WO2022057777A1 - 信号传输方法、装置、接入节点、处理单元、系统及介质 - Google Patents

信号传输方法、装置、接入节点、处理单元、系统及介质 Download PDF

Info

Publication number
WO2022057777A1
WO2022057777A1 PCT/CN2021/118097 CN2021118097W WO2022057777A1 WO 2022057777 A1 WO2022057777 A1 WO 2022057777A1 CN 2021118097 W CN2021118097 W CN 2021118097W WO 2022057777 A1 WO2022057777 A1 WO 2022057777A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
matrix
signal
current
level
Prior art date
Application number
PCT/CN2021/118097
Other languages
English (en)
French (fr)
Inventor
马一华
陈艺戬
袁志锋
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020237012395A priority Critical patent/KR20230066440A/ko
Priority to US18/026,872 priority patent/US20230337107A1/en
Priority to CA3192979A priority patent/CA3192979A1/en
Priority to EP21868600.4A priority patent/EP4216586A1/en
Publication of WO2022057777A1 publication Critical patent/WO2022057777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of wireless communication networks, for example, to a signal transmission method, apparatus, access node, processing unit, system and medium.
  • Radio Stripe is an efficient and low-cost cell-free (Cell-Free) implementation.
  • a multi-level wireless access point (Access Point, AP) is connected to a central processing unit (Central Processing Unit, CPU) through a forward-backhaul (Front-Haul) link.
  • CPU Central Processing Unit
  • Front-Haul forward-backhaul
  • the traditional method performs maximum ratio combining or sequential processing in each AP, which can reduce the load on the Front-Haul to a certain extent, but the CPU eventually recovers.
  • the signal-to-noise ratio of the signal is low, which affects the signal transmission rate.
  • the present application provides a signal transmission method, device, access node, processing unit, system and medium, which improve the signal-to-noise ratio of received signals by transmitting multi-user uplink data signals and a first inter-user interference information matrix.
  • the embodiment of the present application provides a signal transmission method, including:
  • the embodiment of the present application also provides a signal transmission method, including:
  • the embodiment of the present application also provides a signal transmission method, including:
  • the embodiment of the present application also provides a signal transmission method, including:
  • the embodiment of the present application also provides a signal transmission device, including:
  • the multi-user signal determination module is configured to determine the multi-user uplink data signal corresponding to the current AP and the first inter-user interference information matrix according to the channel estimation of the current AP; the first cascaded transmission module is configured to forward the backhaul chain The next-level node of the current AP in the path transmits the multi-user uplink data signal and the first inter-user interference information matrix.
  • the embodiment of the present application also provides a signal transmission device, including:
  • the receiving module is set to receive the multi-user uplink data signal and the first inter-user interference information matrix transmitted by the last level AP in the forward backhaul link; the demodulation signal determining module is set to according to the multi-user uplink data signal and The first inter-user interference information matrix determines a signal for demodulation.
  • the embodiment of the present application also provides a signal transmission device, including:
  • the acquisition module is configured to acquire the relevant information of the multi-user downlink data signal and the interference information matrix between the second users; the transmitting module is configured to obtain the relevant information according to the multi-user downlink data signal and the interference information matrix between the second users and
  • the channel estimation of the current AP determines the transmission signal of the current AP.
  • the embodiment of the present application also provides a signal transmission device, including:
  • the second cascaded transmission module is configured to forward the multi-user downlink data signal to each AP in the backhaul link, or to send the multi-user downlink data signal and the product signal of the second inter-user interference information matrix.
  • the embodiment of the present application also provides an access node, including:
  • one or more processors configured to implement the above-mentioned applications Signal transmission method for access nodes.
  • the embodiment of the present application also provides a CPU, including:
  • one or more processors configured to implement the above-mentioned applications
  • the signal transmission method to the CPU is not limited to:
  • An embodiment of the present application further provides a signal transmission system, including: the above-mentioned CPU, at least one level of the above-mentioned access node, and at least two terminals; signals are transmitted between the CPU and each terminal through at least one level of AP .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and the above-mentioned signal transmission method is implemented when the program is executed by a processor.
  • FIG. 1 is a flowchart of a signal transmission method provided by an embodiment
  • FIG. 2 is a schematic diagram of a connection between an access node and a CPU according to an embodiment
  • FIG. 3 is a flowchart of another signal transmission method provided by an embodiment
  • FIG. 6 is a schematic structural diagram of a signal transmission apparatus according to an embodiment
  • FIG. 7 is a schematic structural diagram of another signal transmission apparatus provided by an embodiment
  • FIG. 8 is a schematic structural diagram of still another signal transmission apparatus provided by an embodiment
  • FIG. 9 is a schematic structural diagram of another signal transmission apparatus provided by an embodiment.
  • FIG. 10 is a schematic diagram of a hardware structure of an access node according to an embodiment
  • FIG. 11 is a schematic diagram of a hardware structure of a central processing unit provided by an embodiment
  • FIG. 12 is a schematic diagram of a signal transmission system according to an embodiment.
  • a signal transmission method is provided, which is applied to each level of AP in the forward backhaul link.
  • each level of The AP processes the received data signal of each terminal to reduce the load of the forward and backhaul link and ensure the signal transmission efficiency.
  • the data signal sent by each terminal is also collectively referred to as the multi-user uplink data signal.
  • the user uplink data signal and the first inter-user interference information matrix provide more information for the signal processing of the CPU, and improve the signal-to-noise ratio of the signal received by the CPU.
  • FIG. 1 is a flowchart of a signal transmission method provided by an embodiment. As shown in FIG. 1 , the method provided by this embodiment includes step 110 and step 120 .
  • step 110 the multi-user uplink data signal corresponding to the current AP and the first inter-user interference information matrix are determined according to the channel estimation of the current AP.
  • FIG. 2 is a schematic diagram of a connection between an access node and a CPU according to an embodiment. As shown in Figure 2, the connections between multiple APs and the CPU form a forward backhaul link, and each AP is a first level in the forward backhaul link.
  • the multi-user uplink data signal includes uplink data signals sent by multiple terminals to the CPU through the current AP, and each uplink data signal contains the uplink data transmitted by the corresponding terminal.
  • the multi-user uplink data signal also includes the multi-user uplink data signal corresponding to the upper-level AP transmitted by the upper-level AP to the current AP That is, the multi-user uplink data signal of the current AP is the result of combining the multi-user uplink data signal determined according to the channel estimation and the multi-user uplink data signal corresponding to the upper-level AP.
  • the multi-user uplink data signal is not only received by each level of AP, but also transmitted to the CPU through each level of AP in turn.
  • the first inter-user interference information matrix is used to represent the interference between the uplink data signals sent by each terminal and the uplink data signals sent by other terminals.
  • the first inter-user interference information matrix is also affected by the first user corresponding to the upper-level AP transmitted by the upper-level AP to the current AP.
  • the influence of the inter-user interference information matrix that is, the first inter-user interference information matrix of the current AP is the result of combining the first inter-user interference information matrix determined according to the channel estimation and the first inter-user interference information matrix corresponding to the upper-level AP.
  • the first inter-user interference information matrix is not only determined by each level of AP according to channel estimation, but also sequentially transmitted to the CPU through each level of AP.
  • step 120 the multi-user uplink data signal and the first inter-user interference information matrix are transmitted forward to the next-level node of the current AP in the backhaul link.
  • each AP after receiving the uplink data signals of multiple terminals, each AP first estimates its own channel according to the received pilot signal, and records the obtained channel estimate as is the total number of APs or the total number of stages), according to its own channel estimation, combined with the received data signals, to determine the multi-user uplink data signals that need to be transmitted to the next-level node and the first inter-user interference information matrix.
  • the next level node of the current AP refers to the CPU; if the current AP is not the last level AP in the forward backhaul link A first-level AP, the next-level node of the current AP refers to the next-level AP.
  • each AP in the forward backhaul link transmits multi-user uplink data signals and first inter-user interference on the basis of processing the received data signals to reduce the load of the forward backhaul link.
  • Information matrix the CPU performs further signal processing to recover a more accurate signal.
  • each level of AP in the forward backhaul link is provided with at least one antenna; the number of row vectors of the first inter-user interference information matrix is equal to the number of column vectors, and is equal to the number of users; The number of row vectors of user uplink data signals is equal to the number of users, and the number of column vectors is equal to the number of data symbols of signals received on a single antenna of the current AP.
  • the first inter-user interference information matrix is a matrix with a dimension of K ⁇ K, where K is the number of users, that is, the number of terminals.
  • the multi-user uplink data signal is a matrix with a dimension of K ⁇ D, where K is the number of users, that is, the number of terminals, and D is the number of data symbols contained in the received signal on a single antenna of the current AP, that is, the data transmitted by a single user. The number of data symbols contained in the signal.
  • step 101 it also includes step 101:
  • the channel estimate is determined according to the pilot part of the received signal; alternatively, the channel estimate is determined according to the pilot part of the received signal and the correlation matrix prior information of the multi-user channel; or, according to the pilot part of the received signal and the multi-user channel
  • the energy a priori information of the channel determines the channel estimate.
  • each level of AP can perform channel estimation according to the pilot part of the received signal. If there is prior information (including at least one of channel correlation matrix prior information and energy prior information), the The pilot part and a priori information are used for channel estimation.
  • step 110 includes:
  • the multi-user uplink data signal corresponding to the current AP is obtained according to the conjugate matrix of the channel estimation of the current AP; if the current AP is not a first-level AP In this case, a current multi-user uplink data signal is obtained according to the conjugate matrix of the channel estimation of the current AP, and superimposed with the multi-user uplink data signal output by the upper-level AP of the current AP to obtain the corresponding current AP. multi-user uplink data signal.
  • the corresponding multi-user uplink data signal can be determined according to the conjugate matrix of its own channel estimation; if the current AP is not the first-level AP The AP needs to determine the current multi-user uplink data signal according to the conjugate matrix of its own channel estimation, and superimpose it with the multi-user uplink data signal transmitted by the upper-level AP.
  • step 110 includes:
  • the first inter-user interference information matrix corresponding to the current AP is obtained according to the channel estimation of the current AP; in the case that the current AP is not a first-level AP , obtain a current first inter-user interference information matrix according to the channel estimation of the current AP, and superimpose it with the first inter-user interference information matrix output by the upper-level AP of the current AP to obtain the first inter-user interference information matrix corresponding to the current AP.
  • An inter-user interference information matrix is obtained according to the channel estimation of the current AP.
  • the corresponding first inter-user interference information matrix can be determined according to the conjugate matrix of its own channel estimation; if the current AP is not the first-level AP The first-level AP needs to determine the current first inter-user interference information matrix according to the conjugate matrix of its own channel estimation, and superimpose it with the first inter-user interference information matrix transmitted by the upper-level AP.
  • the first inter-user interference information matrix includes one of the following: a correlation matrix of a multi-user channel; a sum of a correlation matrix of a multi-user channel and a noise diagonal matrix; a correlation matrix of a multi-user channel and a noise pair The inverse of the sum of the angle matrices.
  • each level of AP transmits the received data signal to the CPU, it will cause a lot of forward and backhaul overhead.
  • each level of AP transmits the multi-user uplink data signal and the first An inter-user interference information matrix, that is, transmitting the recovered signal to the CPU, can reduce the load and overhead of the forward backhaul link, and by comparing the multi-user uplink data signals of each AP and the first inter-user interference information matrix with The multi-user uplink data signal of the upper-level AP and the interference information matrix between the first users are superimposed, and then transmitted to the next-level node, which can improve the signal-to-noise ratio of the signal received by the CPU.
  • the number of users is denoted as K
  • the multi-user uplink data signal corresponding to the current AP is denoted as X l
  • the first inter-user interference information matrix corresponding to the current AP is denoted as R l
  • l represents the level of the current AP, l ⁇ 1 and l ⁇ L
  • L is the total number of APs or the total number of stages
  • the received signal of the current AP is denoted as Y l
  • ⁇ 2 represents the noise of the received signal
  • I K represents the identity matrix of K ⁇ K
  • X est represents the final determination of the CPU signal for demodulation.
  • the channel estimation of the current AP is The conjugate matrix of the channel estimation of the current AP is denoted as In the case that the current AP contains one antenna, the channel estimation of the current AP is The conjugate matrix of the channel estimation of the current AP is denoted as
  • R 1 is a Hermitian matrix with dimension K ⁇ K
  • the first-level AP transmits X 1 and R 1 to the second-level AP
  • 1 ⁇ l ⁇ L estimates the channel and obtains according to Sure Among them
  • R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes multiple antennas
  • the first inter-user interference information matrix is the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • R 1 is a Hermitian matrix with dimension K ⁇ K
  • the first-level AP transmits X 1 and R 1 to the second-level AP
  • 1 ⁇ l ⁇ L according to the derivative of Y l
  • the frequency part is used to estimate the channel, and we get according to Sure Among them
  • R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes multiple antennas
  • the first inter-user interference information matrix is a correlation matrix of multi-user channels.
  • first determine according to the pilot part of the received signal On this basis, calculate and The processes can be performed in parallel, thereby reducing the processing delay in the signal transmission process.
  • the channel is estimated according to the pilot part of Y 1 to get according to Sure Determined using the Nth Sherman-Morrison formula
  • R 1 is a Hermitian matrix with dimension K ⁇ K
  • the first-level AP transmits X 1 and R 1 -1 to the second-level AP
  • 1 ⁇ l ⁇ L the first-level AP
  • the frequency part is used to estimate the channel and obtain according to Sure Determined using the Nth Sherman-Morrison formula
  • R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes multiple antennas
  • the first inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the channel is estimated according to the pilot part of Y 1 and the prior information of the correlation matrix of the multi-user channel, and we get according to Sure R 1 is a Hermitian Matrix with dimension K ⁇ K, the first-level AP transmits X 1 and R 1 to the second-level AP; for the first-level AP, 1 ⁇ l ⁇ L, according to Y l The pilot part of the channel is estimated to get according to Sure R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes multiple antennas
  • the first inter-user interference information matrix is the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the first step is to determine according to the pilot part of the received signal and the prior information of the correlation matrix of the multi-user channel. On this basis, calculate and The processes can be performed in parallel, thereby reducing the processing delay in the signal transmission process.
  • the channel is estimated according to the pilot part of Y 1 to get according to Sure R 1 is a Hermitian matrix with dimension K ⁇ K, the first-level AP transmits X 1 and R 1 to the second-level AP; for the first-level AP, 1 ⁇ l ⁇ L , according to the pilot part of Yl Estimate the channel to get according to Sure R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes one antenna
  • the first inter-user interference information matrix is the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the channel is estimated according to the pilot part of Y 1 to get according to Sure R 1 is a Hermitian matrix with dimension K ⁇ K, the first-level AP transmits X 1 and R 1 to the second-level AP; for the first-level AP, 1 ⁇ l ⁇ L , according to the pilot part of Yl Estimate the channel to get according to Sure R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes one antenna
  • the first inter-user interference information matrix is a correlation matrix of multi-user channels.
  • first determine according to the pilot part of the received signal On this basis, calculate and The processes can be performed in parallel, thereby reducing the processing delay in the signal transmission process.
  • the channel is estimated according to the pilot part of Y 1 to get according to Sure Determined using the Sherman-Morrison formula
  • R 1 is a Hermitian matrix with dimension K ⁇ K
  • the first-level AP transmits X 1 and R 1 -1 to the second-level AP
  • 1 ⁇ l ⁇ L the first-level AP
  • the frequency part is used to estimate the channel, and we get according to Sure Determined using the Nth Sherman-Morrison formula
