WO2019179268A1 - 一种传输参考信号的方法、装置和系统 - Google Patents

一种传输参考信号的方法、装置和系统 Download PDF

Info

Publication number
WO2019179268A1
WO2019179268A1 PCT/CN2019/075332 CN2019075332W WO2019179268A1 WO 2019179268 A1 WO2019179268 A1 WO 2019179268A1 CN 2019075332 W CN2019075332 W CN 2019075332W WO 2019179268 A1 WO2019179268 A1 WO 2019179268A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
time
sequence
frequency
block
Prior art date
Application number
PCT/CN2019/075332
Other languages
English (en)
French (fr)
Inventor
戴建强
袁志锋
胡宇洲
李卫敏
唐红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019179268A1 publication Critical patent/WO2019179268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of wireless communications, such as a method, apparatus and system for transmitting reference signals.
  • DMRS Demodulation Reference Signal
  • a control channel or a data channel usually includes DMRS symbols and data symbols; whether uplink or downlink, DMRS resources need to be configured; for example, each location (
  • the fourth Four Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) symbol is configured as a DMRS symbol, and the pilot sequence used is adopted. It is a ZC (Zadoff-Chu) sequence.
  • the present application provides a method, apparatus and system for transmitting a reference signal, which can increase pre-configurable pilots, thereby reducing the collision probability of pilot resources.
  • An embodiment of the present application provides a method for transmitting a reference signal, including: generating a pilot signal according to a pilot sequence corresponding to a first time-frequency pilot block; wherein the first time-frequency pilot block includes N time-domain symbols And N is an integer greater than 1; wherein, the pilot sequence corresponding to the first time-frequency pilot block is obtained by a pilot sequence corresponding to the second time-frequency pilot block; and the second time-frequency pilot block includes L times The domain symbol, L is less than N; the pilot signal is transmitted.
  • An embodiment of the present application provides a method for transmitting a reference signal, including: receiving a pilot signal; detecting all pilots to obtain a pilot sequence in a pilot signal; wherein the pilot includes a first time-frequency pilot block a pilot sequence corresponding to the first time-frequency pilot block, the first time-frequency pilot block includes N time-domain symbols, and N is an integer greater than 1, wherein the first time-frequency pilot block
  • the corresponding pilot sequence is obtained by a pilot sequence corresponding to the second time-frequency pilot block; the second time-frequency pilot block includes L time-domain symbols, and L is smaller than N.
  • An embodiment of the present application provides an apparatus for transmitting a reference signal, including: a generating module, configured to generate a pilot signal according to a pilot sequence corresponding to the first time-frequency pilot block; and a sending module configured to send a pilot signal;
  • the first time-frequency pilot block includes N time-domain symbols, and N is an integer greater than 1.
  • the pilot sequence corresponding to the first time-frequency pilot block is guided by the second time-frequency pilot block.
  • the frequency sequence is obtained; the second time-frequency pilot block includes L time domain symbols, and L is smaller than N.
  • An embodiment of the present application provides an apparatus for transmitting a reference signal, including: a receiving module configured to receive a pilot signal; and a detecting module configured to detect a pilot sequence in the pilot signal obtained by using all pilots; wherein The pilot includes a first time-frequency pilot block and a pilot sequence corresponding to the first time-frequency pilot block, the first time-frequency pilot block includes N time-domain symbols, and N is an integer greater than one; The pilot sequence corresponding to the first time-frequency pilot block may be obtained by a pilot sequence corresponding to the second time-frequency pilot block; the second time-frequency pilot block includes L time-domain symbols, and L is less than N .
  • Embodiments of the present application propose an apparatus for transmitting a reference signal, comprising a processor and a computer readable storage medium, wherein the computer readable storage medium stores instructions that are implemented when the instructions are executed by the processor Any of the above methods of transmitting a reference signal.
  • Embodiments of the present application propose a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements any of the methods described above for transmitting a reference signal.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a second time-frequency pilot block according to an embodiment of the present application.
  • FIG. 3(a) is a first schematic diagram of a time domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • FIG. 3(b) is a schematic diagram of a time domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • 4(a) is a third schematic diagram of a time domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • 4(b) is a fourth schematic diagram of a time domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • 4(c) is a schematic diagram 5 of a time domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • 5(a) is a schematic diagram 1 of a frequency domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • FIG. 5(b) is a second schematic diagram of a frequency domain resource location of a first time-frequency pilot block according to an embodiment of the present application
  • FIG. 5(c) is a third schematic diagram of a frequency domain resource location of a first time-frequency pilot block according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for transmitting a reference signal according to another embodiment of the present application.
  • FIG. 7 is a flowchart of a method for transmitting a reference signal according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a method for transmitting a reference signal according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting a reference signal according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for transmitting a reference signal according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a system for transmitting a reference signal according to another embodiment of the present application.
  • pilot resources including time domain resources, frequency domain resources, and pilot sequences
  • the limited pilot resources make the collision probability higher.
  • an embodiment of the present application provides a method for transmitting a reference signal, including steps 100 and 101.
  • step 100 a pilot signal is generated according to a pilot sequence corresponding to the first time-frequency pilot block.
  • step 101 the pilot signal is transmitted.
  • the pilot sequence corresponding to the first time-frequency pilot block is obtained by a pilot sequence corresponding to the second time-frequency pilot block.
  • the second time-frequency pilot block includes L time-domain symbols, L is smaller than N, and each of the time-domain symbols includes m resource element (Resource Element, RE) symbols, and the L, m is an integer greater than or equal to 1. .
  • a typical second time-frequency pilot block includes one time domain symbol, and each time domain symbol can include 12 RE symbols, 6 RE symbols, or 3 RE symbols. L,m can also be other positive integers.
  • the second time-frequency pilot block includes one time domain symbol. In Figure 2, one is a data symbol and the other is a reference symbol or a pilot symbol.
  • the time domain resource location of the time domain symbol included in the second time-frequency pilot block may be any location.
  • the second time-frequency pilot block contains a time-domain symbol located in the fourth symbol in each slot.
  • the time domain resource locations of different time domain symbols in the second time-frequency pilot block may be continuous or non-contiguous.
  • the pilot sequence corresponding to the first time-frequency pilot block may be obtained in multiple manners according to the pilot sequence corresponding to the second time-frequency pilot block.
  • the pilot sequence corresponding to the first time-frequency pilot block includes at least one of: a pilot sequence obtained by spreading a pilot sequence corresponding to the second time-frequency pilot block in a time domain; and a time domain extension and the A pilot sequence obtained by a sequence orthogonal to the pilot sequences corresponding to the second time-frequency pilot block.
  • the part j of the pilot sequence obtained by extending the pilot sequence corresponding to the second time-frequency pilot block in the time domain may be corresponding to the i-th element of the extended sequence and the second time-frequency pilot block The product of all the elements of the pilot sequence is obtained.
  • the j-th part of the pilot sequence obtained by extending the pilot sequence corresponding to the second time-frequency pilot block in the time domain may be the ith element of the extended sequence and the second time-frequency pilot block
  • the product of all elements of the sequence of the corresponding pilot sequences orthogonal is obtained.
  • j is an integer from 1 to J
  • i is an integer from 1 to 1
  • I is the length of the extended sequence
  • J is greater than or equal to 1.
  • the jth portion of the pilot sequence corresponding to the first time-frequency pilot block is obtained by multiplying the i-th element of the spreading sequence and all elements of the pilot sequence corresponding to the second time-frequency pilot block.
  • the pilot sequence corresponding to the first time-frequency pilot block can be viewed as a hierarchical structure or a secondary sequence structure, that is, the obtained pilot sequence is extended by at least two short sequences.
