WO2019029213A1 - 传输参数获取、数据传输方法和装置 - Google Patents

传输参数获取、数据传输方法和装置 Download PDF

Info

Publication number
WO2019029213A1
WO2019029213A1 PCT/CN2018/087044 CN2018087044W WO2019029213A1 WO 2019029213 A1 WO2019029213 A1 WO 2019029213A1 CN 2018087044 W CN2018087044 W CN 2018087044W WO 2019029213 A1 WO2019029213 A1 WO 2019029213A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication device
parameter
dmrs
transmission
Prior art date
Application number
PCT/CN2018/087044
Other languages
English (en)
French (fr)
Inventor
薛祎凡
王达
王键
刘云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019029213A1 publication Critical patent/WO2019029213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and provides a transmission parameter acquisition, data transmission method and apparatus.
  • an authorization-based data transmission method includes the following steps: the terminal device first requests an uplink data transmission scheduling permission from the network device, and if the uplink data transmission scheduling permission is obtained, the transmission resource and the transmission parameter indicated in the scheduling permission are sent to the network device. Data, so that the network device can correctly decode the data, ensuring the reliability of data transmission.
  • the process in which the terminal device acquires the uplink data transmission scheduling permission takes a long time and affects the speed of the uplink data transmission.
  • 5G fifth generation mobile communication system
  • 5G a Grant-free data transmission method is proposed.
  • the terminal device In the unlicensed data transmission mode, when there is data to be transmitted, the terminal device does not need to request the uplink data transmission scheduling permission from the network device, but selects the transmission resource in the pre-configured resource pool to directly perform data transmission, thereby improving the data. The speed of the transfer.
  • the network device when the network device receives multiple data at the same time, the network device cannot distinguish each data, which affects the data transmission.
  • the embodiment of the present application provides a transmission parameter acquisition, a data transmission method, and a device, which are used to solve the data transmission mode in an unauthorized manner.
  • a network device receives multiple data at the same time, the network device cannot distinguish each data, and affects the data. The problem of transmission.
  • the embodiment of the present application provides a method for acquiring a transmission parameter, which is applied to a side of a first communication device, and includes:
  • the first communication device when receiving the data, may determine the transmission parameter of the data according to the DMRS corresponding to the data, so that different data may be distinguished according to the transmission parameters of each data, and the data transmission mode in the unauthorized manner is solved.
  • the first communication device receives a plurality of data at the same time, the first communication device cannot distinguish the respective data, which affects the problem of data transmission.
  • the transmission parameter includes at least one of an identifier of a hybrid automatic repeat request HARQ process used by the second communication device to transmit data, and a number of transmission times of the second communication device to transmit data.
  • the first parameter corresponding to the DMRS is used to indicate a transmission parameter, and the first parameter is a parameter used when the second communication device generates the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and specifically includes:
  • the first parameter corresponding to the DMRS has a first mapping relationship with the transmission parameter.
  • the process of acquiring the transmission parameter according to the DMRS can be simplified, and the acquisition speed of the transmission parameter can be improved, compared to directly adopting the DMRS indication transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends data, and the first parameter is a parameter used by the second communication device to generate the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, including:
  • the identifier of the HARQ process has a corresponding relationship with the resource occupied by the second communication device in sending data under the first sending times;
  • the resource used by the second communication device to transmit data under the first number of transmissions is related to the current number of times the data is transmitted.
  • the transmission parameters of the data are determined, and the demand for the DMRS is reduced.
  • the resource occupied by the second communication device when transmitting data under the current number of transmissions is that the second communication device sends data under the first number of transmissions.
  • the resources used at the time are the same as the first number of times of transmission.
  • the resource used by the second communication device to transmit data in the first number of times of transmission is related to the current number of times of data transmission, and specifically includes:
  • the resource occupied by the second communication device for transmitting data under the first transmission times is related to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions.
  • the transmission parameter acquisition method before the first communication device receives the data sent by the second communication device, the transmission parameter acquisition method further includes:
  • the index value indication information includes an index value that can be adopted by the second communication device when transmitting data; and the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the amount of transmitted data can be reduced.
  • the index value indication information includes: a starting index value and a number of index values.
  • the amount of transmitted data can be reduced by using the initial index value and the number of index values to indicate the index value that can be employed by the second communication device.
  • the transmission parameter acquisition method before the first communication device receives the data sent by the second communication device, the transmission parameter acquisition method further includes:
  • the first parameter set includes a first parameter that the second communications device can use when transmitting data.
  • the transmission parameter acquisition method before the first communication device receives the data sent by the second communication device, the transmission parameter acquisition method further includes:
  • the first communication device sends the first mapping relationship to the second communication device.
  • the transmission parameter acquisition method before the first communication device receives the data sent by the second communication device, the transmission parameter acquisition method further includes:
  • the first communication device sends a second mapping relationship to the second communication device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the first communications device sends the first mapping relationship to the second communications device, including:
  • First communication device broadcast/multicast first mapping relationship
  • the first communication device transmits the first mapping relationship to the second communication device using the second communication device specific signaling.
  • the first communications device sends the second mapping relationship to the second communications device, specifically:
  • First communication device broadcast/multicast second mapping relationship
  • the first communication device transmits the second mapping relationship to the second communication device using the second communication device specific signaling.
  • mapping relationship By broadcasting/multicasting the mapping relationship, the transmission method of the mapping relationship can be simplified. By employing the second communication device specific signaling, other second communication devices are prevented from receiving irrelevant information.
  • the embodiment of the present application further provides a data transmission method, which is applied to a second network device side, and includes:
  • the transmission parameters include at least one of an identifier of a HARQ process used to transmit data and a current number of times data is transmitted.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times of data transmission is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • Sending data and data corresponding to the DMRS to the first communication device including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first number of transmissions.
  • the first resource is related to the resource used for sending the data in the first number of times of sending, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the data transmission method before determining the DMRS corresponding to the data according to the transmission parameter of the data to be transmitted, the data transmission method further includes:
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the data transmission method before determining the DMRS corresponding to the data according to the transmission parameter of the data to be transmitted, the data transmission method further includes:
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the data transmission method before determining the DMRS corresponding to the data according to the transmission parameter of the data to be transmitted, the data transmission method further includes:
  • the data transmission method before determining the DMRS corresponding to the data according to the transmission parameter of the data to be transmitted, the data transmission method further includes:
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the data transmission method before determining the DMRS corresponding to the data according to the transmission parameter of the data to be transmitted, the data transmission method further includes:
  • the data transmission method before the first communication device receives the data sent by the second communication device, the data transmission method further includes:
  • the embodiment of the present application provides a transmission parameter acquisition apparatus, which is a first communication device, and the transmission parameter acquisition apparatus has a function of implementing the foregoing transmission parameter acquisition method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the transmission parameter obtaining apparatus includes:
  • a receiving module configured to receive data sent by the second communications device
  • the transmission parameter obtaining module is configured to determine a transmission parameter of the data according to the demodulation reference signal DMRS corresponding to the data, where the transmission parameter is used to distinguish the data received by the first communication device.
  • the transmission parameter includes at least one of an identifier of a hybrid automatic repeat request HARQ process used by the second communication device to transmit data, and a number of transmission times of the second communication device to transmit data.
  • the first parameter corresponding to the DMRS is used to indicate a transmission parameter, and the first parameter is a parameter used when the second communication device generates the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and specifically includes:
  • the first parameter corresponding to the DMRS has a first mapping relationship with the transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, and the first parameter is a parameter used by the second communication device to generate the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, including:
  • the identifier of the HARQ process has a corresponding relationship with the resource occupied by the second communication device in sending data under the first sending times;
  • the resource occupied by the second communication device for transmitting data under the first number of transmissions is related to the current number of times of data transmission;
  • the first parameter is a parameter used when the second communication device generates the DMRS.
  • the resource occupied by the second communication device when transmitting data under the current number of transmissions is that the second communication device sends data under the first number of transmissions.
  • the resources used at the time are the same as the first number of times of transmission.
  • the resource used by the second communication device to transmit data in the first number of times of transmission is related to the current number of times of data transmission, and specifically includes:
  • the resource used by the second communication device to transmit data under the first number of transmissions is related to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions.
  • the transmission parameter obtaining device further includes:
  • a sending module configured to send, to the second communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be adopted by the second communication device when transmitting data; and the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the transmission parameter obtaining device further includes:
  • a sending module configured to send a first parameter set to the second communications device
  • the first parameter set includes a first parameter that the second communications device can use when transmitting data.
  • the transmission parameter obtaining device further includes:
  • a sending module configured to send a first mapping relationship to the second communications device.
  • the transmission parameter obtaining device further includes:
  • a sending module configured to send a second mapping relationship to the second communications device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the sending module is specifically configured to: broadcast/multicast the first mapping relationship; or send the first mapping relationship to the second communications device by using the second communications device specific signaling.
  • the sending module is specifically configured to: broadcast/multicast the second mapping relationship; or send the second mapping relationship to the second communications device by using the second communications device specific signaling.
  • the embodiment of the present application provides a data transmission apparatus, as a second communication device, the data transmission apparatus has a function of implementing the foregoing data transmission method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the data transmission apparatus includes:
  • a DMRS determining module configured to determine, according to a transmission parameter of the data to be transmitted, a DMRS corresponding to the data
  • a sending module configured to send, to the first communications device, a DMRS corresponding to the data and the data; where the transmitting parameter is used to enable the first communications device to distinguish the received data.
  • the transmission parameters include at least one of an identifier of a HARQ process used to transmit data and a current number of times data is transmitted.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times of data transmission is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • Sending data and data corresponding to the DMRS to the first communication device including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first number of transmissions.
  • the first resource is related to the resource used for sending the data in the first number of times of sending, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the data transmission device further includes:
  • a receiving module configured to receive, by the first communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the data transmission device further includes:
  • a receiving module configured to receive a first parameter set sent by the first communications device
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the data transmission device further includes:
  • a receiving module configured to receive a first mapping relationship sent by the first communications device.
  • the data transmission device further includes:
  • the receiving module is configured to receive a second mapping relationship sent by the first communications device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the data transmission device further includes:
  • a receiving module configured to receive a first mapping relationship of the first communication device broadcast/multicast
  • the data transmission device further includes:
  • a receiving module configured to receive a second mapping relationship of the first communication device broadcast/multicast
  • the embodiment of the present application provides a communication device, as a first communication device, the communication device has a function of implementing the foregoing transmission parameter acquisition method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the communications device includes:
  • a receiver configured to receive data sent by the second communication device
  • a processor configured to determine a transmission parameter of the data according to the demodulation reference signal DMRS corresponding to the data, where the transmission parameter is used to distinguish the data received by the first communication device.
  • the transmission parameter includes at least one of an identifier of a hybrid automatic repeat request HARQ process used by the second communication device to transmit data, and a number of transmission times of the second communication device to transmit data.
  • the first parameter corresponding to the DMRS is used to indicate a transmission parameter, and the first parameter is a parameter used when the second communication device generates the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and specifically includes:
  • the first parameter corresponding to the DMRS has a first mapping relationship with the transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, and the first parameter is a parameter used by the second communication device to generate the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, including:
  • the identifier of the HARQ process has a corresponding relationship with the resource occupied by the second communication device in sending data under the first sending times;
  • the resource occupied by the second communication device for transmitting data under the first number of transmissions is related to the current number of times of data transmission;
  • the first parameter is a parameter used when the second communication device generates the DMRS.
  • the resource occupied by the second communication device when transmitting data under the current number of transmissions is that the second communication device sends data under the first number of transmissions.
  • the resources used at the time are the same as the first number of times of transmission.
  • the resource used by the second communication device to transmit data in the first number of times of transmission is related to the current number of times of data transmission, and specifically includes:
  • the resource occupied by the second communication device for transmitting data under the first transmission times is related to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions.
  • the communication device further includes:
  • a transmitter configured to send, to the second communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be adopted by the second communication device when transmitting data; and the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the communication device further includes:
  • a transmitter configured to send a first parameter set to the second communications device
  • the first parameter set includes a first parameter that the second communications device can use when transmitting data.
  • the communication device further includes:
  • a transmitter configured to send a first mapping relationship to the second communications device.
  • the communication device further includes:
  • a transmitter configured to send a second mapping relationship to the second communications device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the transmitter is specifically configured to: broadcast/multicast the first mapping relationship; or send the first mapping relationship to the second communication device by using the second communication device specific signaling.
  • the transmitter is specifically configured to: broadcast/multicast the second mapping relationship; or send the second mapping relationship to the second communication device by using the second communication device specific signaling.
  • the embodiment of the present application provides a communication device, as a second communication device, having the function of implementing the foregoing data method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the communications device includes:
  • a processor configured to determine, according to a transmission parameter of the data to be transmitted, a DMRS corresponding to the data
  • a transmitter configured to send, to the first communications device, a DMRS corresponding to the data and the data; where the transmission parameter is used to enable the first communications device to distinguish the received data.
  • the transmission parameters include at least one of an identifier of a HARQ process used to transmit data and a current number of times data is transmitted.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times of data transmission is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • Sending data and data corresponding to the DMRS to the first communication device including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first number of transmissions.
  • the first resource is related to the resource used for sending the data in the first number of times of sending, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the communication device further includes:
  • a receiver configured to receive at least one of the following information sent by the first communications device: the index value indication information and the third mapping relationship;
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the communication device further includes:
  • a receiver configured to receive a first parameter set sent by the first communications device
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the communication device further includes:
  • a receiver configured to receive a first mapping relationship sent by the first communications device.
  • the communication device further includes:
  • a receiver configured to receive a second mapping relationship sent by the first communications device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the communication device further includes:
  • a receiver configured to receive a first mapping relationship of the first communication device broadcast/multicast
  • the communication device further includes:
  • a receiver configured to receive a second mapping relationship of the first communication device broadcast/multicast
  • the embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the first communication device, and includes a program designed to execute the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the second communication device, and includes a program designed to execute the second aspect.
  • an embodiment of the present application provides a computer program product, comprising instructions for causing a computer to perform the functions performed by the first communication device in the first aspect described above when the computer program is executed by the computer.
  • an embodiment of the present application provides a computer program product, comprising: instructions that, when executed by a computer, cause the computer to perform the functions performed by the second communication device in the second aspect above.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a network device to implement the functions involved in the foregoing first aspect, for example, generating or processing the foregoing method. Data and / or information.
  • the chip system further includes a memory for storing program instructions and data necessary for the first communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a terminal device to implement the functions involved in the foregoing second aspect, for example, generating or processing the method involved in the foregoing method. Data and / or information.
  • the chip system further includes a memory for storing necessary program instructions and data for the second communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a data transmission system comprising the first communication device as described in the above third aspect, the second communication device as described in the above fourth aspect.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 2 of the present application;
  • FIG. 4 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic diagram of resource occupancy in a method for acquiring transmission parameters according to Embodiment 4 of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission method according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic structural diagram of a transmission parameter obtaining apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application.
