WO2014111023A1 - 一种增强pbch的传输方法及装置 - Google Patents

一种增强pbch的传输方法及装置 Download PDF

Info

Publication number
WO2014111023A1
WO2014111023A1 PCT/CN2014/070691 CN2014070691W WO2014111023A1 WO 2014111023 A1 WO2014111023 A1 WO 2014111023A1 CN 2014070691 W CN2014070691 W CN 2014070691W WO 2014111023 A1 WO2014111023 A1 WO 2014111023A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
frames
radio frames
radio
symbols
Prior art date
Application number
PCT/CN2014/070691
Other languages
English (en)
French (fr)
Inventor
徐伟杰
邢艳萍
贾民丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014111023A1 publication Critical patent/WO2014111023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for enhancing PBCH transmission. Background technique
  • the Internet of Things technology is in the ascendant, in the third generation of mobile communication systems and its long-term evolution (Long Term Evolution,
  • MTC Machine Type Communications
  • An MTC device also known as an MTC terminal
  • M2M machine-to-machine
  • M2M communication aims to combine various different types of communication technologies, such as: machine-to-machine communication, machine control communication, human-computer interaction communication, mobile internet communication, etc., to promote social production. And the development of lifestyle. It is expected that the human-to-human communication business may only account for 1/3 of the entire M2M terminal market, and a larger amount of communication is the inter-machine (small bandwidth system) communication service.
  • MTC terminal has low mobility; the time for data transmission between the MTC terminal and the network side is controllable, that is, the MTC terminal can only access within a specified time period of the network.
  • the data transmission performed by the MTC terminal and the network side has low real-time requirements, namely: time tolerance; MTC terminal energy is limited, requiring extremely low power consumption; only small data volume is between the MTC terminal and the network side.
  • the MTC terminal can be managed in units of groups; an actual MTC terminal can have one or more of the above characteristics.
  • PBCH physical broadcast channel
  • MIB primary information block
  • SFN system frame Number
  • a BCH transmission block (carrying the downlink bandwidth information, the PHICH and the SFN of the cell) is added by adding a Cyclic Redundancy Check (Cyclic Redundancy Check, CRC), convolutional coding and rate matching, will be mapped to four radio frames for transmission, as shown in Figure 1:
  • CRC Cyclic Redundancy Check
  • Step 100 Add a CRC to the BCH transport block to be transmitted.
  • Step 110 Convolutional coding.
  • Step 120 Rate matching.
  • the bit stream 6 is output. , 6 1 , 6 2 , , ..., 6 ⁇ 1 , under the regular cyclic prefix (Cyclic Prefix, CP), the bit stream length E is 1920 bits; under the extended CP, the information stream length E is 1728 bits. Since the PBCH channel is mapped in 4 radio frames, each frame carries 480 bits under the normal CP, and 432 bits per frame in the extended CP.
  • CP regular cyclic prefix
  • Step 130 Scramble.
  • the rate matched bit stream e will be passed. , , e 2 , e 3 , ⁇ ⁇ ⁇ , scrambled with a cell-specific sequence before modulation.
  • Step 140 Quadrature Phase Shift Keying (QPSK) modulation.
  • QPSK Quadrature Phase Shift Keying
  • the scrambled bit stream is modulated by QPSK into an information symbol d.
  • Layer mapping is to map modulated data symbols onto layers. Layers are independent channels that can be distinguished in space, and channel environment. Related; Then each layer of data is precoded, which is equivalent to making a matrix change at the transmitting end to orthogonalize the channel to obtain the maximum channel gain.
  • PBCH can only perform multi-antenna transmission of transmission diversity, that is, when two antenna ports are used, pre-coding spatial frequency block code
  • Step 160 Resource mapping.
  • the resource mapping is to implement mapping of data to actual physical resources.
  • the transmission is performed on the middle 72 subcarriers of the first 4 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a sequence of symbols which can be mapped to the remaining 72 subcarriers of the four symbols, except for the remaining 240 resource elements (Resources) of the resources occupied by the downlink reference signals.
