WO2022041904A1 - 数据传输方法、装置、传输设备及存储介质 - Google Patents

数据传输方法、装置、传输设备及存储介质 Download PDF

Info

Publication number
WO2022041904A1
WO2022041904A1 PCT/CN2021/097570 CN2021097570W WO2022041904A1 WO 2022041904 A1 WO2022041904 A1 WO 2022041904A1 CN 2021097570 W CN2021097570 W CN 2021097570W WO 2022041904 A1 WO2022041904 A1 WO 2022041904A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
sequence
sequences
sequence set
signal sequence
Prior art date
Application number
PCT/CN2021/097570
Other languages
English (en)
French (fr)
Inventor
马一华
袁志锋
李卫敏
李志岗
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21859748.2A priority Critical patent/EP4207657A1/en
Priority to CA3190759A priority patent/CA3190759A1/en
Priority to US18/042,868 priority patent/US20230318771A1/en
Priority to KR1020237010015A priority patent/KR20230054869A/ko
Publication of WO2022041904A1 publication Critical patent/WO2022041904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to wireless communication, for example, to a data transmission method, apparatus, transmission device and storage medium.
  • the receiving end can determine the channel-related information between the transceiver antennas according to the reference signal sent by the transmitting end.
  • the data is subjected to coherent detection and decoding, etc., to obtain the correct transmission data.
  • non-orthogonal reference signals can provide richer information and can support the connection of massive devices, but in this many-to-one data transmission scenario, the receiving end usually needs to use compressed sensing-based
  • the algorithm detects the reference signal and performs channel estimation to recover the transmitted data and complete the data reception. For example, methods such as l 1 norm or l 2 norm minimization, greedy iterative algorithm, or approximate message passing (Approximate Message Passing) can be used to detect the reference signal and perform channel estimation.
  • the matrix multiplication in the iteration and a large number of complex multiplications affect the detection of the reference signal, thereby affecting the data transmission efficiency.
  • the present application provides a data transmission method, apparatus, transmission device and storage medium, so as to reduce the complexity of detecting the first reference signal and improve the data transmission efficiency.
  • the embodiment of the present application provides a data transmission method, including:
  • a transport packet is sent, the transport packet including the first reference signal, the second reference signal, and the transmitted data.
  • the embodiment of the present application also provides a data transmission method, including:
  • the transport packet including at least one first reference signal, a second reference signal associated with each of the first reference signals, and transmitted data;
  • Corresponding received data is determined according to an active sequence in the at least one first reference signal.
  • the embodiment of the present application also provides a data transmission device, including:
  • a signal determination module configured to determine a first reference signal and a second reference signal associated with the first reference signal, where the second reference signal is used to assist the receiving end in detecting an active sequence in the at least one first reference signal received ;
  • a sending module configured to send a transmission packet, where the transmission packet includes the first reference signal, the second reference signal and the transmitted data.
  • the embodiment of the present application also provides a data transmission device, including:
  • a receiving module configured to receive a transmission packet, the transmission packet including at least one first reference signal, a second reference signal associated with each of the first reference signals, and transmitted data;
  • a detection module configured to detect an active sequence in the at least one first reference signal according to at least one second reference signal associated with the at least one first reference signal
  • a data determination module configured to determine corresponding received data according to an active sequence in the at least one first reference signal.
  • the embodiment of the present application also provides a transmission device, including:
  • processors one or more processors
  • storage means arranged to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the above-mentioned data transmission method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and the program implements the foregoing data transmission method when the program is executed by a processor.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment
  • FIG. 2 is a schematic diagram of a transport packet provided by an embodiment
  • FIG. 3 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set according to an embodiment
  • FIG. 4 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set according to another embodiment
  • FIG. 5 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set provided by another embodiment
  • FIG. 6 is a flowchart of a data transmission method provided by another embodiment
  • FIG. 7 is a schematic diagram of detecting an active sequence in a first reference signal according to an embodiment
  • FIG. 8 is a schematic diagram of detecting an active sequence in a first reference signal according to another embodiment
  • FIG. 9 is a schematic diagram of detecting an active sequence in a first reference signal according to yet another embodiment.
  • FIG. 10 is a schematic diagram of detecting an active first reference signal with a time-domain or frequency-domain offset according to an embodiment
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus provided by another embodiment
  • FIG. 13 is a schematic diagram of a hardware structure of a transmission device according to an embodiment.
  • non-orthogonal reference signals are used to recover data, which can support the connection of a large number of devices.
  • the receiving end usually uses an algorithm based on compressed sensing to perform pilot detection and channel estimation to determine the active reference signal.
  • the transmitting end device corresponding to the active reference signal has stronger capabilities, and the quality of the communication link between the transmitting end and the receiving end is higher, so it can successfully access the network. For example, when detecting the pilot (reference signal), the l 1 /l 2 norm minimization method can be used.
  • the l 0 norm minimization is an NP-complete (Non-deterministic Polynomial Complete) problem
  • the l 1 /l 2 Norm minimization can transform the NP-complete problem into an optimization problem and obtain the optimal solution, but it requires a lot of iterative calculations; another example is the use of a greedy iterative algorithm, which can restore the detected pilots in one iteration, and then use these pilots. Perform channel estimation and calculate the residual error of the signal for the next iteration; the method of Approximate Message Passing can also be used, which can avoid the matrix inversion in the greedy iterative algorithm and reduce the calculation to a certain extent. complexity, but also requires iteration.
  • a data transmission method is provided, which can be applied to a sending end, such as a user equipment (User Equipment, UE).
  • the transmitted transmission packet includes the first reference signal and the transmitted data, and an associated second reference signal is added to assist the receiving end to efficiently detect the active sequence in the first reference signal in the received signal.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment. As shown in FIG. 1 , the method provided by this embodiment includes step 110 and step 120 .
  • a first reference signal and a second reference signal associated with the first reference signal are determined, where the second reference signal is used to assist the receiving end in detecting an active sequence in at least one received first reference signal.
  • step 120 a transport packet is sent, and the transport packet includes the first reference signal, the second reference signal, and the transmitted data.
  • the first reference signal is set to restore the transmitted data
  • the receiving end can determine the transmitting end device that can successfully access the network by detecting the active sequence in the first reference signal, and complete the channel estimation or the spatial combining vector estimation,
  • the transmitted data can thus be processed accurately.
  • the sending end also sends a second reference signal uniquely corresponding to the first reference signal, and there is a difference between the first reference signal and the second reference signal in the transmission packet. connection relation.
  • FIG. 2 is a schematic diagram of a transport packet provided by an embodiment.
  • the transmission packet includes a first reference signal (L bits), a second reference signal (K bits), and transmitted data, that is, data to be transmitted.
  • the second reference signal is used to assist the receiving end to detect active sequences in the first reference signal;
  • the first reference signal provides a basis for the receiving end to perform channel estimation and analyze the transmitted data, that is, to assist in determining the transmitted data.
  • the receiving end may receive multiple second reference signals from different transmitting ends at the same time.
  • the second reference signal can be effectively recovered.
  • the first reference signal associated with the second reference signal that can be effectively recovered is the active sequence in the first reference signal.
  • channel estimation or Spatially incorporate vector estimates for accurate processing of transmitted data The smaller the error between the reception of the second reference signal and the real second reference signal, the higher the activity of the associated first reference signal. Under ideal conditions (no noise and no interference), for active pilots, it is possible to recover To obtain a real second reference signal, the error should be 0, and for an inactive pilot, the real second reference signal cannot be recovered.
  • the active sequence in the first reference signal may refer to a first reference signal whose calculated error is less than or equal to a set threshold, or a first reference signal whose calculated activity is greater than or equal to a set threshold , or a set number of first reference signals with the smallest error (or the highest activity).
  • the transmitted transmission packet includes the first reference signal and the transmitted data
  • the second reference signal is added to assist the receiving end to efficiently detect the first reference signal in the received signal It can avoid iterative calculation and reduce the complexity of detecting the first reference signal.
  • the transmitting end can receive the transmitted data according to the detected first reference signal, thereby improving the data transmission efficiency.
  • the active sequence in the first reference signal includes one of the following: at least one sequence in the first reference signal sequence set; at least one sequence with different time domains Sequences in the first reference signal sequence set with offsets; at least one sequence in the first reference signal sequence set with different frequency domain offsets; at least one sequence with different time domain offsets and frequency domain offsets A sequence in the first set of reference signal sequences.
  • the first reference signal sent by the transmitting end is represented as a sequence of length L, and the sequence may be further divided into sequences with different time-domain offsets and/or frequency-domain offsets. Since the sequence may be distorted or deformed after experiencing the time domain or frequency domain offset of the channel, the receiving end may further estimate the time domain and/or the corresponding sequence based on detecting the active sequence in the first reference signal. or frequency domain offset.
  • the first reference signal is a sequence in the first reference signal sequence set
  • the second reference signal is a sequence in the second reference signal sequence set
  • the sequence in the first reference signal sequence set is the same as the second reference signal sequence set.
  • the sequences in the reference signal sequence set satisfy a many-to-one mapping relationship or a one-to-one mapping relationship, wherein any sequence in the first reference signal sequence set is mapped to a unique sequence in the second reference signal sequence set .
  • a reference signal can be represented as a sequence.
  • the receiving end may receive transmission packets from one or more sending ends, that is, at least one first reference signal and a second reference signal associated with the first reference signal, each sending end may send
  • the first reference signal constitutes a first reference signal sequence set
  • the second reference signal possibly sent by each transmitting end constitutes a second reference signal sequence set.
  • the receiving end detects an active sequence in the first reference signal from the first reference signal sequence set according to the received second reference signal.
  • the one-to-one mapping relationship means that each sequence in the first reference signal sequence set is respectively associated with different sequences in the second reference signal sequence set;
  • the many-to-one mapping relationship means that the first reference signal sequence set in the There may be one or more sequences associated with the same sequence in the second set of reference signal sequences. Among them, for any sequence in the first reference signal sequence set, there must be a unique sequence corresponding to it in the second reference signal sequence set, so that the receiving end can clearly detect the associated first reference signal according to each second reference signal. Whether a reference signal is active.
  • This embodiment does not limit the specific mapping relationship.
  • the number of sequences in the first reference signal sequence set and the second reference signal sequence set are the same. If the number of sequences in the first reference signal sequence set is N, and the first reference signal is represented as a sequence of length L, then the number of sequences in the second reference signal sequence set is also N, and the second reference signal is represented by a length of K , where N>L>K ⁇ 1.
  • the sender can select a sequence of the first reference signal to send through pre-configuration or random selection. For example, what is sent is the nth sequence in the first reference signal sequence set. If 1 ⁇ n ⁇ N, the sender is still transmitting The nth sequence in the second reference signal sequence set is sent in the packet, and the transmitted data is sent.
  • the length of the first reference signal is greater than the length of the second reference signal.
  • the length of the first reference signal is L and the length of the second reference signal is K, then L is greater than K, so that the overhead of transmitting the second reference signal is controlled while assisting the detection of the first reference signal.
  • the number of sequences in the first set of reference signal sequences is greater than or equal to the number of sequences in the second set of reference signal sequences.
  • sequences in the second reference signal sequence set are orthogonal; the second reference signal sequence set is one of the following:
  • Hadamard sequence that is, the set of row vectors in the Hadamard matrix.
  • sequences in the second reference signal sequence set are non-orthogonal; the sequences in the second reference signal sequence set are one of the following:
  • ETF Equiangular Tight Frames
  • Multi-User Shared Access, MUSA Multiple access sequence, using complex domain multivariate code (sequence) as the spreading sequence, in the case of short sequence length, it can also maintain a low cross-correlation;
  • sequences in the second set of reference signal sequences are non-orthogonal, and non-orthogonal sequences of the same length can provide more sequences than orthogonal sequences.
  • the first reference signal includes at least one of the following:
  • the preamble signal (Preamble), that is, the preamble sequence, is the beginning of the physical frame;
  • Pilot signal is a sequence sent for measurement or monitoring by the receiver
  • a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • mapping relationship between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set satisfies one of the following:
  • One-to-one mapping relationship the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set, where n is a positive integer;
  • the nth sequence in the first reference signal sequence set is associated with the xth sequence in the second reference signal sequence set, where n is a positive integer, and K is the second reference signal sequence set The number of sequences in , K is a positive integer, and x is the result of n-1 taking the remainder of K plus 1;
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set. sequences, where n is a positive integer, M is the number of sequences in the second reference signal sequence set, M is a positive integer, N is the number of sequences in the first reference signal sequence set, and N is a positive integer.
  • FIG. 3 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set according to an embodiment.
  • the numbers of sequences in the two reference signal sequence sets are the same and satisfy a one-to-one mapping relationship
  • the sequences in the first reference signal sequence set are non-orthogonal
  • the sequences in the second reference signal sequence set are non-orthogonal .
  • the number of sequences in the first reference signal sequence set is N
  • the length is L
  • the number of sequences in the second reference signal sequence set is N
  • the length is K
  • the transmitting end may select a sequence in the first reference signal sequence set as the first reference signal to transmit through pre-configuration or random selection, and its sequence number is set to n, where 1 ⁇ n ⁇ N. Then, the transmitting end also sends the n-th sequence in the second reference signal sequence set as the second reference signal, and the transmission packet also includes the transmitted data.
  • p1, p2, p3, p4 to pN represent sequences in the first reference signal sequence set
  • q1, q2, q3, q4 to qN represent sequences in the second reference signal sequence set.
  • FIG. 4 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set according to another embodiment.
  • the number of sequences in the first reference signal sequence set is greater than the number of sequences in the second reference signal sequence set, and a many-to-one mapping relationship is satisfied between the sequences in the two reference signal sequence sets.
  • the sequences in the sequence set are non-orthogonal, and the sequences in the second reference signal sequence set are orthogonal.
  • the number of sequences in the first reference signal sequence set is N
  • the length is L
  • the number of sequences in the second reference signal sequence set is K
  • the length is K
