WO2021164642A1 - 干扰源定位方法以及相关设备 - Google Patents

干扰源定位方法以及相关设备 Download PDF

Info

Publication number
WO2021164642A1
WO2021164642A1 PCT/CN2021/076192 CN2021076192W WO2021164642A1 WO 2021164642 A1 WO2021164642 A1 WO 2021164642A1 CN 2021076192 W CN2021076192 W CN 2021076192W WO 2021164642 A1 WO2021164642 A1 WO 2021164642A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
covariance matrix
ratio
terminal
cell
Prior art date
Application number
PCT/CN2021/076192
Other languages
English (en)
French (fr)
Inventor
张晶晶
尚瑜
吴鹏
乐春晖
童颖
岳建祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021164642A1 publication Critical patent/WO2021164642A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method for locating an interference source and related equipment.
  • the location of the interference source needs to be determined first.
  • the difference between RSRP and SINR is used as the basis for judgment, If the difference is greater than the threshold, it is considered that the area where the terminal is located is likely to have an interference source.
  • RSRP can reflect the path loss strength of the current channel
  • SINR can reflect the magnitude of interference suppression gain.
  • the magnitude of the interference suppression gain depends on the performance of the uplink interference rejection combining (IRC) technology in the base station, and the performance of the IRC technology is easily affected by the number of interference sources. Therefore, when the number of interference sources changes, the judgment result obtained may be inaccurate.
  • IRC uplink interference rejection combining
  • the embodiments of the present application provide a method for locating interference sources and related equipment, which can reduce the influence of the number of interference sources on the location of interference sources.
  • the first aspect of the present application provides a method for locating an interference source.
  • the base station establishes a communication connection with the terminal, and the base station obtains the first channel estimate of the terminal; the base station determines whether there is a suspicious interference source in the area where the terminal is located according to the first ratio, and the first ratio is the eigenvector of the first channel estimate in the first interference covariance matrix The ratio of the first projection set to the first channel estimate.
  • the base station uses a first ratio to determine whether there is a suspicious interference source in the area where the terminal is located, where the first ratio is the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix and the first The ratio of channel estimates. Because the eigenvectors of the first channel estimation and the first interference covariance matrix are not necessarily related to the number of interference sources, the influence of the number of interference sources on the location of interference sources can be reduced.
  • the first interference covariance matrix is a matrix with N rows and N columns, N is the number of antennas in the cell set, and N is an integer greater than zero.
  • the first interference covariance matrix when the cell set includes 4 antennas, if the first interference covariance matrix only includes 3 rows and 3 columns, it means that the interference signal on one antenna in the cell set has not been calculated, and the base station hardware resources are not sufficient. Utilize; If the first interference covariance matrix includes 5 rows and 5 columns, it indicates that the first interference covariance matrix carries redundant information, which causes a waste of processing resources. Therefore, when the first interference covariance matrix is a matrix with N rows and N columns, the hardware resources of the base station can be fully utilized without causing waste of processing resources.
  • the first projection set includes the sum of N/2 projections, N/2 projections are the first N/2 projections in the N projections, and the N projections are sorted from largest to smallest, and N The projections are N projections of the first channel estimation on the N eigenvectors of the first interference covariance matrix.
  • the second in different scenarios can be the same value, so a unified second or third threshold value can be adopted to reduce the workload of setting and adjusting the second or third threshold value.
  • the base station obtains the first total signal; then the base station obtains the first interference covariance matrix according to the first total signal and the first channel estimate.
  • the first useful signal can be calculated through the first channel estimation, and then the difference between the first total signal and the first useful signal is used as the first interference signal, and the first interference covariance matrix is constructed from the first interference signal, Because the interference signal of some interference sources exists with the useful signal of the terminal, for example, the relay device connecting the base station and the terminal. When the terminal sends a useful signal to the base station through the relay device, the relay device will also generate interference signals. When the useful signal is not sent to the base station through the relay device, the relay device does not generate an interference signal or the interference signal is small.
  • the interference signal received by the base station is 5, and when the terminal does not send a useful signal to the base station, the interference signal received by the base station is 4. Because the interference signal obtained through the first total signal and the first channel estimation includes an interference source that exists only when the terminal sends a useful signal, it is possible to avoid the interference source being missed when the interference source is located.
  • obtaining the first interference covariance matrix according to the first total signal and the first channel estimation includes:
  • R (y-Hs)(y-Hs) T , where R is the first interference matrix, and y is the first total signal, Indicates that y includes N rows and 1 column, and H is the first channel estimate, It means that H includes N rows and 1 column, T means matrix transposition, and s is the pilot signal of the first channel estimation; the first interference covariance matrix is obtained according to the first interference matrix.
  • the cell set includes the first cell and the second cell, N is equal to C plus B, B is the number of antennas in the second cell, and C is the number of antennas in the first cell; the base station obtains the second interference covariance The first element, the second element and the third element of the matrix, the first element is the diagonal element of the second interference covariance matrix, the first element is related to the first cell, and the second element is the second interference covariance matrix Diagonal elements, the second element is related to the second cell, and the third element is a non-diagonal element related to the first element and the second element; if the ratio of the third element to the first element set is greater than the first threshold, Then the base station obtains the first channel estimation of the terminal, and the first element set is the sum of the first element and the second element.
  • the base station determines whether to perform joint positioning of two cells, and when the ratio of the third element to the first element set is greater than the first threshold, the base station performs joint positioning of the two cells.
  • many interference sources will not only interfere with one cell, but also interfere with another cell at the same time.
  • This application uses the ratio of the third element to the first element set to determine whether there is an interference source that interferes with both the first cell and the second cell.
  • an interference source that can interfere with both the first cell and the second cell We believe that the interference source is an interference source that will cause greater interference and should be excluded first.
  • the interference signal generated by the interference source can be reflected in different dimensions, that is, the interference generated by the interference source can be more completely reflected, so the interference generated by the interference source in the joint positioning of the two cells.
  • the larger the component the easier it is to be identified as a suspicious interference source.
  • the fourth element of the second interference covariance matrix is obtained, and the fourth element is a diagonal element of the second interference covariance matrix.
  • the base station determines whether it is necessary to locate the interference source.
  • the specific implementation is to judge by the fourth element of the second interference covariance matrix.
  • the fourth element reflects the intensity of the interference signal. Only when the intensity of the interference signal is greater than the intensity threshold, the base station will locate the interference source. It is possible to avoid locating the interference source when there is no interference or when the interference is small, which wastes network resources.
  • the first ratio is greater than the second threshold, it is determined that there is a suspicious interference source in the area where the terminal is located.
  • the first ratio is the ratio of the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix to the first channel estimate.
  • the first channel estimation and the first interference covariance matrix are obtained according to the signal of the first frequency band.
  • the first interference covariance matrix is obtained based on the signal in the first frequency band, and the first channel estimate is obtained based on the signal in the first frequency band; the base station obtains the second channel estimate of the terminal; if the second ratio is compared with the first If the average of the ratio is greater than the third threshold, the base station determines that there is a suspicious interference source in the area where the terminal is located.
  • the second ratio is the second projection set and the second channel estimate of the second channel estimate on the eigenvector of the third interference covariance matrix
  • the third interference covariance matrix is obtained according to the signal of the second frequency band, and the second channel estimation is obtained according to the signal of the second frequency band.
  • the first interference covariance matrix is obtained based on the signal in the first frequency band
  • the first interference covariance matrix is obtained based on the interference signal, so the interference signal is obtained based on the signal in the first frequency band.
  • the base station uses the average value of the second ratio and the first ratio to determine whether there is a suspicious interference source in the area where the terminal is located, which can reduce the error of a single ratio in a certain time.
  • interference sources such as relay devices
  • the terminal uses signals in the first frequency band and the second frequency band to send data to the base station
  • the relay device forwards the data, it will not only generate interference signals belonging to the first frequency band, but also generate interference signals belonging to the second frequency band.
  • Other interference sources may only generate interference signals in the first frequency band, but not in the second frequency band. Therefore, the average value of the second ratio and the first ratio calculated by other interference sources in multiple frequency bands is easily smaller than the average of the second ratio and the first ratio calculated by the interference source such as a relay device in multiple frequency bands. Therefore, it is easy to locate interference sources such as relay devices.
  • the second aspect of the present application provides an interference source locating device.
  • An acquiring unit configured to acquire the first channel estimate of the terminal
  • the determining unit is configured to determine whether there is a suspicious interference source in the area where the terminal is located according to the first ratio, where the first ratio is the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix and the first channel estimate ratio.
  • the first interference covariance matrix is a matrix with N rows and N columns, N is the number of antennas in the cell set, and N is an integer greater than zero.
  • the first projection set includes the sum of N/2 projections, N/2 projections are the first N/2 projections in the N projections, and the N projections are sorted from largest to smallest, and N The projections are N projections of the first channel estimation on the N eigenvectors of the first interference covariance matrix.
  • the acquiring unit is also used to acquire the first total signal
  • the obtaining unit is further configured to obtain the first interference covariance matrix according to the total signal and the first channel estimation.
  • the obtaining unit is specifically configured to obtain the first interference matrix according to the following formula:
  • R (y-Hs)(y-Hs) T , where R is the first interference matrix, and y is the total signal, Indicates that y includes N rows and 1 column, and H is the first channel estimate, Indicates that H includes N rows and 1 column, T represents matrix transposition, and s is the pilot signal of the first channel estimation;
  • the obtaining unit is specifically configured to obtain the first interference covariance matrix according to the first interference matrix.
  • the cell set includes a first cell and a second cell, N is equal to C plus B, B is the number of antennas in the second cell, and C is the number of antennas in the first cell;
  • the obtaining unit is also used to obtain the first element, the second element and the third element of the second interference covariance matrix, the first element is a diagonal element of the second interference covariance matrix, and the first element is related to the first cell,
  • the second element is a diagonal element of the second interference covariance matrix, the second element is related to the second cell, and the third element is an off-diagonal element related to the first element and the second element.
  • the obtaining unit is further configured to obtain a fourth element of the second interference covariance matrix, where the fourth element is a diagonal element of the second interference covariance matrix.
  • the determining unit is specifically configured to determine that there is a suspicious interference source in the area where the terminal is located if the first ratio is greater than the second threshold.
  • the first interference covariance matrix is obtained according to the signal of the first frequency band, and the first channel estimation is obtained according to the signal of the first frequency band;
  • the acquiring unit is also used to acquire a second channel estimate of the terminal
  • the determining unit is specifically configured to determine that there is a suspicious interference source in the area where the terminal is located if the average value of the second ratio and the first ratio is greater than the third threshold, and the second ratio is the eigenvector of the second channel estimate in the third interference covariance matrix
  • the ratio of the second projection set to the second channel estimate, the third interference covariance matrix is obtained according to the signal of the second frequency band, and the second channel estimate is obtained according to the signal of the second frequency band.
  • the third aspect of the present application provides an interference source locating device.
  • the memory is used to store a program
  • the processor is configured to execute the program in the memory, including executing the method according to the first aspect or any one of the implementation manners of the first aspect.
  • a fourth aspect of the present application provides a computer storage medium, characterized in that instructions are stored in the computer storage medium, and when the instructions are executed on a computer, the computer executes any of the first aspect or the first aspect.
  • the fifth aspect of the present application provides a computer program product, which is characterized in that when the computer program product is executed on a computer, the computer executes the method according to the first aspect or any one of the implementation manners of the first aspect .
  • Figure 1 is a schematic diagram of a network framework of an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for locating an interference source in an embodiment of this application
  • FIG. 3 is a schematic diagram of projection at the time of 2 antennas in an embodiment of the application.
  • FIG. 4 is a schematic diagram of the test result of the interference source location method in the embodiment of the application.
  • FIG. 5 is another schematic flowchart of the interference source location method in an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of an interference source positioning device in an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of an interference source positioning device in an embodiment of this application.
  • the embodiments of the present application provide a method for locating an interference source and related equipment, which are applied in the communication field, and can reduce the influence of the number of interference sources on the location of the interference source.
  • the network architecture in the embodiment of the present application may include:
  • the base station 101 and the terminal 102 are connected to The base station 101 and the terminal 102.
  • the base station 101 in FIG. 1 may be used to implement functions such as wireless physical entities, resource scheduling and wireless resource management, wireless access control, and mobility management; for example, the base station 101 may be a radio access network (radio access network, RAN) equipment, such as a base transceiver station (BTS) in a GSM system or a CDMA system, a node B (nodeB, NB) in a WCDMA system, an evolved node B (evolutional nodeB, eNB) in an LTE system, Wireless controller, relay node station, transmission reception point (TRP), access point, in-vehicle equipment, roadside unit in the cloud radio access network (cloud radio access network, CRAN) scenario , RSU), wearable devices, network equipment in the future 5G network, such as NR nodeB, next-generation base station (generation nodeB, gNB), centralized unit (CU), distributed unit (DU) or For network equipment in the future evolved PLMN network, etc., this application does not limit the specific implementation form
  • the terminal 102 generally refers to a device that has the ability to communicate with network equipment, such as access terminal equipment, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile equipment, user terminal equipment, wireless Terminal equipment, user agent, or user device, etc.
  • network equipment such as access terminal equipment, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile equipment, user terminal equipment, wireless Terminal equipment, user agent, or user device, etc.
  • It can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication function Handheld devices, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices (smart watches, smart bracelets, etc.), smart furniture (or home appliances), terminal devices in the future 5G network, future The terminal equipment in the evolved public land mobile network (PLMN), or the vehicle equipment in the vehicle to everything (V2X), customer premises equipment (CPE), etc., this application The specific implementation form of the terminal is not limited.
  • PLMN public land mobile network
  • V2X vehicle equipment in the vehicle to everything
  • CPE customer premises equipment
  • the main function of the terminal 102 is to send information to the base station 101 to assist the base station 101 in locating the interference source, and the terminal 102 may also send location information to the base station 101.
  • the main function of the base station 101 is to obtain channel estimation based on the information sent by the terminal 102, and determine whether there is a suspicious interference source in the area where the terminal 102 is located according to the ratio.
  • the ratio is the eigenvector of the channel estimation in the interference covariance matrix.
  • the ratio of the first projection set on the above to the first channel estimate, and the area where the terminal 102 is located can be determined according to the location information sent by the terminal 102.
  • the base station can determine whether there is an interference source in the area where the terminal is located based on the interference signal of one frequency band, and the base station can also determine whether there is interference in the area where the terminal is located based on the interference signals of multiple frequency bands Source, the two cases are described separately below.
  • the base station determines whether there is an interference source in the area where the terminal is located according to the interference signal of a frequency band.
  • FIG. 2 is a schematic flowchart of the interference source location method in the embodiment of this application.
  • step 201 the base station obtains a second interference covariance matrix.
  • the base station When the base station stops scheduling in the third time period of the air interface and the third frequency band, the base station passes the third frequency band, and the time-frequency resources corresponding to the third time period will not receive the useful signal sent by the terminal. For the third frequency band, the base station passes the third time period All received on the corresponding time-frequency resources are interference signals, and the second interference covariance matrix is obtained according to the interference signals.
  • Air interface is the abbreviation of air interface.
  • the air interface is the wireless transmission specification between the base station and the terminal.
  • the air interface defines the frequency of use of each wireless channel, Bandwidth, access timing, coding method and handover.
  • the terminology of the air interface is different.
  • the air interface is called Um interface
  • time division-synchronous code division multiple access time division-synchronous code division multiple access
  • WCDMA wideband code division multiple access
  • the third frequency band may be a resource block (resource block, RB) or a time-frequency resource unit (resource element, RE).
  • the third time period may be an OFDM symbol, or a time slot, or a subframe, or an orthogonal frequency division multi-carrier (OFDM) symbol, or a frame (Frame).
  • OFDM orthogonal frequency division multi-carrier
  • LTE long term evolution
  • base stations and terminals can transmit data through signals in the time and frequency domains.
  • the smallest downlink resource granularity is an OFDM symbol; the smallest uplink resource granularity is For a single-carrier frequency-division multiple access (SC-FDMA) symbol, this application document collectively refers to the smallest uplink resource granularity and the smallest downlink resource granularity as an OFDM symbol.
  • Multiple OFDM symbols may form a slot time (ST)
  • multiple STs may form a subframe
  • multiple subframes may form a frame.
  • the smallest granularity is one subcarrier.
  • One RE composed of one OFDM symbol and one subcarrier.
  • the basic unit is RE. All OFDM symbols in a time slot and 12 subcarriers in the frequency domain form an RB. In the frequency domain of the entire transmission bandwidth, resources are divided into a series of RBs, and each terminal can use one or more RB resources for carrying data.
  • the second interference covariance matrix includes N rows and N columns, and the base station includes N antennas.
  • the base station includes 4 antennas, if the second interference covariance matrix only includes 3 rows and 3 columns, it indicates that the interference signal on one antenna of the base station has not been calculated, and the hardware resources of the base station are not fully utilized; if the second interference covariance matrix
  • the variance matrix includes 5 rows and 5 columns, which indicates that the second interference covariance matrix carries redundant information, which causes a waste of processing resources.
  • the interference signal obtained by the base station when the scheduling is stopped will be more accurate, because there is no useful signal transmitted by the terminal on the third frequency band when the base station stops scheduling, only the interference signal transmitted by the interference source and the noise of the base station itself, the noise of the base station itself can be considered It is a fixed value and can be compensated in the intensity threshold of step 202, so it can be ignored.
  • the derivation process is explained by taking the following second interference covariance matrix Q2 as an example.
  • the value of (X1, X1) caused by the total interference caused by the interference signal plus the base station noise is 5, where the interference signal accounts for 3 out of 5, and the base station noise 2 in 5, the first intensity threshold is 4, and the value of (X1, X1) satisfies the condition of being greater than the intensity threshold; assuming that there is no base station noise, only interfering signals, the value of (X1, X1) caused by the interfering signals is 3.
  • the second intensity threshold is 2, and the value of (X1, X1) satisfies the condition of being greater than the intensity threshold. It can be seen that the difference between the first intensity threshold and the second intensity threshold 2 is just because the base station noise occupies (X1, X1)5 2.
  • the influence of base station noise can be eliminated by compensating the intensity threshold. Therefore, counting base station noise into interference signals may also have no effect on the technical solutions in the embodiments of the present application. Compared with the interference signal obtained by subtracting the useful signal from the total signal, the interference signal obtained by stopping the scheduling will be more accurate.
  • the second interference matrix is calculated according to the following manner:
  • R2 D ⁇ D T , where D represents the vector of interference signals obtained when the base station stops scheduling, Indicates that D includes N rows and 1 column, and T represents matrix transposition.
  • the interference signal can also be obtained according to the total signal and channel estimation.
  • the useful signal can be calculated through channel estimation, and then the difference between the total signal and the useful signal is used as the interference signal. This way of obtaining the interference signal does not need to specifically stop scheduling, and can avoid reducing the data transmission rate between the terminal and the base station.
  • the second interference matrix is calculated according to the following manner:
  • R2 (y-Hs)(y-Hs) T , where R2 is the second interference matrix, y is the total signal, and the total signal includes the useful signal and interference signal of the terminal, Indicates that y includes N rows and 1 column, and H is channel estimation, It means that H includes N rows and 1 column, T means matrix transposition, and s is the pilot signal of the channel estimation.
  • D T (a2, b2, c2, d2)
  • R2 (X1, X2, X3, X4)
  • X1 represents the data in the first column of the second interference matrix
  • X2 represents the data in the second column of the second interference matrix, and so on, where each column contains 4 data.
  • the second interference covariance matrix Q2 can be calculated.
  • the autocorrelation of each column of data and the correlation between each column can be calculated, (X1, X2) represents the autocorrelation of the first column of data, (X2, X1) represents the second column of data For the correlation with the first column of data, if the value is positive, it indicates a positive correlation, and if the value is negative, it indicates a negative correlation.
  • the base station may set a switch, and the base station will obtain the second interference covariance matrix only when the switch is turned on. Or the base station will acquire the second interference covariance matrix only when it receives an external command. Because after the interference source is located through the interference source location, it is sometimes necessary to eliminate the interference source manually. When there is no human resources to eliminate the interference source, the located interference source cannot be eliminated. When there are human resources to eliminate the interference source, the interference source may have disappeared, or its interference intensity has met the relevant regulations of interference intensity, then the interference source location this time is a waste of processing resources, so it is necessary to set the switch to Flexibly determine whether to locate the interference source.
  • step 202 if the fourth element is greater than the intensity threshold, the base station obtains the first element, the second element and the third element of the second interference covariance matrix, where the fourth element is the diagonal of the second interference covariance matrix Line element.
  • the fourth element is the diagonal element of the second interference covariance matrix.
  • the diagonal elements in Q2 include (X1, X1), (X2, X2), (X3, X3) and (X4, X4) ).
  • the fourth element can reflect the intensity of the interference signal. If the fourth element is greater than the intensity threshold, it means that there is an interference source with strong interference near the base station, and the base station starts to locate the interference source.
  • the fourth element may be the first element or the second element. The base station obtains the first element, the second element, and the third element of the second interference covariance matrix.
  • the first element is the diagonal element of the second interference covariance matrix, the first element is related to the first cell, and the second element is The diagonal element of the second interference covariance matrix, the second element is related to the second cell, and the third element is an off-diagonal element related to the first element and the second element.
  • the antenna of a base station can be multiple cells.
  • the base station includes antenna a of the first cell, antenna b and antenna c of the second cell, antenna d, element a2 in DT is the interference signal received through antenna a, and element b2 is The interference signal received through antenna b, element c2 is the interference signal received through antenna c, element d2 is the interference signal received through antenna d, and the four elements in X1 are a2 ⁇ a2, a2 ⁇ b2, a2 ⁇ c2 and a2 ⁇ d2 is related to a2, so X1 is considered to be related to the first cell, and (X1, X1) are diagonal elements related to the first cell.
  • X3 is considered to be related to the second cell
  • (X3, X3) is considered to be related to the first cell.
  • the diagonal elements of the second cell are considered (X1, X3) and (X3, X1) to be non-diagonal elements related to (X1, X1) and (X3, X3).
  • the antenna of the first cell and the antenna of the second cell may not be on the same base station.
  • the first base station includes antenna a and antenna b of the first cell
  • the second base station includes antenna c and antenna d of the second cell.
  • the number of antennas in the first cell may be different from the number of antennas in the second cell.
  • the first base station includes antenna a and antenna b of the first cell
  • the second base station includes antenna c and antenna d of the second cell.
  • the fourth element is the element with the largest value among all the diagonal elements of the second interference covariance matrix, so there is no need to compare each diagonal element in the second interference covariance matrix with the intensity threshold. Reduce the amount of calculation for comparison between diagonal elements and intensity thresholds.
  • the base station may not start the location of the interference source based on the fourth element being greater than the intensity threshold.
  • the base station can set a point in time, regardless of the intensity of the interference, at this point in time, the base station will start the location of the interference source.
  • the base station can also determine whether to start the location of the interference source according to the total intensity of the interference signal.
  • the fourth element can be understood as the component of the total intensity of the interference signal in a certain dimension.
  • the base station starts Location of interference sources.
  • the base station sets a switch to determine whether to obtain the second covariance matrix, the base station can directly obtain the first element, the second element and the third element of the second interference covariance matrix, without using the fourth element Conditions greater than the intensity threshold.
  • step 203 the base station determines whether the second ratio of the third element to the first element set is greater than the first threshold, and the first element set is the sum of the first element and the second element.
  • step 204 if the second ratio of the third element to the first element set is greater than the first threshold, the base station obtains the first channel estimate of the terminal.
  • the first channel estimate is related to the antenna of the first cell and the antenna of the second cell at the same time.
  • the base station uses the antenna of the first cell and the antenna of the second cell to obtain the first channel estimation of the terminal in the first time period and the first frequency band. Because the first channel estimate is obtained by the base station through the antenna of the first cell and the antenna of the second cell, the first channel estimate is related to the antenna of the first cell and the antenna of the second cell at the same time.
  • Antenna d is related.
  • the third frequency band may be equal to or not equal to the first frequency band
  • the third time period may be equal to or not equal to the first time period
  • step 201, step 202, and step 203 may not be executed, and the base station directly obtains the first channel estimate of the terminal.
  • the base station does not determine whether to perform joint positioning of the two cells, and the base station performs joint positioning of the two cells by default.
  • step 205 if the first ratio is greater than the second threshold, the base station determines that there is a suspicious interference source in the area where the terminal is located.
  • the first ratio is the ratio of the first set of projections of the first channel estimate on the eigenvector of the first interference covariance matrix to the first channel estimate. Because in the second interference covariance matrix, the second ratio of the third element to the first element set is greater than the first threshold, and two cells are used for joint positioning. Therefore, the first interference covariance matrix and the antenna of the first cell and the second The antenna of the cell is related.
  • the first interference covariance matrix is obtained according to the first total signal and the first channel estimation.
  • the first useful signal can be calculated through the first channel estimation, and then the difference between the first total signal and the first useful signal is used as the first interference signal, and the first interference covariance matrix is constructed from the first interference signal, because some interference sources
  • the interference signal exists with the useful signal of the terminal, such as a relay device connecting the base station and the terminal. While the terminal sends a useful signal to the base station through the relay device, the relay device will also generate interference signals, and the terminal does not pass. When the relay device sends a useful signal to the base station, the relay device does not generate an interference signal or the interference signal is small.
  • the interference signal received by the base station is 5, and when the terminal does not send a useful signal to the base station, the interference signal received by the base station is 4. Because the interference signal obtained through the first total signal and the first channel estimation includes an interference source that exists only when the terminal sends a useful signal, it is avoided that the interference source is missed when the interference source is located.
  • the first interference covariance matrix includes N rows and N columns, and the base station includes N antennas.
  • the first interference matrix is calculated according to the following manner:
  • R1 (y-Hs)(y-Hs) T , where R1 is the first interference matrix, and y is the first total signal, Indicates that y includes N rows and 1 column, and H is the first channel estimate, It means that H includes N rows and 1 column, T means matrix transposition, and s is the pilot signal of the first channel estimation.
  • the first interference covariance matrix can be obtained, and the calculation method is similar to that in step 201.
  • Singular value decomposition is performed on the first interference covariance matrix to obtain an eigenvector. It is assumed that the eigenvector obtained according to the first interference covariance matrix includes t1, t2, t3, and t4. Calculate the ratio of the projection of the first channel estimate on t1 to the first channel estimate:
  • the first projection set includes the sum of N/2 projections, the N/2 projections are the first N/2 projections among the N projections, the N projections are sorted from largest to smallest, and the N projection is the first N projections of a channel estimate on N eigenvectors of the first interference covariance matrix.
  • the first interference covariance matrix includes N rows and N columns. Therefore, the first interference covariance matrix includes N eigenvectors, and the first channel estimation can generate N projections on the N eigenvectors.
  • N 4
  • the base station locates the interference source, and each terminal has a corresponding ratio ⁇ , and the second threshold is 0.9. Therefore, in this test, the base station determines the area where UE8 is located, and the area where UE9 is located and the area where UE10 is located are suspicious. Source of interference.
  • the base station In order to determine the area where the terminal is located, the base station needs to obtain the location information of the terminal.
  • the base station can send a minimization of drive-test (MDT) measurement to the terminal, and the terminal reports the location information after receiving the MDT measurement; the base station determines the location
  • MDT minimization of drive-test
  • the area corresponding to the information is the area where the terminal is located, and it is determined whether there is a suspicious interference source in the area where the terminal is located.
  • the base station may not send MDT measurements to the terminal, and the base station may use a positioning algorithm to calculate the location information of the terminal.
  • the base station may divide the map to obtain different grids.
  • the base station marks the grid corresponding to the location information.
  • the map includes a first grid and a second grid.
  • the first ratio ⁇ corresponding to the first terminal is greater than the second threshold
  • the grid corresponding to the location information reported by the first terminal is the second grid.
  • the base station marks the second grid once. When the number of markings in a certain grid reaches the threshold, it is determined that there is a suspicious interference source in the area where the grid is located. For example, if the base station has marked 5 times in the second grid, the base station determines that there is a suspicious interference source in the area corresponding to the second grid.
  • the second interference source location is the same as the first interference source location. There is an interval length.
  • the base station can calculate the average of the number of times that different grids of the map are marked.
  • the map includes ten grids, and in the location of the interference source, only the first grid Only when the number of times of being marked reaches the average value, and the number of times the first grid is marked reaches the threshold value, the base station determines that there is a suspicious interference source in the area corresponding to the first grid.
  • the first interference covariance matrix may be equal to the second interference covariance matrix. That is, the base station only obtains one interference covariance matrix, which is used as the first interference covariance matrix and the second interference covariance matrix at the same time.
  • step 203 may not be performed, because the first interference covariance matrix is related to the antenna of the first cell and the antenna of the second cell at the same time, indicating that two cells have been used. In joint positioning, there is no need to use step 203 to determine whether to perform joint positioning of two cells.
  • step 206 if the ratio of the third element to the first element set is less than or equal to the first threshold, the base station obtains the first channel estimate of the terminal, and the first channel estimate is related to the antenna of the first cell.
  • the base station obtains the first channel estimation of the terminal in the first time period and the first frequency band through the antenna of the first cell. Because the first channel estimate is obtained by the base station through the antenna of the first cell, the first channel estimate is related to the antenna of the first cell.
  • the third frequency band may be equal to or not equal to the first frequency band
  • the third time period may be equal to or not equal to the first time period
  • step 201, step 202, and step 203 may not be executed, and the base station directly obtains the first channel estimate of the terminal.
  • the base station does not make a judgment on whether to perform joint positioning of the two cells, and the base station does not perform joint positioning of the two cells by default, and performs single-cell interference source positioning.
  • step 207 if the first ratio is greater than the second threshold, it is determined that there is a suspicious interference source in the area where the terminal is located.
  • the first ratio is the ratio of the first set of projections of the first channel estimate on the eigenvector of the first interference covariance matrix to the first channel estimate. Because in the second interference covariance matrix, the second ratio of the third element to the first element set is less than or equal to the first threshold, the interference source location of a single cell is used, so the first interference covariance matrix is compared with the antenna of the first cell. Related.
  • the first interference covariance matrix is obtained according to the first total signal and the first channel estimation. Avoid missing the interference source when locating the interference source.
  • the first interference matrix is calculated according to the following manner:
  • R1 (y-Hs)(y-Hs) T , where R1 is the first interference matrix, and y is the first total signal, Indicates that y includes row and column C, and H is the first channel estimate, It means that H includes C row and 1 column, T means matrix transposition, and s is the pilot signal of the first channel estimation.
  • the first interference covariance matrix can be obtained, and the calculation method is similar to that in step 201 in FIG. 2 above.
  • Singular value decomposition is performed on the first interference covariance matrix to obtain an eigenvector. It is assumed that the eigenvector obtained from the first interference covariance matrix includes t1 and t2. Calculate the ratio of the projection of the first channel estimate on t1 to the first channel estimate:
  • the first channel estimation 303 may include a projection on t1 and a projection on t2.
  • the first projection set includes the sum of C/2 projections, the C/2 projections are the first C/2 projections in the C projections, the C projections are sorted from largest to smallest, and the C projection is the first C projections of a channel estimate on C eigenvectors of the first interference covariance matrix.
  • the first interference covariance matrix includes C rows and C columns. Therefore, the first interference covariance matrix includes C eigenvectors, and the first channel estimation can generate C projections on the C eigenvectors.
  • C 2
  • the 2-antenna is the antenna of the first cell.
  • the base station determines that there is a suspicious interference source in the area where the UE9 is located and the area where the UE10 is located.
  • UE9 in 402 and UE9 in 401 are not the same terminal.
  • the first interference covariance matrix may be equal to the second interference covariance matrix. That is, the base station only obtains one interference covariance matrix, which is used as the first interference covariance matrix and the second interference covariance matrix at the same time.
  • step 203 may not be performed, because the first interference covariance matrix is related to the antenna of the first cell, which indicates that the interference source positioning of a single cell has been done, so no Step 203 is needed to determine whether to perform joint positioning of the two cells.
  • step 204 The method of obtaining the location information of the terminal and determining that there is a suspicious interference source in the area where the terminal is located is similar to step 204, and the details are not repeated here.
  • step 203 when step 203 is not performed, as to whether the base station performs single-cell interference source positioning, namely steps 204 and 205, or two cell joint positioning, namely step 206 and step 207, the base station can choose one implementation Implementation by way of implementation can also be implemented in both implementation ways, and the specific implementation is not limited here.
  • the base station determines whether there is an interference source in the area where the terminal is located according to the interference signals of multiple frequency bands.
  • the following uses multiple frequency bands as two frequency bands as an example for description.
  • FIG. 5 is a schematic flowchart of an interference source location method in an embodiment of this application.
  • step 501 the base station obtains a second interference covariance matrix.
  • step 502 if the fourth element is greater than the intensity threshold, the base station obtains the first element, the second element, and the third element of the second interference covariance matrix.
  • the fourth element is the diagonal element of the second interference covariance matrix. .
  • the base station determines whether the ratio of the third element to the first element set is greater than the first threshold, and the first element set is the sum of the first element and the second element.
  • step 504 if the ratio of the third element to the first element set is greater than the first threshold, the base station obtains the first channel estimate of the terminal according to the signal of the first frequency band.
  • the first channel estimate is related to the antenna of the first cell and the antenna of the second cell at the same time.
  • Step 501, step 502, step 503, and step 504 are similar to step 201, step 202, step 203, and step 204 in FIG. 2, and the details are not repeated here.
  • step 505 the base station obtains a second channel estimate of the terminal, and the second channel estimate is obtained according to the signal of the second frequency band.
  • the base station obtains the second channel estimation of the terminal in the second frequency band, and the second channel estimation is related to the antenna of the first cell and the antenna of the second cell.
  • the first channel estimation is obtained based on the signal of the first frequency band, the second frequency band is not equal to the first frequency band, and the resources of the second frequency band and the first frequency band are allocated to the same terminal in the second period and the first period, and the terminal is at least Occupies the resources of two frequency bands.
  • Some interference sources will not only cause interference to the base station in the first frequency band, but also cause interference to the base station in the second frequency band. In order to locate these interference sources, it is necessary to combine interference signals of different frequency bands. In particular, for interference sources such as locating relay devices, combining interference signals of different frequency bands has a special effect. Because the relay device forwards the communication data between the terminal and the base station, interference signals will be generated on different frequency bands to which the communication data belongs.
  • the terminal uses signals in the first frequency band and the second frequency band to send data to the base station, when the relay device forwards the data, it will not only generate interference signals belonging to the first frequency band, but also generate interference signals belonging to the second frequency band.
  • Other interference sources may only generate interference signals in the first frequency band, but not in the second frequency band.
  • Antenna d is related.
  • step 501, step 502, and step 503 may not be performed, and the base station directly obtains the first channel estimation and the second channel estimation of the terminal.
  • the base station does not determine whether to perform joint positioning of the two cells, and the base station performs joint positioning of the two cells by default.
  • step 506 if the average value of the second ratio and the first ratio is greater than the third threshold, the base station determines that there is a suspicious interference source in the area where the terminal is located.
  • the first ratio is the ratio of the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix to the first channel estimate
  • the second ratio is the eigenvector of the second channel estimate on the third interference covariance matrix
  • the ratio of the second projection set to the second channel estimate, the third interference covariance matrix is obtained according to the signal of the second frequency band
  • the first interference covariance matrix is obtained according to the signal of the first frequency band.
  • the method of obtaining the first ratio is similar to the description of the first ratio in step 205, and the method of obtaining the second ratio is similar to the method of obtaining the first ratio, and the details are not repeated here.
  • the method of obtaining the location information of the terminal and determining that there is a suspicious interference source in the area where the terminal is located is similar to step 205, and the details are not repeated here.
  • the base station calculates multiple ratios corresponding to the multiple frequency bands, and if the average value of the multiple ratios is greater than a third threshold, the base station determines that the area where the terminal is located exists Suspicious source of interference.
  • the base station may not use the average value of the second ratio and the first ratio as the judgment condition, and the base station may use the maximum value of the second ratio and the first ratio as the judgment condition. If the maximum value is greater than the third threshold, the base station determines that there is a suspicious interference source in the area where the terminal is located.
  • step 507 if the second ratio of the third element to the first element set is less than or equal to the first threshold, the base station obtains the first channel estimate of the terminal according to the signal of the first frequency band.
  • the first channel estimate is related to the antenna of the first cell.
  • Step 507 is similar to step 204 in FIG. 2 described above, and the details are not repeated here.
  • step 508 the base station obtains a second channel estimate of the terminal, and the second channel estimate is obtained according to the signal of the second frequency band.
  • the base station obtains the second channel estimation of the terminal in the second frequency band, and the second channel estimation is related to the antenna of the first cell and the antenna of the second cell.
  • the first channel estimation is obtained based on the signal of the first frequency band, the second frequency band is not equal to the first frequency band, and the resources of the second frequency band and the first frequency band are allocated to the same terminal in the second period and the first period, and the terminal is at least Occupies the resources of two frequency bands.
  • Some interference sources will not only cause interference to the base station in the first frequency band, but also cause interference to the base station in the second frequency band. In order to locate these interference sources, the interference signals of different frequency bands can be combined.
  • step 509 if the average value of the second ratio and the first ratio is greater than the third threshold, it is determined that there is a suspicious interference source in the area where the terminal is located.
  • the first ratio is the ratio of the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix to the first channel estimate
  • the second ratio is the eigenvector of the second channel estimate on the third interference covariance matrix
  • the ratio of the second projection set to the second channel estimate, the third interference covariance matrix is obtained according to the signal of the second frequency band
  • the first interference covariance matrix is obtained according to the signal of the first frequency band.
  • the method of obtaining the first ratio is similar to the description of the first ratio in step 506, and the method of obtaining the second ratio is similar to the method of obtaining the first ratio, and the details are not repeated here.
  • step 205 The method of obtaining the location information of the terminal and determining that there is a suspicious interference source in the area where the terminal is located is similar to step 205, and the details are not repeated here.
  • the base station calculates multiple ratios corresponding to the multiple frequency bands, and if the average value of the multiple ratios is greater than a third threshold, the base station determines that the area where the terminal is located exists Suspicious source of interference.
  • step 501, step 502, and step 503 may not be performed, and the base station directly obtains the first channel estimation and the second channel estimation of the terminal.
  • the base station does not make a judgment on whether to perform joint positioning of the two cells, and the base station does not perform joint positioning of the two cells by default, and performs single-cell interference source positioning.
  • interference source location method in the embodiment of the present application is described above, and the interference source location device in the embodiment of the present application is described below.
  • FIG. 6 is a schematic diagram of the structure of the interference source positioning device in the embodiment of the application.
  • the acquiring unit 601 is configured to acquire the first channel estimate of the terminal
  • the determining unit 602 is configured to determine whether there is a suspicious interference source in the area where the terminal is located according to the first ratio, where the first ratio is the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix and the first channel estimate Ratio.
  • the determining unit 602 determines whether there is a suspicious interference source in the area where the terminal is located by the first ratio, where the first ratio is the first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix The ratio to the first channel estimate. Because the eigenvectors of the first channel estimation and the first interference covariance matrix are not necessarily related to the number of interference sources, the influence of the number of interference sources on the location of interference sources can be reduced.
  • the interference source locating device provided in the embodiment of the present application further includes:
  • the first interference covariance matrix is a matrix with N rows and N columns, N is the number of antennas in the cell set, and N is an integer greater than zero.
  • the first projection set includes the sum of N/2 projections, the N/2 projections are the first N/2 projections among the N projections, the N projections are sorted from largest to smallest, and the N projection is the first N projections of a channel estimate on N eigenvectors of the first interference covariance matrix.
  • the acquiring unit 601 is further configured to acquire the first total signal
  • the acquiring unit 601 is further configured to acquire the first interference covariance matrix according to the first total signal and the first channel estimation.
  • the obtaining unit 601 is specifically configured to obtain the first interference matrix according to the following formula:
  • R (y-Hs)(y-Hs) T , where R is the first interference matrix, and y is the first total signal, Indicates that y includes N rows and 1 column, and H is the first channel estimate, Indicates that H includes N rows and 1 column, T represents matrix transposition, and s is the pilot signal of the first channel estimation;
  • the obtaining unit 601 is specifically configured to obtain the first interference covariance matrix according to the first interference matrix.
  • the cell set includes a first cell and a second cell, N is equal to C plus B, B is the number of antennas in the second cell, and C is the number of antennas in the first cell; the acquiring unit 601 is also used to acquire the second interference protocol.
  • the first element, the second element and the third element of the variance matrix the first element is the diagonal element of the second interference covariance matrix, the first element is related to the first cell, and the second element is the second interference covariance matrix
  • the second element is related to the second cell, and the third element is a non-diagonal element related to the first element and the second element.
  • the obtaining unit 601 is further configured to obtain a fourth element of the second interference covariance matrix, where the fourth element is a diagonal element of the second interference covariance matrix.
  • the determining unit 602 is specifically configured to determine that there is a suspicious interference source in the area where the terminal is located if the first ratio is greater than the second threshold.
  • the first interference covariance matrix is obtained according to the signal of the first frequency band
  • the first channel estimation is obtained according to the signal of the first frequency band
  • the obtaining unit 601 is further configured to obtain a second channel estimate of the terminal
  • the determining unit 602 is specifically configured to determine that there is a suspicious interference source in the area where the terminal is located if the average value of the second ratio and the first ratio is greater than the third threshold, and the second ratio is the characteristic of the second channel estimation in the third interference covariance matrix
  • the ratio of the second projection set on the vector to the second channel estimate, the third interference covariance matrix is obtained according to the signal of the second frequency band, and the second channel estimate is obtained according to the signal of the second frequency band.
  • interference source positioning device in the embodiment of the present application is described above, and the interference source positioning device in the embodiment of the present application is described below.
  • FIG. 7 is a schematic structural diagram of an embodiment of the interference source positioning device provided by this application.
  • the interference source location device 700 includes a processor 710 and a memory 720 coupled to the processor 710.
  • the interference source location device 700 may be the base station in FIG. 2 and FIG. 5.
  • the processor 710 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may also be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the processor 710 may refer to one processor, or may include multiple processors.
  • the memory 720 may include a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); the memory may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory). Only memory, ROM, flash memory, hard disk drive (HDD), or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • Computer-readable instructions are stored in the memory 720, and the computer-readable instructions include multiple software modules, such as an acquisition module 722 and a determination module 724. After the processor 710 executes each software module, it can perform corresponding operations according to the instructions of each software module.
  • an operation performed by a software module actually refers to an operation performed by the processor 710 according to an instruction of the software module.
  • the receiving module 722 is used for the first channel estimation of the terminal.
  • the determining module 724 is configured to determine whether there is a suspicious interference source in the area where the terminal is located according to a first ratio, where the first ratio is a first projection set of the first channel estimate on the eigenvector of the first interference covariance matrix The ratio to the first channel estimate.
  • the processor 710 executes the computer-readable instructions in the memory 720, it can perform all operations that the interference source location device can perform according to the instructions of the computer-readable instructions. The operation performed in the example.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a base station, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例公开了一种干扰源定位方法,可以应用于通信领域。本申请实施例方法包括:获取终端的第一信道估计;根据第一比值确定终端所在的区域是否存在可疑干扰源,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。本申请实施例的第一信道估计与第一干扰协方差矩阵的特征向量都与干扰源个数没有必然的关系,因此可以降低干扰源数量对干扰源定位的影响。

Description

干扰源定位方法以及相关设备
本申请要求于2020年02月18日提交中国专利局、申请号为202010100249.5、发明名称为“干扰源定位方法以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及干扰源定位方法以及相关设备。
背景技术
随着无线通信的飞速发展,越来越多的用户开始使用终端。但是由于无线通信的开放性,其它设备容易对基站产生干扰,影响终端的使用,主要的表现包括基站接收的终端信号质量下降。
为了解决干扰问题,首先需要确定干扰源的位置。在获取终端的上行接收参考信号接收功率(reference signal receiving power,RSRP)和均衡后的信号与干扰噪声比(signal to interference plus noise ratio,SINR)后,将RSRP与SINR的差值作为判断依据,若该差值大于阈值,则认为该终端所在的区域很可能存在干扰源。其中,RSRP可以反映当前信道的路径损耗强度,SINR可以反映干扰抑制增益的大小。
但是,干扰抑制增益的大小依赖于基站中上行干扰抑制合并(Interference Rejection Combining,IRC)技术的性能,而IRC技术的性能容易受到干扰源数量影响。因此,在干扰源数量发生变化时,得到的判断结果可能不准确。
发明内容
本申请实施例提供了一种干扰源定位方法以及相关设备,可以降低干扰源数量对干扰源定位的影响。
本申请第一方面提供了一种干扰源定位方法。
基站与终端建立通信连接,基站获取终端的第一信道估计;基站根据第一比值确定终端所在的区域是否存在可疑干扰源,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。
本申请中,基站通过第一比值来确定终端所在的区域是否存在可疑干扰源,其中,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。因为第一信道估计与第一干扰协方差矩阵的特征向量都与干扰源个数没有必然的关系,因此可以降低干扰源数量对干扰源定位的影响。
在一种可能的设计中,第一干扰协方差矩阵为N行N列的矩阵,N为小区集合的天线数量,N为大于0的整数。
本申请中,例如当小区集合包括4天线时,如果第一干扰协方差矩阵只包括3行3列, 则表明小区集合有个天线上的干扰信号没有被计算到,没有对基站硬件资源的充分利用;如果第一干扰协方差矩阵包括5行5列,则表明在第一干扰协方差矩阵中,携带有冗余信息,造成处理资源的浪费。因此第一干扰协方差矩阵为N行N列的矩阵时,既可以充分利用基站的硬件资源,又可以不造成处理资源的浪费。
在一种可能的设计中,第一投影集合包括N/2个投影之和,N/2个投影为N个投影中的前N/2个投影,N个投影按从大到小排序,N个投影为第一信道估计在第一干扰协方差矩阵的N个特征向量上的N个投影。
本申请中,通过实验发现,当第一投影集合包括N/2个投影之和时,在根据第二阈值或第三阈值定位干扰源的准确率满足需求的情况下,不同的场景下第二阈值或第三阈值可以为相同的数值,因此可以采用统一的第二阈值或第三阈值,减少对第二阈值或第三阈值的设定、调节工作量。
在一种可能的设计中,基站获取第一总信号;然后基站根据第一总信号和第一信道估计获取第一干扰协方差矩阵。
本申请中,通过第一信道估计可以计算出第一有用信号,然后将第一总信号与第一有用信号的差值作为第一干扰信号,通过第一干扰信号构建第一干扰协方差矩阵,因为有些干扰源的干扰信号是随着终端的有用信号而存在的,例如连接基站和终端的中继装置,终端通过中继装置向基站发送有用信号时,中继装置也会产生干扰信号,终端没有通过中继装置向基站发送有用信号时,中继装置不会产生干扰信号或者干扰信号较小。例如在终端向基站发送有用信号时,基站接收到的干扰信号为5,在终端没有向基站发送有用信号时,基站接收到的干扰信号为4。因为通过第一总信号和第一信道估计获取的干扰信号包括只有终端发送有用信号时才存在的干扰源,因此可以避免定位干扰源时遗漏干扰源。
在一种可能的设计中,根据第一总信号和第一信道估计获得第一干扰协方差矩阵包括:
根据以下公式获取第一干扰矩阵:
R=(y-Hs)(y-Hs) T,其中,R为第一干扰矩阵,y为第一总信号,
Figure PCTCN2021076192-appb-000001
表示y包括N行1列,H为第一信道估计,
Figure PCTCN2021076192-appb-000002
表示H包括N行1列,T表示矩阵转置,s为第一信道估计的导频信号;根据第一干扰矩阵获取第一干扰协方差矩阵。
在一种可能的设计中,小区集合包括第一小区和第二小区,N等于C加B,B为第二小区的天线数量,C为第一小区的天线数量;基站获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,第一元素为第二干扰协方差矩阵的对角线元素,第一元素与第一小区相关,第二元素为第二干扰协方差矩阵的对角线元素,第二元素与第二小区相关,第三元素为与第一元素,第二元素相关的非对角线元素;若第三元素与第一元素集合的比值大于第一阈值,则基站获取终端的第一信道估计,第一元素集合为第一元素与第二元素的和。
本申请中,基站确定是否进行两个小区联合定位,当第三元素与第一元素集合的比值大于第一阈值时,则基站进行两个小区联合定位。在实际应用中,许多干扰源不仅会干扰一个小区,还同时会干扰另一个小区。本申请通过第三元素与第一元素集合的比值来确定是否存在干扰源既干扰了第一小区,也干扰了第二小区。一般情况下,既能干扰第一小区,又能干扰第二小区的干扰源,我们认为该干扰源是会产生较大干扰的干扰源,应当优先排 除。通过两个小区联合定位,让该干扰源产生的干扰信号在不同的维度都有体现,即可以更加完整的体现该干扰源产生的干扰,因此该干扰源在两个小区联合定位时产生的干扰分量会越大,越容易被确定为可疑干扰源。
在一种可能的设计中,获取第二干扰协方差矩阵的第四元素,第四元素为第二干扰协方差矩阵的对角线元素。
本申请中,在进行干扰源定位前,基站判断是否需要进行干扰源定位。具体的实现方式是通过第二干扰协方差矩阵的第四元素来判断。第四元素体现了干扰信号的强度,只有干扰信号的强度大于强度阈值时,基站才会进行干扰源定位。可以避免在没有干扰或者干扰较小时还进行干扰源定位,浪费网络资源。
在一种可能的设计中,若第一比值大于第二阈值,则确定终端所在的区域存在可疑干扰源。
本申请中,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。其中,第一信道估计和第一干扰协方差矩阵时根据第一频段的信号获得的。相比于需要通过多个频段的干扰信号来确定终端所在的区域是否存在可疑干扰源,基站只通过一个频段的干扰信号便可以确定终端所在的区域是否存在可疑干扰源,可以减少基站的数据处理工作量。
在一种可能的设计中,第一干扰协方差矩阵根据第一频段的信号获得,第一信道估计根据第一频段的信号获得;基站获取终端的第二信道估计;若第二比值与第一比值的平均值大于第三阈值,则基站确定终端所在的区域存在可疑干扰源,第二比值为第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与第二信道估计的比值,第三干扰协方差矩阵根据第二频段的信号获得,第二信道估计根据第二频段的信号获得。
本申请中,第一干扰协方差矩阵根据第一频段的信号获得,而第一干扰协方差矩阵是根据干扰信号获得的,因此干扰信号是根据第一频段的信号获得的。基站通过第二比值与第一比值的平均值来确定终端所在的区域是否存在可疑干扰源,可以减小单一比值在某次中的误差。特别的,对于定位中继装置这类的干扰源,通过多个频段的干扰信号来确定终端所在的区域是否存在可疑干扰源有特别的效果。因为中继装置转发终端与基站之间的通信数据,就会在通信数据所属的不同的频段上都产生干扰信号。例如,终端利用第一频段和第二频段的信号向基站发送数据,则中继装置在转发数据时,不仅会产生属于第一频段的干扰信号,还会产生属于第二频段的干扰信号。而其它的干扰源,则有可能只会产生第一频段的干扰信号,不产生第二频段的干扰信号。因此其它的干扰源在多个频段中计算的第二比值与第一比值的平均值,容易小于中继装置这种干扰源在多个频段中计算的第二比值与第一比值的平均值。因此容易定位出中继装置这类的干扰源。
本申请第二方面提供了一种干扰源定位装置。
获取单元,用于获取终端的第一信道估计;
确定单元,用于根据第一比值确定终端所在的区域是否存在可疑干扰源,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。
在一种可能的设计中,第一干扰协方差矩阵为N行N列的矩阵,N为小区集合的天线数 量,N为大于0的整数。
在一种可能的设计中,第一投影集合包括N/2个投影之和,N/2个投影为N个投影中的前N/2个投影,N个投影按从大到小排序,N个投影为第一信道估计在第一干扰协方差矩阵的N个特征向量上的N个投影。
在一种可能的设计中,获取单元还用于获取第一总信号;
获取单元还用于根据总信号和第一信道估计获取第一干扰协方差矩阵。
在一种可能的设计中,获取单元具体用于根据以下公式获取第一干扰矩阵:
R=(y-Hs)(y-Hs) T,其中,R为第一干扰矩阵,y为总信号,
Figure PCTCN2021076192-appb-000003
表示y包括N行1列,H为第一信道估计,
Figure PCTCN2021076192-appb-000004
表示H包括N行1列,T表示矩阵转置,s为第一信道估计的导频信号;
获取单元具体用于根据第一干扰矩阵获取第一干扰协方差矩阵。
在一种可能的设计中,小区集合包括第一小区和第二小区,N等于C加B,B为第二小区的天线数量,C为第一小区的天线数量;
获取单元还用于获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,第一元素为第二干扰协方差矩阵的对角线元素,第一元素与第一小区相关,第二元素为第二干扰协方差矩阵的对角线元素,第二元素与第二小区相关,第三元素为与第一元素,第二元素相关的非对角线元素。
在一种可能的设计中,获取单元还用于获取第二干扰协方差矩阵的第四元素,第四元素为第二干扰协方差矩阵的对角线元素。
在一种可能的设计中,确定单元具体用于若第一比值大于第二阈值,则确定终端所在的区域存在可疑干扰源。
在一种可能的设计中,第一干扰协方差矩阵根据第一频段的信号获得,第一信道估计根据第一频段的信号获得;
获取单元还用于获取终端的第二信道估计;
确定单元具体用于若第二比值与第一比值的平均值大于第三阈值,则确定终端所在的区域存在可疑干扰源,第二比值为第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与第二信道估计的比值,第三干扰协方差矩阵根据第二频段的信号获得,第二信道估计根据第二频段的信号获得。
本申请第三方面提供了一种干扰源定位设备。
包括:存储器和处理器;
其中,所述存储器用于存储程序;
所述处理器用于执行所述存储器中的程序,包括执行如上述第一方面或第一方面任意一种实施方式所述的方法。
本申请第四方面提供了一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,所述指令在计算机上执行时,使得所述计算机执行如第一方面或第一方面任意一种实施方式所述的方法。
本申请第五方面提供了一种计算机程序产品,其特征在于,所述计算机程序产品在计 算机上执行时,使得所述计算机执行如第一方面或第一方面任意一种实施方式所述的方法。
附图说明
图1为本申请实施例的网络框架示意图;
图2为本申请实施例中干扰源定位方法的一个流程示意图;
图3为本申请实施例中在2天线时投影的一个示意图;
图4为本申请实施例中干扰源定位方法的测试结果的示意图;
图5为本申请实施例中干扰源定位方法的另一个流程示意图;
图6为本申请实施例中干扰源定位装置的一个结构示意图;
图7为本申请实施例中干扰源定位设备的一个结构示意图。
具体实施方式
本申请实施例提供了一种干扰源定位方法以及相关设备,应用于通信领域,可以降低干扰源数量对干扰源定位的影响。
为了更好的理解本申请实施例中的干扰源定位方法,下面对本申请实施例的网络框架进行描述。
请参阅图1,本申请实施例中网络架构可以包括:
基站101和终端102。
图1中的基站101可以用于实现无线物理实体、资源调度和无线资源管理、无线接入控制以及移动性管理等功能;示例性的,该基站101可以为无线接入网(radio access network,RAN)设备,比如可以是GSM系统或者CDMA系统中的基站(base transceiver station,BTS)、WCDMA系统中的节点B(nodeB,NB)、LTE系统中的演进型节点B(evolutional nodeB,eNB)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继节点站、传输接收点(transmission reception point,TRP)、接入点、车载设备、路边单元(road side unit,RSU)、可穿戴设备、未来5G网络中的网络设备,如NR nodeB,下一代基站(generation nodeB,gNB),集中式单元(centralized unit,CU),分布式单元(distribute unit,DU)或者未来演进的PLMN网络中的网络设备等,本申请对基站101的具体实现形式并不限定。
终端102一般可以指具有与网络设备进行通信能力的设备,比如可以是接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、无线终端设备、用户代理、或者用户装置等。还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(智能手表、智能手环等)、还可以为智能家具(或家电)、未来5G网络中的终端设备、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises  equipment,CPE)等,本申请对终端的具体实现形式并不做限定。
在本申请实施例中,终端102主要的功能是向基站101发送信息,辅助基站101进行干扰源的定位,终端102还可以向基站101发送位置信息。
在本申请实施例中,基站101主要的功能是根据终端102发送的信息获取信道估计,根据比值确定终端102所在的区域是否存在可疑干扰源,该比值为信道估计在干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值,终端102所在的区域可以根据终端102发送的位置信息确定。
上面对本申请实施例的网络框架进行描述,下面对本申请实施例中的干扰源定位方法进行描述。示例性的,本申请实施例所涉及附图中的以虚线标识的特征或内容可理解为实施例可选地操作或者可选地结构。
在本申请实施例中的干扰源定位方法中,基站可以根据一个频段的干扰信号来确定终端所在的区域是否存在干扰源,基站也可以根据多个频段的干扰信号来确定终端所在区域是否存在干扰源,下面对这两种情况分开描述。
基站根据一个频段的干扰信号来确定终端所在的区域是否存在干扰源。
请参阅图2,为本申请实施例中干扰源定位方法的一个流程示意图。
在步骤201中,基站获取第二干扰协方差矩阵。
基站在空口第三时段,第三频段停止调度,则基站通过该第三频段,第三时段对应的时频资源不会接收到终端发送的有用信号,该第三频段,基站通过该第三时段对应的时频资源上接收到的全部都是干扰信号,根据该干扰信号获取第二干扰协方差矩阵。
口空是空中接口(air interface)的简称,在移动通信当中,终端与基站通过空中接口互相连结,空中接口是基站和终端之间的无线传输规范,空中接口定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换。在不同制式的蜂窝移动通信网络中,空中接口的术语是不同的,例如在全球移动通信系统(global system for mobile communications,GSM),通用无线分组业务(General packet radio service,GPRS),和增强型数据速率GSM演进技术(enhanced data rate for GSM evolution,EDGE)网络,CDMA2000网络中,空中接口被称为Um接口,在时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)和宽带码分多址(wideband code division multiple access,WCDMA)网络中,空中接口被称为Uu接口。
该第三频段可以是一个资源块(resource block,RB),或一个时频资源单元(resouce element,RE)。
该第三时段可以是一个OFDM符号,或一个时隙,或一个子帧,或一个正交频分多载波(orthogonal frequency division multi-plexing,OFDM)符号,或一个帧(Frame)。
在长期演进(long term evolution,LTE)中,基站和终端可以通过时域和频域上的信号进行数据传输,在时域上,最小的下行资源粒度是一个OFDM符号;最小的上行资源粒度是一个单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)符号,本申请文件将最小的上行资源粒度和最小的下行资源粒度统称为OFDM符号。多个OFDM符号可以构成一个时隙(slot time,ST),多个ST又可以构成一个子帧,多个子帧可以构成一个帧。在频域上,最小的粒度是一个子载波。一个OFDM符号与一个子载波组成 的一个RE。物理层在进行资源映射的时候,是以RE为基本单位的。一个时隙内所有的OFDM符号与频域上12个子载波组成的一个RB。整个传输带宽的频域上将资源划分为一系列的RB,每个终端可以使用其中一个或多个RB资源用于承载数据。
可选地,第二干扰协方差矩阵包括N行N列,基站包括N天线。当基站包括4天线时,如果第二干扰协方差矩阵只包括3行3列,则表明基站有个天线上的干扰信号没有被计算到,没有对基站硬件资源的充分利用;如果第二干扰协方差矩阵包括5行5列,则表明在第二干扰协方差矩阵中,携带有冗余信息,造成处理资源的浪费。
基站在停止调度时获得的干扰信号会更加准确,因为在基站停止调度时的第三频段上没有终端发射的有用信号,只有干扰源发射的干扰信号和基站本身的噪声,基站本身的噪声可以认为是一个定值,可以在步骤202的强度阈值中做补偿,因此可以忽略。推导过程以下面的第二干扰协方差矩阵Q2为例进行阐述,例如干扰信号加基站噪声产生的总干扰导致的(X1,X1)的值为5,其中干扰信号在5中占3,基站噪声在5中占2,第一强度阈值为4,(X1,X1)的值满足大于强度阈值的条件;假设没有基站噪声,只有干扰信号,干扰信号导致的(X1,X1)的值为3,第二强度阈值为2,(X1,X1)的值满足大于强度阈值的条件,可以看出第一强度阈值和第二强度阈值的差值2刚好为基站噪声在(X1,X1)5中占有的2,因此基站噪声是可以通过在强度阈值上做补偿来消除影响的,因此将基站噪声算进干扰信号也可以对本申请实施例中的技术方案没有影响。相比于利用总信号减去有用信号获取的干扰信号,利用停止调度来获得的干扰信号会更加准确。
可选地,根据以下方式计算第二干扰矩阵:
R2=D×D T,其中D表示基站在停止调度时获得的干扰信号的向量,
Figure PCTCN2021076192-appb-000005
表示D包括N行1列,T表示矩阵转置。
可选地,还可以根据总信号和信道估计获取干扰信号。通过信道估计可以计算出有用信号,然后将总信号与有用信号的差值作为干扰信号,这种方式获取干扰信号可以不需要特意进行停止调度,可以避免降低终端与基站间的数据传输速率。
可选地,根据以下方式计算第二干扰矩阵:
R2=(y-Hs)(y-Hs) T,其中,R2为第二干扰矩阵,y为总信号,总信号包括终端的有用信号和干扰信号,
Figure PCTCN2021076192-appb-000006
表示y包括N行1列,H为信道估计,
Figure PCTCN2021076192-appb-000007
表示H包括N行1列,T表示矩阵转置,s为该信道估计的导频信号。
假设N为4,D T=(a2,b2,c2,d2);
Figure PCTCN2021076192-appb-000008
简写成R2=(X1,X2,X3,X4),X1表示第二干扰矩阵的第一列数据,X2表示第二干扰矩阵的第二列数据,以此类推,其中,每一列都包含4个数据。根据R2可以计算获得第二干扰协方差矩阵Q2。
Figure PCTCN2021076192-appb-000009
根据协方差的定义,可以计算出每一列数据的自相关性和每一列之间的相关性,(X1,X2)表示第一列数据的自相关性,(X2,X1)表示第二列数据与第一列数据的相关性,若数值为正,则表明正相关,若数值为负,则表明负相关。
可选地,基站可以设定一个开关,当开关打开时,基站才会获取第二干扰协方差矩阵。或者基站只有接收到外部的命令时,才会获取第二干扰协方差矩阵。因为通过干扰源定位定位出干扰源后,有时是需要人力去排除干扰源的,当没有人力资源去排除干扰源时,定位出的干扰源是无法排除的。当有人力资源去排除该干扰源时,该干扰源可能已经消失,或者其干扰强度已符合干扰强度的相关规定,那么,此次的干扰源定位就是浪费了处理资源,因此需要设定开关来灵活的确定是否进行干扰源的定位。
在步骤202中,若第四元素大于强度阈值,则基站获取第二干扰协方差矩阵的第一元素,第二元素和第三元素,其中,第四元素为第二干扰协方差矩阵的对角线元。
第四元素为第二干扰协方差矩阵的对角线元素,以Q2为例,Q2中对角线元素包括(X1,X1),(X2,X2),(X3,X3)和(X4,X4)。第四元素可以体现干扰信号的强度,若第四元素大于强度阈值,则说明在基站附近存在干扰较强的干扰源,基站启动对干扰源的定位。第四元素可以是第一元素或第二元素。基站获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,第一元素为第二干扰协方差矩阵的对角线元素,第一元素与第一小区相关,第二元素为第二干扰协方差矩阵的对角线元素,第二元素与第二小区相关,第三元素为与第一元素,第二元素相关的非对角线元素。一个基站的天线可以多个小区,例如基站包括第一小区的天线a,天线b和第二小区的天线c,天线d,D T中的元素a2为通过天线a接收的干扰信号,元素b2为通过天线b接收的干扰信号,元素c2为通过天线c接收的干扰信号,元素d2为通过天线d接收的干扰信号,X1中的4个元素a2×a2,a2×b2,a2×c2和a2×d2都和a2相关,因此认为X1与第一小区相关,(X1,X1)为与第一小区相关对角线元素,同理,认为X3与第二小区相关,(X3,X3)为与第二小区相关对角线元素,认为(X1,X3)与(X3,X1)为与(X1,X1),(X3,X3)相关的非对角线元素。
可选地,第一小区的天线与第二小区的天线可以不在一个基站上,例如第一基站包括第一小区的天线a,天线b,第二基站包括第二小区的天线c,天线d。
可选地,第一小区的天线数量与第二小区的天线数量可以不相同,例如第一基站包括第一小区的天线a,天线b,第二基站包括第二小区的天线c,天线d,天线e,天线f。
可选地,第四元素为第二干扰协方差矩阵所有对角线元素中数值最大的元素,因此可以无需让第二干扰协方差矩阵中的每个对角线元素都与强度阈值做对比,减少对角线元素与强度阈值的对比计算量。
可选地,基站可以不根据第四元素大于强度阈值来启动对干扰源的定位。例如基站可以设定一个时间点,不管干扰强度的大小,到了该时间点,基站便会启动对干扰源的定位。例如基站还可以根据干扰信号的总强度确定是否启动对干扰源的定位,第四元素可以理解 为干扰信号的总强度在某个维度上的分量,当干扰信号的总强度大于阈值时,基站启动对干扰源的定位。当在步骤201中,基站设定了开关来确定是否获取第二协方差矩阵时,基站可以直接获取第二干扰协方差矩阵的第一元素,第二元素和第三元素,不用根据第四元素大于强度阈值的条件。
在步骤203中,基站确定第三元素与第一元素集合的第二比值是否大于第一阈值,第一元素集合为第一元素与第二元素的和。
在步骤204中,若第三元素与第一元素集合的第二比值大于第一阈值,则基站获取终端的第一信道估计。该第一信道估计同时与第一小区的天线和第二小区的天线相关。
若第二比值大于第一阈值,则表明很可能存在干扰源同时干扰到了第一小区和第二小区,因此采用两个小区联合定位。基站通过第一小区的天线和第二小区的天线在第一时段,第一频段获取该终端的第一信道估计。因为第一信道估计是基站通过第一小区的天线和第二小区的天线获得的,因此第一信道估计同时与第一小区的天线和第二小区的天线相关。
可选地,第一信道估计H包括N个元素,H=(a2,b2,c2,d2),元素a2与天线a相关,元素b2与天线b相关,元素c2与天线c相关,元素d2与天线d相关。
可选地,第三频段可以等于第一频段,也可以不等于第一频段,第三时段可以等于第一时段,也可以不等于第一时段。
可选地,步骤201、步骤202、步骤203可以都不执行,基站直接获取终端的第一信道估计。基站不做是否进行两个小区联合定位的判断,基站默认进行两个小区联合定位。
在步骤205中,若第一比值大于第二阈值,则基站确定终端所在的区域存在可疑干扰源。
第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。因为在第二干扰协方差矩阵中,第三元素与第一元素集合的第二比值大于第一阈值,采用两个小区联合定位,因此第一干扰协方差矩阵与第一小区的天线和第二小区的天线相关。
可选地,根据第一总信号和第一信道估计获取第一干扰协方差矩阵。通过第一信道估计可以计算出第一有用信号,然后将第一总信号与第一有用信号的差值作为第一干扰信号,通过第一干扰信号构建第一干扰协方差矩阵,因为有些干扰源的干扰信号是随着终端的有用信号而存在的,例如连接基站和终端的中继装置,终端通过中继装置向基站发送有用信号的同时,中继装置也会产生干扰信号,终端没有通过中继装置向基站发送有用信号时,中继装置不会产生干扰信号或者干扰信号较小。例如在终端向基站发送有用信号时,基站接收到的干扰信号为5,在终端没有向基站发送有用信号时,基站接收到的干扰信号为4。因为通过第一总信号和第一信道估计获取的干扰信号包括只有终端发送有用信号时才存在的干扰源,避免定位干扰源时遗漏干扰源。
可选地,第一干扰协方差矩阵包括N行N列,基站包括N天线。
可选地,根据以下方式计算第一干扰矩阵:
R1=(y-Hs)(y-Hs) T,其中,R1为第一干扰矩阵,y为第一总信号,
Figure PCTCN2021076192-appb-000010
表示y包括N行1列,H为第一信道估计,
Figure PCTCN2021076192-appb-000011
表示H包括N行1列,T表示矩阵转置,s为该第一信道估计的导频信号。
假设N为4,y T=(ya,yb,yc,yd),H T=(Ha,Hb,Hc,Hd);
则(y-Hs) T=(ya-Ha,yb-Hb,yc-Hc,yd-Hd);
为了方便表示,令ya-Ha=a1,yb-Hb=b1,yc-Hc=c1,yd-Hd=d1;
Figure PCTCN2021076192-appb-000012
根据RI,可以获得第一干扰协方差矩阵,计算方式与步骤201中类似。
对第一干扰协方差矩阵进行奇异值分解,可以获得特征向量。假设根据第一干扰协方差矩阵获得的特征向量包括t1,t2,t3,t4。计算第一信道估计在t1上的投影与第一信道估计的比值:
Figure PCTCN2021076192-appb-000013
其中||H||=(Ha) 2+(Hb) 2+(Hc) 2+(Hd) 2,类似的,可以计算第一信道估计在t2上的投影与第一信道估计的比值p2,在t3上的投影与第一信道估计的比值p3和在t4上的投影与第一信道估计的比值p4。
可选地,第一投影集合包括N/2个投影之和,N/2个投影为N个投影中的前N/2个投影,N个投影按从大到小排序,N个投影为第一信道估计在第一干扰协方差矩阵的N个特征向量上的N个投影。例如p1>p2>p3>p4,第一比值μ1=p1+p2。第一干扰协方差矩阵包括N行N列,因此第一干扰协方差矩阵包括N个特征向量,第一信道估计在N个特征向量上可以产生N个投影。当N为4时,请参阅图4中的2天线+2天线的测试结果401,其中2天线为第一小区的天线,另外的2天线为第二小区的天线,总共有10个终端参与辅助基站进行干扰源定位,每个终端都有一个对应的比值μ,第二阈值为0.9,因此在此次的测试中,基站确定UE8所在的区域,UE9所在的区域和UE10所在的区域存在可疑的干扰源。
为了确定终端所在的区域,基站需要获取终端的位置信息,基站可以向该终端发送最小化路测(minimization of drive-test,MDT)测量,终端收到MDT测量后上报位置信息;基站确定该位置信息对应所属的区域为该终端所在的区域,并确定该终端所在的区域是否存在可疑干扰源。
可选地,基站可以不向终端发送MDT测量,基站可以用定位算法计算出终端的位置信息。
可选地,基站可以对地图进行划分,获得不同的栅格,在终端上报的位置信息后,基站在位置信息对应的栅格中做标记。例如地图包括第一栅格和第二栅格,在干扰源定位中,第一终端对应的第一比值μ因为大于第二阈值,第一终端上报的位置信息对应的栅格为第二栅格,基站对第二栅格做一次标记。当某个栅格中标记的次数达到阈值时,确定该栅格所在的区域存在可疑干扰源。例如基站在第二栅格做的标记达到5次,则基站确定第二栅格所对应的区域存在可疑干扰源。
可选地,当基站在栅格中做标记时,为了避免频繁获取同一终端的位置信息,基站利用同一终端做第二次干扰源定位时,第二次干扰源定位与第一次干扰源定位存在间隔时长。
可选地,基站将位置信息记录在对应的栅格后,基站可以计算地图不同栅格被标记的次数的平均值,例如地图包括十个栅格,在干扰源定位中,只有第一栅格被标记的次数达 到平均值,且第一栅格被标记的次数且达到阈值,基站才确定第一栅格所对应的区域存在可疑干扰源。
可选地,当第三频段等于第一频段,第三时段等于第一时段时,第一干扰协方差矩阵可以等于第二干扰协方差矩阵。即基站只获取一个干扰协方差矩阵,同时作为第一干扰协方差矩阵和第二干扰协方差矩阵。当第一干扰协方差矩阵等于第二干扰协方差矩阵时,可以不执行步骤203,因为第一干扰协方差矩阵同时与第一小区的天线和第二小区的天线相关,表明已经采用两个小区联合定位,也就不需要通过步骤203来判断是否进行两个小区联合定位。
在步骤206中,若第三元素与第一元素集合的比值小于或等于第一阈值,则基站获取终端的第一信道估计,该第一信道估计与第一小区的天线相关。
若该比值小于或等于第一阈值,则表明很可能不存在干扰源同时干扰到了第一小区和第二小区,因此不采用两个小区联合定位。基站通过第一小区的天线在第一时段,第一频段获取该终端的第一信道估计。因为第一信道估计是基站通过第一小区的天线获得的,因此第一信道估计与第一小区的天线相关。
可选地,第一信道估计H包括C个元素,C为第一小区的天线数量,H=(a2,b2),元素a2与天线a相关,元素b2与天线b相关。
可选地,第三频段可以等于第一频段,也可以不等于第一频段,第三时段可以等于第一时段,也可以不等于第一时段。
可选地,步骤201、步骤202、步骤203可以都不执行,基站直接获取终端的第一信道估计。基站不做是否进行两个小区联合定位的判断,基站默认不进行两个小区联合定位,进行单小区的干扰源定位。
在步骤207中,若第一比值大于第二阈值,则确定终端所在的区域存在可疑干扰源。
第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。因为在第二干扰协方差矩阵中,第三元素与第一元素集合的第二比值小于或等于第一阈值,采用单个小区的干扰源定位,因此第一干扰协方差矩阵与第一小区的天线相关。
可选地,根据第一总信号和第一信道估计获取第一干扰协方差矩阵。避免干扰源定位时遗漏干扰源。
可选地,根据以下方式计算第一干扰矩阵:
R1=(y-Hs)(y-Hs) T,其中,R1为第一干扰矩阵,y为第一总信号,
Figure PCTCN2021076192-appb-000014
表示y包括C行1列,H为第一信道估计,
Figure PCTCN2021076192-appb-000015
表示H包括C行1列,T表示矩阵转置,s为该第一信道估计的导频信号。
假设C为2,y T=(ya,yb),H T=(Ha,Hb);
则(y-Hs) T=(ya-Ha,yb-Hb);
为了方便表示,令ya-Ha=a1,yb-Hb=b1;
Figure PCTCN2021076192-appb-000016
根据RI,可以获得第一干扰协方差矩阵,计算方式与上述图2中的步骤201中类似。
对第一干扰协方差矩阵进行奇异值分解,可以获得特征向量。假设根据第一干扰协方差矩阵获得的特征向量包括t1,t2。计算第一信道估计在t1上的投影与第一信道估计的比值:
Figure PCTCN2021076192-appb-000017
其中||H||=(Ha) 2+(Hb) 2,类似的,可以计算第一信道估计在t2上的投影与第一信道估计的比值p2。
为了便于理解投影,下面结合图3以2天线为例进行说明。
图3中,301为t1,302为t2,303为第一信道估计,第一信道估计303可以包括在t1上的投影和在t2上的投影。
可选地,第一投影集合包括C/2个投影之和,C/2个投影为C个投影中的前C/2个投影,C个投影按从大到小排序,C个投影为第一信道估计在第一干扰协方差矩阵的C个特征向量上的C个投影。例如p1>p2,第一比值μ1=p1。第一干扰协方差矩阵包括C行C列,因此第一干扰协方差矩阵包括C个特征向量,第一信道估计在C个特征向量上可以产生C个投影。当C为2时,请参阅图4中的2天线测试结果402,该2天线为第一小区的天线,总共有10个终端参与辅助基站进行干扰源定位,每个终端都有一个对应的比值μ,第二阈值为0.9,因此在此次的测试中,基站确定UE9所在的区域和UE10所在的区域存在可疑的干扰源。402中的UE9与401中的UE9并非同一终端。
可选地,当第三频段等于第一频段,第三时段等于第一时段时,第一干扰协方差矩阵可以等于第二干扰协方差矩阵。即基站只获取一个干扰协方差矩阵,同时作为第一干扰协方差矩阵和第二干扰协方差矩阵。当第一干扰协方差矩阵等于第二干扰协方差矩阵时,可以不执行步骤203,因为第一干扰协方差矩阵与第一小区的天线相关,表明已经做单个小区的干扰源定位,也就不需要通过步骤203来判断是否进行两个小区联合定位。
获取终端的位置信息和确定终端所在区域存在可疑干扰源的方式与步骤204类似,具体此处不再赘述。
可选地,当不执行步骤203时,关于基站是进行单小区的干扰源定位,即步骤204和步骤205,还是进行两个小区联合定位,即步骤206和步骤207,基站可以选择一种实施方式实施,也可以两种实施方式都执行,具体此处不做限定。
二、基站根据多个频段的干扰信号来确定终端所在的区域是否存在干扰源,为了方便说明,下面以多个频段为二个频段为例进行说明。
请参阅图5,为本申请实施例中干扰源定位方法的一个流程示意图。
在步骤501中,基站获取第二干扰协方差矩阵。
在步骤502中,若第四元素大于强度阈值,则基站获取第二干扰协方差矩阵的第一元素,第二元素和第三元素,第四元素为第二干扰协方差矩阵的对角线元。
在步骤503中,基站确定第三元素与第一元素集合的比值是否大于第一阈值,第一元素集合为第一元素与第二元素的和。
在步骤504中,若第三元素与第一元素集合的比值大于第一阈值,则基站根据第一频段的信号获取终端的第一信道估计。该第一信道估计同时与第一小区的天线和第二小区的天线相关。
步骤501、步骤502、步骤503、步骤504与上述图2中的步骤201、步骤202、步骤203、步骤204类似,具体此处不再赘述。
在步骤505中,基站获取终端的第二信道估计,第二信道估计根据第二频段的信号获得。基站在第二时段,第二频段获取该终端的第二信道估计,该第二信道估计与第一小区的天线和第二小区的天线相关。
第一信道估计是根据第一频段的信号获得的,第二频段不等于第一频段,且第二频段和第一频段的资源在第二时段和第一时段被分配给同一终端,该终端至少占据了两个频段的资源。有些干扰源不仅会在第一频段对基站产生干扰,还会在第二频段对基站产生干扰。为了定位这些干扰源,需要结合不同频段的干扰信号。特别的,对于定位中继装置这类的干扰源,结合不同频段的干扰信号有特别的效果。因为中继装置转发终端与基站之间的通信数据,就会在通信数据所属的不同的频段上都产生干扰信号。例如,终端利用第一频段和第二频段的信号向基站发送数据,则中继装置在转发数据时,不仅会产生属于第一频段的干扰信号,还会产生属于第二频段的干扰信号。而其它的干扰源,则有可能只会产生第一频段的干扰信号,不产生第二频段的干扰信号。
可选地,第二信道估计H1包括N个元素,H1=(a3,b3,c3,d3),元素a3与天线a相关,元素b3与天线b相关,元素c3与天线c相关,元素d3与天线d相关。
可选地,步骤501、步骤502、步骤503可以都不执行,基站直接获取终端的第一信道估计和第二信道估计。基站不做是否进行两个小区联合定位的判断,基站默认进行两个小区联合定位。
在步骤506中,若第二比值与第一比值的平均值大于第三阈值,则基站确定终端所在的区域存在可疑干扰源。
第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值,第二比值为第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与第二信道估计的比值,第三干扰协方差矩阵根据第二频段的信号获得,第一干扰协方差矩阵根据第一频段的信号获得。
第一比值获取的方式与步骤205中对第一比值的描述类似,第二比值获取的方式与第一比值获取的方式类似,具体此处不再赘述。获取终端的位置信息和确定终端所在区域存在可疑干扰源的方式与步骤205类似,具体此处不再赘述。
可选地,当该终端占据了多个频段的资源时,基站计算该多个频段对应的多个比值,若该多个比值的平均值大于第三阈值,则基站确定该终端所在的区域存在可疑干扰源。
可选地,基站可以不利用第二比值与第一比值的平均值作为判断条件,基站可以将第二比值与第一比值中的最大值作为判断条件,若第二比值与第一比值中的最大值大于第三阈值,则基站确定终端所在的区域存在可疑干扰源。
在步骤507中,若第三元素与第一元素集合的第二比值小于或等于第一阈值,则基站根据第一频段的信号获取终端的第一信道估计。该第一信道估计与第一小区的天线相关。
步骤507与上述图2中的步骤204类似,具体此处不再赘述。
在步骤508中,基站获取终端的第二信道估计,第二信道估计根据第二频段的信号获得。
基站在第二时段,第二频段获取该终端的第二信道估计,该第二信道估计与第一小区的天线和第二小区的天线相关。
第一信道估计是根据第一频段的信号获得的,第二频段不等于第一频段,且第二频段和第一频段的资源在第二时段和第一时段被分配给同一终端,该终端至少占据了两个频段的资源。有些干扰源不仅会在第一频段对基站产生干扰,还会在第二频段对基站产生干扰。为了定位这些干扰源,可以结合不同频段的干扰信号。
可选地,第二信道估计H1包括C个元素,C为第一小区的天线数量,H=(a3,b3),元素a3与天线a相关,元素b3与天线b相关。
在步骤509中,若第二比值与第一比值的平均值大于第三阈值,则确定终端所在的区域存在可疑干扰源。
第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值,第二比值为第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与第二信道估计的比值,第三干扰协方差矩阵根据第二频段的信号获得,第一干扰协方差矩阵根据第一频段的信号获得。
第一比值获取的方式与步骤506中对第一比值的描述类似,第二比值获取的方式与第一比值获取的方式类似,具体此处不再赘述。
获取终端的位置信息和确定终端所在区域存在可疑干扰源的方式与步骤205类似,具体此处不再赘述。
可选地,当该终端占据了多个频段的资源时,基站计算该多个频段对应的多个比值,若该多个比值的平均值大于第三阈值,则基站确定该终端所在的区域存在可疑干扰源。
可选地,步骤501、步骤502、步骤503可以都不执行,基站直接获取终端的第一信道估计和第二信道估计。基站不做是否进行两个小区联合定位的判断,基站默认不进行两个小区联合定位,进行单小区的干扰源定位。
上面对本申请实施例中的干扰源定位方法进行了描述,下面对本申请实施例中的干扰源定位装置进行描述。
请参阅图6,为本申请实施例中干扰源定位装置的一个结构示意图。
获取单元601,用于获取终端的第一信道估计;
确定单元602,用于根据第一比值确定终端所在的区域是否存在可疑干扰源,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。
本实施例中,确定单元602通过第一比值来确定终端所在的区域是否存在可疑干扰源,其中,第一比值为第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与第一信道估计的比值。因为第一信道估计与第一干扰协方差矩阵的特征向量都与干扰源个数没有必然的关系,因此可以降低干扰源数量对干扰源定位的影响。
在前述图6的干扰源定位装置的基础上,本申请实施例提供的干扰源定位装置还包括:
可选地,第一干扰协方差矩阵为N行N列的矩阵,N为小区集合的天线数量,N为大于0的整数。
可选地,第一投影集合包括N/2个投影之和,N/2个投影为N个投影中的前N/2个投影, N个投影按从大到小排序,N个投影为第一信道估计在第一干扰协方差矩阵的N个特征向量上的N个投影。
可选地,获取单元601还用于获取第一总信号;
获取单元601还用于根据第一总信号和第一信道估计获取第一干扰协方差矩阵。
可选地,获取单元601具体用于根据以下公式获得第一干扰矩阵:
R=(y-Hs)(y-Hs) T,其中,R为第一干扰矩阵,y为第一总信号,
Figure PCTCN2021076192-appb-000018
表示y包括N行1列,H为第一信道估计,
Figure PCTCN2021076192-appb-000019
表示H包括N行1列,T表示矩阵转置,s为第一信道估计的导频信号;
获取单元601具体用于根据第一干扰矩阵获取第一干扰协方差矩阵。
可选地,小区集合包括第一小区和第二小区,N等于C加B,B为第二小区的天线数量,C为第一小区的天线数量;获取单元601还用于获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,第一元素为第二干扰协方差矩阵的对角线元素,第一元素与第一小区相关,第二元素为第二干扰协方差矩阵的对角线元素,第二元素与第二小区相关,第三元素为与第一元素,第二元素相关的非对角线元素。
可选地,获取单元601还用于获取第二干扰协方差矩阵的第四元素,第四元素为第二干扰协方差矩阵的对角线元素。
可选地,确定单元602具体用于若第一比值大于第二阈值,则确定终端所在的区域存在可疑干扰源。
可选地,第一干扰协方差矩阵根据第一频段的信号获得,第一信道估计根据第一频段的信号获得;
获取单元601还用于获取终端的第二信道估计;
确定单元602具体用于若第二比值与第一比值的平均值大于第三阈值,则确定终端所在的区域存在可疑干扰源,第二比值为第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与第二信道估计的比值,第三干扰协方差矩阵根据第二频段的信号获得,第二信道估计根据第二频段的信号获得。
上面对本申请实施例中的干扰源定位装置进行了描述,下面对本申请实施例中的干扰源定位设备进行描述。
请参阅图7,为本申请提供的干扰源定位设备的一个实施例的结构示意图。
如图7所示,干扰源定位设备700包括处理器710,与所述处理器710耦接的存储器720。干扰源定位设备700可以是图2和图5中的基站。处理器710可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器710可以是指一个处理器,也可以包括多个处理器。存储器720可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器 (read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。存储器720中存储有计算机可读指令,所述计算机可读指令包括多个软件模块,例如获取模块722,确定模块724。处理器710执行各个软件模块后可以按照各个软件模块的指示进行相应的操作。在本实施例中,一个软件模块所执行的操作实际上是指处理器710根据软件模块的指示而执行的操作。接收模块722用于终端的第一信道估计。确定模块724用于根据第一比值确定所述终端所在的区域是否存在可疑干扰源,所述第一比值为所述第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与所述第一信道估计的比值。此外,处理器710执行存储器720中的计算机可读指令后,可以按照所述计算机可读指令的指示,执行干扰源定位设备可以执行的全部操作,例如基站在与图2和图5对应的实施例中执行的操作。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者基站等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (21)

  1. 一种干扰源定位方法,其特征在于,包括:
    获取终端的第一信道估计;
    根据第一比值确定所述终端所在的区域是否存在可疑干扰源,所述第一比值为所述第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与所述第一信道估计的比值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一干扰协方差矩阵为N行N列的矩阵,所述N为小区集合的天线数量,所述N为大于0的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一投影集合包括N/2个投影之和,所述N/2个投影为N个投影中的前N/2个投影,所述N个投影按从大到小排序,所述N个投影为所述第一信道估计在所述第一干扰协方差矩阵的N个特征向量上的N个投影。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    获取第一总信号;
    根据所述第一总信号和所述第一信道估计获取所述第一干扰协方差矩阵。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一总信号和所述第一信道估计获得所述第一干扰协方差矩阵包括:
    根据以下公式获取第一干扰矩阵:
    R=(y-Hs)(y-Hs) T,其中,所述R为所述第一干扰矩阵,所述y为所述第一总信号,所述
    Figure PCTCN2021076192-appb-100001
    表示所述y包括N行1列,所述H为所述第一信道估计,所述
    Figure PCTCN2021076192-appb-100002
    表示所述H包括N行1列,所述T表示矩阵转置,所述s为所述第一信道估计的导频信号;
    根据所述第一干扰矩阵获取所述第一干扰协方差矩阵。
  6. 根据权利要求2至5任意一项所述的方法,其特征在于,所述小区集合包括第一小区和第二小区,所述N等于C加B,所述B为所述第二小区的天线数量,所述C为所述第一小区的天线数量;
    所述方法还包括:
    获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,所述第一元素为所述第二干扰协方差矩阵的对角线元素,所述第一元素与所述第一小区相关,所述第二元素为所述第二干扰协方差矩阵的对角线元素,所述第二元素与所述第二小区相关,所述第三元素为与所述第一元素,所述第二元素相关的非对角线元素;
    若所述第三元素与第一元素集合的比值大于第一阈值,则执行所述获取终端的第一信道估计的步骤,所述第一元素集合为所述第一元素与所述第二元素的和。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    获取第二干扰协方差矩阵的第四元素,所述第四元素为所述第二干扰协方差矩阵的对角线元素;
    若所述第四元素大于强度阈值,则执行所述获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素的步骤。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,
    所述根据第一比值确定所述终端所在的区域是否存在可疑干扰源包括:
    若所述第一比值大于第二阈值,则确定所述终端所在的区域存在可疑干扰源。
  9. 根据权利要求1至7任意一项所述的方法,其特征在于,所述第一干扰协方差矩阵根据第一频段的信号获得,所述第一信道估计根据所述第一频段的信号获得;
    所述方法还包括:
    获取所述终端的第二信道估计;
    所述根据第一比值确定所述终端所在的区域是否存在可疑干扰源包括:
    若第二比值与所述第一比值的平均值大于第三阈值,则确定所述终端所在的区域存在可疑干扰源,所述第二比值为所述第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与所述第二信道估计的比值,所述第三干扰协方差矩阵根据第二频段的信号获得,所述第二信道估计根据所述第二频段的信号获得。
  10. 一种干扰源定位装置,其特征在于,包括:
    获取单元,用于获取终端的第一信道估计;
    确定单元,用于根据第一比值确定所述终端所在的区域是否存在可疑干扰源,所述第一比值为所述第一信道估计在第一干扰协方差矩阵的特征向量上的第一投影集合与所述第一信道估计的比值。
  11. 根据权利要求10所述的装置,其特征在于,所述第一干扰协方差矩阵为N行N列的矩阵,所述N为小区集合的天线数量,所述N为大于0的整数。
  12. 根据权利要求11所述的装置,其特征在于,所述第一投影集合包括N/2个投影之和,所述N/2个投影为N个投影中的前N/2个投影,所述N个投影按从大到小排序,所述N个投影为所述第一信道估计在所述第一干扰协方差矩阵的N个特征向量上的N个投影。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述获取单元还用于获取第一总信号;
    所述获取单元还用于根据所述第一总信号和所述第一信道估计获取所述第一干扰协方差矩阵。
  14. 根据权利要求13所述的装置,其特征在于,
    所述获取单元具体用于根据以下公式获取第一干扰矩阵:
    R=(y-Hs)(y-Hs) T,其中,所述R为所述第一干扰矩阵,所述y为所述第一总信号,所述
    Figure PCTCN2021076192-appb-100003
    表示所述y包括N行1列,所述H为所述第一信道估计,所述
    Figure PCTCN2021076192-appb-100004
    表示所述H包括N行1列,所述T表示矩阵转置,所述s为所述第一信道估计的导频信号;
    所述获取单元具体用于根据所述第一干扰矩阵获取所述第一干扰协方差矩阵。
  15. 根据权利要求11至14任意一项所述的装置,其特征在于,所述小区集合包括第一小区和第二小区,所述N等于C加B,所述B为所述第二小区的天线数量,所述C为所述第一小区的天线数量;
    所述获取单元还用于获取第二干扰协方差矩阵的第一元素,第二元素以及第三元素,所述第一元素为所述第二干扰协方差矩阵的对角线元素,所述第一元素与所述第一小区相关,所述第二元素为所述第二干扰协方差矩阵的对角线元素,所述第二元素与所述第二小 区相关,所述第三元素为与所述第一元素,所述第二元素相关的非对角线元素。
  16. 根据权利要求15所述的装置,其特征在于,
    所述获取单元还用于获取第二干扰协方差矩阵的第四元素,所述第四元素为所述第二干扰协方差矩阵的对角线元素。
  17. 根据权利要求10至16任意一项所述的装置,其特征在于,
    所述确定单元具体用于若所述第一比值大于第二阈值,则确定所述终端所在的区域存在可疑干扰源。
  18. 根据权利要求10至17任意一项所述的装置,其特征在于,所述第一干扰协方差矩阵根据第一频段的信号获得,所述第一信道估计根据所述第一频段的信号获得;
    所述获取单元还用于获取所述终端的第二信道估计;
    所述确定单元具体用于若第二比值与所述第一比值的平均值大于第三阈值,则确定所述终端所在的区域存在可疑干扰源,所述第二比值为所述第二信道估计在第三干扰协方差矩阵的特征向量上的第二投影集合与所述第二信道估计的比值,所述第三干扰协方差矩阵根据第二频段的信号获得,所述第二信道估计根据所述第二频段的信号获得。
  19. 一种干扰源定位设备,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储程序;
    所述处理器用于执行所述存储器中的程序,包括执行如上述权利要求1至9中任意一项所述的方法。
  20. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,所述指令在计算机上执行时,使得所述计算机执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,使得所述计算机执行如权利要求1至9中任一项所述的方法。
PCT/CN2021/076192 2020-02-18 2021-02-09 干扰源定位方法以及相关设备 WO2021164642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010100249.5A CN113347702B (zh) 2020-02-18 2020-02-18 干扰源定位方法以及相关设备
CN202010100249.5 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164642A1 true WO2021164642A1 (zh) 2021-08-26

Family

ID=77391839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076192 WO2021164642A1 (zh) 2020-02-18 2021-02-09 干扰源定位方法以及相关设备

Country Status (2)

Country Link
CN (1) CN113347702B (zh)
WO (1) WO2021164642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922897A (zh) * 2021-11-18 2022-01-11 国网湖南省电力有限公司 无线干扰源定位方法及定位装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115243193B (zh) * 2022-07-08 2024-04-16 中国联合网络通信集团有限公司 受激干扰源的位置确定方法、装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017048273A1 (en) * 2015-09-18 2017-03-23 Intel Corporation Identifying victims and aggressors in full duplex communication systems
CN106664263A (zh) * 2014-12-11 2017-05-10 华为技术有限公司 用于无线通信网络中的干扰估计的方法和装置
CN107204817A (zh) * 2016-03-16 2017-09-26 电信科学技术研究院 一种干扰检测方法及终端
CN110361694A (zh) * 2019-07-18 2019-10-22 天津市德力电子仪器有限公司 一种快速寻找5g信号干扰源的检测定位方法
CN110740462A (zh) * 2018-07-18 2020-01-31 中国移动通信有限公司研究院 异常直放站下终端识别方法、装置和计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951353B (zh) * 2010-09-30 2013-02-13 电子科技大学 一种干扰环境下的正交频分复用系统信道估计方法
CN102571659B (zh) * 2010-12-15 2014-08-13 中兴通讯股份有限公司 一种干扰噪声估计和干扰抑制方法及相应系统
CN102594737B (zh) * 2011-01-05 2015-04-01 中兴通讯股份有限公司 一种邻区干扰检测方法及系统
JP5816525B2 (ja) * 2011-11-04 2015-11-18 株式会社Nttドコモ 受信器
CN106856461B (zh) * 2015-12-09 2020-02-07 电信科学技术研究院 一种干扰估计方法和设备
CN108400947B (zh) * 2017-02-08 2020-08-14 华为技术有限公司 干扰噪声协方差矩阵估计方法、装置及系统
EP3688882A4 (en) * 2017-09-29 2020-09-16 Telefonaktiebolaget LM Ericsson (PUBL) MULTI-ANTENNA PROCESSING FOR REFERENCE SIGNAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664263A (zh) * 2014-12-11 2017-05-10 华为技术有限公司 用于无线通信网络中的干扰估计的方法和装置
WO2017048273A1 (en) * 2015-09-18 2017-03-23 Intel Corporation Identifying victims and aggressors in full duplex communication systems
CN107204817A (zh) * 2016-03-16 2017-09-26 电信科学技术研究院 一种干扰检测方法及终端
CN110740462A (zh) * 2018-07-18 2020-01-31 中国移动通信有限公司研究院 异常直放站下终端识别方法、装置和计算机可读存储介质
CN110361694A (zh) * 2019-07-18 2019-10-22 天津市德力电子仪器有限公司 一种快速寻找5g信号干扰源的检测定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion and Evaluation on interference measurement", 3GPP DRAFT; R1-113773_INTERFERENCE_MEASUREMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. San Francisco, USA; 20111114 - 20111118, 9 November 2011 (2011-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050562254 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922897A (zh) * 2021-11-18 2022-01-11 国网湖南省电力有限公司 无线干扰源定位方法及定位装置

Also Published As

Publication number Publication date
CN113347702A (zh) 2021-09-03
CN113347702B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
EP2910060B1 (en) Selection of access points for coordinated multipoint uplink reception
US11949474B2 (en) Management of MIMO communication systems
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
JP2022188139A (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
CN110391887B (zh) 信号处理方法及装置
US10523401B2 (en) Method, apparatus, and system for handling co-channel cell interference
WO2016145620A1 (zh) 数据解调方法、装置和系统
WO2021164642A1 (zh) 干扰源定位方法以及相关设备
US10764773B2 (en) Apparatus including an acquirer to acquire a parameter for a user relating to interference cancellation and a controller to perform measurement reporting of a cell in accordance with the parameter
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
EP3673596B1 (en) Method and apparatus for improving resource efficiency in a wireless communication system
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
CN106656877B (zh) 一种干扰消除方法和装置
WO2011157110A2 (zh) 一种协作多点传输方法、设备以及系统
WO2015149709A1 (zh) 一种噪声功率估计方法及网络侧设备
WO2021007810A1 (zh) 预编码的方法和通信设备
WO2021062689A1 (zh) 一种上行传输的方法及装置
US11882620B2 (en) Communication method and apparatus
WO2020186533A1 (zh) 无线链路监测方法、设备和存储介质
EP2692081B1 (en) Selection of a secondary component carrier based on interference information
EP3211952B1 (en) Joint interference rejection method and device, and method and device for realizing uplink comp
WO2018120172A1 (zh) 用于传输信号的方法和网络设备
WO2016065881A1 (zh) 一种高速专用物理控制信道功率偏置配置方法及网络设备
WO2023202575A1 (zh) 一种信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756951

Country of ref document: EP

Kind code of ref document: A1