  • the reason why the PBCH channel is transmitted on the 72 subcarriers in the middle of the frequency band is: Before receiving the PBCH channel data, the user does not know the downlink bandwidth of the system, and only knows the center frequency of the downlink frequency band, so the transmission of the PBCH must be related to the downlink bandwidth. Regardless of the size, the user can know the time-frequency position of the PBCH after receiving the primary synchronization signal (PSS) and the secondary synchronization signal (SSS). The time-frequency position of the PBCH is as shown in Figure 2. Shown.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PBCH channel is mapped to four radio frames (four frames of radio frames, respectively).
  • the M2M terminal receives the data of the PBCH time-frequency position of the four radio frames, and performs the operation steps including channel equalization, SFBC or SFBC+FSTD decoding/decoding, and QPSK modulation on the data symbols, and then uses the cell-specific scrambling code.
  • a series of processing steps, such as convolutional decoding and CRC check if the CRC check succeeds, it indicates that the first radio frame of the received four radio frames is the start frame of the PBCH channel, and if the CRC check fails,
  • the M2M terminal needs to discard the PBCH data of the first radio frame of the four radio frames, and receives the PBCH data of the new radio frame, and repeats the above process.
  • the M2M terminal can confirm the start frame of the PBCH channel, and combine the SFN value carried by the PBCH channel to determine the SFN of each radio frame. It can be seen that the M2M terminal combines the data of four radio frames, and needs to save the demodulated soft bit data of four radio frames or the symbol data of a similar data amount (for example, the data before demodulation can also be saved).
  • a feasible method is to reduce the code rate transmission technology such as repeated transmission of the existing channel of the LTE system.
  • the PBCH channel it needs to be repeated 100 times or even hundreds of times to meet the 20 dB coverage enhancement.
  • the PBCH carries the MIB and carries the SFN information
  • the SFN value carried in the PBCH repetition period must be kept unchanged to obtain the combining gain on the M2M terminal side.
  • This method is also called coverage enhancement scheme.
  • the PBCH data block is encoded, rate matched, etc.
  • the data bit stream is uniformly scrambled and mapped.
  • the transmission to M (M is 100 to hundreds of times for the number of PBCH repetitions satisfying the coverage enhancement target) may be transmitted on the radio frame.
  • the M2M terminal needs to follow the method of receiving the sliding window, and each attempt to detect the PBCH needs to receive and save the PBCH data of the M radio frames and uniformly descramble until decoding. Correctly confirm the transmission start radio frame of the PBCH. During this period, the M2M terminal is required to store intermediate data of the M-block PBCH data (for example, demodulated soft bit data).
  • the PBCH coverage enhancement scheme As can be seen from the above description, if the PBCH coverage enhancement scheme is used, each time the PBCH attempt is decoded, the PBCH data of the M radio frames needs to be received and saved. To achieve the 20 dB coverage enhancement gain, the existing PBCH channel needs to be repeated at least 100. Second, so the amount of data that the M2M terminal needs to cache will also be at least 100 times the current demand.
  • the number of HARQ soft bit buffers can store about 57600 soft bit data (considering that the M2M terminal supports 8 processes), so that even if the M2M terminal cache is used for PBCH reception.
  • the processing is also far from satisfying the soft bit requirement of the PBCH detection processing in the above PBCH coverage enhancement scheme.
  • the PBCH coverage enhanced transmission scheme will bring about a large increase in the M2M terminal buffer
  • the buffer for processing data in the M2M terminal chip accounts for a large portion of the M2M terminal chip cost.
  • the PBCH coverage enhancement scheme will result in an increase in the cost of the M2M terminal, which is obviously disadvantageous for the mass market popularity of the M2M terminal. Summary of the invention
  • Embodiments of the present invention provide a method for enhancing PBCH transmission, which is used to reduce the production cost of an M2M terminal while ensuring PBCH coverage performance.