  • a pilot sequence of length 12 is extended by a spreading sequence of length 4 to obtain a pilot sequence of length 48.
  • the pilot sequence of length 48 has a hierarchical structure, that is, a pilot of length 48.
  • the sequence can be viewed as four parts. The first part is the product of the pilot sequence of length 12 multiplied by the first element of the extended sequence of length 4, and the second part is the pilot sequence multiplication of 12 lengths.
  • the product obtained by the second element of the extended sequence of length 4, and the third part is the product of the pilot sequence of length 12 multiplied by the third element of the extended sequence of length 4, the fourth part is The product of the length 12 is multiplied by the fourth element of the extended sequence of length 4.
  • the pilot sequence corresponding to the first time-frequency pilot block may provide more pilots than the pilot sequence corresponding to the second time-frequency pilot block, and then the pilot sequence corresponding to the first time-frequency pilot block is in time
  • the sparseness of the domain may be the same as the pilot sequence cost corresponding to the second time-frequency pilot block, or even less overhead.
  • the pilot sequence corresponding to the first time-frequency pilot block has a hierarchical structure, and the hierarchical structure can greatly reduce the detection complexity, that is, the hierarchical structure enables the receiver to perform hierarchical detection, that is, the first time-frequency pilot block corresponds to
  • the detection problem of the pilot sequence is reduced to the detection problem of multiple short sequences.
  • An example is when detecting the pilot sequence of length 48, the first step: detecting the first part, the second part, the third part, and the fourth part of the pilot sequence in parallel; the second step: the first The correlation value obtained by the step and the extended sequence are further correlated to obtain a detected value.
  • the specific form of the extended sequence is not limited.
  • the spreading sequence used by the pilot extension can take the extended sequence used by the extension of the data symbols. This method can use the extended sequence to do user discovery and simplify the implementation of the receiver.
  • the pilot sequence may be extended without increasing the pilot sequence overhead, and the number of original pilot sequences is increased.
  • the pilot sequence can be extended by increasing the overhead of the pilot sequence, which also increases the number of original pilot sequences, thereby reducing the collision probability of the pilot resources.
  • the first time-frequency pilot block includes N of the time domain symbols, and N is an integer greater than one.
  • the first time-frequency pilot block includes L x J of the time domain symbols.
  • the second time-frequency pilot block includes one time domain symbol
  • the length of the spreading sequence (s1, s2) is two
  • the first time-frequency pilot block includes two time-domain symbols. That is, as shown in FIG. 3(a) and FIG. 3(b), the first part of the first time-frequency pilot block (ie, the first time-domain symbol) is all elements of the second time-frequency pilot block. Multiplied by the first element s1 of the spreading sequence, the second part of the first time-frequency pilot block (ie, the second time-domain symbol) is the second of the second time-frequency pilot block multiplied by the second of the spreading sequence Element s2. In the figure, one is a data symbol and the other is a reference symbol or a pilot symbol.
  • the second time-frequency pilot block includes one time domain symbol
  • the extended sequence (s1, s2, s3) has a length of three
  • the first time-frequency pilot block includes three time-domain symbols. That is, the first part of the first time-frequency pilot block (ie, the first time-domain symbol) is all elements of the second time-frequency pilot block multiplied by the first element s1 of the spreading sequence, the first time-frequency The second part of the pilot block (ie, the second time domain symbol) is the second element of the second time-frequency pilot block multiplied by the second element s2 of the spreading sequence, the third part of the first time-frequency pilot block ( That is, the third time domain symbol) is the third element s3 of the extended sequence multiplied by all elements of the second time-frequency pilot block.
  • the embodiment of the present application does not limit the time domain resource location of the time domain symbol included in the first time-frequency pilot block, that is, the time domain resource location of the time domain symbol included in the first time-frequency pilot block may be any position.
  • the time domain resource location of the pilot sequence corresponding to the first time-frequency pilot block is any one of the following: the first N time domain symbols of each time slot and the first N time domain symbols of each two time slots.
  • the time domain resource positions of the four time domain symbols included in the first time-frequency pilot block are the first time domain symbol to the fourth time domain symbol of each time slot.
  • the time domain resource positions of the four time domain symbols included in the first time-frequency pilot block are the first time domain symbol to the fourth time domain symbol of every two time slots.
  • the time domain resource positions of the four time domain symbols included in the first time-frequency pilot block are the first two time domain symbols of the odd time slots and the first two time slots of the even number of time slots. Time domain symbol. In the figure, one is a data symbol and the other is a reference symbol or a pilot symbol.
  • the time domain resource location of the time domain symbol included in the first time-frequency pilot block may be represented by a pilot start position plus a position offset.
  • the pilot start position of the time domain resource position of the time domain symbol included in the first time-frequency pilot block as shown in FIG. 3(a) is 3, the position offset is 0 and 1, and the period is 1 Slot.
  • the pilot starting position of the time domain resource position of the time domain symbol included in the first time-frequency pilot block shown in Fig. 3(b) is 3, the positional offset is 0 and 3, and the period is 1 slot.
  • the pilot start position of the time domain resource position of the time domain symbol included in the first time-frequency pilot block shown in FIG. 4(a) is 0, and the position offset is 0, 1, 2, and 3, and the period is 1 slot.
  • the pilot start position of the time domain resource position of the time domain symbol included in the first time-frequency pilot block shown in FIG. 4(b) is 0, and the position offset is 0, 1, 2, and 3, and the period is 2 slots.
  • the pilot start position of the time domain resource position of the time domain symbol included in the first time-frequency pilot block shown in FIG. 4(c) is 0, and the position offset is 0, 1, 14, and 15, and the period is 2 slots.
  • the time domain resource locations of different time domain symbols in the first time-frequency pilot block may be continuous or non-contiguous.
  • the time domain resource positions of the two time domain symbols included in the first time-frequency pilot block are consecutive, that is, the fourth time domain symbol of each time slot and the fifth time.
  • Time domain symbols As shown in FIG. 3(b), the time domain resource positions of the two time domain symbols included in the first time-frequency pilot block are discontinuous, that is, the fourth time domain symbol and the seventh time of each time slot. Domain symbol.
  • the frequency domain resource location of the pilot sequence is a comb structure.
  • the frequency domain resource position of the pilot sequence is a comb structure as shown in FIG. 5(a), that is, one pilot sequence places one pilot RE symbol every other subcarrier in 12 subcarriers in the frequency domain.
  • the frequency domain resource position of the pilot sequence is a comb structure as shown in FIG. 5(b), that is, one pilot sequence places one pilot RE symbol every 2 subcarriers among 12 subcarriers in the frequency domain;
  • the first time domain symbol and the second time domain symbol are placed with one pilot RE symbol every other subcarrier in the 12 subcarriers in the frequency domain, and the third time domain symbol and the fourth time domain symbol are in frequency.
  • One pilot RE symbol is placed every two subcarriers of the 12 subcarriers of the domain.
  • the frequency domain resource position of the pilot sequence is a comb structure as shown in FIG. 5(c), and one pilot RE symbol is placed every other subcarrier in 12 subcarriers in the frequency domain; or, in the frequency domain A pilot RE symbol is placed every 2 subcarriers of the 12 subcarriers.
  • the pilot sequence orthogonal sequence corresponding to the second time-frequency pilot block is determined according to a cyclic shift and a pilot sequence corresponding to the second time-frequency pilot block.
  • the pilot sequence corresponding to the second time-frequency pilot block is a ZC sequence
  • the pilot sequence corresponding to the sequence r(n) and the second time-frequency pilot block are orthogonal to each other.