  • R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes one antenna
  • the first inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the channel is estimated according to the pilot part of Y 1 and the energy prior information of the multi-user channel, and we get according to Sure R 1 is a Hermitian matrix with dimension K ⁇ K, the first-level AP transmits X 1 and R 1 to the second-level AP; for the first-level AP, 1 ⁇ l ⁇ L , according to the pilot part of Yl Estimate the channel to get according to Sure R l is a Hermitian matrix with dimension K ⁇ K.
  • each level of AP includes one antenna
  • the first inter-user interference information matrix is a correlation matrix of multi-user channels.
  • For the first-level AP firstly determine according to the pilot part of the received signal and the energy prior information of the multi-user channel On this basis, calculate and The processes can be performed in parallel, thereby reducing the processing delay in the signal transmission process.
  • a signal transmission method is also provided, which is applied to the CPU, and the CPU may be a centralized control unit on the network side, such as a CPU, a network management device, a base station, and the like.
  • the CPU recovers the signal for demodulation by receiving the multi-user uplink data signal and the first inter-user interference information matrix transmitted by the last-level AP in the forward backhaul link, thereby improving the demodulation performance and making the demodulated signal
  • the signal has a higher signal-to-noise ratio.
  • FIG. 3 is a flowchart of another signal transmission method provided by an embodiment. As shown in FIG. 3 , the method provided in this embodiment includes step 210 and step 220 . For technical details not described in detail in this embodiment, reference may be made to any of the above-mentioned embodiments.
  • step 210 the multi-user uplink data signal and the first inter-user interference information matrix transmitted by the last-level AP in the forward backhaul link are received.
  • a signal for demodulation is determined according to the multi-user uplink data signal and the first inter-user interference information matrix.
  • the multi-user uplink data signal includes uplink data signals sent by multiple terminals to the CPU through the last-level AP, and each uplink data signal includes uplink data transmitted by the corresponding terminal; in addition, it also includes The corresponding multi-user uplink data signal transmitted by the upper-level AP of the last-level AP to the last-level AP, that is, the multi-user uplink data signal of the last-level AP is the multi-user uplink data determined by the last-level AP according to the channel estimation. The result of combining the signal with the multi-user uplink data signal corresponding to the upper-level AP.
  • the first inter-user interference information matrix is used to represent the interference between the uplink data signals sent by each terminal and the uplink data signals sent by other terminals, and is also affected by the uplink data transmitted by the upper-level AP of the last-level AP.
  • the influence of the first inter-user interference information matrix corresponding to the first-level AP, that is, the first inter-user interference information matrix of the last-level AP is the first inter-user interference information matrix determined by the last-level AP according to the channel estimation and the previous level. The result of combining the first inter-user interference information matrix corresponding to the AP.
  • the signal used for demodulation includes: a product of a first matrix and a multi-user uplink data signal, wherein the first matrix is an inverse matrix of the sum of the first inter-user interference information matrix and the noise diagonal matrix; Or, the product of the second matrix and the multi-user uplink data signal, where the second matrix is an inverse matrix of the first inter-user interference information matrix.
  • the first inter-user interference information matrix is the correlation matrix of the multi-user channel, or the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • each level of AP in the forward backhaul link is provided with at least one antenna; the number of row vectors of the first inter-user interference information matrix is equal to the number of column vectors, and is equal to the number of users ; The number of row vectors of the multi-user uplink data signal is equal to the number of users, and the number of column vectors is equal to the number of data symbols of signals received on a single antenna of the current AP.
  • the AP determines the channel estimate according to the pilot part of the received signal; or, determines the channel estimate according to the pilot part of the received signal and the correlation matrix prior information of the multi-user channel; or, according to the received signal
  • the channel estimate is determined by the pilot portion of the multi-user channel and the energy prior information of the multi-user channel.
  • the multi-user uplink data signal corresponding to the first-level AP is obtained according to the conjugate matrix of the channel estimation of the first-level AP; for the non-first-level AP, the non-first-level AP is obtained.
  • the corresponding multi-user uplink data signal is obtained by superimposing a current multi-user uplink data signal and the multi-user uplink data signal output by the upper-level AP, wherein the current multi-user uplink data signal is based on the channel estimation of the non-first-level AP.
  • the yoke matrix is obtained.
  • the first inter-user interference information matrix corresponding to the first-level AP is obtained according to the channel estimation of the first-level AP; for the non-first-level AP, the non-first-level AP corresponds to the The first inter-user interference information matrix is obtained by superimposing a current first inter-user interference information matrix and the first inter-user interference information matrix output by the upper-level AP, wherein the current first inter-user interference information matrix is based on the non-first-level interference information matrix.
  • the channel estimation of the AP is obtained.
  • the first inter-user interference information matrix includes one of the following: a correlation matrix of a multi-user channel; a sum of a correlation matrix of a multi-user channel and a noise diagonal matrix; a correlation matrix of a multi-user channel and a noise pair The inverse of the sum of the angle matrices.
  • a signal transmission method is also provided, which is applied to each level of AP in the forward backhaul link, where the CPU sends downlink signals to multiple terminals through the forward backhaul link of at least one level of APs.
  • the transmission signal is determined according to the acquired multi-user downlink data signal and the second inter-user interference information matrix, so as to improve the signal-to-noise ratio of the signal received by the terminal.
  • FIG. 4 is a flowchart of still another signal transmission method provided by an embodiment. As shown in FIG. 4 , the method provided by this embodiment includes step 310 and step 320 . For technical details not described in detail in this embodiment, reference may be made to any of the above-mentioned embodiments.
  • step 310 relevant information of the multi-user downlink data signal and the second inter-user interference information matrix is obtained.
  • step 320 the transmit signal of the current AP is determined according to the multi-user downlink data signal and the related information of the second inter-user interference information matrix and the channel estimation of the current AP.
  • the multi-user downlink data signal includes downlink data signals sent by the CPU to multiple terminals through at least one level of AP, and each downlink data signal includes downlink data transmitted to the corresponding terminal;
  • the interference information matrix is used to represent the interference between downlink data signals sent by the CPU to multiple terminals through at least one AP.
  • the related information includes: a multi-user downlink data signal and a second inter-user interference information matrix; or a product signal of the multi-user downlink data signal and the second inter-user interference information matrix.
  • the second inter-user interference information matrix includes: an inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the multi-user downlink data signal is sent by the CPU, and the second inter-user interference information matrix is sent by the forward backhaul link. It is determined by the last level AP in , or sent by the CPU; if the relevant information includes the product signal of the multi-user downlink data signal and the second inter-user interference information matrix, the product signal is sent by the CPU.
  • one situation is that the CPU can send the multi-user downlink data signal to each level of AP, and the way that each level of AP obtains the second inter-user interference information matrix can be sent by the CPU or by the forward
  • the last level AP in the backhaul link that is, the L-th level AP, that is, the AP directly connected to the CPU
  • the CPU can also send a multi-user downlink data signal to each level AP and the second level AP.
  • the product signal of the inter-user interference information matrix is used for each level of AP to determine the transmitted signal.
  • the multi-user downlink data signal includes: a multi-user data signal matrix, or a multi-user bit data matrix.
  • the multi-user data signal matrix refers to a matrix composed of modulated data symbols to be sent to multiple users
  • the multi-user bit data matrix refers to a matrix composed of bit data to be sent to multiple users.
  • the multi-user downlink data signal may be in the form of a data signal matrix, or may be in the form of a bit data matrix, which can save transmission overhead.
  • it also includes:
  • Step 330 In the case that the current AP is the last level AP in the forward backhaul link, send the second inter-user interference to each level of non-last level APs in the forward backhaul link respectively information matrix.
  • the last-level AP may determine its own corresponding second inter-user interference information matrix, and forward the corresponding second inter-user interference information matrix to other APs of each level in the backhaul link.
  • the transmitted signal includes: the product of the channel estimate of the current AP, the second inter-user interference information matrix and the multi-user downlink data signal, or the product of the channel estimate of the current AP and the product signal.
  • the multi-user data signal matrix is denoted as S
  • the multi-user bit data matrix is denoted as B
  • l represents the level of the current AP
  • L is the total number of APs or the total number of levels
  • ⁇ 2 represents the noise of the received signal
  • I K represents the K ⁇ K identity matrix.
  • the second inter-user interference information matrix is denoted as When the current AP contains multiple antennas, the channel estimation of the current AP is recorded as In the case that the current AP contains one antenna, the channel estimation of the current AP is recorded as
  • the CPU sends S and in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received S, as well as Determine the transmit signal as
  • each level of AP includes multiple antennas
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the CPU sends B to each level of AP, and the L-th level AP sends forward to every other level of AP in the backhaul link in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received B, as well as Determine the transmit signal as
  • each level of AP includes multiple antennas
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the CPU sends S and
  • the product signal of , i.e. in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received as well as Determine the transmit signal as
  • each level of AP includes multiple antennas
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the CPU sends S and in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received S, as well as Determine the transmit signal as
  • each level of AP includes one antenna
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the CPU sends B to each level of AP, and the L-th level AP sends forward to every other level of AP in the backhaul link in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received B, as well as Determine the transmit signal as
  • each level of AP includes one antenna
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the CPU sends S and
  • the product signal of , i.e. in, T represents the transpose of the matrix; for the l-th AP, 1 ⁇ l ⁇ L, according to the received as well as Determine the transmit signal as
  • each level of AP includes one antenna
  • the second inter-user interference information matrix is the inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • a signal transmission method is also provided, which is applied to the CPU, and the CPU may be a centralized control unit on the network side, such as a CPU, a network management device, a general base station, and the like.
  • the CPU sends a multi-user downlink data signal to each level of AP for each level of AP to determine the transmitted signal, thereby improving the signal-to-noise ratio of the signal received by the terminal.
  • FIG. 5 is a flowchart of still another signal transmission method provided by an embodiment. As shown in FIG. 5 , the method provided by this embodiment includes step 410 . For technical details not described in detail in this embodiment, reference may be made to any of the above embodiments.
  • step 410 the multi-user downlink data signal is sent forward to each AP in the backhaul link, or the product signal of the multi-user downlink data signal and the second inter-user interference information matrix is sent.
  • the multi-user downlink data signal includes downlink data signals sent by the CPU to multiple terminals through at least one level of AP, and each downlink data signal includes downlink data transmitted to the corresponding terminal.
  • the method further includes:
  • Step 420 Send the second inter-user interference information matrix forward to each level of AP in the backhaul link.
  • the second inter-user interference information matrix is used to represent the interference between downlink data signals sent by the CPU to multiple terminals through at least one level AP.
  • the second inter-user interference information matrix includes: an inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the multi-user downlink data signal includes: a multi-user data signal matrix, or a multi-user bit data matrix.
  • FIG. 6 is a schematic structural diagram of a signal transmission apparatus according to an embodiment. As shown in FIG. 6 , the signal transmission apparatus includes: a multi-user signal determination module 11 and a first cascaded transmission module 12 .
  • the multi-user signal determination module 11 is configured to determine the multi-user uplink data signal corresponding to the current AP and the first inter-user interference information matrix according to the channel estimation of the current AP; the first cascaded transmission module 12 is configured to forward and backward The next-level node of the current AP in the transmission link transmits the multi-user uplink data signal and the first inter-user interference information matrix.
  • the load of the forward backhaul link is reduced by processing the received data signals sent by each user.
  • the reliability of the data signal received by the CPU is improved, and the signal-to-noise ratio in the signal transmission process is improved by analyzing and transmitting the interference between the multi-users. .
  • each level of AP in the forward and backhaul link is provided with at least one antenna; the number of row vectors of the first inter-user interference information matrix is equal to the number of column vectors, and is equal to the number of users ; The number of row vectors of the multi-user uplink data signal is equal to the number of users, and the number of column vectors is equal to the number of data symbols of signals received on a single antenna of the current AP.
  • an estimation module configured as:
  • the channel estimate is determined according to the pilot part of the received signal; alternatively, the channel estimate is determined according to the pilot part of the received signal and the correlation matrix prior information of the multi-user channel; or, according to the pilot part of the received signal and the multi-user channel
  • the energy a priori information of the channel determines the channel estimate.
  • the multi-user signal determination module 11 including a first determination unit, is configured as:
  • the multi-user uplink data signal corresponding to the current AP is obtained according to the conjugate matrix of the channel estimation of the current AP; if the current AP is not a first-level AP In this case, a current multi-user uplink data signal is obtained according to the conjugate matrix of the channel estimation of the current AP, and superimposed with the multi-user uplink data signal output by the upper-level AP of the current AP to obtain the corresponding current AP. multi-user uplink data signal.
  • the multi-user signal determination module 11, including the second determination unit, is configured as:
  • the first inter-user interference information matrix corresponding to the current AP is obtained according to the channel estimation of the current AP; in the case that the current AP is not a first-level AP , obtain a current first inter-user interference information matrix according to the channel estimation of the current AP, and superimpose it with the first inter-user interference information matrix output by the upper-level AP of the current AP to obtain the first inter-user interference information matrix corresponding to the current AP.
  • An inter-user interference information matrix is obtained according to the channel estimation of the current AP.
  • the first inter-user interference information matrix includes one of the following:
  • Correlation matrix of multi-user channel sum of correlation matrix of multi-user channel and noise diagonal matrix; inverse matrix of the sum of correlation matrix of multi-user channel and noise diagonal matrix.
  • the signal transmission device proposed in this embodiment belongs to the same concept as the signal transmission method applied to the AP proposed in the above-mentioned embodiment.
  • the same effect is applied to the signal transmission method of the AP.
  • FIG. 7 is a schematic structural diagram of another signal transmission apparatus provided by an embodiment. As shown in FIG. 7 , the signal transmission apparatus includes: a receiving module 21 and a demodulation signal determining module 22 .
  • the receiving module 21 is configured to receive the multi-user uplink data signal and the first inter-user interference information matrix transmitted by the last level AP in the forward backhaul link;
  • the demodulation signal determining module 22 is configured to receive the multi-user uplink data according to the multi-user uplink data The signal and the first inter-user interference information matrix determine the signal for demodulation.
  • the signal transmission apparatus of this embodiment determines the signal for demodulation by receiving the multi-user uplink data signal and the first inter-user interference information matrix recovered by the last-level AP in the forward backhaul link, thereby improving the demodulation performance. performance, so that the demodulated signal has a higher signal-to-noise ratio.
  • the signal for demodulation includes: a product of a first matrix and a multi-user uplink data signal, where the first matrix is the inverse of the sum of the first inter-user interference information matrix and the noise diagonal matrix. matrix; or, the product of the second matrix and the multi-user uplink data signal, where the second matrix is an inverse matrix of the first inter-user interference information matrix.