  • p1, p2, p3, p4 to pN represent sequences in the first reference signal sequence set
  • q1, q2 to qK represent sequences in the second reference signal sequence set.
  • FIG. 5 is a schematic diagram of a mapping relationship between a first reference signal sequence set and a second reference signal sequence set according to another embodiment.
  • the number of sequences in the first reference signal sequence set is greater than the number of sequences in the second reference signal sequence set, and a many-to-one mapping relationship is satisfied between the sequences in the two reference signal sequence sets.
  • the sequences in the sequence set are non-orthogonal, and the sequences in the second reference signal sequence set are non-orthogonal.
  • the number of sequences in the first reference signal sequence set is N
  • the length is L
  • the number of sequences in the second reference signal sequence set is M
  • the length is K
  • the transmitting end may select a sequence in the first reference signal sequence set as the first reference signal to transmit through pre-configuration or random selection, and its sequence number is set to n, where 1 ⁇ n ⁇ N. Then the transmitting end will also add the first reference signal sequence set in the second reference signal sequence set.
  • p1, p2, p3, p4 to pN represent sequences in the first reference signal sequence set
  • q1, q2 to qM represent sequences in the second reference signal sequence set.
  • the embodiment of the present application also provides a data transmission method, which can be applied to a receiving end, such as a base station.
  • the active sequence in the first reference signal can be efficiently detected according to the second reference signal in the received transmission packet, and the corresponding transmitted data can be accurately processed according to the active sequence in the first reference signal.
  • FIG. 6 is a flowchart of a data transmission method provided by another embodiment. As shown in FIG. 6 , the method provided by this embodiment includes steps 210 to 230 .
  • a transport packet is received, the transport packet including at least one first reference signal, a second reference signal associated with each of the first reference signals, and transmitted data.
  • step 220 an active sequence in the at least one first reference signal is detected according to at least one second reference signal associated with the at least one first reference signal.
  • step 230 the corresponding received data is determined according to the active sequence in the at least one first reference signal.
  • the receiving end can efficiently detect the active sequence in the first reference signal according to the second reference signal in the received transmission packet, and can accurately process the corresponding transmitted data according to the active sequence in the first reference signal. Specifically, the receiving end can determine the transmitting end device that can successfully access the network by detecting the active sequence in the first reference signal, and complete the channel estimation or the spatial combining vector estimation, so that the transmitted data can be processed accurately.
  • the receiving end can efficiently detect the active sequence in the first reference signal according to the received second reference signal, so as to avoid Iterative calculation is implemented, thereby reducing the complexity of detecting the first reference signal.
  • the corresponding transmitted data can be accurately processed according to the active sequence in the first reference signal, thereby improving the data transmission efficiency.
  • the active sequences in the at least one first reference signal include one of the following: at least one sequence in the first reference signal sequence set; at least one sequence with different time domains Sequences in the first reference signal sequence set with offsets; at least one sequence in the first reference signal sequence set with different frequency domain offsets; at least one sequence with different time domain offsets and frequency domain offsets A sequence in the first set of reference signal sequences.
  • the first reference signal sent by each transmitter is a sequence in the first reference signal sequence set
  • the second reference signal sent by each transmitter is a sequence in the second reference signal sequence set
  • a many-to-one mapping relationship or a one-to-one mapping relationship is satisfied between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set, wherein the sequence in the first reference signal sequence set is Any sequence is mapped to a unique sequence in the second reference signal sequence set.
  • step 220 includes:
  • Step 221 Determine the activity of a potentially active sequence in the at least one first reference signal according to the signal reception matrix of the at least one second reference signal;
  • Step 222 Use potentially active sequences in the set number of first reference signals with the highest activity as the active sequences in the at least one first reference signal.
  • the potentially active sequences in the at least one first reference signal include one of the following: each sequence in the first reference signal sequence set; the sequence of each sequence in the first reference signal sequence set under different time domain offsets; the sequence of each sequence in the first reference signal sequence set under different frequency domain offsets; the Sequences of each sequence in a set of reference signal sequences at different time domain offsets and time domain offsets.
  • the transmission packets received by the receiving end may come from one or more transmitting ends. Determine which second reference signal or signals can be effectively recovered.
  • the first reference signal associated with the second reference signal that can be effectively recovered is the active sequence in the first reference signal.
  • the active sequence in the first reference signal that is, Channel estimation or spatial combination vector estimation can be performed to accurately process the transmitted data.
  • the active sequence in the first reference signal may refer to the first reference signal whose calculated error is less than or equal to the set threshold, or the first reference signal whose calculated activity is greater than or equal to the set threshold, or the smallest error ( or a set number of first reference signals with the highest activity.
  • step 221 includes:
  • the Euclidean distance between the combined result and the corresponding second reference signal sequence in the second reference signal sequence set is calculated, wherein the Euclidean distance is negatively correlated with the activity.
  • each potential active sequence in the first reference signal (which may be a sequence in the first reference signal sequence set, or a sequence in the first reference signal sequence set in different time domains and/or sequence under the frequency domain offset), respectively calculate the corresponding spatial domain combining vector, which is the weight vector used to combine the received signals of multiple receiving antennas; then, each spatial domain combining vector is combined with the second The sequences of the corresponding second reference signals in the reference signal sequence set are combined to obtain a combined result; the Euclidean distance between each combined result and the corresponding real sequence of the second reference signal is calculated. The larger the Euclidean distance, the greater the error. The bigger it is, the less active it is.
  • the sequence of the second reference signal may be a sequence in the second reference signal sequence set, or may be each sequence of the sequences in the second reference signal sequence set under different time domain and/or frequency domain offsets.
  • Each active sequence in the first reference signal sequence set is associated with a unique second reference signal sequence, and a one-to-one or many-to-one mapping is satisfied between the first reference signal sequence and the second reference signal sequence This embodiment does not limit the specific mapping relationship.
  • the length of the first reference signal is greater than the length of the second reference signal.
  • the number of sequences in the first set of reference signal sequences is greater than or equal to the number of sequences in the second set of reference signal sequences.
  • the sequences in the second set of reference signal sequences are orthogonal; the second set of reference signal sequences is one of the following: Hadamard sequence, a set of row vectors in a diagonal matrix, and a set of row vectors in a DFT matrix.
  • the sequences in the second reference signal sequence set are non-orthogonal; the sequences in the second reference signal sequence set are one of the following: ETF sequence, MUSA sequence, and a sequence generated based on complex Gaussian random numbers.
  • the first reference signal includes at least one of the following: a preamble signal, a pilot signal, and a DMRS.
  • mapping relationship between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set satisfies one of the following:
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set, where n is a positive integer;
  • the nth sequence in the first reference signal sequence set is related to the n-1th result of taking the remainder of K in the second reference signal sequence set plus 1 sequence, where n is a positive integer and K is the second reference signal sequence The number of sequences in the set, K is a positive integer;
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set sequence, where n is a positive integer, M is the number of sequences in the second reference signal sequence set, M is a positive integer, N is the number of sequences in the first reference signal sequence set, and N is a positive integer.
  • FIG. 7 is a schematic diagram of detecting an active sequence in a first reference signal according to an embodiment.
  • the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set are both non-orthogonal, and the number of sequences in the two reference signal sequence sets is the same and satisfies a one-to-one mapping relationship.
  • the number of sequences in the first reference signal sequence set (that is, the potential active sequences in the first reference signal) is N and the length is L.
  • the N sequences in the first reference signal sequence set respectively represent are p1 to pN
  • the number of sequences in the second reference signal sequence set is N
  • the length is K
  • the N sequences in the second reference signal sequence set are respectively denoted as q1 to qN.
  • the receiving end calculates the activity of all pilots (first reference signals).
  • the specific methods are as follows: (1) respectively obtain N spatial combining vectors corresponding to the N first reference signals, respectively denoted as w1 to wN; (2) respectively use the N spatial combining vectors and the corresponding signals of the second reference signal The receiving matrices are combined, and the N combined second reference signals are denoted as x1 to xN respectively; (3) For the nth combined signal, calculate the nth combined signal and the second reference signal sequence set in the second reference signal sequence set.
  • the spatial combination vector in the process of calculating the activity, is logically calculated first, and then the combined signal of the spatial combination vector and the corresponding sequence of the second reference signal is calculated.
  • This process can be performed by two consecutive matrix multiplications.
  • P is a matrix formed by a sequence of N ⁇ L first reference signals
  • Y is a signal receiving matrix of M 0 ⁇ L first reference signals
  • P ⁇ Y ⁇ 1 is is a matrix formed by N spatial domain combining vectors
  • Y R is the signal receiving matrix of the second reference signal of M 0 ⁇ K
  • M 0 is the number of receiving antennas.
  • Y -1 can be calculated first ⁇ Y R , and then calculate P ⁇ (Y -1 ⁇ Y R ), which can further reduce the computational complexity.
  • the complex multiplication of N ⁇ M 0 ⁇ L can be simplified to the complex multiplication of N ⁇ M 0 ⁇ K, which improves the detection efficiency.
  • FIG. 8 is a schematic diagram of detecting an active sequence in a first reference signal according to another embodiment.
  • the sequences in the first reference signal sequence set are non-orthogonal, the sequences in the second reference signal sequence set are orthogonal, and the number of sequences in the first reference signal sequence set is greater than the number of sequences in the second reference signal sequence set number, and a many-to-one mapping relationship is satisfied between the sequences in the two reference signal sequence sets. As shown in FIG.
  • the number of sequences in the first reference signal sequence set (that is, the potential active sequences in the first reference signal) is N, the length is L, and the N sequences are respectively denoted as p1 to pN, and the second reference signal sequence
  • the number of sequences in the set is K, the length is K, N>L>K ⁇ 1, and each sequence is denoted as q1 to qK, respectively.
  • the receiving end calculates the activity of all pilots (first reference signals).
  • the specific methods are as follows: (1) Calculate the spatial combining vectors corresponding to the N first reference signals respectively, which are expressed as w1 to wN respectively; (2) Respectively use the N spatial combining vectors and the signal receiving matrix of the corresponding second reference signal For combining, the signal receiving matrices of the N second reference signals are respectively expressed as x1 to xN; (3) for the nth combined signal, calculate the nth combined signal and the second reference signal sequence set in the mod th (n-1,K)+1 Euclidean distance between sequences, where 1 ⁇ n ⁇ N; (4) Compare the nth combined signal with the mod(n-1th in the second reference signal sequence set , K)+1 The Euclidean distance between the sequences is used as the basis for determining the activity of the n-th first reference signal, the smaller the Euclidean distance, the higher the activity.
  • a set number of first reference signals whose activity is greater than a certain threshold is determined as
  • FIG. 9 is a schematic diagram of detecting an active sequence in a first reference signal according to yet another embodiment.
  • the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set are both non-orthogonal, and the number of sequences in the first reference signal sequence set is larger than that in the second reference signal sequence set , and a many-to-one mapping relationship is satisfied between the sequences in the two reference signal sequence sets. As shown in FIG.
  • the number of sequences in the first reference signal sequence set (that is, the potential active sequences in the first reference signal) is N, the length is L, and each sequence is denoted as p1 to pN, respectively, and the second reference signal sequence set
  • the number of sequences in is M, the length is K, N>L>K ⁇ 1, N>M>K ⁇ 1, and the M sequences are denoted as q1 to qM, respectively.
  • the receiving end calculates the activity of all pilots (first reference signals).
  • the specific methods are as follows: (1) respectively obtain the spatial combining vectors corresponding to the N first reference signals, respectively denoted as w1 to wN; (2) respectively use the N spatial combining vectors and the corresponding second reference signal signal receiving matrices For combining, the signal receiving matrices of the N second reference signals are respectively expressed as x1 to xN; (3) for the nth combined signal, calculate the nth combined signal and the second reference signal sequence set in the Euclidean distance between the sequences, where 1 ⁇ n ⁇ N; (4) Compare the nth combined signal with the second reference signal sequence set in the The Euclidean distance between the strip sequences is used as the basis for determining the activity of the n-th first reference signal. The smaller the Euclidean distance, the higher the activity.
  • a set number of first reference signals whose activity is greater than a certain threshold is determined as an active sequence in the first reference signal, and the transmitted data is received accordingly.
  • FIG. 10 is a schematic diagram of detecting an active first reference signal with a time-domain or frequency-domain offset according to an embodiment.
  • the sequence since the sequence may be distorted or deformed after experiencing the time domain or frequency domain offset of the channel, it is also necessary to perform time domain or frequency domain detection in the process of detecting the active sequence in the first reference signal of the receiving end. Offset estimation.
  • the sequence of the first reference signal is represented by p
  • the sequence of the second reference signal associated with the first reference signal is represented by q.
  • s time domain offset scales can satisfy the estimated time domain offset. Shift resolution requirements.
  • an implementation manner is that the receiving end first detects active sequences in M 1 first reference signals by using the method of any of the above embodiments, and the serial numbers are respectively represented as t1 ⁇ tM 1 , and M 1 is a positive integer , using s (s is a positive integer) time-domain offset scales, the sequence of M 1 first reference signals is expanded into s parts, each of which corresponds to a different time-domain offset scale, to obtain s ⁇ M
  • a sequence of first reference signals with time-domain offsets denoted as p t1,1 to p t1,s , p t2,1 to p t2,s , p t3,1 to p t3,s ...... p tM1,1 to p t M1,s ; in the same way, using s time domain offset scales, the M1 sequences in the corresponding second reference signal sequence set are respectively expanded into s parts, and each part corresponds to a different Time-domain offset scale, to obtain
  • the sequence of the first reference signal whose activity is greater than a certain threshold is determined as the active sequence in the first reference signal of the receiving end, and the corresponding time domain offset is also obtained through the above calculation, according to which the transmitted data can be accurately processed .
  • the number of determined active sequences in the first reference signal received by the receiving end is M 1
  • the number of sequences in the final set of active first reference signal sequences with a time domain offset is M 1 , where, Each sequence in the first reference signal sequence set appears at most once, that is, each sequence in the first reference signal sequence set corresponds to s time domain offsets, if one of the sequences is offset in a certain time domain
  • the sequence under the s-1 time domain offset is determined to be an active sequence, and the sequence of the same sequence under other s-1 time domain offsets is an inactive sequence. On this basis, the receiving end can accurately process the transmitted data.
  • the receiver first calculates the activity of each sequence of the first reference signal with a time-domain offset, and obtains the time-domain offset of the active sequence of the first reference signal with a time-domain offset Then, the method in any of the above-mentioned embodiments is used to detect the active sequence in the M 1 first reference signals.