  • the network architecture provided by this embodiment includes a network device 10 and at least one terminal device 20.
  • the network device 10 is a device that accesses the terminal device to the wireless network, and may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE communication system, or a relay station or an access point, or a future 5G.
  • the base station in the network, or the macro base station, the micro base station, the hotspot, the home base station, the transmission point, and the like are not limited herein.
  • FIG. 1 is a schematic diagram showing a possible schematic diagram, and the network device is taken as an example for a base station.
  • the terminal device 20 may be a wireless terminal, which may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone), a laptop, a hand. Rings, smart watches, data cards, sensors, and computers with mobile terminals, for example, can be portable, pocket, handheld, computer built, or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • RAN Radio Access Network
  • FIG. 1 schematically depicts a possible schematic diagram in which the terminal device is a mobile phone as an example.
  • the wristband can also be regarded as the terminal device 20, and the mobile phone is regarded as a network device.
  • an authorization-based data transmission method is usually adopted.
  • the terminal device needs to perform multiple rounds of signaling interaction with the network device before transmitting the uplink data, so as to obtain the dedicated resources and the transmission parameters of the uplink data required for transmitting the uplink data from the network device side.
  • the network device transmits uplink data on dedicated resources to avoid interference and ensure the reliability of the transmission.
  • the terminal device adopts the transmission resources and transmission parameters specified by the network device, ensuring that the network device can correctly distinguish different data.
  • a fifth-generation mobile communication system (5th Generation, 5G) proposes a Grant-free data transmission method.
  • the terminal device In the unlicensed data transmission mode, when there is data to be transmitted, the terminal device does not need to request the uplink data transmission scheduling permission from the network device, but selects the transmission resource in the pre-configured resource pool to directly perform data transmission, thereby improving the data. The speed of the transfer.
  • the network device In the unlicensed data transmission mode, when the network device receives multiple data at the same time, the network device cannot distinguish each data, which affects the data transmission.
  • the embodiment of the present application provides a transmission parameter acquisition method and a data transmission method.
  • the transmission parameter acquisition method when the first communication device receives the data sent by the second communication device, the transmission parameter of the data is determined according to the DMRS corresponding to the data, so that each data can be distinguished.
  • the second communication device In the data transmission method, the second communication device generates a DMRS according to the transmission parameter of the data, and sends the DMRS and the data to the first communication device, so that the first communication device determines the transmission parameter of the data according to the DMRS corresponding to the data, so that the data can be distinguished.
  • FIG. 2 is a schematic flowchart diagram of a method for acquiring a transmission parameter according to Embodiment 1 of the present application.
  • the executive body of the method is a first communication device, such as a network device.
  • the embodiment relates to the first communication device determining the data transmission parameter according to the DMRS corresponding to the data when receiving the data sent by the second communication device.
  • the method includes:
  • the first communication device receives data transmitted by the at least one second communication device, and/or the first communication device receives a plurality of data transmitted on one of the second communication devices.
  • the data transmission adopts an unlicensed data transmission manner. Therefore, the first communication device cannot indicate the transmission parameters of each data to the second communication device before the second communication device transmits the data, and thus cannot distinguish the data.
  • the transmission path between the first communication device and the second communication device may affect the data.
  • the second communication device first receives the DMRS corresponding to the data, and further, according to the influence of the transmission path on the DMRS, the first communication
  • the signal of the data transmitted by the device is processed to reduce the bit error rate of data demodulation.
  • different data can be assigned different DMRSs so that the first communication device can identify different data according to different DMRSs.
  • the transmission parameter obtaining method provided by the embodiment of the present application includes: the first communication device receives the data sent by the second communication device, determines the transmission parameter of the data according to the DMRS corresponding to the data, and the transmission parameter is used to distinguish the data received by the first communication device. .
  • the first communication device when receiving the data, may determine the transmission parameter of the data according to the DMRS corresponding to the data, so that different data may be distinguished according to the transmission parameters of each data.
  • the problem that the first communication device cannot distinguish the respective data when the first communication device receives the plurality of data at the same time in the data transmission mode of the unauthorized license is solved, which affects the problem of data transmission.
  • the transmission parameter includes at least one of an identifier of a HARQ process used by the second communications device to send data, and a number of times the second communications device sends data.
  • HARQ technology when the second communication device has data to be transmitted, in order to ensure the reliability of data transmission, HARQ technology may be employed. Specifically, the second communication device starts a HARQ process to perform transmission of the data.
  • HARQ technology is a technology that combines forward error correction coding (FEC) technology and Automatic Repeat reQuest (ARQ) technology.
  • the receiving end of the data ie, the first communication device
  • the receiving end requests the sending end (that is, the second communication device) to resend the data through the ARQ mechanism.
  • the receiving end uses an error detection code, usually a CRC check, to detect if the received data packet is in error. If there is no error, the receiving end will send a positive acknowledgment (ACK) to the sender, and after receiving the ACK, the sender will send the next packet.
  • ACK positive acknowledgment
  • the receiver will discard the packet and send a negative acknowledgment (NACK) to the sender. After receiving the NACK, the sender will resend the same data.
  • NACK negative acknowledgment
  • the received error data packet can be stored in a HARQ buffer, and the requesting end is retransmitted, and combined with the subsequently received retransmitted data packet, thereby obtaining a more reliable data packet than the individual decoding (this is The process is called a soft merge process). Then, the combined data packet is decoded. If the decoding fails, the process of "requesting retransmission and soft combining" is repeated until the decoding succeeds or the maximum number of retransmissions K of the data is reached, and K is an integer greater than 1.
  • the HARQ process uses the stop-and-wait protocol to send data. After sending a data, it stops and waits for the confirmation message fed back by the receiver. Since the process of waiting for confirmation information can take a long time, the sender of the data can use multiple parallel HARQ processes. When using multiple parallel HARQ processes for data transmission, the receiving end needs to confirm which HARQ process the received data comes from.
  • a HARQ process number HPN, also known as HARQ process ID
  • HPN also known as HARQ process ID
  • the transmission parameter may be an identifier of the HARQ process employed when the second communication device transmits data.
  • the first communication device determines the transmission parameter of the data according to the DMRS, and may determine, for the first communication device, the identifier of the HARQ process used by the second communication device to transmit data according to the DMRS.
  • the data may be repeatedly transmitted K times.
  • the first communication device needs to confirm which transmission data is received, that is, the number of times the second communication device transmits data, that is, the current number of times the data is transmitted. Therefore, the transmission parameter can also be the number of times the second communication device transmits the data.
  • the first communication device determines the transmission parameter of the data according to the DMRS, and may determine, for the first communication device, the number of times the second communication device transmits the data according to the DMRS.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter.
  • the manner in which the transmission parameters are determined according to the DMRS is described in detail in this embodiment.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and the first parameter is the parameter used when the second communication device generates the DMRS.
  • FIG. 3 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 2 of the present application.
  • the method for acquiring a transmission parameter in this embodiment includes:
  • the first communications device receives data sent by the second communications device.
  • S301 is the same as S201 in the embodiment shown in FIG. 2, and details are not described herein again.
  • the first communications device determines a first parameter according to the DMRS corresponding to the data.
  • the first parameter is a parameter used by the second communications device to generate the DMRS.
  • both DFT-s-OFDM and CP-OFDM waveforms may be adopted.
  • the two different waveforms correspond to different DMRSs.
  • the DMRS sequence is exemplified according to one Zadoff Chu-based sequence generation. Specifically, the DMRS sequence is generated based on the base sequence R1. Different DMRS are sequences of different cyclic shifts of the base sequence.
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the sequence used by the DMRS is the sequence R1 ⁇ after the cyclic shift of R1, where ⁇ is a cyclic shift value, wherein ⁇ is the pi, and N cs is the minimum granularity of the cyclic displacement, which is related to the operating frequency band, the subcarrier spacing, and the like.
  • Exemplary are related to cell-specific configuration parameters, current OFDM symbols (or slot numbers, or subframe numbers), subcarrier spacing, and the like.
  • the parameters of all second communication devices using the DFT-s-OFDM waveform for uplink unlicensed data transmission on the same OFDM symbol the same.
  • the parameter specific to the second communication device is referred to as the first parameter.
  • the possible value is a set that is configured by the first communication device to the second communication device.
  • the DMRS sequence is exemplarily generated from the base sequence R2(c(g)).
  • c(g) is a pseudo-random sequence
  • different DMRSs are distinguished by different pseudo-random sequences.
  • the pseudo-random sequence c(g) may illustratively be a gold sequence generated from two pseudo-random sequences x 1 (g) and x 2 (g).
  • the initialization parameter of x 1 (g) is a fixed value
  • n (2) is determined by one or more parameters, such as cell-specific configuration parameters, current OFDM symbols (or slot number, or subframe number), subcarrier spacing, and the like. For example, in the same cell, using the same subcarrier spacing, the parameters n (2) of all second communication devices that use the CP-OFDM waveform for uplink grant data transmission on the same symbol are the same.
  • n (1) is a parameter specific to the second communication device and may also be referred to as a first parameter. The possible value of n (1) is a set that is configured by the first communication device to the second communication device.
  • the first parameter is used to indicate a pseudo-random sequence on which the DMRS is based; or to indicate a cyclic shift value of the DMRS. Since the DMRS can be determined according to the first parameter, the first communication device can determine the first parameter value after determining the DMRS corresponding to the data.
  • the first communications device determines a transmission parameter of the data according to the first parameter.
  • the process of determining, by the first communication device, the transmission parameters of the data according to the DMRS is equivalent to the process of determining the transmission parameters of the data according to the first parameters.
  • the transmission parameter is an identifier of the HARQ process used when the second communication device sends data
  • the first communication device determines the identifier of the HARQ process according to the first parameter; and when the transmission parameter is the number of times the second communication device sends the data.
  • the first communication device determines the current number of times the data is transmitted according to the first parameter.
  • the first communications device determines to generate a first parameter of the DMRS according to the DMRS, and then determines the transmission parameter according to the first parameter.
  • the process of acquiring the transmission parameter according to the DMRS can be simplified, and the acquisition speed of the transmission parameter can be improved, compared to directly adopting the DMRS indication transmission parameter.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter.
  • the first parameter corresponding to the DMRS and the transmission parameter have a first mapping relationship.
  • the first communication device determines the transmission parameter of the data according to the DMRS corresponding to the data, and specifically includes:
  • the first communications device determines the first parameter according to the DMRS corresponding to the data, and determines the transmission parameter according to the first parameter and the first mapping relationship.
  • the first parameter has a first mapping relationship with the transmission parameter, so that the transmission parameter is an identifier of the HARQ process, and the first parameter is
  • the first mapping relationship can be as shown in Table 1 below.
  • the first communication device may perform a lookup according to the first parameter in Table 1, and obtain the transmission parameter corresponding to the DMRS.
  • the transmission parameter is the number of times the data is sent
  • the first mapping relationship is similar to that in Table 1, and details are not described herein again.
  • the first parameter is n (1)
  • the first mapping relationship and the first parameter are The first mapping relationship is similar.
  • the first parameters in the following embodiments of the present application are For example, the manner of obtaining the transmission parameters is described in detail, and the case where the first parameter is n (1) is not described again.
  • the first communications device may determine, according to the DMRS, the second communication that sends the data and the corresponding DMRS according to the DMRS. device.
  • the first mapping relationship may be an agreed mapping relationship in the communication standard, or may be pre-configured for the first communication device.
  • the first communications device sends the first mapping relationship to the second communications device.
  • the first communication device sends a first mapping relationship to the second communication device before receiving the data, and sends the updated first mapping relationship to the second communication device when the first mapping relationship is updated.
  • HARQ processes 1 through 6 are HARQ processes running on different second communication devices.
  • the HARQ processes 1 to 3 operate on the second communication device A, and when the data is transmitted on the HARQ process 1, the second communication device A uses To generate a DMRS; when the data is transmitted on the HARQ process 2, the second communication device A uses To generate DMRS; when the data is transmitted on the HARQ process 3, the second communication device A uses To generate DMRS.
  • the HARQ processes 4 to 6 operate on the second communication device B, and when the data is transmitted on the HARQ process 4, the second communication device B uses To generate DMRS; when the data is transmitted on the HARQ process 5, the second communication device B uses To generate a DMRS; when the data is transmitted on the HARQ process 6, the second communication device B uses To generate DMRS.
  • the first communication device may determine a cyclic shift value of the sequence used by the DMRS according to the DMRS corresponding to the data. Further, the first communications device may determine, according to the cyclic shift value, a first parameter used when generating the DMRS Value. According to the first parameter Looking up Table 1 above, the identity of the second communication device transmitting the data and the transmission parameter HARQ process of the data can be determined. For example, the first parameter used by the first communications device to determine the DMRS is generated The first communication device can then determine that the data is transmitted by the second communication device B on the HARQ process 4.
  • the first communication device may send the first parameter set to the second communication device, where the first parameter set includes a first parameter that the second communication device can adopt when transmitting the data.
  • an index of the first parameter may be determined for each first parameter.
  • the first communication device sends at least one of the following to the second communication device: the index value indication information and the index value mapping relationship.
  • the index value indication information includes an index value that can be used by the second communication device when sending data; the index value mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information may include each index value, for example, 0, 1, 2, 3, 4, 5.
  • the index value indication information may include: a starting index value and a number of index values. For example, 0 and 6, where 0 and 6 indicate that the value of the index value is 6 integer values starting from 0.
  • the index value mapping relationship can be as shown in Table 2 below.
  • the identifiers of the HARQ processes in the second communication devices in the first mapping relationship provided in Table 1 are different.
  • the first communications device may combine the index value mapping relationship and the first mapping relationship, and send the information to the second communications device.
  • the merged index value mapping relationship and the first mapping relationship may be as shown in Table 3 below.
  • the index value mapping relationship may be combined with any other mapping relationship including the first parameter.
  • the other possible first mapping relationships in the following embodiments may also be combined with the index value mapping relationship. No longer.
  • Another possible first mapping relationship is as shown in Table 4.
  • the identifiers of the HARQ processes in the second communication device in the first mapping relationship provided in Table 4 may be the same, and the HARQ process may be avoided when the HARQ process is large.
  • the logo of the process is too long.
  • the identifiers of the HARQ processes on different second communication devices may be the same.
  • the mapping between the transmission parameter and the first parameter may also be a sequential mapping, such as the mapping relationship between the transmission parameter of the second communication device A and the first parameter in Table 4, or may be a reverse sequence mapping, such as a table.
  • the identifiers of the HARQ processes running on the second communication device A are 0, 1, and 2, and the identifiers of the HARQ processes running on the second communication device B are also 0, 1, and 2.