  • each level of AP in the forward backhaul link is provided with at least one antenna; the number of row vectors of the first inter-user interference information matrix is equal to the number of column vectors, and is equal to the number of users ; The number of row vectors of the multi-user uplink data signal is equal to the number of users, and the number of column vectors is equal to the number of data symbols of signals received on a single antenna of the current AP.
  • the multi-user uplink data signal corresponding to the first-level AP is obtained according to the conjugate matrix of the channel estimation of the first-level AP; for the non-first-level AP, the non-first-level AP is obtained.
  • the corresponding multi-user uplink data signal is obtained by superimposing a current multi-user uplink data signal and the multi-user uplink data signal output by the upper-level AP, wherein the current multi-user uplink data signal is based on the channel estimation of the non-first-level AP.
  • the yoke matrix is obtained.
  • the first inter-user interference information matrix corresponding to the first-level AP is obtained according to the channel estimation of the first-level AP; for the non-first-level AP, the non-first-level AP corresponds to the The first inter-user interference information matrix is obtained by superimposing a current first inter-user interference information matrix and the first inter-user interference information matrix output by the upper-level AP, wherein the current first inter-user interference information matrix is based on the non-first-level interference information matrix.
  • the channel estimation of the AP is obtained.
  • the first inter-user interference information matrix includes one of the following:
  • Correlation matrix of multi-user channel sum of correlation matrix of multi-user channel and noise diagonal matrix; inverse matrix of the sum of correlation matrix of multi-user channel and noise diagonal matrix.
  • the signal transmission device proposed in this embodiment and the signal transmission method applied to the CPU proposed in the above-mentioned embodiments belong to the same concept.
  • FIG. 8 is a schematic structural diagram of still another signal transmission apparatus provided by an embodiment.
  • the signal transmission device includes: an acquisition module 31 and a transmission module 32 .
  • the obtaining module 31 is configured to obtain the relevant information of the multi-user downlink data signal and the interference information matrix between the second users;
  • the transmitting module 32 is configured to obtain the correlation information between the multi-user downlink data signal and the second user-interference information matrix according to the correlation information matrix of the multi-user downlink data signal and the second user. information and the channel estimation of the current AP to determine the transmit signal of the current AP.
  • the CPU sends downlink data signals to multiple terminals through the forward and backhaul links of at least one level AP, according to the acquired multi-user downlink data signals and the interference between the second users
  • the information matrix determines the transmitted signal and improves the signal-to-noise ratio of the signal received by the terminal.
  • the related information includes: a multi-user downlink data signal and a second inter-user interference information matrix; or a product signal of the multi-user downlink data signal and the second inter-user interference information matrix.
  • the second inter-user interference information matrix includes: an inverse matrix of a sum of a correlation matrix of a multi-user channel and a noise diagonal matrix.
  • the multi-user downlink data signal is sent by the CPU, and the second inter-user interference information matrix is determined by the last level AP in the forward backhaul link, or sent by the CPU; the product signal Sent by the CPU.
  • the multi-user downlink data signal includes: a multi-user data signal matrix, or a multi-user bit data matrix.
  • it also includes:
  • the second inter-user interference information matrix sending module is configured to, in the case that the current AP is the last level AP in the forward backhaul link, respectively send each level non-last AP in the forward backhaul link
  • the first-level AP sends the second inter-user interference information matrix.
  • the transmitted signal includes: the product of the channel estimate of the current AP, the second inter-user interference information matrix and the multi-user downlink data signal, or the product of the channel estimate of the current AP and the product signal.
  • the signal transmission device proposed in this embodiment belongs to the same concept as the signal transmission method applied to the AP proposed in the above-mentioned embodiment.
  • the same effect is applied to the signal transmission method of the AP.
  • FIG. 9 is a schematic structural diagram of still another signal transmission apparatus provided by an embodiment.
  • the signal transmission device includes: a second cascaded transmission module 41 .
  • the second cascaded transmission module 41 is configured to send the multi-user downlink data signal forward to each level of AP in the backhaul link, or to send the multi-user downlink data signal and the product signal of the second inter-user interference information matrix.
  • the signal transmission apparatus in this embodiment improves the signal-to-noise ratio of the signal received by the terminal by sending a multi-user downlink data signal to each level of AP for each level of AP to determine the transmitted signal.
  • the method further includes:
  • the third cascaded transmission module is configured to forward the second inter-user interference information matrix to each level of AP in the backhaul link.
  • the signal transmission device proposed in this embodiment and the signal transmission method applied to the CPU proposed in the above-mentioned embodiments belong to the same concept.
  • the embodiment of the present application also provides an access node.
  • An access node is, for example, a distributed base station, a baseband processing unit of a base station antenna, and the like, and at least one level of access node transmits signals between multiple terminals and the CPU.
  • FIG. 10 is a schematic diagram of the hardware structure of an access node provided by an embodiment. As shown in FIG. 10 , the access node provided by the present application includes one or more processors 51 , wherein the one or more processors 51 implements the signal transmission method applied to the AP provided by any embodiment of the present application during execution.
  • the access node may further include a storage device 52; the number of processors 51 in the access node may be one or more, and one processor 51 is taken as an example in FIG. 10; the storage device 52 is used to store one or more programs; The one or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the signal transmission method applied to the AP as described in the embodiments of the present application.
  • the access node also includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the storage device 52 , the communication device 53 , the input device 54 and the output device 55 in the access node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 10 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the access node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signal transmission method applied to the AP according to the embodiments of the present application (for example, signal The multi-user signal determination module 11 and the first cascaded transmission module 12 in the transmission device, for example, the acquisition module 31 and the transmission module 32 in the signal transmission device).
  • the storage device 52 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the stored data area may store data created according to use of the access node, and the like.
  • storage device 52 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 52 may include memory located remotely from processor 51, which may be connected to the access node through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the embodiment of the present application also provides a CPU.
  • the CPU is a centralized control unit on the network side, such as a general base station, a CPU, and a network management device.
  • FIG. 11 is a schematic diagram of the hardware structure of a central processing unit provided by an embodiment. As shown in FIG. 11 , the CPU provided by this application includes one or more processors 61 , wherein the one or more processors 61 are in During execution, the signal transmission method applied to the CPU provided by any embodiment of the present application is implemented.
  • the CPU may also include a storage device 62; the number of processors 61 in the CPU may be one or more, and one processor 61 is taken as an example in FIG. 11; the storage device 62 is used to store one or more programs; the one or more Each program is executed by the one or more processors 61, so that the one or more processors 61 implement the signal transmission method applied to the CPU as described in the embodiments of the present application.
  • the CPU also includes: a communication device 63 , an input device 64 and an output device 65 .
  • the processor 61 , the storage device 62 , the communication device 63 , the input device 64 and the output device 65 in the CPU may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 11 .
  • the input device 64 can be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the CPU.
  • the output device 65 may include a display device such as a display screen.
  • the communication device 63 may include a receiver and a transmitter.
  • the communication device 63 is configured to transmit and receive information according to the control of the processor 61 .
  • the storage device 62 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules (for example, signal The receiving module 21 and the demodulated signal determining module 22 in the transmission device, for another example, the second cascaded transmission module 41 in the signal transmission device).
  • the storage device 62 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the CPU, and the like.
  • storage device 62 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 62 may include memory located remotely from processor 61, which may be connected to the CPU through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • FIG. 12 is a schematic diagram of a signal transmission system according to an embodiment. As shown in FIG. 12, the system includes: a central processing unit 71, at least one access node 72 described in any of the above embodiments, and at least two terminals 73; the central processing unit 71 and each terminal are connected through at least one connection The incoming node 72 transmits the signal.
  • each level of AP in the forward backhaul link processes the received data signals of each user to reduce The load of the forward backhaul link, and by transmitting the multi-user uplink data signal and the first inter-user interference information matrix, it provides more information for the signal processing of the CPU, and improves the signal-to-noise ratio of the signal received by the CPU;
  • the multi-user uplink data signal recovered by the last-level AP in the backhaul link and the first inter-user interference information matrix are used to determine the signal used for demodulation, improve the demodulation performance, and make the demodulated signal have a higher quality. Signal-to-noise ratio.
  • each level of AP determines the transmitted signal according to the acquired multi-user downlink data signals and the second inter-user interference information matrix , to improve the signal-to-noise ratio of the signal received by the terminal; the CPU sends a multi-user downlink data signal to each level of AP for each level of AP to determine the transmitted signal, thereby improving the signal-to-noise ratio of the terminal's received signal.
  • each level of AP determines the multi-user uplink data signal corresponding to the current AP and the first inter-user interference information matrix according to the channel estimation of the current AP;
  • the first-level node transmits the multi-user uplink data signal and the first inter-user interference information matrix.
  • each level of AP in the forward backhaul link is provided with at least one antenna; the number of row vectors of the first inter-user interference information matrix is equal to the number of column vectors, and is equal to the number of users; The number of row vectors of the multi-user uplink data signal is equal to the number of users, and the number of column vectors is equal to the number of data symbols of signals received on a single antenna of the current AP.
  • each level of AP determines the channel estimate according to the pilot part of the received signal; or, determines the channel estimate according to the pilot part of the received signal and the prior information of the correlation matrix of the multi-user channel; or, according to The channel estimate is determined by the pilot portion of the received signal and the energy a priori information of the multi-user channel.
  • determining the multi-user uplink data signal corresponding to the current AP according to the channel estimation of the current AP includes: in the case that the current AP is a first-level AP, according to the channel estimation of the current AP.
  • the conjugate matrix obtains the multi-user uplink data signal corresponding to the current AP; in the case that the current AP is not a first-level AP, obtains a current multi-user uplink data signal according to the conjugate matrix of the channel estimation of the current AP , and superimposed with the multi-user uplink data signal output by the upper-level AP of the current AP to obtain the multi-user uplink data signal corresponding to the current AP.
  • determining the first inter-user interference information matrix according to the channel estimation of the current AP includes: in the case that the current AP is a first-level AP, obtaining the current AP according to the channel estimation of the current AP Corresponding first inter-user interference information matrix; when the current AP is not a first-level AP, obtain a current first inter-user interference information matrix according to the channel estimation of the current AP, and compare it with the current AP's The first inter-user interference information matrix output by the upper-level AP is superimposed to obtain the first inter-user interference information matrix corresponding to the current AP.
  • the first inter-user interference information matrix includes one of the following: a correlation matrix of a multi-user channel; a sum of a correlation matrix of a multi-user channel and a noise diagonal matrix; a correlation matrix of a multi-user channel and a noise pair The inverse of the sum of the angle matrices.
  • the CPU receives the multi-user uplink data signal and the first inter-user interference information matrix transmitted by the last-level AP in the forward backhaul link;
  • the interference information matrix determines the signal used for demodulation.
  • the signal for demodulation includes: a product of a first matrix and a multi-user uplink data signal, where the first matrix is the inverse of the sum of the first inter-user interference information matrix and the noise diagonal matrix. matrix; or, the product of the second matrix and the multi-user uplink data signal, where the second matrix is the inverse matrix product of the first inter-user interference information matrix.
  • each level of AP obtains the relevant information of the multi-user downlink data signal and the second inter-user interference information matrix; according to the multi-user downlink data signal and the relevant information of the second inter-user interference information matrix and The channel estimation of the AP determines the transmit signal of the current AP.
  • the related information includes: a multi-user downlink data signal and a second inter-user interference information matrix; or a product signal of the multi-user downlink data signal and the second inter-user interference information matrix.
  • the second inter-user interference information matrix includes: an inverse matrix of the sum of the correlation matrix of the multi-user channel and the noise diagonal matrix.
  • the multi-user downlink data signal is sent by the CPU, and the second inter-user interference information matrix is determined by the last level AP in the forward backhaul link, or sent by the CPU; the product signal is sent by the CPU. send.
  • the multi-user downlink data signal includes: a multi-user data signal matrix, or a multi-user bit data matrix.
  • the second level is sent to each non-last level AP in the forward backhaul link respectively.
  • Inter-user interference information matrix in the case that the current AP is the last level AP in the forward backhaul link, the second level is sent to each non-last level AP in the forward backhaul link respectively.
  • the transmitted signal includes: the product of the channel estimate of the current AP, the second inter-user interference information matrix and the multi-user downlink data signal, or the product of the channel estimate of the current AP and the product signal.
  • the CPU forwards the multi-user downlink data signal to each level of AP in the backhaul link, or transmits the multi-user downlink data signal and the product signal of the second inter-user interference information matrix.
  • the CPU when the multi-user downlink data signal is forwarded to each level of AP in the backhaul link, the CPU also forwards the second inter-user interference information to each level of AP in the backhaul link. matrix.
  • An embodiment of the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the signal transmission method described in any one of the embodiments of the present application is implemented.
  • a signal transmission method comprising: determining a multi-user uplink data signal corresponding to the current AP and a first inter-user interference information matrix according to a channel estimation of the current AP; The multi-user uplink data signal and the first inter-user interference information matrix are transmitted.
  • the signal transmission method includes: receiving a multi-user uplink data signal and a first inter-user interference information matrix transmitted by the last-level AP in the forward backhaul link; according to the multi-user uplink data signal and the first user The inter-interference information matrix determines the signal used for demodulation.
  • the signal transmission method includes: acquiring the relevant information of the multi-user downlink data signal and the interference information matrix between the second users; according to the relevant information of the multi-user downlink data signal and the interference information matrix between the second users and the current AP
  • the channel estimation of the current AP determines the transmit signal of the current AP.
  • the signal transmission method includes: forwarding a multi-user downlink data signal to each AP in the backhaul link, or sending a multi-user downlink data signal and a product signal of a second inter-user interference information matrix.
  • the process that multiple terminals send uplink data signals to the CPU through at least one level of APs, and the process that the CPU sends downlink data signals to multiple terminals through at least one level of APs can be performed simultaneously.
  • the user uplink data signal and the first inter-user interference information matrix are demodulated, and on the other hand, the multi-user downlink data signal is also sent to each level of AP.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory) Memory, ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not so limited.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本文公开一种信号传输方法、装置、接入节点、处理单元、系统及介质。该信号传输方法包括:根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。