  • s is a positive integer
  • all sequences of the first reference signals with time-domain offsets are divided into s parts, and each part corresponds to a different time-domain offset
  • the N sequences in the corresponding second reference signal sequence set are respectively expanded into s parts, each part is All correspond to different time-domain offset scales, and obtain s ⁇ N sequences of second reference signals with time-domain offsets, which are respectively expressed as q t1,1 to q t1,s , q t2,1 to q t2,s , q t3,1 to q t
  • the receiving end may use the method of any of the foregoing embodiments to further detect, in the sequence of active first reference signals with a time domain offset, an active sequence in M 1 first reference signals, and the sequence number is They are respectively represented as t1 to tM 1 , and M 1 is a positive integer.
  • the preliminarily determined number of active first reference signal sequences with time domain offsets is M 1
  • the final determined number of sequences in the set of active first reference signal sequences with time domain offsets is M 1 , wherein each sequence in the first reference signal sequence set appears at most once, and accordingly the transmitted data can be processed accurately.
  • the above two implementations of detecting an active first reference signal with a time domain offset, for the number of sequences in the two reference signal sequence sets are not equal, and the many-to-one relationship between the sequences in the two reference signal sequence sets is satisfied.
  • the mapping relationship of , the sequences in the second reference signal sequence set are orthogonal or non-orthogonal, and the case where the first reference signal has a frequency-domain offset or has a time-domain and frequency-domain offset is applicable.
  • the number of sequences in the first reference signal sequence set is N
  • the number of sequences in the second reference signal sequence set is M
  • the number of sequences in the first reference signal sequence set is N
  • the number of sequences in the second reference signal sequence set is M
  • N ⁇ M then use s 1 (s 1 is a positive integer) frequency domain offset scales
  • the corresponding second reference signal sequence The M sequences in the set are respectively expanded into s 1 parts, each of which corresponds to a different frequency-domain offset scale, and s 1 ⁇ M sequences of second reference signals with frequency-domain offsets are obtained, which are respectively expressed as q t1,
  • the number of sequences in the first reference signal sequence set is N
  • the number of sequences in the second reference signal sequence set is M
  • N ⁇ M then use s 2 (s 2 is a positive integer) time domain sum s 3 (s 3 is a positive integer) frequency-domain offset scale
  • the M sequences in the corresponding second reference signal sequence set are respectively expanded into s 2 ⁇ s 3 copies, each of which corresponds to different time-
  • the nth sequence in the first reference signal sequence set is related to the mod(n-1,K)+1th sequence in the second reference signal sequence set, and calculating the Euclidean distance is to calculate the nth combined signal and the second reference signal sequence set mod(n- 1,K)+1 sequence Euclidean distance; if the sequences in the second reference signal sequence set are non-orthogonal, the nth sequence in the first reference signal sequence set is related to the second reference signal sequence set in the second reference signal sequence set.
  • bar sequence calculating the Euclidean distance is to calculate the nth combined signal and the second reference signal sequence set in the Euclidean distance for a sequence of bars.
  • the data transmission method of this embodiment provides detection of sequences in at least one first reference signal sequence set (which may be sequences in the first reference signal sequence set, or sequences with time domain and/or frequency domain offsets) ) solution improves the flexibility and reliability of detecting active sequences in the first reference signal, and also improves the efficiency of detecting active sequences in the first reference signal, thereby improving data transmission efficiency.
  • first reference signal sequence set which may be sequences in the first reference signal sequence set, or sequences with time domain and/or frequency domain offsets
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment. As shown in FIG. 11 , the data transmission apparatus includes: a signal determination module 310 and a transmission module 320 .
  • the signal determination module 310 is configured to determine a first reference signal and a second reference signal associated with the first reference signal, where the second reference signal is used to assist the receiving end to detect an active one of the received at least one first reference signal sequence;
  • the sending module 320 is configured to send a transmission packet, where the transmission packet includes the first reference signal, the second reference signal and the transmitted data.
  • the transmitted transmission packet includes the first reference signal and the transmitted data, and adds the second reference signal, so as to assist the receiving end to efficiently detect the first reference signal in the received signal It can avoid iterative calculation and reduce the complexity of detecting the first reference signal. On this basis, the transmitting end can receive the transmitted data according to the detected first reference signal, thereby improving the data transmission efficiency.
  • the active sequence in the first reference signal includes one of the following: at least one sequence in the first reference signal sequence set; at least one band Sequences in the first reference signal sequence set with different time domain offsets; at least one sequence in the first reference signal sequence set with different frequency domain offsets; at least one sequence with different time domain offsets and The sequence in the first reference signal sequence set for the frequency domain offset.
  • the first reference signal is a sequence in a first reference signal sequence set
  • the second reference signal is a sequence in a second reference signal sequence set
  • a many-to-one mapping relationship or a one-to-one mapping relationship is satisfied between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set, wherein the sequence in the first reference signal sequence set is Any sequence is mapped to a unique sequence in the second reference signal sequence set.
  • the length of the first reference signal is greater than the length of the second reference signal.
  • the number of sequences in the first reference signal sequence set is greater than or equal to the number of sequences in the second reference signal sequence set.
  • sequences in the second set of reference signal sequences are orthogonal;
  • the second reference signal sequence set is one of the following: a Hadamard sequence, a row vector set of a diagonal matrix, and a row vector set of a discrete Fourier transform DFT matrix.
  • sequences in the second set of reference signal sequences are non-orthogonal;
  • the sequence in the second reference signal sequence set is one of the following: ETF sequence, MUSA sequence, and a sequence generated based on complex Gaussian random numbers.
  • the first reference signal includes at least one of the following:
  • Preamble signal Preamble signal, pilot signal, DMRS.
  • mapping relationship between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set satisfies one of the following:
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set, where n is a positive integer;
  • nth sequence in the first reference signal sequence set is associated with the xth sequence in the second reference signal sequence set, where n is a positive integer, K is the number of sequences in the second reference signal sequence set, and K is positive Integer, x is the result of taking the remainder of n-1 to K plus 1;
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set. sequences, where n is a positive integer, M is the number of sequences in the second reference signal sequence set, M is a positive integer, N is the number of sequences in the first reference signal sequence set, and N is a positive integer.
  • the data transmission device proposed in this embodiment and the data transmission method proposed in the above-mentioned embodiments belong to the same inventive concept.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus according to another embodiment. As shown in FIG. 12 , the data transmission apparatus includes: a receiving module 410 , a detection module 420 and a data determination module 430 .
  • the receiving module 410 is configured to receive a transmission packet, where the transmission packet includes at least one first reference signal, a second reference signal associated with each first reference signal, and transmitted data;
  • a detection module 420 configured to detect an active sequence in the at least one first reference signal according to at least one second reference signal associated with the at least one first reference signal;
  • the data determination module 430 is configured to determine corresponding received data according to the active sequence in the at least one first reference signal.
  • the first reference signal and the second reference signal in the transmission packet have an associated relationship, and the active sequence in the first reference signal can be efficiently detected according to the received second reference signal, avoiding iteration
  • the calculation reduces the complexity of detecting the first reference signal, and on this basis, the corresponding transmitted data can be accurately processed according to the active sequence in the first reference signal, thereby improving the data transmission efficiency.
  • the active sequences in the at least one first reference signal include one of the following: at least one sequence in the first reference signal sequence set; at least one sequence with no A sequence in the first reference signal sequence set with simultaneous domain offsets; at least one sequence in the first reference signal sequence set with different frequency domain offsets; at least one sequence with different time domain offsets and frequency domain offsets The sequence in the first set of reference signal sequences for the offset.
  • the first reference signal sent by each transmitter is a sequence in the first reference signal sequence set
  • the second reference signal sent by each transmitter is a sequence in the second reference signal sequence set
  • a many-to-one mapping relationship or a one-to-one mapping relationship is satisfied between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set, wherein the sequence in the first reference signal sequence set is Any sequence is mapped to a unique sequence in the second reference signal sequence set.
  • the detection module 420 includes:
  • an activity determination unit configured to determine the activity of a potentially active sequence in the at least one first reference signal according to the signal reception matrix of the at least one second reference signal;
  • an active reference signal determining unit configured to use a potentially active sequence in a set number of first reference signals with the highest activity level as an active sequence in the at least one first reference signal
  • the potentially active sequence in the at least one first reference signal includes one of the following:
  • Each sequence in the first reference signal sequence set is a sequence under different time domain offsets and time domain offsets.
  • the activity determination unit is set to:
  • the length of the first reference signal is greater than the length of the second reference signal.
  • the number of sequences in the first set of reference signal sequences is greater than or equal to the number of sequences in the second set of reference signal sequences.
  • sequences in the second set of reference signal sequences are orthogonal;
  • the second reference signal sequence set is one of the following: a Hadamard sequence, a row vector set in a diagonal matrix, and a row vector set in a DFT matrix.
  • sequences in the second set of reference signal sequences are non-orthogonal;
  • the sequence in the second reference signal sequence set is one of the following: ETF sequence, MUSA sequence, and a sequence generated based on complex Gaussian random numbers.
  • the first reference signal includes at least one of the following:
  • Preamble signal Preamble signal, pilot signal, DMRS.
  • mapping relationship between the sequences in the first reference signal sequence set and the sequences in the second reference signal sequence set satisfies one of the following:
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set, where n is a positive integer;
  • nth sequence in the first reference signal sequence set is associated with the xth sequence in the second reference signal sequence set, where n is a positive integer, K is the number of sequences in the second reference signal sequence set, and K is positive Integer, x is the result of taking the remainder of n-1 to K plus 1;
  • the nth sequence in the first reference signal sequence set is associated with the nth sequence in the second reference signal sequence set. sequences, where n is a positive integer, M is the number of sequences in the second reference signal sequence set, M is a positive integer, N is the number of sequences in the first reference signal sequence set, and N is a positive integer.
  • the data transmission device proposed in this embodiment and the data transmission method applied to the transmitting end proposed in the above-mentioned embodiments belong to the same inventive concept.
  • Embodiments of the present application further provide a transmission device.
  • the data transmission method may be performed by a data transmission apparatus, and the data transmission apparatus may be implemented by means of software and/or hardware and integrated in the transmission device.
  • the transmission device may be a transmitter, such as a UE, or a receiver, such as a base station.
  • FIG. 13 is a schematic diagram of a hardware structure of a transmission device according to an embodiment.
  • a transmission device provided in this embodiment includes: a processor 510 and a storage device 520 .
  • the number of processors in the transmission device may be one or more.
  • one processor 510 is used as an example.
  • the processor 510 and the storage device 520 in the transmission device may be connected by a bus or in other ways. Connecting via a bus is an example.
  • the one or more programs are executed by the one or more processors 510, so that the one or more processors implement the data transmission method described in any of the above embodiments.
  • the storage device 520 in the transmission device can be used to store one or more programs, and the programs can be software programs, computer-executable programs, and modules, such as the data transmission method in the embodiment of the present application.
  • Corresponding program instructions/modules for example, the modules in the data transmission device shown in FIG. 11 include: a signal determining module 310 and a sending module 320).
  • the processor 510 executes various functional applications and data processing of the transmission device by running the software programs, instructions and modules stored in the storage device 520, ie, implements the data transmission method in the above method embodiments.
  • the storage device 520 mainly includes a storage program area and a storage data area, wherein the storage program area can store the operating system, the application program required by at least one function; the storage data area can store data created according to the use of the device, etc. example, the first reference signal, transmitted data, etc.). Additionally, storage device 520 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some examples, storage device 520 may further include memory located remotely from processor 510, which remote memory may be connected to the transmission device through a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the following operations are implemented: determining a first reference signal and a second reference signal associated with the first reference signal, The second reference signal is used to assist the receiving end to detect an active sequence in the received at least one first reference signal; send a transmission packet, the transmission packet includes the first reference signal, the second reference signal and the transmission The data.
  • the following operations are implemented: receiving a transmission packet, the transmission packet including at least one first reference signal, each A second reference signal associated with a reference signal and transmitted data; detecting an active sequence in the at least one first reference signal according to the at least one second reference signal associated with the at least one first reference signal; according to the at least one The active sequence in the first reference signal determines the corresponding received data.
  • the transmission device proposed in this embodiment and the data transmission method applied to the transmitting end and the receiving end proposed in the above-mentioned embodiments belong to the same inventive concept.
  • the embodiment has the same beneficial effects as the method of performing data transmission.
  • Embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a data transmission method when executed by a computer processor.
  • the method includes: determining a first reference signal and a second reference signal associated with the first reference signal, where the second reference signal is used to assist a receiving end in detecting an active sequence in at least one first reference signal received; sending A transport packet, the transport packet including the first reference signal, the second reference signal, and transmitted data.
  • the method includes: receiving a transmission packet including at least one first reference signal, a second reference signal associated with each first reference signal, and transmitted data; according to the at least one first reference signal associated At least one second reference signal detects an active sequence in the at least one first reference signal; and determines corresponding received data according to the active sequence in the at least one first reference signal.
  • the present application can be implemented by means of software and general hardware, and can also be implemented by hardware. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a floppy disk of a computer, a read-only memory (Read-Only Memory, ROM), Random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute any methods described in the examples.
  • a computer-readable storage medium such as a floppy disk of a computer, a read-only memory (Read-Only Memory, ROM), Random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA Field Programmable Gate Array
  • processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请提供一种数据传输方法、装置、传输设备及存储介质。该方法确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测第一参考信号中活跃的序列;发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。

