WO2017000233A1 - 传输导频序列的方法和装置 - Google Patents

传输导频序列的方法和装置 Download PDF

Info

Publication number
WO2017000233A1
WO2017000233A1 PCT/CN2015/082851 CN2015082851W WO2017000233A1 WO 2017000233 A1 WO2017000233 A1 WO 2017000233A1 CN 2015082851 W CN2015082851 W CN 2015082851W WO 2017000233 A1 WO2017000233 A1 WO 2017000233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot sequence
pilot
ofdm symbol
transmission resource
unlicensed transmission
Prior art date
Application number
PCT/CN2015/082851
Other languages
English (en)
French (fr)
Inventor
吴艺群
陈雁
徐修强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22176632.2A priority Critical patent/EP4117247A1/en
Priority to EP15896764.6A priority patent/EP3297239B1/en
Priority to PCT/CN2015/082851 priority patent/WO2017000233A1/zh
Priority to CN202010449776.7A priority patent/CN111769927B/zh
Priority to CN201580080236.3A priority patent/CN107615726B/zh
Publication of WO2017000233A1 publication Critical patent/WO2017000233A1/zh
Priority to US15/847,470 priority patent/US10419182B2/en
Priority to US16/539,698 priority patent/US10972240B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition

Definitions

  • the present invention relates to the field of communications, and more particularly to a method and apparatus for transmitting pilot sequences in the field of communications.
  • the current communication system mainly supports voice communication and data communication.
  • a conventional base station supports a limited number of connections and is easy to implement.
  • the next-generation mobile communication system not only needs to support traditional voice communication and data communication, but also supports Machine to Machine (M2M) communication, or Machine Type Communication (referred to as Machine Type Communication, referred to as "Machine Type Communication”. MTC").
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • Grant Free uplink free grant
  • the Grant Free transmission system there are a large number of terminal devices, but at the same time, the number of terminal devices accessing the network is small, and the terminal devices can randomly select the unlicensed transmission resources to transmit data.
  • network devices need to detect each pilot to determine active terminal devices.
  • the uplink pilot sequence includes a Demodulation Reference Signal (DMRS) and a Sounding Reference Signal (Sounding Reference Signal).
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the DMRS is used for channel estimation, so that the uplink data is demodulated according to the result of the channel estimation, and the SRS is used for the measurement of the uplink channel quality and occupies the entire frequency band.
  • the network device is required to detect every possible DMRS.
  • the commonly used method of detecting DMRS is to receive The frequency domain signal is transformed into the time domain for windowed noise reduction processing, which requires an inverse fast Fourier transform (“IFFT”) and a fast Fourier transform (Fast Fourier Transform). , referred to as "FFT" for short operation, with high complexity.
  • IFFT inverse fast Fourier transform
  • FFT Fast Fourier transform
  • the embodiments of the present invention provide a method and apparatus for transmitting a pilot sequence to solve the problem of high complexity of pilot detection.
  • a method for transmitting a pilot sequence comprising: determining a first pilot sequence for indicating whether a terminal device is in an active state; determining a second pilot sequence for uplink data demodulation; Mapping the first pilot sequence to a first orthogonal frequency division multiplexing OFDM symbol of an unlicensed transmission resource; mapping the second pilot sequence to a second OFDM symbol of the unlicensed transmission resource; passing the first OFDM And the second OFDM symbol, the first pilot sequence and the second pilot sequence are transmitted.
  • the method further includes: determining a first pilot number; wherein the determining is used to indicate whether the terminal device is in an active state Determining, according to the first pilot number, the first pilot sequence; wherein determining the second pilot sequence for uplink data demodulation comprises: determining the second pilot according to the first pilot number sequence.
  • the determining the first pilot number includes: determining the first pilot number according to the identifier of the terminal device; or Determining the first pilot number according to the identifier of the unlicensed transmission resource and the identifier of the terminal device; or generating the first pilot number by using a random number generator.
  • the first pilot sequence is mapped to an unlicensed transmission resource
  • the first orthogonal frequency division multiplexing OFDM symbol comprises: mapping the first pilot sequence to a partial subband of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the fifth possible implementation in the first aspect In the current mode, the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and the elements of the first pilot subsequence are all zero elements, and the elements of the second pilot subsequence are non- Zero element.
  • the first pilot sequence is mapped to The first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource includes: mapping the non-zero element included in the first pilot sequence to the first subband of the first OFDM symbol of the unlicensed transmission resource, where A subband includes M resource elements RE, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes, which are positive integers and are exponential powers of two.
  • the first sub-band includes an RE that is M consecutive REs.
  • the first Mapping the frequency sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource comprising: repeatedly mapping the first pilot sequence to different first OFDM symbols of the unlicensed transmission resource; and/or The first pilot sequence is repeatedly mapped to different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • the first pilot sequence There is a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • the mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes And mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to the same second OFDM symbol of the unlicensed transmission resource.
  • the second pilot sequence is mapped to the second OFDM symbol of the unlicensed transmission resource
  • the method includes: mapping each of the plurality of sub-sequences included in the second pilot sequence to a same second OFDM symbol of the unlicensed transmission resource.
  • the second pilot sequence is mapped to the second OFDM of the unlicensed transmission resource
  • the symbol includes: mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to different sub-bands of the same second OFDM symbol of the unlicensed transmission resource.
  • the mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes And mapping each of the plurality of sub-sequences included in the second pilot sequence to different second OFDM symbols of the unlicensed transmission resource.
  • the second pilot sequence is mapped to the second OFDM symbol of the unlicensed transmission resource
  • the method includes: mapping each of the plurality of sub-sequences included in the second pilot sequence to an entire frequency band of different second OFDM symbols of the unlicensed transmission resource, and the second OFDM symbol and the first OFDM The symbols are different.
  • the second pilot sequence is The cyclic shift value is generated, wherein each of the plurality of cyclic shift values is in one-to-one correspondence with each of the plurality of sub-sequences.
  • the Mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes repeatedly mapping the second pilot sequence to different second OFDM symbols of the unlicensed transmission resource.
  • the determining is used for The first pilot sequence indicating whether the terminal device is in an active state includes: selecting the first pilot sequence in the first pilot sequence set.
  • the determining is used for A second pilot sequence for uplink data demodulation, comprising:
  • the second pilot sequence is selected in the second set of pilot sequences.
  • the unauthorized transmission A resource is a transmission resource in which time and frequency are combined, or a transmission resource in which time, frequency, and code domain are combined.
  • the method is applied In the field of terminal-to-terminal D2D communication, machine-to-machine M2M communication field or machine type communication field.
  • a second aspect provides a method for transmitting a signal, the method comprising: detecting, on a first orthogonal frequency division multiplexing OFDM symbol of an unlicensed transmission resource, a first pilot sequence transmitted by a terminal device, the first pilot The sequence is used to indicate whether the terminal device is in an active state; detecting, on the second OFDM symbol of the unlicensed transmission resource, a second pilot sequence corresponding to the first pilot sequence sent by the terminal device, the second pilot The sequence is used for uplink data demodulation; uplink data demodulation is performed according to the second pilot sequence.
  • the detecting, by the terminal device, the first pilot sequence that is sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource includes: The first pilot sequence is detected on a portion of the sub-band of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, where The elements of a pilot subsequence are all zero elements, and the elements of the second pilot subsequence are non-zero elements.
  • the first positive of the unlicensed transmission resource Detecting the first pilot sequence sent by the terminal device on the OFDM symbol comprising: detecting the first pilot sequence on the first subband of the first OFDM symbol of the unlicensed transmission resource, the first sub The band includes M resource elements RE, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes, which are positive integers and are exponential powers of two.
  • the first sub-band includes an RE that is M consecutive REs.
  • the first pilot sequence There is a one-to-one correspondence with the second pilot sequence.
  • the seventh possible implementation in the second aspect In the present mode, the second pilot sequence is a subsequence combination formed by a plurality of subsequences.
  • the at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are mapped to the A subsequence of the same second OFDM symbol that authorizes the transmission resource.
  • the sub-sequence included in the second pilot sequence is mapped to the A subsequence of the same second OFDM symbol of the transmission resource.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are respectively mapped to the A subsequence of different subbands of the same second OFDM symbol of the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is mapped to the A subsequence of different second OFDM symbols of the unlicensed transmission resource.
  • the second sequence of the plurality of sub-sequences included in the second pilot sequence is separately mapped to The sub-sequence of the entire frequency band of the different second OFDM symbols of the unlicensed transmission resource, and the second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is The cyclic shift value represents, wherein each of the plurality of cyclic shift values corresponds to one-to-one of each of the plurality of sub-sequences.
  • the unlicensed transmission A resource is a transmission resource in which time and frequency are combined, or a transmission resource in which time, frequency, and code domain are combined.
  • the method is applied to Terminal-to-terminal D2D communication field, machine-to-machine M2M communication field or machine type communication field.
  • a third aspect provides an apparatus for transmitting a pilot sequence, the apparatus comprising: a first determining module, configured to determine a first pilot sequence for indicating whether a terminal device is in an active state; a determining module, configured to determine a second pilot sequence for uplink data demodulation; a first mapping module, configured to map the first pilot sequence determined by the first determining module to the first positive of the unlicensed transmission resource And a second mapping module, configured to map the second pilot sequence determined by the second determining module to the second OFDM symbol of the unlicensed transmission resource; and a sending module, configured to pass the first The first OFDM symbol mapped by a mapping module and the second OFDM symbol mapped by the second mapping module are sent by the first pilot sequence and the second pilot sequence.
  • the apparatus further includes a third determining module, configured to determine a first pilot number, where the first determining module is specifically configured to: The first pilot sequence determines the first pilot sequence; the second determining module is specifically configured to: determine the second pilot sequence according to the first pilot number.
  • the third determining module is specifically configured to: determine the first pilot number according to the identifier of the terminal device; or Determining the first pilot number according to the identifier of the unlicensed transmission resource and the identifier of the terminal device; or generating the first pilot number by using a random number generator.
  • the first mapping module is specifically configured to: the first pilot The sequence maps to a partial subband of the first OFDM symbol of the grant-free transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, where The elements of a pilot subsequence are all zero elements, and the elements of the second pilot subsequence are non-zero elements.
  • the first mapping module is specifically configured to: The non-zero element included in the first pilot sequence is mapped to a first sub-band of the first OFDM symbol of the unlicensed transmission resource, where the first sub-band includes M resource units RE, and the non-zero element mapping forms a non-zero
  • the symbol is an M-order Walsh code, which is a positive integer and is an exponential power of two.
  • the first sub-band includes an RE that is M consecutive REs.
  • the first mapping mode The block is specifically configured to: repeatedly map the first pilot sequence to different first OFDM symbols of the unlicensed transmission resource; and/or repeatedly map the first pilot sequence to the first of the unlicensed transmission resource Different subbands of OFDM symbols.
  • the first pilot sequence There is a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • the second mapping module is specifically configured to: the multiple sub-sequences included in the second pilot sequence At least two of the subsequences are mapped to the same second OFDM symbol of the unlicensed transmission resource.
  • the second mapping module is specifically configured to: include the multiple sub Each subsequence in the sequence maps to the same second OFDM symbol of the unlicensed transmission resource.
  • the second mapping module is specifically configured to: include the multiple sub At least two subsequences in the sequence are respectively mapped to different subbands of the same second OFDM symbol of the unlicensed transmission resource.
  • the second mapping module is specifically configured to: the multiple sub-sequences included in the second pilot sequence Each of the subsequences is mapped to a different second OFDM symbol of the unlicensed transmission resource.
  • the second mapping module is specifically configured to: include the multiple sub Each subsequence in the sequence is mapped to an entire frequency band of a different second OFDM symbol of the unlicensed transmission resource, respectively, and the second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is The cyclic shift value is generated, wherein each of the plurality of cyclic shift values is in one-to-one correspondence with each of the plurality of sub-sequences.
  • the second mapping The module is specifically configured to: repeatedly map the second pilot sequence to different second OFDM symbols of the unlicensed transmission resource.
  • the unauthorized transmission A resource is a transmission resource in which time and frequency are combined, or a transmission resource in which time, frequency, and code domain are combined.
  • the first The determining module is specifically configured to: select the first pilot sequence in the first pilot sequence set.
  • the second The determining module is specifically configured to: select the second pilot sequence in the second set of pilot sequences.
  • the device application In the field of terminal-to-terminal D2D communication, machine-to-machine M2M communication field or machine type communication field.
  • the device For terminal equipment.
  • a fourth aspect provides an apparatus for transmitting a pilot sequence, the apparatus comprising: a first detecting module, configured to detect, by using a first orthogonal frequency division multiplexing OFDM symbol of an unlicensed transmission resource, a first transmission by a terminal device a pilot sequence, the first pilot sequence is configured to indicate whether the terminal device is in an active state, and the second detecting module is configured to detect, on the second OFDM symbol of the unlicensed transmission resource, the first a second pilot sequence corresponding to the first pilot sequence detected by the detecting module, where the second pilot sequence is used for uplink data demodulation; and a processing module, configured to detect the second pilot sequence according to the second detecting module Perform uplink data demodulation.
  • the first detecting module is configured to: detect the first pilot on a partial subband of the first OFDM symbol of the unlicensed transmission resource sequence.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, where The elements of a pilot subsequence are all zero elements, and the elements of the second pilot subsequence are non-zero elements.
  • the first detecting module is specifically configured to: Detecting the first pilot sequence on a first sub-band of the first OFDM symbol of the unlicensed transmission resource, where the first sub-band includes M resource units RE, and the non-zero symbol formed by the non-zero element mapping is M-order Walsh Code, the M is a positive integer and is an exponential power of 2.
  • the first sub-band includes an RE that is M consecutive REs.
  • the first pilot sequence There is a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are mapped to the A subsequence of the same second OFDM symbol that authorizes the transmission resource.
  • the sub-sequence included in the second pilot sequence is mapped to the A subsequence of the same second OFDM symbol of the transmission resource.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are respectively mapped to the A subsequence of different subbands of the same second OFDM symbol of the unlicensed transmission resource.
  • each of the multiple sub-sequences included in the second pilot sequence is mapped to the A subsequence of different second OFDM symbols of the unlicensed transmission resource.
  • the second pilot sequence includes each of the multiple subsequences as a separate A subsequence of the entire frequency band of the different second OFDM symbols mapped to the unlicensed transmission resource, and the second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is The cyclic shift value represents, wherein each of the plurality of cyclic shift values corresponds to one-to-one of each of the plurality of sub-sequences.
  • the unauthorized transmission A resource is a transmission resource in which time and frequency are combined, or a transmission resource in which time, frequency, and code domain are combined.
  • the method is applied to Terminal-to-terminal D2D communication field, machine-to-machine M2M communication field or machine type communication field.
  • the device is a network device.
  • the terminal device determines a first pilot sequence for indicating whether the terminal device is in an active state, and determines a second guide for uplink data demodulation. a frequency sequence, and mapping the first pilot sequence and the second pilot sequence to a first OFDM symbol and a second OFDM symbol of an unlicensed transmission resource, respectively, and then passing the first OFDM symbol and the second OFDM symbol, Transmitting the first pilot sequence and the second pilot sequence, so that the network device can determine the activity of the terminal device by detecting the first pilot sequence, and thus can only be used for the terminal device in the active state.
  • the two pilot sequences are detected without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a method of transmitting a pilot sequence in accordance with an embodiment of the present invention.
  • FIG. 3 is another schematic block diagram of a method of transmitting a pilot sequence in accordance with an embodiment of the present invention.
  • 4A to 4C are respectively schematic diagrams showing distribution of a first pilot sequence on a time-frequency resource according to an embodiment of the present invention.
  • 5A to 5F are respectively schematic diagrams showing distribution of a second pilot sequence on a time-frequency resource according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a method of transmitting a pilot sequence according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a pilot sequence in accordance with an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of an apparatus for transmitting a pilot sequence according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting a pilot sequence in accordance with another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an apparatus for transmitting a pilot sequence according to still another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an apparatus for transmitting a pilot sequence in accordance with still another embodiment of the present invention.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • a traditional base station supports a limited number of connections and is easy to implement.
  • the next-generation mobile communication system will support not only traditional voice communication and data communication, but also machine-to-machine (M2M) communication, or Machine Type Communication (MTC). "). According to forecasts, by 2020, the number of MTC devices connected to the network will reach 500 to 100 billion, which will far exceed the current number of connections.
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • a large number of connections require more resources to access the terminal equipment and more resources are needed for the transmission of scheduling signaling related to the data transmission of the terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system to which an embodiment of the present invention is applied.
  • the network 100 includes a network device 102 and terminal devices 104, 106, 108, 110, 112, and 114 (referred to as UEs in the figure), wherein the network device and the terminal device are connected through a wireless connection or a wired connection or Other ways to connect.
  • FIG. 1 only illustrates a network including a network device as an example, but the embodiment of the present invention is not limited thereto.
  • the network may further include more network devices; similarly, the network may also include more terminals.
  • the device, and the network device may also include other devices.
  • the network of the embodiment of the present invention may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or an M2M network or other network.
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • M2M Mobility Management Entity
  • the terminal device in the embodiment of the present invention may also be referred to as a user equipment (User Equipment, referred to as "UE"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA"), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved PLMN network. Terminal equipment, etc.
  • SSIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • the network device in the embodiment of the present invention may be a device for communicating with the terminal device, and the network device may be a base station (Base Transceiver Station in GSM or Code Division Multiple Access (CDMA)).
  • BTS Base Transceiver Station in GSM or Code Division Multiple Access
  • BTS can also be A base station (NodeB, abbreviated as "NB") in a Wideband Code Division Multiple Access (WCDMA) system, or a Long Term Evolution (LTE) system.
  • NB Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the evolved base station (Evolutional Node B, referred to as “eNB” or “eNodeB”), or the wireless controller in the cloud radio access network (CRAN) scenario, or the network
  • the device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • Unauthorized transmission of English can be expressed as Grant Free.
  • the unlicensed transmission here can be for uplink data transmission.
  • An unauthorized transfer can be understood as any one of the following meanings, or multiple meanings, or a combination of some of the various technical meanings or other similar meanings:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected transmission.
  • the resource sends uplink data; the network device detects uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected one is used.
  • the transmission resource sends uplink data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when there is an uplink data transmission requirement, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may be a method for realizing uplink data transmission of the terminal device without dynamic scheduling of the network device.
  • the dynamic scheduling may refer to the network device indicating the transmission resource by signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be one or more transmission time units of transmission resources after the time when the UE receives the signaling.
  • a transmission time unit can refer to the minimum time unit of one transmission, such as TTI (Transmission Time Interval), number The value can be 1 ms or it can be a preset transmission time unit.
  • Unauthorized transmission can mean that the terminal device performs uplink data transmission without requiring authorization of the network device.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device. After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unlicensed transmission may refer to: a contention transmission mode, which may specifically mean that multiple terminals simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without the base station performing authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources:
  • time domain resources such as radio frames, subframes, symbols, etc.
  • - frequency domain resources such as subcarriers, resource blocks, etc.
  • - airspace resources such as transmit antennas, beams, etc.
  • SCMA Sparse Code Multiple Access
  • LDS Low Density Signature
  • the above transmission resources may be transmitted according to a control mechanism including, but not limited to, the following:
  • uplink power control such as uplink transmit power upper limit control, etc.
  • Modulation coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • a Contention Transmission Unit may be a basic transmission resource for unauthorized transmission.
  • a CTU may refer to a transmission resource combining time, frequency, and code domain, or may refer to a transmission resource combining time, frequency, and pilot, or may refer to a transmission resource combining time, frequency, code domain, and pilot.
  • the access area of the CTU may refer to a time-frequency area for unlicensed transmission, and may further refer to a time-frequency area corresponding to the CTU.
  • Patent No. PCT/CN2014/073084 the patent application entitled “System and Method for Uplink Grant-free Transmission Scheme” gives an uplink license-free transmission Technical solutions.
  • the PCT/CN2014/073084 application describes that radio resources can be divided into various CTUs, and the UE is mapped to a certain CTU.
  • Each CTU may be assigned a set of codes, and the assigned set of codes may be a set of CDMA codes, or may be an SCMA codebook set or an LDS sequence group or a signature group.
  • Each code can correspond to a set of pilots. The user can select a code and one of the pilot groups corresponding to the code for uplink transmission.
  • the content of the PCT/CN2014/073084 application is also to be understood as a part of the content of the embodiments of the present invention, and is not described again.
  • the method 200 includes:
  • S210 Determine a first pilot sequence that is used to indicate whether the terminal device is in an active state.
  • determining that the first pilot sequence used to indicate whether the terminal device is in an active state may be that the terminal device is from the first pilot sequence.
  • the first pilot sequence is selected in the set, or, optionally, the terminal device may determine the first pilot sequence according to a formula calculation or other manners;
  • determining a second pilot sequence for uplink data demodulation may be selecting a second pilot sequence from the second set of pilot sequences.
  • the terminal device may determine the second pilot sequence according to a formula calculation or other manners;
  • S250 Send the first pilot sequence and the second pilot sequence by using the first OFDM symbol and the second OFDM symbol.
  • the terminal device may select an unlicensed transmission resource during the unauthorized access process of the terminal device. For example, the terminal device may select a CTU.
  • the terminal device may determine the first pilot sequence and the second pilot sequence a column, wherein the first pilot sequence is used to indicate a status of the terminal device, for example, to indicate whether the terminal device is in an active state, and demodulation of the uplink data of the second pilot sequence is specifically understood to be used for a channel.
  • the terminal device may map the first pilot sequence and the second pilot sequence to the first OFDM symbol and the second of the unlicensed transmission resource, respectively And transmitting, by the first OFDM symbol and the second OFDM symbol, the first pilot sequence and the second pilot sequence.
  • the network device may detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active. Therefore, the network device can detect only the second pilot sequence corresponding to the first pilot sequence on the second OFDM symbol, that is, the network device can detect only the second pilot sequence of the active terminal device, and can Performing channel estimation according to the second pilot sequence and further demodulating the uplink data according to the channel estimation result, without requiring the network device to detect all possible second pilot sequences, thereby being capable of significantly reducing pilot detection The number reduces the complexity of pilot detection.
  • the method for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determining a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol
  • the frequency sequence and the second pilot sequence enable the network device to determine the activity of the terminal device by detecting the first pilot sequence, and thus can only perform the second pilot sequence of the terminal device in the active state. Detection without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • a pilot sequence may be simply referred to as a pilot or pilot signal, and may also be referred to as a reference signal (referred to as "RS"); correspondingly, the transmission A pilot sequence can also be understood as a transmission pilot or a transmission reference signal.
  • RS reference signal
  • the embodiment of the present invention is described by taking only a pilot sequence as an example, but the present invention is not limited thereto.
  • the first pilot sequence is used to indicate the state of the terminal device, that is, the state of the terminal device for indicating the transmission of the first pilot sequence, for example, to indicate whether the terminal device is in the In an active state, for example, whether the terminal device is in an active state or the like may be indicated by whether the terminal device sends the first pilot sequence; the first pilot sequence may be a Walsh code. It may also be another pilot sequence used by the network device to determine the active or active state of the terminal device, for example, the first pilot sequence is a ZC (Zadoff-Chu) sequence; and, for example, the first pilot sequence is state detection.
  • the reference signal Activity Detection Reference Signal, abbreviated as "ADRS” or the like, but the embodiment of the present invention is not limited thereto.
  • the second pilot sequence is used for demodulation of uplink data.
  • the second pilot sequence may be used by a network device to estimate a channel, thereby facilitating network device to the terminal.
  • the uplink data sent by the device is demodulated; the second pilot sequence is, for example, a DMRS.
  • the second pilot sequence may also be another pilot sequence used by the network device to demodulate the uplink data, which is not in the embodiment of the present invention. Limited to this.
  • the unlicensed transmission resource may represent a time-frequency resource used for transmitting data in an unlicensed transmission, or the unlicensed transmission resource may also represent a time, a frequency, and a code domain phase in the unlicensed transmission.
  • the combined transmission resource, or other transmission resources, for example, the unlicensed transmission resource is a CTU access area (Access Region). It should be understood that the embodiment of the present invention is only described by taking the CTU access area as an example, but the present invention is not limited thereto.
  • the first OFDM symbol is an OFDM symbol used for transmitting the first pilot sequence in the unlicensed transmission resource, and thus the first OFDM symbol may also be referred to as a first pilot.
  • a symbol, wherein an unlicensed transmission resource may include one or more first OFDM symbols.
  • the second OFDM symbol is an OFDM symbol used for transmitting the second pilot sequence in the unlicensed transmission resource, and thus the second OFDM symbol may also be referred to as a second pilot symbol, where an unlicensed transmission resource may include One or more second OFDM symbols.
  • the first OFDM symbol and the second OFDM symbol may be identical or different, and may also have partially identical OFDM symbols. For example, the same OFDM symbol that the first OFDM symbol and the second OFDM symbol have may be used for Transmitting the first pilot sequence can in turn be used to transmit the second pilot sequence.
  • the method 200 further includes:
  • the determining, by the determining, the first pilot sequence that indicates whether the terminal device is in an active state includes:
  • the determining the second pilot sequence for uplink data demodulation includes:
  • the terminal device may select an unlicensed transmission resource. For example, the terminal device may select a CTU access region.
  • the terminal device may determine the first pilot number, and thereby may determine the first pilot sequence according to the first pilot number, and determine the second pilot sequence according to the first pilot number, That is, the first pilot sequence has a corresponding relationship with the second pilot sequence.
  • the terminal device may map the first pilot sequence and the second pilot sequence to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, respectively, and pass the first OFDM symbol and the second OFDM a symbol, transmitting the first pilot sequence and the second pilot sequence.
  • the method for transmitting a pilot sequence in the embodiment of the present invention determines a first pilot number by a terminal device, determines a first pilot sequence and a second pilot sequence according to the first pilot number, and determines the first pilot
  • the frequency sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and then the first pilot sequence and the first OFDM symbol are transmitted through the first OFDM symbol and the second OFDM symbol a second pilot sequence, so that the network device can determine the activity of the terminal device by detecting the first pilot sequence, and thus can detect only the second pilot sequence corresponding to the first pilot sequence, and It is not necessary to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the terminal device may select a first pilot sequence in the first set of pilot sequences, or the terminal device may select a second pilot sequence in the second set of pilot sequences; for example, the terminal device may be in the first Selecting a first pilot sequence in the set of pilot sequences and thereby determining a second pilot sequence corresponding to the first pilot sequence; and, for example, the terminal device may be in the first pilot sequence and the second pilot sequence a first pilot sequence and a corresponding second pilot sequence are determined in the correspondence table; and, for example, the terminal device may determine the first pilot sequence according to the formula, and according to the first pilot sequence and the second pilot sequence Corresponding relationship determines a corresponding second pilot sequence.
  • the terminal device may determine a first pilot sequence for indicating whether the terminal device is in an active state; and may correspond to the second pilot sequence according to the first pilot sequence. a second pilot sequence for demodulating the uplink data; the terminal device may map the first pilot sequence and the second pilot sequence to the first OFDM symbol of the unlicensed transmission resource, respectively And transmitting, by the first OFDM symbol and the second OFDM symbol, the first pilot sequence and the second pilot sequence.
  • the terminal device determines the first pilot number. Specifically, for example, the terminal device may determine a pilot number by calculating, selecting (eg, randomly selecting), looking up the table, and according to system configuration parameters.
  • determining the first pilot number includes:
  • the first pilot number is generated by a random number generator.
  • the terminal device may determine the first pilot number according to the identifier of the terminal device. For example, the terminal device may modulo the ID of the terminal device to the total number of the terminal devices or the total number of the first pilot sequences, and add a value of 1 as the first pilot number, or perform other according to the ID of the terminal device. The calculated value is used as the first pilot number.
  • the identifier of the terminal device may be a user identifier in the cell, for example, a Cell-Radio Network Tempory Identity (C-RNTI), and the identifier of the terminal device may also be a global user identifier. For example, International Mobile Subscriber Identification Number (IMSI), Temporary Mobile Subscriber Identity (TMSI), and the like.
  • IMSI International Mobile Subscriber Identification Number
  • TMSI Temporary Mobile Subscriber Identity
  • the embodiment of the present invention is only described by taking C-RNTI, IMSI, and TMSI as an example, but the present invention is not limited thereto, and the terminal device identifier for determining the first pilot number may also adopt other user identifiers;
  • the present invention does not limit the specific method for determining the first pilot number by the terminal device identifier.
  • the terminal device may determine the first pilot number according to the correspondence between the terminal device identifier and the pilot number, and the terminal device identifier and the guide.
  • the correspondence of frequency numbers can be embodied in the form of tables, algorithms, formulas, and the like.
  • the terminal device may further determine the first pilot number according to the identifier of the unlicensed transmission resource and the identifier of the terminal device, that is, the same terminal device may have different when selecting different unlicensed transmission resources. First pilot number. It should also be understood that the embodiments of the present invention are only This is illustrated as an example, but the present invention is not limited thereto. For example, the terminal device may also jointly determine the first pilot number by referring to other factors. In another aspect, in the embodiment of the present invention, the terminal device may further generate the first pilot number by using a random number generator, but the invention is not limited thereto.
  • the first pilot number i can be determined by the following equation (1):
  • N ID represents the ID of the terminal device
  • N k represents the number of first pilot sequences for the kth unlicensed transmission resource.
  • the embodiment of the present invention is only described by taking the equation (1) as an example, but the present invention is not limited thereto.
  • the sum of the numerical value determined according to the above equation (1) and the determined natural number may be used as the The first pilot number, or the difference between the value determined according to the above equation (1) and the determined natural number, is used as the first pilot number.
  • the terminal device determines the first pilot sequence according to the first pilot number.
  • the terminal device may determine the first pilot sequence according to the correspondence between the first pilot number and the first pilot sequence, and the correspondence may have multiple representation forms. For example, a formula, a table, or the like, that is, the terminal device may perform an operation according to a formula to determine the first pilot sequence, and may also determine a first pilot sequence corresponding to the first pilot number by means of a table lookup. It should be understood that the embodiments of the present invention are merely described by way of example, but the invention is not limited thereto.
  • the terminal device may also determine, in the first pilot sequence set, a first pilot sequence corresponding to the first pilot number.
  • the number of pilot sequences included in the first pilot sequence set is preset; optionally, the first pilot sequence set includes a number of pilot sequences and is used in an unlicensed transmission resource.
  • the number of resource elements (Resource Element, referred to as "RE") of the transmission pilot sequence is the same.
  • the unlicensed transmission resource is a contention CTU access area
  • there are two OFDM symbols for transmitting the first pilot sequence and then each The OFDM symbols have Q resource unit REs, and for each CTU access region, the first pilot sequence set may include 2Q first pilot sequences. It should be understood that the first set of pilot sequences may also include more or fewer pilot sequences.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence since the first pilot sequence is used to indicate the activity of the terminal device, the first pilot sequence may be designed to have a shorter length, whereby the non-zero element may be mapped to the Partial subband of the authorized transmission resource, that is, the terminal device can be part of the frequency of one OFDM symbol Transmitting the first pilot sequence on the source without transmitting the first pilot sequence over the entire transmission bandwidth of one OFDM symbol, on the one hand, can significantly reduce pilot overhead, and on the other hand, the shorter first pilot The sequence also facilitates detection by the network device, thereby further reducing the complexity of pilot detection.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all-zero element.
  • the elements of the second pilot subsequence are non-zero elements.
  • the first pilot sequence can also be mapped to a portion of the subband of the unlicensed transmission resource, thereby significantly reducing pilot overhead.