  • the pilot sequence corresponding to the first time-frequency pilot block includes any one of the following: a complex sequence; a Walsh sequence; a discrete Fourier sequence; a ZC sequence; and pseudo noise ( Pseudo-noise, PN) sequence.
  • the embodiments of the present application do not limit the specific form of the elements of the complex sequence.
  • the real part and the imaginary part of the elements of the complex sequence are integers, that is, the elements of the complex sequence are a+bj, and a and b are integers.
  • the values of a and b may be one of the following: the a is 1, the b is 0; the a is -1, the b is 0; the a is 0, and the b is 1. And the a is 0 and the b is -1.
  • a pilot sequence corresponding to the first time-frequency pilot block may be a ZC sequence or a PN sequence of length 12.
  • the other pilot sequence corresponding to the first time-frequency pilot block is the above-mentioned length 12-bit ZC sequence or The orthogonal sequence of the PN sequence.
  • a pilot sequence corresponding to the first time-frequency pilot block may be a ZC sequence or a PN sequence of length 8.
  • the other pilot sequence corresponding to the first time-frequency pilot block is the ZC sequence of length 8.
  • an orthogonal sequence of PN sequences may be used.
  • a pilot sequence corresponding to the first time-frequency pilot block may be a ZC sequence or a PN sequence of length 8.
  • the other pilot sequence corresponding to the first time-frequency pilot block is the ZC sequence of length 8.
  • a low correlation non-orthogonal sequence of the PN sequence may be used.
  • the correlation operation between the two sequences is a point multiplication of two sequences, that is, the elements corresponding to the two sequences are multiplied and added.
  • the correlation between at least three sequences is the average of the results of the correlation operations between any two sequences.
  • the correlation is less than the preset threshold (such as 0.5), it is considered to be low correlation; when the correlation is greater than or equal to the preset threshold, it is considered to be high correlation.
  • the preset threshold such as 0.5
  • the reference signal corresponding to the pilot sequence corresponding to the first time-frequency pilot block may be represented as: among them,
  • ⁇ DMRS is a power parameter
  • w f (k′) is related to an Orthogonal Convolutional Code (OCC) of the pilot frequency domain.
  • OCC Orthogonal Convolutional Code
  • k' and ⁇ are parameters related to the pilot frequency domain position k
  • l' is the position offset based on the pilot start position
  • s is the length of the spread sequence.
  • the specific value of w t (l') may be one of i, -1, 1, and -i, and the correlation of the sequence of length 2 composed of w t (0) and w t (1) is small.
  • the pilot start position may be any position, for example, may be any one of 0 to 13.
  • the elements in the extended sequence may be one of i, -i, 1, and -1, and a set of extended sequences of length 4 is as described in the previous embodiment.
  • the pilot sequence corresponding to the second time-frequency pilot block is extended, and the pilot signal is generated based on the extended pilot sequence (ie, the pilot sequence corresponding to the first time-frequency pilot block), thereby adding the original
  • the number of pilot sequences that is, the number of pre-configured pilots (ie, pilot resources) is increased, thereby reducing the collision probability of pilot resources and improving system performance.
  • the pre-configured pilot refers to all pilot resources that can be configured to the transmitting terminal.
  • another embodiment of the present application provides a method for transmitting a reference signal, including step 600, step 601, and step 602.
  • step 600 pilot configuration information is received; wherein the pilot configuration information includes pilots.
  • step 601 a pilot signal is generated based on the pilot sequence of the pilot.
  • step 602 a pilot signal is transmitted.
  • the pilot includes a pilot sequence corresponding to the first time-frequency pilot block and the first time-frequency pilot block, and the pilot sequence corresponding to the first time-frequency pilot block is according to the second Obtained by the pilot sequence corresponding to the time-frequency pilot block.
  • the configured pilot has 4 NX/I, or the configured pilot has 6 NX/I; wherein X is the number of extended sequences, that is, the number of possible values of the extended sequence, X Greater than or equal to 2, I is the length of the extended sequence.
  • the first time-frequency pilot block of the pilot includes two consecutive time domain symbols, and the starting position is the first time domain symbol in at least one time slot.
  • the configured pilot has 12*6, wherein the first time-frequency pilot block of the pilot includes four consecutive time-domain symbols, and the starting position is the first time-domain symbol in at least one time slot.
  • the configured pilot has 12*8, wherein the first time-frequency pilot block of the pilot includes four consecutive time-domain symbols, and the starting position is the first time-domain symbol in at least one time slot.
  • the configured pilot has 12*16, wherein the first time-frequency pilot block of the pilot includes consecutive 8 time-domain symbols, and the starting position is the first time-domain symbol in at least one time slot.
  • the configured pilot has 12*20, wherein the first time-frequency pilot block of the pilot includes consecutive 8 time-domain symbols, and the starting position is the first time-domain symbol in at least one time slot.
  • a pilot signal may be generated according to a pilot sequence of some or all of the configured pilots.
  • another embodiment of the present application provides a method for transmitting a reference signal, including steps 700, 701, and 702.
  • a pilot signal is received.
  • step 701 for example, all pre-configurable pilots are detected to obtain a pilot sequence in the pilot signal.
  • the correlation detection obtains a pilot sequence in the pilot signal; or the detection problem of the pilot sequence corresponding to the first time-frequency pilot block is reduced to a detection problem of a plurality of short sequences.
  • An example is when detecting a pilot sequence of length 48, the first step: detecting the first part, the second part, the third part, and the fourth part in parallel; the second step: obtaining the first step
  • the correlation value and the extension sequence are further correlated to obtain a detection value.
  • the method further includes step 702.
  • a transmitting terminal that transmits the pilot signal is determined according to a pilot that detects a pilot sequence.
  • the pilot may also be detected and the data information portion may be demodulated, wherein the data information portion includes a UE_ID (User Equipment Identification).
  • UE_ID User Equipment Identification
  • the pilot includes a pilot sequence corresponding to the first time-frequency pilot block and the first time-frequency pilot block, and the pilot sequence corresponding to the first time-frequency pilot block is according to the second Obtained by the pilot sequence corresponding to the time-frequency pilot block.
  • detecting a pilot sequence in a pilot signal obtained by detecting all pre-configured pilots includes: detecting 4 NX/I pre-configurable pilots to obtain a pilot sequence in a pilot signal; or Detecting 6 NX/I pre-configurable pilots to obtain a pilot sequence in the pilot signal; wherein X is the number of extended sequences, X is greater than or equal to 2, and I is the length of the extended sequence.
  • the pilot sequence corresponding to the first time-frequency pilot block has a hierarchical structure, and the hierarchical structure can greatly reduce the detection complexity, that is, the hierarchical structure enables the receiver to perform hierarchical detection, that is, The detection problem of the pilot sequence corresponding to the one-time pilot block is simplified to the detection problem of multiple short sequences.
  • the specific form of the extended sequence is not limited.
  • the spreading sequence used by the pilot extension can take the extended sequence used by the extension of the data symbols. This method can use the extended sequence to do user discovery and simplify the implementation of the receiver.
  • step 702 the transmitting terminal that transmits the pilot signal is determined according to the pilot that detects the pilot sequence, and the detected pilot sequence is searched for by the correspondence between the transmitting terminal and the pilot.
  • the transmitting terminal corresponding to the pilot may be represented by an identity of the sending terminal.
  • another embodiment of the present application provides a method for transmitting a reference signal, including steps 800 to 803.
  • step 800 pilots are configured for the transmitting terminal.
  • step 801 a pilot signal is received.