Description

数据传输方法、装置、传输设备及存储介质
本公开要求在2020年08月28日提交中国专利局、申请号为202010888286.7的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及无线通信,例如涉及一种数据传输方法、装置、传输设备及存储介质。
背景技术
在移动通信系统中,接收端根据发送端发送的参考信号,可以确定收发天线间的信道相关信息,例如,接收端可以通过检测参考信号以确定收发天线所使用的信道并进行信道估计,对传输数据进行相干检测和译码等,得到正确的传输数据。非正交的参考信号相比于正交的参考信号能够提供更丰富的信息,可以支持海量设备的连接,但在这种多对一的数据传输场景下,接收端通常需要采用基于压缩感知的算法检测参考信号并进行信道估计,才能恢复出传输的数据,完成数据接收。例如,可以采用l 1范数或l 2范数最小化、贪婪的迭代算法或近似消息传递(Approximate Message Passing)等方法检测参考信号并进行信道估计,上述方法都需要迭代运算,计算复杂度较高,尤其是当接收端为大规模天线技术的设备时,迭代中的矩阵乘法以及大量的复数乘法,影响了对参考信号的检测,进而影响数据传输效率。
发明内容
本申请提供一种数据传输方法、装置、传输设备及存储介质,以降低对第一参考信号检测的复杂度,提高数据传输效率。
本申请实施例提供一种数据传输方法,包括:
确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;
发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
本申请实施例还提供了一种数据传输方法,包括:
接收传输包,所述传输包包括至少一个第一参考信号、每个所述第一参考信号关联的第二参考信号以及传输的数据;
根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;
根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
本申请实施例还提供了一种数据传输装置,包括:
信号确定模块,设置为确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;
发送模块,设置为发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
本申请实施例还提供了一种数据传输装置,包括:
接收模块,设置为接收传输包,所述传输包包括至少一个第一参考信号、每个所述第一参考信号关联的第二参考信号以及传输的数据;
检测模块,设置为根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;
数据确定模块,设置为根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
本申请实施例还提供了一种传输设备,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的数据传输方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的数据传输方法。
附图说明
图1为一实施例提供的一种数据传输方法的流程图;
图2为一实施例提供的传输包的示意图;
图3为一实施例提供的第一参考信号序列集合与第二参考信号序列集合的映射关系的示意图;
图4为另一实施例提供的第一参考信号序列集合与第二参考信号序列集合的映射关系的示意图;
图5为又一实施例提供的第一参考信号序列集合与第二参考信号序列集合 的映射关系的示意图;
图6为另一实施例提供的一种数据传输方法的流程图;
图7为一实施例提供的检测第一参考信号中活跃的序列的示意图;
图8为另一实施例提供的检测第一参考信号中活跃的序列的示意图;
图9为又一实施例提供的检测第一参考信号中活跃的序列的示意图;
图10为一实施例提供的检测活跃的带有时域或频域偏移量的第一参考信号的示意图;
图11为一实施例提供的一种数据传输装置的结构示意图;
图12为另一实施例提供的一种数据传输装置的结构示意图;
图13为一实施例提供的一种传输设备的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在免调度传输过程中,将非正交的参考信号用于恢复数据,可以支持海量设备的连接,接收端通常采用基于压缩感知的算法进行导频检测和信道估计,从而确定活跃的参考信号,活跃的参考信号对应的发送端设备具有更强的能力,发送端与接收端之间的通信链路质量更高,因此可以成功接入网络。例如,在检测导频(参考信号)时,可以采用l 1/l 2范数最小化方法,由于l 0范数最小化是个NP完全(Non-deterministic Polynomial Complete)问题,采用l 1/l 2范数最小化可以将NP完全问题转化为优化问题,得到最优解,但是需要大量的迭代计算;又如采用贪婪的迭代算法,在一次迭代中可以恢复检测的导频,再利用这些导频进行信道估计,计算出信号的残差来进行下一次迭代;还可以采用近似消息传递(Approximate Message Passing)的方法,这种方法可以避免贪婪迭代算法中的矩阵求逆,在一定程度上降低计算的复杂度,但是也需要迭代。上述各种迭代计算方法的复杂度高,尤其是在接收端为大规模多进多出(Multiple In Multiple Out,MIMO)天线技术的情况下,迭代计算中的矩阵乘法会造成大量的复数乘法,检测参考信号的效率低,进而影响数据传输的效率。
在本申请实施例中,提供一种数据传输方法,可应用于发送端,例如用户终端(User Equipment,UE)。在发送的传输包中包含了第一参考信号和传输的数据,并且增加了关联的第二参考信号,用于辅助接收端在接收到的信号中高 效检测到第一参考信号中活跃的序列。
图1为一实施例提供的一种数据传输方法的流程图,如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列。
在步骤120中,发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
本实施例中,第一参考信号设置为恢复传输的数据,接收端通过检测第一参考信号中活跃的序列可以确定能够成功接入网络的发送端设备,并完成信道估计或空域合并矢量估计,从而可以准确地处理传输的数据。发送端在发送第一参考信号和传输的数据的过程中,还发送了与该第一参考信号唯一对应的一个第二参考信号,传输包中的第一参考信号与第二参考信号之间具有关联关系。
图2为一实施例提供的传输包的示意图。如图2所示,传输包中包含第一参考信号(L比特)、第二参考信号(K比特)以及传输的数据即待传输数据。第二参考信号用于辅助接收端检测第一参考信号中活跃的序列;第一参考信号为接收端进行信道估计和解析传输的数据提供依据,即用于辅助确定传输的数据。
接收端可能同时接收到来自不同发送端的多个第二参考信号,根据天线对每条第二参考信号序列集合中的序列的接收情况与真实的第二参考信号的误差,可以确定哪个或哪些第二参考信号是可以有效恢复的,与可以有效恢复的第二参考信号关联的第一参考信号即为第一参考信号中活跃的序列,根据第一参考信号中活跃的序列即可完成信道估计或空域合并矢量估计,准确处理传输的数据。第二参考信号的接收情况与真实的第二参考信号的误差越小,则关联的第一参考信号活跃度越高,在理想情况(无噪声无干扰)下,对于活跃的导频,可以恢复出真实的第二参考信号,误差应为0,而对于不活跃的导频,则无法恢复出真实的第二参考信号。
在一些实施例中,第一参考信号中活跃的序列可以指计算得到的误差小于或等于设定阈值的第一参考信号,或者是计算得到的活跃度大于或等于设定阈值的第一参考信号,或者是误差最小(或者活跃度最高)的设定数量的第一参考信号。
本实施例的数据传输方法,在发送的传输包中包含了第一参考信号和传输 的数据,并且增加了第二参考信号,以辅助接收端在接收到的信号中高效检测到第一参考信号中活跃的序列,避免了迭代计算,从而降低检测第一参考信号的复杂度,在此基础上可以供发送端根据检测到的第一参考信号接收传输的数据,进而提高数据传输效率。
在一实施例中,在接收端接收到的至少一个传输包中,第一参考信号中活跃的序列包括以下之一:至少一条第一参考信号序列集合中的序列;至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
本实施例中,发送端发送的第一参考信号表示为长度为L的序列,该序列还可以进一步划分成具有不同时域偏移量和/或频域偏移量的序列。由于序列在经历了信道的时域或频域偏移之后可能会发生失真或变形,因此接收端在检测第一参考信号中的活跃序列的基础上,还可进一步估计对应序列的时域和/或频域偏移量。
在一实施例中,第一参考信号为第一参考信号序列集合中的一条序列,第二参考信号为第二参考信号序列集合中的一条序列;第一参考信号序列集合中的序列与第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,第一参考信号序列集合中的任意一条序列映射到第二参考信号序列集合中的唯一一条序列。一条参考信号可表现为一条序列。
本实施例中,接收端可能接收到来自于一个或多个发送端的传输包,即接收到至少一个第一参考信号以及与第一参考信号关联的第二参考信号,每个发送端可能发送的第一参考信号构成第一参考信号序列集合,每个发送端可能发送的第二参考信号构成第二参考信号序列集合。接收端根据接收到的第二参考信号,从第一参考信号序列集合中检测出第一参考信号中活跃的序列。一对一的映射关系是指,第一参考信号序列集合中的每条序列分别关联于第二参考信号序列集合中不同的序列;多对一的映射关系是指,第一参考信号序列集合中可以存在一条或多条序列关联于第二参考信号序列集合中的同一条序列。其中,对于第一参考信号序列集合中的任意一条序列,在第二参考信号序列集合中必然存在唯一的一条序列与之对应,从而接收端根据各第二参考信号,可以明确检测相关联的第一参考信号是否为活跃的。
本实施例对具体映射关系不作限定。
以一对一的映射关系为例,第一参考信号序列集合和第二参考信号序列集 合中的序列的数量相同。如果第一参考信号序列集合中序列的数量为N,第一参考信号表示为长度为L的序列,则第二参考信号序列集合中序列的数量也为N,第二参考信号为长度表示为K的序列,其中,N>L>K≥1。发送端可以通过预先配置或者随机选择,挑选出一条第一参考信号的序列发送,例如发送的是第一参考信号序列集合中的第n条序列,1≤n≤N,则发送端还在传输包中发送第二参考信号序列集合中的第n条序列,并发送传输的数据。
在一实施例中,第一参考信号的长度大于第二参考信号的长度。本实施例中,第一参考信号的长度为L,第二参考信号的长度为K,则L大于K,从而在实现辅助检测第一参考信号的同时,控制传输第二参考信号的开销。
在一实施例中,第一参考信号序列集合中序列的数量大于或等于第二参考信号序列集合中序列的数量。
本实施例中,在第一参考信号序列集合中序列的数量等于第二参考信号序列集合中序列的数量的情况下,两个参考信号序列集合之间满足一对一的映射关系;在第一参考信号序列集合中序列的数量大于第二参考信号序列集合中序列的数量的情况下,两个参考信号序列集合之间满足多对一的映射关系。
在一实施例中,第二参考信号序列集合中的序列是正交的;第二参考信号序列集合为以下之一:
1)哈达玛(Hadamard)序列,即哈达玛矩阵中的行向量集合,哈达玛矩阵是由+1和-1元素构成的且满足H n×H n T=nI(H n T为H n的转置,I为单位方阵)的n阶方阵,哈达玛矩阵中的每一个行向量都是一条正交序列,可作为一条第二参考信号;
2)对角矩阵的行向量集合,对角矩阵除主对角线之外的元素皆为0,对角矩阵中的每一个行向量都是一条正交序列,可作为一条第二参考信号;
3)离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵的行向量集合,即DFT矩阵中的行向量集合,DFT矩阵的第一行和第一列全为1,且满足W×W H=KI(W H为W的共轭转置,K为序列的长度,I为单位方阵)的n阶方阵,DFT矩阵中的每一个行向量都是一条正交序列,可作为一条第二参考信号的序列。
在一实施例中,第二参考信号序列集合中的序列是非正交的;第二参考信号序列集合中的序列为以下之一:
1)等角紧框架(Equiangular Tight Frames,ETF)序列,矩阵S的列向量满足:所有的列向量都存在单位范数、列向量之间满足等角关系、列向量是一个 紧框架,则矩阵S的列向量构成的集合即为等角紧框架,每一个列向量都是一条序列,可作为一条第二参考信号的序列;
2)多址接入(Multi-User Shared Access,MUSA)序列,使用复数域多元码(序列)作为扩展序列,在序列长度较短的情况下,也能保持较低的互相关;
3)基于复数高斯随机数生成的序列。
上述第二参考信号序列集合中的序列非正交,同等长度的非正交序列相对于正交序列可以提供更多的序列数量。
在一实施例中,第一参考信号包括以下至少之一:
1)前导信号(Preamble),也即前导序列,是物理帧的开始;
2)导频信号(Pilot),是为接收端进行测量或监控而发送的序列;
3)解调参考信号(Demodulation Reference Signal,DMRS)。
在一实施例中,第一参考信号序列集合中的序列与第二参考信号序列集合中的序列之间的映射关系满足以下之一:
1)一对一的映射关系:第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第n条序列,其中,n为正整数;
2)多对一的映射关系:第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第x条序列,其中,n为正整数,K为第二参考信号序列集合中的序列的数量,K为正整数,x为n-1对K取余的结果加1;
3)多对一的映射关系:第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000001
条序列,其中,n为正整数,M为第二参考信号序列集合中的序列的数量,M为正整数,N为第一参考信号序列集合中的序列的数量,N为正整数。
图3为一实施例提供的第一参考信号序列集合与第二参考信号序列集合的映射关系的示意图。本实施例中,两种参考信号序列集合中序列的数量相同且满足一对一的映射关系,第一参考信号序列集合中的序列非正交,第二参考信号序列集合中的序列非正交。如图3所示,第一参考信号序列集合中的序列数量为N,长度为L,第二参考信号序列集合中的序列的数量为N,长度为K,N>L>K≥1。发送端可以通过预先配置或者随机选择,挑选出第一参考信号序列集合中的一条序列作为第一参考信号发送,其序号设为n,1≤n≤N。则发送端还将第二参考信号序列集合中的第n条序列作为第二参考信号发送,此外传输包中还包括传输的数据。
在图3中,p1、p2、p3、p4至pN表示第一参考信号序列集合中的序列, q1、q2、q3、q4至qN表示第二参考信号序列集合中的序列。
图4为另一实施例提供的第一参考信号序列集合与第二参考信号序列集合的映射关系的示意图。本实施例中,第一参考信号序列集合中序列的数量大于第二参考信号序列集合中序列的数量,且两种参考信号序列集合中序列之间满足多对一的映射关系,第一参考信号序列集合中的序列非正交,第二参考信号序列集合中的序列正交。如4图所示,第一参考信号序列集合中的序列数量为N,长度为L,第二参考信号序列集合中的序列的数量为K,长度为K,N>L>K≥1。发送端可以通过预先配置或者随机选择,挑选出第一参考信号序列集合中的一条序列作为第一参考信号发送,其序号设为n,1≤n≤N。则发送端还将第二参考信号序列集合中的第mod(n-1,K)+1条序列作为第二参考信号发送,其中mod为取余符号,此外传输包中还包括传输的数据。例如,N=1000,K=4,如果发送端发送的第一参考信号的序列序号为n=34,则发送的第二参考信号的序列序号为2。
在图4中,p1、p2、p3、p4至pN表示第一参考信号序列集合中的序列,q1、q2至qK表示第二参考信号序列集合中的序列。
图5为又一实施例提供的第一参考信号序列集合与第二参考信号序列集合的映射关系的示意图。本实施例中,第一参考信号序列集合中序列的数量大于第二参考信号序列集合中序列的数量,且两种参考信号序列集合中序列之间满足多对一的映射关系,第一参考信号序列集合中的序列非正交,第二参考信号序列集合中的序列非正交。如图5所示,第一参考信号序列集合中的序列数量为N,长度为L,第二参考信号序列集合中的序列的数量为M,长度为K,N>L>K≥1,N>M>K≥1。发送端可以通过预先配置或者随机选择,挑选出第一参考信号序列集合中的一条序列作为第一参考信号发送,其序号设为n,1≤n≤N。则发送端还将第二参考信号序列集合中的第
Figure PCTCN2021097570-appb-000002
条序列作为第二参考信号发送,其中
Figure PCTCN2021097570-appb-000003
为向上取整符号,此外传输包中还包括传输的数据。例如,N=1000,M=16,如果发送端发送的第一参考信号的序列序号为n=534,则发送的第二参考信号的序列序号为9。
