量装置及血压测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127146 WO2022094931A1 (zh) 2020-11-06 2020-11-06 血压测量装置及血压测量方法

Publications (1)

Publication Number Publication Date
WO2022094931A1 true WO2022094931A1 (zh) 2022-05-12

Family

ID=81456895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127146 WO2022094931A1 (zh) 2020-11-06 2020-11-06 血压测量装置及血压测量方法

Country Status (1)

Country Link
WO (1) WO2022094931A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095092A1 (en) * 2000-12-06 2002-07-18 Kabushiki Gaisya K-And-S Pulse wave measuring apparatus and pulse wave measuring method
CN105054952A (zh) * 2015-07-28 2015-11-18 芜湖科创生产力促进中心有限责任公司 拳击运动靶体上作用力测量装置
CN204971217U (zh) * 2015-07-28 2016-01-20 安徽工程大学 基于三维压力检测的可穿戴健康监测设备
CN107019503A (zh) * 2015-10-02 2017-08-08 三星电子株式会社 血压测量装置、以及使用光源选择过程的血压测量装置
CN207622917U (zh) * 2017-12-27 2018-07-17 哈工大机器人(合肥)国际创新研究院 一种医用的多维度压力检测装置
CN109793507A (zh) * 2019-03-06 2019-05-24 桂林电子科技大学 一种基于手指压力示波法的无袖套血压测量装置及测量方法
CN111166312A (zh) * 2018-11-12 2020-05-19 三星电子株式会社 血压测量设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095092A1 (en) * 2000-12-06 2002-07-18 Kabushiki Gaisya K-And-S Pulse wave measuring apparatus and pulse wave measuring method
CN105054952A (zh) * 2015-07-28 2015-11-18 芜湖科创生产力促进中心有限责任公司 拳击运动靶体上作用力测量装置
CN204971217U (zh) * 2015-07-28 2016-01-20 安徽工程大学 基于三维压力检测的可穿戴健康监测设备
CN107019503A (zh) * 2015-10-02 2017-08-08 三星电子株式会社 血压测量装置、以及使用光源选择过程的血压测量装置
CN207622917U (zh) * 2017-12-27 2018-07-17 哈工大机器人(合肥)国际创新研究院 一种医用的多维度压力检测装置
CN111166312A (zh) * 2018-11-12 2020-05-19 三星电子株式会社 血压测量设备
CN109793507A (zh) * 2019-03-06 2019-05-24 桂林电子科技大学 一种基于手指压力示波法的无袖套血压测量装置及测量方法

Similar Documents

Publication Publication Date Title
CN112190245A (zh) 血压测量装置及血压测量方法
US10383576B2 (en) Synthetic aperture photoplethysmography sensor
CN103637787B (zh) 血压实时测量装置以及实时测量脉搏波传输时间差的方法
CN107981852B (zh) 心率检测方法及可穿戴设备
WO2022121192A1 (zh) 血压检测装置、方法和电子设备
RU2015138778A (ru) Сбор персональных данных о состоянии здоровья
WO2017008420A1 (zh) 触摸压力检测装置和方法
CN103637788B (zh) 血压实时测量装置
CN112806972B (zh) Ppg测量电路和方法、可穿戴电子设备
KR20100083288A (ko) 동잡음 제거를 위한 광전용적맥파 계측용 센서모듈의 형태 및 방법
JP6339178B2 (ja) 血圧測定装置
EP4039181A1 (en) Biological feature information detection apparatus and electronic device
CN103637789B (zh) 血压实时测量装置
CN109009011B (zh) 一种非接触式脉搏测量设备
WO2022094931A1 (zh) 血压测量装置及血压测量方法
CN102247130A (zh) 一种压电血压传感器
CN113349743A (zh) 生物特征信息的测量方法、装置和电子设备
JP2017000415A (ja) 情報取得装置および情報取得方法
US20210236013A1 (en) Improved personal health data collection
JP2001275998A (ja) 血圧測定方法および血圧測定装置
US20200029839A1 (en) Smart personal portable blood pressure measuring system and method for calibrating blood pressure measurement using the same
CN218684365U (zh) 一种生理特征测量的可穿戴设备
CN214127218U (zh) 一种带有非损伤式生理数据检测功能的头盔装置
CN210493476U (zh) 一种具有心率呼吸检测的婴儿床垫
CN109770854B (zh) 基于光纤传感的人体体征信息监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960392

Country of ref document: EP

Kind code of ref document: A1