  • step 802 all pre-configurable pilots are detected to obtain a pilot sequence in the pilot signal.
  • the method further includes: Step 803: Determine, according to the pilot that detects the pilot sequence, a transmitting terminal that transmits the pilot signal.
  • At least one pilot may be configured for one transmitting terminal, for example, one pilot is configured for one transmitting terminal, or two pilots are configured for one transmitting terminal, and the like.
  • one pilot is configured for one transmitting terminal
  • two pilots are configured for one transmitting terminal, and the like.
  • the collision probability of the pilot resources is further reduced, and the detection reliability is improved.
  • the corresponding pilot may be configured for the transmitting terminal according to the distance from the transmitting terminal.
  • a comb structure corresponding to the pilot is selected according to the distance from the transmitting terminal.
  • the pilot sequences corresponding to the first time-frequency pilot block may also be grouped, and different packets are configured to different transmitting terminals, and different transmitting terminals select pilot sequences from different groups.
  • the packets may be grouped according to the comb structure, or grouped according to the type of the pilot sequence, or the pilot sequences may be grouped according to relevant characteristics.
  • step 803 the transmitting terminal that sends the pilot signal is determined according to the pilot that detects the pilot sequence, and the detected pilot sequence is searched for by the correspondence between the transmitting terminal and the pilot.
  • the transmitting terminal corresponding to the pilot is determined according to the pilot that detects the pilot sequence, and the detected pilot sequence is searched for by the correspondence between the transmitting terminal and the pilot.
  • the number of pilots that detect the same transmitting terminal is the same as the number of configured pilots, or the number of pilots that detect the same transmitting terminal is smaller than the configured pilot.
  • the number of frequencies needs to be combined with the detected pilots transmitted by the same transmitting terminal. The method further reduces the collision probability of the pilot resources and improves the detection reliability.
  • At least two pilots of the same transmitting terminal may be combined by the following method.
  • another embodiment of the present application provides an apparatus for transmitting a reference signal, including a generating module and a sending module.
  • a generating module configured to generate a pilot signal according to a pilot sequence corresponding to the first time-frequency pilot block.
  • a sending module configured to send the pilot signal.
  • the first time-frequency pilot block includes N time domain symbols, and N is an integer greater than 1.
  • the pilot sequence corresponding to the first time-frequency pilot block is obtained by a pilot sequence corresponding to the second time-frequency pilot block; the second time-frequency pilot block includes L time-domain symbols, and L is less than N .
  • another embodiment of the present application provides an apparatus for transmitting a reference signal, including a receiving module and a detecting module.
  • a receiving module configured to receive a pilot signal.
  • a detection module configured to detect all preambleable pilots to obtain a pilot sequence in the pilot signal.
  • the pilot includes a first time-frequency pilot block and a pilot sequence corresponding to the first time-frequency pilot block, where the first time-frequency pilot block includes N time-domain symbols, and N is greater than 1.
  • the pilot sequence corresponding to the first time-frequency pilot block may be obtained by a pilot sequence corresponding to the second time-frequency pilot block; the second time-frequency pilot block includes L time-domain symbols, where L is smaller than N.
  • the apparatus for transmitting a reference signal further comprises: a processing module configured to determine a transmitting terminal that transmits the pilot signal according to a pilot that detects the pilot sequence.
  • another embodiment of the present application provides a system for transmitting a reference signal, including a transmitting terminal and a receiving terminal.
  • the transmitting terminal is configured to generate a pilot signal according to a pilot sequence corresponding to the first time-frequency pilot block; and send the pilot signal.