Description

信号传输方法、装置、接入节点、处理单元、系统及介质 技术领域
本申请涉及无线通信网络领域,例如涉及一种信号传输方法、装置、接入节点、处理单元、系统及介质。
背景技术
射频软带(Radio Stripe)是一种高效低成本的无小区(Cell-Free)的实现方式。多级无线接入点(Access Point,AP)通过前向回传(Front-Haul)链路连接到中央处理单元(Central Processing Unit,CPU)。对于终端发送的上行的数据信号以及CPU发送的下行的数据信号,传统方法在各AP中进行最大比合并或者顺序处理,在一定程度上可以降低Front-Haul上的负载,但是CPU上最终恢复得到的信号的信噪比较低,影响信号传输速率。
发明内容
本申请提供一种信号传输方法、装置、接入节点、处理单元、系统及介质,通过传递多用户上行数据信号以及第一用户间干扰信息矩阵,以提高接收信号的信噪比。
本申请实施例提供一种信号传输方法,包括:
根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
本申请实施例还提供了一种信号传输方法,包括:
接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
本申请实施例还提供了一种信号传输方法,包括:
获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
本申请实施例还提供了一种信号传输方法,包括:
向前向回传链路中的每级AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
本申请实施例还提供了一种信号传输装置,包括:
多用户信号确定模块,设置为根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;第一级联传输模块,设置为向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
本申请实施例还提供了一种信号传输装置,包括:
接收模块,设置为接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;解调信号确定模块,设置为根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
本申请实施例还提供了一种信号传输装置,包括:
获取模块,设置为获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;发射模块,设置为根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
本申请实施例还提供了一种信号传输装置,包括:
第二级联传输模块,设置为向前向回传链路中的每级AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
本申请实施例还提供了一种接入节点,包括:
一个或多个处理器;存储装置,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述应用于接入节点的信号传输方法。
本申请实施例还提供了一种CPU,包括:
一个或多个处理器;存储装置,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述应用于CPU的信号传输方法。
本申请实施例还提供了一种信号传输系统,包括:上述的CPU、至少一级上述的接入节点、以及至少两个终端;所述CPU与每个终端之间通过至少一级AP传输信号。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的信号传输方法。
附图说明
图1为一实施例提供的一种信号传输方法的流程图;
图2为一实施例提供的一种接入节点与CPU连接的示意图;
图3为一实施例提供的另一种信号传输方法的流程图;
图4为一实施例提供的再一种信号传输方法的流程图;
图5为一实施例提供的又一种信号传输方法的流程图;
图6为一实施例提供的一种信号传输装置的结构示意图;
图7为一实施例提供的另一种信号传输装置的结构示意图;
图8为一实施例提供的再一种信号传输装置的结构示意图;
图9为一实施例提供的又一种信号传输装置的结构示意图;
图10为一实施例提供的一种接入节点的硬件结构示意图;
图11为一实施例提供的一种中央处理单元的硬件结构示意图;
图12为一实施例提供的一种信号传输系统的示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在本申请实施例中,提供一种信号传输方法,应用于前向回传链路中的每级AP,在多个终端通过至少一级AP向CPU发送上行的数据信号的情况下,每级AP处理接收到的每个终端的数据信号以降低前向回传链路的负载,保证信号传输效率,其中,每个终端发送的数据信号也统称为多用户上行数据信号,此外,通过传递多用户上行数据信号以及第一用户间干扰信息矩阵,为CPU的信号处理提供更多信息,提高CPU接收信号的信噪比。
图1为一实施例提供的一种信号传输方法的流程图,如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵。
在信号传输系统中,CPU为至少一级AP提供集中式的处理,终端主要指用户终端(User Equipment,UE),多个UE与CPU之间通过至少一级AP传输信号。图2为一实施例提供的一种接入节点与CPU连接的示意图。如图2所示,多个AP以及CPU之间的连接构成一条前向回传链路,每个AP为前向回传链 路中的一级。
本实施例中,对于前向回传链路中的一级AP(即当前AP),多用户上行数据信号包括多个终端通过当前AP向CPU发送的上行的数据信号,每个上行的数据信号中包含了相应的终端所传输的上行数据。此外,如果在前向回传链路中还存在当前AP的上一级AP,则多用户上行数据信号还包括由上一级AP传输给当前AP的上一级AP对应的多用户上行数据信号,即,当前AP的多用户上行数据信号是根据信道估计确定的多用户上行数据信号与上一级AP对应的多用户上行数据信号结合的结果。多用户上行数据信号不仅被每级AP接收,还通过每级AP依次传输至CPU。
对于当前AP,第一用户间干扰信息矩阵用于表示每个终端发送的上行的数据信号与其他各个终端发送的上行的数据信号之间的干扰。此外,如果在前向回传链路中还存在当前AP的上一级AP,则第一用户间干扰信息矩阵还受到由上一级AP传输给当前AP的上一级AP对应的第一用户间干扰信息矩阵的影响,即,当前AP的第一用户间干扰信息矩阵是根据信道估计确定的第一用户间干扰信息矩阵与上一级AP对应的第一用户间干扰信息矩阵结合的结果。第一用户间干扰信息矩阵不仅被每级AP根据信道估计确定,还通过每级AP依次传输至CPU。
在步骤120中,向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
本实施例中,每级AP在接收多个终端的上行的数据信号后,首先根据接收的导频信号,对自身的信道进行估计,将得到的信道估计记为
Figure PCTCN2021118097-appb-000001
Figure PCTCN2021118097-appb-000002
为AP的总个数或总级数),根据自身的信道估计,结合接收的数据信号,确定需要向下一级节点传输的多用户上行数据信号以及第一用户间干扰信息矩阵。如果当前AP是前向回传链路中的最后一级AP,即与CPU直接连接的AP,则当前AP的下一级节点是指CPU;如果当前AP不是前向回传链路中的最后一级AP,则当前AP的下一级节点是指下一级AP。
本实施例中,前向回传链路中的每级AP,在处理接收的数据信号以降低前向回传链路的负载的基础上,通过传输多用户上行数据信号以及第一用户间干扰信息矩阵,CPU进行进一步的信号处理,恢复出更加准确的信号。
在一实施例中,前向回传链路中的每级AP设置有至少一条天线;所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且等于用户数量;多用户上行数据信号的行向量的数量等于用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
本实施例中,第一用户间干扰信息矩阵为维度为K×K的矩阵,其中,K为用户数量,即终端数量。多用户上行数据信号为维度为K×D的矩阵,其中,K为用户数量,即终端数量,D为当前AP的单根天线上接收信号中包含的数据符号数量,也即单个用户发射的数据信号中包含的数据符号数量。
在一实施例中,还包括步骤101:
根据接收信号的导频部分确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的能量先验信息确定所述信道估计。
本实施例中,每级AP可以根据接收信号的导频部分进行信道估计,如果存在先验信息(包括信道的相关矩阵先验信息和能量先验信息中的至少一种),则根据接收信号的导频部分和先验信息进行信道估计。
在一实施例中,步骤110,包括:
在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到所述当前AP对应的多用户上行数据信号;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到一个当前多用户上行数据信号,并与所述当前AP的上一级AP输出的多用户上行数据信号叠加,得到所述当前AP对应的多用户上行数据信号。
本实施例中,如果当前AP是前向回传链路中的第一级AP,则根据自身的信道估计的共轭矩阵即可确定对应的多用户上行数据信号;如果当前AP非第一级AP,则需要根据自身的信道估计的共轭矩阵确定当前多用户上行数据信号,并与上一级AP传输的多用户上行数据信号叠加。
在一实施例中,步骤110,包括:
在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计得到所述当前AP对应的第一用户间干扰信息矩阵;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计得到一个当前第一用户间干扰信息矩阵,并与所述当前AP的上一级AP输出的第一用户间干扰信息矩阵叠加,得到所述当前AP对应的第一用户间干扰信息矩阵。
本实施例中,如果当前AP是前向回传链路中的第一级AP,则根据自身的信道估计的共轭矩阵即可确定对应的第一用户间干扰信息矩阵;如果当前AP非第一级AP,则需要根据自身的信道估计的共轭矩阵确定当前第一用户间干扰信息矩阵,并与上一级AP传输的第一用户间干扰信息矩阵叠加。
在一实施例中,所述第一用户间干扰信息矩阵包括以下之一:多用户信道的相关矩阵;多用户信道的相关矩阵与噪声对角阵之和;多用户信道的相关矩 阵与噪声对角阵之和的逆矩阵。
在信号传输过程中,如果每级AP都将接收到的数据信号传输至CPU,会造成很大的前向回传开销,而本实施例中,每级AP通过传输多用户上行数据信号以及第一用户间干扰信息矩阵,即向CPU传递恢复的信号,能够降低前向回传链路的负载和开销,并且通过将每级AP的多用户上行数据信号以及第一用户间干扰信息矩阵分别与上一级AP的多用户上行数据信号以及第一用户间干扰信息矩阵叠加,然后向下一级节点传递,能够提高CPU接收信号的信噪比。
以下通过示例对信号传输过程进行说明。以下示例中,用户数量记为K,当前AP对应的多用户上行数据信号记为X l,当前AP对应的第一用户间干扰信息矩阵记为R l,l表示当前AP的级数,l≥1且l≤L;L为AP的总数或总级数,当前AP的接收信号记为Y l,σ 2表示接收信号的噪声,I K表示K×K的单位矩阵,X est表示CPU最终确定的用于解调的信号。
在当前AP包含多个天线的情况下,当前AP的信道估计为
Figure PCTCN2021118097-appb-000003
当前AP的信道估计的共轭矩阵记为
Figure PCTCN2021118097-appb-000004
在当前AP包含一个天线的情况下,当前AP的信道估计为
Figure PCTCN2021118097-appb-000005
当前AP的信道估计的共轭矩阵记为
Figure PCTCN2021118097-appb-000006
示例一:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000007
根据
Figure PCTCN2021118097-appb-000008
确定
Figure PCTCN2021118097-appb-000009
其中,R 1为维度为K×K的埃尔米特矩阵(Hermitian Matrix),第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000010
根据
Figure PCTCN2021118097-appb-000011
确定
Figure PCTCN2021118097-appb-000012
Figure PCTCN2021118097-appb-000013
其中,R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含多个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000014
在此基础上,计算
Figure PCTCN2021118097-appb-000015
Figure PCTCN2021118097-appb-000016
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例二:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000017
根据
Figure PCTCN2021118097-appb-000018
确定
Figure PCTCN2021118097-appb-000019
其中,R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000020
根据
Figure PCTCN2021118097-appb-000021
确定
Figure PCTCN2021118097-appb-000022
其中,R l 为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=(R L2I K) -1X L
本示例中,每级AP包含多个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000023
在此基础上,计算
Figure PCTCN2021118097-appb-000024
Figure PCTCN2021118097-appb-000025
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例三:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000026
根据
Figure PCTCN2021118097-appb-000027
确定
Figure PCTCN2021118097-appb-000028
利用N次Sherman-Morrison公式确定
Figure PCTCN2021118097-appb-000029
R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1 -1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000030
根据
Figure PCTCN2021118097-appb-000031
确定
Figure PCTCN2021118097-appb-000032
利用N次Sherman-Morrison公式确定
Figure PCTCN2021118097-appb-000033
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含多个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000034
在此基础上,计算
Figure PCTCN2021118097-appb-000035
Figure PCTCN2021118097-appb-000036
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例四:
对于第一级AP,根据Y 1的导频部分和多用户信道的相关矩阵先验信息对信道进行估计,得到
Figure PCTCN2021118097-appb-000037
根据
Figure PCTCN2021118097-appb-000038
确定
Figure PCTCN2021118097-appb-000039
R 1为维度为K×K的埃尔米特矩阵(Hermitian Matrix),第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000040
根据
Figure PCTCN2021118097-appb-000041
确定
Figure PCTCN2021118097-appb-000042
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含多个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和。对于第l级AP,首先根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定
Figure PCTCN2021118097-appb-000043
在此基础上,计算
Figure PCTCN2021118097-appb-000044
Figure PCTCN2021118097-appb-000045
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例五:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000046
根据
Figure PCTCN2021118097-appb-000047
确定
Figure PCTCN2021118097-appb-000048
R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000049
根据
Figure PCTCN2021118097-appb-000050
确定
Figure PCTCN2021118097-appb-000051
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含一个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000052
在此基础上,计算
Figure PCTCN2021118097-appb-000053