  • the first pilot sequence in this embodiment has a longer length than the first pilot sequence in the previous embodiment, the first pilot subsequence is all zero elements and can be mapped to be free Authorizing the zero symbol on the transmission resource can also reduce the complexity of pilot detection.
  • the non-zero elements included in the first pilot sequence are mapped to the M resource units RE of the unlicensed transmission resource, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes.
  • the M is a positive integer and is an exponential power of two.
  • the M REs are consecutive M REs, so that orthogonality between pilot sequences can be further enhanced.
  • the embodiment of the present invention is only described by taking a Walsh code as an example, but the present invention is not limited thereto.
  • the first pilot sequence may also adopt a pseudo-noise sequence (Pseudo-Noise Sequence), which is also called a PN.
  • the sequence, or the first pilot sequence may also employ a ZC (Zadoff-Chu) sequence, an M sequence, or the like.
  • the terminal device mapped to the same sub-band can be distinguished by the cyclic shift value and the root number; if the first pilot sequence Using the M sequence, the terminal devices mapped to the same subband can be distinguished by the cyclic shift value, that is, the first pilot sequence of the terminal device mapped to the same subband corresponds to a different cyclic shift value.
  • the terminal device maps the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource.
  • the first OFDM symbol is an OFDM symbol used for transmitting the first pilot sequence in the unlicensed transmission resource, and thus the first OFDM symbol may also be referred to as a first pilot symbol.
  • an unlicensed transmission resource may include one or more first OFDM symbols.
  • the unlicensed transmission resource is, for example, a CTU access area, and the first OFDM symbol of one CTU access area may include two OFDM symbols; Further, for example, the first OFDM symbol of the CTU access region may include a third OFDM symbol and a tenth OFDM symbol of the CTU access region.
  • the number of OFDM symbols included in the first OFDM symbol of each of the unlicensed transmission resources may be the same or different.
  • the first OFDM symbol of one CTU access region may include only one OFDM symbol, or one CTU access region.
  • the first OFDM symbol may include three or more OFDM symbols or the like.
  • mapping the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource includes:
  • the first pilot sequence is mapped to a partial subband of the first OFDM symbol of the unlicensed transmission resource.
  • the terminal device may map the first pilot sequence to a partial subband of the third OFDM symbol without occupying the entire transmission bandwidth of the OFDM symbol, thereby being capable of significantly reducing the pilot. Overhead.
  • the embodiment of the present invention is only described by taking the first pilot sequence mapped to four REs as an example, but the present invention is not limited thereto.
  • the first pilot sequence may be mapped to two REs or eight. RE and so on.
  • the embodiment of the present invention is only described by taking a partial subband of the first pilot sequence mapped to one OFDM symbol as an example, but the present invention is not limited thereto.
  • the first pilot sequence may be mapped to two. Partial subbands of one or more OFDM symbols.
  • an element of the first pilot sequence mapped to a partial subband of the OFDM symbol may be a non-zero element; optionally, in the embodiment of the present invention, mapping to the OFDM symbol
  • the first pilot sequence on the partial subband may include a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence may be an all zero element, the second pilot subsequence
  • the elements can be non-zero elements. It should be understood, however, that in an embodiment of the invention, the first pilot subsequence formed by all zero elements are mapped to zero symbols, and the second pilot subsequence formed by non-zero elements are mapped to non-zero symbols.
  • the mapping the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource includes:
  • the non-zero element mapping is an M-order Walsh code, which is a positive integer and is an exponential power of two.
  • the RE included in the first sub-band is M consecutive REs. That is, in the embodiment of the present invention, the first pilot sequence is preferably mapped to consecutive REs of one subband, so that orthogonality between different first pilot sequences is better, thereby enabling further Improve the reliability of the system detection pilot.
  • N the number of first pilot sequences for the CTU access region
  • N the number of first pilot sequences for the CTU access region
  • the sequence of index m is determined as the first pilot sequence corresponding to the first pilot number i,
  • the corresponding first pilot sequence can be determined according to Equation (2) and Table 1; similarly, when the fourth-order length is 4 When the Walsh code is used as the first pilot sequence, the corresponding first pilot sequence may be determined according to Equation (2) and Table 2; when the eighth-order Walsh code of length 8 is used as the first pilot sequence, Equation (2) and Table 3 determine the corresponding first pilot sequence.
  • the embodiment of the present invention is only described by using Tables 1 to 3 as an example, but the present invention is not limited thereto.
  • the first pilot sequence may also adopt other lengths of Walsh codes, and the first pilot sequence may be used. Other sequences can also be employed.
  • the ith first pilot may be according to the following equations (3) to (5).
  • the sequence is mapped to the sth to tth subcarriers of the a-th ADRS pilot symbol of the CTU access region,
  • determining the reliability of the state of the terminal device is very important for the unlicensed transmission system. Therefore, the diversity technique can be combined to increase the reliability of transmitting the first pilot sequence.
  • mapping the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource includes:
  • the first pilot sequence is repeatedly mapped to different first OFDMs of the unlicensed transmission resource Symbol;
  • the first pilot sequence is repeatedly mapped to different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • the same first pilot sequence is transmitted on the third OFDM symbol and the tenth OFDM symbol, so that the same first pilot sequence can be transmitted on different first OFDM symbols (for example, M-order Walsh code), so that time domain diversity can be implemented; similarly, as shown in FIG. 4C, the same first pilot sequence (eg, M-order Walsh code) is transmitted on different sub-bands of the third OFDM symbol, Thereby frequency domain diversity can be achieved.
  • M-order Walsh code For example, M-order Walsh code
  • the detection reliability can be significantly increased by means of time-frequency diversity and frequency domain diversity, but the pilot overhead will also be increased.
  • the reliability of the detection can also be increased by spatial diversity.
  • the number of receiving antennas of the base station can be increased, so that the base station can separately detect signals received by the plurality of receiving antennas, thereby increasing the reliability of detection without increasing the pilot overhead.
  • the number of transmitting antennas of the terminal device may also be increased, that is, the terminal device separately transmits different first pilot sequences on different antennas, and the base station only needs to detect one of the first pilots. After the sequence, the corresponding terminal device can be considered to be in an active state. This mode can also increase the reliability of detection, but it is necessary to increase the pilot overhead.
  • different first pilot sequences may pass through three modes: time domain (OFDM symbol), frequency domain (subcarrier group or subband), and code domain (Walsh code, etc.). At least one way to distinguish.
  • the first pilot sequence can be mapped to the same or different subbands on different OFDM symbols to distinguish the first pilot sequence; similarly, the first pilot sequence can also be mapped to the same or different
  • the different subbands on the OFDM symbols can likewise distinguish the first pilot sequence.
  • multiple first pilot sequences are mapped to the same time-frequency resource, different first pilot sequences that need to be mapped to the same time-frequency resource are orthogonal to each other.
  • one first OFDM symbol includes multiple groups of resource units RE or multiple sub-bands, and each first pilot sequence is preferably mapped to a group of REs or one of the first OFDM symbols.
  • Bands, and different first pilot sequences located in the same group of REs or the same sub-band are orthogonal to each other. Further preferably, the different first pilot sequences are orthogonal to each other.
  • the method for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and maps the first pilot sequence to Deriving the first OFDM symbol of the resource, and transmitting the first pilot sequence by using the first OFDM symbol, so that the network device can determine the activity of the terminal device by detecting the first pilot sequence, and thereby Only the second pilot sequence of the active terminal device is detected without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the terminal device determines a second pilot sequence for uplink data demodulation. In particular, the terminal device determines a second pilot sequence corresponding to the first pilot sequence.
  • the terminal device may determine the second pilot sequence according to the correspondence between the first pilot sequence and the second pilot sequence, and the correspondence may have multiple representations, such as a formula.
  • the form of the table that is, the terminal device can perform the operation according to the formula to determine the second pilot sequence, and the second pilot sequence corresponding to the first pilot sequence can also be determined by looking up the table.
  • the terminal device determines a second guide for uplink data demodulation.
  • the frequency sequence may include the terminal device determining the second pilot sequence according to the first pilot number.
  • the terminal device determines the second pilot sequence according to the first pilot number.
  • the terminal device may determine the second pilot sequence according to the correspondence between the first pilot number and the second pilot sequence, and the correspondence may have multiple representation forms. For example, a formula, a table, or the like, that is, the terminal device may perform an operation according to a formula to determine the second pilot sequence, and may also determine a second pilot sequence corresponding to the first pilot number by means of a table lookup.
  • the embodiments of the present invention are merely described by way of example, but the invention is not limited thereto.
  • the terminal device may also determine, in the second set of pilot sequences, a second pilot sequence corresponding to the first pilot number.
  • the first pilot sequence is used to indicate the state of the terminal device
  • the second pilot sequence is used for demodulation of the uplink data, where the first pilot sequence and the second pilot sequence may have corresponding relationships.
  • the network device can detect only the second pilot sequence corresponding to the first pilot sequence without detecting all possible second pilot sequences. It can significantly reduce the number of pilot detection and reduce the complexity of pilot detection.
  • the correspondence between the first pilot sequence and the second pilot sequence may be a one-to-many correspondence, or a many-to-one correspondence, or a one-to-one correspondence.
  • a first pilot sequence may correspond to The plurality of second pilot sequences, or one first pilot sequence, may correspond to a set of second pilot sequences, and the set of second pilot sequences may include two or more second pilot sequences, ie, first
  • the correspondence between the pilot sequence and the second pilot sequence may be a one-to-many correspondence.
  • the number of first pilot sequences can be smaller than the number of second pilot sequences, so that the overhead of the first pilot sequence can be reduced.
  • the network device may reduce the detection precision of the first pilot sequence, and may also increase the network. The complexity of the device detecting the second pilot sequence.
  • the terminal device may first determine the first pilot number, and may determine the first pilot sequence and the second pilot sequence according to the first pilot number, where one first pilot sequence may correspond to multiple a second pilot sequence, for example, one pilot number may correspond to one first pilot sequence and may correspond to multiple second pilot sequences; or multiple pilot numbers may respectively correspond to multiple second pilot sequences, but at the same time
  • the network device may first detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active.
  • the network device can separately detect the plurality of second pilot sequences corresponding to the first pilot sequence. Since the network device only needs to detect the plurality of second pilot sequences corresponding to the first pilot sequence separately, without detecting all possible second pilot sequences, the pilot can be significantly reduced. Detect the number and reduce the complexity of pilot detection.
  • the multiple first pilot sequences may also correspond to one second pilot sequence, or the first pilot sequence may correspond to a second pilot sequence, the group A pilot sequence may include two or more first pilot sequences, that is, the correspondence between the first pilot sequence and the second pilot sequence may be a many-to-one correspondence.
  • the terminal device may first determine the first pilot number, and may determine the first pilot sequence and the second pilot sequence according to the first pilot number, where the multiple first pilot sequences may correspond to a second a pilot sequence, for example, one pilot number may correspond to multiple first pilot sequences, and may correspond to one second pilot sequence; or multiple pilot numbers may respectively correspond to multiple first pilot sequences, but corresponding to A second pilot sequence, that is, the same pilot number may correspond to different first pilot sequences, but corresponds to the same second pilot sequence.
  • the network device may first detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active.
  • the second pilot sequence corresponding to the first pilot sequence may be separately detected. Since the network device only needs to detect the second pilot sequence corresponding to the first pilot sequence separately, and does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections. And reduce the complexity of pilot detection.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • one pilot number may uniquely correspond to a first pilot sequence and may uniquely correspond to a second pilot sequence.
  • multiple pilot numbers may correspond to one first pilot sequence, and the first pilot sequence may uniquely correspond.
  • a second pilot sequence; or a plurality of pilot numbers may correspond to a second pilot sequence, and the second pilot sequence may uniquely correspond to a first pilot sequence.
  • the terminal device may first determine the first pilot number, and may determine the first pilot sequence according to the first pilot number, and determine a second pilot sequence that is in one-to-one correspondence with the first pilot sequence; Further, the terminal device may map the first pilot sequence and the second pilot sequence to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, respectively, and pass the first OFDM symbol and the second OFDM a symbol, transmitting the first pilot sequence and the second pilot sequence.
  • the network device may first detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active. a state, whereby the network device can detect a second pilot sequence uniquely corresponding to the first pilot sequence without detecting all possible second pilot sequences, thereby enabling significant reduction of pilots Detect the number and reduce the complexity of pilot detection.
  • the terminal device randomly selects a second pilot sequence for uplink data demodulation, and different terminal devices may select the same second pilot sequence to cause a pilot collision, and the network device considers that there is only one The terminal device uses the second pilot sequence so that it cannot be decoded correctly. Therefore, in order to reduce the pilot collision probability, a sufficient number of second pilot sequences are needed for the user to select.
  • the uplink DMRS is distinguished by different cyclic shift values in the same OFDM symbol, and each OFDM symbol can support up to 12 orthogonal pilots.
  • hundreds or thousands of pilots are needed, which requires an increase in the number of OFDM symbols for transmitting DMRS.
  • the method of simply increasing the number of OFDM symbols for transmitting DMRS is far from meeting the actual demand.
  • pilot sequences used for uplink data demodulation may be combined to form enough pilot sequences that can be distinguished from each other, thereby not only being able to satisfy a sufficiently low frequency.
  • the pilot collision probability can also greatly reduce the pilot overhead.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences. That is, in the embodiment of the present invention, the first pilot sequence and the subsequence combination formed by two or more subsequences may have a one-to-many correspondence, or a many-to-one correspondence, or one. A correspondence.
  • This subsequence is, for example, a DMRS.
  • each OFDM symbol can support up to S orthogonal pilot sequences
  • the pilot sequence supported by each OFDM symbol is used as one element in the subsequence combination, that is, the guide carried by each OFDM symbol pilot sequence as a sequence of sub-sequence combination, D for the OFDM symbols
  • the subsequence may combine to form S D having up to different combinations of sub-sequences, can be significantly increased thereby guiding the second frequency available in the system
  • the second pilot sequence is a different subsequence combinations.
  • each OFDM symbol used for transmitting a DMRS corresponds to K resource units RE, and for each OFDM symbol, different DMRSs may be cyclically shifted by different base sequences b(k)
  • the value c i is distinguished as shown in the following equation (6), wherein each cyclic shift value c i corresponds to one DMRS:
  • the DMRSs corresponding to different cyclic shift values are orthogonal to each other.
  • the second pilot sequence is generated by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is respectively associated with the plurality of subframes
  • Each subsequence in the sequence corresponds one-to-one.
  • the i-th second pilot sequence may consist of a combination of a cyclic shift values (c i, 1, ..., c i, d, ..., c i, D) , where, C i , d corresponds to the cyclic shift value of the subsequence on the dth OFDM symbol, d is a natural number, and D ⁇ d ⁇ 1.
  • the number of second pilot sequences is increased by forming a subsequence combination by using a plurality of subsequences as an example, but the present invention is not limited thereto, for example, by adding each A method such as the number of pilot sequences supported by the second OFDM symbol to satisfy a sufficiently low pilot collision probability.
  • a second pilot sequence by combining a plurality of sub-sequences, a sufficient number of pilot sequences that can be distinguished from each other can be formed, thereby not only satisfying a sufficiently low pilot collision probability requirement, It also greatly reduces the pilot overhead.
  • the terminal device maps the second pilot sequence to the second orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource.
  • the second OFDM symbol is an OFDM symbol used for transmitting the second pilot sequence in the unlicensed transmission resource, and thus the second OFDM symbol may also be referred to as a second pilot symbol.
  • an unlicensed transmission resource may include one or more second OFDM symbols.
  • the unlicensed transmission resource is, for example, a CTU access area, and the second OFDM symbol of one CTU access area may include three OFDM symbols; further, the second OFDM symbol of the CTU access area A second OFDM symbol, an eighth OFDM symbol, and a eleventh OFDM symbol of the CTU access region may be included.
  • the number of OFDM symbols included in the second OFDM symbol of each of the unlicensed transmission resources may be the same or different; and the OFDM symbols included in the first OFDM symbol and the second OFDM symbol may be The same, can also be different.
  • the second OFDM symbol of one CTU access region may also include only one OFDM symbol, or one CTU access region.
  • the second OFDM symbol may include two or more OFDM symbols or the like.
  • the multiple sub-sequences forming the sub-sequence combination may all be mapped to the same second OFDM symbol of the unlicensed transmission resource, or may be mapped to different second OFDM symbols of the unlicensed transmission resource, respectively.
  • the same second OFDM symbol is partially mapped to the unlicensed transmission resource, and the mapping of the second pilot sequence will be described in detail below with reference to FIGS. 5A to 5F.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to the same second OFDM symbol of the unlicensed transmission resource.
  • At least two sub-sequences may be mapped to the same second OFDM symbol of the unlicensed transmission resource.
  • both subsequence 1 and subsequence 2 are mapped to the fourth OFDM symbol of the unlicensed transmission resource, and both subsequence 1 and subsequence 2 are Maps to the entire frequency band of the OFDM symbol.
  • FIGS. 5A both subsequence 1 and subsequence 2 are Maps to the entire frequency band of the OFDM symbol.
  • both subsequence 1 and subsequence 2 are mapped to a fourth OFDM symbol of an unlicensed transmission resource, and subsequence 1 and subsequence 2 are mapped to different subbands of the OFDM symbol;
  • the second pilot sequence further includes a subsequence 3, which is mapped to an eleventh OFDM symbol of the unlicensed transmission resource, and the subsequence 3 is also mapped to a partial frequency band of the OFDM symbol;
  • the mapped partial bands or subbands are contiguous.
  • subsequence 1 and subsequence 2 are mapped to different subbands of the same OFDM symbol, but for each subsequence 1 or 2, the mapped partial bands or subbands are discontinuous.
  • At least two sub-sequences may be mapped to the same second OFDM symbol of the unlicensed transmission resource, that is, all the pilot sequences supported by one OFDM symbol may be further divided into multiple groups, in each group.
  • a pilot sequence can be selected as a subsequence of the subsequence combination.
  • each of the unlicensed transmission resources has two OFDM symbols for transmitting a second pilot sequence, such as a CTU access area, that is, each CTU connection.
  • the in-region includes two second OFDM symbols, and each second OFDM symbol can support 12 orthogonal pilot sequences, such as DMRS.
  • the second pilot sequence is a subsequence combination (A, B, C) formed by three subsequences A, B, and C, wherein the subsequence A may be in the six DMRSs supported by the first second OFDM symbol.
  • the subsequence B may be one of the other six DMRSs supported by the first second OFDM symbol
  • the subsequence C may be one of the 12 DMRSs supported by the second second OFDM symbol, ie, Of the three subsequences included in the second pilot sequence, subsequences A and B are mapped to the same second OFDM symbol of the unlicensed transmission resource, and subsequence C is mapped to another second OFDM symbol of the unlicensed transmission resource.
  • the frequency sequence is compared with the 144 different second pilot sequences in each CTU access region in the foregoing embodiment. In this embodiment, each CTU access region can support more second pilot sequences. This can further reduce the pilot overhead.
  • the foregoing embodiment is described by taking only two sub-sequences mapped to the same second OFDM symbol of the unlicensed transmission resource, but the present invention is not limited thereto, when more sub-sequences are mapped to the unlicensed transmission resource.
  • the same unlicensed transmission resource can support more second pilot sequences and can significantly reduce the pilot overhead.
  • the second pilot sequence is a subsequence combination (A, B, D, C) formed by four subsequences A, B, C, D, wherein the subsequence A can be supported by the first second OFDM symbol.
  • the subsequence B may be one of the second group of 4 DMRSs supported by the first second OFDM symbol
  • the subsequence D may be supported by the first second OFDM symbol
  • the subsequence C is still one of the 12 DMRSs supported by the second second OFDM symbol.
  • each CTU access area can support a plurality of different second pilot sequences.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • the second pilot sequence includes only subsequence 1 and subsequence 2, both of which are mapped to the fourth OFDM symbol of the unlicensed transmission resource, thereby enabling the unlicensed transmission resource to support more A plurality of second pilot sequences are used to further save pilot overhead.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to different sub-bands of the same second OFDM symbol of the unlicensed transmission resource.
  • the subsequence 1 and the subsequence 2 included in the second pilot sequence are respectively mapped to different subbands of the fourth OFDM symbol of the unlicensed transmission resource, thereby saving the overhead of the system time-frequency resource. It is also possible to further save the pilot overhead of the system.
  • subsequences mapped to different subbands of the same second OFDM symbol may be the same or different.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • the second pilot sequence includes subsequence 1 and subsequence 2, wherein subsequence 1 is mapped to the fourth OFDM symbol of the unlicensed transmission resource, and subsequence 2 is mapped to the unlicensed transmission resource.
  • the eleventh OFDM symbol, and subsequence 1 is mapped to the entire frequency band of the fourth OFDM symbol, and subsequence 2 is mapped to the partial frequency band of the eleventh OFDM symbol.
  • subsequence 1 is mapped to the entire frequency band of the eighth OFDM symbol of the unlicensed transmission resource, and subsequence 2 is mapped to the entire frequency band of the eleventh OFDM symbol of the unlicensed transmission resource.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • the first pilot sequence is mapped to a partial frequency band of the third OFDM symbol of the unlicensed transmission resource; and the second pilot sequence includes the subsequence 1 and the subsequence 2, and the subsequence 1 is mapped to the The entire frequency band of the eighth OFDM symbol of the grant transmission resource is sub-sequence 2 mapped to the entire frequency band of the eleventh OFDM symbol of the unlicensed transmission resource.
  • the diversity technique may be combined to increase the reliability of transmitting the second pilot sequence.
  • mapping the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource includes:
  • the second pilot sequence is repeatedly mapped to a different second OFDM symbol of the unlicensed transmission resource.
  • the detection reliability can be significantly increased by time-frequency diversity or frequency domain diversity, but the pilot overhead will also be increased.
  • the reliability of the detection can also be increased by spatial diversity.
  • the number of receiving antennas of the base station can be increased, so that the base station can separately detect signals received by the plurality of receiving antennas, thereby increasing the reliability of detection without increasing the pilot overhead.
  • the number of transmitting antennas of the terminal device may also be increased, that is, the terminal devices respectively send on different antennas. Different first pilot sequences, and the base station can consider that the corresponding terminal device is active after detecting one of the first pilot sequences, and the manner can also increase the reliability of detection, but need to increase the pilot overhead.
  • different second pilot sequences may also pass at least one of three modes: time domain (OFDM symbol), frequency domain (subcarrier group or subband), and code domain. Ways to distinguish.
  • the second pilot sequence can be mapped onto different OFDM symbols to distinguish the second pilot sequence; similarly, the second pilot sequence can also be mapped onto different sub-bands of the OFDM symbol, as well The second pilot sequence can be distinguished.
  • different second pilot sequences that need to be mapped to the same time-frequency resource are orthogonal to each other.
  • the sub-sequences mapped on the second OFDM symbols are not completely the same, so that the network device can be configured to perform correct channel estimation for demodulation of the uplink data.
  • the second pilot sequence may be represented by a cyclic shift value combination (c i,1 , . . . , c i,d , . . . , c i,D ), where c i,d corresponds to a cyclic shift value of a subsequence on the dth OFDM symbol.
  • the first pilot sequence and the second pilot sequence are determined by using the first pilot number i as an example.
  • the unlicensed transmission resource is a CTU access area
  • the second OFDM symbol of one CTU access area may include two. OFDM symbols
  • each OFDM symbol can support up to 12 orthogonal DMRSs
  • each second pilot sequence is a subsequence combination formed by two subsequences, and each subsequence is mapped to a different one of the unlicensed transmission resources respectively
  • the pilot overhead of the first pilot sequence is proportional to N
  • the pilot overhead of the second pilot sequence is proportional to D.
  • D the pilot overhead of the first pilot sequence increases rapidly, and N ⁇ S D may occur.
  • N and the first pilot may be selected from the possible combinations of the S D subsequences.
  • the sequences correspond one-to-one.
  • DMRS sub-sequences
  • the principle of using ADRS in combination with DMRS will be exemplified below. It is assumed that the DMRS occupies 2 OFDM symbols and supports 144 different DMRSs.
  • the combination of the cyclic shift values corresponding to the two terminal devices of the pilot numbers 1 and 2 are (0, 1) and (0, 2), respectively. If the pilot corresponding to the cyclic shift value combination is separately detected in the case of an unknown terminal device state, the obtained result is not the correct channel estimation result. Only the terminal devices whose pilot numbers are 1 and 2 are active by the ADRS, and then the two terminal devices are determined to collide on the first OFDM symbol according to the corresponding cyclic shift value combination, and the second OFDM symbol can be used. Differentiated, therefore, channel estimation can only be performed using the DMRS on the second OFDM symbol.
  • a DMRS may be mapped to multiple second OFDM symbols and transmitted, and different DMRSs may map the same pilot sequence on the same second OFDM symbol, but map on each second OFDM symbol.
  • the DMRS is not all the same.
  • each second pilot sequence includes D sub-sequences, and a sub-sequence of the second pilot sequence is formed, for example.
  • the number of subcarriers per OFDM symbol is K
  • each subsequence can be determined by a different cyclic shift value c i of the base sequence b(k), as in equation (6) above.
  • the cyclic shift value c i,d of each subsequence forming the i-th second pilot sequence can be determined , for example, by the following equation (7):
  • the cyclic shift value c i, d of each subsequence forming the i-th second pilot sequence can be determined , for example, by the following equation (8):
  • the cyclic shift value c i,d of each subsequence forming the i-th second pilot sequence can be determined , for example, by the following equation (9) or (10):
  • the cyclic shift value c i,d of each subsequence forming the i-th second pilot sequence can be determined , for example, by the following equation (11) or (12):
  • cyclic shift values c i,d of the respective sub-sequences may be determined, for example, according to the above equations, or may be determined according to a table.
  • the cyclic shift values c i,d of the respective subsequences of the pilot sequence can be , for example, as shown in Table 5.
  • the embodiment of the present invention is only described by taking Tables 4 and 5 as an example, but the present invention is not limited thereto, and the cyclic shift value of each subsequence of the second pilot sequence may also be determined according to other corresponding tables. For example, a correspondence table of the first pilot number and the cyclic shift value, a correspondence table of the first pilot sequence and the cyclic shift value, and the like.
  • the terminal device transmits the first pilot sequence and the second pilot sequence by using the first OFDM symbol and the second OFDM symbol.
  • the terminal device may further generate data according to a predetermined modulation and coding scheme, and send the first pilot sequence, the second pilot sequence, and the data on the unlicensed transmission resource. It should also be understood that, in the embodiment of the present invention, optionally, the terminal device sends the first pilot sequence and the second pilot sequence to the network device by using the first OFDM symbol and the second OFDM symbol.
  • the determining, by the first pilot sequence, the terminal device is in an active state including:
  • the first pilot sequence is selected in a first set of pilot sequences.
  • determining the second pilot sequence for uplink data demodulation includes:
  • the second pilot sequence is selected in the second set of pilot sequences.
  • the unlicensed transmission resource is a transmission resource combining time and frequency, or a transmission resource combining time, frequency and code domain, or other foregoing in the introduction of the unlicensed transmission resource. Transfer resources.
  • the method is optionally applied to a terminal-to-terminal D2D communication field, a machine-to-machine M2M communication field, or a machine type communication field.
  • the network device is a base station
  • the terminal device is a user equipment
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determining a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol Frequency sequence and the second pilot sequence, making the network
  • the device can determine the activity of the terminal device by detecting the first pilot sequence, and thus can detect only the second pilot sequence of the terminal device in the active state, without using all possible second pilots. The sequence is detected, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the method for transmitting a pilot sequence in the embodiment of the present invention can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol can thereby significantly reduce the pilot collision probability, improve the accuracy of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby being able to significantly reduce
  • the small pilot overhead enables more time-frequency resources to be used for data transmission, that is, the amount of data transmission of the system can be significantly improved.
  • a method for transmitting a pilot sequence according to an embodiment of the present invention is described in detail from the perspective of a terminal device.
  • a transmission guide according to an embodiment of the present invention will be described from the perspective of a network device. The method of frequency sequence.
  • a method 300 of transmitting a pilot sequence in accordance with an embodiment of the present invention may be performed, for example, by a network device in an unlicensed transmission system, such as a base station.
  • the method 300 includes:
  • the first pilot sequence that is sent by the terminal device is detected on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, where the first pilot sequence is used to indicate whether the terminal device is in an active state.
  • the terminal device may select an unlicensed transmission resource during the unauthorized access process of the terminal device. For example, the terminal device may select a CTU access region.
  • the terminal device may determine the first pilot sequence and the first a second pilot sequence, where the first pilot sequence is used to indicate a status of the terminal device, for example, to indicate whether the terminal device is in an active state, and the second pilot sequence is used for channel estimation, thereby being used for uplink data.
  • the terminal device may map the first pilot sequence and the second pilot sequence to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, respectively, and then pass the first OFDM symbol and The second OFDM symbol transmits the first pilot sequence and the second pilot sequence.
  • the network device may detect the first pilot sequence on the first OFDM symbol of the unlicensed transmission resource; when the network device detects the first pilot sequence, the network device may determine to send the first pilot sequence.
  • the terminal device is in an active state, so that the network device can detect only the second pilot sequence corresponding to the first pilot sequence on the second OFDM symbol, that is, the network device can only detect the second guide of the active terminal device.
  • the method for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, to determine the terminal device according to the first pilot sequence. Whether it is in an active state, and detecting only the second pilot sequence corresponding to the detected first pilot sequence on the second OFDM symbol of the unlicensed transmission resource, that is, detecting only the second terminal device in the active state a pilot sequence, and performing uplink data demodulation according to the second pilot sequence, so that the network device does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing pilot detection. the complexity.
  • the first pilot sequence is used to indicate a state of the terminal device, for example, to indicate whether the terminal device is in an active state;
  • the first pilot sequence may be a Walsh code, or may be The other pilot sequence used by the network device to determine the active or active state of the terminal device, for example, the first pilot sequence is a ZC (Zadoff-Chu) sequence; and, for example, the first pilot sequence is a state detection reference signal ( The Activity Detection Reference Signal (abbreviated as "ADRS”) or the like, but the embodiment of the present invention is not limited thereto.
  • ADRS Activity Detection Reference Signal
  • the second pilot sequence is used for demodulation of uplink data.
  • the second pilot sequence may be used by a network device to estimate a channel, and the network device further Demodulating the uplink data sent by the terminal device according to the result of the channel estimation; the second pilot sequence is, for example, a DMRS.
  • the second pilot sequence may also be used for a network device.
  • the other pilot sequences of the uplink data are demodulated, and embodiments of the present invention are not limited thereto.
  • the unlicensed transmission resource may be used to indicate time-frequency resources for transmitting uplink data in the uplink unlicensed transmission, for example, the unlicensed transmission resource is a CTU access area or the like. It should be understood that the embodiment of the present invention is only described by taking the CTU access area as an example, but the present invention is not limited thereto.
  • the network device may detect the first pilot sequence on the first OFDM symbol of the unlicensed transmission resource to determine the activity of the terminal device, for example, determining whether the corresponding terminal device is in an active state;
  • the network device may determine that the terminal device that sends the first pilot sequence is in an active state, so that the network device may determine the first pilot number of the terminal device in the active state, or determine and Corresponding first pilot number of the first pilot sequence, further, the network device may determine, according to the determined first pilot number, a second pilot sequence corresponding to the first pilot number, and in the second OFDM
  • the second pilot sequence corresponding to the first pilot number is only detected on the symbol, that is, the network device can detect only the second pilot sequence of the active terminal device, and can perform channel according to the second pilot sequence.
  • the network device may determine whether the corresponding terminal device is in an active state based on whether the first pilot sequence is received or detected, for example, the network device may determine whether the signal strength is based on the received signal strength.
  • a first pilot sequence is detected to further determine if the corresponding terminal device is active. For example, suppose that the first pilot sequence selected by the terminal device is Wi, the corresponding channel is Hi, and the state variable Ii is set, wherein the state variable Ii takes a value of 1 or 0 to indicate whether the terminal device is active, and the received signal is received.
  • Y can be expressed as:
  • the network device can determine that the corresponding terminal device is in an active state; otherwise, the network device can determine that the corresponding terminal device is in an inactive state. Therefore, the network device can determine that it is in the presence of all the first pilot sequences.
  • the terminal device in an active state, whereby the network device can detect only the second pilot sequence of the terminal device in an active state, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the embodiment of the present invention is only described by taking the first pilot number as an example, but the present invention is not limited thereto.
  • the device may directly according to the correspondence between the first pilot sequence and the second pilot sequence.
  • the second pilot sequence to be detected is determined, and the corresponding relationship is described in detail below. For brevity, details are not described herein again.
  • the first pilot sequence sent by the terminal device is detected on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the first pilot sequence is detected on a portion of the sub-band of the first OFDM symbol of the unlicensed transmission resource.
  • the first OFDM symbol is an OFDM symbol used for transmitting the first pilot sequence in the unlicensed transmission resource, and thus the first OFDM symbol may also be referred to as a first OFDM symbol.
  • a pilot symbol, wherein an unlicensed transmission resource may include one or more first OFDM symbols.
  • the unlicensed transmission resource is, for example, a CTU access area, and the first OFDM symbol of one CTU access area may include two OFDM symbols; further, the first OFDM symbol of the CTU access area A third OFDM symbol and a tenth OFDM symbol of the CTU access region may be included.
  • the number of OFDM symbols included in the first OFDM symbol of each of the unlicensed transmission resources may be the same or different.
  • the first OFDM symbol of one CTU access region may include only one OFDM symbol, or one CTU access region.
  • the first OFDM symbol may include three or more OFDM symbols or the like.