  • the first time-frequency pilot block includes N time domain symbols, and N is an integer greater than 1.
  • the pilot sequence corresponding to the first time-frequency pilot block is obtained by a pilot sequence corresponding to the second time-frequency pilot block; the second time-frequency pilot block includes L time-domain symbols, and L is less than N .
  • the receiving terminal is configured to receive the pilot signal; detect all pre-configurable pilots to obtain a pilot sequence in the pilot signal.
  • the receiving terminal is further configured to: determine, according to the pilot that detects the pilot sequence, the transmitting terminal that transmits the pilot signal.
  • the transmitting terminal and the receiving terminal may be any communication node.
  • the sending terminal is a user equipment (User Equipment, UE), and the receiving terminal is a base station.
  • UE User Equipment
  • Another embodiment of the present application provides an apparatus for transmitting a reference signal, comprising a processor and a computer readable storage medium, wherein the computer readable storage medium stores instructions when the instructions are executed by the processor A method of implementing any of the above transmission reference signals.
  • Another embodiment of the present application is directed to a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements any of the steps of the method of transmitting a reference signal.
  • the computer readable storage medium includes at least one of the following: a flash memory, a hard disk, a multimedia card, a card type memory, for example, a Secure Digital Memory Card (SD card) or a Data Register (DX) memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read
  • PROM Programmable Read-Only Memory
  • magnetic memory magnetic disk, optical disk, etc.
  • the processor can be a Central Processing Unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chip.
  • CPU Central Processing Unit
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor a microprocessor

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例公开了一种传输参考信号的方法和装置,所述方法包括:根据第一时频导频块对应的导频序列生成导频信号;其中,第一时频导频块包括N个时域符号,N为大于1的整数;其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N;发送所述导频信号。

Description

一种传输参考信号的方法、装置和系统
本申请要求在2018年03月23日提交中国专利局、申请号为201810247807.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,例如一种传输参考信号的方法、装置和系统。
背景技术
解调参考信号(Demodulation Reference Signal,DMRS)是一种重要的参考信号,通常可以用来做信道估计,或多用户检测。
在长期演进(Long Term Evolution,LTE)系统基于DMRS的传输模式中,控制信道或数据信道通常包括DMRS符号和数据符号;不管是上行还是下行,都需要配置DMRS资源;例如,将每个位置(slot)的倒数第4个离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)符号配置为DMRS符号,且采用的导频序列为ZC(Zadoff-Chu)序列。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供了一种传输参考信号的方法、装置和系统,能够增加可预配的导频,从而降低导频资源的碰撞概率。
本申请的实施例提供了一种传输参考信号的方法,包括:根据第一时频导频块对应的导频序列生成导频信号;其中,第一时频导频块包括N个时域符号,N为大于1的整数;其中,第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N;发送所述导频信号。
本申请的实施例提出了一种传输参考信号的方法,包括:接收导频信号;检测所有导频得到导频信号中的导频序列;其中,所述导频包括第一时频导频 块和所述第一时频导频块对应的导频序列,所述第一时频导频块包括N个时域符号,N为大于1的整数;其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
本申请的实施例提出了一种传输参考信号的装置,包括:生成模块,设置为根据第一时频导频块对应的导频序列生成导频信号;发送模块,设置为发送导频信号;其中,第一时频导频块包括N个时域符号,N为大于1的整数;其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
本申请的实施例提出了一种传输参考信号的装置,包括:接收模块,设置为接收导频信号;检测模块,设置为检测所有导频得到导频信号中的导频序列;其中,所述导频包括第一时频导频块和所述第一时频导频块对应的导频序列,所述第一时频导频块包括N个时域符号,N为大于1的整数;其中,所述第一时频导频块对应的导频序列可以由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
本申请的实施例提出了一种传输参考信号的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输参考信号的方法。
本申请的实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种传输参考信号的方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请的一个实施例提出的传输参考信号的方法的流程图;
图2为本申请的一个实施例的第二时频导频块的示意图;
图3(a)为本申请的一个实施例的第一时频导频块的时域资源位置的示意图一;
图3(b)为本申请的一个实施例的第一时频导频块的时域资源位置的示意 图二;
图4(a)为本申请的一个实施例的第一时频导频块的时域资源位置的示意图三;
图4(b)为本申请的一个实施例的第一时频导频块的时域资源位置的示意图四;
图4(c)为本申请的一个实施例的第一时频导频块的时域资源位置的示意图五;
图5(a)为本申请的一个实施例的第一时频导频块的频域资源位置的示意图一;
图5(b)为本申请的一个实施例的第一时频导频块的频域资源位置的示意图二;
图5(c)为本申请的一个实施例的第一时频导频块的频域资源位置的示意图三;
图6为本申请的另一个实施例提出的传输参考信号的方法的流程图;
图7为本申请的另一个实施例提出的传输参考信号的方法的流程图;
图8为本申请的另一个实施例提出的传输参考信号的方法的流程图;
图9为本申请的另一个施例提出的传输参考信号的装置的结构组成示意图;
图10为本申请的另一个实施例提出的传输参考信号的装置的结构组成示意图;
图11为本申请的另一个实施例提出的传输参考信号的系统的结构组成示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
对于一些苛刻的场景需求,为了保证信道估计的性能,通常可以采用更多时域资源或频域资源开销来放置导频序列,但这样会导致频谱效率比较低。对于海量用户免调度场景,当用户随机选择导频资源(包括时域资源、频域资源 和导频序列)时,有限的导频资源使得碰撞概率较高。
参见图1,本申请一个实施例提出了一种传输参考信号的方法,包括步骤100和步骤101。
在步骤100中,根据第一时频导频块对应的导频序列生成导频信号。
在步骤101中,发送所述导频信号。
在本申请的实施例中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到。
第二时频导频块包括L个时域符号,L小于N,每个所述时域符号包括m个资源单元(Resource Element,RE)符号,所述L,m为大于或等于1的整数。例如,一种典型的第二时频导频块包括1个时域符号,每个时域符号可以包括12个RE符号,6个RE符号,或3个RE符号。L,m也可以是其他正整数。如图2所示,第二时频导频块包括1个时域符号。图2中,一种是数据符号,另一种是参考符号或导频符号。