Figure PCTCN2021118097-appb-000054
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例六:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000055
根据
Figure PCTCN2021118097-appb-000056
确定
Figure PCTCN2021118097-appb-000057
R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000058
根据
Figure PCTCN2021118097-appb-000059
确定
Figure PCTCN2021118097-appb-000060
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=(R L2I K) -1X L
本示例中,每级AP包含一个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000061
在此基础上,计算
Figure PCTCN2021118097-appb-000062
Figure PCTCN2021118097-appb-000063
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例七:
对于第一级AP,根据Y 1的导频部分对信道进行估计得到
Figure PCTCN2021118097-appb-000064
根据
Figure PCTCN2021118097-appb-000065
确定
Figure PCTCN2021118097-appb-000066
利用一次Sherman-Morrison公式确定
Figure PCTCN2021118097-appb-000067
R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1 -1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000068
根据
Figure PCTCN2021118097-appb-000069
确定
Figure PCTCN2021118097-appb-000070
利用N次Sherman-Morrison公式确定
Figure PCTCN2021118097-appb-000071
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含一个天线,第一用户间干扰信息矩阵为多用户信道 的相关矩阵与噪声对角阵之和的逆矩阵。对于第l级AP,首先根据接收信号的导频部分确定
Figure PCTCN2021118097-appb-000072
在此基础上,计算
Figure PCTCN2021118097-appb-000073
Figure PCTCN2021118097-appb-000074
的过程可以并行进行,从而降低信号传输过程中的处理时延。
示例八:
对于第一级AP,根据Y 1的导频部分和多用户信道的能量先验信息对信道进行估计,得到
Figure PCTCN2021118097-appb-000075
根据
Figure PCTCN2021118097-appb-000076
确定
Figure PCTCN2021118097-appb-000077
R 1为维度为K×K的埃尔米特矩阵,第一级AP向第二级AP传输X 1和R 1;对于第l级AP,1<l≤L,根据Y l的导频部分对信道进行估计,得到
Figure PCTCN2021118097-appb-000078
根据
Figure PCTCN2021118097-appb-000079
确定
Figure PCTCN2021118097-appb-000080
Figure PCTCN2021118097-appb-000081
R l为维度为K×K的埃尔米特矩阵,在l<L的情况下,第l级AP向第l+1级AP传输X l和R l;在l=L的情况下,第L级AP向CPU传输X L和R L
CPU根据第L级AP传输的X L和R L确定用于解调的信号X est=R L -1X L
本示例中,每级AP包含一个天线,第一用户间干扰信息矩阵为多用户信道的相关矩阵。对于第l级AP,首先根据接收信号的导频部分和多用户信道的能量先验信息确定
Figure PCTCN2021118097-appb-000082
在此基础上,计算
Figure PCTCN2021118097-appb-000083
Figure PCTCN2021118097-appb-000084
的过程可以并行进行,从而降低信号传输过程中的处理时延。
在本申请实施例中,还提供一种信号传输方法,应用于CPU,CPU可以为网络侧的集中式控制单元,例如CPU、网管设备、基站等。CPU通过接收前向回传链路中最后一级AP传输的多用户上行数据信号以及第一用户间干扰信息矩阵,据此恢复用于解调的信号,提高解调性能,使解调得到的信号具有更高的信噪比。
图3为一实施例提供的另一种信号传输方法的流程图。如图3所示,本实施例提供的方法包括步骤210和步骤220。未在本实施例中详尽描述的技术细节可参见上述任意实施例。
在步骤210中,接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵。
在步骤220中,根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
本实施例中,多用户上行数据信号包括多个终端通过最后一级AP向CPU发送的上行的数据信号,每个上行的数据信号中包含了相应的终端所传输的上行数据;此外,还包括最后一级AP的上一级AP传输给最后一级AP的对应的多用户上行数据信号,即,最后一级AP的多用户上行数据信号是最后一级AP根据信道估计确定的多用户上行数据信号与上一级AP对应的多用户上行数据 信号结合的结果。
第一用户间干扰信息矩阵用于表示每个终端发送的上行的数据信号与其他各个终端发送的上行的数据信号之间的干扰,并且还受到由最后一级AP的上一级AP传输的上一级AP对应的第一用户间干扰信息矩阵的影响,即,最后一级AP的第一用户间干扰信息矩阵是最后一级AP根据信道估计确定的第一用户间干扰信息矩阵与上一级AP对应的第一用户间干扰信息矩阵结合的结果。
在一实施例中,用于解调的信号包括:第一矩阵与多用户上行数据信号的乘积,其中,第一矩阵为第一用户间干扰信息矩阵与噪声对角阵之和的逆矩阵;或者,第二矩阵与多用户上行数据信号的乘积,其中,第二矩阵为第一用户间干扰信息矩阵的逆矩阵。
CPU接收最后一级AP(即上述示例中的第L级AP)传输的多用户上行数据信号(即上述示例中的X L)和第一用户间干扰信息矩阵(即上述示例中的R L),据此确定用于解调的信号,例如,用于解调的信号为第一矩阵(R L2I K) -1与X L的乘积,即X est=(R L2I K) -1X L,这种情况下,第一用户间干扰信息矩阵是多用户信道的相关矩阵;又如,用于解调的信号为第二矩阵R L -1与多用户上行数据信号X L的乘积,即X est=R L -1X L,这种情况下,第一用户间干扰信息矩阵是多用户信道的相关矩阵,或者多用户信道的相关矩阵与噪声对角阵之和,或者多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,所述前向回传链路中的每级AP设置有至少一条天线;所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且等于用户数量;所述多用户上行数据信号的行向量的数量等于用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
在一实施例中,AP根据接收信号的导频部分确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的能量先验信息确定所述信道估计。
在一实施例中,对于第一级AP,第一级AP对应的多用户上行数据信号根据第一级AP的信道估计的共轭矩阵得到;对于非第一级AP,该非第一级AP对应的多用户上行数据信号由一个当前多用户上行数据信号与上一级AP输出的多用户上行数据信号叠加得到,其中,当前多用户上行数据信号根据该非第一级AP的信道估计的共轭矩阵得到。
在一实施例中,对于第一级AP,第一级AP对应的第一用户间干扰信息矩阵根据第一级AP的信道估计得到;对于非第一级AP,该非第一级AP对应的 第一用户间干扰信息矩阵由一个当前第一用户间干扰信息矩阵与上一级AP输出的第一用户间干扰信息矩阵叠加得到,其中,当前第一用户间干扰信息矩阵根据该非第一级AP的信道估计得到。
在一实施例中,所述第一用户间干扰信息矩阵包括以下之一:多用户信道的相关矩阵;多用户信道的相关矩阵与噪声对角阵之和;多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在本申请实施例中,还提供一种信号传输方法,应用于前向回传链路中的每级AP,在CPU通过至少一级AP的前向回传链路向多个终端发送下行的数据信号的情况下,根据获取到的多用户下行数据信号和第二用户间干扰信息矩阵确定发射信号,提高终端接收信号的信噪比。
图4为一实施例提供的再一种信号传输方法的流程图。如图4所示,本实施例提供的方法包括步骤310和步骤320。未在本实施例中详尽描述的技术细节可参见上述任意实施例。
在步骤310中,获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息。
在步骤320中,根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
本实施中,多用户下行数据信号包括CPU通过至少一级AP向多个终端发送的下行的数据信号,每个下行的数据信号中包含了向相应的终端所传输的下行数据;第二用户间干扰信息矩阵用于表示CPU通过至少一级AP向多个终端发送下行的数据信号之间的干扰。
在一实施例中,相关信息包括:多用户下行数据信号和第二用户间干扰信息矩阵;或者,多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
在一实施例中,第二用户间干扰信息矩阵包括:多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,在相关信息包括多用户下行数据信号和第二用户间干扰信息矩阵的情况下,多用户下行数据信号由CPU发送,第二用户间干扰信息矩阵由前向回传链路中的最后一级AP确定,或者由CPU发送;在相关信息包括多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号的情况下,所述乘积信号由CPU发送。
本实施例中,一种情况是,CPU可以向每级AP都发送多用户下行数据信 号,而每级AP获取第二用户间干扰信息矩阵的方式,可以是由CPU发送,也可以由前向回传链路中的最后一级AP(即第L级AP,也即与CPU直接连接的AP)确定;另一种情况是,CPU也可以向每级AP发送多用户下行数据信号与第二用户间干扰信息矩阵的乘积信号,供每级AP确定发射信号。
在一实施例中,多用户下行数据信号包括:多用户数据信号矩阵,或者多用户比特数据矩阵。其中,多用户数据信号矩阵是指待发送给多个用户的调制后的数据符号构成的矩阵,多用户比特数据矩阵是指待发送给多个用户的比特数据构成的矩阵。
本实施例中,多用户下行数据信号可以是数据信号矩阵的形式,也可以是比特数据矩阵的形式,能够节省传输开销。
在一实施例中,还包括:
步骤330:在所述当前AP为前向回传链路中的最后一级AP的情况下,分别向所述前向回传链路中的每级非最后一级AP发送第二用户间干扰信息矩阵。
本实施例中,最后一级AP可以确定自身对应的第二用户间干扰信息矩阵,并向前向回传链路中的其他每级AP发送对应的第二用户间干扰信息矩阵。
在一实施例中,发射信号包括:当前AP的信道估计、第二用户间干扰信息矩阵以及多用户下行数据信号的乘积,或者,所述当前AP的信道估计与所述乘积信号的乘积。
以下通过示例对信号传输过程进行说明。以下示例中,多用户数据信号矩阵记为S,多用户比特数据矩阵记为B,l表示当前AP的级数,l≥1且l≤L,L为AP的总数或总级数,σ 2表示接收信号的噪声,I K表示K×K的单位矩阵。第二用户间干扰信息矩阵记为
Figure PCTCN2021118097-appb-000085
在当前AP包含多个天线的情况下,当前AP的信道估计记为
Figure PCTCN2021118097-appb-000086
在当前AP包含一个天线的情况下,当前AP的信道估计记为
Figure PCTCN2021118097-appb-000087
示例九:
CPU向每级AP发送S和
Figure PCTCN2021118097-appb-000088
其中,
Figure PCTCN2021118097-appb-000089
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的S、
Figure PCTCN2021118097-appb-000090
以及
Figure PCTCN2021118097-appb-000091
确定发射信号为
Figure PCTCN2021118097-appb-000092
本示例中,每级AP包含多个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
示例十:
CPU向每级AP发送B,第L级AP向前向回传链路中的其他每级AP发送
Figure PCTCN2021118097-appb-000093
其中,
Figure PCTCN2021118097-appb-000094
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的B、
Figure PCTCN2021118097-appb-000095
以及
Figure PCTCN2021118097-appb-000096
确定发射信号为
Figure PCTCN2021118097-appb-000097
本示例中,每级AP包含多个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
示例十一:
CPU向每级AP发送S和
Figure PCTCN2021118097-appb-000098
的乘积信号,即
Figure PCTCN2021118097-appb-000099
其中,
Figure PCTCN2021118097-appb-000100
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的
Figure PCTCN2021118097-appb-000101
以及
Figure PCTCN2021118097-appb-000102
确定发射信号为
Figure PCTCN2021118097-appb-000103
本示例中,每级AP包含多个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
示例十二:
CPU向每级AP发送S和
Figure PCTCN2021118097-appb-000104
其中,
Figure PCTCN2021118097-appb-000105
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的S、
Figure PCTCN2021118097-appb-000106
以及
Figure PCTCN2021118097-appb-000107
确定发射信号为
Figure PCTCN2021118097-appb-000108
本示例中,每级AP包含一个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
示例十三:
CPU向每级AP发送B,第L级AP向前向回传链路中的其他每级AP发送
Figure PCTCN2021118097-appb-000109
其中,
Figure PCTCN2021118097-appb-000110
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的B、
Figure PCTCN2021118097-appb-000111
以及
Figure PCTCN2021118097-appb-000112
确定发射信号为
Figure PCTCN2021118097-appb-000113
本示例中,每级AP包含一个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
示例十四:
CPU向每级AP发送S和
Figure PCTCN2021118097-appb-000114
的乘积信号,即
Figure PCTCN2021118097-appb-000115
其中,
Figure PCTCN2021118097-appb-000116
T表示矩阵的转置;对于第l级AP,1≤l≤L,根据接收到的
Figure PCTCN2021118097-appb-000117
以及
Figure PCTCN2021118097-appb-000118
确定发射信号为
Figure PCTCN2021118097-appb-000119
本示例中,每级AP包含一个天线,第二用户间干扰信息矩阵为多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在本申请实施例中,还提供一种信号传输方法,应用于CPU,CPU可以为网络侧的集中式控制单元,例如CPU、网管设备、总基站等。CPU通过向每级 AP发送多用户下行数据信号,供每级AP确定发射信号,提高终端接收信号的信噪比。
图5为一实施例提供的又一种信号传输方法的流程图。如图5所示,本实施例提供的方法包括步骤410。未在本实施例中详尽描述的技术细节可参见上述任意实施例。
在步骤410中,向前向回传链路中的每级AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
本实施中,多用户下行数据信号包括CPU通过至少一级AP向多个终端发送的下行的数据信号,每个下行的数据信号中包含了向相应的终端所传输的下行数据。
在一实施例中,在向前向回传链路中的每级AP发送多用户下行数据信号的情况下,还包括:
步骤420:向前向回传链路中的每级AP发送第二用户间干扰信息矩阵。
本实施例中,第二用户间干扰信息矩阵用于表示CPU通过至少一个级AP向多个终端发送下行的数据信号之间的干扰。
在一实施例中,第二用户间干扰信息矩阵包括:多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,多用户下行数据信号包括:多用户数据信号矩阵,或者多用户比特数据矩阵。
本申请实施例还提供一种信号传输装置。图6为一实施例提供的一种信号传输装置的结构示意图。如图6所示,所述信号传输装置包括:多用户信号确定模块11和第一级联传输模块12。