  • the terminal device may map the first pilot sequence to a partial subband of the third OFDM symbol without occupying the entire transmission bandwidth of the OFDM symbol, thereby being able to significantly reduce the pilot overhead.
  • the network device needs to detect the first pilot sequence on a portion of the sub-band of the third OFDM symbol of the unlicensed transmission resource.
  • the embodiment of the present invention is only described by taking the first pilot sequence mapped to four REs as an example, but the present invention is not limited thereto.
  • the first pilot sequence may be mapped to two REs or eight. RE and so on.
  • the embodiment of the present invention maps only one OFDM with the first pilot sequence.
  • a partial subband of a symbol is described as an example, but the present invention is not limited thereto.
  • the first pilot sequence may be mapped to a partial subband of two or more OFDM symbols.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence since the first pilot sequence is used to indicate the activity of the terminal device, the first pilot sequence may be designed to have a shorter length, whereby the non-zero element may be mapped to the Authorizing a partial subband of the transmission resource, that is, the terminal device may transmit the first pilot sequence on a part of the frequency resources of one OFDM symbol without transmitting the first pilot sequence over the entire transmission bandwidth of one OFDM symbol.
  • the pilot overhead can be significantly reduced.
  • the shorter first pilot sequence also facilitates detection by the network device, thereby further reducing the complexity of pilot detection.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all-zero element.
  • the elements of the second pilot subsequence are non-zero elements.
  • the first pilot sequence can also be mapped to a portion of the subband of the unlicensed transmission resource, thereby significantly reducing pilot overhead.
  • the first pilot sequence in this embodiment has a longer length than the first pilot sequence in the previous embodiment, the first pilot subsequence is all zero elements and can be mapped to be free Authorizing the zero symbol on the transmission resource can also reduce the complexity of pilot detection. It should be understood, however, that in an embodiment of the invention, the first pilot subsequence formed by all zero elements are mapped to zero symbols, and the second pilot subsequence formed by non-zero elements are mapped to non-zero symbols.
  • the first pilot sequence sent by the terminal device is detected on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the non-zero elements included in the first pilot sequence are mapped to the M resource units RE of the unlicensed transmission resource, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes, and the M is a positive integer and is an index of 2. power.
  • the M REs are consecutive M REs, so that orthogonality between pilot sequences can be further enhanced.
  • the embodiment of the present invention is only described by taking a Walsh code as an example, but the present invention is not limited thereto.
  • the first pilot sequence may also adopt a pseudo-noise sequence (Pseudo-Noise Sequence), which is also called a PN.
  • the sequence, or the first pilot sequence may also use a ZC (Zadoff-Chu) sequence, M sequence and the like.
  • the terminal device mapped to the same sub-band can be distinguished by the cyclic shift value and the root number; if the first pilot sequence Using the M sequence, the terminal devices mapped to the same subband can be distinguished by the cyclic shift value, that is, the first pilot sequence of the terminal device mapped to the same subband corresponds to a different cyclic shift value.
  • the RE included in the first sub-band is M consecutive REs. That is, in the embodiment of the present invention, the first pilot sequence is preferably mapped to consecutive REs of one subband, so that orthogonality between different first pilot sequences is better, thereby enabling further Improve the reliability of the system detection pilot.
  • the network device may determine the second pilot sequence according to the correspondence between the first pilot sequence and the second pilot sequence, where the correspondence may have multiple representations, such as a formula and a table.
  • the network device may perform an operation according to a formula to determine the second pilot sequence, and may also determine a second pilot sequence corresponding to the first pilot sequence by looking up a table. It should be understood that the embodiments of the present invention are merely described by way of example, but the invention is not limited thereto.
  • the network device when the correspondence between the first pilot sequence and the second pilot sequence is established by using the first pilot number, the network device is in the second OFDM symbol of the unlicensed transmission resource.
  • the detecting, by the network device, the second pilot sequence corresponding to the first pilot sequence may include: determining, by the network device, the first pilot number according to the detected first pilot sequence; and determining, by the network device, the first pilot The number determines the second pilot sequence; the network device detects the second pilot sequence on the second OFDM symbol.
  • the network device may determine the first pilot number according to the detected first pilot sequence, and further, the network device may be configured according to the first pilot number and the second pilot sequence.
  • determining the second pilot sequence whereby the network device may separately perform one or more second pilot sequences corresponding to the one or more first pilot sequences on the second OFDM symbol Detection.
  • the corresponding relationship may have multiple representations, such as a formula, a table, and the like, that is, the network device may perform operations according to a formula to determine the second pilot sequence, and may also determine the first by using a table lookup manner.
  • the second pilot sequence corresponding to the pilot number.
  • the network device may also determine, in the second set of pilot sequences, a second pilot sequence corresponding to the first pilot number.
  • the first pilot sequence is used to indicate the state of the terminal device
  • the second pilot sequence is used for demodulation of the uplink data, where the first pilot sequence and the second pilot sequence may have corresponding relationships.
  • the network device can detect only the second pilot sequence corresponding to the first pilot sequence without detecting all possible second pilot sequences. It can significantly reduce the number of pilot detection and reduce the complexity of pilot detection.
  • the correspondence between the first pilot sequence and the second pilot sequence may be a one-to-many correspondence, or a many-to-one correspondence, or a one-to-one correspondence.
  • one first pilot sequence may correspond to multiple second pilot sequences, or one first pilot sequence may correspond to a group of second pilot sequences,
  • the group second pilot sequence may include two or more second pilot sequences, that is, the correspondence between the first pilot sequence and the second pilot sequence may be a one-to-many correspondence.
  • the number of first pilot sequences can be smaller than the number of second pilot sequences, so that the overhead of the first pilot sequence can be reduced.
  • the network device may reduce the detection precision of the first pilot sequence, and may also increase the network. The complexity of the device detecting the second pilot sequence.
  • the terminal device may first determine the first pilot number, and may determine the first pilot sequence and the second pilot sequence according to the first pilot number, where one first pilot sequence may correspond to multiple a second pilot sequence, for example, one pilot number may correspond to one first pilot sequence and may correspond to multiple second pilot sequences; or multiple pilot numbers may respectively correspond to multiple second pilot sequences, but at the same time
  • the network device may first detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active.
  • the network device can separately detect the plurality of second pilot sequences corresponding to the first pilot sequence. Since the network device only needs to detect the plurality of second pilot sequences corresponding to the first pilot sequence separately, without detecting all possible second pilot sequences, the pilot can be significantly reduced. Detect the number and reduce the complexity of pilot detection.
  • the multiple first pilot sequences may also correspond to one second pilot sequence, or the first pilot sequence may correspond to a second pilot sequence, the group A pilot sequence may include two or more first pilot sequences, that is, the correspondence between the first pilot sequence and the second pilot sequence may be a many-to-one correspondence.
  • the terminal device may first determine the first pilot number, and may determine the first pilot sequence and the second pilot sequence according to the first pilot number, where the multiple first pilot sequences may correspond to a second a pilot sequence, for example, one pilot number may correspond to multiple first pilot sequences, and may correspond to one second pilot sequence; or multiple pilot numbers may respectively correspond to multiple first pilot sequences, but corresponding to A second pilot sequence, that is, the same pilot number may correspond to different first pilot sequences, but corresponds to the same second pilot sequence.
  • the network device may first detect the first pilot sequence on the first OFDM symbol; when the network device detects the first pilot sequence, the network device may determine that the terminal device that sends the first pilot sequence is active.
  • the network device can detect the second pilot sequence corresponding to the first pilot sequence separately. Since the network device only needs to detect the second pilot sequence corresponding to the first pilot sequence separately, and does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections. And reduce the complexity of pilot detection.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • one pilot number may uniquely correspond to a first pilot sequence and may uniquely correspond to a second pilot sequence.
  • multiple pilot numbers may correspond to one first pilot sequence, and the first pilot sequence may uniquely correspond.
  • a second pilot sequence; or a plurality of pilot numbers may correspond to a second pilot sequence, and the second pilot sequence may uniquely correspond to a first pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences. That is, in the embodiment of the present invention, the first pilot sequence and the subsequence combination formed by two or more subsequences may have a one-to-many correspondence, or a many-to-one correspondence, or one. A correspondence.
  • This subsequence is, for example, a DMRS.
  • each OFDM symbol can support up to S orthogonal pilot sequences
  • the pilot sequence supported by each OFDM symbol is used as one element in the subsequence combination, that is, the guide carried by each OFDM symbol pilot sequence as a sequence of sub-sequence combination, D for the OFDM symbols
  • the subsequence may combine to form S D having up to different combinations of sub-sequences, can be significantly increased thereby guiding the second frequency available in the system
  • the second pilot sequence is a different subsequence combinations.
  • the number of second pilot sequences is increased by forming a subsequence combination by using a plurality of subsequences as an example, but the present invention is not limited thereto, for example, by adding each A method such as the number of pilot sequences supported by the second OFDM symbol to satisfy a sufficiently low pilot collision probability.
  • a second pilot sequence by combining a plurality of sub-sequences, a sufficient number of pilot sequences that can be distinguished from each other can be formed, thereby not only satisfying a sufficiently low pilot collision probability requirement, It also greatly reduces the pilot overhead.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are sub-sequences of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are respectively mapped to different sub-bands of the same second OFDM symbol of the unlicensed transmission resource. Subsequence.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of different second OFDM symbols respectively mapped to the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is a subsequence of an entire frequency band of different second OFDM symbols respectively mapped to the unlicensed transmission resource.
  • the second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is represented by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is respectively associated with the plurality of sub-sequences Each subsequence corresponds one-to-one.
  • the unlicensed transmission resource is a transmission resource combining time and frequency, or a transmission resource combining time, frequency and code domain.
  • the method is optionally applied to a terminal-to-terminal D2D communication field, a machine-to-machine M2M communication field, or a machine type communication field.
  • the network device is a base station
  • the terminal device is a user equipment
  • the detection reliability can be significantly increased by time-frequency diversity or frequency domain diversity, but the pilot overhead will also be increased.
  • the number of receiving antennas of the base station can be increased, so that the base station can separately detect signals received by the plurality of receiving antennas, thereby increasing the reliability of detection without increasing the pilot overhead.
  • the number of transmitting antennas of the terminal device may also be increased, that is, the terminal device separately transmits different first pilot sequences on different antennas, and the base station only needs to detect one of the first pilots. After the sequence, the corresponding terminal device can be considered to be in an active state. This mode can also increase the reliability of detection, but it is necessary to increase the pilot overhead.
  • different second pilot sequences may also pass at least one of three modes: time domain (OFDM symbol), frequency domain (subcarrier group or subband), and code domain. Ways to distinguish.
  • the second pilot sequence can be mapped onto different OFDM symbols to distinguish the second pilot sequence; similarly, the second pilot sequence can also be mapped onto different sub-bands of the OFDM symbol, as well The second pilot sequence can be distinguished.
  • different second pilot sequences that need to be mapped to the same time-frequency resource are orthogonal to each other.
  • the sub-sequences mapped on the second OFDM symbols are not completely the same, so that the network device can be configured to perform correct channel estimation for demodulation of the uplink data.
  • the first pilot sequence sent by the terminal device is detected on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including: different in the unlicensed transmission resource Detecting, by the terminal device, the first pilot sequence repeatedly mapped by the terminal device; and/or detecting the first pilot sequence repeatedly mapped by the terminal device on different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • detecting, by using the second OFDM symbol of the unlicensed transmission resource, a second pilot sequence that is sent by the terminal device and corresponding to the first pilot sequence include: detecting a second pilot sequence that the terminal device repeatedly maps on a different second OFDM symbol of the unlicensed transmission resource; and/or detecting a terminal device repetition mapping on a different subband of the second OFDM symbol of the unlicensed transmission resource The second pilot sequence.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, according to the Determining, by the first pilot sequence, whether the terminal device is in an active state, and detecting only the second pilot sequence corresponding to the detected first pilot sequence on the second OFDM symbol of the unlicensed transmission resource, that is, detecting only a second pilot sequence of the active terminal device, and performing uplink data demodulation according to the second pilot sequence, so that the network device does not detect all possible second pilot sequences, thereby significantly reducing the pilot Detect the number and reduce the complexity of pilot detection.
  • the method for transmitting a pilot sequence in the embodiment of the present invention can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol can thereby significantly reduce the pilot collision probability, improve the accuracy of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby being able to significantly reduce
  • the small pilot overhead enables more time-frequency resources to be used for data transmission, that is, the amount of data transmission of the system can be significantly improved.
  • a method of transmitting a pilot sequence according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 through 6, and an apparatus for transmitting a pilot sequence according to an embodiment of the present invention will be described in detail below with reference to FIGS. 7 through 11.
  • FIG. 7 shows an apparatus 500 for transmitting a pilot sequence in accordance with an embodiment of the present invention.
  • the apparatus 500 includes:
  • a first determining module 510 configured to determine a first pilot sequence used to indicate whether the terminal device is in an active state
  • a second determining module 520 configured to determine a second pilot sequence for uplink data demodulation
  • a first mapping module 530 configured to map the first pilot sequence determined by the first determining module 510 to a first orthogonal frequency division multiplexing OFDM symbol of an unlicensed transmission resource
  • the second mapping module 540 is configured to map the second pilot sequence determined by the second determining module 520 to the second OFDM symbol of the unlicensed transmission resource;
  • the sending module 550 is configured to send the first pilot sequence and the second pilot sequence by using the first OFDM symbol mapped by the first mapping module 530 and the second OFDM symbol mapped by the second mapping module 540.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determines a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol Frequency sequence and the second pilot sequence, making the network
  • the device can determine the activity of the terminal device by detecting the first pilot sequence, and thus can detect only the second pilot sequence of the terminal device in the active state, without using all possible second pilots. The sequence is detected, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the apparatus 500 further includes a third determining module 560, configured to determine a first pilot number
  • the first determining module 510 is specifically configured to: determine the first pilot sequence according to the first pilot number;
  • the second determining module 520 is specifically configured to: determine the second pilot sequence according to the first pilot number.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention determines a first pilot number by using a terminal device, determines a first pilot sequence and a second pilot sequence according to the first pilot number, and determines the first pilot
  • the frequency sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and then the first pilot sequence and the first OFDM symbol are transmitted through the first OFDM symbol and the second OFDM symbol a second pilot sequence, so that the network device can determine the activity of the terminal device by detecting the first pilot sequence, and thus can detect only the second pilot sequence corresponding to the first pilot sequence, and It is not necessary to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the third determining module 560 is specifically configured to:
  • the first pilot number is generated by a random number generator.
  • the first mapping module 530 is specifically configured to: map the first pilot sequence to a partial subband of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all zero element, and the second guide The elements of the frequency subsequence are non-zero elements.
  • the first mapping module 530 is specifically configured to: map the non-zero element included in the first pilot sequence to the first OFDM symbol of the unlicensed transmission resource.
  • a subband, the first subband includes M resource elements RE, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes, and the M is a positive integer and is an exponential power of 2.
  • the RE included in the first sub-band is M consecutive REs.
  • the first mapping module 530 is specifically configured to:
  • the first pilot sequence is repeatedly mapped to different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • the second mapping module 540 is specifically configured to: map at least two sub-sequences of the multiple sub-sequences included in the second pilot sequence to the same one of the unlicensed transmission resources. Second OFDM symbol.
  • the second mapping module 540 is specifically configured to: map each sub-sequence of the multiple sub-sequences included in the second pilot sequence to the same one of the unlicensed transmission resources. Two OFDM symbols.
  • the second mapping module 540 is specifically configured to: map at least two sub-sequences of the multiple sub-sequences included in the second pilot sequence to the unlicensed transmission resource respectively A different subband of a second OFDM symbol.
  • the second mapping module 540 is specifically configured to: map each of the multiple sub-sequences included in the second pilot sequence to different ones of the unlicensed transmission resources. Second OFDM symbol.
  • the second mapping module 540 is specifically configured to: map each of the multiple sub-sequences included in the second pilot sequence to different ones of the unlicensed transmission resources.
  • the entire frequency band of the second OFDM symbol, and the second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is generated by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is respectively associated with the plurality of sub-sequences Each subsequence corresponds one-to-one.
  • the second mapping module 540 is specifically configured to repeatedly map the second pilot sequence to different second OFDM symbols of the unlicensed transmission resource.
  • the first determining module 510 is specifically configured to select the first pilot sequence in the first pilot sequence set.
  • the second determining module 520 is specifically configured to select the second pilot sequence in the second set of pilot sequences.
  • the sending module 550 is configured to send, by using the first OFDM symbol mapped by the first mapping module 530 and the second OFDM symbol mapped by the second mapping module 540, to the network device.
  • the first pilot sequence and the second pilot sequence are configured to send, by using the first OFDM symbol mapped by the first mapping module 530 and the second OFDM symbol mapped by the second mapping module 540, to the network device.
  • the unlicensed transmission resource is a transmission resource combining time and frequency, or a transmission resource combining time, frequency and code domain.
  • the device is optionally applied to the terminal-to-terminal D2D communication field, the machine-to-machine M2M communication field, or the machine type communication field.
  • the network device is a base station
  • the terminal device is a user equipment
  • the device 500 is a terminal device.
  • apparatus 500 in accordance with embodiments of the present invention may correspond to terminal devices in embodiments of the present invention, and that the above and other operations and/or functions of the various modules in apparatus 500 are respectively implemented in order to implement FIGS. 1 through 5F.
  • FIGS. 1 through 5F For the sake of brevity, the description of the embodiments of the present invention may be applied to the device embodiment, and details are not described herein again.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determines a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol
  • the frequency sequence and the second pilot sequence enable the network device to determine the activity of the terminal device by detecting the first pilot sequence, and thus can only perform the second pilot sequence of the terminal device in the active state. Detection without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the apparatus for transmitting a pilot sequence can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol thereby enabling Significantly reduce the pilot collision probability, improve the correct rate of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby significantly reducing the pilot overhead, thereby enabling more time-frequency resources to be used.
  • it can significantly increase the amount of data transmission of the system.
  • FIG. 9 illustrates an apparatus 600 for transmitting a pilot sequence in accordance with another embodiment of the present invention. As shown in FIG. 9, the apparatus 600 includes:
  • the first detecting module 610 is configured to detect, by using the first OFDM symbol of the unlicensed transmission resource, a first pilot sequence sent by the terminal device, where the first pilot sequence is used to indicate whether the terminal device is located Active state
  • the second detecting module 620 is configured to detect, on the second OFDM symbol of the unlicensed transmission resource, a second pilot sequence that is sent by the terminal device and that is corresponding to the first pilot sequence detected by the first detecting module 610, where The second pilot sequence is used for uplink data demodulation;
  • the processing module 630 is configured to perform uplink data demodulation according to the second pilot sequence detected by the second detecting module 620.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, to determine the terminal device according to the first pilot sequence. Whether it is in an active state, and detecting only the second pilot sequence corresponding to the detected first pilot sequence on the second OFDM symbol of the unlicensed transmission resource, that is, detecting only the second terminal device in the active state a pilot sequence, and performing uplink data demodulation according to the second pilot sequence, so that the network device does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing pilot detection. the complexity.
  • the first detecting module 610 is specifically configured to: detect the first pilot sequence on a partial subband of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all zero element, and the second guide The elements of the frequency subsequence are non-zero elements.
  • the first detecting module 610 is specifically configured to: detect, in the first subband of the first OFDM symbol of the unlicensed transmission resource, the first pilot sequence, the first sub The band includes M resource elements RE, and the non-zero symbols formed by the non-zero element mapping are M-order Walsh codes, which are positive integers and are exponential powers of two.
  • the RE included in the first sub-band is M consecutive REs.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are sub-sequences of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • At least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence are respectively mapped to different sub-bands of the same second OFDM symbol of the unlicensed transmission resource. Subsequence.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of different second OFDM symbols respectively mapped to the unlicensed transmission resource.
  • the second pilot sequence is represented by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is respectively associated with the plurality of sub-sequences Each subsequence corresponds one-to-one.
  • the unlicensed transmission resource is a transmission resource combining time and frequency, or a transmission resource combining time, frequency and code domain.
  • the device is optionally applied to the terminal-to-terminal D2D communication field, the machine-to-machine M2M communication field, or the machine type communication field.
  • the network device is a base station
  • the terminal device is a user equipment
  • the device 600 is a network device.
  • apparatus 600 in accordance with embodiments of the present invention may correspond to network devices in embodiments of the present invention, and that the above and other operations and/or functions of various modules in apparatus 600 are respectively implemented to implement method 300 of FIG.
  • the description of the embodiments of the present invention may be applied to the device embodiment, and details are not described herein.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, to determine the terminal device according to the first pilot sequence. Whether it is active and in the first part of the exempted transmission resource Detecting only the second pilot sequence corresponding to the detected first pilot sequence on the OFDM symbol, that is, detecting only the second pilot sequence of the terminal device in the active state, and performing uplink according to the second pilot sequence
  • the data demodulation enables the network device to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the apparatus for transmitting a pilot sequence can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol can thereby significantly reduce the pilot collision probability, improve the accuracy of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby being able to significantly reduce
  • the small pilot overhead enables more time-frequency resources to be used for data transmission, that is, the amount of data transmission of the system can be significantly improved.
  • an embodiment of the present invention further provides an apparatus 800 for transmitting a pilot sequence.
  • the apparatus 800 includes a processor 810 and a transmitter 840.
  • the processor 810 is connected to the transmitter 840.
  • the apparatus 810 is connected to the transmitter 840.
  • the apparatus 800 also includes a memory 820 that is coupled to the processor 810 and the transmitter 840, respectively.
  • the apparatus 800 includes a bus system 830.
  • the processor 810, the memory 820, and the transmitter 840 may be connected by a bus system 830, where the memory 820 may be used to store instructions, and the processor 810 is configured to execute instructions stored by the memory 820 to control the transmitter 840 to send signals.
  • the processor 810 is configured to:
  • the transmitter 840 is used to:
  • the first pilot sequence and the second pilot sequence are transmitted by the first OFDM symbol and the second OFDM symbol.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determines a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol
  • the frequency sequence and the second pilot sequence enable the network device to determine the activity of the terminal device by detecting the first pilot sequence, and thereby Only the second pilot sequence of the active terminal device is detected without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 810 is further configured to: determine a first pilot number
  • the processor 810 determines a first pilot sequence for indicating whether the terminal device is in an active state, including:
  • the determining the second pilot sequence for uplink data demodulation includes:
  • the second pilot sequence is determined according to the first pilot number.
  • the determining, by the processor 810, the first pilot number includes:
  • the first pilot number is generated by a random number generator.
  • the processor 810 maps the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the first pilot sequence is mapped to a partial subband of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all zero element, and the second pilot sub The elements of the sequence are non-zero elements.
  • the processor 810 maps the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the zero symbol is an M-order Walsh code, which is a positive integer and is an exponential power of two.
  • the first sub-band includes REs that are M consecutive REs.
  • the processor 810 maps the first pilot sequence to the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the first pilot sequence is repeatedly mapped to different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to the same second OFDM symbol of the unlicensed transmission resource.
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • mapping at least two sub-sequences of the plurality of sub-sequences included in the second pilot sequence to different sub-bands of the same second OFDM symbol of the unlicensed transmission resource.
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • the second pilot sequence is generated by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is associated with each of the plurality of subsequences The subsequences correspond one-to-one.
  • the processor 810 maps the second pilot sequence to the second OFDM symbol of the unlicensed transmission resource, including:
  • the second pilot sequence is repeatedly mapped to a different second OFDM symbol of the unlicensed transmission resource.
  • the first determining module is specifically configured to select the first pilot sequence in the first set of pilot sequences.
  • the second determining module is specifically configured to select the second pilot sequence in the second set of pilot sequences.
  • the unlicensed transmission resource is a transmission resource combined with time and frequency, or a transmission resource combining time, frequency, and code domain.
  • the device is applied to the field of terminal-to-terminal D2D communication, machine-to-machine M2M communication field or machine type communication field.
  • the network device is a base station, and the terminal device is a user equipment.
  • the apparatus 800 for transmitting a pilot sequence may correspond to the terminal device and the apparatus 500 in the embodiment of the present invention, and may correspond to a corresponding body in the method according to the embodiment of the present invention, and the apparatus
  • the above and other operations and/or functions of the various modules in the 800 are respectively implemented in order to implement the respective processes of the respective methods in FIGS. 1 to 5F.
  • the description of the embodiments of the invention may be applied to the device embodiment, and no longer Narration.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention determines, by the terminal device, a first pilot sequence for indicating whether the terminal device is in an active state, and determines a second pilot sequence for uplink data demodulation, and The first pilot sequence and the second pilot sequence are respectively mapped to the first OFDM symbol and the second OFDM symbol of the unlicensed transmission resource, and the first indicator is sent by using the first OFDM symbol and the second OFDM symbol
  • the frequency sequence and the second pilot sequence enable the network device to determine the activity of the terminal device by detecting the first pilot sequence, and thus can only perform the second pilot sequence of the terminal device in the active state. Detection without detecting all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing the complexity of pilot detection.
  • the apparatus for transmitting a pilot sequence can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol can thereby significantly reduce the pilot collision probability, improve the accuracy of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby being able to significantly reduce
  • the small pilot overhead enables more time-frequency resources to be used for data transmission, that is, the amount of data transmission of the system can be significantly improved.
  • an embodiment of the present invention further provides an apparatus 900 for transmitting a pilot sequence.
  • the apparatus 900 includes: a processor 910.
  • the apparatus 900 includes a memory 920, and the processor 910 is connected to the memory 920.
  • the apparatus 900 includes a bus system 930.
  • the processor 910 and the memory 920 are connected by a bus system 930, where the memory 920 is used to store instructions, and the processor 910 is configured to execute instructions stored in the memory 920.
  • the processor 910 is configured to:
  • Detecting by using the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, a first pilot sequence sent by the terminal device, where the first pilot sequence is used to indicate whether the terminal device is in an active state;
  • Uplink data demodulation is performed according to the second pilot sequence.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, to determine the terminal device according to the first pilot sequence. Whether it is in an active state, and detecting only the second pilot sequence corresponding to the detected first pilot sequence on the second OFDM symbol of the unlicensed transmission resource, that is, detecting only the second terminal device in the active state a pilot sequence, and performing uplink data demodulation according to the second pilot sequence, so that the network device does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing pilot detection. the complexity.
  • the processor 910 may be a central processing unit (“CPU"), and the processor 910 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 910 detects the first pilot sequence sent by the terminal device on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the first pilot sequence is detected on a portion of the sub-band of the first OFDM symbol of the unlicensed transmission resource.
  • the element of the first pilot sequence is a non-zero element.
  • the first pilot sequence includes a first pilot subsequence and a second pilot subsequence, and an element of the first pilot subsequence is an all zero element, and the second pilot sub The elements of the sequence are non-zero elements.
  • the processor 910 detects the first pilot sequence sent by the terminal device on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, including:
  • the first sub-band includes REs that are M consecutive REs.
  • the first pilot sequence has a one-to-one correspondence with the second pilot sequence.
  • the second pilot sequence is a subsequence combination formed by multiple subsequences.
  • At least two sub-sequences of the multiple sub-sequences included in the second pilot sequence are sub-sequences of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • each of the multiple subsequences included in the second pilot sequence is a subsequence of the same second OFDM symbol mapped to the unlicensed transmission resource.
  • At least two sub-sequences of the multiple sub-sequences included in the second pilot sequence are sub-sequences of different sub-bands of the same second OFDM symbol respectively mapped to the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of different second OFDM symbols respectively mapped to the unlicensed transmission resource.
  • each of the plurality of sub-sequences included in the second pilot sequence is a sub-sequence of an entire frequency band of different second OFDM symbols respectively mapped to the unlicensed transmission resource, and The second OFDM symbol is different from the first OFDM symbol.
  • the second pilot sequence is represented by a plurality of cyclic shift values, wherein each of the plurality of cyclic shift values is associated with each of the plurality of subsequences The subsequences correspond one-to-one.
  • the unlicensed transmission resource is a combination of time and frequency.
  • the device is applied to the field of terminal-to-terminal D2D communication, machine-to-machine M2M communication field or machine type communication field.
  • the network device is a base station, and the terminal device is a user equipment.
  • the processor 910 detects, on the first orthogonal frequency division multiplexing OFDM symbol of the unlicensed transmission resource, the first pilot sequence sent by the terminal device, including: different resources in the unlicensed transmission resource. Detecting, by the terminal device, the first pilot sequence repeatedly mapped by the terminal device; and/or detecting the first pilot sequence repeatedly mapped by the terminal device on different subbands of the first OFDM symbol of the unlicensed transmission resource.
  • the processor 910 on the second OFDM symbol of the unlicensed transmission resource, detects a second pilot sequence that is sent by the terminal device and corresponds to the first pilot sequence, and includes: Detecting a second pilot sequence repeatedly mapped by the terminal device on a different second OFDM symbol of the unlicensed transmission resource; and/or detecting a repeated mapping of the terminal device on different subbands of the second OFDM symbol of the unlicensed transmission resource Two pilot sequences.
  • the apparatus 900 for transmitting a pilot sequence may correspond to the network device and apparatus 600 in the embodiment of the present invention, and may correspond to a corresponding body in performing the method according to an embodiment of the present invention, and the apparatus
  • the above and other operations and/or functions of the respective modules in the 900 are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 6, and are not described herein again for brevity.
  • the apparatus for transmitting a pilot sequence in the embodiment of the present invention detects, by the network device, the first pilot sequence sent by the terminal device on the first OFDM symbol of the unlicensed transmission resource, to determine the terminal device according to the first pilot sequence. Whether it is in an active state, and detecting only the second pilot sequence corresponding to the detected first pilot sequence on the second OFDM symbol of the unlicensed transmission resource, that is, detecting only the second terminal device in the active state a pilot sequence, and performing uplink data demodulation according to the second pilot sequence, so that the network device does not need to detect all possible second pilot sequences, thereby significantly reducing the number of pilot detections and reducing pilot detection. the complexity.
  • the apparatus for transmitting a pilot sequence can significantly increase the second for the same number of second OFDM symbols by setting the second pilot sequence to a subsequence combination formed by a plurality of sub-sequences.
  • the number of second pilot sequences supported by the OFDM symbol can thereby significantly reduce the pilot collision probability, improve the accuracy of uplink data demodulation, and avoid occupying too many second OFDM symbols, thereby being able to significantly reduce
  • the small pilot overhead enables more time-frequency resources to be used for data transmission, that is, the amount of data transmission of the system can be significantly improved.
  • the sending module or the sending unit or the transmitter in the foregoing embodiments of the present invention may be configured to send on an air interface, but may not be sent on an air interface, but sent to other devices to facilitate other devices to send on the air interface;
  • the receiving module or the receiving unit or the receiver in the above embodiment may refer to receiving on the air interface, and may not receive on the air interface, but receive from the air interface through other devices.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输导频序列的方法和装置,通过终端设备确定第一导频编号,根据该第一导频编号确定第一导频序列和第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对与第一导频序列相应的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。