在图5中,p1、p2、p3、p4至pN表示第一参考信号序列集合中的序列,q1、q2至qM表示第二参考信号序列集合中的序列。
本申请实施例还提供一种数据传输方法,可应用于接收端,例如基站。根据接收的传输包中的第二参考信号可以高效地检测第一参考信号中活跃的序 列,根据第一参考信号中活跃的序列可以准确处理对应的传输的数据。需要说明的是,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
图6为另一实施例提供的一种数据传输方法的流程图,如图6所示,本实施例提供的方法包括步骤210-步骤230。
在步骤210中,接收传输包,所述传输包包括至少一个第一参考信号、每个所述第一参考信号关联的第二参考信号以及传输的数据。
在步骤220中,根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列。
在步骤230中,根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
本实施例中,接收端根据接收的传输包中的第二参考信号可以高效地检测第一参考信号中活跃的序列,根据第一参考信号中活跃的序列可以准确处理对应的传输的数据。具体的,接收端通过检测第一参考信号中活跃的序列可以确定能够成功接入网络的发送端设备,并完成信道估计或空域合并矢量估计,从而可以准确地处理传输的数据。
本实施例的数据传输方法,传输包中的第一参考信号与第二参考信号之间具有关联关系,接收端根据接收的第二参考信号可以高效检测出第一参考信号中活跃的序列,避免了迭代计算,从而降低检测第一参考信号的复杂度,在此基础上,根据第一参考信号中活跃的序列可以准确处理对应的传输的数据,提高数据传输效率。
在一实施例中,在接收到的至少一个传输包中,至少一个第一参考信号中活跃的序列包括以下之一:至少一条第一参考信号序列集合中的序列;至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
在一实施例中,每个发射端发送的第一参考信号为第一参考信号序列集合中的一条序列,每个发射端发送的第二参考信号为第二参考信号序列集合中的一条序列;所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,第一参考信号序列集合中的任意一条序列映射到第二参考信号序列集合中的唯一一条序列。
在一实施例中,步骤220,包括:
步骤221:根据所述至少一个第二参考信号的信号接收矩阵,确定所述至少一个第一参考信号中潜在活跃的序列的活跃度;
步骤222:将活跃度最高的设定数量的第一参考信号中潜在活跃的序列,作为所述至少一个第一参考信号中活跃的序列。
本实施例中,其中,在接收到的至少一个传输包中,所述至少一个第一参考信号中潜在活跃的序列包括以下之一:所述第一参考信号序列集合中的每条序列;所述第一参考信号序列集合中的每条序列在不同时域偏移量下的序列;所述第一参考信号序列集合中的每条序列在不同频域偏移量下的序列;所述第一参考信号序列集合中的每条序列在不同时域偏移量和时域偏移量下的序列。
本实施例中,接收端接收到的传输包可能来自于一个或多个发送端,根据天线对每条第二参考信号序列集合中的序列的接收情况与真实的第二参考信号的误差,可以确定哪个或哪些第二参考信号是可以有效恢复的,与可以有效恢复的第二参考信号关联的第一参考信号即为第一参考信号中活跃的序列,根据第一参考信号中活跃的序列即可完成信道估计或空域合并矢量估计,准确处理传输的数据。第二参考信号的接收情况与真实的第二参考信号的误差越小,则关联的第一参考信号活跃度越高,在理想情况(无噪声无干扰)下,对于活跃的导频,可以恢复出真实的第二参考信号,误差应为0,而对于不活跃的导频,则无法恢复出真实的第二参考信号。
第一参考信号中活跃的序列可以指计算得到的误差小于或等于设定阈值的第一参考信号,或者是计算得到的活跃度大于或等于设定阈值的第一参考信号,或者是误差最小(或者活跃度最高)的设定数量的第一参考信号。
在一实施例中,步骤221,包括:
针对每条第一参考信号,执行以下操作:
计算每条第一参考信号中潜在的活跃序列对应的空域合并矢量(Spatial Domain Combining Vector);
将所述空域合并矢量与对应的第二参考信号的信号接收矩阵合并,得到合并结果,其中,所述空域合并矢量对应于所述第二参考信号;
计算所述合并结果与所述第二参考信号序列集合中所述对应的第二参考信号的序列之间的欧式距离,其中,所述欧式距离与活跃度呈负相关。
本实施例中,对每条第一参考信号中潜在的活跃序列(可以是第一参考信号序列集合中的序列,也可以是第一参考信号序列集合中的序列在不同的时域和/或频域偏移量下的序列),分别计算对应的空域合并矢量,空域合并矢量为 对多根接收天线的接收信号进行合并所采用的权重矢量;然后,将每个空域合并矢量分别与第二参考信号序列集合中相对应的第二参考信号的序列合并,得到合并结果;计算每个合并结果与对应的真实的第二参考信号的序列之间的欧氏距离,欧式距离越大,则误差越大,活跃度越小。
第二参考信号的序列,可以是第二参考信号序列集合中的序列,也可以是第二参考信号序列集合中的序列在不同的时域和/或频域偏移量下的各条序列。每条第一参考信号序列集合中的活跃序列都关联于唯一的一条第二参考信号的序列,第一参考信号的序列与第二参考信号的序列之间满足一对一或多对一的映射关系,本实施例对具体映射关系不作限定。
在一实施例中,第一参考信号的长度大于第二参考信号的长度。
在一实施例中,第一参考信号序列集合中的序列的数量大于或等于第二参考信号序列集合中的序列的数量。
在一实施例中,第二参考信号序列集合中的序列是正交的;第二参考信号序列集合为以下之一:哈达玛序列,对角矩阵的行向量集合,DFT矩阵中行向量集合。
在一实施例中,第二参考信号序列集合中的序列是非正交的;第二参考信号序列集合中的序列为以下之一:ETF序列,MUSA序列,基于复数高斯随机数生成的序列。
在一实施例中,第一参考信号包括以下至少之一:前导信号,导频信号,DMRS。
在一实施例中,第一参考信号序列集合中的序列与第二参考信号序列集合中的序列之间的映射关系满足以下之一:
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第n条序列,其中,n为正整数;
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第n-1对K取余的结果加1条序列,其中,n为正整数,K为第二参考信号序列集合中的序列的数量,K为正整数;
第一参考信号序列集合中的第n条序列关联于个第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000004
序列,其中,n为正整数,M为第二参考信号序列集合中的序列的数量,M为正整数,N为第一参考信号序列集合中的序列的数量,N为正整数。
图7为一实施例提供的检测第一参考信号中活跃的序列的示意图。
本实施例中,第一参考信号序列集合中的序列和第二参考信号序列集合中 的序列均为非正交的,两种参考信号序列集合中的序列数量相同且满足一对一映射关系。如图7所示,第一参考信号序列集合中的序列(即第一参考信号中潜在的活跃序列)数量为N,长度为L,所述第一参考信号序列集合中的N个序列分别表示为p1至pN,第二参考信号序列集合中的序列的数量为N,长度为K,N>L>K≥1,第二参考信号序列集合中的N个序列分别表示为q1至qN。
接收端计算所有的导频(第一参考信号)的活跃度。具体方法如下:(1)分别求出N个第一参考信号对应的N个空域合并矢量,分别表示为w1至wN;(2)分别利用N个空域合并矢量与相应的第二参考信号的信号接收矩阵进行合并,N个合并后的第二参考信号分别表示为x1至xN;(3)对于第n个合并后的信号,计算第n个合并后的信号与第二参考信号序列集合中第n条序列之间的欧式距离,其中,1≤n≤N;(4)将第n个合并后的信号与第二参考信号序列集合中第n条序列qn之间的欧式距离作为确定第n个第一参考信号的活跃度的依据,欧式距离越小,活跃度越高。将活跃度大于一定阈值的设定数量的第一参考信号确定为第一参考信号中活跃的序列,并据此接收传输的数据。
在一实施例中在计算活跃度的过程中,逻辑上先计算空域合并矢量,再计算空域合并矢量与相应的第二参考信号的序列合并后的信号,此过程可以用两个连续的矩阵乘法表示:P·Y -1·Y R,其中P是N×L的第一参考信号的序列构成的矩阵,Y是M 0×L的第一参考信号的信号接收矩阵,P·Y -1即为N个空域合并矢量构成的矩阵,Y R是M 0×K的第二参考信号的信号接收矩阵,M 0为接收天线数。在实际应用中,由于N的值较大,先计算P·Y -1将会造成很大的复杂度,而K较小,最少只需要1个比特即可,因此,可以先计算Y -1·Y R,再计算P·(Y -1·Y R),可以进一步降低计算复杂度,将N×M 0×L的复数乘法,简化成N×M 0×K的复数乘法,提高检测第一参考信号和数据传输效率。
图8为另一实施例提供的检测第一参考信号中活跃的序列的示意图。
本实施例中,第一参考信号序列集合中的序列非正交,第二参考信号序列集合中的序列正交,第一参考信号序列集合中序列的数量大于第二参考信号序列集合中序列的数量,且两种参考信号序列集合中序列之间满足多对一的映射关系。如图8所示,第一参考信号序列集合中的序列(即第一参考信号中潜在的活跃序列)数量为N,长度为L,N个序列分别表示为p1至pN,第二参考信号序列集合中的序列的数量为K,长度为K,N>L>K≥1,各序列分别表示为q1至q K。
接收端计算所有的导频(第一参考信号)的活跃度。具体方法如下:(1) 分别求出N个第一参考信号对应的空域合并矢量,分别表示为w1至wN;(2)分别利用N个空域合并矢量与相应的第二参考信号的信号接收矩阵进行合并,N个第二参考信号的信号接收矩阵分别表示为x1至xN;(3)对于第n个合并后的信号,计算第n个合并后的信号与第二参考信号序列集合中第mod(n-1,K)+1条序列之间的欧式距离,其中,1≤n≤N;(4)将第n个合并后的信号与第二参考信号序列集合中第mod(n-1,K)+1条序列之间的欧式距离作为确定第n个第一参考信号的活跃度的依据,欧式距离越小,活跃度越高。将活跃度大于一定阈值的设定数量的第一参考信号确定为第一参考信号中活跃的序列,并据此接收传输的数据。
例如,N=1000,K=4,对于第n=57个合并后的信号,计算第57个合并后的信号与序号为1的第二参考信号的序列之间的欧式距离,作为判断第n=57个第一参考信号是否活跃的依据。
在计算活跃度的过程中,逻辑上先计算P·Y -1,再计算(P·Y -1)·Y R;在实际应用中,也可以先计算Y -1·Y R,再计算P·(Y -1·Y R),以进一步降低计算复杂度,提高检测第一参考信号和数据传输效率。
图9为又一实施例提供的检测第一参考信号中活跃的序列的示意图。
本实施例中,第一参考信号序列集合中的序列和第二参考信号序列集合中的序列均为非正交的,第一参考信号序列集合中序列的数量大于第二参考信号序列集合中序列的数量,且两种参考信号序列集合中序列之间满足多对一的映射关系。如图9所示,第一参考信号序列集合中的序列(即第一参考信号中潜在的活跃序列)数量为N,长度为L,各序列分别表示为p1至pN,第二参考信号序列集合中的序列的数量为M,长度为K,N>L>K≥1,N>M>K≥1,M个序列分别表示为q1至qM。
接收端计算所有的导频(第一参考信号)的活跃度。具体方法如下:(1)分别求出N个第一参考信号对应的空域合并矢量,分别表示为w1至wN;(2)分别利用N个空域合并矢量与相应的第二参考信号的信号接收矩阵进行合并,N个第二参考信号的信号接收矩阵分别表示为x1至xN;(3)对于第n个合并后的信号,计算第n个合并后的信号与第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000005
条序列之间的欧式距离,其中,1≤n≤N;(4)将第n个合并后的信号与第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000006
条序列之间的欧式距离作为确定第n个第一参考信号的活跃度的依据,欧式距离越小,活跃度越高。将活跃度大于一定阈值的设定数量的第一参考信号确定为第一参考信号中活跃的序列,并据此接收传输的 数据。
例如,N=1000,M=16,对于第n=375个合并后的信号,计算第n=375个合并后的信号与序号为6的第二参考信号的序列之间的欧式距离,作为判断第n=375个第一参考信号是否活跃的依据。
在计算活跃度的过程中,逻辑上先计算P·Y -1·,再计算(P·Y -1)·Y R;在实际应用中,也可以先计算Y -1·Y R,再计算P·(Y -1·Y R),以进一步降低计算复杂度,提高检测第一参考信号和数据传输效率。
图10为一实施例提供的检测活跃的带有时域或频域偏移量的第一参考信号的示意图。
本实施例中,由于序列在经历了信道的时域或频域偏移之后可能会发生失真或变形,在检测接收端第一参考信号中的活跃序列的过程中还需要进行时域或频域偏移估计。第一参考信号的序列表示p,与第一参考信号关联的第二参考信号的序列表示为q,在考虑时域偏移的情况下,假设s个时域偏移刻度可以满足估计时域偏移量的分辨率要求。
以第一参考信号序列集合和第二参考信号序列集合中的序列的数量相等(都为N),两个参考信号序列集合中的序列之间满足一对一映射关系的情况为例。
如图10所示,一种实现方式是,接收端先采用上述任意实施例的方法检测出M 1个第一参考信号中活跃的序列,序号分别表示为t1~tM 1,M 1为正整数,利用s(s为正整数)个时域偏移刻度,将M 1个第一参考信号的序列分别扩充成s份,每份都对应于不同的时域偏移刻量,得到s×M 1个带有时域偏移量的第一参考信号的序列,分别表示为p t1,1至p t1,s、p t2,1至p t2,s、p t3,1至p t3,s……p tM1,1至p t M1,s;同理,利用s个时域偏移刻度,将相应的第二参考信号序列集合中M 1条序列分别扩充成s份,每份都对应于不同的时域偏移刻量,得到s×M 1个带有时域偏移量的第二参考信号的序列,分别表示为q t1,1至q t1,s、q t2,1至q t2,s、q t3,1至q t3,s……q tM1,1至q tM1,s;每个带有时域偏移量的第二参考信号的序列的信号接收矩阵分别表示为x t1,1至x t1,s、x t2,1至x t2,s、x t3,1至x t3,s……x tM1,1至x t M1,s
接收端通过计算每个带有时域偏移量的第一参考信号的序列的空域合并矢量(分别表示为w t1,1至w t1,s、w t2,1至w t2,s、w t3,1至w t3,s……w tM1,1至w tM1,s)、将每个空域合并矢量与相应的带有时域偏移量的第二参考信号的信号接收矩阵合并、计算每个合并后的信号与真实的带有时域偏移量的第二参考信号的 序列的欧氏距离,将每个欧式距离作为确定对应的带有时域偏移量的第一参考信号的序列的活跃度的依据,欧式距离越小,活跃度越高。将活跃度大于一定阈值的的第一参考信号的序列确定为接收端的第一参考信号中的活跃序列,并且通过上述计算也获得了对应的时域偏移量,据此可以准确处理传输的数据。如果接收端接收到的第一参考信号中的判定活跃的序列数量为M 1,则最终确定的活跃的带有时域偏移量的第一参考信号序列集合中的序列数量为M 1,其中,第一参考信号序列集合中的每条序列最多出现一次,即,第一参考信号序列集合中的每条序列都对应于s个时域偏移量,如果其中一条序列在某个时域偏移量下的序列被判定为活跃的序列,则同一条序列在其他s-1个时域偏移量下的序列为非活跃的序列,在此基础上,接收端可以准确处理传输的数据。
另一种实现方式是,接收端先计算每个带有时域偏移量的第一参考信号的序列的活跃度,获得活跃的带有时域偏移量的第一参考信号的序列的时域偏移量,再采用上述任意实施例的方法检测出M 1个第一参考信号中活跃的序列。具体的,利用s(s为正整数)个时域偏移刻度,将所有带有时域偏移量的第一参考信号的序列都分为s份,每份都对应于不同的时域偏移刻量,共得到s×N个带有时域偏移量的第一参考信号的序列,分别表示为p t1,1至p t1,s、p t2,1至p t2,s、p t3,1至p t3,s……p tN,1至p tN,s;同理,利用s个时域偏移刻度,将相应的第二参考信号序列集合中N条序列分别扩充成s份,每份都对应于不同的时域偏移刻量,得到s×N个带有时域偏移量的第二参考信号的序列,分别表示为q t1,1至q t1,s、q t2,1至q t2,s、q t3,1至q t3,s……q tN,1至q tN,s;每个带有时域偏移量的第二参考信号的序列的信号接收矩阵分别表示为x t1,1至x t1,s、x t2,1至x t2,s、x t3,1至x t3,s……x tN,1至x tN,s