  • the second communication device A uses Generating DMRS; when the data is transmitted on the HARQ process 0 of the second communication device B, the second communication device B uses To generate DMRS.
  • the second communication device A uses To generate a DMRS; when the data is transmitted on the HARQ process 1 of the second communication device B, the second communication device B uses To generate DMRS.
  • the second communication device A uses To generate DMRS.
  • the second communication device B uses To generate DMRS.
  • the second communication device B uses To generate DMRS.
  • the first communication device may determine a cyclic shift value of the sequence used by the DMRS according to the DMRS corresponding to the data. Further, the first communications device may determine, according to the cyclic shift value, a first parameter used when generating the DMRS Value. According to the first parameter Looking up Table 4 above, the identity of the transmission parameter HARQ process of the data and the identity of the second communication device transmitting the data can be determined. For example, the first parameter used by the first communications device to determine the DMRS is generated The first communication device can then determine that the data is transmitted by the second communication device B on the HARQ process 0.
  • mapping between the transmission parameter and the first parameter may also be out of order, as shown in Table 5.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter.
  • a specific implementation manner for the first communication device to send a first mapping relationship to the second communication device is described in detail.
  • the first communication device broadcasts/multicasts the first mapping relationship.
  • the first communication device may send the preset first mapping relationship in a broadcast/multicast manner, which simplifies The sending process of the first mapping relationship.
  • the first communication device transmits the first mapping relationship to the second communication device using the second communication device specific signaling.
  • the first communications device may send the preset first mapping relationship using the second communications device specific signaling, avoiding other second communications devices. Receive irrelevant information.
  • the first communication device may split the first mapping relationship in Table 4 according to whether the second communication device corresponding to the first parameter is the same when transmitting.
  • the plurality of sub-mapping relationships for example, the sub-mapping relationship in which the table 4 can be split into the second communication device A is as shown in Table 4-1 below, and the sub-mapping relationship of the second communication device B is as shown in Table 4-2.
  • each of the second communication devices may be directly configured with a first mapping relationship by the first communication device.
  • the first communication device may send only Table 4-1 to the second communication device A according to the identifier of the second communication device A, and the first communication device may send the table 4-2 only to the second according to the identifier of the second communication device B. Communication device B.
  • the first mapping relationship as shown in Table 1 may also be sent using the second communication device specific signaling.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data.
  • the first parameter corresponding to the DMRS has a corresponding relationship with the number of times the second communication device sends the data, and the identifier of the HARQ process used when the second communication device sends the data does not have a mapping relationship. That is, when the first communication device receives the data, the current number of times of data transmission can only be determined according to the first parameter corresponding to the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, and specifically includes: a second mapping relationship between the first parameter corresponding to the DMRS and the number of times the second communication device sends the data.
  • the second mapping relationship is the first mapping relationship in the embodiment shown in FIG. the same.
  • the first parameter in this embodiment is also the same as the first parameter in the embodiment shown in FIG. 3, and details are not described herein again.
  • the second mapping relationship may be an agreed mapping relationship in the communication standard, or may be pre-configured for the first communications device.
  • the first communications device sends a second mapping relationship to the second communications device.
  • the first communication device sends a second mapping relationship to the second communication device before receiving the data, and transmits the updated second mapping relationship to the second communication device when the second mapping relationship is updated.
  • the mapping between the first parameter and the number of times of sending in the second mapping relationship may be a sequential mapping, a reverse order mapping, or an out-of-order mapping.
  • the second mapping relationship may also be exemplified by broadcast/multicast and by means of a second communication device specific signaling. The second mapping relationship can be as shown in Table 6 below.
  • the mapping mode is the second mapping relationship of the sequential mapping.
  • the first communication device may determine a cyclic shift value of the sequence used by the DMRS according to the DMRS corresponding to the data. Further, the first communications device may determine, according to the cyclic shift value, a first parameter used when generating the DMRS Value. According to the first parameter Looking up Table 6 above, the second communication device that sent the data and the current number of transmissions of the data can be determined. For example, the first parameter used by the first communications device to determine the DMRS is generated Then, the first communication device can determine that the data is sent by the second communication device, and the current number of transmissions is 4.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter, and details a manner for determining an identifier of a HARQ process used when the second communication device sends data according to the second mapping relationship.
  • FIG. 4 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 3 of the present application. As shown in FIG. 4, the method for acquiring a transmission parameter includes:
  • the first communications device receives the data sent by the second communications device, and determines the first parameter according to the DMRS corresponding to the data.
  • the first communications device determines a current number of times the data is sent according to the first parameter and the second mapping relationship.
  • the first parameter and the current number of times of sending the data are determined by referring to the description in the foregoing embodiment, which is not described herein.
  • the first communications device determines, according to the current number of times the data is sent, the resource occupied by the second communications device to send data in the first sending times.
  • the first communication device acquires the current number of times of data transmission according to the DMRS corresponding to the data, since the current number of times of data transmission is related to the resource occupied by the second communication device to transmit data under the first number of transmission times, Further, according to the current number of transmissions, determining, by the second communication device, the resources occupied by the data sent by the first transmission times.
  • the first communications device determines an identifier of the HARQ process according to the resource used by the second communications device to send data in the first sending times.
  • the corresponding information of the resource and the HARQ process may be set to enable the first communication device to determine the second communication according to the resource information.
  • the identifier of the HARQ process used by the device to send data may be configured.
  • the first number of transmissions is any one of K repeated transmissions.
  • a correspondence between each of the K times of repeated transmissions of data in all the HARQ processes of the second communication device and the identifier of the HARQ process may be established.
  • the identifier of the HARQ process for transmitting data on the second communication device may be determined according to the resource occupied by the data transmission under the current number of transmissions.
  • the first communications device may determine, according to the DMRS, the second communication that sends the data and the corresponding DMRS according to the DMRS. device.
  • the first communication device generates a second mapping relationship between the first parameter of the DMRS and the number of times the data is sent, and the current number of times of sending the data and the second communication device occupying the data in the first sending times.
  • the relationship between the resources and the mapping relationship between the resources occupied by the second communication device and the HARQ process identifiers transmitted by the first communication number may be determined by first determining the current number of times the data is sent, and then according to the current data transmission. The number of times determines the HARQ process identifier of the second communication device to transmit data to determine the transmission parameters of the data, reducing the demand for the DMRS.
  • the embodiment of the present application further provides a method for acquiring a transmission parameter, and determining, according to the current number of times of data transmission in the embodiment shown in FIG.
  • a specific implementation manner of resources used for transmitting data under the first transmission number is described in detail.
  • determining that the resource used by the second communications device to send data when the current number of times is sent is that the second communications device is in the first sending number of times. The resources used when sending data.
  • the second communication device sends the resource occupied by the data in the first sending times, and the second communication device sends the resource in the current number of times of sending.
  • the resources occupied by the data are related to the transmission mode of the data.
  • FIG. 5 is a schematic flowchart of a method for acquiring a transmission parameter according to Embodiment 4 of the present application.
  • the method for obtaining transmission parameters provided by the foregoing possible implementation manners includes:
  • S501 Receive data sent by the second communications device, and determine a first parameter according to the DMRS corresponding to the data.
  • S506. Determine an identifier of the HARQ process according to the resource used by the second communications device to send data in the first sending times.
  • S501, S502, and S506 in the embodiment shown in FIG. 5 are the same as S401, S402, and S404 in the embodiment shown in FIG. 4, and details are not described herein again.
  • the first communication device compares whether the current number of times of data transmission is the same as the number of times of first transmission.
  • the current number of times of the data is the same as the first number of times of transmission
  • the current number of times of transmission is the first number of times of transmission
  • the resource occupied by the HARQ process of the second communication device when transmitting data under the current number of times is the second communication device.
  • the identifier of the HARQ process is determined according to the mapping relationship between the resource occupied by the second communication device and the HARQ process identifier, and the first communication device sends the number of times according to the received data and the HARQ. The process can distinguish between multiple data received at the same time.
  • the first communication device may only set the first parameter in the first mapping relationship to correspond to the number of times the data of the part is sent. For example, when the number of times of sending data is 1, the first parameter is 0, and the data is sent. When the number of times is 2 to 4, it corresponds to the first parameter 2.
  • the second mapping relationship is shown in Table 7 below.
  • the first communication device when the first communication device receives the data, the first communication device can determine the cyclic shift value of the sequence used by the DMRS according to the DMRS corresponding to the data. Further, the first communications device may determine, according to the cyclic shift value, a first parameter used when generating the DMRS Value. According to the first parameter Looking up Table 7 above, the second communication device that sent the data and the current number of transmissions of the data can be determined. For example, the first parameter used by the first communications device to determine the DMRS is generated Then, the first communication device can determine the second communication device that sends the data and the current number of transmissions of the data is 1. When the first number of transmissions is also 1, the resource that is occupied when the data is sent under the current number of transmissions is the resource occupied when the data is sent under the first transmission times.
  • the number of transmissions with the highest success rate in the K times of repeated transmissions may be counted, and the number of transmissions is used as the first transmission number, a specific first parameter is configured for the number of transmissions, and the data is sent under the number of transmissions.
  • FIG. 6 is a schematic diagram of resource occupancy in a method for acquiring a transmission parameter according to Embodiment 4 of the present application.
  • the second communication is determined according to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions. A specific implementation manner of the resources used by the device to send data under the first transmission times is described in detail.
  • the first communication device receives one data DATA1, and the first communication device determines that the current number of transmissions of DATA1 is 3 according to the DMRS corresponding to DATA1, and the resource occupied by DATA1 when transmitting for the third time is FIG.
  • the first resource block in . That is, the first communication device fails to successfully receive the DATA1 transmitted twice before the second communication device.
  • the first communication device determines a transmission mode of the DATA1, such as a frequency hopping mode, and determines, according to the sending module, the resource occupied by the DATA1 transmission under the first transmission number.
  • the second communication device when the first transmission number is 1, and the transmission mode is A, it can be determined that when the number of transmissions is 1, the second communication device sends the resource occupied by DATA1 to the second resource block in FIG. 6.
  • the A transmission mode may be exemplary without frequency hopping, and each resource block used when data is repeatedly transmitted is continuous in the time domain.
  • the first number of transmissions is 4, the number of times that the number of transmissions is 4 according to the transmission mode of the DATA1 is also determined, and the resource occupied by the second communication device for transmitting the DATA1 is the third resource block in FIG. 6.
  • the first communication device receives a data DATA2, the first communication device determines that the current number of transmissions of DATA2 is 3 according to the DMRS corresponding to DATA2, and the resource occupied by DATA2 when the third transmission is the fourth in FIG. Resource block.
  • the first communication device determines a transmission mode of the DATA2, such as a frequency hopping mode, and determines, according to the transmission module, the resource occupied by the DATA2 transmission under the first transmission number. For example, when the first transmission number is 1, and the transmission mode is B, it can be determined that when the number of transmissions is 1, the resource occupied by the second communication device to transmit DATA2 is the fifth resource block in FIG. 6.
  • the sending mode B may be exemplified by the fact that each data transmission jumps between the first bandwidth portion and the fourth bandwidth portion when the data is repeatedly transmitted, and each resource block that can be used when the data is repeatedly transmitted has a time domain. The preset time interval.
  • the second communication device determines that the second communication device sends DATA1 on the HARQ process 1, in the HARQ process 3 Send DATA2 on.
  • FIG. 6 also shows that the second communication device transmits data on the HARQ process 2, and the transmission mode of the data is different from the transmission mode A and the transmission mode B.
  • FIG. 7 is a schematic flowchart diagram of a data transmission method according to Embodiment 1 of the present application.
  • the executor of the method is a second communication device, such as a terminal device, and the second communication device interacts with the first communication device in the embodiment shown in FIG. 2 to FIG. 6 by performing the data transmission method provided in this embodiment.
  • the embodiment relates to the second communication device determining the DMRS corresponding to the data to be transmitted according to the transmission parameter of the data to be transmitted, and simultaneously transmitting the data and the corresponding DMRS to the first communication device, so that the first communication device determines according to the DMRS.
  • the transmission data of the data is separated from the received data according to the transmission parameters, and has the same technical principles and technical effects as those of the foregoing embodiment.
  • the data transmission method includes:
  • S702 Send a DMRS corresponding to the data and the data to the first communications device.
  • the transmission parameter is used to cause the first communication device to distinguish the received data.
  • the transmission parameter includes at least one of an identifier of the HARQ process and a current number of times the data is sent when the data is sent.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times the data is sent is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • the second communications device sends the DMRS corresponding to the data and the data to the first communications device, including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first sending times.
  • the first resource is related to the resource occupied by sending the data in the first sending times, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the data transmission method provided by the embodiment of the present application further includes:
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the third mapping relationship is an index value mapping relationship.
  • the index value indication information includes: a starting index value and a number of index values.
  • the data transmission method provided by the embodiment of the present application further includes:
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the data transmission method provided by the embodiment of the present application further includes:
  • the data transmission method provided by the embodiment of the present application further includes:
  • the first parameter is used to indicate a pseudo random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the data transmission method provided by the embodiment of the present application further includes:
  • the data transmission method provided by the embodiment of the present application further includes:
  • a further aspect of the present application further provides a transmission parameter obtaining apparatus, which is used as the first communication device, and is configured to perform the transmission parameter obtaining method on the first communication device side in the foregoing embodiment, and has the same technical features and technical effects.
  • FIG. 8 is a schematic structural diagram of a transmission parameter obtaining apparatus according to an embodiment of the present application.
  • the transmission parameter obtaining device may be the first communication device in the embodiment shown in FIG. 2 to FIG. 7 , and the transmission parameter obtaining device may be implemented by software, hardware or a combination of software and hardware.
  • the transmission parameter obtaining apparatus may include:
  • the receiving module 11 is configured to receive data sent by the second communications device.
  • the transmission parameter obtaining module 12 is configured to determine a transmission parameter of the data according to the demodulation reference signal DMRS corresponding to the data, where the transmission parameter is used to distinguish the data received by the first communication device.
  • the transmission parameter includes at least one of an identifier of the hybrid automatic repeat request HARQ process and a number of times the second communication device sends the data to be used when the second communication device sends the data.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and the first parameter is a parameter used when the second communication device generates the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and specifically includes:
  • the first parameter corresponding to the DMRS has a first mapping relationship with the transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, and the first parameter is a parameter used by the second communications device to generate the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, specifically:
  • the identifier of the HARQ process has a corresponding relationship with the resource occupied by the second communication device in sending data under the first sending times;
  • the resource occupied by the second communication device for transmitting data under the first number of transmissions is related to the current number of times of data transmission;
  • the first parameter is a parameter used when the second communication device generates the DMRS.
  • the resource occupied by the second communications device when the data is sent in the current sending times is occupied by the second communications device when sending data in the first sending times. Resources.