  • An enhanced PBCH transmission method includes:
  • the network side uses T radio frames as one TTI.
  • the network side determines N radio frames for 7
  • the network side transmits the symbols of the enhanced PBCH to the preset L resource units RE after being repeated in each of the N radio frames, where L is a preset greater than 1. A positive integer.
  • the N radio frames used by the network side to carry the enhanced PBCH in the TTI include: N radio frames pre-agreed by the network side and the terminal side in the TTI.
  • the N radio frames pre-agreed by the network side and the terminal side in the TTI used by the network side include: Any one of the predetermined radio frames in the T radio frames in the TTI is used as the consecutive radio frames of the starting radio frame; or
  • the first one of the radio frames in the radio frame or
  • the network side transmits the enhanced PBCH symbols to the preset L REs after being repeated in each of the N radio frames, including:
  • the network side repeats the symbols of the enhanced PBCH in each of the N radio frames, and then maps to the PBCH, PDCCH, downlink synchronization channel, and downlink reference specified by the LTE protocol in addition to the 3GPP Release 11 and before.
  • the signal is occupied by the RE, which is transmitted on the preset L REs.
  • the network side transmits the enhanced PBCH symbols to the preset L REs after being repeated in each of the N radio frames, including:
  • the network side will enhance the source information bits carried by the PBCH by adding CRC, convolutional coding, rate matching, scrambling,
  • the network side divides the sequence of the complex-valued symbols into N segments, wherein each of the obtained complex-valued symbol sequences has a length of M symb /N and corresponds to one of the N radio frames;
  • the network side respectively repeats each of the complex-valued symbol sequences in the corresponding radio frame according to a predefined repetition rule to obtain L symbols;
  • the network side maps the corresponding L symbols to the preset L REs in each of the N radio frames.
  • the network side repeats any sequence of complex-valued symbols in the corresponding radio frame by using a predefined repetition rule to obtain L symbols, including:
  • L is not an integer multiple of M symb / N , the arbitrary sequence of complex-valued symbols is passed through ⁇ /! ⁇ ), and after the repetition, the first L symbols are selected among all the obtained symbols, or Select the middle L symbols, or select the last L symbols, or select any L symbols.
  • the predefined repetition rule used by the network side includes: repeating any sequence of complex-valued symbols as a whole as a whole; or, repeating the sequence of any one of the complex-valued symbols multiple times at the symbol level.
  • the L REs of the network side are located on one or more subcarriers in the central frequency band of the system, and overlap or partially overlap with the frequency band occupied by the first type of PBCH, or
  • the L REs used by the network side are located in other frequency bands outside the frequency band of the system center, and do not coincide with the frequency bands occupied by the first type of PBCH;
  • the first type of PBCH is a PBCH specified by the 3GPP Release 11 and the previous Long Term Evolution (LTE) protocol.
  • the SFN domain carried by the enhanced PBCH transmitted by the network side is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH transmitted by the network side is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. A positive integer.
  • An apparatus for enhancing PBCH transmitting an enhanced PBCH by using T radio frames as one TTI, comprising: a determining unit, configured to determine, in a TTI, N radio frames for carrying an enhanced PBCH, where N is smaller than Equal to ⁇ , N and T are preset positive integers greater than one;
  • the main processing unit is configured to: after each of the N radio frames, repeat the symbol of the enhanced PBCH, and then map the signal to the preset L resource unit RE, where L is a preset A positive integer greater than one.
  • the TTI determined by the determining unit is used to carry the N radio frames of the enhanced PBCH, and includes: N radio frames pre-agreed by the network side and the terminal side in the TTI.
  • determining, by the determining unit, the N radio frames that are pre-agreed by the network side and the terminal side in the TTI including: using any one of the agreed radio frames as the starting radio frame in the T radio frames in the TTI Or consecutive radio frames; or, the first N radio frames in the T radio frames in the TTI; or any N non-contiguous radio frames in the T radio frames in the TTI; or Any N locally discontinuous radio frames within T radio frames in the TTI.