接收端通过计算每个带有时域偏移量的第一参考信号的序列的空域合并矢量(分别表示为w t1,1至w t1,s、w t2,1至w t2,s、w t3,1至w t3,s……w tN,1至w tN,s)、将每个空域合并矢量与相应的带有时域偏移量的第二参考信号的信号接收矩阵合并、计算每个合并后的信号与真实的带有时域偏移量的第二参考信号的序列的欧氏距离,将每个欧式距离作为确定对应的带有时域偏移量的第一参考信号的序列的活跃度的依据,欧式距离越小,活跃度越高。将活跃度大于一定阈值的设定数量(例如为a 2)的带有时域偏移量的第一参考信号的序列确定为第一参考信号序列集合中的活跃的序列,并且通过上述计算也获得了带有时域偏移量的第一参考信号的活跃的序列的时域偏移量。在此基础上, 接收端可以采用上述任意实施例的方法,在活跃的带有时域偏移量的第一参考信号的序列中,进一步检测出M 1个第一参考信号中活跃的序列,序号分别表示为t1~tM 1,M 1为正整数。如果初步确定的活跃的带有时域偏移量的第一参考信号的序列数量为M 1,则最终确定的活跃的带有时域偏移量的第一参考信号序列集合中的序列数量为M 1,其中,第一参考信号序列集合中的每条序列最多出现一次,据此可以准确处理传输的数据。
上述检测活跃的带有时域偏移量的第一参考信号的两种实现方式,对于两个参考信号序列集合中的序列数量不相等、两个参考信号序列集合中的序列之间满足多对一的映射关系、第二参考信号序列集合中的序列正交或非正交、以及第一参考信号带有频域偏移量或者带有时域及频域偏移量的情况都适用。
例如,第一参考信号序列集合中序列的数量为N,第二参考信号序列集合中序列的数量为M,N≥M,则利用s(s为正整数)个时域偏移刻度,可以得到s×N个带有时域偏移量的第一参考信号的序列(即第一参考信号中潜在的活跃序列),分别表示为p t1,1至p t1,s、p t2,1至p t2,s、p t3,1至p t3,s……p tN,1至p tN,s;同理,利用s个时域偏移刻度,将相应的第二参考信号序列集合中M条序列分别扩充成s份,每份都对应于不同的时域偏移刻量,得到s×M个带有时域偏移量的第二参考信号的序列,分别表示为q t1,1至q t1,s、q t2,1至q t2,s、q t3,1至q t3,s……q tM,1至q tM,s;每个带有时域偏移量的第二参考信号的序列的信号接收矩阵分别表示为x t1,1至x t1,s、x t2,1至x t2,s、x t3,1至x t3,s……x tN,1至x tN,s;每个带有时域偏移量的第一参考信号的序列的空域合并矢量(分别表示为w t1,1至w t1,s、w t2,1至w t2,s、w t3,1至w t3,s……w tN,1至w tN,s)。
又如,第一参考信号序列集合中序列的数量为N,第二参考信号序列集合中序列的数量为M,N≥M,则利用s 1(s 1为正整数)个频域偏移刻度,可以得到s 1×N个带有频域偏移量的第一参考信号的序列(即第一参考信号中潜在的活跃序列),分别表示为p t1,1至p t1,s1、p t2,1至p t2,s1、p t3,1至p t3,s1……p tN,1至p tN,s1;同理,利用s 1个频域偏移刻度,将相应的第二参考信号序列集合中M条序列分别扩充成s 1份,每份都对应于不同的频域偏移刻量,得到s 1×M个带有频域偏移量的第二参考信号的序列,分别表示为q t1,1至q t1,s1、q t2,1至q t2,s1、q t3,1至q t3,s1……q tM,1至q tM,s1;每个带有频域偏移量的第二参考信号的序列的信号接收矩阵分别表示为x t1,1至x t1,s1、x t2,1至x t2,s1、x t3,1至x t3,s1……x tN,1至x tN,s1;每个带有频域偏移量的第一参考信号的序列的空域合并矢量(分别 表示为w t1,1至w t1,s1、w t2,1至w t2,s1、w t3,1至w t3,s1……w tN,1至w tN,s1)。
又如,第一参考信号序列集合中序列的数量为N,第二参考信号序列集合中序列的数量为M,N≥M,则利用s 2(s 2为正整数)个时域和s 3(s 3为正整数)频域偏移刻度,可以得到s 2×s 3×N个带有时域和频域偏移量的第一参考信号的序列(即第一参考信号中潜在的活跃序列),分别表示为p t1,1,1至p t1,s2,s3、p t2,1,1至p t2,s2,s3、p t3,1,1至p t3,s2,s3……p tN,1,1至p tN,s2,s3;同理,利用s 2个时域和s 3个频域偏移刻度,将相应的第二参考信号序列集合中M条序列分别扩充成s 2×s 3份,每份都对应于不同的时域和频域偏移刻量,得到s 2×s 3×M个带有时域和频域偏移量的第二参考信号的序列,分别表示为q t1,1,1至q t1,s2,s3、q t2,1,1至q t2,s2,s3、q t3,1,1至q t3,s2,s3……q tM,1,1至q tM,s2,s3;每个带有时域和频域偏移量的第二参考信号的序列的信号接收矩阵分别表示为x t1,1,1至x t1,s2,s3、x t2,1,1至x t2,s2,s3、x t3,1,1至x t3,s2,s3……x tN,1,1至x tN,s2,s3;每个带有时域和频域偏移量的第一参考信号的序列的空域合并矢量(分别表示为w t1,1,1至w t1,s2,s3、w t2,1,1至w t2,s2,s3、w t3,1,1至w t3,s2,s3……w tN,1,1至w tN,s2,s3)。
在N≥M的情况下,如果第二参考信号序列集合中的序列是正交的(M=K,K为第二参考信号的序列的长度),则第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第mod(n-1,K)+1条序列,计算欧式距离是计算第n个合并后的信号与第二参考信号序列集合中第mod(n-1,K)+1条序列的欧式距离;如果第二参考信号序列集合中的序列是非正交的,则第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000007
条序列,计算欧式距离是计算第n个合并后的信号与第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000008
条序列的欧式距离。
本实施例的数据传输方法,提供了检测至少一个第一参考信号序列集合中的序列(可以是第一参考信号序列集合中的序列,也可以是带有时域和/或频域偏移的序列)的方案,提高了检测第一参考信号中活跃的序列的灵活性和可靠性,也提高了检测第一参考信号中活跃的序列的效率,进而提高数据传输效率。
本申请实施例还提供一种数据传输装置。图11为一实施例提供的一种数据传输装置的结构示意图。如图11所示,所述数据传输装置包括:信号确定模块310和发送模块320。
信号确定模块310,设置为确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一 参考信号中活跃的序列;
发送模块320,设置为发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
本实施例的数据传输装置,在发送的传输包中包含了第一参考信号和传输的数据,并且增加了第二参考信号,以辅助接收端在接收到的信号中高效检测到第一参考信号中活跃的序列,避免了迭代计算,从而降低检测第一参考信号的复杂度,在此基础上可以供发送端根据检测到的第一参考信号接收传输的数据,进而提高数据传输效率。
在一实施例中,在所述接收端接收到的至少一个传输包中,所述第一参考信号中活跃的序列包括以下之一:至少一条第一参考信号序列集合中的序列;至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
在一实施例中,所述第一参考信号为第一参考信号序列集合中的一条序列,所述第二参考信号为第二参考信号序列集合中的一条序列;
所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,第一参考信号序列集合中的任意一条序列映射到第二参考信号序列集合中的唯一一条序列。
在一实施例中,所述第一参考信号的长度大于所述第二参考信号的长度。
在一实施例中,所述第一参考信号序列集合中序列的数量大于或等于所述第二参考信号序列集合中序列的数量。
在一实施例中,所述第二参考信号序列集合中的序列是正交的;
所述第二参考信号序列集合为以下之一:哈达玛序列,对角矩阵的行向量集合,离散傅里叶变换DFT矩阵的行向量集合。
在一实施例中,第二参考信号序列集合中的序列是非正交的;
所述第二参考信号序列集合中的序列为以下之一:ETF序列,MUSA序列,基于复数高斯随机数生成的序列。
在一实施例中,第一参考信号包括以下至少之一:
前导信号,导频信号,DMRS。
在一实施例中,第一参考信号序列集合中的序列与第二参考信号序列集合中的序列之间的映射关系满足以下之一:
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第n 条序列,其中,n为正整数;
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第x条序列,其中,n为正整数,K为第二参考信号序列集合中的序列的数量,K为正整数,x为n-1对K取余的结果加1;
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000009
条序列,其中,n为正整数,M为第二参考信号序列集合中的序列的数量,M为正整数,N为第一参考信号序列集合中的序列的数量,N为正整数。
本实施例提出的数据传输装置与上述实施例提出的数据传输方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行数据传输方法相同的有益效果。
本申请实施例还提供一种数据传输装置。图12为另一实施例提供的一种数据传输装置的结构示意图。如图12所示,所述数据传输装置包括:接收模块410、检测模块420和数据确定模块430。
接收模块410,设置为接收传输包,所述传输包包括至少一个第一参考信号、每个第一参考信号关联的第二参考信号以及传输的数据;
检测模块420,设置为根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;
数据确定模块430,设置为根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
本实施例的数据传输装置,传输包中的第一参考信号与第二参考信号之间具有关联关系,根据接收的第二参考信号可以高效检测出第一参考信号中活跃的序列,避免了迭代计算,降低检测第一参考信号的复杂度,在此基础上,根据第一参考信号中活跃的序列可以准确处理对应的传输的数据,进而提高数据传输效率。
在一实施例中,在接收到的至少一个传输包中,所述至少一个第一参考信号中活跃的序列包括以下之一:至少一条第一参考信号序列集合中的序列;至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
在一实施例中,每个发射端发送的第一参考信号为第一参考信号序列集合中的一条序列,每个发射端发送的第二参考信号为第二参考信号序列集合中的 一条序列;
所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,第一参考信号序列集合中的任意一条序列映射到第二参考信号序列集合中的唯一一条序列。
在一实施例中,检测模块420,包括:
活跃度确定单元,设置为根据所述至少一个第二参考信号的信号接收矩阵,确定至少一个第一参考信号中潜在活跃的序列的活跃度;
活跃参考信号确定单元,设置为将活跃度最高的设定数量的第一参考信号中潜在活跃的序列,作为所述至少一个第一参考信号中活跃的序列;
其中,在接收到的至少一个传输包中,至少一个第一参考信号中潜在活跃的序列包括以下之一:
所述第一参考信号序列集合中的每条序列;
所述第一参考信号序列集合中的每条序列在不同时域偏移量下的序列;
所述第一参考信号序列集合中的每条序列在不同频域偏移量下的序列;
所述第一参考信号序列集合中的每条序列在不同时域偏移量和时域偏移量下的序列。
在一实施例中,活跃度确定单元,设置为:
针对每条第一参考信号,执行以下操作:
计算每条第一参考信号中潜在的活跃序列对应的空域合并矢量;
将每个所述空域合并矢量与对应的第二参考信号的信号接收矩阵合并,得到合并结果,其中,所述空域合并矢量对应于所述第二参考信号;
计算合并结果与所述第二参考信号序列集合中所述对应的第二参考信号的序列之间的欧式距离,其中,欧式距离与活跃度呈负相关。
在一实施例中,所述第一参考信号的长度大于所述第二参考信号的长度。
在一实施例中,所述第一参考信号序列集合中的序列的数量大于或等于所述第二参考信号序列集合中的序列的数量。
在一实施例中,所述第二参考信号序列集合中的序列是正交的;
所述第二参考信号序列集合为以下之一:哈达玛序列,对角矩阵的行向量集合,DFT矩阵中行向量集合。
在一实施例中,所述第二参考信号序列集合中的序列是非正交的;
所述第二参考信号序列集合中的序列为以下之一:ETF序列,MUSA序列,基于复数高斯随机数生成的序列。
在一实施例中,第一参考信号包括以下至少之一:
前导信号,导频信号,DMRS。
在一实施例中,所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间的映射关系满足以下之一:
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第n条序列,其中,n为正整数;
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第x条序列,其中,n为正整数,K为第二参考信号序列集合中的序列的数量,K为正整数,x为n-1对K取余的结果加1;
第一参考信号序列集合中的第n条序列关联于第二参考信号序列集合中第
Figure PCTCN2021097570-appb-000010
条序列,其中,n为正整数,M为第二参考信号序列集合中的序列的数量,M为正整数,N为第一参考信号序列集合中的序列的数量,N为正整数。
本实施例提出的数据传输装置与上述实施例提出的应用于发送端的数据传输方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行数据传输方法相同的有益效果。
本申请实施例还提供一种传输设备。所述数据传输方法可以由数据传输装置执行,该数据传输装置可以通过软件和/或硬件的方式实现,并集成在所述传输设备中。所述传输设备可以为发送端,例如UE,也可以为接收端,例如基站。
图13为一实施例提供的一种传输设备的硬件结构示意图。如图13所示,本实施例提供的一种传输设备,包括:处理器510和存储装置520。该传输设备中的处理器可以是一个或多个,图13中以一个处理器510为例,所述传输设备中的处理器510和存储装置520可以通过总线或其他方式连接,图13中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器实现上述任一实施例所述的数据传输方法。
该传输设备中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中数据传输方法对应的程序指令/模块(例如,附图11所示的数据传输装置中的模块,包括:信号确定模块310和发送模块320)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行传输设备的各种功能应用以及数据处理,即实现上述方法实施例中的数据传输方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的第一参考信号、传输的数据等)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至传输设备。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述传输设备中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
或者,当上述传输设备中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:接收传输包,所述传输包包括至少一个第一参考信号、每个第一参考信号关联的第二参考信号以及传输的数据;根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
本实施例提出的传输设备与上述实施例提出的应用于发送端、应用于接收端的数据传输方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行数据传输方法相同的有益效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法。
该方法包括:确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
或者,该方法包括:接收传输包,所述传输包包括至少一个第一参考信号、每个第一参考信号关联的第二参考信号以及传输的数据;根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活 跃的序列;根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (24)