多用户信号确定模块11,设置为根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;第一级联传输模块12,设置为向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
本实施例的信号传输装置,在多个终端通过至少一级AP向CPU发送上行的数据信号的情况下,在通过处理接收的每个用户发送的数据信号以降低前向回传链路的负载的基础上,通过传输多用户上行数据信号以及第一用户间干扰信息矩阵,提高CPU接收数据信号的可靠性,并且通过分析和传输多用户之间的干扰,提高信号传输过程中的信噪比。
在一实施例中,所述前向回传链路中的每级AP设置有至少一条天线;所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且等于用户数量;所述多用户上行数据信号的行向量的数量等于用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
在一实施例中,还包括估计模块,设置为:
根据接收信号的导频部分确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的能量先验信息确定所述信道估计。
在一实施例中,多用户信号确定模块11,包括第一确定单元,设置为:
在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到所述当前AP对应的多用户上行数据信号;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到一个当前多用户上行数据信号,并与所述当前AP的上一级AP输出的多用户上行数据信号叠加,得到所述当前AP对应的多用户上行数据信号。
在一实施例中,多用户信号确定模块11,包括第二确定单元,设置为:
在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计得到所述当前AP对应的第一用户间干扰信息矩阵;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计得到一个当前第一用户间干扰信息矩阵,并与所述当前AP的上一级AP输出的第一用户间干扰信息矩阵叠加,得到所述当前AP对应的第一用户间干扰信息矩阵。
在一实施例中,所述第一用户间干扰信息矩阵包括以下之一:
多用户信道的相关矩阵;多用户信道的相关矩阵与噪声对角阵之和;多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
本实施例提出的信号传输装置与上述实施例提出的应用于AP的信号传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于AP的信号传输方法相同的效果。
本申请实施例还提供一种信号传输装置。图7为一实施例提供的另一种信号传输装置的结构示意图。如图7所示,所述信号传输装置包括:接收模块21和解调信号确定模块22。
接收模块21,设置为接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;解调信号确定模块22,设置为根据所述 多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
本实施例的信号传输装置,通过接收前向回传链路中最后一级AP恢复的多用户上行数据信号以及第一用户间干扰信息矩阵,据此确定用于解调的信号,提高解调性能,使解调得到的信号具有更高的信噪比。
在一实施例中,所述用于解调的信号包括:第一矩阵与多用户上行数据信号的乘积,其中,第一矩阵为第一用户间干扰信息矩阵与噪声对角阵之和的逆矩阵;或者,第二矩阵与多用户上行数据信号的乘积,其中,第二矩阵为第一用户间干扰信息矩阵的逆矩阵。
在一实施例中,所述前向回传链路中的每级AP设置有至少一条天线;所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且等于用户数量;所述多用户上行数据信号的行向量的数量等于用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
在一实施例中,对于第一级AP,第一级AP对应的多用户上行数据信号根据第一级AP的信道估计的共轭矩阵得到;对于非第一级AP,该非第一级AP对应的多用户上行数据信号由一个当前多用户上行数据信号与上一级AP输出的多用户上行数据信号叠加得到,其中,当前多用户上行数据信号根据该非第一级AP的信道估计的共轭矩阵得到。
在一实施例中,对于第一级AP,第一级AP对应的第一用户间干扰信息矩阵根据第一级AP的信道估计得到;对于非第一级AP,该非第一级AP对应的第一用户间干扰信息矩阵由一个当前第一用户间干扰信息矩阵与上一级AP输出的第一用户间干扰信息矩阵叠加得到,其中,当前第一用户间干扰信息矩阵根据该非第一级AP的信道估计得到。
在一实施例中,所述第一用户间干扰信息矩阵包括以下之一:
多用户信道的相关矩阵;多用户信道的相关矩阵与噪声对角阵之和;多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
本实施例提出的信号传输装置与上述实施例提出的应用于CPU的信号传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于CPU的信号传输方法相同的效果。
本申请实施例还提供一种信号传输装置。图8为一实施例提供的再一种信号传输装置的结构示意图。如图8所示,所述信号传输装置包括:获取模块31和发射模块32。
获取模块31,设置为获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;发射模块32,设置为根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
本实施例的信号传输装置,在CPU通过至少一级AP的前向回传链路向多个终端发送下行的数据信号的情况下,根据获取到的多用户下行数据信号和第二用户间干扰信息矩阵确定发射信号,提高终端接收信号的信噪比。
在一实施例中,所述相关信息包括:多用户下行数据信号和第二用户间干扰信息矩阵;或者,多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
在一实施例中,所述第二用户间干扰信息矩阵包括:多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,所述多用户下行数据信号由CPU发送,所述第二用户间干扰信息矩阵由前向回传链路中的最后一级AP确定,或者由CPU发送;所述乘积信号由CPU发送。
在一实施例中,所述多用户下行数据信号包括:多用户数据信号矩阵,或者多用户比特数据矩阵。
在一实施例中,还包括:
第二用户间干扰信息矩阵发送模块,设置为在所述当前AP为前向回传链路中的最后一级AP的情况下,分别向所述前向回传链路中的每级非最后一级AP发送第二用户间干扰信息矩阵。
在一实施例中,发射信号包括:当前AP的信道估计、第二用户间干扰信息矩阵以及多用户下行数据信号的乘积,或者,所述当前AP的信道估计与所述乘积信号的乘积。
本实施例提出的信号传输装置与上述实施例提出的应用于AP的信号传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于AP的信号传输方法相同的效果。
本申请实施例还提供一种信号传输装置。图9为一实施例提供的又一种信号传输装置的结构示意图。如图9所示,所述信号传输装置包括:第二级联传输模块41。
第二级联传输模块41,设置为向前向回传链路中的每级AP发送多用户下 行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
本实施例的信号传输装置,通过向每级AP发送多用户下行数据信号,供每级AP确定发射信号,提高终端接收信号的信噪比。
在一实施例中,在向前向回传链路中的每级AP发送多用户下行数据信号的情况下,还包括:
第三级联传输模块,设置为向前向回传链路中的每级AP发送第二用户间干扰信息矩阵。
本实施例提出的信号传输装置与上述实施例提出的应用于CPU的信号传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于CPU的信号传输方法相同的效果。
本申请实施例还提供了一种接入节点。接入节点例如为分布式的基站、基站天线的基带处理单元等,多个终端与CPU之间通多至少一级接入节点传输信号。图10为一实施例提供的一种接入节点的硬件结构示意图,如图10所示,本申请提供的接入节点,包括一个或多个处理器51,其中所述一个或多个处理器51在执行时实现本申请任一实施例提供的应用于AP的信号传输方法。
接入节点还可以包括存储装置52;该接入节点中的处理器51可以是一个或多个,图10中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的应用于AP的信号传输方法。
接入节点还包括:通信装置53、输入装置54和输出装置55。
接入节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图10中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与接入节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述应用于AP的信号传输方法对应的程序指令/模块(例如,信号传输装置中的多用户信号确定模块11和第一级联传 输模块12,又如,信号传输装置中的获取模块31和发射模块32)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据接入节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至接入节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种CPU。CPU为网络侧的集中式控制单元,例如为总基站、CPU、网管设备等。图11为一实施例提供的一种中央处理单元的硬件结构示意图,如图11所示,本申请提供的CPU,包括一个或多个处理器61,其中所述一个或多个处理器61在执行时实现本申请任一实施例提供的应用于CPU的信号传输方法。
CPU还可以包括存储装置62;该CPU中的处理器61可以是一个或多个,图11中以一个处理器61为例;存储装置62用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器61执行,使得所述一个或多个处理器61实现如本申请实施例中所述的应用于CPU的信号传输方法。
CPU还包括:通信装置63、输入装置64和输出装置65。
CPU中的处理器61、存储装置62、通信装置63、输入装置64和输出装置65可以通过总线或其他方式连接,图11中以通过总线连接为例。
输入装置64可用于接收输入的数字或字符信息,以及产生与CPU的用户设置以及功能控制有关的按键信号输入。输出装置65可包括显示屏等显示设备。
通信装置63可以包括接收器和发送器。通信装置63设置为根据处理器61的控制进行信息收发通信。
存储装置62作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述应用于CPU的信号传输方法对应的程序指令/模块(例如,信号传输装置中的接收模块21和解调信号确定模块22,又如,信号传输装置中的第二级联传输模块41)。存储装置62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据CPU的使用所创建的数据等。此外,存储装置62可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中, 存储装置62可包括相对于处理器61远程设置的存储器,这些远程存储器可以通过网络连接至CPU。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种信号传输系统。图12为一实施例提供的一种信号传输系统的示意图。如图12所示,该系统包括:中央处理单元71、至少一个上述任意实施例所述的接入节点72、以及至少两个终端73;中央处理单元71与每个终端之间通过至少一个接入节点72传输信号。
本实施例的信号传输系统,在多个终端通过至少一级AP向CPU发送上行的数据信号的情况下,前向回传链路中的每级AP处理接收的每个用户的数据信号以降低前向回传链路的负载,并且通过传输多用户上行数据信号以及第一用户间干扰信息矩阵,为CPU的信号处理提供更多信息,提高CPU接收信号的信噪比;CPU通过接收前向回传链路中最后一级AP恢复的多用户上行数据信号以及第一用户间干扰信息矩阵,据此确定用于解调的信号,提高解调性能,使解调得到的信号具有更高的信噪比。
在CPU通过至少一级AP的前向回传链路向多个终端发送下行的数据信号的情况下,每级AP根据获取到的多用户下行数据信号和第二用户间干扰信息矩阵确定发射信号,提高终端接收信号的信噪比;CPU通过向每级AP发送多用户下行数据信号,供每级AP确定发射信号,提高终端接收信号的信噪比。
在一实施例中,每级AP根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
在一实施例中,前向回传链路中的每级AP设置有至少一条天线;所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且等于用户数量;所述多用户上行数据信号的行向量的数量等于用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
在一实施例中,每级AP根据接收信号的导频部分确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定所述信道估计;或者,根据接收信号的导频部分和多用户信道的能量先验信息确定所述信道估计。
在一实施例中,根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号,包括:在所述当前AP为第一级AP的情况下,根据所述当前AP 的信道估计的共轭矩阵得到所述当前AP对应的多用户上行数据信号;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到一个当前多用户上行数据信号,并与所述当前AP的上一级AP输出的多用户上行数据信号叠加,得到所述当前AP对应的多用户上行数据信号。
在一实施例中,根据当前AP的信道估计确定第一用户间干扰信息矩阵,包括:在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计得到所述当前AP对应的第一用户间干扰信息矩阵;在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计得到一个当前第一用户间干扰信息矩阵,并与所述当前AP的上一级AP输出的第一用户间干扰信息矩阵叠加,得到所述当前AP对应的第一用户间干扰信息矩阵。
在一实施例中,所述第一用户间干扰信息矩阵包括以下之一:多用户信道的相关矩阵;多用户信道的相关矩阵与噪声对角阵之和;多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,CPU接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
在一实施例中,所述用于解调的信号包括:第一矩阵与多用户上行数据信号的乘积,其中,第一矩阵为第一用户间干扰信息矩阵与噪声对角阵之和的逆矩阵;或者,第二矩阵与多用户上行数据信号的乘积,其中,第二矩阵为第一用户间干扰信息矩阵的逆矩阵积。
在一实施例中,每级AP获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
在一实施例中,所述相关信息包括:多用户下行数据信号和第二用户间干扰信息矩阵;或者,多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
在一实施例中,第二用户间干扰信息矩阵包括:多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
在一实施例中,所述多用户下行数据信号由CPU发送,第二用户间干扰信息矩阵由前向回传链路中的最后一级AP确定,或者由CPU发送;所述乘积信号由CPU发送。
在一实施例中,所述多用户下行数据信号包括:多用户数据信号矩阵,或者多用户比特数据矩阵。
在一实施例中,在所述当前AP为前向回传链路中的最后一级AP的情况下,分别向所述前向回传链路中的每级非最后一级AP发送第二用户间干扰信息矩阵。
在一实施例中,发射信号包括:当前AP的信道估计、第二用户间干扰信息矩阵以及多用户下行数据信号的乘积,或者,所述当前AP的信道估计与所述乘积信号的乘积。
在一实施例中,CPU向前向回传链路中的每级AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
在一实施例中,在向前向回传链路中的每级AP发送多用户下行数据信号的情况下,CPU还向前向回传链路中的每级AP发送第二用户间干扰信息矩阵。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的信号传输方法。
信号传输方法,包括:根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
或者,信号传输方法,包括:接收前向回传链路中最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
或者,信号传输方法,包括:获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;根据所述多用户下行数据信号和所述第二用户间干扰信息矩阵的相关信息以及当前AP的信道估计,确定所述当前AP的发射信号。
或者,信号传输方法,包括:向前向回传链路中的每级AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
多个终端通过至少一级AP向CPU发送上行的数据信号、CPU通过至少一级AP向多个终端发送下行的数据信号的过程可以同时进行,例如,CPU一方面接收最后一级AP传输的多用户上行数据信号和第一用户间干扰信息矩阵并进行解调,另一方面,还向每级AP发送多用户下行数据信号。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外 线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申 请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (25)