Description

传输导频序列的方法和装置 技术领域
本发明涉及通信领域,尤其涉及通信领域中传输导频序列的方法和装置。
背景技术
目前的通信系统主要是支持语音通信和数据通信,通常来说,一个传统基站支持的连接数量有限,也易于实现。但下一代移动通信系统不仅需要支持传统的语音通信和数据通信,还将支持机器对机器(Machine to Machine,简称为“M2M”)通信,或者称为机器类型通信(Machine Type Communication,简称为“MTC”)。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数量。
对MTC类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下两种需求的业务:一种是需要可靠传输,但对时延不敏感的业务;另一种是需要低延迟,并且高可靠传输的业务。对于需要可靠传输但对时延不敏感的业务,较容易处理;但是,对于需要低延迟并且高可靠传输的业务,如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
为了解决未来网络中大量的MTC类业务,以及满足低时延、高可靠的业务传输,人们提出了上行免授权(Grant Free)传输的方案。在免授权(Grant Free)传输系统中,存在大量的终端设备,但同时接入网络的终端设备数量很少,终端设备可以随机选择免授权传输资源发送数据。目前,网络设备需要对每个导频进行检测,以判断活跃的终端设备。
目前,在长期演进(Long Term Evolution,简称为“LTE”)系统中,上行导频序列包括解调参考信号(Demodulation Reference Signal,简称为“DMRS”)和信道探测参考信号(Sounding Reference Signal,简称为“SRS”)。其中,DMRS用于信道估计,从而根据信道估计的结果对上行数据进行解调,而SRS用于上行信道质量的测量,并占据整个频段。
如果将LTE系统中的DMRS用于上行免授权传输系统,则需要网络设备对每个可能的DMRS都进行检测。常用的检测DMRS的方法是将接收的 频域信号变换到时域,以进行加窗降噪处理,该变换过程需要用到逆快速傅里叶变换(Inverse Fast Fourier Transform,简称为“IFFT”)和快速傅里叶变换(Fast Fourier Transform,简称为“FFT”)操作,复杂度很高。
因此,降低导频检测的复杂度成为免授权传输系统亟待解决的一个技术问题。
发明内容
有鉴于此,本发明实施例提供了一种传输导频序列的方法和装置,以解决导频检测复杂度高的问题。
第一方面,提供了一种传输导频序列的方法,该方法包括:确定用于指示终端设备是否处于活跃状态的第一导频序列;确定用于上行数据解调的第二导频序列;将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;将该第二导频序列映射到该免授权传输资源的第二OFDM符号;通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
结合第一方面,在第一方面的第一种可能的实现方式中,该方法还包括:确定第一导频编号;其中,该确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:根据该第一导频编号确定该第一导频序列;其中,该确定用于上行数据解调的第二导频序列,包括:根据该第一导频编号确定该第二导频序列。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该确定第一导频编号包括:根据终端设备的标识确定该第一导频编号;或根据该免授权传输资源的标识和该终端设备的标识确定该第一导频编号;或通过随机数发生器生成该第一导频编号。
结合第一方面、第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:将该第一导频序列映射到该免授权传输资源的第一OFDM符号的部分子带。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该第一导频序列的元素为非零元素。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实 现方式中,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
结合第一方面的第三种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:将该第一导频序列包括的非零元素映射到该免授权传输资源的第一OFDM符号的第一子带,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,该第一子带包括的RE为M个连续的RE。
结合第一方面或第一方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:将该第一导频序列重复映射到该免授权传输资源的不同的第一OFDM符号;和/或将该第一导频序列重复映射到该免授权传输资源的该第一OFDM符号的不同子带。
结合第一方面或第一方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,该第一导频序列与该第二导频序列具有一一对应关系。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,该第二导频序列为多个子序列形成的子序列组合。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:将该第二导频序列包括的该多个子序列中的至少两个子序列映射到该免授权传输资源的同一个第二OFDM符号。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:将该第二导频序列包括的该多个子序列中的每个子序列映射到该免授权传输资源的同一个第二OFDM符号。
结合第一方面的第十一种可能的实现方式,在第一方面的第十三种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM 符号,包括:将该第二导频序列包括的该多个子序列中的至少两个子序列分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带。
结合第一方面的第十种可能的实现方式,在第一方面的第十四种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号。
结合第一方面的第十四种可能的实现方式,在第一方面的第十五种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,并且该第二OFDM符号与该第一OFDM符号不同。
结合第一方面的第十种至第十五种可能的实现方式中的任一种可能的实现方式,在第一方面的第十六种可能的实现方式中,该第二导频序列由多个循环移位值生成,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
结合第一方面或第一方面的第一种至第十六种可能的实现方式中的任一种可能的实现方式,在第一方面的第十七种可能的实现方式中,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:将该第二导频序列重复映射到该免授权传输资源的不同的第二OFDM符号。
结合第一方面或第一方面的第一种至第十七种可能的实现方式中的任一种可能的实现方式,在第一方面的第十八种可能的实现方式中,该确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:在第一导频序列集合中选择该第一导频序列。
结合第一方面或第一方面的第一种至第十八种可能的实现方式中的任一种可能的实现方式,在第一方面的第十九种可能的实现方式中,该确定用于上行数据解调的第二导频序列,包括:
在第二导频序列集合中选择该第二导频序列。
结合第一方面或第一方面的第一种至第十九种可能的实现方式中的任一种可能的实现方式,在第一方面的第二十种可能的实现方式中,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
结合第一方面或第一方面的第一种至第二十种可能的实现方式中的任一种可能的实现方式,在第一方面的第二十一种可能的实现方式中,该方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
第二方面,提供了一种传输信号的方法,该方法包括:在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,该第一导频序列用于该指示终端设备是否处于活跃状态;在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一导频序列对应的第二导频序列,该第二导频序列用于上行数据解调;根据该第二导频序列进行上行数据解调。
结合第二方面,在第二方面的第一种可能的实现方式中,该在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:在该免授权传输资源的第一OFDM符号的部分子带上检测该第一导频序列。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该第一导频序列的元素为非零元素。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
结合第二方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:在该免授权传输资源的第一OFDM符号的第一子带上检测该第一导频序列,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,该第一子带包括的RE为M个连续的RE。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该第一导频序列与该第二导频序列具有一一对应关系。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实 现方式中,该第二导频序列为多个子序列形成的子序列组合。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,该第二导频序列包括的该多个子序列中的至少两个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
结合第二方面的第八种可能的实现方式,在第二方面的第十种可能的实现方式中,该第二导频序列包括的该多个子序列中的至少两个子序列为分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
结合第二方面的第七种可能的实现方式,在第二方面的第十一种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的子序列。
结合第二方面的第十一种可能的实现方式,在第二方面的第十二种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且该第二OFDM符号与该第一OFDM符号不同。
结合第二方面的第七种至第十二种可能的实现方式中的任一种可能的实现方式,在第二方面的第十三种可能的实现方式中,该第二导频序列由多个循环移位值表示,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
结合第二方面或第二方面的第一种至第十三种可能的实现方式中的任一种可能的实现方式,在第二方面的第十四种可能的实现方式中,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
结合第二方面或第二方面的第一种至第十三种可能的实现方式中的任一种可能的实现方式,在第二方面的第十四种可能的实现方式中,该方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
第三方面,提供了一种传输导频序列的装置,该装置包括:第一确定模块,用于确定用于指示终端设备是否处于活跃状态的第一导频序列;第二确 定模块,用于确定用于上行数据解调的第二导频序列;第一映射模块,用于将该第一确定模块确定的该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;第二映射模块,用于将该第二确定模块确定的该第二导频序列映射到该免授权传输资源的第二OFDM符号;发送模块,用于通过该第一映射模块映射的该第一OFDM符号和该第二映射模块映射的该第二OFDM符号,发送该第一导频序列和该第二导频序列。
结合第三方面,在第三方面的第一种可能的实现方式中,该装置还包括第三确定模块,用于确定第一导频编号;其中,该第一确定模块具体用于:根据该第一导频编号确定该第一导频序列;该第二确定模块具体用于:根据该第一导频编号确定该第二导频序列。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该第三确定模块具体用于:根据终端设备的标识确定该第一导频编号;或根据该免授权传输资源的标识和该终端设备的标识确定该第一导频编号;或通过随机数发生器生成该第一导频编号。
结合第三方面、第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该第一映射模块具体用于:将该第一导频序列映射到该免授权传输资源的第一OFDM符号的部分子带。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,该第一导频序列的元素为非零元素。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
结合第三方面的第三种至第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,该第一映射模块具体用于:将该第一导频序列包括的非零元素映射到该免授权传输资源的第一OFDM符号的第一子带,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,该第一子带包括的RE为M个连续的RE。
结合第三方面或第三方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第三方面的第八种可能的实现方式中,该第一映射模 块具体用于:将该第一导频序列重复映射到该免授权传输资源的不同的第一OFDM符号;和/或将该第一导频序列重复映射到该免授权传输资源的该第一OFDM符号的不同子带。
结合第三方面或第三方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第三方面的第九种可能的实现方式中,该第一导频序列与该第二导频序列具有一一对应关系。
结合第三方面的第九种可能的实现方式,在第三方面的第十种可能的实现方式中,该第二导频序列为多个子序列形成的子序列组合。
结合第三方面的第十种可能的实现方式,在第三方面的第十一种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列包括的该多个子序列中的至少两个子序列映射到该免授权传输资源的同一个第二OFDM符号。
结合第三方面的第十一种可能的实现方式,在第三方面的第十二种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列包括的该多个子序列中的每个子序列映射到该免授权传输资源的同一个第二OFDM符号。
结合第三方面的第十一种可能的实现方式,在第三方面的第十三种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列包括的该多个子序列中的至少两个子序列分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带。
结合第三方面的第十种可能的实现方式,在第三方面的第十四种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号。
结合第三方面的第十四种可能的实现方式,在第三方面的第十五种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,并且该第二OFDM符号与该第一OFDM符号不同。
结合第三方面的第十种至第十五种可能的实现方式中的任一种可能的实现方式,在第三方面的第十六种可能的实现方式中,该第二导频序列由多个循环移位值生成,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
结合第三方面或第三方面的第一种至第十六种可能的实现方式中的任一种可能的实现方式,在第三方面的第十七种可能的实现方式中,该第二映射模块具体用于:将该第二导频序列重复映射到该免授权传输资源的不同的第二OFDM符号。
结合第三方面或第三方面的第一种至第十七种可能的实现方式中的任一种可能的实现方式,在第三方面的第十八种可能的实现方式中,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
结合第三方面或第三方面的第一种至第十八种可能的实现方式中的任一种可能的实现方式,在第三方面的第十九种可能的实现方式中,所述第一确定模块具体用于:在第一导频序列集合中选择所述第一导频序列。
结合第三方面或第三方面的第一种至第十九种可能的实现方式中的任一种可能的实现方式,在第三方面的第二十种可能的实现方式中,所述第二确定模块具体用于:在第二导频序列集合中选择所述第二导频序列。
结合第三方面或第三方面的第一种至第二十种可能的实现方式中的任一种可能的实现方式,在第三方面的第二十一种可能的实现方式中,该装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
结合第三方面或第三方面的第一种至第二十一种可能的实现方式中的任一种可能的实现方式,在第三方面的第二十二种可能的实现方式中,该装置为终端设备。
第四方面,提供了一种传输导频序列的装置,该装置包括:第一检测模块,用于在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,该第一导频序列用于该指示终端设备是否处于活跃状态;第二检测模块,用于在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一检测模块检测的该第一导频序列对应的第二导频序列,该第二导频序列用于上行数据解调;处理模块,用于根据该第二检测模块检测的该第二导频序列进行上行数据解调。
结合第四方面,在第四方面的第一种可能的实现方式中,该第一检测模块具体用于:在该免授权传输资源的第一OFDM符号的部分子带上检测该第一导频序列。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,该第一导频序列的元素为非零元素。
结合第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
结合第四方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第四方面的第四种可能的实现方式中,该第一检测模块具体用于:在该免授权传输资源的第一OFDM符号的第一子带上检测该第一导频序列,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,该第一子带包括的RE为M个连续的RE。
结合第四方面或第四方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第四方面的第六种可能的实现方式中,该第一导频序列与该第二导频序列具有一一对应关系。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,该第二导频序列为多个子序列形成的子序列组合。
结合第四方面的第七种可能的实现方式,在第四方面的第八种可能的实现方式中,该第二导频序列包括的该多个子序列中的至少两个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
结合第四方面的第八种可能的实现方式,在第四方面的第九种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
结合第四方面的第八种可能的实现方式,在第四方面的第十种可能的实现方式中,该第二导频序列包括的该多个子序列中的至少两个子序列为分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
结合第四方面的第七种可能的实现方式,在第四方面的第十一种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的子序列。
结合第四方面的第十一种可能的实现方式,在第四方面的第十二种可能的实现方式中,该第二导频序列包括的该多个子序列中的每个子序列为分别 映射到该免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且该第二OFDM符号与该第一OFDM符号不同。
结合第四方面的第七种至第十二种可能的实现方式中的任一种可能的实现方式,在第四方面的第十三种可能的实现方式中,该第二导频序列由多个循环移位值表示,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
结合第四方面或第四方面的第一种至第十三种可能的实现方式中的任一种可能的实现方式,在第四方面的第十四种可能的实现方式中,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
结合第四方面或第四方面的第一种至第十四种可能的实现方式中的任一种可能的实现方式,在第四方面的第十五种可能的实现方式中,该方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
结合第四方面或第四方面的第一种至第十五种可能的实现方式中的任一种可能的实现方式,在第四方面的第十六种可能的实现方式中,该装置为网络设备。
基于上述技术方案,本发明实施例的传输导频序列的方法和装置,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的一种应用场景的示意图。
图2是根据本发明实施例的传输导频序列的方法的示意性框图。
图3是根据本发明实施例的传输导频序列的方法的另一示意性框图。
图4A至4C分别是根据本发明实施例的第一导频序列在时频资源上的分布示意图。
图5A至5F分别是根据本发明实施例的第二导频序列在时频资源上的分布示意图。
图6是根据本发明另一实施例的传输导频序列的方法的示意性框图。
图7是根据本发明实施例的传输导频序列的装置的示意性框图。
图8是根据本发明实施例的传输导频序列的装置的另一示意性框图。
图9是根据本发明另一实施例的传输导频序列的装置的示意性框图。
图10是根据本发明再一实施例的传输导频序列的装置的示意性框图。
图11是根据本发明再一实施例的传输导频序列的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,在目前的蜂窝通信系统中,例如在全球移动通讯(Global System for Mobile Communication,简称为“GSM”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、长期演进(Long Term Evolution,简称为“LTE”)系统等通信系统中,所支持的通信主要是语音通信和数据通信。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统将不仅支持传统的语音通信和数据通信,还将支持机器对机器(Machine to Machine,简称为“M2M”)通信,或者称为机器类型通信(Machine Type Communication,简称为“MTC”)。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数量。
对MTC类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下两种需求的业务:一种是需要可靠传输,但对时延不敏感的业务;另一种是需要低延迟,并且高可靠传输的业务。对于需要可靠传输但对时延不敏感的业务,较容易处理;但是,对于需要低延迟并且高可靠传输的业务,如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量的连接需要消耗更多的资源接入终端设备,以及需要消耗更多的资源用于与终端设备的数据传输相关的调度信令的传输。
图1给出了本发明实施例应用的一种通信系统的示意图。如图1所示,网络100包括网络设备102以及终端设备104、106、108、110、112和114(图中简称为UE),其中,网络设备与终端设备之间通过无线连接或有线连接或其他方式连接。应理解,图1仅以网络包括一个网络设备为例进行说明,但本发明实施例并不限于此,例如,网络还可以包括更多的网络设备;类似地,网络也可以包括更多的终端设备,并且网络设备还可以包括其它设备。
本发明实施例的网络可以是指公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)或者设备对设备(Device to Device,简称为“D2D”)网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以示出。
本发明实施例中的终端设备也可以指用户设备(User Equipment,简称为“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或码分多址(Code Division Multiple Access,简称为“CDMA”)中的基站(Base Transceiver Station,简称为“BTS”),也可以是 宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统中的基站(NodeB,简称为“NB”),还可以是长期演进(Long Term Evolution,简称为“LTE”)系统中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),还可以是云无线接入网络(Cloud Radio Access Network,简称为“CRAN”)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业务传输,本专利提出了免授权传输的一种方案。免授权传输英文可以表示为Grant Free。这里的免授权传输可以针对的是上行数据传输。免授权传输可以理解为如下含义的任一一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似的含义:
免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免授权传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是UE接收所述的信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如TTI(Transmission Time Interval),数 值可以为1ms,或者可以是预先设定的传输时间单元。
免授权传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
所述传输资源可以包括但不限于如下资源的一种或多种的组合:
-时域资源,如无线帧、子帧、符号等;
-频域资源,如子载波、资源块等;
-空域资源,如发送天线、波束等;
-码域资源,如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)码本、低密度签名(Low Density Signature,简称为“LDS”)序列、CDMA码等;
-上行导频资源。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:
-上行功率控制,如上行发送功率上限控制等
-调制编码方式设置,如传输块大小、码率、调制阶数设置等;
-重传机制,如HARQ机制等。
竞争传输单元(Contention Transmission Unit,简称为“CTU”)可以为免授权传输的基本传输资源。CTU可以指时间、频率、码域相结合的传输资源,或者,可以指时间、频率、导频相结合的传输资源,或者,可以指时间、频率、码域、导频相结合的传输资源。
CTU的接入区域可以指用于免授权传输的时频区域,进一步可以指CTU对应的时频区域。
专利号PCT/CN2014/073084,申请名称为“System and Method for Uplink Grant-free Transmission Scheme”的专利申请给出了一种上行免授权传输的 技术方案。PCT/CN2014/073084申请介绍可以将无线资源划分为各种CTU,UE被映射到某个CTU。每个CTU可以被分配一组码,所分配的一组码可以是一组CDMA码,也可以是SCMA码本集或LDS序列组或签名(signature)组等。每一个码可以对应一组导频。用户可以选择一个码以及与该码对应的导频组中的一个导频进行上行传输。PCT/CN2014/073084申请内容也可以理解为通过引用作为本发明实施例内容的一部分,不再赘述。
上文中结合图1描述了本发明实施例的应用场景,下面将结合图2至图4F,从终端设备侧描述根据本发明实施例的传输导频序列的方法。
图2示出了根据本发明实施例的传输导频序列的方法200,该方法200例如可以由终端设备执行。如图2所示,该方法200包括:
S210,确定用于指示终端设备是否处于活跃状态的第一导频序列,可选地,确定用于指示终端设备是否处于活跃状态的第一导频序列可以是指终端设备从第一导频序列集合中选择第一导频序列,或者,可选地,可以是终端设备根据公式计算或者其他方式确定第一导频序列;
S220,确定用于上行数据解调的第二导频序列,可选地,确定用于上行数据解调的第二导频序列可以是从第二导频序列集合中选择第二导频序列,或者,可选地,可以是终端设备根据公式计算或者其他方式确定第二导频序列;
S230,将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;
S240,将该第二导频序列映射到该免授权传输资源的第二OFDM符号;
S250,通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
具体地,在免授权传输系统中,存在大量的终端设备,但同时接入网络的终端设备的数量很少,也即处于活跃状态的终端设备很少,由于终端设备可以随机选择免授权传输资源发送数据,因而网络设备事先不知道哪些终端设备是处于活跃状态的终端设备,这就需要网络设备对每个可能的导频进行检测,以判断处于活跃状态的终端设备,而该检测过程的复杂度很高。
为了降低网络设备检测导频的复杂度,在终端设备的免授权接入过程中,终端设备可以选择免授权传输资源,例如,终端设备可以选择一个CTU。为了进行上行数据的传输,终端设备可以确定第一导频序列和第二导频序 列,其中,该第一导频序列用于指示终端设备的状态,例如,用于指示终端设备是否处于活跃状态,该第二导频序列上行数据的解调,具体地可以理解为用于信道估计,从而根据信道估计的结果对上行数据进行解调;进一步地,终端设备可以将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
相应地,网络设备可以在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,从而网络设备可以在第二OFDM符号上仅仅检测与该第一导频序列相应的第二导频序列,即网络设备可以仅仅检测该处于活跃状态的终端设备的第二导频序列,并可以根据该第二导频序列进行信道估计并进一步地根据信道估计结果对上行数据进行解调,而不需要网络设备对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
因此,本发明实施例的传输导频序列的方法,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,导频序列(Pilot Sequence)可以被简称为导频或导频信号,也可以被称为参考信号(Reference Signal,简称为“RS”);相应地,传输导频序列也可以理解为传输导频或传输参考信号。本发明实施例仅以导频序列为例进行说明,但本发明并不限于此。
应理解,在本发明实施例中,该第一导频序列用于指示终端设备的状态,即用于指示传输该第一导频序列的终端设备的状态,例如,用于指示终端设备是否处于活跃状态,又例如,可以通过终端设备是否发送该第一导频序列,来指示该终端设备是否处于活跃状态等;该第一导频序列可以是Walsh码, 也可以是用于网络设备确定终端设备活跃性或活跃状态的其它导频序列,例如,该第一导频序列为ZC(Zadoff-Chu)序列;又例如,该第一导频序列为状态检测参考信号(Activity Detection Reference Signal,简称为“ADRS”)等,但本发明实施例并不限于此。
还应理解,在本发明实施例中,该第二导频序列用于上行数据的解调,具体地,该第二导频序列可以用于网络设备对信道进行估计,从而便于网络设备对终端设备发送的上行数据进行解调;该第二导频序列例如为DMRS,当然,该第二导频序列也可以为用于网络设备解调上行数据的其它导频序列,本发明实施例并不限于此。
还应理解,在本发明实施例中,免授权传输资源可以表示免授权传输中用于传输数据的时频资源,或者免授权传输资源也可以表示免授权传输中的时间、频率和码域相结合的传输资源,或者其他上述的传输资源,例如,该免授权传输资源为CTU接入区域(Access Region)等。还应理解,本发明实施例仅以CTU接入区域为例进行说明,但本发明并不限于此。
还应理解,在本发明实施例中,第一OFDM符号为免授权传输资源中用于传输第一导频序列的OFDM符号,由此,该第一OFDM符号也可以称之为第一导频符号,其中,一个免授权传输资源可以包括一个或多个第一OFDM符号。第二OFDM符号为免授权传输资源中用于传输第二导频序列的OFDM符号,由此,该第二OFDM符号也可以称之为第二导频符号,其中,一个免授权传输资源可以包括一个或多个第二OFDM符号。其中,第一OFDM符号与第二OFDM符号可以完全相同,也可以完全不同,还可以具有部分相同的OFDM符号,例如,第一OFDM符号与第二OFDM符号具有的相同的OFDM符号既可以用于传输第一导频序列,又可以用于传输第二导频序列。
在本发明实施例中,如图3所示,可选地,该方法200还包括:
S260,确定第一导频编号;
其中,该确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:
S211,根据该第一导频编号确定该第一导频序列;
其中,该确定用于上行数据解调的第二导频序列,包括:
S221,根据该第一导频编号确定该第二导频序列。
即在本发明实施例中,在终端设备的免授权接入过程中,终端设备可以选择免授权传输资源,例如,终端设备可以选择一个CTU接入区域。为了进行上行数据的传输,终端设备可以确定第一导频编号,并由此可以根据该第一导频编号确定第一导频序列,以及根据该第一导频编号确定第二导频序列,即第一导频序列与第二导频序列具有对应关系。进一步地,终端设备可以将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
因此,本发明实施例的传输导频序列的方法,通过终端设备确定第一导频编号,根据该第一导频编号确定第一导频序列和第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对与第一导频序列相应的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,仅以终端设备根据第一导频编号确定第一导频序列和第二导频序列为例进行说明,但本发明并不限于此。例如,终端设备可以在第一导频序列集合中选择一个第一导频序列,或者,终端设备可以在第二导频序列集合中选择一个第二导频序列;又例如终端设备可以在第一导频序列集合中选择一个第一导频序列后并由此可以确定与第一导频序列对应的第二导频序列;又例如,终端设备可以在第一导频序列和第二导频序列的对应表中,确定第一导频序列以及相应的第二导频序列;再例如,终端设备可以根据公式,确定第一导频序列,并根据第一导频序列和第二导频序列的对应关系,确定相应的第二导频序列。
应理解,在本发明实施例中,可选地,终端设备可以确定用于指示终端设备是否处于活跃状态的第一导频序列;并可以根据第一导频序列与第二导频序列的对应关系,确定用于对上行数据进行解调的第二导频序列;从而,终端设备可以将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下文中将进一步结合图4A至图5F,对根据本发明实施例的传输导频序列的方法进行详细描述。
在S260中,终端设备确定第一导频编号。具体地,例如终端设备可以通过计算、选择(例如随机选择)、查表、根据系统配置参数等多种方式确定一个导频编号。
可选地,在本发明实施例中,确定第一导频编号包括:
根据终端设备的标识确定该第一导频编号;或
根据该免授权传输资源的标识和该终端设备的标识确定该第一导频编号;或
通过随机数发生器生成该第一导频编号。
具体而言,在本发明实施例中,终端设备可以根据终端设备的标识确定该第一导频编号。例如,终端设备可以将该终端设备的标识ID对终端设备的总数量或第一导频序列的总数量取模后加1的值作为第一导频编号,或根据该终端设备的ID进行其它运算后的值作为该第一导频编号。其中,该终端设备的标识可以是小区内部的用户标识,例如小区无线网络临时标识(Cell-Radio Network Tempory Identity,简称为“C-RNTI”);该终端设备的标识也可以是全局的用户标识,例如国际移动用户识别码(International Mobile Subscriber Identification Number,简称为“IMSI”)、临时移动用户识别码(Temporary Mobile Subscriber Identity,简称为“TMSI”)等。
应理解,本发明实施例仅以C-RNTI、IMSI和TMSI为例进行说明,但本发明并不限于此,用于确定该第一导频编号的终端设备标识还可以采用其它用户标识;并且本发明并不限定由终端设备标识确定第一导频编号的具体方法,例如,终端设备也可以根据终端设备标识与导频编号的对应关系,确定第一导频编号,该终端设备标识与导频编号的对应关系可以以表格、算法、公式等方式体现。
在本发明实施例中,终端设备还可以根据免授权传输资源的标识以及终端设备的标识确定该第一导频编号,即相同的终端设备在选择不同的免授权传输资源时,可以具有不同的第一导频编号。还应理解,本发明实施例仅以 此为例进行说明,但本发明并不限于此,例如,终端设备还可以参考其它因素来共同确定该第一导频编号。再一方面,在本发明实施例中,终端设备还可以通过随机数发生器生成该第一导频编号,但本发明并不限于此。
例如,在本发明实施例中,该第一导频编号i可以由下列等式(1)确定:
i=mod(NID,Nk)  (1)
其中,mod()表示求余运算;NID表示终端设备的ID;Nk表示用于第k个免授权传输资源的第一导频序列的数量。
应理解,本发明实施例仅以等式(1)为例进行说明,但本发明并不限于此,例如,也可以将根据上述等式(1)确定的数值与确定的自然数之和作为该第一导频编号,或者根据上述等式(1)确定的数值与确定的自然数之差作为该第一导频编号。
在S211中,终端设备根据该第一导频编号确定第一导频序列。具体而言,在本发明实施例中,终端设备可以根据第一导频编号与第一导频序列之间的对应关系,确定该第一导频序列,该对应关系可以具有多种表现形式,例如公式、表格等形式,即终端设备可以根据公式进行运算来确定该第一导频序列,也可以通过查表的方式确定与该第一导频编号对应的第一导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此。
例如,在本发明实施例中,终端设备也可以在第一导频序列集合中,确定与该第一导频编号对应的第一导频序列。可选地,该第一导频序列集合包括的导频序列的数量是预设的;可选地,该第一导频序列集合包括的导频序列的数量与一个免授权传输资源中用于传输导频序列的资源单元(Resource Element,简称为“RE”)的数量相同。