  • the resource that is used by the second communications device to send data in the first sending times is related to the current number of times the data is sent, and specifically includes:
  • the resource occupied by the second communication device for transmitting data under the first transmission times is related to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions.
  • the transmission parameter obtaining apparatus further includes:
  • the sending module 13 is configured to send, to the second communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be adopted by the second communication device when transmitting data; and the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the transmission parameter obtaining apparatus further includes:
  • the sending module 13 is configured to send a first parameter set to the second communications device.
  • the first parameter set includes a first parameter that the second communications device can use when transmitting data.
  • the transmission parameter obtaining apparatus further includes:
  • the sending module 13 is configured to send a first mapping relationship to the second communications device.
  • the transmission parameter obtaining apparatus further includes:
  • the sending module 13 is configured to send a second mapping relationship to the second communications device.
  • the first parameter is used to indicate a pseudo random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the sending module 13 is specifically configured to: broadcast/multicast the first mapping relationship; or send the first mapping relationship to the second communications device by using the second communications device specific signaling.
  • the sending module 13 is specifically configured to: broadcast/multicast the second mapping relationship; or send the second mapping relationship to the second communications device by using the second communications device specific signaling.
  • FIG. 9 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • the data transmission device may be the second communication device in the embodiment shown in FIG. 2 to FIG. 8 above, and the data transmission device may be implemented by software, hardware or a combination of software and hardware.
  • the data transmission device may include:
  • the DMRS determining module 21 is configured to determine, according to a transmission parameter of the data to be transmitted, a DMRS corresponding to the data;
  • the sending module 22 is configured to send the DMRS corresponding to the data and the data to the first communications device, where the transmitting parameter is used to enable the first communications device to distinguish the received data.
  • the transmission parameter includes at least one of an identifier of the HARQ process and a current number of times the data is sent when the data is sent.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times the data is sent is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • Sending data and data corresponding to the DMRS to the first communication device including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first sending times.
  • the first resource is related to the resource occupied by sending the data in the first sending times, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive, by the first communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive a first parameter set sent by the first communications device
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive a first mapping relationship sent by the first communications device.
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive a second mapping relationship sent by the first communications device.
  • the first parameter is used to indicate a pseudo random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive a first mapping relationship of the first communication device broadcast/multicast; or
  • the data transmission device further includes:
  • the receiving module 23 is configured to receive a second mapping relationship of the first communication device broadcast/multicast; or
  • a further aspect of the present application further provides a communication device, which is configured to perform the method for acquiring a transmission resource on the first communication device side in the foregoing embodiment, and has the same technical features and technical effects.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device can include a memory 31, a processor 32, at least one communication bus 33, a transmitter 34, and a receiver 35.
  • the communication bus 33 is used to implement a communication connection between components.
  • the memory 31 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the transmitter 34 may be a radio frequency processing module or a baseband processing module in the base station
  • the receiver 35 may be a radio frequency processing module or a baseband processing module in the base station.
  • the transmitter 34 and the receiver 35 described above may be provided separately, and may also be integrated to form a transceiver, and both the transmitter 34 and the receiver 35 may be coupled to the processor 32.
  • the communication bus 33 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus 33 described above can be classified into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • Fig. 10 shows a simplified schematic diagram of one possible design structure of the communication device involved in the above embodiment. It will be appreciated that Figure 10 only shows a simplified design of the network device. In practical applications, the communication device may include any number of transmitters, receivers, processors, memories, etc., and all communication devices that can implement the present application are within the scope of the present application.
  • the receiver 35 is configured to receive data sent by the second communications device.
  • the processor 32 is configured to determine a transmission parameter of the data according to the demodulation reference signal DMRS corresponding to the data, where the transmission parameter is used to distinguish the data received by the first communication device.
  • the transmission parameter includes at least one of an identifier of the hybrid automatic repeat request HARQ process and a number of times the second communication device sends the data to be used when the second communication device sends the data.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and the first parameter is a parameter used when the second communication device generates the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the transmission parameter, and specifically includes:
  • the first parameter corresponding to the DMRS has a first mapping relationship with the transmission parameter.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, and the first parameter is a parameter used by the second communications device to generate the DMRS.
  • the first parameter corresponding to the DMRS is used to indicate the number of times the second communication device sends the data, specifically:
  • the identifier of the HARQ process has a corresponding relationship with the resource occupied by the second communication device in sending data under the first sending times;
  • the resource occupied by the second communication device for transmitting data under the first number of transmissions is related to the current number of times of data transmission;
  • the first parameter is a parameter used when the second communication device generates the DMRS.
  • the resource occupied by the second communications device when the data is sent in the current sending times is occupied by the second communications device when sending data in the first sending times. Resources.
  • the resource that is used by the second communications device to send data in the first sending times is related to the current number of times the data is sent, and specifically includes:
  • the resource occupied by the second communication device for transmitting data under the first transmission times is related to the resource and data transmission mode occupied by the second communication device when transmitting data under the current number of transmissions.
  • the communications device further includes:
  • the transmitter 34 is configured to send, to the second communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be adopted by the second communication device when transmitting data; and the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the communications device further includes:
  • a transmitter 34 configured to send a first parameter set to the second communications device
  • the first parameter set includes a first parameter that the second communications device can use when transmitting data.
  • the communications device further includes:
  • the transmitter 34 is configured to send a first mapping relationship to the second communications device.
  • the communications device further includes:
  • the transmitter 34 is configured to send a second mapping relationship to the second communications device.
  • the first parameter is used to indicate a pseudo random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the transmitter 34 is specifically configured to: broadcast/multicast the first mapping relationship; or send the first mapping relationship to the second communications device by using the second communications device specific signaling.
  • the transmitter 34 is specifically configured to: broadcast/multicast the second mapping relationship; or send the second mapping relationship to the second communications device by using the second communications device specific signaling.
  • a further aspect of the present application further provides a communication device for performing the data transmission method on the device side of the second communication device in the foregoing embodiment, which has the same technical features and technical effects.
  • a communication device for performing the data transmission method on the device side of the second communication device in the foregoing embodiment which has the same technical features and technical effects.
  • the structure of the communication device in this embodiment refer to the structure of the communication device shown in FIG. 10 described above.
  • the processor 32 is configured to determine, according to a transmission parameter of the data to be transmitted, a DMRS corresponding to the data;
  • the transmitter 34 is configured to send, to the first communications device, a DMRS corresponding to the data and the data, where the transmission parameter is used to enable the first communications device to distinguish the received data.