第二时频导频块所包含的时域符号的时域资源位置可以是任意位置。例如,如图2所示,第二时频导频块包含的时域符号位于每个时隙内的第4个符号。
第二时频导频块中不同的时域符号的时域资源位置可以是连续的,也可以是非连续的。
在本申请的实施例中,第一时频导频块对应的导频序列可以根据第二时频导频块对应的导频序列采用多种方式获得。
例如,第一时频导频块对应的导频序列包括以下至少一种:时域扩展所述第二时频导频块对应的导频序列得到的导频序列;和时域扩展与所述第二时频导频块对应的导频序列正交的序列得到的导频序列。
其中,时域扩展所述第二时频导频块对应的导频序列得到的导频序列的第j部分可以由所述扩展序列的第i个元素和所述第二时频导频块对应的导频序列的所有元素的乘积得到。
其中,时域扩展所述第二时频导频块对应的导频序列得到的导频序列的第j部分可以由所述扩展序列的第i个元素和与所述第二时频导频块对应的导频序列正交的序列的所有元素的乘积得到。
其中,j为1到J的整数,i为1到I的整数,I为所述扩展序列的长度,J大于或等于I。
又如,第一时频导频块对应的导频序列的第j部分由所述扩展序列的第i个 元素和所述第二时频导频块对应的导频序列的所有元素的乘积得到。
第一时频导频块对应的导频序列可以看成分级结构或者二级序列结构,即所得到的导频序列是由至少两条短序列扩展而成的。例如,一条长度为12的导频序列经过一条长度为4的扩展序列扩展得到一条长度为48的导频序列,这条长度为48的导频序列有一种分级结构,即长度为48的导频序列可以看成4部分,第1部分是长度为12条的导频序列乘以长度为4长的扩展序列的第1个元素得到的乘积,第2部分是长度为12条的导频序列乘以长度为4长的扩展序列的第2个元素得到的乘积,第3部分是长度为12条的导频序列乘以长度为4的扩展序列的第3个元素得到的乘积,第4部分是长度为12的导频序列乘以长度为4的扩展序列的第4个元素得到的乘积。
第一时频导频块对应的导频序列相对第二时频导频块对应的导频序列可以提供更多的导频,再通过把第一时频导频块对应的导频序列在时域上放稀疏些,可以和第二时频导频块对应的导频序列开销一样,甚至开销更小。
第一时频导频块对应的导频序列有分级结构,这种分级结构可以大大减小检测复杂度,即分级结构使得接收机可以做分级检测,即把第一时频导频块对应的导频序列的检测问题简化为多个短序列的检测问题。一个例子为,检测上述长度为48的导频序列时,第一步:可以并行的检测导频序列的第一部分,第二部分,第三部分,和第四部分;第二步:将第一步得到的相关值和扩展序列再做相关运算,得到检测值。
本申请的实施例中,对扩展序列的具体形式不作限定。例如,导频扩展使用的扩展序列可以采用数据符号的扩展使用的扩展序列。该方法可以用扩展序列去做用户发现,简化接收机的实现。
下面列举扩展序列的20种可能的取值,下面列举的仅仅是一种示例,不用于限定扩展序列的具体取值。
{1 1 1 1};{1 -1 1 -1};{1 1 -1 -1};{1 -1 -1 1};{1 -i i 1};{1 i i -1};
{1 -i -i -1};{1 i -i 1};{1 -1 -i -i};{1 1 -i i};{1 -1 i i};{1 1 i -i};
{1 i -1 i};{1 -i -1 -i};{1 i 1 -i};{1 -i 1 i};{1 0 0 0};{0 1 0 0};
{0 0 1 0};{0 0 0 1}。
本申请的实施例中,可以在不增加导频序列开销的前提下,扩展了导频序列,增加了原有导频序列的数量。例如原来长度为12的导频序列可以提供12个导频,被扩展后可以提供12*20=240个导频,从而降低了导频资源的碰撞 概率,提高了系统性能。
本申请的实施例中,可以通过增加导频序列的开销,扩展导频序列,这也增加了原有导频序列的数量,从而降低了导频资源的碰撞概率。
第一时频导频块包括N个所述时域符号,N为大于1的整数。例如,第一时频导频块包括L×J个所述时域符号。
例如,第二时频导频块包括1个时域符号,扩展序列(s1,s2)的长度为2,那么第一时频导频块包括2个时域符号。也就是说,如图3(a)和图3(b)所示,第一时频导频块的第1部分(即第1个时域符号)为第二时频导频块的所有元素乘以扩展序列的第1个元素s1,第一时频导频块的第2部分(即第2个时域符号)为第二时频导频块的所有元素乘以扩展序列的第2个元素s2。图中,一种为数据符号,另一种为参考符号或导频符号。
又如,第二时频导频块包括1个时域符号,扩展序列(s1,s2,s3)的长度为3,那么第一时频导频块包括3个时域符号。也就是说,第一时频导频块的第1部分(即第1个时域符号)为第二时频导频块的所有元素乘以扩展序列的第1个元素s1,第一时频导频块的第2部分(即第2个时域符号)为第二时频导频块的所有元素乘以扩展序列的第2个元素s2,第一时频导频块的第3部分(即第3个时域符号)为第二时频导频块的所有元素乘以扩展序列的第3个元素s3。
本申请的实施例对第一时频导频块包含的时域符号的时域资源位置不作限定,也就是说,第一时频导频块包含的时域符号的时域资源位置可以是任意位置。例如,第一时频导频块对应的导频序列的时域资源位置为以下任一种:每个时隙的前N个时域符号和每两个时隙的前N个时域符号。
如图4(a)所示,第一时频导频块所包含的4个时域符号的时域资源位置为每个时隙的第1个时域符号到第4个时域符号。如图4(b)所示,第一时频导频块所包含的4个时域符号的时域资源位置为每两个时隙的第1个时域符号到第4个时域符号。如图4(c)所示,第一时频导频块所包含的4个时域符号的时域资源位置为奇数个时隙的前两个时域符号和偶数个时隙的前两个时域符号。图中,一种为数据符号,另一种为参考符号或导频符号。
第一时频导频块所包含的时域符号的时域资源位置可以采用导频起始位置加位置偏移来表示。例如,如图3(a)所示的第一时频导频块所包含的时域符号的时域资源位置的导频起始位置为3,位置偏移为0和1,周期为1个时隙(slot)。如图3(b)所示的第一时频导频块所包含的时域符号的时域资源位置的导频起 始位置为3,位置偏移为0和3,周期为1个slot。如图4(a)所示的第一时频导频块所包含的时域符号的时域资源位置的导频起始位置为0,位置偏移为0,1,2和3,周期为1个slot。如图4(b)所示的第一时频导频块所包含的时域符号的时域资源位置的导频起始位置为0,位置偏移为0,1,2和3,周期为2个slot。如图4(c)所示的第一时频导频块所包含的时域符号的时域资源位置的导频起始位置为0,位置偏移为0,1,14和15,周期为2个slot。
第一时频导频块中不同的时域符号的时域资源位置可以是连续的,也可以是非连续的。例如,如图3(a)所示,第一时频导频块所包含的2个时域符号的时域资源位置是连续的,即每个时隙的第4个时域符号和第5个时域符号。如图3(b)所示,第一时频导频块所包含的2个时域符号的时域资源位置是非连续的,即每个时隙的第4个时域符号和第7个时域符号。
其中,导频序列的频域资源位置为梳状结构。梳状结构中放置导频RE符号的子载波的间隔越小,信道评估精度越高,系统性能越好。
例如,导频序列的频域资源位置为如图5(a)所示的梳状结构,即一个导频序列在频域的12个子载波中每隔1个子载波放置一个导频RE符号。
又如,导频序列的频域资源位置为如图5(b)所示的梳状结构,即一个导频序列在频域的12个子载波中每隔2个子载波放置一个导频RE符号;或者,第一个时域符号和第二个时域符号在频域的12个子载波中每隔1个子载波放置一个导频RE符号,第三个时域符号和第四个时域符号在频域的12个子载波中每隔2个子载波放置一个导频RE符号。
又如,导频序列的频域资源位置为如图5(c)所示的梳状结构,在频域的12个子载波中每隔1个子载波放置一个导频RE符号;或者,在频域12个子载波中每隔2个子载波放置导频RE符号。
其中,与第二时频导频块对应的导频序列正交序列是根据循环移位和所述第二时频导频块对应的导频序列确定的。
例如,第二时频导频块对应的导频序列为ZC序列,其循环移位后的序列可以表示为r(n)=e jane jφ(n)π/4,其中a为整数,表示循环移位的步长,φ(n)的取值如表1所示。
Figure PCTCN2019075332-appb-000001
表1
序列r(n)与第二时频导频块对应的导频序列相互正交。
在本申请的实施例中,第一时频导频块对应的导频序列包括以下任意一种:复数序列;沃尔什(Walsh)序列;离散傅里叶序列;ZC序列;以及伪噪声(Pseudo-noise,PN)序列。
其中,本申请的实施例对复数序列的元素的具体形式不作限定,例如,复数序列的元素的实部和虚部均为整数,即复数序列的元素为a+bj,a和b为整数。
例如,a和b的取值可以为以下之一:所述a为1,所述b为0;所述a为-1,所述b为0;所述a为0,所述b为1;以及所述a为0,所述b为-1。
例如,第一时频导频块对应的一个导频序列可以是一个长度为12的ZC序列或PN序列,第一时频导频块对应的其他导频序列为上述长度为12的ZC序列或PN序列的正交序列。
又如,第一时频导频块对应的一个导频序列可以是一个长度为8的ZC序列或PN序列,第一时频导频块对应的其他导频序列为上述长度为8的ZC序列或PN序列的正交序列。
又如,第一时频导频块对应的一个导频序列可以是一个长度为8的ZC序列或PN序列,第一时频导频块对应的其他导频序列为上述长度为8的ZC序列或PN序列的低相关非正交序列。
其中,两个序列之间的相关运算为两个序列的点乘,即两个序列相对应的元素相乘后相加。
至少三个序列之间的相关性为任意两个序列之间的相关运算结果的平均值。
当相关性小于预设阈值(如0.5)时,认为是低相关性;当相关性大于或等于预设阈值时,认为是高相关性。
在本申请的实施例中,第一时频导频块对应的导频序列对应的参考信号可以表示为:
Figure PCTCN2019075332-appb-000002
其中,
Figure PCTCN2019075332-appb-000003
其中,k=4n+2k′+Δ或者k=6n+k′+Δ,
Figure PCTCN2019075332-appb-000004
其中,p j表示第j个导频序列
Figure PCTCN2019075332-appb-000005
为第一时频导频块对应的第j个导频序列对应的参考信号,
Figure PCTCN2019075332-appb-000006
为第二时频导频块对应的第j个导频序列对应的参考信号, β DMRS为功率参数,w f(k′)为与导频频域正交覆盖码(Orthogonal Convolutional Code,OCC)相关的参数,w t(l′)为与导频时域OCC相关的参数,
Figure PCTCN2019075332-appb-000007
为第j个导频序列或预编码处理后的第j个导频序列,k′和Δ为与导频频域位置k相关的参数,
Figure PCTCN2019075332-appb-000008
为导频起始位置,l′为基于导频起始位置的位置偏移,s为扩展序列的长度。