例如,在本发明实施例中,假设免授权传输资源为竞争传输单元CTU接入区域,对于每个CTU接入区域而言,存在2个OFDM符号用于传输第一导频序列,再假设每个OFDM符号有Q个资源单元RE,则对于每个CTU接入区域而言,该第一导频序列集合可以包括2Q个第一导频序列。应理解,该第一导频序列集合还可以包括更多或更少的导频序列。
在本发明实施例中,可选地,该第一导频序列的元素为非零元素。在本发明实施例中,由于第一导频序列用于指示终端设备的活跃性,因此,该第一导频序列可以设计成具有较短的长度,由此,该非零元素可以映射到免授权传输资源的部分子带,即终端设备可以在一个OFDM符号的部分频率资 源上发送该第一导频序列,而不用在一个OFDM符号的整个传输带宽上发送该第一导频序列,一方面能够显著地降低导频开销,另一方面,较短的第一导频序列也便于网络设备进行检测,从而能够进一步地降低导频检测的复杂度。
另一方面,在本发明实施例中,可选地,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。该第一导频序列也可以映射到免授权传输资源的部分子带,从而能够显著地降低导频开销。虽然该实施例中的第一导频序列与上一实施例中的第一导频序列相比具有更长的长度,但其中的第一导频子序列为全零元素,并可以映射成免授权传输资源上的零符号,因而也同样能够降低导频检测的复杂度。
在本发明实施例中,可选地,第一导频序列包括的非零元素映射到免授权传输资源的M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。可选地,该M个RE为连续的M个RE,从而能够进一步增强导频序列之间的正交性。
应理解,本发明实施例仅以Walsh码为例进行说明,但本发明并不限于此,例如,该第一导频序列也可以采用伪噪声序列(Pseudo-Noise Sequence),也称之为PN序列,或该第一导频序列也可以采用ZC(Zadoff-Chu)序列、M序列等。
还应理解,在本发明实施例中,如果第一导频序列使用Zadoff-Chu序列,则映射到同一子带的终端设备可以通过循环移位值和根编号进行区分;如果第一导频序列使用M序列,则映射到同一子带的终端设备可以通过循环移位值进行区分,即映射到同一子带的终端设备的第一导频序列对应不同的循环移位值。
相应地,在S230中,终端设备将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号。
应理解,在本发明实施例中,第一OFDM符号为免授权传输资源中用于传输第一导频序列的OFDM符号,由此,该第一OFDM符号也可以称之为第一导频符号,其中,一个免授权传输资源可以包括一个或多个第一OFDM符号。例如,在本发明实施例中,免授权传输资源例如为CTU接入区域,一个CTU接入区域的第一OFDM符号可以包括两个OFDM符号; 进一步地,例如,该CTU接入区域的第一OFDM符号可以包括该CTU接入区域的第三个OFDM符号和第十个OFDM符号。还应理解,在本发明实施例中,每个免授权传输资源的第一OFDM符号包括的OFDM符号的数量可以相同,也可以不同。
还应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此,例如,一个CTU接入区域的第一OFDM符号可以仅包括一个OFDM符号,或者一个CTU接入区域的第一OFDM符号可以包括三个或更多个OFDM符号等。
在本发明实施例中,如图4A所示,可选地,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列映射到该免授权传输资源的第一OFDM符号的部分子带。
具体地,如图4A所示,终端设备可以将第一导频序列映射到第三个OFDM符号的部分子带上,而没有占有该OFDM符号的整个传输带宽,由此能够显著地降低导频开销。
但应理解,本发明实施例仅以该第一导频序列映射到4个RE为例进行说明,但本发明并不限于此,例如,该第一导频序列可以映射到2个RE或8个RE等。还应理解,本发明实施例仅以该第一导频序列映射到一个OFDM符号的部分子带为例进行说明,但本发明并不限于此,例如,该第一导频序列可以映射到两个或更多个OFDM符号的部分子带上。
可选地,在本发明实施例中,映射到OFDM符号的部分子带上的该第一导频序列的元素可以为非零元素;可选地,在本发明实施例中,映射到OFDM符号的部分子带上的该第一导频序列可以包括第一导频子序列和第二导频子序列,该第一导频子序列的元素可以为全零元素,该第二导频子序列的元素可以为非零元素。但应理解,在本发明实施例中,由全零元素形成的该第一导频子序列映射成零符号,而由非零元素形成的该第二导频子序列映射成非零符号。
可选地,在本发明实施例中,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列包括的非零元素映射到该免授权传输资源的第一OFDM符号的第一子带,该第一子带包括M个资源单元RE,该非零元素映 射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
可选地,在本发明实施例中,该第一子带包括的RE为M个连续的RE。即在本发明实施例中,第一导频序列优选地映射到一个子带的连续的几个RE上,从而使得不同的第一导频序列之间的正交性更好,由此能够进一步提升系统检测导频的可靠性。
例如,假设对于每个CTU接入区域,一共配置有144个不同的第一导频序列,即N=144,其中N表示用于CTU接入区域的第一导频序列的数量,每个第一导频序列的长度为M,每个CTU接入区域的子载波的数量为K,则可以根据下列等式(2),将下列表1、表2或表3中的M阶Walsh码中索引为m的序列确定为与第一导频编号i对应的第一导频序列,
m=mod(mod(i,K),M)  (2)
其中,i为第一导频编号,且1≤i≤N,m为整数,且0≤m≤M-1;mod()为求余运算符;当M=2时,与第一导频编号i对应的第一导频序列选自表1中的2阶Walsh码;当M=4时,与第一导频编号i对应的第一导频序列选自表2中的4阶Walsh码;当M=8时,与第一导频编号i对应的第一导频序列选自表3中的8阶Walsh码。
表1(M=2)
m 第一导频序列
0 [+1 +1]
1 [+1 -1]
表2(M=4)
m 第一导频序列
0 [+1 +1 +1 +1]
1 [+1 +1 -1 -1]
2 [+1 -1 +1 -1]
3 [+1 -1 -1 +1]
表3(M=8)
m 第一导频序列
0 [+1 +1 +1 +1 +1 +1 +1 +1]
1 [+1 +1 +1 +1 -1 -1 -1 -1]
2 [+1 +1 -1 -1 +1 +1 -1 -1]
3 [+1 +1 -1 -1 -1 -1 +1 +1]
4 [+1 -1 +1 -1 -1 +1 -1 +1]
5 [+1 -1 -1 +1 +1 -1 -1 +1]
6 [+1 -1 -1 +1 -1 +1 +1 -1]
7 [+1 -1 +1 -1 +1 -1 +1 -1]
例如,当采用长度为2的两阶Walsh码作为第一导频序列时,可以根据等式(2)以及表1确定相应的第一导频序列;类似地,当采用长度为4的四阶Walsh码作为第一导频序列时,可以根据等式(2)以及表2确定相应的第一导频序列;当采用长度为8的八阶Walsh码作为第一导频序列时,可以根据等式(2)以及表3确定相应的第一导频序列。
应理解,本发明实施例仅以表1至表3为例进行说明,但本发明并不限于此,例如,该第一导频序列也可以采用其它长度的Walsh码,该第一导频序列还可以采用其它序列。
又例如,假设一个CTU接入区域的第一OFDM符号可以包括第三个OFDM符号和第十个OFDM符号,则可以根据下列等式(3)至(5),将第i个第一导频序列映射到该CTU接入区域的第a个ADRS导频符号的第s个至第t个子载波,
Figure PCTCN2015082851-appb-000001
Figure PCTCN2015082851-appb-000002
Figure PCTCN2015082851-appb-000003
其中,
Figure PCTCN2015082851-appb-000004
为向下取整运算符。
应理解,本发明实施例仅以上述等式为例进行说明,但本发明并不限于此,例如,上述等式中的向下取整运算符可以变形为向上取整运算符等。
在本发明实施例中,确定终端设备状态的可靠性对于免授权传输系统而言十分重要,因此,可以结合分集技术来增加传输第一导频序列的可靠性。
具体地,如图4B和4C所示,在本发明实施例中,可选地,该将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列重复映射到该免授权传输资源的不同的第一OFDM 符号;和/或
将该第一导频序列重复映射到该免授权传输资源的该第一OFDM符号的不同子带。
例如,如图4B所示,在第三个OFDM符号以及第十个OFDM符号上发送相同的第一导频序列,从而可以通过在不同的第一OFDM符号上发送相同的第一导频序列(例如M阶Walsh码),从而可以实现时域分集;类似地,如图4C所示,在第三个OFDM符号的不同子带上发送相同的第一导频序列(例如M阶Walsh码),从而可以实现频域分集。
应理解,在本发明实施例中,通过时频分集和频域分集的方式可以显著地增加检测可靠性,但同时也将增加导频开销。此外,在本发明实施例中,还可以通过空间分集来增加检测的可靠性。例如,可以增加基站的接收天线数量,从而基站可以对多根接收天线所接收的信号分别进行检测,从而能够增加检测的可靠性,并且不会增加导频开销。但应理解,在本发明实施例中,也可以增加终端设备的发送天线数量,即终端设备在不同的天线上分别发送不同的第一导频序列,而基站只要检测到其中一个第一导频序列后即可以认为相应的终端设备处于活跃状态,该方式也能够增加检测的可靠性,但需要增加导频开销。
还应理解,在本发明实施例中,不同的第一导频序列可以通过时域(OFDM符号)、频域(子载波组或子带)和码域(Walsh码等)这三种方式中的至少一种方式进行区分。例如,可以将第一导频序列映射到不同的OFDM符号上的相同或不同的子带,以对第一导频序列进行区分;类似地,也可以将第一导频序列映射到相同或不同的OFDM符号上的不同的子带,同样地可以对第一导频序列进行区分。进一步地,如果多个第一导频序列映射到相同的时频资源上,则需要映射到相同时频资源上的不同的第一导频序列之间相互正交。在本发明实施例中,优选地,一个第一OFDM符号包括多组资源单元RE或多个子带,每个第一导频序列优选地映射到其中一个第一OFDM符号的一组RE或一个子带,并且位于同一组RE或同一个子带的不同第一导频序列之间相互正交。进一步优选地,不同的第一导频序列之间相互正交。
因此,本发明实施例的传输导频序列的方法,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列,并将该第一导频序列映射到 免授权传输资源的第一OFDM符号,再通过该第一OFDM符号发送该第一导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
在S220中,终端设备确定用于上行数据解调的第二导频序列。具体而言,终端设备确定与第一导频序列相对应的第二导频序列。
例如,在本发明实施例中,终端设备可以根据第一导频序列与第二导频序列之间的对应关系,确定该第二导频序列,该对应关系可以具有多种表现形式,例如公式、表格等形式,即终端设备可以根据公式进行运算来确定该第二导频序列,也可以通过查表的方式确定与该第一导频序列对应的第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此。
在本发明实施例中,可选地,当第一导频序列与第二导频序列之间通过第一导频编号建立起对应关系时,终端设备确定用于上行数据解调的第二导频序列可以包括:终端设备根据该第一导频编号确定该第二导频序列。
即在S221中,终端设备根据该第一导频编号确定第二导频序列。具体而言,在本发明实施例中,终端设备可以根据第一导频编号与第二导频序列之间的对应关系,确定该第二导频序列,该对应关系可以具有多种表现形式,例如公式、表格等形式,即终端设备可以根据公式进行运算来确定该第二导频序列,也可以通过查表的方式确定与该第一导频编号对应的第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此。例如,在本发明实施例中,终端设备也可以在第二导频序列集合中,确定与该第一导频编号对应的第二导频序列。
在本发明实施例中,第一导频序列用于指示终端设备的状态,第二导频序列用于上行数据的解调,其中,第一导频序列与第二导频序列可以具有对应关系,由此网络设备通过对第一导频序列的检测,可以仅仅对与第一导频序列相应的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。而第一导频序列与第二导频序列之间的对应关系可以是一对多的对应关系,也可以是多对一的对应关系,还可以是一一对应关系。
具体地,第一方面,在本发明实施例中,一个第一导频序列可以对应于 多个第二导频序列,或一个第一导频序列可以对应于一组第二导频序列,该组第二导频序列可以包括两个或更多个第二导频序列,即第一导频序列与第二导频序列之间的对应关系可以是一对多的对应关系。由此,第一导频序列的数量可以小于第二导频序列的数量,从而能够降低第一导频序列的开销。但应理解,在此情况下,与第一导频序列与第二导频序列之间具有一一对应关系相比,网络设备对第一导频序列的检测精度可能降低,同时也可能增加网络设备对第二导频序列进行检测的复杂度。
进一步地,终端设备可以首先确定第一导频编号,并可以根据该第一导频编号确定第一导频序列和第二导频序列,其中,一个第一导频序列可以对应于多个第二导频序列,例如,一个导频编号可以对应一个第一导频序列,并可以对应多个第二导频序列;或多个导频编号可以分别对应多个第二导频序列,但同时对应一个第一导频序列,即不同的导频编号可以对应相同的第一导频序列,但对应不同的第二导频序列。相应地,网络设备可以先在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,由此,网络设备可以对该第一导频序列所对应的多个第二导频序列分别进行检测。由于网络设备仅仅需要对与第一导频序列所对应的多个第二导频序列分别进行检测,而不需要对所有可能的第二导频序列进行检测,由此也能够显著地减少导频检测数量,并降低导频检测的复杂度。
第二方面,在本发明实施例中,多个第一导频序列也可以对应于一个第二导频序列,或一组第一导频序列可以对应于一个第二导频序列,该组第一导频序列可以包括两个或更多个第一导频序列,即第一导频序列与第二导频序列之间的对应关系可以是多对一的对应关系。
例如,终端设备可以首先确定第一导频编号,并可以根据该第一导频编号确定第一导频序列和第二导频序列,其中,多个第一导频序列可以对应于一个第二导频序列,例如,一个导频编号可以对应多个第一导频序列,并可以对应一个第二导频序列;或多个导频编号可以分别对应多个第一导频序列,但同时对应一个第二导频序列,即同一导频编号可以对应不同的第一导频序列,但对应相同的第二导频序列。相应地,网络设备可以先在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,由此,网络设 备可以对该第一导频序列所对应的第二导频序列分别进行检测。由于网络设备仅仅需要对与第一导频序列所对应的第二导频序列分别进行检测,而不需要对所有可能的第二导频序列进行检测,由此也能够显著地减少导频检测数量,并降低导频检测的复杂度。
第三方面,在本发明实施例中,优选地,该第一导频序列与该第二导频序列具有一一对应关系。例如,一个导频编号可以唯一地对应一个第一导频序列,并可以唯一地对应一个第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此,例如,多个导频编号可以对应一个第一导频序列,而该第一导频序列可以唯一地对应一个第二导频序列;或多个导频编号可以对应一个第二导频序列,而该第二导频序列可以唯一地对应一个第一导频序列。
具体地,例如,终端设备可以首先确定第一导频编号,并可以根据该第一导频编号确定第一导频序列,以及确定与第一导频序列一一对应的第二导频序列;进一步地,终端设备可以将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。相应地,网络设备可以先在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,由此,网络设备可以对该第一导频序列所唯一对应的一个第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
在上行免授权传输系统中,终端设备随机选择用于上行数据解调的第二导频序列,不同终端设备可能选择相同的第二导频序列而出现导频碰撞,此时网络设备认为只有一个终端设备使用该第二导频序列,从而无法正确译码。因此,为了降低导频碰撞概率,需要足够多的第二导频序列供用户选择。
而在目前的技术中,上行DMRS在同一个OFDM符号内通过不同的循环移位值进行区分,每个OFDM符号可以最多可以支持12个正交的导频。而为了满足足够低的导频碰撞概率,需要上百个或上千个导频,这需要增加发送DMRS的OFDM符号的数量。但通过简单地增加发送DMRS的OFDM符号数量的方法远远不能满足实际需求。例如,一个上行子帧总共包括14个OFDM符号,即使将这些OFDM符号全部用于发送DMRS,也只能区分 14*12=168个导频,并且此时已没有其它时频资源用于发送上行数据。
为此,在本发明实施例中,为了进一步减少导频开销,可以将多个用于上行数据解调的导频序列组合形成足够多的可相互区分的导频序列,从而不仅能够满足足够低的导频碰撞概率,还能够大大降低导频开销。
具体地,在本发明实施例中,可选地,该第二导频序列为多个子序列形成的子序列组合。即在本发明实施例中,第一导频序列与由两个或两个以上的子序列形成的子序列组合之间可以具有一对多的对应关系、或多对一的对应关系、或一一对应关系。该子序列例如是DMRS。
例如,如果每个OFDM符号最多可以支持S个正交的导频序列,并且以每个OFDM符号所支持的导频序列作为子序列组合中的一个元素,即以每个OFDM符号所承载的导频序列作为子序列组合中的一个子序列,则对于D个OFDM符号,形成的子序列组合最多可以具有SD种不同的子序列组合,由此能够显著地增加系统中可用的第二导频序列的数量。例如,按照现有系统的参数配置,每个OFDM符号可以支持S=12个正交的导频序列,则两个OFDM符号最多可以支持122=144种不同的子序列组合,即144种不同的第二导频序列。
应理解,在LTE相同中,假设每个用于传输DMRS的OFDM符号对应K个资源单元RE,对于每个OFDM符号而言,不同的DMRS可以通过对基序列b(k)的不同循环移位值ci进行区分,如下等式(6)所示,其中,每个循环移位值ci对应一个DMRS:
Figure PCTCN2015082851-appb-000005
其中,不同循环移位值对应的DMRS之间相互正交。
因此,在本发明实施例中,可选地,该第二导频序列由多个循环移位值生成,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。例如,在本发明实施例中,第i个第二导频序列可以由循环移位值组合(ci,1,…,ci,d,…,ci,D)表示,其中,ci,d对应第d个OFDM符号上的子序列的循环移位值,d为自然数,且D≥d≥1。
还应理解,在本发明实施例中,仅以多个子序列形成子序列组合来增加第二导频序列的数量为例进行说明,但本发明并不限于此,例如,也可以通过增加每个第二OFDM符号支持的导频序列的数量等方法,来满足足够低的导频碰撞概率的要求。
因此,在本发明实施例中,通过将多个子序列进行组合来形成第二导频序列,能够形成足够多的可以相互区分的导频序列,从而不仅能够满足足够低的导频碰撞概率要求,还能够大大降低导频开销。
相应地,在S240中,终端设备将该第二导频序列映射到免授权传输资源的第二正交频分复用OFDM符号。
应理解,在本发明实施例中,第二OFDM符号为免授权传输资源中用于传输第二导频序列的OFDM符号,由此,该第二OFDM符号也可以称之为第二导频符号,其中,一个免授权传输资源可以包括一个或多个第二OFDM符号。例如,在本发明实施例中,免授权传输资源例如为CTU接入区域,一个CTU接入区域的第二OFDM符号可以包括三个OFDM符号;进一步地,该CTU接入区域的第二OFDM符号可以包括该CTU接入区域的第二个OFDM符号、第八个OFDM符号和第十一个OFDM符号。
还应理解,在本发明实施例中,每个免授权传输资源的第二OFDM符号包括的OFDM符号的数量可以相同,也可以不同;并且第一OFDM符号与第二OFDM符号包括的OFDM符号可以相同,也可以不同。
还应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此,例如,一个CTU接入区域的第二OFDM符号也可以仅包括一个OFDM符号,或者一个CTU接入区域的第二OFDM符号可以包括两个或更多个OFDM符号等。
在本发明实施例中,形成子序列组合的多个子序列可以全部映射到免授权传输资源的同一个第二OFDM符号,也可以分别映射到免授权传输资源的不同的第二OFDM符号,还可以部分映射到免授权传输资源的同一个第二OFDM符号,下文中将结合图5A至5F,对第二导频序列的映射进行详细描述。
如图5A至5D所示,在本发明实施例中,可选地,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的至少两个子序列映射到该免授权传输资源的同一个第二OFDM符号。
具体而言,在本发明实施例中,至少两个子序列可以映射到免授权传输资源的同一个第二OFDM符号。例如,在图5A中,子序列1和子序列2都映射到免授权传输资源的第四个OFDM符号,并且子序列1和子序列2都 映射到该OFDM符号的整个频带。又例如,在图5B和5C中,子序列1和子序列2都映射到免授权传输资源的第四个OFDM符号,并且子序列1和子序列2映射到该OFDM符号的不同子带;而在图5B中,第二导频序列还包括子序列3,该子序列3映射到免授权传输资源的第十一个OFDM符号,并且子序列3也映射到该OFDM符号的部分频带;此外,在图5B和5C中,对于每个子序列而言,映射的部分频带或子带是连续的。再例如,在图5D中,子序列1和子序列2映射到同一OFDM符号的不同子带,但对于每个子序列1或2而言,映射的部分频带或子带是不连续的。
在本发明实施例中,至少两个子序列可以映射到免授权传输资源的同一个第二OFDM符号,也即可以将一个OFDM符号所支持的全部导频序列进一步分成多个组,每个组中可以挑选一个导频序列作为子序列组合中的一个子序列。
例如,假设对于上行免授权传输系统而言,每个免授权传输资源具有两个用于传输第二导频序列的OFDM符号,该免授权传输资源例如为CTU接入区域,即每个CTU接入区域包括两个第二OFDM符号,每个第二OFDM符号可以支持12个正交的导频序列,该导频序列例如为DMRS。假设第二导频序列为三个子序列A、B、C形成的子序列组合(A,B,C),其中,子序列A可以为第一个第二OFDM符号所支持的6个DMRS中的一个,子序列B可以为第一个第二OFDM符号所支持的另外6个DMRS中的一个,而子序列C可以为第二个第二OFDM符号所支持的12个DMRS中的一个,即该第二导频序列包括的三个子序列中,子序列A和B映射到免授权传输资源的同一个第二OFDM符号,子序列C映射到该免授权传输资源的另一第二OFDM符号。此时,每个CTU接入区域包括的两个第二OFDM符号最多可以支持6×6×12=432种不同的子序列组合,即每个CTU接入区域可以支持432种不同的第二导频序列,与上述实施例中每个CTU接入区域能够支持144种不同的第二导频序列相比,该实施例中每个CTU接入区域能够支持更多的第二导频序列,由此能够进一步地降低导频开销。
应理解,上述实施例仅以两个子序列映射到免授权传输资源的同一个第二OFDM符号为例进行说明,但本发明并不限于此,当更多的子序列映射到免授权传输资源的同一个第二OFDM符号时,相同的免授权传输资源能够支持更多的第二导频序列,并能够更显著地降低导频开销。
例如,假设第二导频序列为四个子序列A、B、C、D形成的子序列组合(A,B,D,C),其中,子序列A可以为第一个第二OFDM符号所支持的第一组4个DMRS中的一个,子序列B可以为第一个第二OFDM符号所支持的第二组4个DMRS中的一个,子序列D可以为第一个第二OFDM符号所支持的第三组4个DMRS中的一个,而子序列C仍为第二个第二OFDM符号所支持的12个DMRS中的一个。此时,每个CTU接入区域包括的两个第二OFDM符号最多可以支持4×4×4×12=768种不同的第二导频序列。
应理解,本发明实施例仅以其中一个第二OFDM符号所支持的DMRS进行分组为例进行说明,当对每个第二OFDM符号所支持的DMRS都进行分组,以使得第二导频序列包括更多的子序列时,每个CTU接入区域能够支持更多种不同的第二导频序列,为了简洁,在此不再赘述。
进一步地,在本发明实施例中,可选地,如图5A所示,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列映射到该免授权传输资源的同一个第二OFDM符号。
例如,在图5A中,第二导频序列仅包括子序列1和子序列2,这两个子序列都映射到免授权传输资源的第四个OFDM符号,由此能够使得免授权传输资源能够支持更多种第二导频序列,从而能够进一步地节省导频开销。
进一步地,在本发明实施例中,可选地,如图5B和5C所示,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的至少两个子序列分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带。
例如,在图5B和5C中,第二导频序列包括的子序列1和子序列2分别映射到免授权传输资源的第四个OFDM符号的不同子带,从而能够节省系统时频资源的开销,也能够进一步节省系统的导频开销。
应理解,映射到同一第二OFDM符号的不同子带上的子序列可以相同,也可以不同。
进一步地,在本发明实施例中,可选地,如图5E和5F所示,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该 免授权传输资源的不同的第二OFDM符号。
例如,在图5E中,第二导频序列包括子序列1和子序列2,其中,子序列1映射到免授权传输资源的第四个OFDM符号,而子序列2则映射到免授权传输资源的第十一个OFDM符号,并且,子序列1映射到第四个OFDM符号的整个频带,而子序列2映射到第十一个OFDM符号的部分频带。又例如,在图5F中,子序列1映射到免授权传输资源的第八个OFDM符号的整个频带,而子序列2则映射到免授权传输资源的第十一个OFDM符号的整个频带。
优选地,在本发明实施例中,如图5F所示,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,并且该第二OFDM符号与该第一OFDM符号不同。
具体而言,在图5F中,第一导频序列映射到免授权传输资源的第三个OFDM符号的部分频带;而第二导频序列包括子序列1和子序列2,子序列1映射到免授权传输资源的第八个OFDM符号的整个频带,子序列2则映射到免授权传输资源的第十一个OFDM符号的整个频带。
应理解,本发明实施例仅以图5A至5F所示的映射示意图为例进行说明,但本发明并不限于此,为了简洁,在此不再赘述。
在本发明实施例中,对于第二导频序列而言,可以结合分集技术来增加传输第二导频序列的可靠性。
即,在本发明实施例中,可选地,该将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列重复映射到该免授权传输资源的不同的第二OFDM符号。
应理解,在本发明实施例中,通过时频分集或频域分集的方式可以显著地增加检测可靠性,但同时也将增加导频开销。此外,在本发明实施例中,还可以通过空间分集来增加检测的可靠性。例如,可以增加基站的接收天线数量,从而基站可以对多根接收天线所接收的信号分别进行检测,从而能够增加检测的可靠性,并且不会增加导频开销。但应理解,在本发明实施例中,也可以增加终端设备的发送天线数量,即终端设备在不同的天线上分别发送 不同的第一导频序列,而基站只要检测到其中一个第一导频序列后即可以认为相应的终端设备处于活跃状态,该方式也能够增加检测的可靠性,但需要增加导频开销。
还应理解,在本发明实施例中,不同的第二导频序列也可以通过时域(OFDM符号)、频域(子载波组或子带)和码域这三种方式中的至少一种方式进行区分。例如,可以将第二导频序列映射到不同的OFDM符号上,以对第二导频序列进行区分;类似地,也可以将第二导频序列映射到OFDM符号的不同子带上,同样地可以对第二导频序列进行区分。进一步地,如果多个第二导频序列映射到相同的时频资源上,则需要映射到相同时频资源上的不同的第二导频序列之间相互正交。此外,还应理解,在本发明实施例中,各第二OFDM符号上映射的子序列不完全相同,从而能够便于网络设备进行正确的信道估计,以进行上行数据的解调。
如上文所述,例如,在本发明实施例中,第二导频序列可以由循环移位值组合(ci,1,…,ci,d,…,ci,D)表示,其中,ci,d对应第d个OFDM符号上的子序列的循环移位值。
仍以由第一导频编号i确定第一导频序列和第二导频序列为例进行说明,假设免授权传输资源为CTU接入区域,一个CTU接入区域的第二OFDM符号可以包括两个OFDM符号,每个OFDM符号最多可以支持12种正交的DMRS,每个第二导频序列为两个子序列形成的子序列组合,并且每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,则一个CTU接入区域最多支持144个第二导频序列(ci,1,ci,2),其中,循环移位值ci,1,ci,2可以根据下列公式确定:ci,1=mod(i,12);
Figure PCTCN2015082851-appb-000006
其中,mod()为求余运算符,
Figure PCTCN2015082851-appb-000007
为向下取整运算符。
应理解,本发明实施例仅以上述公式为例进行说明,但本发明并不限于此,例如,上述公式中的向下取整运算符可以变形为向上取整运算符等。
在本发明实施例中,如果第一导频序列的数量N与第二导频序列的数量SD相等时,则可以利用所有可能的子序列组合。在本发明实施例中,第一导频序列的导频开销和N成正比,而第二导频序列的导频开销和D成正比。当D较大时,第一导频序列的导频开销增加较快,可能出现N<SD的情况,此时可以通过从SD个可能的子序列组合中选取N个与第一导频序列一一对应。例如,在N=144,S=12,D=3的情况,可以构建由循环移位值ci,1,ci,2 和ci,3组合形成的第二导频序列(ci,1,ci,2,ci,3):ci,1=mod(i,12);
Figure PCTCN2015082851-appb-000008
ci,3=mod(ci,1+ci,2,12)。
需要指出的是,上述第二导频序列的设计方案是为免授权传输系统专门设计的,不同的子序列(DMRS)可能出现部分碰撞,需要和前述的第一导频序列方案结合使用,并不适合替代当前系统中现有的DMRS方案。下面将通过举例说明ADRS和DMRS结合使用的原理。假设DMRS占用2个OFDM符号,支持144种不同的DMRS,导频编号n和循环移位值组合(ci,1,ci,2)之间有如下对应关系:n=12ci,1+ci,2。可以验证,导频编号为1和2的两个终端设备对应的循环移位值组合分别为(0,1)和(0,2)。如果在未知终端设备状态的情况下,分别检测循环移位值组合对应的导频,则得到的结果并非为正确的信道估计结果。只有通过ADRS先判断出导频编号为1和2的终端设备活跃,进而根据对应的循环移位值组合判断两个终端设备在第一个OFDM符号上冲突,而在第二个OFDM符号上可以区分,因此只能利用第二个OFDM符号上的DMRS进行信道估计。Grant free中有大量潜在用户,但同时活跃的终端设备的数量很少,因此多个DMRS之间完全碰撞的概率小,因此该方案可以很好地适用于Grant free系统。该方案的另一个好处是ADRS的检测复杂度一般远低于DMRS,由于本方案通过ADRS初步判断用户状态,减少了DMRS的检测次数,进而降低了整体的检测复杂度。
应理解,在本发明实施例中,DMRS可以映射到多个第二OFDM符号并发送,不同的DMRS可以在同一个第二OFDM符号上映射相同的导频序列,但各个第二OFDM符号上映射的DMRS不全相同。
在本发明实施例中,假设对于一个CTU接入区域,一共配置有144个不同的第二导频序列,每个第二导频序列包括D个子序列,形成第二导频序列的子序列例如为DMRS,即NDMRS=144,每个OFDM符号的子载波的数量为K,每个子序列可以通过基序列b(k)的不同循环移位值ci来确定,如上等式(6)所示:
Figure PCTCN2015082851-appb-000009
当D=3时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例如可以由下列等式(7)确定:
ci,1=mod(i,12);
Figure PCTCN2015082851-appb-000010
ci,3=mod(ci,1+ci,2,12)  (7)
当D=2时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例 如可以由下列等式(8)确定:
ci,1=mod(i,k);
Figure PCTCN2015082851-appb-000011
k=6,8或12  (8)
当D=3时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例如可以由下列等式(9)或(10)确定:
ci,1=mod(i,k);
Figure PCTCN2015082851-appb-000012
ci,3=mod(ci,1+ci,2,k);k=6,8或12  (9)
ci,1=mod(i,k);
Figure PCTCN2015082851-appb-000013
k=6,8或12  (10)
当D=4时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例如可以由下列等式(11)或(12)确定:
ci,1=mod(i,k);
Figure PCTCN2015082851-appb-000014
ci,4=mod(ci,1+ci,2+ci,3,k);
k=6,8或12  (11)
ci,1=mod(i,k);
Figure PCTCN2015082851-appb-000015
k=6,8或12
               (12)
应理解,各个子序列的循环移位值ci,d例如可以根据上述等式确定,也可以根据表格来确定。
例如,当D=2时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例如可以如表4所示;当D=3时,形成第i个第二导频序列的各个子序列的循环移位值ci,d例如可以如表5所示。
表4(D=2)
i 循环移位值(ci,1,ci,2)
1 (0,0)
2 (0,1)
3 (0,2)
表5(D=3)
i 循环移位值(ci,1,ci,2,ci,3)
1 (0,0,0)
2 (0,1,1)
3 (0,2,2)
应理解,本发明实施例仅以表4和表5为例进行说明,但本发明并不限于此,该第二导频序列各个子序列的循环移位值还可以根据其它的对应表格来确定,例如,第一导频编号与循环移位值的对应表格,第一导频序列与循环移位值的对应表格等。
在S250中,终端设备通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
应理解,在本发明实施例中,终端设备还可以根据预先确定的调制编码方案生成数据,并在免授权传输资源上发送第一导频序列、第二导频序列和数据。还应理解,在本发明实施例中,可选地,终端设备通过该第一OFDM符号和该第二OFDM符号,向网络设备发送该第一导频序列和该第二导频序列。
在本发明实施例中,可选地,该确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:
在第一导频序列集合中选择该第一导频序列。
在本发明实施例中,可选地,该确定用于上行数据解调的第二导频序列,包括:
在第二导频序列集合中选择该第二导频序列。
在本发明实施例中,可选地,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源,或者其他上述对于免授权传输资源介绍中的传输资源。
在本发明实施例中,可选地,该方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
在本发明实施例中,可选地,网络设备为基站,终端设备为用户设备。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输导频序列的方法,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络 设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的方法,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
上文中结合图1至图5F,从终端设备的角度详细描述了根据本发明实施例的传输导频序列的方法,下面将结合图6,从网络设备的角度描述根据本发明实施例的传输导频序列的方法。
如图6所示,根据本发明实施例的传输导频序列的方法300例如可以由免授权传输系统中的网络设备执行,该网络设备例如为基站。该方法300包括:
S310,在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,该第一导频序列用于该指示终端设备是否处于活跃状态;
S320,在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一导频序列对应的第二导频序列,该第二导频序列用于上行数据解调;
S330,根据该第二导频序列进行上行数据解调。
具体地,在免授权传输系统中,存在大量的终端设备,但同时接入网络的终端设备的数量很少,也即处于活跃状态的终端设备很少,由于终端设备可以随机选择免授权传输资源发送数据,因而网络设备事先不知道哪些终端设备是处于活跃状态的终端设备,这就需要网络设备对每个可能的导频进行检测,以判断处于活跃状态的终端设备,而该检测过程的复杂度很高。
为了降低网络设备检测导频的复杂度,在终端设备的免授权接入过程中,终端设备可以选择免授权传输资源,例如,终端设备可以选择一个CTU接入区域。为了进行上行数据的传输,终端设备可以确定第一导频序列和第 二导频序列,其中,该第一导频序列用于指示终端设备的状态,例如,用于指示终端设备是否处于活跃状态,该第二导频序列则用于信道估计,从而用于上行数据的解调;进一步地,终端设备可以将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
相应地,网络设备可以在免授权传输资源的第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,从而网络设备可以在第二OFDM符号上仅仅检测与该第一导频序列相应的第二导频序列,即网络设备可以仅仅检测该处于活跃状态的终端设备的第二导频序列,并可以根据该第二导频序列进行信道估计从而对上行数据进行解调,而不需要网络设备对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
因此,本发明实施例的传输导频序列的方法,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,该第一导频序列用于指示终端设备的状态,例如,用于指示终端设备是否处于活跃状态;该第一导频序列可以是Walsh码,也可以是用于网络设备确定终端设备活跃性或活跃状态的其它导频序列,例如,该第一导频序列为ZC(Zadoff-Chu)序列;又例如,该第一导频序列为状态检测参考信号(Activity Detection Reference Signal,简称为“ADRS”)等,但本发明实施例并不限于此。
还应理解,在本发明实施例中,该第二导频序列用于上行数据的解调,具体地可以理解为,该第二导频序列可以用于网络设备对信道进行估计,网络设备进一步根据信道估计的结果对终端设备发送的上行数据进行解调;该第二导频序列例如为DMRS,当然,该第二导频序列也可以为用于网络设备 解调上行数据的其它导频序列,本发明实施例并不限于此。