  • the transmission parameter includes at least one of an identifier of the HARQ process and a current number of times the data is sent when the data is sent.
  • the transmission parameter is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the transmission parameter is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the transmission parameter has a first mapping relationship with the first parameter corresponding to the DMRS.
  • the current number of times the data is sent is used to indicate a first parameter corresponding to the DMRS, and the first parameter is a parameter used when generating the DMRS.
  • the current number of times the data is sent is used to indicate the first parameter corresponding to the DMRS, and specifically includes:
  • the current number of times the data is sent has a second mapping relationship with the first parameter corresponding to the DMRS;
  • Sending data and data corresponding to the DMRS to the first communication device including:
  • the first resource is related to the resource occupied by sending data under the first sending times; the resource occupied by sending the data in the first sending times is related to the identifier of the HARQ process.
  • the first resource is a resource occupied by sending data under the first sending times.
  • the first resource is related to the resource occupied by sending the data in the first sending times, and specifically includes:
  • the first resource is related to the current number of times the data is transmitted, the resource used to transmit data under the first number of transmissions, and the transmission mode of the data.
  • the communications device further includes:
  • the receiver 35 is configured to receive, by the first communications device, at least one of the following: an index value indication information and a third mapping relationship;
  • the index value indication information includes an index value that can be used when the data is sent; the third mapping relationship includes a mapping relationship between the index value and the first parameter.
  • the index value indication information includes: a starting index value and a number of index values.
  • the communications device further includes:
  • a receiver 35 configured to receive a first parameter set sent by the first communications device
  • the first parameter set includes a first parameter that can be used when sending uplink data.
  • the communications device further includes:
  • the receiver 35 is configured to receive a first mapping relationship sent by the first communications device.
  • the communications device further includes:
  • the receiver 35 is configured to receive a second mapping relationship sent by the first communications device.
  • the first parameter is used to indicate a pseudo random sequence on which the DMRS is based;
  • the first parameter is used to indicate the cyclic displacement value of the DMRS.
  • the communications device further includes:
  • a receiver 35 configured to receive a first mapping relationship of the first communication device broadcast/multicast;
  • the communications device further includes:
  • a receiver 35 configured to receive a second mapping relationship of the first communication device broadcast/multicast;
  • a still further aspect of the embodiments of the present application provides a data transmission system, including the first communication device and the second communication device in any of the foregoing embodiments.
  • a still further aspect of the present application further provides a computer storage medium, configured to store computer software instructions for use by the first communication device, including a method for performing the first communication device side in any of the above embodiments. program.
  • Embodiments of the present application also provide a computer program product comprising instructions that, when executed by a computer, cause the computer to perform the functions performed by the first communication device.
  • the embodiment of the present application further provides a chip system, including a processor, for supporting a first communication device to implement the functions involved in any of the foregoing embodiments, for example, generating or processing data involved in the foregoing method. And / or information.
  • the chip system further includes a memory for storing program instructions and data necessary for the first communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a still further aspect of the present application further provides a computer storage medium, configured to store computer software instructions for use by the second communication device, including a method for performing the second communication device side in any of the above embodiments. program.
  • Embodiments of the present application also provide a computer program product comprising instructions that, when executed by a computer, cause the computer to perform functions performed by the second communication device.
  • the embodiment of the present application further provides a chip system, including a processor, for supporting a second communication device to implement the functions involved in any of the foregoing embodiments, for example, generating or processing data involved in the foregoing method. And / or information.
  • the chip system further includes a memory for storing necessary program instructions and data for the second communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输参数获取、数据传输方法和装置。传输参数获取方法包括:第一通信设备接收第二通信设备发送的数据,根据数据对应的DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。本申请实施例提供的传输参数获取方法中第一通信设备在接收到数据时,可根据数据对应的DMRS确定数据的传输参数,从而可根据各数据的传输参数区分出不同的数据。解决了在免授权的数据传输方式中存在的当第一通信设备同时接收到多个数据时,第一通信设备无法区分各个数据,影响了数据的传输的问题。

Description

传输参数获取、数据传输方法和装置 技术领域
本申请涉及通信领域,提供一种传输参数获取、数据传输方法和装置。
背景技术
传统通信系统中,终端设备向网络设备发送数据时,通常采用基于授权的数据传输方式。基于授权的数据传输方式包括如下过程:终端设备先向网络设备请求上行数据传输调度准许,在获取到上行数据传输调度准许的情况下,采用调度准许中指示的传输资源和传输参数向网络设备发送数据,以使网络设备能够正确解码出数据,保证了数据传输的可靠性。
终端设备获取上行数据传输调度准许的过程耗费时间较长,影响了上行数据传输的速度。为解决该问题,在第五代移动通信系统(5th Generation,5G)中,提出一种免授权(Grant-free)的数据传输方式。在免授权的数据传输方式中,终端设备在有数据需要传输时,无需向网络设备请求上行数据传输调度准许,而是在预先配置的资源池中选择传输资源直接进行数据传输,故而提高了数据传输的速度。
但是,在免授权的数据传输方式中,当网络设备同时接收到多个数据时,网络设备无法区分各个数据,影响了数据的传输。
发明内容
本申请实施例提供一种传输参数获取、数据传输方法和装置,用于解决在免授权的数据传输方式中,当网络设备同时接收到多个数据时,网络设备无法区分各个数据,影响了数据的传输的问题。
第一方面,本申请实施例提供一种传输参数获取方法,应用于第一通信设备侧,包括:
接收第二通信设备发送的数据;根据数据对应的解调参考信号DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
在上述过程中,第一通信设备在接收到数据时,可根据数据对应的DMRS确定数据的传输参数,从而可根据各数据的传输参数区分出不同的数据,解决了在免授权的数据传输方式中存在的当第一通信设备同时接收到多个数据时,第一通信设备无法区分各个数据,影响了数据的传输的问题
在一种可能的设计中,传输参数包括:第二通信设备发送数据时所采用的混合自动重传请求HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,具体包括:
DMRS对应的第一参数与传输参数之间具有第一映射关系。
在上述过程中,通过采用第一参数指示传输参数,相比直接采用DMRS指示传输参数,可简化根据DMRS获取传输参数的过程,提高传输参数的获取速度。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次 数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:
DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系;
HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关。
通过先确定数据当前的发送次数,再根据数据当前的发送次数确定第二通信设备发送数据的HARQ进程标识,来确定数据的传输参数,减少了对DMRS的需求量。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关,具体包括:
第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式相关。
在一种可能的设计中,第一通信设备接收第二通信设备发送的数据之前,传输参数获取方法还包括:
第一通信设备向第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
通过为各第一参数确定第一参数的索引,可减少传输数据量。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
通过采用起始索引值和索引值数目来指示第二通信设备可采用的索引值,可减少传输数据量。
在一种可能的设计中,第一通信设备接收第二通信设备发送的数据之前,传输参数获取方法还包括:
第一通信设备向第二通信设备发送第一参数集合;
其中,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
在一种可能的设计中,第一通信设备接收第二通信设备发送的数据之前,传输参数获取方法还包括:
第一通信设备向第二通信设备发送第一映射关系。
在一种可能的设计中,第一通信设备接收第二通信设备发送的数据之前,传输参数获取方法还包括:
第一通信设备向第二通信设备发送第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,第一通信设备向第二通信设备发送第一映射关系,具体包括:
第一通信设备广播/组播第一映射关系;或者
第一通信设备使用第二通信设备特定信令向第二通信设备发送第一映射关系。
在一种可能的设计中,第一通信设备向第二通信设备发送第二映射关系,具体包括:
第一通信设备广播/组播第二映射关系;或者
第一通信设备使用第二通信设备特定信令向第二通信设备发送第二映射关系。
通过将映射关系广播/组播,可简化映射关系的发送方式。通过采用第二通信设备特定信令发送,避免了其他第二通信设备接收无关的信息。
第二方面,本申请实施例还提供一种数据传输方法,应用于第二网络设备侧,包括:
根据待传输数据的传输参数,确定数据对应的DMRS;向第一通信设备发送数据和数据对应的DMRS;其中,传输参数用于使第一通信设备区分接收到的数据。
在一种可能的设计中,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
向第一通信设备发送数据和数据对应的DMRS,包括:
在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
在一种可能的设计中,根据待传输数据的传输参数,确定数据对应的DMRS之前,数据传输方法还包括:
接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
在一种可能的设计中,根据待传输数据的传输参数,确定数据对应的DMRS之前,数据传输方法还包括:
接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
在一种可能的设计中,根据待传输数据的传输参数,确定数据对应的DMRS之前,数据传输方法还包括:
接收第一通信设备发送的第一映射关系。
在一种可能的设计中,根据待传输数据的传输参数,确定数据对应的DMRS之前,数据 传输方法还包括:
接收第一通信设备发送的第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,根据待传输数据的传输参数,确定数据对应的DMRS之前,数据传输方法还包括:
接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
在一种可能的设计中,第一通信设备接收第二通信设备发送的数据之前,数据传输方法还包括:
接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
第三方面,为了实现上述第一方面的传输参数获取方法,本申请实施例提供了一种传输参数获取装置,作为第一通信设备,该传输参数获取装置具有实现上述传输参数获取方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第三方面的一种可能的实现方式中,传输参数获取装置包括:
接收模块,用于接收第二通信设备发送的数据;
传输参数获取模块,用于根据数据对应的解调参考信号DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
在一种可能的设计中,传输参数包括:第二通信设备发送数据时所采用的混合自动重传请求HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,具体包括:
DMRS对应的第一参数与传输参数之间具有第一映射关系。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:
DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系;
HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关;
其中,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关,具体包括:
第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次 数下发送数据时所占用的资源和数据的发送模式相关。
在一种可能的设计中,传输参数获取装置还包括:
发送模块,用于向第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
在一种可能的设计中,传输参数获取装置还包括:
发送模块,用于向第二通信设备发送第一参数集合;
其中,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
在一种可能的设计中,传输参数获取装置还包括:
发送模块,用于向第二通信设备发送第一映射关系。
在一种可能的设计中,传输参数获取装置还包括:
发送模块,用于向第二通信设备发送第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,发送模块具体用于,广播/组播第一映射关系;或者使用第二通信设备特定信令向第二通信设备发送第一映射关系。
在一种可能的设计中,发送模块具体用于,广播/组播第二映射关系;或者使用第二通信设备特定信令向第二通信设备发送第二映射关系。
上述第三方面以及第三方面的各可能的设计所提供的方法的有益效果,可以参见上述第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第四方面,为了实现上述第二方面的数据传输方法,本申请实施例提供了一种数据传输装置,作为第二通信设备,该数据传输装置具有实现上述数据传输方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第四方面的一种可能的实现方式中,数据传输装置,包括:
DMRS确定模块,用于根据待传输数据的传输参数,确定数据对应的DMRS;
发送模块,用于向第一通信设备发送数据和数据对应的DMRS;其中,传输参数用于使第一通信设备区分接收到的数据。
在一种可能的设计中,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
向第一通信设备发送数据和数据对应的DMRS,包括:
在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备发送的第一映射关系。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备发送的第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
在一种可能的设计中,数据传输装置还包括:
接收模块,用于接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
上述第四方面以及第四方面的各可能的设计所提供的方法的有益效果,可以参见上述第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第五方面,为了实现上述第一方面的传输参数获取方法,本申请实施例提供了一种通信设备,作为第一通信设备,该通信设备具有实现上述传输参数获取方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第五方面的一种可能的实现方式中,通信设备包括:
接收器,用于接收第二通信设备发送的数据;
处理器,用于根据数据对应的解调参考信号DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
在一种可能的设计中,传输参数包括:第二通信设备发送数据时所采用的混合自动重传请求HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示传输参数,具体包括:
DMRS对应的第一参数与传输参数之间具有第一映射关系。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:
DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系;
HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关;
其中,第一参数为第二通信设备生成DMRS时所采用的参数。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关,具体包括:
第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式相关。
在一种可能的设计中,通信设备还包括:
发送器,用于向第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
在一种可能的设计中,通信设备还包括:
发送器,用于向第二通信设备发送第一参数集合;
其中,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
在一种可能的设计中,通信设备还包括:
发送器,用于向第二通信设备发送第一映射关系。
在一种可能的设计中,通信设备还包括:
发送器,用于向第二通信设备发送第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,发送器具体用于,广播/组播第一映射关系;或者使用第二通信设备特定信令向第二通信设备发送第一映射关系。
在一种可能的设计中,发送器具体用于,广播/组播第二映射关系;或者使用第二通信设备特定信令向第二通信设备发送第二映射关系。
上述第五方面以及第五方面的各可能的设计所提供的方法的有益效果,可以参见上述第 一方面的各可能的设计所带来的有益效果,在此不再赘述。
第六方面,为了实现上述第二方面的数据传输方法,本申请实施例提供了一种通信设备,作为第二通信设备,该通信设备具有实现上述数据方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第六方面的一种可能的实现方式中,通信设备包括:
处理器,用于根据待传输数据的传输参数,确定数据对应的DMRS;
发送器,用于向第一通信设备发送数据和数据对应的DMRS;其中,传输参数用于使第一通信设备区分接收到的数据。
在一种可能的设计中,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
在一种可能的设计中,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
向第一通信设备发送数据和数据对应的DMRS,包括:
在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
在一种可能的设计中,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
在一种可能的设计中,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
在一种可能的设计中,索引值指示信息包括:起始索引值和索引值数目。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备发送的第一映射关系。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备发送的第二映射关系。
在一种可能的设计中,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
在一种可能的设计中,通信设备还包括:
接收器,用于接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
上述第六方面以及第六方面的各可能的设计所提供的方法的有益效果,可以参见上述第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第七方面,本申请实施例提供了一种计算机可读存储介质,用于储存上述第一通信设备所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第八方面,本申请实施例提供了一种计算机可读存储介质,用于储存上述第二通信设备所用的计算机软件指令,其包含用于执行上述第二方面所设计的程序。
第九方面,本申请实施例提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述第一方面中第一通信设备所执行的功能。
第十方面,本申请实施例提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述第二方面中第二通信设备所执行的功能。
第十一方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第一方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,所述存储器,用于保存第一通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述第二方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,所述存储器,用于保存第二通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请提供一种数据传输系统,包括如上述第三方面所述的第一通信设备、如上述第四方面所述的第二通信设备。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例一提供的传输参数获取方法的流程示意图;
图3为本申请实施例二提供的传输参数获取方法的流程示意图;
图4为本申请实施例三提供的传输参数获取方法的流程示意图;
图5为本申请实施例四提供的传输参数获取方法的流程示意图;
图6为本申请实施例四提供的传输参数获取方法中的资源占用情况示意图;
图7为本申请实施例一提供的数据传输方法的流程示意图;
图8为本申请实施例提供的传输参数获取装置的结构示意图;
图9为本申请实施例提供的数据传输装置的结构示意图;
图10为本申请实施例提供的通信设备的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括网络设备10和至少一个终端设备20。
其中,网络设备10是一种将终端设备接入到无线网络的设备,可以是LTE通信系统中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,或者宏基站、微基站、热点、家庭基站、传输点等,在此并不限定。图1示意性的绘出了一种可能的示意,以该网络设备为基站为例进行了绘示。
终端设备20可以是无线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)、笔记本电脑、手环、智能手表、数据卡、传感器和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。图1示意性的绘出了一种可能的示意,以该终端设备为移动电话为例进行了绘示。示例性的,对于存在副链路的网络架构,例如,手环-手机-基站,也可将手环视为终端设备20,将手机视为网络设备。
传统通信系统中,终端设备向网络设备发送数据时,通常采用基于授权的数据传输方式。基于授权的数据传输方式中,终端设备在传输上行数据前需要与网络设备进行多轮信令交互,以从网络设备侧获得传输上行数据需要的专用资源和上行数据的传输参数。网络设备在专用资源上传输上行数据,可避免干扰,确保了传输的可靠性。同时终端设备采用了网络设备指定的传送资源和传输参数,确保了网络设备能够正确区分出不同的数据。
但是,终端设备与网络设备进行信令交互的过程耗费时间较长,影响了上行数据传输的速度。为解决该问题,第五代移动通信系统(5th Generation,5G)中提出了一种免授权(Grant-free)的数据传输方式。在免授权的数据传输方式中,终端设备在有数据需要传输时, 无需向网络设备请求上行数据传输调度准许,而是在预先配置的资源池中选择传输资源直接进行数据传输,故而提高了数据传输的速度。但是,在免授权的数据传输方式中,当网络设备同时接收到多个数据时,网络设备无法区分各个数据,影响了数据的传输。
为解决上述网络设备无法区分各个数据,影响了数据的传输的问题,本申请实施例提供一种传输参数获取方法和数据传输方法。传输参数获取方法中第一通信设备在接收到第二通信设备发送的数据时,根据数据对应的DMRS确定出数据的传输参数,从而可区分各数据。数据传输方法中第二通信设备根据数据的传输参数生成DMRS,将DMRS和数据发送给第一通信设备,方便了第一通信设备根据数据对应的DMRS确定出数据的传输参数,从而可区分各数据。
下面结合具体实施例对本申请提供的传输参数获取方法和数据传输方法进行详细说明。下面这几个具体的实施例中,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本申请实施例一方面提供一种传输参数获取方法。图2为本申请实施例一提供的传输参数获取方法的流程示意图。该方法的执行主体为第一通信设备,例如网络设备。本实施例涉及的是第一通信设备在接收到第二通信设备发送的数据时,根据数据对应的DMRS确定数据传输参数。示例性的,如图2所示,该方法包括:
S201、接收第二通信设备发送的数据。
示例性的,第一通信设备接收至少一个第二通信设备发送的数据,和/或,第一通信设备接收一个第二通信设备上传输的多个数据。其中,数据的传输采用免授权的数据传输方式,因此,第一通信设备无法在第二通信设备发送数据前,向第二通信设备指示各数据的传输参数,进而无法区分各数据。
S202、根据数据对应的DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
示例性的,当数据在第一通信设备与第二通信设备之间传输时,第一通信设备与第二通信设备之间的传输通路可能对数据造成影响。为确定第一通信设备与第二通信设备之间的传输通路对传输中的数据的影响,第二通信设备先接收数据对应的DMRS,进而可根据传输通路对DMRS造成的影响,对第一通信设备发送的数据的信号进行处理,降低数据解调的误码率。因此,可以为不同数据分配不同的DMRS,以使第一通信设备可根据不同的DMRS来识别不同的数据。
本申请实施例提供的传输参数获取方法,包括:第一通信设备接收第二通信设备发送的数据,根据数据对应的DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。本申请实施例中第一通信设备在接收到数据时,可根据数据对应的DMRS确定数据的传输参数,从而可根据各数据的传输参数区分出不同的数据。解决了在免授权的数据传输方式中存在的当第一通信设备同时接收到多个数据时,第一通信设备无法区分各个数据,影响了数据的传输的问题。
可选的,在上述实施例的基础上,传输参数包括:第二通信设备发送数据时所采用的HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
示例性的,当第二通信设备存在待发送的数据时,为保证数据传输的可靠性,可采用HARQ技术。具体的,第二通信设备启动一个HARQ进程进行该数据的传输。HARQ技术是一种将前向纠错编码(FEC)技术和自动重传请求(Automatic Repeat reQuest,ARQ)技术相结合而形成的技术。
其中,FEC技术中,在发送的数据中通过添加冗余信息,使得数据的接收端(即第一通 信设备)在接收到数据和冗余信息时能够纠正一部分错误,从而减少数据重传的次数。ARQ技术中,对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端(即第二通信设备)重发数据。接收端使用检错码,通常为CRC校验,来检测接收到的数据包是否出错。如果无错,则接收端会发送一个肯定的确认(ACK)给发送端,发送端收到ACK后,会接着发送下一个数据包。如果出错,则接收端会丢弃该数据包,并发送一个否定的确认(NACK)给发送端,发送端收到NACK后,会重发相同的数据。HARQ技术中,考虑到被丢弃的数据包虽然无法被正确解码,但其中包含了有用的信息。故可将接收到的错误数据包存储在一个HARQ缓存中,请求发送端进行重传,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(这一过程称为软合并过程)。然后对合并后的数据包进行解码,如果解码失败,则重复“请求重传,再进行软合并”的过程,直至解码成功或达到数据的最大重传次数K,K为大于1的整数。
数据传输过程中,HARQ进程使用stop-and-wait protocol(停等协议)来发送数据,即发送一个数据后,停下来等待接收端反馈的确认信息。由于等待确认信息的过程可能耗费较长时间,因此数据的发送端可使用多个并行的HARQ进程。使用多个并行的HARQ进程进行数据传输时,接收端需确认接收到的数据来自发送端的哪个HARQ进程。示例性的,可以使用HARQ process number(HPN,又称为HARQ process ID)来唯一标识一个HARQ进程。
因此,传输参数可以为第二通信设备发送数据时所采用的HARQ进程的标识。第一通信设备根据DMRS确定数据的传输参数,可以为第一通信设备根据DMRS确定第二通信设备发送数据时所采用的HARQ进程的标识。
同时,考虑到第二通信设备在一个HARQ进程上发送数据时,可能将数据重复发送K次。第一通信设备需确认接收到的数据为哪一次传输,即第二通信设备发送数据的发送次数,也即数据的当前发送次数。因此,传输参数也可以为第二通信设备发送数据的发送次数。第一通信设备根据DMRS确定数据的传输参数,可以为第一通信设备根据DMRS确定第二通信设备发送数据的发送次数。
进一步地,在图2所示实施例的基础上,本申请实施例还提供一种传输参数获取方法。本实施例中对根据DMRS确定传输参数的方式进行详细说明。本实施例中,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
对应的,图3为本申请实施例二提供的传输参数获取方法的流程示意图。如图3所示,本实施例中的传输参数获取方法,包括:
S301、第一通信设备接收第二通信设备发送的数据。
其中,S301与图2所示实施例中的S201相同,本申请对此不再赘述。
S302、第一通信设备根据数据对应的DMRS,确定第一参数;第一参数为第二通信设备生成DMRS时所采用的参数。
示例性的,第一通信设备与第二通信设备之间进行数据传输时,可采用DFT-s-OFDM和CP-OFDM两种波形。对应的,两种不同的波形对应不同的DMRS。
当数据传输采用离散傅里叶变换扩频的正交频分复用多址接入技术(Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)时,DMRS序列示例性的根据一个Zadoff Chu基序列生成。具体的,DMRS序列根据基序列R1生成。不同的DMRS为该基序列的不同的循环移位后的序列。
示例性的,DMRS所使用的序列为R1循环移位后的序列R1 α,其中α为循环位移值,其 中,
Figure PCTCN2018087044-appb-000001
π为圆周率,N cs为循环位移的最小粒度,与工作频段,子载波间隔等相关。
Figure PCTCN2018087044-appb-000002
示例性的与小区特定的配置参数、当前OFDM符号(或时隙号、或子帧号),子载波间隔等相关。例如,在同一个小区里,使用相同子载波间隔,在相同OFDM符号上使用DFT-s-OFDM波形进行上行免授权数据传输的所有第二通信设备的参数
Figure PCTCN2018087044-appb-000003
相同。
Figure PCTCN2018087044-appb-000004
为第二通信设备特定的参数,称为第一参数。
Figure PCTCN2018087044-appb-000005
的可能取值为一个集合,该集合由第一通信设备配置给第二通信设备。
当数据传输采用循环前缀正交频分复用多址接入技术(Cyclic Prefix-OFDM,CP-OFDM)时,DMRS序列示例性的根据基序列R2(c(g))生成。其中c(g)是一个伪随机序列,不同的DMRS通过不同的伪随机序列区分。伪随机序列c(g)示例性的可以为gold序列,由两个伪随机序列x 1(g)和x 2(g)生成。其中x 1(g)的初始化参数为固定值,x 2(g)的初始化参数c init可根据公式c init=n (1)+n (2)获得。n (2)由一个或多个参数决定,如小区特定的配置参数,当前OFDM符号(或时隙号、或子帧号),子载波间隔等。例如,在同一个小区里,使用相同子载波间隔,在相同符号上使用CP-OFDM波形进行上行免授权数据传输的所有第二通信设备的参数n (2)相同。n (1)为第二通信设备特定的参数,也可称为第一参数。n (1)的可能取值为一个集合,该集合由第一通信设备配置给第二通信设备。
示例性的,第一参数用于指示DMRS所基于的伪随机序列;或用于指示DMRS的循环位移值。由于DMRS均可根据第一参数确定,故第一通信设备在确定数据对应的DMRS后,可确定第一参数值。
S303、第一通信设备根据第一参数,确定数据的传输参数。
示例性的,不同的数据采用不同的DMRS,DMRS与第一参数一一对应,因此第一通信设备根据DMRS确定数据的传输参数的过程,等同于根据第一参数确定数据的传输参数的过程。示例性的,当传输参数为第二通信设备发送数据时所采用的HARQ进程的标识,第一通信设备根据第一参数确定HARQ进程的标识;当传输参数为第二通信设备发送数据的发送次数,第一通信设备根据第一参数确定数据的当前发送次数。
本实施例提供的传输参数获取方法中,第一通信设备根据DMRS确定生成DMRS的第一参数,再根据第一参数确定传输参数。通过采用第一参数指示传输参数,相比直接采用DMRS指示传输参数,可简化根据DMRS获取传输参数的过程,提高传输参数的获取速度。
进一步地,在图3所示实施例的基础上,本申请实施例还提供一种传输参数获取方法。本实施例中,DMRS对应的第一参数与传输参数之间具有第一映射关系。对应的,第一通信设备根据数据对应的DMRS确定数据的传输参数,具体包括:
第一通信设备根据数据对应的DMRS确定第一参数,根据第一参数和第一映射关系,确定传输参数。
示例性的,第一参数与传输参数之间具有第一映射关系,以传输参数为HARQ进程的标识,第一参数为
Figure PCTCN2018087044-appb-000006
为例,第一映射关系可如下表1所示。第一通信设备可在根据DMRS确定了第一参数后,根据第一参数在表1中进行查找,即可得到DMRS对应的传输参数。当传输参数为数据的发送次数时,第一映射关系与表1类似,本申请不再赘述。对于CP-OFDM波形,第一参数为n (1),第一映射关系与第一参数为
Figure PCTCN2018087044-appb-000007
时的第一映射关系类似。本申请以下各实施例中第一参数均以
Figure PCTCN2018087044-appb-000008
为例,对获取传输参数的方式进行详细说明,对于第一参数为n (1)的情况不再赘述。
需要注意的是,不同的第二通信设备的第一参数取值可以不同,因此第一通信设备在根 据DMRS确定第一参数同时,还可以根据DMRS确定发送该数据以及对应的DMRS的第二通信设备。
第一映射关系可以为通信标准中的约定映射关系,也可以为第一通信设备预先配置。可选的,第一通信设备向第二通信设备发送第一映射关系。例如,第一通信设备在接收数据之前,向第二通信设备发送第一映射关系,并在第一映射关系更新时,向第二通信设备发送更新的第一映射关系。
表1
Figure PCTCN2018087044-appb-000009
参照表1,HARQ进程1至6为运行在不同的第二通信设备上的HARQ进程。例如,HARQ进程1至3运行在第二通信设备A上,当数据在HARQ进程1上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000010
来生成DMRS;当数据在HARQ进程2上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000011
来生成DMRS;当数据在HARQ进程3上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000012
来生成DMRS。HARQ进程4至6运行在第二通信设备B上,当数据在HARQ进程4上进行传输时,第二通信设备B使用
Figure PCTCN2018087044-appb-000013
来生成DMRS;当数据在HARQ进程5上进行传输时,第二通信设备B使用
Figure PCTCN2018087044-appb-000014
来生成DMRS;当数据在HARQ进程6上进行传输时,第二通信设备B,使用
Figure PCTCN2018087044-appb-000015
来生成DMRS。
对应的,当第一通信设备接收到数据时,第一通信设备根据数据对应的DMRS可确定该DMRS所用序列的循环位移值。进一步,第一通信设备根据该循环位移值可以确定生成该DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000016
的值。根据第一参数
Figure PCTCN2018087044-appb-000017
查找如上的表1,即可确定发送该数据的第二通信设备以及数据的传输参数HARQ进程的标识。例如,第一通信设备在确定生成DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000018
则第一通信设备即可确定该数据由第二通信设备B在HARQ进程4上传输。
示例性的,第一通信设备可以向第二通信设备发送第一参数集合,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
可选的,为减少传输数据量,可为各第一参数确定第一参数的索引。此时,第一通信设备向第二通信设备发送如下中的至少一项:索引值指示信息和索引值映射关系。
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;索引值映射关系包括索引值与第一参数之间的映射关系。
可选的,索引值指示信息中可包括各索引值,例如0、1、2、3、4、5。可选的,为减少传输数据量,索引值指示信息可包括:起始索引值和索引值数目。例如0、6,其中0和6表示索引值的取值为从0开始的6个整数值。示例性的,索引值映射关系可如下表2所示。
表2
Figure PCTCN2018087044-appb-000019
示例性的,表1提供的第一映射关系中各第二通信设备中的HARQ进程的标识不同。可选的,第一通信设备可将索引值映射关系和第一映射关系合并,同时向第二通信设备发送。示例性的,合并的索引值映射关系和第一映射关系可如下表3所示。示例性的,索引值映射 关系可以与其他任意包含第一参数的映射关系合并发送,本申请以下各实施例中的其他可能的第一映射关系也都可以与索引值映射关系合并,本申请对比不再赘述。
表3
Figure PCTCN2018087044-appb-000020
可选的,另一种可能的第一映射关系如表4所示,表4提供的第一映射关系中各第二通信设备中的HARQ进程的标识可以相同,可避免HARQ进程较多时,HARQ进程的标识过长。
表4
Figure PCTCN2018087044-appb-000021
示例性的,参照表4,不同第二通信设备上的HARQ进程的标识之间可以相同。示例性的,传输参数与第一参数之间的映射方式,也可以为顺序映射,如表4中第二通信设备A的传输参数与第一参数的映射关系;也可以为逆序映射,如表4中第二通信设备B的传输参数与第一参数的映射关系。
示例性的,参照表4,第二通信设备A上运行的HARQ进程的标识为0、1和2,第二通信设备B上运行的HARQ进程的标识同样也为0、1和2。当数据在第二通信设备A的HARQ进程0上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000022
来生成DMRS;当数据在第二通信设备B的HARQ进程0上进行传输时,第二通信设备B使用