其中,w t(l′)的具体取值可以为i,-1,1,-i中的一个,w t(0)和w t(1)组成的长度为2的序列的相关性小。
其中,导频起始位置可以是任意位置,例如,可以是0~13中的任意一个。
其中,例如,扩展序列中的元素可以为i,-i,1,-1中的一个,一个长度为4的扩展序列集合如之前实施例所述。
一种具体的取值的例子如表2所示,表2中,k′=0,1,l′=0,1。
Figure PCTCN2019075332-appb-000009
表2
本实施例通过对第二时频导频块对应的导频序列进行扩展,进而基于扩展的导频序列(即第一时频导频块对应的导频序列)生成导频信号,增加了原有导频序列的数量,也即增加了可预配的导频(即导频资源)数量,从而降低了 导频资源的碰撞概率,提高了系统性能。其中,可预配的导频是指可以配置给发送终端的所有导频资源。
参见图6,本申请另一实施例提出了一种传输参考信号的方法,包括步骤600,步骤601和步骤602。
在步骤600中,接收导频配置信息;其中,导频配置信息包括导频。
在步骤601中,根据导频的导频序列生成导频信号。
在步骤602中,发送导频信号。
在本申请的实施例中,导频包括第一时频导频块和第一时频导频块对应的导频序列,所述第一时频导频块对应的导频序列是根据第二时频导频块对应的导频序列得到的。
在本申请的实施例中,第一时频导频块和第二时频导频块的相关描述可以参考上述实施例的描述,这里不再赘述。
本申请的实施例中,配置的导频有4NX/I个,或者,配置的导频有6NX/I个;其中,X为扩展序列条数,即扩展序列的可能取值的个数,X大于或等于2,I为所述扩展序列的长度。
例如,配置的导频有12个,其中,导频的第一时频导频块包括连续的2个时域符号,起始位置为至少一个时隙中的第1个时域符号。
例如,配置的导频有12*6个,其中,导频的第一时频导频块包括连续的4个时域符号,起始位置为至少一个时隙中的第1个时域符号。
例如,配置的导频有12*8个,其中,导频的第一时频导频块包括连续的4个时域符号,起始位置为至少一个时隙中的第1个时域符号。
例如,配置的导频有12*16个,其中,导频的第一时频导频块包括连续的8个时域符号,起始位置为至少一个时隙中的第1个时域符号。
例如,配置的导频有12*20个,其中,导频的第一时频导频块包括连续的8个时域符号,起始位置为至少一个时隙中的第1个时域符号。
在步骤601中,可以根据配置的部分或全部导频的导频序列生成导频信号。
参见图7,本申另一实施例提出了一种传输参考信号的方法,包括步骤700,步骤701和步骤702。
在步骤700例如接收导频信号。
在步骤701例如检测所有可预配的导频得到导频信号中的导频序列。
例如,相关检测得到导频信号中的导频序列;或者把第一时频导频块对应 的导频序列的检测问题简化为多个短序列的检测问题。一个例子为,检测长度为48的导频序列时,第一步:可以并行的检测它的第一部分,第二部分,第三部分,和第四部分;第二步:将第一步得到的相关值和扩展序列再做相关运算,得到检测值。
在一实施例中,该方法还包括步骤702。
在步骤702中,根据检测到导频序列的导频确定发送所述导频信号的发送终端。
在一个实施例中,也可以检测导频,并解调出数据信息部分,其中,数据信息部分包含了UE_ID(User Equipment Identification,用户设备标识)。
在本申请的实施例中,导频包括第一时频导频块和第一时频导频块对应的导频序列,所述第一时频导频块对应的导频序列是根据第二时频导频块对应的导频序列得到的。
在本申请的实施例中,第一时频导频块和第二时频导频块的相关描述可以参考上述实施例的描述,这里不再赘述。
在本申请的实施例中,检测所有可预配的导频得到导频信号中的导频序列包括:检测4NX/I个可预配的导频得到导频信号中的导频序列;或者,检测6NX/I个可预配的导频得到导频信号中的导频序列;其中,X为扩展序列条数,X大于或等于2,I为所述扩展序列的长度。
在本申请的实施例中,第一时频导频块对应的导频序列有分级结构,这种分级结构可以大大减小检测复杂度,即分级结构使得接收机可以做分级检测,即把第一时频导频块对应的导频序列的检测问题简化为多个短序列的检测问题。
本申请的实施例中,对扩展序列的具体形式不作限定。例如,导频扩展使用的扩展序列可以采用数据符号的扩展使用的扩展序列。该方法可以用扩展序列去做用户发现,简化接收机的实现。
在步骤702中,根据检测到导频序列的导频确定发送所述导频信号的发送终端,可通过在发送终端和导频之间的对应关系中,查找与所述检测到导频序列的导频对应的发送终端。其中,对应关系中的发送终端可以采用发送终端的身份标识来表示。
参见图8,本申请另一实施例提出了一种传输参考信号的方法,包括步骤800至步骤803。
在步骤800中,为发送终端配置导频。
在步骤801中,接收导频信号。
在步骤802中,检测所有可预配的导频得到导频信号中的导频序列。
在一实施例中,该方法还包括:步骤803、根据检测到导频序列的导频确定发送所述导频信号的发送终端。
本申请的实施例中,可以为一个发送终端配置至少一个导频,例如,为一个发送终端配置一个导频,或者为一个发送终端配置两个导频,等等。当为一个发送终端配置至少两个导频时,进一步降低了导频资源的碰撞概率,提高了检测可靠性。
本申请的实施例中,可以根据与发送终端的距离为发送终端配置相应的导频。例如,根据与发送终端的距离选择导频相应的梳状结构。
也可以将第一时频导频块对应的导频序列进行分组,将不同的分组配置给不同的发送终端,不同的发送终端从不同的分组中选择导频序列。具体的,可以根据梳状结构进行分组,或者按照导频序列的类型进行分组,或者按照相关特性将导频序列进行分组。
在步骤803中,根据检测到导频序列的导频确定发送所述导频信号的发送终端,可通过在发送终端和导频之间的对应关系中,查找与所述检测到导频序列的导频对应的发送终端。
如果为发送终端配置至少两个导频时,那么,检测到同一个发送终端的导频的数量与配置的导频的数量相同,或者检测到同一个发送终端的导频的数量小于配置的导频的数量,需要将检测到的同一个发送终端发送的导频进行合并。该方法进一步降低了导频资源的碰撞概率,提高了检测可靠性。
其中,可以采用以下方法将同一个发送终端的至少两个导频进行合并。
对同一个发送终端发送的至少两个导频序列进行加权平均,即将各个导频序列乘以相应的权重再相加。
参见图9,本申请另一实施例提出了一种传输参考信号的装置,包括生成模块和发送模块。
生成模块,设置为根据第一时频导频块对应的导频序列生成导频信号。
发送模块,设置为发送所述导频信号。
其中,第一时频导频块包括N个时域符号,N为大于1的整数。
其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频 序列得到;所述第二时频导频块包括L个时域符号,L小于N。
参见图10,本申请另一实施例提出了一种传输参考信号的装置,包括接收模块和检测模块。
接收模块,设置为接收导频信号。
检测模块,设置为检测所有可预配的导频得到导频信号中的导频序列。
其中,所述导频包括第一时频导频块和所述第一时频导频块对应的导频序列,所述第一时频导频块包括N个时域符号,N为大于1的整数;
其中,所述第一时频导频块对应的导频序列可以由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
在一实施例中,传输参考信号的装置还包括:处理模块,设置为根据检测到所述导频序列的导频确定发送所述导频信号的发送终端。
参见图11,本申请另一实施例提出了一种传输参考信号的系统,包括发送终端和接收终端。
发送终端,设置为根据第一时频导频块对应的导频序列生成导频信号;发送所述导频信号。
其中,第一时频导频块包括N个时域符号,N为大于1的整数。
其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
接收终端,设置为接收导频信号;检测所有可预配的导频得到导频信号中的导频序列。
在一实施例中,接收终端还设置为:根据检测到导频序列的导频确定发送所述导频信号的发送终端。
上述发送终端和接收终端可以是任意通信节点,例如,发送终端为用户设备(User Equipment,UE),接收终端为基站等。
本申请的另一实施例提出了一种传输参考信号的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输参考信号的方法。
本申请的另一实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种传输参考信号的方法的步骤。
其中,计算机可读存储介质包括以下至少之一:闪存、硬盘、多媒体卡、卡型存储器,例如,安全数码卡(Secure Digital Memory Card,SD卡)或数据 寄存器(Data Register,DX)存储器等,随机访问存储器(Random Access Memory,RAM)、静态随机访问存储器(Static Random Access Memory,SRAM)、只读存储器(Read Only Memory,ROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、磁性存储器、磁盘、光盘等。
处理器可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片等。

Claims (20)

  1. 一种传输参考信号的方法,包括:
    根据第一时频导频块对应的导频序列生成导频信号;
    其中,所述第一时频导频块包括N个时域符号,N为大于1的整数;
    其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N;
    发送所述导频信号。
  2. 根据权利要求1所述的方法,其中,所述第一时频导频块对应的导频序列的第j部分由扩展序列的第i个元素和所述第二时频导频块对应的导频序列的所有元素的乘积得到;
    其中,j为1到J的整数,i为1到I的整数,I为所述扩展序列的长度,J大于或等于I。
  3. 根据权利要求2所述的方法,其中,所述第一时频导频块包括L×J个所述时域符号。
  4. 根据权利要求1所述的方法,其中,所述第一时频导频块对应的导频序列包括以下至少一种:
    时域扩展所述第二时频导频块对应的导频序列得到的导频序列;
    时域扩展与所述第二时频导频块对应的导频序列正交的序列得到的导频序列。
  5. 根据权利要求4所述的方法,其中,所述与第二时频导频块对应的导频序列正交的序列是根据循环移位和所述第二时频导频块对应的导频序列确定的。
  6. 根据权利要求1所述的方法,其中,所述第一时频导频块对应的导频序列的时域资源位置为以下任一种:
    每个时隙的前N个时域符号和每两个时隙的前N个时域符号。
  7. 根据权利要求1所述的方法,其中,所述导频序列的频域资源位置为梳状结构。