还应理解,在本发明实施例中,免授权传输资源可以表示上行免授权传输中用于传输上行数据的时频资源,例如,该免授权传输资源为CTU接入区域等。还应理解,本发明实施例仅以CTU接入区域为例进行说明,但本发明并不限于此。
在本发明实施例中,网络设备可以在免授权传输资源的第一OFDM符号上对第一导频序列进行检测,以确定终端设备的活跃性,例如确定相应的终端设备是否处于活跃状态;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,从而网络设备可以确定处于活跃状态的终端设备的第一导频编号,或确定与该第一导频序列相应的第一导频编号,进一步地,网络设备可以根据确定的第一导频编号,确定与该第一导频编号对应的第二导频序列,并在第二OFDM符号上仅仅检测与该第一导频编号相应的第二导频序列,即网络设备可以仅仅检测该处于活跃状态的终端设备的第二导频序列,并可以根据该第二导频序列进行信道估计从而根据信道估计的结果对上行数据进行解调,而不需要网络设备对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,网络设备可以基于是否接收或检测到第一导频序列,确定相应的终端设备是否处于活跃状态,例如,网络设备可以根据接收到的信号强度大小,确定是否检测到第一导频序列,从而进一步确定相应的终端设备是否处于活跃状态。例如,假设终端设备选择的第一导频序列是Wi,对应的信道为Hi,并设置状态变量Ii,其中,状态变量Ii取值为1或0,以表示终端设备是否活跃,则接收的信号Y可以表示为:
Y=∑iIiHi·Wi
其中,·表示向量点乘。对上述信号Y取相关操作,得到用于判断终端设备是否活跃的参数Ai:
Ai=|YHWi|2
如果参数Ai大于预先确定的门限值T,则网络设备可以判断对应的终端设备处于活跃状态;否则,网络设备可以判断对应的终端设备处于非活跃状态。从而,网络设备通过对所有的第一导频序列进行检测,可以确定处于 活跃状态的终端设备,由此,网络设备可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,因而能够显著地减少导频检测数量,并能够降低导频检测的复杂度。
应理解,本发明实施例仅以第一导频编号为例进行说明,但本发明并不限于此,为例设备可以直接根据第一导频序列与第二导频序列之间的对应关系,确定需要检测的第二导频序列,下文中会详细描述该对应关系,为了简洁,在此不再赘述。
在本发明实施例中,可选地,该在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
在该免授权传输资源的第一OFDM符号的部分子带上检测该第一导频序列。
具体而言,应理解,在本发明实施例中,第一OFDM符号为免授权传输资源中用于传输第一导频序列的OFDM符号,由此,该第一OFDM符号也可以称之为第一导频符号,其中,一个免授权传输资源可以包括一个或多个第一OFDM符号。例如,在本发明实施例中,免授权传输资源例如为CTU接入区域,一个CTU接入区域的第一OFDM符号可以包括两个OFDM符号;进一步地,该CTU接入区域的第一OFDM符号可以包括该CTU接入区域的第三个OFDM符号和第十个OFDM符号。还应理解,在本发明实施例中,每个免授权传输资源的第一OFDM符号包括的OFDM符号的数量可以相同,也可以不同。
还应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此,例如,一个CTU接入区域的第一OFDM符号可以仅包括一个OFDM符号,或者一个CTU接入区域的第一OFDM符号可以包括三个或更多个OFDM符号等。
例如,如图4A所示,终端设备可以将第一导频序列映射到第三个OFDM符号的部分子带上,而没有占有该OFDM符号的整个传输带宽,由此能够显著地降低导频开销。相应地,网络设备需要在该免授权传输资源的第三个OFDM符号的部分子带上检测该第一导频序列。
但应理解,本发明实施例仅以该第一导频序列映射到4个RE为例进行说明,但本发明并不限于此,例如,该第一导频序列可以映射到2个RE或8个RE等。还应理解,本发明实施例仅以该第一导频序列映射到一个OFDM 符号的部分子带为例进行说明,但本发明并不限于此,例如,该第一导频序列可以映射到两个或更多个OFDM符号的部分子带上。
在本发明实施例中,可选地,该第一导频序列的元素为非零元素。在本发明实施例中,由于第一导频序列用于指示终端设备的活跃性,因此,该第一导频序列可以设计成具有较短的长度,由此,该非零元素可以映射到免授权传输资源的部分子带,即终端设备可以在一个OFDM符号的部分频率资源上发送该第一导频序列,而不用在一个OFDM符号的整个传输带宽上发送该第一导频序列,一方面能够显著地降低导频开销,另一方面,较短的第一导频序列也便于网络设备进行检测,从而能够进一步地降低导频检测的复杂度。
另一方面,在本发明实施例中,可选地,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。该第一导频序列也可以映射到免授权传输资源的部分子带,从而能够显著地降低导频开销。虽然该实施例中的第一导频序列与上一实施例中的第一导频序列相比具有更长的长度,但其中的第一导频子序列为全零元素,并可以映射成免授权传输资源上的零符号,因而也同样能够降低导频检测的复杂度。但应理解,在本发明实施例中,由全零元素形成的该第一导频子序列映射成零符号,而由非零元素形成的该第二导频子序列映射成非零符号。
在本发明实施例中,可选地,该在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
在该免授权传输资源的第一OFDM符号的第一子带上检测该第一导频序列,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
即第一导频序列包括的非零元素映射到免授权传输资源的M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。可选地,该M个RE为连续的M个RE,从而能够进一步增强导频序列之间的正交性。
应理解,本发明实施例仅以Walsh码为例进行说明,但本发明并不限于此,例如,该第一导频序列也可以采用伪噪声序列(Pseudo-Noise Sequence),也称之为PN序列,或该第一导频序列也可以采用ZC(Zadoff-Chu)序列、 M序列等。
还应理解,在本发明实施例中,如果第一导频序列使用Zadoff-Chu序列,则映射到同一子带的终端设备可以通过循环移位值和根编号进行区分;如果第一导频序列使用M序列,则映射到同一子带的终端设备可以通过循环移位值进行区分,即映射到同一子带的终端设备的第一导频序列对应不同的循环移位值。
可选地,在本发明实施例中,该第一子带包括的RE为M个连续的RE。即在本发明实施例中,第一导频序列优选地映射到一个子带的连续的几个RE上,从而使得不同的第一导频序列之间的正交性更好,由此能够进一步提升系统检测导频的可靠性。
在本发明实施例中,网络设备可以根据第一导频序列与第二导频序列之间的对应关系,确定该第二导频序列,该对应关系可以具有多种表现形式,例如公式、表格等形式,即网络设备可以根据公式进行运算来确定该第二导频序列,也可以通过查表的方式确定与该第一导频序列对应的第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此。
在本发明实施例中,可选地,当第一导频序列与第二导频序列之间通过第一导频编号建立起对应关系时,网络设备在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一导频序列对应的第二导频序列可以包括:网络设备根据检测到的第一导频序列确定第一导频编号;网络设备根据该第一导频编号确定该第二导频序列;网络设备在该第二OFDM符号上检测该第二导频序列。
具体而言,在本发明实施例中,网络设备可以根据检测到的第一导频序列确定第一导频编号,进一步地,网络设备可以根据第一导频编号与第二导频序列之间的对应关系,确定该第二导频序列,由此,网络设备可以在该第二OFDM符号上对该一个或多个第一导频序列所对应的一个或多个第二导频序列分别进行检测。可选地,该对应关系可以具有多种表现形式,例如公式、表格等形式,即网络设备可以根据公式进行运算来确定该第二导频序列,也可以通过查表的方式确定与该第一导频编号对应的第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此。例如,在本发明实施例中,网络设备也可以在第二导频序列集合中,确定与该第一导频编号对应的第二导频序列。
在本发明实施例中,第一导频序列用于指示终端设备的状态,第二导频序列用于上行数据的解调,其中,第一导频序列与第二导频序列可以具有对应关系,由此网络设备通过对第一导频序列的检测,可以仅仅对与第一导频序列相应的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。而第一导频序列与第二导频序列之间的对应关系可以是一对多的对应关系,也可以是多对一的对应关系,还可以是一一对应关系。
具体地,第一方面,在本发明实施例中,一个第一导频序列可以对应于多个第二导频序列,或一个第一导频序列可以对应于一组第二导频序列,该组第二导频序列可以包括两个或更多个第二导频序列,即第一导频序列与第二导频序列之间的对应关系可以是一对多的对应关系。由此,第一导频序列的数量可以小于第二导频序列的数量,从而能够降低第一导频序列的开销。但应理解,在此情况下,与第一导频序列与第二导频序列之间具有一一对应关系相比,网络设备对第一导频序列的检测精度可能降低,同时也可能增加网络设备对第二导频序列进行检测的复杂度。
进一步地,终端设备可以首先确定第一导频编号,并可以根据该第一导频编号确定第一导频序列和第二导频序列,其中,一个第一导频序列可以对应于多个第二导频序列,例如,一个导频编号可以对应一个第一导频序列,并可以对应多个第二导频序列;或多个导频编号可以分别对应多个第二导频序列,但同时对应一个第一导频序列,即不同的导频编号可以对应相同的第一导频序列,但对应不同的第二导频序列。相应地,网络设备可以先在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,由此,网络设备可以对该第一导频序列所对应的多个第二导频序列分别进行检测。由于网络设备仅仅需要对与第一导频序列所对应的多个第二导频序列分别进行检测,而不需要对所有可能的第二导频序列进行检测,由此也能够显著地减少导频检测数量,并降低导频检测的复杂度。
第二方面,在本发明实施例中,多个第一导频序列也可以对应于一个第二导频序列,或一组第一导频序列可以对应于一个第二导频序列,该组第一导频序列可以包括两个或更多个第一导频序列,即第一导频序列与第二导频序列之间的对应关系可以是多对一的对应关系。
例如,终端设备可以首先确定第一导频编号,并可以根据该第一导频编号确定第一导频序列和第二导频序列,其中,多个第一导频序列可以对应于一个第二导频序列,例如,一个导频编号可以对应多个第一导频序列,并可以对应一个第二导频序列;或多个导频编号可以分别对应多个第一导频序列,但同时对应一个第二导频序列,即同一导频编号可以对应不同的第一导频序列,但对应相同的第二导频序列。相应地,网络设备可以先在第一OFDM符号上对第一导频序列进行检测;当网络设备检测到第一导频序列时,网络设备可以确定发送该第一导频序列的终端设备处于活跃状态,由此,网络设备可以对该第一导频序列所对应的第二导频序列分别进行检测。由于网络设备仅仅需要对与第一导频序列所对应的第二导频序列分别进行检测,而不需要对所有可能的第二导频序列进行检测,由此也能够显著地减少导频检测数量,并降低导频检测的复杂度。
第三方面,在本发明实施例中,优选地,该第一导频序列与该第二导频序列具有一一对应关系。例如,一个导频编号可以唯一地对应一个第一导频序列,并可以唯一地对应一个第二导频序列。应理解,本发明实施例仅以此为例进行说明,但本发明并不限于此,例如,多个导频编号可以对应一个第一导频序列,而该第一导频序列可以唯一地对应一个第二导频序列;或多个导频编号可以对应一个第二导频序列,而该第二导频序列可以唯一地对应一个第一导频序列。
在本发明实施例中,可选地,该第二导频序列为多个子序列形成的子序列组合。即在本发明实施例中,第一导频序列与由两个或两个以上的子序列形成的子序列组合之间可以具有一对多的对应关系、或多对一的对应关系、或一一对应关系。该子序列例如是DMRS。
例如,如果每个OFDM符号最多可以支持S个正交的导频序列,并且以每个OFDM符号所支持的导频序列作为子序列组合中的一个元素,即以每个OFDM符号所承载的导频序列作为子序列组合中的一个子序列,则对于D个OFDM符号,形成的子序列组合最多可以具有SD种不同的子序列组合,由此能够显著地增加系统中可用的第二导频序列的数量。例如,按照现有系统的参数配置,每个OFDM符号可以支持S=12个正交的导频序列,则两个OFDM符号最多可以支持122=144种不同的子序列组合,即144种不同的第二导频序列。
还应理解,在本发明实施例中,仅以多个子序列形成子序列组合来增加第二导频序列的数量为例进行说明,但本发明并不限于此,例如,也可以通过增加每个第二OFDM符号支持的导频序列的数量等方法,来满足足够低的导频碰撞概率的要求。
因此,在本发明实施例中,通过将多个子序列进行组合来形成第二导频序列,能够形成足够多的可以相互区分的导频序列,从而不仅能够满足足够低的导频碰撞概率要求,还能够大大降低导频开销。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的至少两个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的每个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的至少两个子序列为分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且该第二OFDM符号与该第一OFDM符号不同。
在本发明实施例中,可选地,该第二导频序列由多个循环移位值表示,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
在本发明实施例中,可选地,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
在本发明实施例中,可选地,该方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
在本发明实施例中,可选地,网络设备为基站,终端设备为用户设备。
应理解,在本发明实施例中,通过时频分集或频域分集的方式可以显著地增加检测可靠性,但同时也将增加导频开销。此外,在本发明实施例中, 还可以通过空间分集来增加检测的可靠性。例如,可以增加基站的接收天线数量,从而基站可以对多根接收天线所接收的信号分别进行检测,从而能够增加检测的可靠性,并且不会增加导频开销。但应理解,在本发明实施例中,也可以增加终端设备的发送天线数量,即终端设备在不同的天线上分别发送不同的第一导频序列,而基站只要检测到其中一个第一导频序列后即可以认为相应的终端设备处于活跃状态,该方式也能够增加检测的可靠性,但需要增加导频开销。
还应理解,在本发明实施例中,不同的第二导频序列也可以通过时域(OFDM符号)、频域(子载波组或子带)和码域这三种方式中的至少一种方式进行区分。例如,可以将第二导频序列映射到不同的OFDM符号上,以对第二导频序列进行区分;类似地,也可以将第二导频序列映射到OFDM符号的不同子带上,同样地可以对第二导频序列进行区分。进一步地,如果多个第二导频序列映射到相同的时频资源上,则需要映射到相同时频资源上的不同的第二导频序列之间相互正交。此外,还应理解,在本发明实施例中,各第二OFDM符号上映射的子序列不完全相同,从而能够便于网络设备进行正确的信道估计,以进行上行数据的解调。
因而,在本发明实施例中,可选地,在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:在免授权传输资源的不同的第一OFDM符号上检测终端设备重复映射的第一导频序列;和/或在免授权传输资源的第一OFDM符号的不同子带上检测终端设备重复映射的第一导频序列。
类似地,在本发明实施例中,可选地,在所述免授权传输资源的第二OFDM符号上检测所述终端设备发送的与所述第一导频序列对应的第二导频序列,包括:在免授权传输资源的不同的第二OFDM符号上检测终端设备重复映射的第二导频序列;和/或在免授权传输资源的第二OFDM符号的不同子带上检测终端设备重复映射的第二导频序列。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输导频序列的方法,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该 第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的方法,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
上文中结合图1至图6,详细描述了根据本发明实施例的传输导频序列的方法,下面将结合图7至图11,详细描述根据本发明实施例的传输导频序列的装置。
图7示出了根据本发明实施例的传输导频序列的装置500。如图7所示,该装置500包括:
第一确定模块510,用于确定用于指示终端设备是否处于活跃状态的第一导频序列;
第二确定模块520,用于确定用于上行数据解调的第二导频序列;
第一映射模块530,用于将该第一确定模块510确定的该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;
第二映射模块540,用于将该第二确定模块520确定的该第二导频序列映射到该免授权传输资源的第二OFDM符号;
发送模块550,用于通过该第一映射模块530映射的该第一OFDM符号和该第二映射模块540映射的该第二OFDM符号,发送该第一导频序列和该第二导频序列。
因此,本发明实施例的传输导频序列的装置,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络 设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
在本发明实施例中,如图8所示,可选地,该装置500还包括第三确定模块560,用于确定第一导频编号;
其中,该第一确定模块510具体用于:根据该第一导频编号确定该第一导频序列;
该第二确定模块520具体用于:根据该第一导频编号确定该第二导频序列。
因此,本发明实施例的传输导频序列的装置,通过终端设备确定第一导频编号,根据该第一导频编号确定第一导频序列和第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对与第一导频序列相应的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
在本发明实施例中,可选地,该第三确定模块560具体用于:
根据终端设备的标识确定该第一导频编号;或
根据该免授权传输资源的标识和该终端设备的标识确定该第一导频编号;或
通过随机数发生器生成该第一导频编号。
在本发明实施例中,可选地,该第一映射模块530具体用于:将该第一导频序列映射到该免授权传输资源的第一OFDM符号的部分子带。
在本发明实施例中,可选地,该第一导频序列的元素为非零元素。
在本发明实施例中,可选地,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
在本发明实施例中,可选地,该第一映射模块530具体用于:将该第一导频序列包括的非零元素映射到该免授权传输资源的第一OFDM符号的第 一子带,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
在本发明实施例中,可选地,该第一子带包括的RE为M个连续的RE。
在本发明实施例中,可选地,该第一映射模块530具体用于:
将该第一导频序列重复映射到该免授权传输资源的不同的第一OFDM符号;和/或
将该第一导频序列重复映射到该免授权传输资源的该第一OFDM符号的不同子带。
在本发明实施例中,可选地,该第一导频序列与该第二导频序列具有一一对应关系。
在本发明实施例中,可选地,该第二导频序列为多个子序列形成的子序列组合。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列包括的该多个子序列中的至少两个子序列映射到该免授权传输资源的同一个第二OFDM符号。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列包括的该多个子序列中的每个子序列映射到该免授权传输资源的同一个第二OFDM符号。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列包括的该多个子序列中的至少两个子序列分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,并且该第二OFDM符号与该第一OFDM符号不同。
在本发明实施例中,可选地,该第二导频序列由多个循环移位值生成,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
在本发明实施例中,可选地,该第二映射模块540具体用于:将该第二导频序列重复映射到该免授权传输资源的不同的第二OFDM符号。
在本发明实施例中,可选地,该第一确定模块510具体用于:在第一导频序列集合中选择该第一导频序列。
在本发明实施例中,可选地,该第二确定模块520具体用于:在第二导频序列集合中选择该第二导频序列。
在本发明实施例中,可选地,该发送模块550用于通过该第一映射模块530映射的该第一OFDM符号和该第二映射模块540映射的该第二OFDM符号,向网络设备发送该第一导频序列和该第二导频序列。
在本发明实施例中,可选地,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
在本发明实施例中,可选地,该装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
在本发明实施例中,可选地,网络设备为基站,终端设备为用户设备。
在本发明实施例中,可选地,该装置500为终端设备。
应理解,根据本发明实施例的装置500可对应于本发明方法实施例中的终端设备,并且装置500中的各个模块的上述和其它操作和/或功能分别为了实现图1至图5F中的各个方法200的相应流程,为了简洁,发明实施例的描述可以适用于该装置实施例,在此不再赘述。
因此,本发明实施例的传输导频序列的装置,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的装置,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够 显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
图9示出了根据本发明另一实施例的传输导频序列的装置600。如图9所示,该装置600包括:
第一检测模块610,用于在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,该第一导频序列用于该指示终端设备是否处于活跃状态;
第二检测模块620,用于在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一检测模块610检测的该第一导频序列对应的第二导频序列,该第二导频序列用于上行数据解调;
处理模块630,用于根据该第二检测模块620检测的该第二导频序列进行上行数据解调。
因此,本发明实施例的传输导频序列的装置,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
在本发明实施例中,可选地,该第一检测模块610具体用于:在该免授权传输资源的第一OFDM符号的部分子带上检测该第一导频序列。
在本发明实施例中,可选地,该第一导频序列的元素为非零元素。
在本发明实施例中,可选地,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
在本发明实施例中,可选地,该第一检测模块610具体用于:在该免授权传输资源的第一OFDM符号的第一子带上检测该第一导频序列,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
在本发明实施例中,可选地,该第一子带包括的RE为M个连续的RE。
在本发明实施例中,可选地,该第一导频序列与该第二导频序列具有一一对应关系。
在本发明实施例中,可选地,该第二导频序列为多个子序列形成的子序列组合。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的至少两个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的每个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的至少两个子序列为分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
在本发明实施例中,可选地,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的子序列。
在本发明实施例中,可选地,该第二导频序列由多个循环移位值表示,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
在本发明实施例中,可选地,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
在本发明实施例中,可选地,该装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
在本发明实施例中,可选地,网络设备为基站,终端设备为用户设备。
在本发明实施例中,可选地,该装置600为网络设备。
应理解,根据本发明实施例的装置600可对应于本发明方法实施例中的网络设备,并且装置600中的各个模块的上述和其它操作和/或功能分别为了实现图6中的方法300的相应流程,为了简洁,发明实施例的描述可以适用于该装置实施例,在此不再赘述。
因此,本发明实施例的传输导频序列的装置,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第 二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的装置,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
如图10所示,本发明实施例还提供了一种传输导频序列的装置800,该装置800包括:处理器810和发送器840,处理器810和发送器840相连,可选地,该装置800还包括存储器820,存储器820与处理器810和发送器840分别相连,进一步可选地,该装置800包括总线系统830。其中,处理器810、存储器820和发送器840可以通过总线系统830相连,该存储器820可以用于存储指令,该处理器810用于执行该存储器820存储的指令,以控制发送器840发送信号;其中,该处理器810用于:
确定用于指示终端设备是否处于活跃状态的第一导频序列;
确定用于上行数据解调的第二导频序列;
将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;
将该第二导频序列映射到该免授权传输资源的第二OFDM符号;
该发送器840用于:
通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列。
因此,本发明实施例的传输导频序列的装置,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以 仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
该总线系统830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统830。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器810还用于:确定第一导频编号;
其中,该处理器810确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:
根据该第一导频编号确定该第一导频序列;
其中,该确定用于上行数据解调的第二导频序列,包括:
根据该第一导频编号确定该第二导频序列。
可选地,作为一个实施例,该处理器810确定第一导频编号包括:
根据终端设备的标识确定该第一导频编号;或
根据该免授权传输资源的标识和该终端设备的标识确定该第一导频编号;或
通过随机数发生器生成该第一导频编号。
可选地,作为一个实施例,该处理器810将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列映射到该免授权传输资源的第一OFDM符号的部分子带。
可选地,作为一个实施例,该第一导频序列的元素为非零元素。
可选地,作为一个实施例,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
可选地,作为一个实施例,该处理器810将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列包括的非零元素映射到该免授权传输资源的第一OFDM符号的第一子带,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
可选地,作为一个实施例,该第一子带包括的RE为M个连续的RE。
可选地,作为一个实施例,该处理器810将该第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
将该第一导频序列重复映射到该免授权传输资源的不同的第一OFDM符号;和/或
将该第一导频序列重复映射到该免授权传输资源的该第一OFDM符号的不同子带。
可选地,作为一个实施例,该第一导频序列与该第二导频序列具有一一对应关系。
可选地,作为一个实施例,该第二导频序列为多个子序列形成的子序列组合。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的至少两个子序列映射到该免授权传输资源的同一个第二OFDM符号。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列映射到该免授权传输资源的同一个第二OFDM符号。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的至少两个子序列分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列包括的该多个子序列中的每个子序列分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带,并且该第二OFDM符号与该第一OFDM符号不同。
可选地,作为一个实施例,该第二导频序列由多个循环移位值生成,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
可选地,作为一个实施例,该处理器810将该第二导频序列映射到该免授权传输资源的第二OFDM符号,包括:
将该第二导频序列重复映射到该免授权传输资源的不同的第二OFDM符号。
可选地,作为一个实施例,该第一确定模块具体用于:在第一导频序列集合中选择该第一导频序列。
可选地,作为一个实施例,该第二确定模块具体用于:在第二导频序列集合中选择该第二导频序列。
可选地,作为一个实施例,该免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
可选地,作为一个实施例,该装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
可选地,作为一个实施例,网络设备为基站,终端设备为用户设备。
应理解,根据本发明实施例的传输导频序列的装置800可对应于本发明实施例中的终端设备以及装置500,并可以对应于执行根据本发明实施例的方法中的相应主体,并且装置800中的各个模块的上述和其它操作和/或功能分别为了实现图1至图5F中的各个方法的相应流程,为了简洁,发明实施例的描述可以适用于该装置实施例,在此不再赘述。
因此,本发明实施例的传输导频序列的装置,通过终端设备确定用于指示终端设备是否处于活跃状态的第一导频序列以及确定用于上行数据解调的第二导频序列,并将该第一导频序列和该第二导频序列分别映射到免授权传输资源的第一OFDM符号和第二OFDM符号,再通过该第一OFDM符号和该第二OFDM符号,发送该第一导频序列和该第二导频序列,使得网络设备通过对第一导频序列的检测,可以确定终端设备的活跃性,并由此可以仅仅对处于活跃状态的终端设备的第二导频序列进行检测,而不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的装置,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
如图11所示,本发明实施例还提供了一种传输导频序列的装置900,该装置900包括:处理器910,可选地,该装置900包括存储器920,处理器910和存储器920相连,进一步可选地,该装置900包括总线系统930。其中,处理器910、和存储器920可以通过总线系统930相连,该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令;其中,该处理器910用于:
在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,该第一导频序列用于该指示终端设备是否处于活跃状态;
在该免授权传输资源的第二OFDM符号上检测该终端设备发送的与该第一导频序列对应的第二导频序列,该第二导频序列用于上行数据解调;
根据该第二导频序列进行上行数据解调。
因此,本发明实施例的传输导频序列的装置,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
应理解,在本发明实施例中,该处理器910可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器910还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器920的一部分还可以包括非易失性随机存取存储器。例如,存储器920还可以存储设备类型的信息。
该总线系统930除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统930。
在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器920,处理器910读取存储器920中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器910在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
在该免授权传输资源的第一OFDM符号的部分子带上检测该第一导频序列。
可选地,作为一个实施例,该第一导频序列的元素为非零元素。
可选地,作为一个实施例,该第一导频序列包括第一导频子序列和第二导频子序列,该第一导频子序列的元素为全零元素,该第二导频子序列的元素为非零元素。
可选地,作为一个实施例,该处理器910在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
在该免授权传输资源的第一OFDM符号的第一子带上检测该第一导频序列,该第一子带包括M个资源单元RE,该非零元素映射形成的非零符号为M阶Walsh码,该M为正整数且为2的指数幂。
可选地,作为一个实施例,该第一子带包括的RE为M个连续的RE。
可选地,作为一个实施例,该第一导频序列与该第二导频序列具有一一对应关系。
可选地,作为一个实施例,该第二导频序列为多个子序列形成的子序列组合。
可选地,作为一个实施例,该第二导频序列包括的该多个子序列中的至少两个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
可选地,作为一个实施例,该第二导频序列包括的该多个子序列中的每个子序列为映射到该免授权传输资源的同一个第二OFDM符号的子序列。
可选地,作为一个实施例,该第二导频序列包括的该多个子序列中的至少两个子序列为分别映射到该免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
可选地,作为一个实施例,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的子序列。
可选地,作为一个实施例,该第二导频序列包括的该多个子序列中的每个子序列为分别映射到该免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且该第二OFDM符号与该第一OFDM符号不同。
可选地,作为一个实施例,该第二导频序列由多个循环移位值表示,其中,该多个循环移位值中的每个循环移位值分别与该多个子序列中的每个子序列一一对应。
可选地,作为一个实施例,该免授权传输资源为时间和频率相结合的传 输资源,或时间、频率和码域相结合的传输资源。
可选地,作为一个实施例,该装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
可选地,作为一个实施例,网络设备为基站,终端设备为用户设备。
可选地,作为一个实施例,处理器910在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:在免授权传输资源的不同的第一OFDM符号上检测终端设备重复映射的第一导频序列;和/或在免授权传输资源的第一OFDM符号的不同子带上检测终端设备重复映射的第一导频序列。
可选地,作为一个实施例,处理器910在所述免授权传输资源的第二OFDM符号上检测所述终端设备发送的与所述第一导频序列对应的第二导频序列,包括:在免授权传输资源的不同的第二OFDM符号上检测终端设备重复映射的第二导频序列;和/或在免授权传输资源的第二OFDM符号的不同子带上检测终端设备重复映射的第二导频序列。
应理解,根据本发明实施例的传输导频序列的装置900可对应于本发明实施例中的网络设备和装置600,并可以对应于执行根据本发明实施例的方法中的相应主体,并且装置900中的各个模块的上述和其它操作和/或功能分别为了实现图6中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输导频序列的装置,通过网络设备在免授权传输资源的第一OFDM符号上检测终端设备发送的第一导频序列,以根据该第一导频序列确定终端设备是否处于活跃状态,并在该免授权传输资源的第二OFDM符号上仅仅检测与检测到的该第一导频序列对应的第二导频序列,即仅仅检测处于活跃状态的终端设备的第二导频序列,并根据该第二导频序列进行上行数据解调,使得网络设备不用对所有可能的第二导频序列进行检测,由此能够显著地减少导频检测数量,降低导频检测的复杂度。
另一方面,本发明实施例的传输导频序列的装置,通过将第二导频序列设置为多个子序列形成的子序列组合,对于相同数量的第二OFDM符号,能够显著地增加该第二OFDM符号支持的第二导频序列的数量,由此能够显著地降低导频碰撞概率,提高上行数据解调的正确率,并能够避免占有过多的第二OFDM符号,由此能够显著地减小导频开销,从而能够使得更多的时频资源用于数据的传输,即能够显著地提升系统的数据传输量。
应理解,在本发明上述各实施例中的发送模块或发送单元或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其他设备以便于其他设备在空口上发送;类似地,以上实施例中的接收模块或接收单元或接收器可以指在空口上进行接收,可以不是空口上接收,而是通过其他设备从空口上进行接收。
还应理解,以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例就不再一一赘述。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (78)