Figure PCTCN2018087044-appb-000023
来生成DMRS。当数据在第二通信设备A的HARQ进程1上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000024
来生成DMRS;当数据在第二通信设备B的HARQ进程1上进行传输时,第二通信设备B使用
Figure PCTCN2018087044-appb-000025
来生成DMRS。当数据在第二通信设备A的HARQ进程2上进行传输时,第二通信设备A使用
Figure PCTCN2018087044-appb-000026
来生成DMRS。当数据在第二通信设备B的HARQ进程2上进行传输时,第二通信设备B使用
Figure PCTCN2018087044-appb-000027
来生成DMRS。
对应的,当第一通信设备接收到数据时,第一通信设备根据数据对应的DMRS可确定该DMRS所用序列的循环位移值。进一步,第一通信设备根据该循环位移值可以确定生成该DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000028
的值。根据第一参数
Figure PCTCN2018087044-appb-000029
查找如上的表4,即可确定数据的传输参数HARQ进程的标识以及发送数据的第二通信设备的标识。例如,第一通信设备在确定生成DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000030
则第一通信设备即可确定该数据由第二通信设备B在HARQ进程0上传输。
可选的,传输参数与第一参数之间的映射方式还可以为乱序,如表5所示。
表5
Figure PCTCN2018087044-appb-000031
Figure PCTCN2018087044-appb-000032
进一步地,本申请实施例还提供一种传输参数获取方法,本实施例中对第一通信设备向第二通信设备发送第一映射关系的具体实现方式进行详细描述。
第一种可能的发送方式:
第一通信设备广播/组播第一映射关系。
示例性的,对于如表1、表3、表4、表5所示的第一映射关系,第一通信设备均可将预设的第一映射关系采用广播/组播的形式发送,简化了第一映射关系的发送过程。
第二种可能的发送方式:
第一通信设备使用第二通信设备特定信令向第二通信设备发送第一映射关系。
示例性的,对于如表4、表5所示的第一映射关系,第一通信设备均可将预设的第一映射关系使用第二通信设备特定信令发送,避免了其他第二通信设备接收无关的信息。示例性的,对于表4所示的第一映射关系,第一通信设备在发送时,根据第一参数对应的第二通信设备是否相同,可将表4中的第一映射关系,拆分为多个子映射关系,例如,可将表4拆分为第二通信设备A的子映射关系如下表4-1所示,和第二通信设备B的子映射关系如下表4-2所示。可选的,也可由第一通信设备直接为每个第二通信设备配置各自的第一映射关系。第一通信设备可根据第二通信设备A的标识将表4-1仅发送至第二通信设备A,第一通信设备可根据第二通信设备B的标识将表4-2仅发送至第二通信设备B。
表4-1
Figure PCTCN2018087044-appb-000033
表4-2
Figure PCTCN2018087044-appb-000034
可选的,如表1所示的第一映射关系也可以使用第二通信设备特定信令发送。
进一步地,在图2所示实施例的基础上,本申请实施例还提供一种传输参数获取方法。本实施例中,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数。
示例性的,DMRS对应的第一参数与第二通信设备发送数据的发送次数存在对应关系,而与第二通信设备发送数据时所采用的HARQ进程的标识不存在映射关系。即第一通信设备在接收到数据时,只能根据DMRS对应的第一参数确定数据的当前发送次数。
可选的,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系。
示例性的,当第一映射关系为DMRS对应的第一参数与第二通信设备发送数据的发送次数之间的映射关系时,第二映射关系与图3所示实施例中的第一映射关系相同。本实施例中的第一参数也与图3所示实施例中的第一参数相同,本申请对此不再赘述。
可选的,第二映射关系可以为通信标准中的约定映射关系,也可以为第一通信设备预先配置。可选的,第一通信设备向第二通信设备发送第二映射关系。例如,第一通信设备在接 收数据之前,向第二通信设备发送第二映射关系,并在第二映射关系更新时,向第二通信设备发送更新的第二映射关系。可选的,第二映射关系中的第一参数与发送次数之间的映射方式可以为顺序映射、逆序映射、乱序映射。第二映射关系示例性的也可以采用广播/组播,以及使用第二通信设备特定信令发送的方式。第二映射关系可如下表6所示。
表6
Figure PCTCN2018087044-appb-000035
如表6所示,示出了第一参数为
Figure PCTCN2018087044-appb-000036
时、映射方式为顺序映射的第二映射关系。示例性的,第一参数
Figure PCTCN2018087044-appb-000037
与第二通信设备的K次重复传输中的每一次一一对应。当第二通信设备进行数据的第一次传输时,第二通信设备使用
Figure PCTCN2018087044-appb-000038
来生成DMRS;当第二通信设备进行数据的第二次传输时,第二通信设备使用
Figure PCTCN2018087044-appb-000039
来生成DMRS;当第二通信设备进行数据的第三次传输时,第二通信设备使用
Figure PCTCN2018087044-appb-000040
来生成DMRS;当第二通信设备进行数据的第四次传输时,第二通信设备使用
Figure PCTCN2018087044-appb-000041
来生成DMRS;
对应的,当第一通信设备接收到数据时,第一通信设备根据数据对应的DMRS可确定该DMRS所用序列的循环位移值。进一步,第一通信设备根据该循环位移值可以确定生成该DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000042
的值。根据第一参数
Figure PCTCN2018087044-appb-000043
查找如上的表6,即可确定发送该数据的第二通信设备以及数据的当前传输次数。例如,第一通信设备在确定生成DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000044
则第一通信设备即可确定该数据为第二通信设备发送,且当前传输次数为4。
进一步地,本申请实施例还提供一种传输参数获取方法,对根据第二映射关系确定第二通信设备发送数据时所采用的HARQ进程的标识的方式进行详细说明。
本实施例中,HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关。对应的,图4为本申请实施例三提供的传输参数获取方法的流程示意图,如图4所示,传输参数获取方法包括:
S401、第一通信设备接收第二通信设备发送的数据,根据数据对应的DMRS确定第一参数。
S402、第一通信设备根据第一参数和第二映射关系,确定数据的当前发送次数。
示例性的,第一参数、数据的当前发送次数的确定方式具体可参照上述实施例中的描述,本申请对此不在赘述。
S403、第一通信设备根据数据的当前发送次数,确定第二通信设备在第一发送次数下发送数据所占用的资源。
示例性的,当第一通信设备根据数据对应的DMRS获取了数据的当前发送次数后,由于数据的当前发送次数与第二通信设备在第一发送次数下发送数据所占用的资源相关,因而可进一步根据当前发送次数,确定第二通信设备在第一发送次数下发送数据所占的资源。
S404、第一通信设备根据第二通信设备在第一发送次数下发送数据所占用的资源,确定HARQ进程的标识。
示例性的,考虑到第一通信设备在接收数据时,可获取数据发送时所占用的资源的信息,可设置资源与HARQ进程的对应信息以使第一通信设备可根据资源信息确定第二通信设备发 送数据时所使用的HARQ进程的标识。示例性的,可配置第二通信设备在第一发送次数下发送数据所占用的资源与HARQ进程的标识之间的对应关系。其中,第一发送次数为K次重复传输中的任一次。
可选的,还可建立第二通信设备的所有HARQ进程中的数据的K次重复发送中的每一次发送所占用的资源与HARQ进程的标识的对应关系。当第一通信设备确定数据的当前发送次数时,可根据当前发送次数下数据传输所占用的资源,确定第二通信设备上发送数据的HARQ进程的标识。
需要注意的是,不同的第二通信设备的第一参数取值可以不同,因此第一通信设备在根据DMRS确定第一参数同时,还可以根据DMRS确定发送该数据以及对应的DMRS的第二通信设备。
本实施例中,第一通信设备通过生成DMRS的第一参数与数据的发送次数之间具有的第二映射关系,数据的当前发送次数与第二通信设备在第一发送次数下发送数据所占用的资源之间的关系,以及第二通信设备在第一发送次数下发送数据所占用的资源与HARQ进程标识之间的映射关系,可通过先确定数据当前的发送次数,再根据数据当前的发送次数确定第二通信设备发送数据的HARQ进程标识,来确定数据的传输参数,减少了对DMRS的需求量。
示例性的,在图4所示实施例的基础上,本申请实施例还提供一种传输参数获取方法,对图4所示实施例中的根据数据的当前发送次数,确定第二通信设备在第一发送次数下发送数据所占用的资源的具体实现方式进行详细说明。
一种可能的实现方式中,若数据的当前发送次数与第一发送次数相同,则确定第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
另一种可能的实现方式中,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式相关。
对应的,图5为本申请实施例四提供的传输参数获取方法的流程示意图。如图5所示,上述可能的实现方式提供的传输参数获取方法,包括:
S501、接收第二通信设备发送的数据,根据数据对应的DMRS确定第一参数。
S502、根据第一参数和第二映射关系,确定数据的当前发送次数。
S503、确定数据的当前发送次数与第一发送次数是否相同;若是,则执行S504;若否,则执行S505;
S504、确定第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源;执行S506;
S505、根据第二通信设备在当前发送次数下发送数据时所占用的资源、数据的发送模式,确定第二通信设备在第一发送次数下发送数据所占用的资源;执行S506;
S506、根据第二通信设备在第一发送次数下发送数据所占用的资源,确定HARQ进程的标识。
示例性的,图5所示实施例中的S501、S502和S506与图4所示实施例中的S401、S402和S404相同,本申请不再赘述。
示例性的,本实施例中,第一通信设备在获取到数据的当前发送次数后,比较数据的当前发送次数与第一发送次数是否相同。
若数据的当前发送次数与第一发送次数相同,则可确认当前发送次数为第一发送次数, 第二通信设备的HARQ进程在当前发送次数下发送数据时所占用的资源即为第二通信设备的该HARQ进程在第一发送次数下发送数据时所占用的资源。进而可根据第二通信设备在第一发送次数下发送数据所占用的资源与HARQ进程标识之间的映射关系,确定该HARQ进程的标识,第一通信设备根据接收到的数据的发送次数和HARQ进程即可将同时接收到的多个数据进行区分。
可选的,考虑到数据传输的可靠性较高,存在部分数据在第一次重复传输时即可成功。在本实施例中,第一通信设备可以仅设置第一映射关系中的第一参数与部分的数据的发送次数一一对应,例如数据的发送次数为1时对应第一参数0,数据发送次数为2至4时,对应第一参数2。第二映射关系如下表7所示。
表7
Figure PCTCN2018087044-appb-000045
参照表7,当第一通信设备接收到数据时,第一通信设备根据数据对应的DMRS可确定该DMRS所用序列的循环位移值。进一步,第一通信设备根据该循环位移值可以确定生成该DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000046
的值。根据第一参数
Figure PCTCN2018087044-appb-000047
查找如上的表7,即可确定发送该数据的第二通信设备以及数据的当前传输次数。例如,第一通信设备在确定生成DMRS时所用的第一参数
Figure PCTCN2018087044-appb-000048
则第一通信设备即可确定发送该数据的第二通信设备且该数据的当前发送次数为1。当第一发送次数也为1时,可确定该数据在当前发送次数下发送时占用的资源即为在第一发送次数下发送数据时所占的资源。
可选的,还可统计K次重复传输中,成功率最高的发送次数,将该发送次数作为第一发送数,为该发送次数配置特定的第一参数,并设置在该发送次数下发送数据所占用的资源与HARQ进程的标识的映射关系。
示例性的,图6为本申请实施例四提供的传输参数获取方法中的资源占用情况示意图。下面结合图6对本申请实施提供的在数据的当前发送次数与第一发送次数不同时,根据第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式,确定第二通信设备在第一发送次数下发送数据所占用的资源的具体实现方式进行详细说明。
参照图6,示例性的,第一通信设备接收到一个数据DATA1,第一通信设备根据DATA1对应的DMRS确定DATA1的当前发送次数为3,以及DATA1在第三次发送时占用的资源为图6中的第一资源块。也即,第一通信设备未能成功接收到第二通信设备前两次发送的DATA1。此时,第一通信设备确定DATA1的发送模式,如跳频模式,并根据发送模块确定第一发送次数下DATA1发送时所占的资源。例如,当第一发送次数为1,发送模式为A,则可确定出发送次数为1时,第二通信设备发送DATA1占用的资源为图6中的第二资源块。其中,A发送模式示例性的可以为不跳频,数据重复发送时所采用的各个资源块在时域上连续。可选的,当第一发送次数为4,则同样可根据DATA1的发送模式确定发送次数为4时,第二通信设备发送DATA1占用的资源为图6中的第三资源块。
示例性的,第一通信设备接收到一个数据DATA2,第一通信设备根据DATA2对应的DMRS确定DATA2的当前发送次数为3,以及DATA2在第三次发送时占用的资源为图6中的第四资源块。此时,第一通信设备确定DATA2的发送模式,如跳频模式,并根据发送模块确定第一发送次数下DATA2发送时所占的资源。例如,当第一发送次数为1,发送模式为B,则可确定出发送次数为1时,第二通信设备发送DATA2占用的资源为图6中的第五资源块。 其中,发送模式B示例性的可以为,数据重复发送时每一次发送分别在第一带宽部分和第四带宽部分之间跳转,且数据重复发送时可采用的各资源块在时域上具有预设的时间间隔。
示例性的,根据第二通信设备在第一发送次数下发送数据所占用的资源与HARQ进程的标识的映射关系,即可确定出第二通信设备在HARQ进程1上发送DATA1,在HARQ进程3上发送DATA2。参照图6,图6还示出了第二通信设备在HARQ进程2上发送数据,该数据的发送模式与发送模式A、发送模式B均不相同。
本申请实施例另一方面还提供一种数据传输方法。图7为本申请实施例一提供的数据传输方法的流程示意图。该方法的执行主体为第二通信设备,例如终端设备,第二通信设备通过执行本实施例提供的数据传输方法与图2至图6所示实施例中的第一通信设备交互。本实施例涉及的是第二通信设备根据待传输数据的传输参数,确定待传输数据对应的DMRS,并将数据和对应的DMRS同时发送给第一通信设备,以使第一通信设备根据DMRS确定出数据的传输参数,根据传输参数区分接收到的数据,具有与上述实施例相同的技术原理和技术效果,本实施例对此不再赘述。示例性的,如图7所示,数据传输方法包括:
S701、根据待传输数据的传输参数,确定数据对应的DMRS;
S702、向第一通信设备发送数据和数据对应的DMRS;
其中,传输参数用于使第一通信设备区分接收到的数据。
可选的,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
可选的,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
对应的,第二通信设备向第一通信设备发送数据和数据对应的DMRS,包括:
第二通信设备在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
可选的,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
可选的,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
可选的,本申请实施例提供的数据传输方法还包括:
第二通信设备接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。第三映射关系即为索引值映射关系。
可选的,索引值指示信息包括:起始索引值和索引值数目。
可选的,本申请实施例提供的数据传输方法还包括:
接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
可选的,本申请实施例提供的数据传输方法还包括:
接收第一通信设备发送的第一映射关系。
可选的,本申请实施例提供的数据传输方法还包括:
接收第一通信设备发送的第二映射关系。
可选的,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
可选的,本申请实施例提供的数据传输方法还包括:
接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
可选的,本申请实施例提供的数据传输方法还包括:
接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
本申请实施例再一方面还提供一种传输参数获取装置,作为第一通信设备,用于执行上述实施例中的第一通信设备侧的传输参数获取方法,具有相同的技术特征和技术效果。
图8为本申请实施例提供的传输参数获取装置的结构示意图。该传输参数获取装置可以为上述图2至图7所示实施例中的第一通信设备,该传输参数获取装置可以通过软件、硬件或者软硬件结合的方式实现。如图8所示,该传输参数获取装置可以包括:
接收模块11,用于接收第二通信设备发送的数据;
传输参数获取模块12,用于根据数据对应的解调参考信号DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
可选的,传输参数包括:第二通信设备发送数据时所采用的混合自动重传请求HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
可选的,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,DMRS对应的第一参数用于指示传输参数,具体包括:
DMRS对应的第一参数与传输参数之间具有第一映射关系。
可选的,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:
DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系;
HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关;
其中,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,若数据的当前发送次数与第一发送次数相同,第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
可选的,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关,具体包括:
第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式相关。
可选的,如图8所示,传输参数获取装置还包括:
发送模块13,用于向第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
可选的,索引值指示信息包括:起始索引值和索引值数目。
可选的,如图8所示,传输参数获取装置还包括:
发送模块13,用于向第二通信设备发送第一参数集合;
其中,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
可选的,如图8所示,传输参数获取装置还包括:
发送模块13,用于向第二通信设备发送第一映射关系。
可选的,如图8所示,传输参数获取装置还包括:
发送模块13,用于向第二通信设备发送第二映射关系。
可选的,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
可选的,发送模块13具体用于,广播/组播第一映射关系;或者使用第二通信设备特定信令向第二通信设备发送第一映射关系。
可选的,发送模块13具体用于,广播/组播第二映射关系;或者使用第二通信设备特定信令向第二通信设备发送第二映射关系。
图9为本申请实施例提供的数据传输装置的结构示意图。该数据传输装置可以为上述图2至图8所示实施例中的第二通信设备,该数据传输装置可以通过软件、硬件或者软硬件结合的方式实现。如图9所示,该数据传输装置可以包括:
DMRS确定模块21,用于根据待传输数据的传输参数,确定数据对应的DMRS;
发送模块22,用于向第一通信设备发送数据和数据对应的DMRS;其中,传输参数用于使第一通信设备区分接收到的数据。
可选的,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
可选的,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
向第一通信设备发送数据和数据对应的DMRS,包括:
在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
可选的,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
可选的,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
可选的,索引值指示信息包括:起始索引值和索引值数目。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备发送的第一映射关系。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备发送的第二映射关系。
可选的,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
可选的,如图9所示,数据传输装置还包括:
接收模块23,用于接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
本申请实施例又一方面还提供一种通信设备,用于执行上述实施例中的第一通信设备侧的传输资源获取方法,具有相同的技术特征和技术效果。
图10为本申请实施例提供的通信设备的结构示意图。该通信设备可以包括存储器31、处理器32、至少一个通信总线33、发送器34和接收器35。通信总线33用于实现元件之间的通信连接。存储器31可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器31中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。本实施例中,发送器34可以为基站中的射频处理模块或者基带处理模块,接收器35可以为基站中的射频处理模块或者基带处理模块。上述发送器34和接收器35可以分开设置,还可以集成在一起设置构成一个收发器,该发送器34和接收器35均可以耦合至所述处理器32。通信总线33可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称:PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称:EISA)总线等。上述通信总线33可以分为地址总线、数据总线、控制 总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。图10示出了上述实施例中所涉及的通信设备的一种可能的设计结构的简化示意图。可以理解的是,图10仅仅示出了所述网络设备的简化设计。在实际应用中,所述通信设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的通信设备都在本申请的保护范围之内。
具体的,本实施例中,接收器35,用于接收第二通信设备发送的数据;
处理器32,用于根据数据对应的解调参考信号DMRS确定数据的传输参数,传输参数用于区分第一通信设备接收到的数据。