  1. 一种信号传输方法,包括:
    根据当前接入节点AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;
    向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
  2. 根据权利要求1所述的方法,其中,所述前向回传链路中的每级AP设置有至少一条天线;
    所述第一用户间干扰信息矩阵的行向量的数量与列向量的数量相等,且均等于用户数量;
    所述多用户上行数据信号的行向量的数量等于所述用户数量,列向量的数量等于所述当前AP的单根天线上接收信号的数据符号数量。
  3. 根据权利要求1所述的方法,还包括:
    根据接收信号的导频部分确定所述信道估计;或者,
    根据接收信号的导频部分和多用户信道的相关矩阵先验信息确定所述信道估计;或者,
    根据接收信号的导频部分和多用户信道的能量先验信息确定所述信道估计。
  4. 根据权利要求1所述的方法,其中,所述根据当前AP的信道估计确定所述当前AP对应的多用户上行数据信号,包括:
    在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到所述当前AP对应的多用户上行数据信号;
    在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计的共轭矩阵得到一个当前多用户上行数据信号,并与所述当前AP的上一级AP输出的多用户上行数据信号叠加,得到所述当前AP对应的多用户上行数据信号。
  5. 根据权利要求1所述的方法,其中,所述根据当前AP的信道估计确定第一用户间干扰信息矩阵,包括:
    在所述当前AP为第一级AP的情况下,根据所述当前AP的信道估计得到所述当前AP对应的第一用户间干扰信息矩阵;
    在所述当前AP非第一级AP的情况下,根据所述当前AP的信道估计得到一个当前第一用户间干扰信息矩阵,并与所述当前AP的上一级AP输出的第一用户间干扰信息矩阵叠加,得到所述当前AP对应的第一用户间干扰信息矩阵。
  6. 根据权利要求1所述的方法,其中,所述第一用户间干扰信息矩阵包括 以下之一:
    多用户信道的相关矩阵;
    多用户信道的相关矩阵与噪声对角阵之和;
    多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
  7. 一种信号传输方法,包括:
    接收前向回传链路中最后一级接入节点AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;
    根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
  8. 根据权利要求7所述的方法,其中,所述用于解调的信号包括:
    第一矩阵与所述多用户上行数据信号的乘积,其中,所述第一矩阵为所述第一用户间干扰信息矩阵与噪声对角阵之和的逆矩阵;或者,
    第二矩阵与所述多用户上行数据信号的乘积,其中,所述第二矩阵为所述第一用户间干扰信息矩阵的逆矩阵。
  9. 一种信号传输方法,包括:
    获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;
    根据所述多用户下行数据信号和第二用户间干扰信息矩阵的相关信息以及当前接入节点AP的信道估计,确定所述当前AP的发射信号。
  10. 根据权利要求9所述的方法,其中,所述相关信息包括:所述多用户下行数据信号和所述第二用户间干扰信息矩阵;或者,所述多用户下行数据信号和所述第二用户间干扰信息矩阵的乘积信号。
  11. 根据权利要求9所述的方法,其中,所述第二用户间干扰信息矩阵包括:
    多用户信道的相关矩阵与噪声对角阵之和的逆矩阵。
  12. 根据权利要求10所述的方法,其中,
    所述多用户下行数据信号由中央处理单元CPU发送;所述第二用户间干扰信息矩阵由前向回传链路中的最后一级AP确定,或者由CPU发送;
    所述乘积信号由CPU发送。
  13. 根据权利要求9所述的方法,其中,所述多用户下行数据信号包括:
    多用户数据信号矩阵,或者多用户比特数据矩阵。
  14. 根据权利要求9所述的方法,还包括:
    在所述当前AP为前向回传链路中的最后一级AP的情况下,向所述前向回传链路中的每级非最后一级AP发送所述第二用户间干扰信息矩阵。
  15. 根据权利要求10所述的方法,其中,所述发射信号包括:
    所述当前AP的信道估计、所述第二用户间干扰信息矩阵以及所述多用户下行数据信号的乘积;或者,
    所述当前AP的信道估计与所述乘积信号的乘积。
  16. 一种信号传输方法,包括:
    向前向回传链路中的每级接入节点AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的乘积信号。
  17. 根据权利要求16所述的方法,其中,在所述向前向回传链路中的每级AP发送多用户下行数据信号的情况下,还包括:
    向前向回传链路中的每级AP发送第二用户间干扰信息矩阵。
  18. 一种信号传输装置,包括:
    多用户信号确定模块,设置为根据当前接入节点AP的信道估计确定所述当前AP对应的多用户上行数据信号以及第一用户间干扰信息矩阵;
    第一级联传输模块,设置为向前向回传链路中所述当前AP的下一级节点传输所述多用户上行数据信号和所述第一用户间干扰信息矩阵。
  19. 一种信号传输装置,包括:
    接收模块,设置为接收前向回传链路中最后一级接入节点AP传输的多用户上行数据信号和第一用户间干扰信息矩阵;
    解调信号确定模块,设置为根据所述多用户上行数据信号和所述第一用户间干扰信息矩阵确定用于解调的信号。
  20. 一种信号传输装置,包括:
    获取模块,设置为获取多用户下行数据信号和第二用户间干扰信息矩阵的相关信息;
    发射模块,设置为根据所述多用户下行数据信号和第二用户间干扰信息矩阵的相关信息以及当前接入节点AP的信道估计,确定所述当前AP的发射信号。
  21. 一种信号传输装置,包括:
    第二级联传输模块,设置为向前向回传链路中的每级接入节点AP发送多用户下行数据信号,或者发送多用户下行数据信号和第二用户间干扰信息矩阵的 乘积信号。
  22. 一种接入节点AP,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-6、9-15中任一项所述的信号传输方法。
  23. 一种中央处理单元CPU,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求7-8、16-17中任一项所述的信号传输方法。
  24. 一种信号传输系统,包括:如权利要求23所述的中央处理单元CPU、至少一级如权利要求22所述的接入节点AP、以及至少两个终端;
    所述CPU设置为通过所述CPU与每个终端之间的至少一级AP与所述每个终端传输信号。
  25. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-17中任一项所述的信号传输方法。
PCT/CN2021/118097 2020-09-17 2021-09-14 信号传输方法、装置、接入节点、处理单元、系统及介质 WO2022057777A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237012395A KR20230066440A (ko) 2020-09-17 2021-09-14 신호 전송 방법, 장치, 액세스 포인트, 처리 유닛, 시스템 및 매체
US18/026,872 US20230337107A1 (en) 2020-09-17 2021-09-14 Signal transmission method and apparatus, access node, processing unit, system and medium
CA3192979A CA3192979A1 (en) 2020-09-17 2021-09-14 Signal transmission method and apparatus, access point, processing unit, system and medium
EP21868600.4A EP4216586A1 (en) 2020-09-17 2021-09-14 Signal transmission method and apparatus, access node, processing unit, system and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010982325.XA CN112135288A (zh) 2020-09-17 2020-09-17 信号传输方法、装置、接入节点、处理单元、系统及介质
CN202010982325.X 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022057777A1 true WO2022057777A1 (zh) 2022-03-24