  1. 一种数据传输方法,包括:
    确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;
    发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
  2. 根据权利要求1所述的方法,其中,在所述接收端接收到的至少一个传输包中,所述接收到的至少一个第一参考信号中活跃的序列包括以下之一:
    至少一条第一参考信号序列集合中的序列;
    至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;
    至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;
    至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
  3. 根据权利要求1所述的方法,其中,所述第一参考信号为第一参考信号序列集合中的一条序列,所述第二参考信号为第二参考信号序列集合中的一条序列;
    所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,所述第一参考信号序列集合中的任意一条序列映射到所述第二参考信号序列集合中的唯一一条序列。
  4. 根据权利要求1所述的方法,其中,所述第一参考信号的长度大于所述第二参考信号的长度。
  5. 根据权利要求3所述的方法,其中,所述第一参考信号序列集合中序列的数量大于或等于所述第二参考信号序列集合中序列的数量。
  6. 根据权利要求3所述的方法,其中,所述第二参考信号序列集合中的序列是正交的;
    所述第二参考信号序列集合为以下之一:哈达玛序列,对角矩阵的行向量集合,离散傅里叶变换DFT矩阵的行向量集合。
  7. 根据权利要求3所述的方法,其中,所述第二参考信号序列集合中的序列是非正交的;
    所述第二参考信号序列集合中的序列为以下之一:等角紧框架ETF序列,多址接入MUSA序列,基于复数高斯随机数生成的序列。
  8. 根据权利要求1所述的方法,其中,所述第一参考信号包括以下至少之 一:
    前导信号,导频信号,解调参考信号DMRS。
  9. 根据权利要求3所述的方法,其中,所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间的映射关系满足以下之一:
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第n条序列,其中,n为正整数;
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第x条序列,其中,n为正整数,K为所述第二参考信号序列集合中的序列的数量,K为正整数,x为n-1对K取余的结果加1;
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第
    Figure PCTCN2021097570-appb-100001
    条序列,其中,n为正整数,M为所述第二参考信号序列集合中的序列的数量,M为正整数,N为所述第一参考信号序列集合中的序列的数量,N为正整数。
  10. 一种数据传输方法,包括:
    接收传输包,所述传输包包括至少一个第一参考信号、每个所述第一参考信号关联的第二参考信号以及传输的数据;
    根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;
    根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
  11. 根据权利要求10所述的方法,其中,在接收到的至少一个所述传输包中,所述至少一个第一参考信号中活跃的序列包括以下之一:
    至少一条第一参考信号序列集合中的序列;
    至少一条带有不同时域偏移量的第一参考信号序列集合中的序列;
    至少一条带有不同频域偏移量的第一参考信号序列集合中的序列;
    至少一条带有不同时域偏移量和频域偏移量的第一参考信号序列集合中的序列。
  12. 根据权利要求10所述的方法,其中,每个发射端发送的第一参考信号为第一参考信号序列集合中的一条序列,每个发射端发送的第二参考信号为第二参考信号序列集合中的一条序列;
    所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间满足多对一的映射关系或者一对一的映射关系,其中,所述第一参考信号序列集合中的任意一条序列映射到所述第二参考信号序列集合中的唯一一条 序列。
  13. 根据权利要求12所述的方法,其中,所述根据所述至少一个第一参考信号关联的所述至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列,包括:
    根据所述至少一个第二参考信号的信号接收矩阵,确定所述至少一个第一参考信号中潜在活跃的序列的活跃度,将活跃度最高的设定数量的第一参考信号中潜在活跃的序列,作为所述至少一个第一参考信号中活跃的序列;
    其中,在接收到的至少一个传输包中,所述至少一个第一参考信号中潜在活跃的序列包括以下之一:
    所述第一参考信号序列集合中的每条序列;
    所述第一参考信号序列集合中的每条序列在不同时域偏移量下的序列;
    所述第一参考信号序列集合中的每条序列在不同频域偏移量下的序列;
    所述第一参考信号序列集合中的每条序列在不同时域偏移量和时域偏移量下的序列。
  14. 根据权利要求13所述的方法,其中,所述根据所述至少一个第一参考信号关联的所述第二参考信号的信号接收矩阵,确定所述至少一个第一参考信号中潜在活跃的序列的活跃度,包括:
    针对每条第一参考信号,执行以下操作:
    计算每条所述第一参考信号中潜在的活跃序列对应的空域合并矢量;
    将所述空域合并矢量与对应的第二参考信号的信号接收矩阵合并,得到合并结果,其中,所述空域合并矢量对应于所述第二参考信号;
    计算所述合并结果与所述第二参考信号序列集合中所述对应的第二参考信号的序列之间的欧式距离,其中,所述欧式距离与活跃度呈负相关。
  15. 根据权利要求10所述的方法,其中,所述第一参考信号的长度大于所述第二参考信号的长度。
  16. 根据权利要求12所述的方法,其中,所述第一参考信号序列集合中的序列的数量大于或等于所述第二参考信号序列集合中的序列的数量。
  17. 根据权利要求12所述的方法,其中,所述第二参考信号序列集合中的序列是正交的;
    所述第二参考信号序列集合为以下之一:哈达玛序列,对角矩阵的行向量集合,DFT矩阵中行向量集合。
  18. 根据权利要求12所述的方法,其中,所述第二参考信号序列集合中的 序列是非正交的;
    所述第二参考信号序列集合中的序列为以下之一:ETF序列,MUSA序列,基于复数高斯随机数生成的序列。
  19. 根据权利要求10所述的方法,其中,所述第一参考信号包括以下至少之一:
    前导信号,导频信号,DMRS。
  20. 根据权利要求12所述的方法,其中,所述第一参考信号序列集合中的序列与所述第二参考信号序列集合中的序列之间的映射关系满足以下之一:
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第n条序列,其中,n为正整数;
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第n-1对K取余的结果加1条序列,其中,n为正整数,K为所述第二参考信号序列集合中的序列的数量,K为正整数;
    所述第一参考信号序列集合中的第n条序列关联于所述第二参考信号序列集合中第
    Figure PCTCN2021097570-appb-100002
    条序列,其中,n为正整数,M为所述第二参考信号序列集合中的序列的数量,M为正整数,N为所述第一参考信号序列集合中的序列的数量,N为正整数。
  21. 一种数据传输装置,包括:
    信号确定模块,设置为确定第一参考信号以及所述第一参考信号关联的第二参考信号,所述第二参考信号用于辅助接收端检测接收到的至少一个第一参考信号中活跃的序列;
    发送模块,设置为发送传输包,所述传输包包括所述第一参考信号、所述第二参考信号以及传输的数据。
  22. 一种数据传输装置,包括:
    接收模块,设置为接收传输包,所述传输包包括至少一个第一参考信号、每个所述第一参考信号关联的第二参考信号以及传输的数据;
    检测模块,设置为根据所述至少一个第一参考信号关联的至少一个第二参考信号检测所述至少一个第一参考信号中活跃的序列;
    数据确定模块,设置为根据所述至少一个第一参考信号中活跃的序列确定对应的接收数据。
  23. 一种传输设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-20中任一项所述的数据传输方法。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-20中任一项所述的数据传输方法。
PCT/CN2021/097570 2020-08-28 2021-06-01 数据传输方法、装置、传输设备及存储介质 WO2022041904A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21859748.2A EP4207657A1 (en) 2020-08-28 2021-06-01 Data transmission method and apparatus, transmission device, and storage medium
CA3190759A CA3190759A1 (en) 2020-08-28 2021-06-01 Data transmission method and apparatus, transmission device, and storage medium
US18/042,868 US20230318771A1 (en) 2020-08-28 2021-06-01 Data transmission method, transmission device, and storage medium
KR1020237010015A KR20230054869A (ko) 2020-08-28 2021-06-01 데이터 전송 방법, 장치, 전송 설비 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010888286.7 2020-08-28
CN202010888286.7A CN112039648A (zh) 2020-08-28 2020-08-28 数据传输方法、装置、传输设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022041904A1 true WO2022041904A1 (zh) 2022-03-03