可选的,传输参数包括:第二通信设备发送数据时所采用的混合自动重传请求HARQ进程的标识、第二通信设备发送数据的发送次数中的至少一个。
可选的,DMRS对应的第一参数用于指示传输参数,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,DMRS对应的第一参数用于指示传输参数,具体包括:
DMRS对应的第一参数与传输参数之间具有第一映射关系。
可选的,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,DMRS对应的第一参数用于指示第二通信设备发送数据的发送次数,具体包括:
DMRS对应的第一参数与第二通信设备发送数据的发送次数之间具有第二映射关系;
HARQ进程的标识与第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关;
其中,第一参数为第二通信设备生成DMRS时所采用的参数。
可选的,若数据的当前发送次数与第一发送次数相同,第二通信设备在当前发送次数下发送数据时所占用的资源为第二通信设备在第一发送次数下发送数据时所占用的资源。
可选的,若数据的当前发送次数与第一发送次数不同,第二通信设备在第一发送次数下发送数据所占用的资源,与数据的当前发送次数相关,具体包括:
第二通信设备在第一发送次数下发送数据所占用的资源,与第二通信设备在当前发送次数下发送数据时所占用的资源和数据的发送模式相关。
可选的,通信设备还包括:
发送器34,用于向第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括第二通信设备在发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
可选的,索引值指示信息包括:起始索引值和索引值数目。
可选的,通信设备还包括:
发送器34,用于向第二通信设备发送第一参数集合;
其中,第一参数集合中包括第二通信设备在发送数据时可采用的第一参数。
可选的,通信设备还包括:
发送器34,用于向第二通信设备发送第一映射关系。
可选的,通信设备还包括:
发送器34,用于向第二通信设备发送第二映射关系。
可选的,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
可选的,发送器34具体用于,广播/组播第一映射关系;或者使用第二通信设备特定信令向第二通信设备发送第一映射关系。
可选的,发送器34具体用于,广播/组播第二映射关系;或者使用第二通信设备特定信令向第二通信设备发送第二映射关系。
本申请实施例又一方面还提供一种通信设备,用于执行上述实施例中的第二通信设备设备侧的数据传输方法,具有相同的技术特征和技术效果。本实施例中的通信设备的结构可参见上述图10所示的通信设备的结构。
具体的,本实施例中,处理器32,用于根据待传输数据的传输参数,确定数据对应的DMRS;
发送器34,用于向第一通信设备发送数据和数据对应的DMRS;其中,传输参数用于使第一通信设备区分接收到的数据。
可选的,传输参数包括:发送数据时所采用的HARQ进程的标识、数据的当前发送次数中的至少一个。
可选的,传输参数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,传输参数用于指示DMRS对应的第一参数,具体包括:
传输参数与DMRS对应的第一参数之间具有第一映射关系。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,第一参数为生成DMRS时所采用的参数。
可选的,数据的当前发送次数用于指示DMRS对应的第一参数,具体包括:
数据的当前发送次数与DMRS对应的第一参数之间具有第二映射关系;
向第一通信设备发送数据和数据对应的DMRS,包括:
在第一资源上,向第一通信设备发送数据和数据对应的DMRS;
其中,第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与HARQ进程的标识相关。
可选的,若数据的当前发送次数与第一发送次数相同,第一资源为在第一发送次数下发送数据所占用的资源。
可选的,若数据的当前发送次数与第一发送次数不同;第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
第一资源,与数据的当前发送次数、在第一发送次数下发送数据所占用的资源、数据的发送模式相关。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
其中,索引值指示信息包括发送数据时可采用的索引值;第三映射关系包括索引值与第一参数之间的映射关系。
可选的,索引值指示信息包括:起始索引值和索引值数目。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备发送的第一参数集合;
其中,第一参数集合中包括发送上行数据时可采用的第一参数。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备发送的第一映射关系。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备发送的第二映射关系。
可选的,第一参数用于指示DMRS所基于的伪随机序列;或
第一参数用于指示DMRS的循环位移值。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备广播/组播的第一映射关系;或者
接收第一通信设备使用特定信令发送的第一映射关系。
可选的,通信设备还包括:
接收器35,用于接收第一通信设备广播/组播的第二映射关系;或者
接收第一通信设备使用特定信令发送的第二映射关系。
本申请实施例又一方面还提供了一种数据传输系统,包括如上述任一实施例中的第一通信设备和第二通信设备。
本申请实施例又一方面还提供了一种计算机存储介质,用于储存上述第一通信设备所用的计算机软件指令,其包含用于执行上述任一实施例中的第一通信设备侧的方法的程序。本申请实施例还提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述第一通信设备所执行的功能。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第一通信设备实现上述任一实施例中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,所述存储器,用于保存第一通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例又一方面还提供了一种计算机存储介质,用于储存上述第二通信设备所用的计算机软件指令,其包含用于执行上述任一实施例中的第二通信设备侧的方法的程序。本申请实施例还提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行第二通信设备所执行的功能。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第二通信设备实现上述任一实施例中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,所述存储器,用于保存第二通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划 分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (35)

  1. 一种传输参数获取方法,其特征在于,所述方法包括:
    第一通信设备接收第二通信设备发送的数据;
    第一通信设备根据所述数据对应的解调参考信号DMRS确定所述数据的传输参数,所述传输参数用于区分所述第一通信设备接收到的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述传输参数包括:所述第二通信设备发送所述数据时所采用的混合自动重传请求HARQ进程的标识、所述第二通信设备发送所述数据的发送次数中的至少一个。
  3. 根据权利要求2所述的方法,其特征在于,所述DMRS对应的第一参数用于指示所述传输参数,所述第一参数为所述第二通信设备生成所述DMRS时所采用的参数。
  4. 根据权利要求3所述的方法,其特征在于,所述DMRS对应的第一参数用于指示所述传输参数,具体包括:
    所述DMRS对应的第一参数与所述传输参数之间具有第一映射关系。
  5. 根据权利要求2所述的方法,其特征在于,所述DMRS对应的第一参数用于指示所述第二通信设备发送所述数据的发送次数,所述第一参数为所述第二通信设备生成所述DMRS时所采用的参数。
  6. 根据权利要求5所述的方法,其特征在于,所述DMRS对应的第一参数用于指示所述第二通信设备发送所述数据的发送次数,具体包括:
    所述DMRS对应的第一参数与所述第二通信设备发送所述数据的发送次数之间具有第二映射关系;
    所述HARQ进程的标识与所述第二通信设备在第一发送次数下发送数据所占用的资源之间具有对应关系;
    所述第二通信设备在第一发送次数下发送数据所占用的资源,与所述数据的当前发送次数相关。
  7. 根据权利要求6所述的方法,其特征在于,若所述数据的当前发送次数与第一发送次数相同,所述第二通信设备在当前发送次数下发送所述数据时所占用的资源为所述第二通信设备在所述第一发送次数下发送所述数据时所占用的资源。
  8. 根据权利要求6所述的方法,其特征在于,若所述数据的当前发送次数与第一发送次数不同,所述第二通信设备在第一发送次数下发送数据所占用的资源,与所述数据的当前发送次数相关,具体包括:
    所述第二通信设备在第一发送次数下发送数据所占用的资源,与所述第二通信设备在当前发送次数下发送所述数据时所占用的资源和所述数据的发送模式相关。
  9. 根据权利要求3至8中任一项所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的数据之前,所述方法还包括:
    所述第一通信设备向所述第二通信设备发送如下中的至少一项:索引值指示信息和第三映射关系;
    其中,所述索引值指示信息包括所述第二通信设备在发送所述数据时可采用的索引值;所述第三映射关系包括所述索引值与所述第一参数之间的映射关系。
  10. 根据权利要求9所述的方法,其特征在于,所述索引值指示信息包括:起始索引值和索引值数目。
  11. 根据权利要求3至8中任一项所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的数据之前,所述方法还包括:
    所述第一通信设备向所述第二通信设备发送第一参数集合;
    其中,所述第一参数集合中包括所述第二通信设备在发送数据时可采用的第一参数。
  12. 根据权利要求4所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的数据之前,所述方法还包括:
    所述第一通信设备向所述第二通信设备发送所述第一映射关系。
  13. 根据权利要求6所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的数据之前,所述方法还包括:
    所述第一通信设备向所述第二通信设备发送所述第二映射关系。
  14. 根据权利要求3-13中任一项所述的方法,其特征在于,所述第一参数用于指示所述DMRS所基于的伪随机序列;或
    所述第一参数用于指示所述DMRS的循环位移值。
  15. 根据权利要求12所述的方法,其特征在于,所述第一通信设备向所述第二通信设备发送所述第一映射关系,具体包括:
    所述第一通信设备广播/组播所述第一映射关系;或者
    所述第一通信设备使用第二通信设备特定信令向所述第二通信设备发送所述第一映射关系。
  16. 根据权利要求13所述的方法,其特征在于,所述第一通信设备向所述第二通信设备发送所述第二映射关系,具体包括:
    所述第一通信设备广播/组播所述第二映射关系;或者
    所述第一通信设备使用第二通信设备特定信令向所述第二通信设备发送所述第二映射关系。
  17. 一种数据传输方法,其特征在于,所述方法包括:
    根据待传输数据的传输参数,确定所述数据对应的DMRS;
    向第一通信设备发送所述数据和所述数据对应的DMRS;其中,所述传输参数用于使所述第一通信设备区分接收到的数据。
  18. 根据权利要求17所述的方法,其特征在于,所述传输参数包括:发送所述数据时所采用的HARQ进程的标识、所述数据的当前发送次数中的至少一个。
  19. 根据权利要求18所述的方法,其特征在于,所述传输参数用于指示所述DMRS对应的第一参数,所述第一参数为生成所述DMRS时所采用的参数。
  20. 根据权利要求19所述的方法,其特征在于,所述传输参数用于指示所述DMRS对应的第一参数,具体包括:
    所述传输参数与所述DMRS对应的第一参数之间具有第一映射关系。
  21. 根据权利要求18所述的方法,其特征在于,所述数据的当前发送次数用于指示所述DMRS对应的第一参数,所述第一参数为生成所述DMRS时所采用的参数。
  22. 根据权利要求21所述的方法,其特征在于,所述数据的当前发送次数用于指示所述DMRS对应的第一参数,具体包括:
    所述数据的当前发送次数与所述DMRS对应的第一参数之间具有第二映射关系;
    所述向第一通信设备发送所述数据和所述数据对应的DMRS,包括:
    在第一资源上,向第一通信设备发送所述数据和所述数据对应的DMRS;
    其中,所述第一资源与在第一发送次数下发送数据所占用的资源相关;在第一发送次数下发送数据所占用的资源与所述HARQ进程的标识相关。
  23. 根据权利要求22所述的方法,其特征在于,若所述数据的当前发送次数与第一发送次数相同,所述第一资源为在第一发送次数下发送数据所占用的资源。
  24. 根据权利要求22所述的方法,其特征在于,若所述数据的当前发送次数与第一发送次数不同;所述第一资源与在第一发送次数下发送数据所占用的资源相关,具体包括:
    所述第一资源,与所述数据的当前发送次数、在第一发送次数下发送数据所占用的资源、所述数据的发送模式相关。
  25. 根据权利要求19至24中任一项所述的方法,其特征在于,所述根据待传输数据的传输参数,确定所述数据对应的DMRS之前,所述方法还包括:
    接收所述第一通信设备发送的如下中的至少一项:索引值指示信息和第三映射关系;
    其中,所述索引值指示信息包括发送所述数据时可采用的索引值;所述第三映射关系包括所述索引值与所述第一参数之间的映射关系。
  26. 根据权利要求25所述的方法,其特征在于,所述索引值指示信息包括:起始索引值和索引值数目。
  27. 根据权利要求19至24中任一项所述的方法,其特征在于,所述根据待传输数据的传输参数,确定所述数据对应的DMRS之前,所述方法还包括:
    接收所述第一通信设备发送的第一参数集合;
    其中,所述第一参数集合中包括发送上行数据时可采用的第一参数。
  28. 根据权利要求20所述的方法,其特征在于,所述根据待传输数据的传输参数,确定所述数据对应的DMRS之前,所述方法还包括:
    接收所述第一通信设备发送的所述第一映射关系。
  29. 根据权利要求22所述的方法,其特征在于,所述根据待传输数据的传输参数,确定所述数据对应的DMRS之前,所述方法还包括:
    接收所述第一通信设备发送的所述第二映射关系。
  30. 根据权利要求19-29中任一项所述的方法,其特征在于,所述第一参数用于指示所述DMRS所基于的伪随机序列;或
    所述第一参数用于指示所述DMRS的循环位移值。
  31. 根据权利要求28所述的方法,其特征在于,所述根据待传输数据的传输参数,确定所述数据对应的DMRS之前,所述方法还包括:
    接收所述第一通信设备广播/组播的所述第一映射关系;或者
    接收所述第一通信设备使用特定信令发送的所述第一映射关系。
  32. 根据权利要求29所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的数据之前,所述方法还包括:
    接收所述第一通信设备广播/组播的所述第二映射关系;或者
    接收所述第一通信设备使用特定信令发送的所述第二映射关系。
  33. 一种传输参数获取装置,作为第一通信设备,其特征在于,所述装置包括:存储器、处理器、收发器及总线系统;
    所述存储器、处理器及收发器通过所述总线系统耦合;
    所述存储器用于存储指令,所述处理器用于执行所述指令;
    其中,所述处理器执行所述指令时执行如权利要求1至16中任一项所述方法中的步骤。
  34. 一种数据传输装置,作为第二通信设备,其特征在于,所述装置包括:存储器、处理器、收发器及总线系统;
    所述存储器、处理器及收发器通过所述总线系统耦合;
    所述存储器用于存储指令,所述处理器用于执行所述指令;
    其中,所述处理器执行所述指令时执行如权利要求17至32中任一项所述方法中的步骤。
  35. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于执行权利要求1至32中任一项所述的方法。
PCT/CN2018/087044 2017-08-11 2018-05-16 传输参数获取、数据传输方法和装置 WO2019029213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687140.4A CN109391423B (zh) 2017-08-11 2017-08-11 传输参数获取、数据传输方法和装置
CN201710687140.4 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029213A1 true WO2019029213A1 (zh) 2019-02-14

Family

ID=65271067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087044 WO2019029213A1 (zh) 2017-08-11 2018-05-16 传输参数获取、数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN109391423B (zh)
WO (1) WO2019029213A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092735A1 (zh) * 2019-11-11 2021-05-20 小米通讯技术有限公司 信号处理方法及装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507497A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106793127A (zh) * 2017-02-17 2017-05-31 宇龙计算机通信科技(深圳)有限公司 微时隙的指示方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162563B (zh) * 2014-08-25 2020-07-10 中兴通讯股份有限公司 非授权载波信息的发送及接收的方法和装置
US9750056B2 (en) * 2015-01-27 2017-08-29 Huawei Technologies Co., Ltd. System and method for transmission in a grant-free uplink transmission scheme
CN105991265B (zh) * 2015-02-04 2019-04-19 上海诺基亚贝尔股份有限公司 基于前导序列辅助地实施非周期性参考信号传输的方法
US10735166B2 (en) * 2015-05-29 2020-08-04 Huawei Technologies Co., Ltd. System and method of UE-centric radio access procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507497A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106793127A (zh) * 2017-02-17 2017-05-31 宇龙计算机通信科技(深圳)有限公司 微时隙的指示方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on feedback signaling for grant-free MA", 3GPP TSG RAN WG1 MEETING #86BIS , R1-1609226, 14 October 2016 (2016-10-14), XP051149272 *
SAMSUNG: "Support of HARQ in grant-free based multiple access", 3GPP TSG RAN WG1 MEETING #86, R1-1609039, 14 October 2016 (2016-10-14), XP051149092 *

Also Published As

Publication number Publication date
CN109391423B (zh) 2020-11-03
CN109391423A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN110447198B (zh) 用于高可靠性低等待时间通信系统的下行链路和上行链路传输
EP3430750A1 (en) Method for partial retransmission
WO2016070790A1 (zh) 一种harq确认信息的反馈方法及装置
WO2014101233A1 (zh) 信息传输方法和装置
EP3598682B1 (en) Method and apparatus for uplink data transmission
WO2019157683A1 (zh) 上行控制信息的传输方法和装置
WO2014117686A1 (zh) 一种随机接入方法及用户设备
WO2019137506A1 (zh) 一种信息传输方法和装置
WO2018081969A1 (zh) 信息传输装置、方法以及通信系统
EP3637657B1 (en) Communication method, network device and terminal
US11356988B2 (en) Method and apparatus for mapping uplink control information in wireless communication system
WO2014111023A1 (zh) 一种增强pbch的传输方法及装置
WO2014205736A1 (en) Method and bs for transmitting control information to ue, and method and ue for handling control information
WO2012171471A1 (zh) 数据传输方法和用户设备
US20190132106A1 (en) Uplink transmission method and apparatus
WO2020194924A1 (ja) 端末及び送信方法
WO2017214976A1 (zh) 数据传输的方法和装置
WO2019029213A1 (zh) 传输参数获取、数据传输方法和装置
US20220303066A1 (en) Method and device in nodes used for wireless communication
CN108616335B (zh) 一种数据包传输方法、用户终端和网络侧设备
CN107896390B (zh) 一种用于低延迟的ue、基站中的方法和装置
WO2014015741A1 (zh) 物理混合重传请求校验指示信道的发送方法、装置及系统
US10693614B2 (en) Data transmission method, terminal device, and network device
WO2023231910A1 (zh) 反馈信息发送方法、反馈信息接收方法、终端及存储介质
CN114095144B (zh) 用于低成本用户设备的下行链路控制信道的传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843612

Country of ref document: EP

Kind code of ref document: A1