  1. 一种传输导频序列的方法,其特征在于,包括:
    确定用于指示终端设备是否处于活跃状态的第一导频序列;
    确定用于上行数据解调的第二导频序列;
    将所述第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;
    将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号;
    通过所述第一OFDM符号和所述第二OFDM符号,发送所述第一导频序列和所述第二导频序列。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第一导频编号;
    其中,所述确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:
    根据所述第一导频编号确定所述第一导频序列;
    其中,所述确定用于上行数据解调的第二导频序列,包括:
    根据所述第一导频编号确定所述第二导频序列。
  3. 根据权利要求2所述的方法,其特征在于,所述确定第一导频编号包括:
    根据终端设备的标识确定所述第一导频编号;或
    根据所述免授权传输资源的标识和所述终端设备的标识确定所述第一导频编号;或
    通过随机数发生器生成所述第一导频编号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述将所述第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
    将所述第一导频序列映射到所述免授权传输资源的第一OFDM符号的部分子带。
  5. 根据权利要求4所述的方法,其特征在于,所述第一导频序列的元素为非零元素。
  6. 根据权利要求4所述的方法,其特征在于,所述第一导频序列包括第一导频子序列和第二导频子序列,所述第一导频子序列的元素为全零元 素,所述第二导频子序列的元素为非零元素。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述将所述第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
    将所述第一导频序列包括的非零元素映射到所述免授权传输资源的第一OFDM符号的第一子带,所述第一子带包括M个资源单元RE,所述非零元素映射形成的非零符号为M阶Walsh码,所述M为正整数且为2的指数幂。
  8. 根据权利要求7所述的方法,其特征在于,所述第一子带包括的RE为M个连续的RE。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述将所述第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号,包括:
    将所述第一导频序列重复映射到所述免授权传输资源的不同的第一OFDM符号或所述免授权传输资源的所述第一OFDM符号的不同子带。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一导频序列与所述第二导频序列具有一一对应关系。
  11. 根据权利要求10所述的方法,其特征在于,所述第二导频序列为多个子序列形成的子序列组合。
  12. 根据权利要求11所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列包括的所述多个子序列中的至少两个子序列映射到所述免授权传输资源的同一个第二OFDM符号。
  13. 根据权利要求12所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列包括的所述多个子序列中的每个子序列映射到所述免授权传输资源的同一个第二OFDM符号。
  14. 根据权利要求12所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列包括的所述多个子序列中的至少两个子序列分别映射到所述免授权传输资源的同一个第二OFDM符号的不同子带。
  15. 根据权利要求11所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列包括的所述多个子序列中的每个子序列分别映射到所述免授权传输资源的不同的第二OFDM符号。
  16. 根据权利要求15所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列包括的所述多个子序列中的每个子序列分别映射到所述免授权传输资源的不同的第二OFDM符号的整个频带,并且所述第二OFDM符号与所述第一OFDM符号不同。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述第二导频序列由多个循环移位值生成,其中,所述多个循环移位值中的每个循环移位值分别与所述多个子序列中的每个子序列一一对应。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述将所述第二导频序列映射到所述免授权传输资源的第二OFDM符号,包括:
    将所述第二导频序列重复映射到所述免授权传输资源的不同的第二OFDM符号。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述确定用于指示终端设备是否处于活跃状态的第一导频序列,包括:
    在第一导频序列集合中选择所述第一导频序列。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述确定用于上行数据解调的第二导频序列,包括:
    在第二导频序列集合中选择所述第二导频序列。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
  23. 一种传输导频序列的方法,其特征在于,包括:
    在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,所述第一导频序列用于所述指示终端设备是否处于活跃 状态;
    在所述免授权传输资源的第二OFDM符号上检测所述终端设备发送的与所述第一导频序列对应的第二导频序列,所述第二导频序列用于上行数据解调;
    根据所述第二导频序列进行上行数据解调。
  24. 根据权利要求23所述的方法,其特征在于,所述在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
    在所述免授权传输资源的第一OFDM符号的部分子带上检测所述第一导频序列。
  25. 根据权利要求24所述的方法,其特征在于,所述第一导频序列的元素为非零元素。
  26. 根据权利要求24所述的方法,其特征在于,所述第一导频序列包括第一导频子序列和第二导频子序列,所述第一导频子序列的元素为全零元素,所述第二导频子序列的元素为非零元素。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,包括:
    在所述免授权传输资源的第一OFDM符号的第一子带上检测所述第一导频序列,所述第一子带包括M个资源单元RE,所述非零元素映射形成的非零符号为M阶Walsh码,所述M为正整数且为2的指数幂。
  28. 根据权利要求27所述的方法,其特征在于,所述第一子带包括的RE为M个连续的RE。
  29. 根据权利要求23至28中任一项所述的方法,其特征在于,所述第一导频序列与所述第二导频序列具有一一对应关系。
  30. 根据权利要求29所述的方法,其特征在于,所述第二导频序列为多个子序列形成的子序列组合。
  31. 根据权利要求30所述的方法,其特征在于,所述第二导频序列包括的所述多个子序列中的至少两个子序列为映射到所述免授权传输资源的同一个第二OFDM符号的子序列。
  32. 根据权利要求31所述的方法,其特征在于,所述第二导频序列包 括的所述多个子序列中的每个子序列为映射到所述免授权传输资源的同一个第二OFDM符号的子序列。
  33. 根据权利要求31所述的方法,其特征在于,所述第二导频序列包括的所述多个子序列中的至少两个子序列为分别映射到所述免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
  34. 根据权利要求30所述的方法,其特征在于,所述第二导频序列包括的所述多个子序列中的每个子序列为分别映射到所述免授权传输资源的不同的第二OFDM符号的子序列。
  35. 根据权利要求34所述的方法,其特征在于,所述第二导频序列包括的所述多个子序列中的每个子序列为分别映射到所述免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且所述第二OFDM符号与所述第一OFDM符号不同。
  36. 根据权利要求30至35中任一项所述的方法,其特征在于,所述第二导频序列由多个循环移位值表示,其中,所述多个循环移位值中的每个循环移位值分别与所述多个子序列中的每个子序列一一对应。
  37. 根据权利要求23至36中任一项所述的方法,其特征在于,所述免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
  38. 根据权利要求23至37中任一项所述的方法,其特征在于,所述方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
  39. 一种传输导频序列的装置,其特征在于,包括:
    第一确定模块,用于确定用于指示终端设备是否处于活跃状态的第一导频序列;
    第二确定模块,用于确定用于上行数据解调的第二导频序列;
    第一映射模块,用于将所述第一确定模块确定的所述第一导频序列映射到免授权传输资源的第一正交频分复用OFDM符号;
    第二映射模块,用于将所述第二确定模块确定的所述第二导频序列映射到所述免授权传输资源的第二OFDM符号;
    发送模块,用于通过所述第一映射模块映射的所述第一OFDM符号和所述第二映射模块映射的所述第二OFDM符号,发送所述第一导频序列和 所述第二导频序列。
  40. 根据权利要求39所述的装置,其特征在于,所述装置还包括第三确定模块,用于确定第一导频编号;
    其中,所述第一确定模块具体用于:根据所述第一导频编号确定所述第一导频序列;
    所述第二确定模块具体用于:根据所述第一导频编号确定所述第二导频序列。
  41. 根据权利要求40所述的装置,其特征在于,所述第三确定模块具体用于:
    根据终端设备的标识确定所述第一导频编号;或
    根据所述免授权传输资源的标识和所述终端设备的标识确定所述第一导频编号;或
    通过随机数发生器生成所述第一导频编号。
  42. 根据权利要求39至41中任一项所述的装置,其特征在于,所述第一映射模块具体用于:将所述第一导频序列映射到所述免授权传输资源的第一OFDM符号的部分子带。
  43. 根据权利要求42所述的装置,其特征在于,所述第一导频序列的元素为非零元素。
  44. 根据权利要求42所述的装置,其特征在于,所述第一导频序列包括第一导频子序列和第二导频子序列,所述第一导频子序列的元素为全零元素,所述第二导频子序列的元素为非零元素。
  45. 根据权利要求42至44中任一项所述的装置,其特征在于,所述第一映射模块具体用于:将所述第一导频序列包括的非零元素映射到所述免授权传输资源的第一OFDM符号的第一子带,所述第一子带包括M个资源单元RE,所述非零元素映射形成的非零符号为M阶Walsh码,所述M为正整数且为2的指数幂。
  46. 根据权利要求45所述的装置,其特征在于,所述第一子带包括的RE为M个连续的RE。
  47. 根据权利要求39至46中任一项所述的装置,其特征在于,所述第一映射模块具体用于:
    将所述第一导频序列重复映射到所述免授权传输资源的不同的第一 OFDM符号或所述免授权传输资源的所述第一OFDM符号的不同子带。
  48. 根据权利要求39至47中任一项所述的装置,其特征在于,所述第一导频序列与所述第二导频序列具有一一对应关系。
  49. 根据权利要求48所述的装置,其特征在于,所述第二导频序列为多个子序列形成的子序列组合。
  50. 根据权利要求49所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列包括的所述多个子序列中的至少两个子序列映射到所述免授权传输资源的同一个第二OFDM符号。
  51. 根据权利要求50所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列包括的所述多个子序列中的每个子序列映射到所述免授权传输资源的同一个第二OFDM符号。
  52. 根据权利要求50所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列包括的所述多个子序列中的至少两个子序列分别映射到所述免授权传输资源的同一个第二OFDM符号的不同子带。
  53. 根据权利要求49所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列包括的所述多个子序列中的每个子序列分别映射到所述免授权传输资源的不同的第二OFDM符号。
  54. 根据权利要求53所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列包括的所述多个子序列中的每个子序列分别映射到所述免授权传输资源的不同的第二OFDM符号的整个频带,并且所述第二OFDM符号与所述第一OFDM符号不同。
  55. 根据权利要求49至54中任一项所述的装置,其特征在于,所述第二导频序列由多个循环移位值生成,其中,所述多个循环移位值中的每个循环移位值分别与所述多个子序列中的每个子序列一一对应。
  56. 根据权利要求39至55中任一项所述的装置,其特征在于,所述第二映射模块具体用于:将所述第二导频序列重复映射到所述免授权传输资源的不同的第二OFDM符号。
  57. 根据权利要求39至56中任一项所述的装置,其特征在于,所述第一确定模块具体用于:在第一导频序列集合中选择所述第一导频序列。
  58. 根据权利要求39至57中任一项所述的装置,其特征在于,所述第二确定模块具体用于:在第二导频序列集合中选择所述第二导频序列。
  59. 根据权利要求39至58中任一项所述的装置,其特征在于,所述免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
  60. 根据权利要求39至59中任一项所述的装置,其特征在于,所述装置应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
  61. 根据权利要求39至60中任一项所述的装置,其特征在于,所述装置为终端设备。
  62. 一种传输导频序列的装置,其特征在于,包括:
    第一检测模块,用于在免授权传输资源的第一正交频分复用OFDM符号上检测终端设备发送的第一导频序列,所述第一导频序列用于所述指示终端设备是否处于活跃状态;
    第二检测模块,用于在所述免授权传输资源的第二OFDM符号上检测所述终端设备发送的与所述第一检测模块检测的所述第一导频序列对应的第二导频序列,所述第二导频序列用于上行数据解调;
    处理模块,用于根据所述第二检测模块检测的所述第二导频序列进行上行数据解调。
  63. 根据权利要求62所述的装置,其特征在于,所述第一检测模块具体用于:在所述免授权传输资源的第一OFDM符号的部分子带上检测所述第一导频序列。
  64. 根据权利要求63所述的装置,其特征在于,所述第一导频序列的元素为非零元素。
  65. 根据权利要求63所述的装置,其特征在于,所述第一导频序列包括第一导频子序列和第二导频子序列,所述第一导频子序列的元素为全零元素,所述第二导频子序列的元素为非零元素。
  66. 根据权利要求63至65中任一项所述的装置,其特征在于,所述第一检测模块具体用于:在所述免授权传输资源的第一OFDM符号的第一子带上检测所述第一导频序列,所述第一子带包括M个资源单元RE,所述非零元素映射形成的非零符号为M阶Walsh码,所述M为正整数且为2的指数幂。
  67. 根据权利要求66所述的装置,其特征在于,所述第一子带包括的 RE为M个连续的RE。
  68. 根据权利要求62至67中任一项所述的装置,其特征在于,所述第一导频序列与所述第二导频序列具有一一对应关系。
  69. 根据权利要求68所述的装置,其特征在于,所述第二导频序列为多个子序列形成的子序列组合。
  70. 根据权利要求69所述的装置,其特征在于,所述第二导频序列包括的所述多个子序列中的至少两个子序列为映射到所述免授权传输资源的同一个第二OFDM符号的子序列。
  71. 根据权利要求70所述的装置,其特征在于,所述第二导频序列包括的所述多个子序列中的每个子序列为映射到所述免授权传输资源的同一个第二OFDM符号的子序列。
  72. 根据权利要求70所述的装置,其特征在于,所述第二导频序列包括的所述多个子序列中的至少两个子序列为分别映射到所述免授权传输资源的同一个第二OFDM符号的不同子带的子序列。
  73. 根据权利要求69所述的装置,其特征在于,所述第二导频序列包括的所述多个子序列中的每个子序列为分别映射到所述免授权传输资源的不同的第二OFDM符号的子序列。
  74. 根据权利要求73所述的装置,其特征在于,所述第二导频序列包括的所述多个子序列中的每个子序列为分别映射到所述免授权传输资源的不同的第二OFDM符号的整个频带的子序列,并且所述第二OFDM符号与所述第一OFDM符号不同。
  75. 根据权利要求69至74中任一项所述的装置,其特征在于,所述第二导频序列由多个循环移位值表示,其中,所述多个循环移位值中的每个循环移位值分别与所述多个子序列中的每个子序列一一对应。
  76. 根据权利要求62至75中任一项所述的装置,其特征在于,所述免授权传输资源为时间和频率相结合的传输资源,或时间、频率和码域相结合的传输资源。
  77. 根据权利要求62至76中任一项所述的装置,其特征在于,所述方法应用于终端对终端D2D通信领域、机器对机器M2M通信领域或机器类型通信领域。
  78. 根据权利要求62至77中任一项所述的装置,其特征在于,所述装 置为网络设备。
PCT/CN2015/082851 2015-06-30 2015-06-30 传输导频序列的方法和装置 WO2017000233A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22176632.2A EP4117247A1 (en) 2015-06-30 2015-06-30 Pilot sequence transmission method and apparatus
EP15896764.6A EP3297239B1 (en) 2015-06-30 2015-06-30 Method and apparatus for transmitting pilot sequence
PCT/CN2015/082851 WO2017000233A1 (zh) 2015-06-30 2015-06-30 传输导频序列的方法和装置
CN202010449776.7A CN111769927B (zh) 2015-06-30 2015-06-30 传输导频序列的方法和装置
CN201580080236.3A CN107615726B (zh) 2015-06-30 2015-06-30 传输导频序列的方法和装置
US15/847,470 US10419182B2 (en) 2015-06-30 2017-12-19 Pilot sequence transmission method and apparatus
US16/539,698 US10972240B2 (en) 2015-06-30 2019-08-13 Pilot sequence transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082851 WO2017000233A1 (zh) 2015-06-30 2015-06-30 传输导频序列的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/847,470 Continuation US10419182B2 (en) 2015-06-30 2017-12-19 Pilot sequence transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017000233A1 true WO2017000233A1 (zh) 2017-01-05