Family

ID=73586806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097570 WO2022041904A1 (zh) 2020-08-28 2021-06-01 数据传输方法、装置、传输设备及存储介质

Country Status (6)

Country Link
US (1) US20230318771A1 (zh)
EP (1) EP4207657A1 (zh)
KR (1) KR20230054869A (zh)
CN (1) CN112039648A (zh)
CA (1) CA3190759A1 (zh)
WO (1) WO2022041904A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039648A (zh) * 2020-08-28 2020-12-04 中兴通讯股份有限公司 数据传输方法、装置、传输设备及存储介质
CN112953603B (zh) * 2020-12-31 2022-06-10 杭州电子科技大学 一种基于等角紧框架理论的导频优化设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112501A (ja) * 2002-09-19 2004-04-08 Toshiba Corp Cdm伝送システムとそのパイロットチャネル構成方法及びcdm受信端末装置
WO2017000233A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 传输导频序列的方法和装置
CN112039648A (zh) * 2020-08-28 2020-12-04 中兴通讯股份有限公司 数据传输方法、装置、传输设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112501A (ja) * 2002-09-19 2004-04-08 Toshiba Corp Cdm伝送システムとそのパイロットチャネル構成方法及びcdm受信端末装置
WO2017000233A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 传输导频序列的方法和装置
CN112039648A (zh) * 2020-08-28 2020-12-04 中兴通讯股份有限公司 数据传输方法、装置、传输设备及存储介质

Also Published As

Publication number Publication date
EP4207657A1 (en) 2023-07-05
CN112039648A (zh) 2020-12-04
CA3190759A1 (en) 2022-03-03
KR20230054869A (ko) 2023-04-25
US20230318771A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2022041904A1 (zh) 数据传输方法、装置、传输设备及存储介质
CN107431566B (zh) 用于经由无线双选择性信道发送数据符号的系统和方法
TWI736753B (zh) 一種估計定時位置的方法及裝置
Schepker et al. Coping with CDMA asynchronicity in compressive sensing multi-user detection
US8625817B2 (en) Faster cadzow denoising based on partial eigenvalue decomposition
US6792052B1 (en) Joint least-square synchronization, channel estimation and noise estimation
US10148471B2 (en) Communication apparatus, communication method and communication system
WO2022057777A1 (zh) 信号传输方法、装置、接入节点、处理单元、系统及介质
Gao et al. Low-complexity channel estimation and multi-user detection for uplink grant-free NOMA systems
CN109802901B (zh) 基于到达角测量的3d mimo信道估计方法及系统
Lim et al. Hybrid active user detection for massive machine-type communications in IoT
US10708032B2 (en) Symbol timing determining device and method
WO2014187356A1 (zh) 发射信号的多输入多输出mimo检测方法、装置及系统
WO2016179759A1 (zh) 一种干扰抵消方法及设备
CN114640561B (zh) 一种通信信号传输方法和设备
WO2018001067A1 (zh) 一种rm序列的生成及应用方法、装置
Wang et al. Incremental massive random access exploiting the nested Reed-Muller sequences
Ouchikh et al. Iterative channel estimation and data detection algorithm for MIMO-OTFS systems
WO2018176334A1 (zh) 一种信道估计方法及装置
Bian et al. Joint activity-delay detection and channel estimation for asynchronous massive random access
WO2024061233A1 (zh) 信号发送方法、信号接收方法及设备
CN112769529B (zh) 一种随机接入信道接收方法、发送方法及设备
CN104333526B (zh) 一种对ofdm同步训练序列进行处理的方法及装置
WO2022222896A1 (zh) 一种发送、接收方法、装置、电子设备和存储介质
WO2015127885A1 (zh) 一种数据传输、数据接收检测方法及基站、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3190759

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237010015

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021859748

Country of ref document: EP

Effective date: 20230328