  8. 根据权利要求1所述的方法,其中,所述第一时频导频块对应的导频序列包括以下任一种:
    复数序列;沃尔什walsh序列;离散傅里叶序列;ZC序列;以及伪噪声PN序列。
  9. 根据权利要求8所述的方法,其中,所述复数序列的元素为a+bj,a和b为整数,j表示虚数单位。
  10. 根据权利要求9所述的方法,其中,a和b的取值为以下之一:
    所述a为1,所述b为0;
    所述a为-1,所述b为0;
    所述a为0,所述b为1;
    所述a为0,所述b为-1。
  11. 一种传输参考信号的方法,包括:
    接收导频信号;检测所有导频得到导频信号中的导频序列;
    其中,所述导频包括第一时频导频块和所述第一时频导频块对应的导频序列,所述第一时频导频块包括N个时域符号,N为大于1的整数;
    其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
  12. 根据权利要求11所述的方法,该方法还包括:
    根据检测到的导频序列的导频确定发送所述导频信号的发送终端。
  13. 根据权利要求12所述的方法,其中,所述根据检测到的导频序列的导频确定所述发射导频信号的发送终端包括:
    在发送终端和导频之间的对应关系中,查找与所述检测到的导频序列的导频对应的发送终端。
  14. 根据权利要求11~13任一项所述的方法,其中,导频序列的第j部分由扩展序列和所述第二时频导频块对应的导频序列的所有元素的第i个元素的乘积得到;
    其中,j为1到J的整数,i为1到I的整数,I为所述扩展序列的长度,J大于或等于I。
  15. 根据权利要求14所述的方法,其中,所述检测所有导频得到导频信号中的导频序列包括:
    检测4NX/I个所述导频得到导频信号中的导频序列;
    或者,检测6NX/I个所述导频得到导频信号中的导频序列;其中,X为扩展序列条数,X大于或等于2,I为所述扩展序列的长度。
  16. 根据权利要求11~13任一项所述的方法,其中,所述第一时频导频块对应的导频序列包括以下至少一种:
    时域扩展所述第二时频导频块对应的导频序列得到的导频序列;
    时域扩展与所述第二时频导频块对应的导频序列正交的序列得到的导频序 列。
  17. 一种传输参考信号的装置,包括:
    生成模块,设置为根据第一时频导频块对应的导频序列生成导频信号;
    发送模块,设置为发送所述导频信号;
    其中,第一时频导频块包括N个时域符号,N为大于1的整数;
    其中,所述第一时频导频块对应的导频序列由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
  18. 一种传输参考信号的装置,包括:
    接收模块,设置为接收导频信号;
    检测模块,设置为检测所有导频得到导频信号中的导频序列;
    其中,所述导频包括第一时频导频块和所述第一时频导频块对应的导频序列,所述第一时频导频块包括N个时域符号,N为大于1的整数;
    其中,所述第一时频导频块对应的导频序列可以由第二时频导频块对应的导频序列得到;所述第二时频导频块包括L个时域符号,L小于N。
  19. 一种传输参考信号的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现如权利要求1~10任一项所述的传输参考信号的方法,或如权利要求11~16任一项所述的传输参考信号的方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1~10任一项所述的传输参考信号的方法,或如权利要求11~16任一项所述的传输参考信号的方法。
PCT/CN2019/075332 2018-03-23 2019-02-18 一种传输参考信号的方法、装置和系统 WO2019179268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810247807.3A CN110299980B (zh) 2018-03-23 2018-03-23 一种传输参考信号的方法、装置和系统
CN201810247807.3 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019179268A1 true WO2019179268A1 (zh) 2019-09-26

Family

ID=67986639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075332 WO2019179268A1 (zh) 2018-03-23 2019-02-18 一种传输参考信号的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN110299980B (zh)
WO (1) WO2019179268A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901890A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 参考信号处理方法、装置、第一通信节点和第二通信节点

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961408A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种上行信号发送方法和装置
CN107548094A (zh) * 2016-06-23 2018-01-05 华为技术有限公司 传输用户序列的方法、网络设备和终端设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164810A (ja) * 2000-09-12 2002-06-07 Katsuyoshi Azeyanagi 巡回シフト形符号分割多重通信方式
US8730877B2 (en) * 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
CN103944685B (zh) * 2013-01-18 2017-10-10 华为技术有限公司 扩展参考信号的方法、设备和通信系统
CN107332796B (zh) * 2016-04-29 2021-11-02 中兴通讯股份有限公司 盲检、上行接入方法及装置、接收机、发射机、基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961408A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种上行信号发送方法和装置
CN107548094A (zh) * 2016-06-23 2018-01-05 华为技术有限公司 传输用户序列的方法、网络设备和终端设备

Also Published As

Publication number Publication date
CN110299980A (zh) 2019-10-01
CN110299980B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US10644850B2 (en) Method and apparatus for uplink signal transmission
US11272533B2 (en) Random-access sending and receiving method and apparatus, transmitting end and receiving end
CN108270711B (zh) 传输参考信号的方法、设备和系统
JP2022111164A (ja) 測定参照信号の伝送方法および装置
WO2017000233A1 (zh) 传输导频序列的方法和装置
EP2690920B1 (en) Wireless communication system and communication method therefor
US11539563B2 (en) Method, network node and user equipment for preamble sequence transmission and reception to control network traffic
KR20120131163A (ko) 상향링크 레퍼런스 신호들을 위한 시퀀스 호핑 및 직교 커버링 코드의 적용
US11463220B2 (en) Method and apparatus for transmitting a reference signal
EP2448151A1 (en) Method and apparatus for transmitting physical random access channel signals
EP3249824B1 (en) Data transmission method and apparatus
EP3713177A1 (en) Sequence-based signal processing method and signal processing apparatus
WO2018064909A1 (zh) 干扰源小区定位方法和装置以及对应的基站
US10736105B2 (en) Information transmission method, apparatus, and system
KR101229841B1 (ko) Ofdma용 송신 안테나 포트의 수의 넌코히어런트 검출 방법
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
WO2019179268A1 (zh) 一种传输参考信号的方法、装置和系统
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
KR20190052649A (ko) 통신 시스템에서 동기 신호의 송수신 방법 및 장치
Moon et al. DMRS-applied repetition transmission (DART): Grant-free scheme for mMTC
WO2017157152A1 (zh) 接入处理方法及装置
WO2024120303A1 (zh) 数据传输方法、设备及存储介质
CN112438065B (zh) 发送位置参考信号的方法、节点、位置确定的方法和设备
CN111130726B (zh) 一种上行资源请求的通信处理方法和相关设备
CN104168225A (zh) 噪声方差的估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.02.2021)