Family

ID=73841732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118097 WO2022057777A1 (zh) 2020-09-17 2021-09-14 信号传输方法、装置、接入节点、处理单元、系统及介质

Country Status (6)

Country Link
US (1) US20230337107A1 (zh)
EP (1) EP4216586A1 (zh)
KR (1) KR20230066440A (zh)
CN (1) CN112135288A (zh)
CA (1) CA3192979A1 (zh)
WO (1) WO2022057777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091156A1 (en) * 2022-10-18 2024-05-02 Telefonaktiebolaget Lm Ericsson (Publ) First node, first network node, second node, communications network and methods performed thereby for handling an interference signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135288A (zh) * 2020-09-17 2020-12-25 中兴通讯股份有限公司 信号传输方法、装置、接入节点、处理单元、系统及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224729A (zh) * 2019-05-27 2019-09-10 北京交通大学 用于去蜂窝大规模mimo系统的数据传输方法
US20200119772A1 (en) * 2018-10-16 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Disturbance Mitigation
WO2020130902A1 (en) * 2018-12-20 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Antenna system for use in distributed massive mimo networks
CN112135288A (zh) * 2020-09-17 2020-12-25 中兴通讯股份有限公司 信号传输方法、装置、接入节点、处理单元、系统及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200119772A1 (en) * 2018-10-16 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Disturbance Mitigation
WO2020130902A1 (en) * 2018-12-20 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Antenna system for use in distributed massive mimo networks
CN110224729A (zh) * 2019-05-27 2019-09-10 北京交通大学 用于去蜂窝大规模mimo系统的数据传输方法
CN112135288A (zh) * 2020-09-17 2020-12-25 中兴通讯股份有限公司 信号传输方法、装置、接入节点、处理单元、系统及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAKIR HUSSAIN SHAIK; EMIL BJ\"ORNSON; ERIK G. LARSSON: "Cell-Free Massive MIMO With Radio Stripes and Sequential Uplink Processing", ARXIV.ORG, 5 March 2020 (2020-03-05), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081615909 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091156A1 (en) * 2022-10-18 2024-05-02 Telefonaktiebolaget Lm Ericsson (Publ) First node, first network node, second node, communications network and methods performed thereby for handling an interference signal

Also Published As

Publication number Publication date
CA3192979A1 (en) 2022-03-24
EP4216586A1 (en) 2023-07-26
KR20230066440A (ko) 2023-05-15
CN112135288A (zh) 2020-12-25
US20230337107A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2022057777A1 (zh) 信号传输方法、装置、接入节点、处理单元、系统及介质
CN113452669B (zh) 用于间接通信的错误处置的方法、装置和计算机程序产品
WO2022143350A1 (zh) 信道状态信息上报方法、资源配置方法、通信节点及存储介质
Xue et al. Multiple access and data reconstruction in wireless sensor networks based on compressed sensing
US9071922B2 (en) Distributed V-MIMO processing for coordinated multipoint reception
US20190342014A1 (en) Over the air testing of a radio communications device
WO2022022681A1 (zh) 抗干扰电子设备及抗干扰方法
US20080267111A1 (en) Data Transmitting Method in Wireless Communication System
CN114285523B (zh) 面向多业务需求的大规模mtc免授权多用户检测方法及系统
WO2014032421A1 (zh) 分布式多小区多用户波束成形方法、发射机及相关系统
JP6600265B2 (ja) 無線通信システム及び基地局
WO2020206682A1 (zh) 加扰处理方法、解扰处理方法及装置
WO2021143528A1 (zh) 数据处理方法、装置、第一通信节点、第二通信节点及存储介质
TW202228415A (zh) 一種金鑰標識的生成方法以及相關裝置
US11128393B2 (en) Electronic device and method for interleave division multiple access communication
WO2021164642A1 (zh) 干扰源定位方法以及相关设备
WO2012103716A1 (zh) 一种多输入多输出系统的检测方法和系统
CN102158891A (zh) 一种网络编码的接收检测方法
CN115395971B (zh) 干扰噪声功率的确定方法、装置、电子设备及存储介质
KR101238919B1 (ko) 공간 다중화 다중안테나 시스템에서의 신호 대 간섭 및 잡음비 예측 장치 및 방법
WO2021143529A1 (zh) 信号处理方法、装置、第一通信节点、第二通信节点及存储介质
WO2024061208A1 (zh) 通信方法和装置
JP2014241514A (ja) 通信装置、通信システム、通信方法、及びプログラム
CN113708861B (zh) 一种ue基带合并预测方法、系统、设备及存储介质
Xu et al. A joint cross-layer transmission design with time–frequency coded cooperation HARQ for underground coal mine MC-CDMA WSNs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3192979

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237012395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868600

Country of ref document: EP

Effective date: 20230417