Family

ID=57607482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082851 WO2017000233A1 (zh) 2015-06-30 2015-06-30 传输导频序列的方法和装置

Country Status (4)

Country Link
US (2) US10419182B2 (zh)
EP (2) EP3297239B1 (zh)
CN (2) CN107615726B (zh)
WO (1) WO2017000233A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133780A1 (en) * 2017-01-18 2018-07-26 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
CN113228772A (zh) * 2018-11-16 2021-08-06 上海诺基亚贝尔股份有限公司 数据传输控制
WO2022036565A1 (zh) * 2020-08-18 2022-02-24 华为技术有限公司 一种通信的方法及装置
WO2022041904A1 (zh) * 2020-08-28 2022-03-03 中兴通讯股份有限公司 数据传输方法、装置、传输设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404371B (zh) 2016-05-20 2021-02-09 华为技术有限公司 一种数据处理方法、装置及系统
CN110138503B (zh) * 2018-02-09 2020-09-18 华为技术有限公司 编码方式的指示方法及设备
CN112514340B (zh) * 2018-08-03 2022-06-17 中兴通讯股份有限公司 多结构参考信号
EP3751932B1 (en) * 2018-10-12 2023-01-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and terminal equipment for repeatedly transmitting information
CN110535594B (zh) * 2018-10-22 2022-11-01 中兴通讯股份有限公司 导频序列配置方法、装置及电子设备、存储介质
EP3911054A4 (en) * 2019-02-03 2021-12-29 Huawei Technologies Co., Ltd. Reference signal receiving and sending methods, apparatuses and systems
CN111901082A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 信号处理方法、装置、第一通信节点和第二通信节点
WO2022267847A1 (zh) * 2021-06-21 2022-12-29 华为技术有限公司 传输序列的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719817A (zh) * 2004-07-09 2006-01-11 北京三星通信技术研究有限公司 正交频分复用通信系统的导频传输和接收方法
CN101026432A (zh) * 2006-02-17 2007-08-29 华为技术有限公司 基于高速分组信道的分组数据业务传输方法及其系统
WO2012092066A1 (en) * 2010-12-28 2012-07-05 Motorola Mobility, Inc. Energy-saving base station and method
CN104079519A (zh) * 2013-03-28 2014-10-01 美国博通公司 具有主动网络维护的通信系统及其使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242722B2 (en) 2003-10-17 2007-07-10 Motorola, Inc. Method and apparatus for transmission and reception within an OFDM communication system
KR100653282B1 (ko) * 2005-07-27 2006-12-01 한국전자통신연구원 직교주파수 분할다중 기반 셀룰러 시스템에서 채널 추정을위한 훈련신호열 전송방법
CN101288254B (zh) * 2005-10-31 2012-10-31 日本电气株式会社 发送/接收系统、发送设备及其中使用的导频信号复用方法
US8130857B2 (en) * 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
CN101926112A (zh) * 2007-04-30 2010-12-22 诺基亚西门子通信公司 用于zadoff-chu序列、修改的zadoff-chu序列和分块的扩频序列的协调循环移位和跳频序列
CN101222466B (zh) * 2008-01-11 2013-08-07 中兴通讯股份有限公司 用于正交频分复用系统的分布式数据映射方法和装置
CN102036312B (zh) * 2009-09-30 2013-08-07 华为技术有限公司 一种导频序列传输方法、网络节点和系统
US10028302B2 (en) 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN105637827B (zh) * 2014-03-25 2019-08-20 华为技术有限公司 导频序列的插入、提取方法和设备
EP3176988A4 (en) * 2014-08-01 2018-03-21 LG Electronics Inc. Method for transmitting and identifying pilot sequence in wireless communication system
EP3188430B1 (en) * 2014-08-19 2019-02-27 LG Electronics Inc. Method for generating and transmitting pilot sequence by forming asymmetric sequence set by means of shifting on time axis in wireless communication system
US10802129B2 (en) * 2015-02-17 2020-10-13 Lg Electronics Inc. Doppler measurement method in wireless LAN system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719817A (zh) * 2004-07-09 2006-01-11 北京三星通信技术研究有限公司 正交频分复用通信系统的导频传输和接收方法
CN101026432A (zh) * 2006-02-17 2007-08-29 华为技术有限公司 基于高速分组信道的分组数据业务传输方法及其系统
WO2012092066A1 (en) * 2010-12-28 2012-07-05 Motorola Mobility, Inc. Energy-saving base station and method
CN104079519A (zh) * 2013-03-28 2014-10-01 美国博通公司 具有主动网络维护的通信系统及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297239A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133780A1 (en) * 2017-01-18 2018-07-26 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
US11265896B2 (en) 2017-01-18 2022-03-01 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
CN113228772A (zh) * 2018-11-16 2021-08-06 上海诺基亚贝尔股份有限公司 数据传输控制
WO2022036565A1 (zh) * 2020-08-18 2022-02-24 华为技术有限公司 一种通信的方法及装置
WO2022041904A1 (zh) * 2020-08-28 2022-03-03 中兴通讯股份有限公司 数据传输方法、装置、传输设备及存储介质

Also Published As

Publication number Publication date
EP4117247A1 (en) 2023-01-11
US10972240B2 (en) 2021-04-06
CN111769927A (zh) 2020-10-13
CN111769927B (zh) 2023-04-18
US20180109366A1 (en) 2018-04-19
US10419182B2 (en) 2019-09-17
EP3297239A4 (en) 2018-05-23
EP3297239B1 (en) 2022-06-22
US20190372733A1 (en) 2019-12-05
CN107615726B (zh) 2020-06-16
EP3297239A1 (en) 2018-03-21
CN107615726A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2017000233A1 (zh) 传输导频序列的方法和装置
US10440732B2 (en) Method and device for transmitting data
US10411842B2 (en) Data transmission method and device
WO2018177259A1 (zh) 一种数据传输方法、网络设备和终端
TWI764919B (zh) 傳輸信號的方法和裝置
WO2017028051A1 (zh) 一种信息的传输方法和基站以及用户设备
WO2017219996A1 (zh) 传输用户序列的方法、网络设备和终端设备
US20180146445A1 (en) Asynchronous multiple access method and device for low latency service
JP2022179624A (ja) 検出ウィンドウ指示方法及び装置
EP3589048B1 (en) Data sending method and apparatus, and data receiving method and apparatus
TWI733933B (zh) 傳輸上行訊號的方法、終端設備和網路側設備
CN112291050B (zh) 传输信息的方法和装置
KR20200033744A (ko) 통신 시스템에서 셀 정보를 포함하는 신호의 송수신을 위한 방법 및 장치
WO2017166254A1 (zh) 发送信号的方法、终端设备和网络设备
CN107615868B (zh) 随机接入前置码信号构建
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
WO2019029523A1 (zh) 一种信号发送、信号接收方法以及相关设备
WO2017121380A1 (zh) 一种随机接入方法及装置
TWI710235B (zh) 傳輸數據的方法、信道估計的方法和裝置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2015180468A1 (zh) 一种数据传输方法,及基站和用户设备
CN113890707B (zh) 通信方法、装置、设备以及存储介质
WO2019179268A1 (zh) 一种传输参考信号的方法、装置和系统
WO2018102987A1 (zh) 用于解调共享参考信号的方法、终端设备和网络设备
WO2018228296A1 (zh) 用于进行数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015896764

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE