WO2024012170A1 - Psfch信号检测方法、装置、存储介质及电子装置 - Google Patents

Psfch信号检测方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2024012170A1
WO2024012170A1 PCT/CN2023/101715 CN2023101715W WO2024012170A1 WO 2024012170 A1 WO2024012170 A1 WO 2024012170A1 CN 2023101715 W CN2023101715 W CN 2023101715W WO 2024012170 A1 WO2024012170 A1 WO 2024012170A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
phase
threshold
nack
power
Prior art date
Application number
PCT/CN2023/101715
Other languages
English (en)
French (fr)
Inventor
龙志军
张骏凌
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2024012170A1 publication Critical patent/WO2024012170A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • This application relates to but is not limited to the field of communications.
  • the 3GPP side channel Sidelink communication system is widely used in V2X communication and has currently developed from LTE Sidelink to NR Sidelink.
  • An important development of NR Sidelink compared to LTE Sidelink is to support the Hybrid Automatic Repeat Request (HARQ) process of the Physical Sidelink Shared Channel (PSSCH), in which HARQ information is sent and received between terminals.
  • HARQ Hybrid Automatic Repeat Request
  • PSSCH Physical Sidelink Shared Channel
  • the 3GPP R16 NR protocol defines the Sidelink Physical Side Channel Feedback Channel (Physical Sidelink FeedbackChannel, referred to as PSFCH), which is used by the terminal (User Equipment, referred to as UE) to receive correct ACK or receive incorrect NACK information after receiving the PSSCH channel. Retransmit in HARQ.
  • PSFCH Physical Side Channel Feedback Channel
  • NA sequence Not Active sequence
  • Both the receiving UE and the sending UE use one of the above two methods to send and receive the PSFCH through unified high-level signaling.
  • This application provides a PSFCH signal detection method, device, storage medium and electronic device.
  • a PSFCH signal detection method includes: determining the sum of the weighted powers of the received PSFCH signal and the local NACK sequence; determining the peak phase and peak power according to the sum of the weighted powers. , determine the base power according to the sum of the weighted powers and the peak power, and determine the ratio of the peak power to the base power; determine the output weight of the PSFCH signal according to the peak phase and the ratio, and setting an output state for the PSFCH signal; detecting the PSFCH signal according to the output weight and the output state.
  • a PSFCH signal detection device includes: a first determination module configured to determine the sum of the weighted power of the received PSFCH signal and the local NACK sequence; a second determination module , configured to determine the peak phase and peak power according to the sum of the weighted powers, determine the base power according to the sum of the weighted powers and the peak power, and determine the ratio of the peak power to the base power; the third determination a module configured to determine the output weight of the PSFCH signal based on the peak phase and the ratio, and to set an output state for the PSFCH signal; a detection module configured to compare the output weight with the output state based on the The PSFCH signal is detected.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the storage medium, wherein when the computer program is executed by a processor, it causes the processor to execute any of the tasks described herein. The steps in a method.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to The computer program is run to perform the steps of any of the methods described herein.
  • Figure 1 is a hardware structure block diagram of a mobile terminal according to the PSFCH signal detection method of the present application
  • FIG. 2 is a flow chart of the PSFCH signal detection method according to the present application.
  • Figure 3 is a schematic diagram of a PSFCH receiving and detecting system
  • Figure 4 is a schematic diagram of NACK and NA sequence misdetection performance verification
  • FIG. 5 is a schematic diagram of the PSFCH detection system according to the present application.
  • Figure 6 is a schematic diagram of NACK and NA sequence misdetection performance verification according to the present application.
  • FIG. 7 is a block diagram of a PSFCH signal detection device according to the present application.
  • FIG. 1 is a hardware structure block diagram of the mobile terminal of the PSFCH signal detection method of the present application.
  • the mobile terminal may include one or more (only one is shown in Figure 1)
  • the processor 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a transmission module for communication functions.
  • device 106 and input and output devices 108 are examples of the mobile terminal.
  • the structure shown in Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the PSFCH signal detection method in this application,
  • the processor 102 executes various functional applications and PSFCH signal detection processing by running the computer program stored in the memory 104, that is, the above method is implemented.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned network example may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 2 is a flow chart of the PSFCH signal detection method according to this application. As shown in Figure 2, the process includes the following steps S302 to S308.
  • step S302 the sum of the weighted powers of the received PSFCH signal and the local NACK sequence is determined.
  • step S302 may determine the sum of weighted powers in the following manner:
  • N IFFT is greater than or equal to An integer raised to the Nth power of 2.
  • the sum of weighted powers CIR(k) is also recorded as the cross-correlation result of the received PSFCH signal R(iRx,m) and the local NACK sequence x NACK (m), is the conjugate of the local NACK sequence X NACK (m) on subcarrier m.
  • Step S304 determine the peak phase and peak power based on the sum of weighted powers, determine the base power based on the sum of weighted powers and peak power, and determine the ratio of peak power to base power;
  • step S304 may include:
  • the base power is determined based on the sum of weighted powers and peak power in the following way:
  • CIR(k) is the sum of weighted powers
  • Ph NACK is the peak phase
  • P NACK is the peak power
  • P seq is the base power
  • Det p is the ratio.
  • Step S306 determine the output weight of the PSFCH signal based on the peak phase and ratio, and set (determine) the output state for the PSFCH signal;
  • Step S308 Detect the PSFCH signal according to the output weight and output status.
  • step S306 may include steps S1 and S2.
  • step S1 when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or an NA sequence, based on the peak phase, ratio, phase threshold of the NA sequence and NACK The phase threshold of the sequence determines the output weight of the PSFCH signal and sets the output state for the PSFCH signal.
  • step S2 when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or an ACK sequence, the output weight is determined based on the peak phase, ratio, power threshold of the NACK sequence, power threshold of the NA sequence, and phase threshold of the NACK sequence. , and set the output status for the PSFCH signal.
  • b is the first preset value
  • Th Ph NA is the phase threshold of the NA sequence
  • Th P NA is the power threshold of the NA sequence
  • Ph NACK is the peak phase
  • Det p is the ratio
  • Th Ph is the phase threshold of the NACK sequence.
  • the above-mentioned step S2 may include: when the absolute value abs(Ph NACK ) of the peak phase is less than the phase threshold Th Ph of the NACK sequence; initializing the output weight flag, and initializing the output state flag1 to 0;
  • b is the first preset value
  • b0 is the second preset value
  • b1 is the third preset value.
  • Th p is the power threshold of the NACK sequence
  • Th P is the power threshold of the NA sequence
  • Ph NACK is the peak phase
  • Det p is the ratio
  • Th Ph is the phase threshold of the NACK sequence.
  • step S308 may include steps S3081 and S3082.
  • step S3081 when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or a NA sequence, it is determined that the PSFCH signal is a NACK sequence or a NA sequence according to the output status flag1 and the output weight flag.
  • step S3082 when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or an ACK sequence, it is determined that the PSFCH signal is a NACK sequence or an ACK sequence according to the phase threshold Th Ph of the NACK sequence and the output weight flag.
  • step S3081 may include: determining the decision threshold thD according to the output state flag1, for example, determining whether the output state flag1 is equal to 2; if the judgment result is yes, determining the decision threshold thD to be the fourth preset value th1 ; When the judgment result is no, determine the judgment threshold thD to be the fifth preset value th2, where the fourth preset value th1 and the fifth preset value th2 are not equal and are different preset values; determine the output weight Whether the value flag is greater than the judgment threshold thD; if the judgment result is yes, the PSFCH signal is determined to be a NACK sequence; if the judgment result is no, the PSFCH signal is determined to be an NA sequence.
  • step S3082 may include: determining the decision threshold thD according to the phase threshold Th Ph of the NACK sequence. For example, assigning the phase threshold Th Ph of the NACK sequence to a fourth preset value th1; determining the decision threshold thD to be the fourth preset value. Set the value th1; judge whether the output weight flag is greater than the judgment threshold thD; if the judgment result is yes, confirm The PSFCH signal is determined to be a NACK sequence; if the judgment result is No, the PSFCH signal is determined to be an ACK sequence.
  • the PSFCH transmits the sequence at transmit port 5000 with power factor ⁇ .
  • m 0 , l, l', u, v and mint can all be obtained through signaling. Only the m CS used to calculate ⁇ 1 is related to ACK/NACK and generates ACK and NACK sequences X ACK (n ) and X NACK (n).
  • the R16 NR protocol defines two PSFCH transmission methods : Method 1 NACK sequence Therefore, the difference between NACK and ACK sequences is ⁇ ; method two is NACK sequence The receiving UE obtains the current PSFCH transmission method through signaling.
  • PSFCH is fixedly sent on symbols l'-1 and l'. The same information is transmitted on both symbols.
  • Symbol l'-1 is only used for automatic gain control (Automatic Gain Control, referred to as AGC) at the receiving end. Only symbol l' Used for ACK/NACK information detection on PSFCH.
  • AGC Automatic Gain Control
  • n 0 is pass The value determined by high-level signaling, G(iRx) is the gain calculated by symbol l'-1 on the receiving port iRx, and N 0 (m) is AWGN.
  • the received signal needs to be detected using a known sequence detection method, generally using a known NACK sequence X NACK (n).
  • a known sequence detection method generally using a known NACK sequence X NACK (n).
  • One of the traditional methods for detecting known NACK sequences X NACK (n) is to use the local cross-correlation method to improve the SNR of the detection cost function.
  • N IFFT is greater than or equal to An Nth power number of 2.
  • Ph NACK is compared with the threshold to complete ACK or NACK sequence detection.
  • PSFCH is transmitted using method two, that is, when transmitting a NACK sequence or not transmitting a sequence, it is still applicable after modifying the ACK to a NA sequence based on the sequence detection results.
  • this detection method will misdetect the transmitted NACK sequence as an NA sequence or the NA sequence as a NACK sequence due to the large randomness in the CIR peak after the correlation between the local sequence and the received AWGN.
  • the probability of false detection is high.
  • the traditional method is to introduce an absolute threshold of the CIR peak relative to the noise floor to reduce the probability of false detection. For this reason, a new cost function is introduced.
  • FIG. 3 is a schematic diagram of the PSFCH reception and detection system in the related art. As shown in Figure 3, in order to simultaneously reduce the false detection probability of the NACK sequence and the NA sequence to ⁇ 1%, it is necessary to adjust the two thresholds Th Ph in the above new decision. Adjusting with Th p , the simulation results of the next NR Sidelink typical channel under this threshold are shown in Figure 4.
  • Figure 4 is a schematic diagram of NACK and NA sequence misdetection performance verification based on related technologies. As shown in Figure 4, the performance needs to be improved.
  • the fundamental reason for the poor performance of the PSFCH detection system when transmitting PSFCH method 2, that is, transmitting NACK or NA sequences, is that the CIR peak position and size of the AWGN sequence under low SNR are random and cause greater interference. The above judgment.
  • FIG. 5 is a schematic diagram of the PSFCH detection system according to the present application. As shown in Figure 5, it mainly includes: dot multiplication of the received PSFCH signal and the local NACK sequence, zero padding, IFFT, and weighted power summation to obtain the weighted power sum CIR. (k), calculate the peak phase, peak power and base power based on CIR(k), please refer to the above calculation method, which will not be described again here.
  • Weighted state calculation may include: when the PSFCH transmission sequence is ACK/NACK: The phase cost function output Ph NACK is directly output to the weight, and the state flag1 is output at the same time.
  • the phase cost function output Ph NACK and the power cost function output Det p are respectively the same as the phase threshold Th Ph and power threshold Th p corresponding to the NACK sequence, and the phase threshold Th Ph corresponding to the NA sequence, NA is compared with the power threshold Th P, NA to calculate the output weight flag of Ph NACK and Det p in one or two states.
  • the weight is calculated using different weight coefficients b, b0 and b1 in different states. And the phase and power confidence in different states are introduced to participate in the weight calculation, and state flag1 is output at the same time.
  • Adaptive decision when the PSFCH transmission sequence is an ACK or NACK sequence: use the output weight flag and th1 to compare to obtain the judgment that the currently received PSFCH signal is ACK or NACK; when the PSFCH transmission sequence is a NACK or NA sequence: based on the output status flag1
  • the fourth preset value th1 or the fifth preset value th2 is selected as the threshold and compared with the output weight flag to obtain a judgment that the currently received PSFCH signal is NACK or NA.
  • phase cost function output Ph NACK and power cost function output Det p of the PSFCH received signal are obtained through the above method, where the calculation method of Ph NACK and Det p is the same as the above calculation method.
  • the following steps are used in the weighted state calculation module to obtain the flag and flag1 outputs:
  • output weight flag initial value
  • output state flag1 0
  • the input and output weight flag and output state flag1, the fourth preset value th1 and the fifth preset value th2 are input and output, and the adaptive decision is made as follows: The way to get the judgment result Det:
  • FIG. 7 is a block diagram of the PSFCH signal detection device according to this application.
  • the device includes: a first determination module 72 configured to determine the received PSFCH The sum of the weighted powers of the signal and the local NACK sequence; the second determination module 74 is configured to determine the peak phase and peak power according to the sum of the weighted powers, determine the base power according to the sum of the weighted powers and the peak power, and Determine the ratio of the peak power to the base power; a third determination module 76 is configured to determine the output weight of the PSFCH signal according to the peak phase and the ratio, and set an output state for the PSFCH signal; The detection module 78 is configured to detect the PSFCH signal according to the output weight and the output state.
  • the third determination module 76 includes: a first determination sub-module configured to determine, according to the peak phase, the ratio, The phase threshold of the NA sequence and the phase threshold of the NACK sequence determine the output weight of the PSFCH signal, and set the output state for the PSFCH signal; the second determination sub-module is configured to indicate in high-layer signaling
  • the PSFCH signal is a NACK sequence or an ACK sequence
  • the PSFCH signal is determined based on the peak phase, the ratio, the power threshold of the NACK sequence, the power threshold of the NA sequence, and the phase threshold of the NACK sequence.
  • the output weight of the PSFCH signal, and setting the output state for the PSFCH signal is configured to indicate in high-layer signaling
  • the first determination sub-module is further configured to initialize the output weight flag, and initialize the output state flag1 to 0;
  • b is the first preset value
  • Th Ph NA is the phase threshold of the NA sequence
  • Th P NA is the power threshold of the NA sequence
  • Ph NACK is the peak phase
  • Det p is the ratio
  • Th Ph is the phase of the NACK sequence threshold.
  • the second determination sub-module is further configured to initialize the output weight flag and initialize the output when the absolute value of the peak phase is less than the phase threshold of the NACK sequence.
  • Status flag1 is 0;
  • b is the first preset value
  • b0 is the second preset value
  • b1 is the third preset value.
  • Th p is the power threshold of the NACK sequence
  • Th P NA is the power threshold of the NA sequence
  • Ph NACK is the peak phase
  • Det p is the ratio
  • Th Ph is the phase threshold of the NACK sequence.
  • the detection module 78 includes: a judgment submodule configured to determine based on the output status flag1 and the output weight flag when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or an NA sequence.
  • the PSFCH signal is NACK sequence or NA sequence;
  • the determination submodule is configured to determine the NACK sequence or NA sequence according to the phase threshold Th Ph of the NACK sequence and the output weight flag when the higher layer signaling indicates that the PSFCH signal is a NACK sequence or an ACK sequence.
  • the PSFCH signal is a NACK sequence or an ACK sequence.
  • the determination sub-module includes: a first determination unit configured to determine thD according to the output state flag1; a first determination unit configured to determine whether the output weight flag is greater than the decision threshold thD ; The second determination unit is configured to determine that the PSFCH signal is the NACK sequence if the determination result is yes; determine that the PSFCH signal is the NA sequence if the determination result is no.
  • the first determination unit is further configured to determine whether the output state flag1 is equal to 2; if the determination result is yes, determine the determination threshold thD to be the fourth preset value th1; If the judgment result is no, the judgment threshold thD is determined to be the fifth preset value th2, wherein the fourth preset value th1 and the fifth preset value th2 are not equal and are different preset values. .
  • the determination sub-module includes: a third determination unit configured to determine the decision threshold thD according to the phase threshold Th Ph of the NACK sequence; a second determination unit configured to determine whether the output weight flag is greater than the judgment threshold thD; a fourth determination unit is configured to determine that the PSFCH signal is the NACK sequence when the judgment result is yes; when the judgment result is no, determine that the PSFCH signal is the Described ACK sequence.
  • the third determining unit is further configured to assign the phase threshold Th Ph of the NACK sequence to a fourth preset value th1; determine the decision threshold thD to be the fourth preset value th1 .
  • the first determination module 72 is further configured to determine the sum of the weighted powers of the received PSFCH signal and the local NACK sequence in the following manner:
  • CIR(k) is the sum of weighted powers at time point k
  • R(iRx,m) is the receiving end
  • the PSFCH signal received on iRx and subcarrier m is the conjugate of the local NACK sequence on the subcarrier m
  • iRx minG is the receiving port with the minimum gain
  • G(iRx) is the gain determined by the symbol l'-1 on the receiving port iRx
  • k 0,1,...,N IFFT -1
  • M 0,1,...,N IFFT -1.
  • the ratio of the peak power to the base power is determined by: Wherein, CIR(k) is the sum of the weighted powers, Rh NACK is the peak phase, P NACK is the peak power, P seq is the base power, and Det p is the ratio.
  • This application also provides a computer-readable storage medium that stores a computer program, wherein when the computer program is run by a processor, it causes the processor to perform the steps in any of the above methods. .
  • the above-mentioned computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • the present application also provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above methods.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • the sum of the weighted powers of the received PSFCH signal and the local NACK sequence is determined; the peak phase and peak power are determined according to the sum of the weighted powers, the base power is determined according to the sum of the weighted powers and the peak power, and the peak power is determined The ratio to the base power; determine the output weight of the PSFCH signal based on the peak phase and ratio, and set the output state; detect the PSFCH signal based on the output weight and output state, which can solve the problem of low signal-to-noise ratio of the received signal in related technologies
  • the received PSFCH signal is detected through the output weight and output state determined by the peak phase and ratio, which reduces the probability of false detection of the PSFCH signal.
  • modules or steps of the present application can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种物理侧信道反馈信道PSFCH信号检测方法、装置、存储介质及电子装置,该方法包括:确定接收到的PSFCH信号与本地NACK序列的加权功率之和;根据该加权功率之和确定峰值相位和峰值功率,根据该加权功率之和、该峰值功率确定基底功率,并确定该峰值功率与该基底功率的比值;根据该峰值相位和该比值确定该PSFCH信号的输出权值,并为PSFCH信号设置输出状态;根据该输出权值与该输出状态对该PSFCH信号进行检测。

Description

PSFCH信号检测方法、装置、存储介质及电子装置
相关申请的交叉引用
本申请要求2022年7月11日提交给中国专利局的第202210808598.1号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本申请涉及但不限于通信领域。
背景技术
3GPP侧信道Sidelink通信系统广泛用于V2X通信,目前从LTE Sidelink发展到了NR Sidelink。NR Sidelink相对LTE Sidelink一个重要的发展是支持物理侧信道共享信道(Physical Sidelink Shared Channel,简称为PSSCH)的混合自动重传请求(Hybrid Automatic Repeat reQuest,简称为HARQ)过程,其中终端间HARQ信息收发通过NR Sidelink新增的PSFCH实现。
3GPP R16 NR协议定义了Sidelink的物理侧信道反馈信道(Physical Sidelink FeedbackChannel,简称为PSFCH)用于终端(User Equipment,简称为UE)接收PSSCH信道后向发送UE反馈接收正确ACK或接收错误NACK信息用于HARQ重传。发射方法有两种:方法一为接收UE发射NACK或ACK序列向发送UE反馈PSSCH的接收错误(NACK序列)或接收正确(ACK序列)信息;方法二为接收UE发射NACK序列或不发射任何信息(Not Active序列,简称为NA序列)向发送UE反馈PSSCH的接收错误(NACK序列)或接收正确(NA序列)信息。接收UE和发送UE均通过统一的高层信令使用上述两种方法中的一种进行发送和接收PSFCH。
在接收信号的信噪比(SignalNoise Ratio,简称为SNR)即放大器的输入信号的功率较低时,由于本地序列和接收加性白高斯噪声(AdditiveWhiteGaussian Noise,简称为AWGN)相关后的CIR(Channel Impulse Response)峰值存在较大随机性而导致检测性能下 降。尤其是使用方法二发射PSFCH时,由于NA序列中只包含AWGN因此在低SNR下将发射NACK序列误检为NA序列或将NA序列误检为NACK序列的误检概率较高。
针对相关技术中接收信号的信噪比较低时,PSFCH信号的误检概率较高的问题,尚未提出解决方案。
发明内容
本申请提供了一种PSFCH信号检测方法、装置、存储介质及电子装置。
根据本申请的一个方面,提供了一种PSFCH信号检测方法,所述方法包括:确定接收到的PSFCH信号与本地NACK序列的加权功率之和;根据所述加权功率之和确定峰值相位和峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值;根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态;根据所述输出权值与所述输出状态对所述PSFCH信号进行检测。
根据本申请的又一个方面,还提供了一种PSFCH信号检测装置,所述装置包括:第一确定模块,配置为确定接收到的PSFCH信号与本地NACK序列的加权功率之和;第二确定模块,配置为根据所述加权功率之和确定峰值相位和峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值;第三确定模块,配置为根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态;检测模块,配置为根据所述输出权值与所述输出状态对所述PSFCH信号进行检测。
根据本申请的又一个方面,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时,使得处理器执行本文所述任一项方法中的步骤。
根据本申请的又一个方面,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为 运行所述计算机程序以执行本文所述任一项方法中的步骤。
附图说明
图1是本申请的PSFCH信号检测方法的移动终端的硬件结构框图;
图2是根据本申请的PSFCH信号检测方法的流程图;
图3是一种PSFCH接收检测系统的示意图;
图4是一种NACK和NA序列误检性能验证的示意图;
图5是根据本申请的PSFCH检测系统的示意图;
图6是根据本申请的NACK和NA序列误检性能验证的示意图;
图7是根据本申请的PSFCH信号检测装置的框图。
具体实施方式
下文中将参考附图并结合实施方式来详细说明本申请的实施方式。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请中所提供的方法可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请的PSFCH信号检测方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请中的PSFCH信号检测方法对应的计算机程序, 处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及PSFCH信号检测处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本申请中提供了一种运行于上述移动终端或网络架构的PSFCH信号检测方法,图2是根据本申请的PSFCH信号检测方法的流程图,如图2所示,该流程包括如下步骤S302至S308。
在步骤S302,确定接收到的PSFCH信号与本地NACK序列的加权功率之和。
在一个实施方式中,上述步骤S302可以通过以下方式确定加权功率之和:
接收端口iRx、子载波m上接收PSFCH频域信号R(iRx,m)和子载波m上的本地NACK序列的共轭按子载波点乘后进行NIFFT点的IFFT(Invert Fast Fourier Transformation,逆快速傅里叶变换),每个时间k上的IFFT结果求模平方按接收端口iRx权值biRx加权求和获得时间点k上加权功率之和CIR(k),公式如下:
其中NIFFT为大于或等于的一个2的N次方整数。
上式中,收端口iRx权值为:为最小增益的接收端口,G(iRx)为接收端口iRx上通过符号l’-1确定的增益,为第六预设值,k=0,1,...,NIFFT-1,m=0,1,...,NIFFT-1。加权功率之和CIR(k)又记为接收的PSFCH信号R(iRx,m)和本地NACK序列xNACK(m)的互相关结果,为子载波m上本地NACK序列XNACK(m)的共轭。
步骤S304,根据加权功率之和确定峰值相位和峰值功率,根据加权功率之和、峰值功率确定基底功率,并确定峰值功率与基底功率的比值;
在一个实施方式中,上述步骤S304可以包括:
从该加权功率之和CIR(k)在时间点k范围内搜位置极大值,将该位置极大值确定为该峰值相位,其中,k=0,1,...,NIFFT-1,为第六预设值;
从该加权功率之和CIR(k)在时间点k范围内搜索功率极大值,将该功率极大值确定为峰值功率;
通过以下方式,根据加权功率之和、峰值功率确定基底功率:
通过以下方式,确定该峰值功率与该基底功率的比值:
其中,CIR(k)为该加权功率之和,PhNACK为该峰值相位,PNACK为该峰值功率,Pseq为该基底功率,Detp为该比值。
步骤S306,根据峰值相位和比值确定PSFCH信号的输出权值,并为PSFCH信号设置(确定)输出状态;
步骤S308,根据输出权值与输出状态对PSFCH信号进行检测。
在一个实施方式中,上述步骤S306可以包括步骤S1和S2。
在步骤S1,在高层信令指示该PSFCH信号为NACK序列或NA序列的情况下,根据峰值相位、比值、NA序列的相位阈值及NACK 序列的相位阈值确定PSFCH信号的输出权值,并为PSFCH信号设置输出状态。
在步骤S2,在高层信令指示该PSFCH信号为NACK序列或ACK序列的情况下,根据峰值相位、比值、NACK序列的功率阈值、NA序列的功率阈值及NACK序列的相位阈值确定该输出权值,并为PSFCH信号设置输出状态。
上述步骤S1可以包括:初始化输出权值flag为初始值,并初始化输出状态flag1为0;在峰值相位的绝对值abs(PhNACK)大于或等于NA序列的相位阈值ThPh,NA的情况下,通过以下方式确定PSFCH信号的输出权值flag:flag=-b*c2/c1,输出状态flag1不变;在比值小于或等于NA序列的功率阈值DetP=ThP,NA的情况下,将输出状态flag1置为1,通过以下方式确定PSFCH信号的输出权值flag:flag=-b*c2*c1;
其中,b为第一预设值,ThPh,NA为该NA序列的相位阈值,ThP,NA为该NA序列的功率阈值,PhNACK为该峰值相位,Detp为该比值,ThPh为该NACK序列的相位阈值。
上述步骤S2可以包括:在峰值相位的绝对值abs(PhNACK)小于NACK序列的相位阈值ThPh的情况下;初始化所述输出权值flag,并初始化所述输出状态flag1为0;
若比值大于NACK序列的功率阈值Detp>Thp,输出状态flag1不变;在输出权值flag等于初始值的情况下,若峰值相位的绝对值abs(PhNACK)小于该NA序列的相位阈值ThPh,NA,flag=b0*c2*c0;若峰值相位的绝对值abs(PhNACK)大于或等于NA序列的相位阈值ThPh,NA,flag=b*c2*c0;在flag不等于初始值的情况下,若该峰值相位的绝对值abs(PhNACK)小于该NA序列的相位阈值ThPh,NA,flag=flag+b0*c2*c0;若该峰值相位的绝对值abs(PhNACK)大于或等于该NA序列的相位阈值ThPh,NA,flag=flag+b*c2*c0;
若比值小于或等于NACK序列的功率阈值DetP=ThP,flag1=flag1+1;在flag等于初始值的情况下,若峰值相位的绝对值 abs(PhNACK)小于NA序列的相位阈值ThPh,NA,flag=b1*c2*c0;若峰值相位的绝对值abs(PhNACK)大于或等于该NA序列的相位阈值ThPh,NA,flag=b*c2*c0;在flag不等于初始值的情况下,若峰值相位的绝对值abs(PhNACK)小于该NA序列的相位阈值ThPh,NA,flag=flag+b1*c2*c0;若峰值相位的绝对值abs(PhNACK)大于或等于该NA序列的相位阈值ThPh,NA,flag=flag+b*c2*c0;
其中,b为第一预设值,b0为第二预设值,b1为第三预设值,Thp为NACK序列的功率阈值,ThP,NA为NA序列的功率阈值,PhNACK为峰值相位,Detp为比值,ThPh为NACK序列的相位阈值。
本实施方式中,上述步骤S308可以包括步骤S3081和S3082。
在步骤S3081,在高层信令指示PSFCH信号为NACK序列或NA序列的情况下,根据输出状态flag1与输出权值flag确定所述PSFCH信号为NACK序列或NA序列。
在步骤S3082,在高层信令指示PSFCH信号为NACK序列或ACK序列的情况下,根据NACK序列的相位阈值ThPh与输出权值flag确定PSFCH信号为NACK序列或ACK序列。
进一步的,上述步骤S3081可以包括:根据输出状态flag1确定判决门限thD,示例性的,判断输出状态flag1是否等于2;在判断结果为是的情况下,确定判决门限thD为第四预设值th1;在判断结果为否的情况下,确定判决门限thD为第五预设值th2,其中,第四预设值th1与第五预设值th2不相等、为不同的预设值;判断输出权值flag是否大于该判决门限thD;在判断结果为是的情况下,确定PSFCH信号为NACK序列;在判断结果为否的情况下,确定PSFCH信号为NA序列。
进一步的,上述步骤S3082可以包括:根据NACK序列的相位阈值ThPh确定判决门限thD,示例性的,将NACK序列的相位阈值ThPh赋值第四预设值th1;确定判决门限thD为第四预设值th1;判断输出权值flag是否大于该判决门限thD;在判断结果为是的情况下,确 定PSFCH信号为NACK序列;在判断结果为否的情况下,确定PSFCH信号为ACK序列。
在一个实施方式中,PSFCH在发射端口5000以功率因子βPSFCH发送序列。
上式中m0、l、l’、u、v和mint等均可通过信令获得,唯独计算α1用的mCS和ACK/NACK有关而分别产生ACK和NACK序列XACK(n)和XNACK(n)。
R16 NR协议定义了两种PSFCH发射方法:方法一NACK序列XNACK(n)用mCS=0、ACK序列XACK(n)用mCS=6,由于所以NACK和ACK序列相差为π;方法二为NACK序列XNACK(n)用mCS=0、ACK序列不发送记为NA序列。接收UE通过信令获取当前PSFCH是哪种发射方法。
PSFCH固定在符号l’-1和l’上发送,两个符号上发射同样的信息,符号l’-1只用于接收端自动增益控制(Automatic Gain Control,简称为AGC),只有符号l’用于PSFCH上ACK/NACK信息检测。
假设经过第iRx端口上、符号l’收到的子载波m上的频域PSFCH信号为:
上式中,n0为通 过高层信令确定的值,G(iRx)为接收端口iRx上通过符号l’-1计算的增益,N0(m)为AWGN。
不论PSFCH使用哪种方法发射,均需要使用已知序列检测方法对接收信号进行检测,一般使用已知NACK序列XNACK(n)进行。对已知NACK序列XNACK(n)进行检测的传统方法之一为使用和本地互相关的方法来提升检测代价函数的SNR。
上式中,表示CIR(k)在k范围内搜索极大值并输出其对应k值。
为接收频域序列和本地已知NACK序列XNACK(m)互相关的结果,其中NIFFT为大于或等于的一个2的N次方数。
当PSFCH采用方法一发射,即发射ACK或NACK序列时,将PhNACK和门限进行比较完成ACK或NACK序列检测。
PSFCH采用方法二发射,即发射NACK序列或不发射序列时,根据序列检测结果将ACK修改为NA序列后仍然适用。但这种检测方法在接收信号SNR较低时,由于本地序列和接收AWGN相关后的CIR峰值存在较大随机性而导致将发射NACK序列误检为NA序列或将NA序列误检为NACK序列的误检概率较高,传统方法为引入CIR峰值相对底噪的绝对门限来降低误检概率,为此引入新的代价函数。


上式中表示对函数CIR(k)在k范围内搜索极大值并输出,PNACK表示互相关结果CIR(k)的峰值功率,Pseq表示互相关结果CIR(k)去除峰值功率PNACK后的基底功率。引入新的判决,如下所示:

上式中Thp=4为经验值。图3是根据相关技术中的PSFCH接收检测系统的示意图,如图3所示,为同时降低NACK序列和NA序列的误检概率<1%,需对上述新的判决中的两个门限ThPh和Thp进行调整,该门限下的下一个NR Sidelink典型信道的仿真结果,图4是根据相关技术的NACK和NA序列误检性能验证的示意图,如图4所示,性能还需提升。如图3所示,PSFCH检测系统在发射PSFCH方法二下,即发射NACK或NA序列时性能不好的根本原因是低SNR下AWGN序列的CIR峰值位置和大小均存在随机性而较大干扰了上述的判决。
针对上述问题,本申请可以NR Sidelink接收端在复杂度增加不多的情况下较好地接收PSFCH,尤其较大提升PSFCH发射NACK/NA序列时的接收检测性能。图5是根据本申请的PSFCH检测系统的示意图,如图5所示,主要包括:接收到的PSFCH信号与本地NACK序列进行点乘、补零、IFFT、加权功率求和得到加权功率之和CIR(k),基于CIR(k)进行峰值相位、峰值功率以及基底功率计算,参见以上计算方式,在此不再赘述。
加权状态计算,可以包括:当PSFCH发射序列为ACK/NACK: 相位代价函数输出PhNACK直接输出到权值上,同时输出状态flag1。
当PSFCH发射序列为NACK/NA序列时:相位代价函数输出PhNACK和功率代价函数输出Detp分别和对应NACK序列的相位门限ThPh和功率门限Thp、及对应NA序列的相位门限ThPh,NA和功率门限ThP,NA进行对比计算PhNACK和Detp在1个或2个状态下的输出权值flag,该权值在不同的状态下使用不同的权系数b、b0和b1计算、且引入不同状态下的相位和功率置信度参与权值计算,同时输出状态flag1。
自适应判决,当PSFCH发射序列为ACK或NACK序列:使用输出权值flag和th1进行比较获得目前接收PSFCH信号为ACK或NACK的判断;当PSFCH发射序列为NACK或NA序列时:根据输出状态flag1选择第四预设值th1或第五预设值th2作为门限和输出权值flag进行比较,获得目前接收PSFCH信号为NACK或NA的判断。
如图5所示,通过上述方式获得PSFCH接收信号的相位代价函数输出PhNACK和功率代价函数输出Detp,其中,PhNACK和Detp的计算方法与上述计算方式相同。
当接收端从高层信令获得当前PSFCH接收信号含有NACK或NA序列时,在加权状态计算模块中使用如下步骤获得flag和flag1输出:
1,输入峰值相位PhNACK和比值Detp、NACK状态的相位门限ThPh和功率门限Thp、NA状态的相位门限ThPh,NA和功率门限ThP,NA、权系数b、b0和b1;
2,重置输出权值和输出状态:输出权值flag=初始值;输出状态flag1=0;
3,计算NACK状态相位和功率置信度:
4,计算NA状态功率置信度:
5,通过以下方式一计算输出权值和设置输出状态。
6,通过以下方式二计算输出权值和设置输出状态。

7,自适应判决,包括:
当接收端从高层信令获得当前PSFCH接收信号含有NACK或NA序列时,输入输出权值flag和输出状态flag1、第四预设值th1和第五预设值th2,进行自适应判决,使用如下方式得到判决结果Det:
当接收端从高层信令获得当前PSFCH接收信号含有ACK或NACK序列时,如图5所示,通过计算设置输出权值flag=PhNACK和输出状态flag1=3;获得判决结果:
在NR Sidelink通信系统中,当PSFCH信号为NACK序列或NA序列时,使用图5所示的PSFCH检测方案,并设定确定输出权值、输出状态以及判决结果Det需要的各经验值:NIFFT=32,th1=1000、th2=100、b=1000、b0=2000、b1=4000、和ThP,NA=5.5,图6是根据本申请的NACK和NA序列误检性能验证的示意图,如 图6所示,在NACK和NA序列误检概率=1%的SNR为6.7dB。而传统检测方法在NACK和NA序列的误检率=1%的SNR为10dB,如图4所示,新检测方法比相关技术的方法SNR要求降低了3.3dB。
本申请还提供了一种PSFCH信号检测装置,图7是根据本申请的PSFCH信号检测装置的框图,如图7所示,所述装置包括:第一确定模块72,配置为确定接收到的PSFCH信号与本地NACK序列的加权功率之和;第二确定模块74,配置为根据所述加权功率之和确定峰值相位和峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值;第三确定模块76,配置为根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态;检测模块78,配置为根据所述输出权值与所述输出状态对所述PSFCH信号进行检测。
在一实施方式中,第三确定模块76包括:第一确定子模块,配置为在高层信令指示所述PSFCH信号为NACK序列或NA序列的情况下,根据所述峰值相位、所述比值、所述NA序列的相位阈值及所述NACK序列的相位阈值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置所述输出状态;第二确定子模块,配置为在高层信令指示所述PSFCH信号为NACK序列或ACK序列的情况下,根据所述峰值相位、所述比值、所述NACK序列的功率阈值、所述NA序列的功率阈值及所述NACK序列的相位阈值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置所述输出状态。
在一实施方式中,所述第一确定子模块,还配置为初始化所述输出权值flag,并初始化所述输出状态flag1为0;
在所述峰值相位的绝对值大于或等于所述NA序列的相位阈值abs(PhNACK)≥ThPh,NA的情况下,通过以下方式确定所述输出权值flag:flag=-b*c2/c1,所述输出状态flag1不变;
在所述比值小于或等于所述NA序列的功率阈值DetP≤ThP,NA的情况下,将所述输出状态flag1置为1,通过以下方式确定所述输出权值flag:flag=-b*c2*c1;
其中,b为第一预设值,ThPh,NA为所述NA序列的相位阈值,ThP,NA为所述NA序列的功率阈值,PhNACK为所述峰值相位,Detp为所述比值,ThPh为所述NACK序列的相位阈值。
在一实施方式中,所述第二确定子模块,还配置为在所述峰值相位的绝对值小于所述NACK序列的相位阈值的情况下,初始化所述输出权值flag,并初始化所述输出状态flag1为0;
若所述比值大于所述NACK序列的功率阈值Detp>Thp,所述输出状态flag1不变;
在所述输出权值flag等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=b0*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=b*c2*c0;
在flag不等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=flag+b0*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=flag+b*c2*c0;
若所述比值小于或等于所述NACK序列的功率阈值DetP≤ThP,flag1=flag1+1;
在flag等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=b1*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=b*c2*c0;
在flag不等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=flag+b1*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=flag+b*c2*c0;
其中,b为第一预设值,b0为第二预设值,b1为第三预设值,
Thp为所述NACK序列的功率阈值,ThP,NA为所述NA序列的功率阈值,PhNACK为所述峰值相位,Detp为所述比值,ThPh为所述NACK序列的相位阈值。
在一实施方式中,检测模块78包括:判断子模块,配置为在高层信令指示所述PSFCH信号为NACK序列或NA序列的情况下,根据所述输出状态flag1与所述输出权值flag确定所述PSFCH信号为 NACK序列或NA序列;确定子模块,配置为在高层信令指示所述PSFCH信号为NACK序列或ACK序列的情况下,根据所述NACK序列的相位阈值ThPh与所述输出权值flag确定所述PSFCH信号为NACK序列或ACK序列。
在一实施方式中,所述判断子模块包括:第一确定单元,配置为根据所述输出状态flag1确定thD;第一判断单元,配置为判断所述输出权值flag是否大于所述判决门限thD;第二确定单元,配置为在判断结果为是的情况下,确定所述PSFCH信号为所述NACK序列;在判断结果为否的情况下,确定所述PSFCH信号为所述NA序列。
在一实施方式中,所述第一确定单元,还配置为判断所述输出状态flag1是否等于2;在判断结果为是的情况下,确定所述判决门限thD为第四预设值th1;在判断结果为否的情况下,确定所述判决门限thD为第五预设值th2,其中,所述第四预设值th1与所述第五预设值th2不相等、为不同的预设值。
在一实施方式中,所述确定子模块包括:第三确定单元,配置为根据所述NACK序列的相位阈值ThPh确定判决门限thD;第二判断单元,配置为判断所述输出权值flag是否大于所述判决门限thD;第四确定单元,配置为在判断结果为是的情况下,确定所述PSFCH信号为所述NACK序列;在判断结果为否的情况下,确定所述PSFCH信号为所述ACK序列。
在一实施方式中,所述第三确定单元,还配置为将所述NACK序列的相位阈值ThPh赋值于第四预设值th1;确定所述判决门限thD为所述第四预设值th1。
在一实施方式中,第一确定模块72,还配置为通过以下方式确定接收到的PSFCH信号与本地NACK序列的加权功率之和:

其中,CIR(k)为时间点k上的加权功率之和,R(iRx,m)为接收端 口iRx、子载波m上所述接收到的所述PSFCH信号,为所述子载波m上所述本地NACK序列的共轭,iRxminG为最小增益的接收端口,G(iRx)为接收端口iRx上通过符号l’-1确定的增益,为第六预设值,k=0,1,...,NIFFT-1,M=0,1,...,NIFFT-1。
在一实施方式中,第二确定模块74,还配置为从所述加权功率之和CIR(k)在时间点k范围内搜位置极大值,将所述位置极大值确定为所述峰值相位,其中,k=0,1,...,NIFFT-1,为第六预设值;从所述加权功率之和CIR(k)在时间点k范围内搜索功率极大值,将所述功率极大值确定为峰值功率;通过以下方式,根据所述加权功率之和、所述峰值功率确定所述基底功率:
通过以下方式,确定所述峰值功率与所述基底功率的所述比值:其中,CIR(k)为所述加权功率之和,RhNACK为所述峰值相位,PNACK为所述峰值功率,Pseq为所述基底功率,Detp为所述比值。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序由处理器运行时,使得所述处理器执行上述任一项方法中的步骤。
在一个示例性实施方式中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法中的步骤。
在一个示例性实施方式中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
装置实施方式的示例可以参考上述实施方式及示例性实施方式中所描述的示例,在此不再赘述。
通过本申请,确定接收到的PSFCH信号与本地NACK序列的加权功率之和;根据所述加权功率之和确定峰值相位和峰值功率,根据加权功率之和、峰值功率确定基底功率,并确定峰值功率与基底功率的比值;根据峰值相位和比值确定PSFCH信号的输出权值,并设置输出状态;根据输出权值与输出状态对PSFCH信号进行检测,可以解决相关技术中接收信号的信噪比较低时,PSFCH信号的误检概率较高的问题,通过峰值相位和比值确定的输出权值、输出状态的对接收到的PSFCH信号进行检测,降低了PSFCH信号的误检概率。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的示例性实施方式而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种物理侧信道反馈信道PSFCH信号检测方法,包括:
    确定接收到的PSFCH信号与本地NACK序列的加权功率之和;
    根据所述加权功率之和确定峰值相位和峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值;
    根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态;
    根据所述输出权值与所述输出状态对所述PSFCH信号进行检测。
  2. 根据权利要求1所述的方法,其中,根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态包括:
    在高层信令指示所述PSFCH信号为NACK序列或NA序列的情况下,根据所述峰值相位、所述比值、所述NA序列的相位阈值及所述NACK序列的相位阈值确定所述输出权值,并为所述PSFCH信号设置所述输出状态;
    在高层信令指示所述PSFCH信号为NACK序列或ACK序列的情况下,根据所述峰值相位、所述比值、所述NACK序列的功率阈值、所述NA序列的功率阈值及所述NACK序列的相位阈值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置所述输出状态。
  3. 根据权利要求2所述的方法,其中,根据所述峰值相位、所述比值、所述NA序列的相位阈值及所述NACK序列的相位阈值确定所述输出权值,并为所述PSFCH信号设置所述输出状态包括:
    初始化所述输出权值flag,并初始化所述输出状态flag1为0;
    在所述峰值相位的绝对值大于或等于所述NA序列的相位阈值的情况下,通过以下方式确定所述输出权值flag:flag=-b*c2/c1,所述输出状态flag1不变;
    在所述比值小于或等于所述NA序列的功率阈值的情况下,将所述输出状态flag1置为1,通过以下方式确定所述输出权值flag: flag=-b*c2*c1;
    其中,b为第一预设值,ThPh,NA为所述NA序列的相位阈值,ThP,NA为所述NA序列的功率阈值,PhNACK为所述峰值相位,DetP为所述比值,ThPh为所述NACK序列的相位阈值。
  4. 根据权利要求2所述的方法,其中,根据所述峰值相位、所述比值、所述NACK序列的功率阈值、所述NA序列的功率阈值及所述NACK序列的相位阈值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置所述输出状态包括:
    在所述峰值相位的绝对值小于所述NACK序列的相位阈值的情况下,初始化所述输出权值flag,并初始化所述输出状态flag1为0;
    若所述比值大于所述NACK序列的功率阈值,所述输出状态flag1不变;
    在所述输出权值flag等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=b0*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=b*c2*c0;
    在所述输出权值flag不等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=flag+b0*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=flag+b*c2*c0;
    若所述比值小于或等于所述NACK序列的功率阈值,flag1=flag1+1;
    在所述输出权值flag等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=b1*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=b*c2*c0;
    在所述输出权值flag不等于初始值的情况下,若所述峰值相位的绝对值小于所述NA序列的相位阈值,flag=flag+b1*c2*c0;若所述峰值相位的绝对值大于或等于所述NA序列的相位阈值,flag=flag+b*c2*c0;
    其中,b为第一预设值,b0为第二预设值,b1为第三预设值, ThP为所述NACK序列的功率阈值,ThP,NA为所述NA序列的功率阈值,PhNACK为所述峰值相位,DetP为所述比值,ThPh为所述NACK序列的相位阈值。
  5. 根据权利要求1所述的方法,其中,根据所述输出权值与所述输出状态对所述PSFCH信号进行检测包括:
    在高层信令指示所述PSFCH信号为NACK序列或NA序列的情况下,根据所述输出状态flag1与所述输出权值flag确定所述PSFCH信号为所述NACK序列或所述NA序列;
    在高层信令指示所述PSFCH信号为NACK序列或ACK序列的情况下,根据所述NACK序列的相位阈值ThPh与所述输出权值flag确定所述PSFCH信号为所述NACK序列或所述ACK序列。
  6. 根据权利要求5所述的方法,其中,根据所述输出状态flag1与所述输出权值flag确定所述PSFCH信号为NACK序列或NA序列包括:
    根据所述输出状态flag1确定判决门限thD;
    判断所述输出权值flag是否大于所述判决门限thD;
    在判断结果为是的情况下,确定所述PSFCH信号为所述NACK序列;
    在判断结果为否的情况下,确定所述PSFCH信号为所述NA序列。
  7. 根据权利要求6所述的方法,其中,根据所述输出状态flag1确定所述判决门限thD包括:
    判断所述输出状态flag1是否等于2;
    在判断结果为是的情况下,确定所述判决门限thD为第四预设值th1;
    在判断结果为否的情况下,确定所述判决门限thD为第五预设值th2,其中,所述第四预设值th1与所述第五预设值th2不相等。
  8. 根据权利要求5所述的方法,其中,根据所述NACK序列的相位阈值ThPh与所述输出权值flag确定所述PSFCH信号为所述NACK 序列或所述ACK序列包括:
    根据所述NACK序列的相位阈值ThPh确定判决门限thD;
    判断所述输出权值flag是否大于所述判决门限thD;
    在判断结果为是的情况下,确定所述PSFCH信号为所述NACK序列;
    在判断结果为否的情况下,确定所述PSFCH信号为所述ACK序列。
  9. 根据权利要求8所述的方法,其中,根据所述NACK序列的相位阈值ThPh确定所述判决门限thD包括:
    将所述NACK序列的相位阈值ThPh赋值第四预设值th1;
    确定所述判决门限thD为所述第四预设值th1。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    通过以下方式确定接收到的PSFCH信号与本地NACK序列的加权功率之和:

    其中,CIR(k)为时间点k上的加权功率之和,R(iRx,m)为接收端口iRx、子载波m上接收到的所述PSFCH信号,为所述子载波m上所述本地NACK序列的共轭,iRxminG为最小增益的接收端口,G(iRx)为所述接收端口iRx上确定的增益,为第六预设值,k=0,1,...,NIFFT-1,m=0,1,...,NIFFT-1。
  11. 根据权利要求1至9中任一项所述的方法,其中,根据所述加权功率之和确定所述峰值相位和所述峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值包括:
    从所述加权功率之和CIR(k)在时间点k范围内搜位置极大值,将所述位置极大值确定为所述峰值相位,其中,k=0,1,...,NIFFT-1,为第六预设值;
    从所述加权功率之和CIR(k)在所述时间点k范围内搜索功率极大值,将所述功率极大值确定为峰值功率;
    通过以下方式,根据所述加权功率之和、所述峰值功率确定所述基底功率:
    通过以下方式,确定所述峰值功率与所述基底功率的所述比值:
    其中,PNACK为所述峰值功率,Pseq为所述基底功率,DetP为所述比值。
  12. 一种物理侧信道反馈信道PSFCH信号检测装置,其中,所述装置包括:
    第一确定模块,配置为确定接收到的PSFCH信号与本地NACK序列的加权功率之和;
    第二确定模块,配置为根据所述加权功率之和确定峰值相位和峰值功率,根据所述加权功率之和、所述峰值功率确定基底功率,并确定所述峰值功率与所述基底功率的比值;
    第三确定模块,配置为根据所述峰值相位和所述比值确定所述PSFCH信号的输出权值,并为所述PSFCH信号设置输出状态;
    检测模块,配置为根据所述输出权值与所述输出状态对所述PSFCH信号进行检测。
  13. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时,使得所述处理器执行所述权利要求1至11任一项中所述的方法。
  14. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至11任一项中所述的方法。
PCT/CN2023/101715 2022-07-11 2023-06-21 Psfch信号检测方法、装置、存储介质及电子装置 WO2024012170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210808598.1 2022-07-11
CN202210808598.1A CN114884626B (zh) 2022-07-11 2022-07-11 一种psfch信号检测方法、装置、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2024012170A1 true WO2024012170A1 (zh) 2024-01-18

Family

ID=82683419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101715 WO2024012170A1 (zh) 2022-07-11 2023-06-21 Psfch信号检测方法、装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN114884626B (zh)
WO (1) WO2024012170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884626B (zh) * 2022-07-11 2022-11-08 深圳市中兴微电子技术有限公司 一种psfch信号检测方法、装置、存储介质及电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148738A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
CN102577158A (zh) * 2009-07-20 2012-07-11 艾色拉公司 自适应发射反馈
CN114245972A (zh) * 2019-08-14 2022-03-25 现代自动车株式会社 在支持侧链通信的通信系统中发送和接收harq响应的方法和装置
CN114884626A (zh) * 2022-07-11 2022-08-09 深圳市中兴微电子技术有限公司 一种psfch信号检测方法、装置、存储介质及电子装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678510B (zh) * 2019-03-29 2024-04-26 联想(新加坡)私人有限公司 会话管理功能导出的核心网络辅助无线电接入网络参数
US20220191725A1 (en) * 2019-04-02 2022-06-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing ack/nack feedback based on reference signal received power and related wireless devices
CN111082908B (zh) * 2019-06-05 2023-04-07 中兴通讯股份有限公司 信息的传输方法、装置、存储介质及电子装置
US11864167B2 (en) * 2019-10-02 2024-01-02 Qualcomm Incorporated Concurrent physical sidelink feedback channel detection
CN112788562B (zh) * 2019-11-08 2022-08-30 大唐移动通信设备有限公司 一种信息反馈、重传方法及终端
KR20210104531A (ko) * 2020-02-17 2021-08-25 삼성전자주식회사 무선 통신 시스템에서 v2x 통신을 위해 효율적으로 psfch를 송수신하는 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148738A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
CN102577158A (zh) * 2009-07-20 2012-07-11 艾色拉公司 自适应发射反馈
CN114245972A (zh) * 2019-08-14 2022-03-25 现代自动车株式会社 在支持侧链通信的通信系统中发送和接收harq响应的方法和装置
CN114884626A (zh) * 2022-07-11 2022-08-09 深圳市中兴微电子技术有限公司 一种psfch信号检测方法、装置、存储介质及电子装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer procedures for NR sidelink", 3GPP DRAFT; R1-2003566, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885347 *
XIAO-QIANG QIAO, CAI YUE-MING, XIN X U, XU YOU-YUN: "Joint iterative decision feedback channel estimation and detection for Turbo coded V-BLAST MIMO-OFDM systems", JOURNAL ON COMMUNICATIONS, RENMIN YOUDIAN CHUBANSHE, BEIJING, CN, vol. 27, no. 1, 25 January 2006 (2006-01-25), CN , pages 103 - 108, XP093127327, ISSN: 1000-436X, DOI: 10.3321/j.issn:1000-436X.2006.01.018 *

Also Published As

Publication number Publication date
CN114884626A (zh) 2022-08-09
CN114884626B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US10631179B2 (en) HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection
RU2477004C2 (ru) Проверка правильности обнаружения подтверждения приема по схеме н-аrq посредством комбинирования данных и повторного декодирования
RU2354059C2 (ru) Способ и устройство передачи данных по беспроводной локальной сети
US10659209B2 (en) System and method for low latency acknowledgements
EP1496639A2 (en) Hybrid automatic repeat request combining method and system in orthogonal frequency division multiplexing system
WO2015154573A1 (zh) Dtx检测方法、装置及基站
WO2024012170A1 (zh) Psfch信号检测方法、装置、存储介质及电子装置
EP2304909B1 (en) Methods and systems for improving frame decoding performance using known information
US20150071276A1 (en) System and Method for Performing Hybrid Automatic Repeat Request (HARQ) in a WLAN System
US9774479B2 (en) Communicating data using backscatter modulation
WO2021218378A1 (zh) 背向散射通信方法及设备
WO2021143632A1 (zh) 数据传输方法、装置、第一通信节点和第二通信节点
CN108400830A (zh) 一种信息传输方法、装置及系统
CN113890679B (zh) 信号调制方法、装置、电子设备及计算机可读存储介质
WO2021249481A1 (zh) 数据传输方法、装置、发射机、接收机及存储介质
TWI698147B (zh) 資料單元處理方法和通信設備
JP2002261726A (ja) Ofdm信号送受信装置
CN109451572B (zh) 基于arq协议的非正交多址接入网络安全传输方法
CN107241168B (zh) 信号传输/控制方法/系统,存储介质、发送端及接收端
EP3654567B1 (en) Method and apparatus for transmitting control information
JPH01129628A (ja) 時間ダイバーシチ送受信方式
JP5602767B2 (ja) 再送信回数で選択された変調および符号化スキームのロバストさを高めることによって、再送信信頼性を向上するための方法およびシステム
TW201025951A (en) Method and apparatus for scaling demodulated symbols for fixed point processing
EP3231117B1 (en) Enhanced performance hybrid-arq
WO2019029213A1 (zh) 传输参数获取、数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838664

Country of ref document: EP

Kind code of ref document: A1