  • the main processing unit transmits the enhanced PBCH symbols to the preset L REs after being repeated in each of the N radio frames, including:
  • the main processing unit respectively repeats the symbols of the enhanced PBCH in each of the N radio frames, and then maps to the PBCH and the physical downlink control channel PDCCH specified by the 3GPP Release 11 and the long-term evolution LTE protocol.
  • the downlink synchronization channel and the RE occupied by the downlink reference signal are transmitted on the preset L REs.
  • the main processing unit transmits the enhanced PBCH symbols to the preset L REs after being repeated in each of the N radio frames, including:
  • the main processing unit adds the CRC, convolutional coding, rate matching, scrambling, QPSK modulation, precoding, and layer mapping to the source information bits carried by the enhanced PBCH to obtain a complex value symbol sequence of length M symb ;
  • the main processing unit divides the sequence of the complex-valued symbols into N segments, wherein each of the obtained complex-valued symbol sequences has a length of M symb / N and respectively corresponds to one of the N radio frames;
  • the main processing unit respectively segments each of the complex-valued symbol sequences in the corresponding radio frame based on a predefined repetition rule Overlapping L symbols;
  • the main processing unit respectively maps the corresponding L symbols to the preset L REs in each of the N radio frames.
  • the main processing unit repeats any sequence of complex-valued symbols in the corresponding radio frame based on the predefined repetition rule to obtain L symbols, including:
  • the main processing unit directly obtains L symbols by repeating ( symb / N ) times of the arbitrary sequence of complex-valued symbols;
  • the main processing unit passes the arbitrary sequence of complex-valued symbols through "L/(M symb /N), and after the repetition, selects the former L from all the obtained symbols. Symbols, or, select the middle L symbols, or select the last L symbols, or select any L symbols.
  • the predefined repetition rule used by the main processing unit includes: repeating any sequence of complex-valued symbols as a whole as a whole; or, repeating the sequence of any of the complex-valued symbols at the symbol level multiple times .
  • the L REs used by the main processing unit are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH, or
  • L REs used by the main processing unit located in other frequency bands outside the frequency band of the system, and with the first class
  • the first type of PBCH is a PBCH specified by the 3GPP Release 11 and the previous LTE protocol.
  • the SFN field carried by the enhanced PBCH transmitted by the primary processing unit is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH transmitted by the main processing unit is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. Positive integer.
  • An enhanced PBCH receiving method includes:
  • the terminal side receives the enhanced PBCH with T radio frames as one transmission time interval TTI, and the terminal side determines the number of radio frames to be received N', N' is a preset positive integer;
  • the symbols of the enhanced PBCH corresponding to the N radio frames are combined into a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset greater than 1. A positive integer.
  • the terminal side determines the number of radio frames that need to be received ⁇ ', including:
  • the terminal side is based on the location of the radio frames in which the enhanced PBCH is located in the UI and the network side pre-agreed.
  • the distribution determines the size of N'.
  • the terminal side determines the size of N′ based on the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI that is pre-agreed by the local and the network side, and includes:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the first N radio frames in T radio frames, then ⁇ ⁇ ';
  • N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N local discontinuities in the T radio frames in the TTI
  • the radio frame, then N' is the sum of the first radio frame containing the N enhanced PBCH radio frames and the last radio frame and the number of all radio frames therebetween.
  • the terminal side receives consecutive N' radio frames at a time, and in each received radio frame, parses the symbols of the enhanced PBCH from the symbols that are repeatedly mapped on the preset L REs, including:
  • the terminal side reads L symbols from the preset L REs in each of the received N′ radio frames;
  • the terminal side de-duplicates the L symbols corresponding to each radio frame to obtain a complex-valued symbol sequence of length M symb /N corresponding to each radio frame.
  • the terminal side de-duplicates the L symbols corresponding to each of the radio frames, respectively, including: the terminal side determines, according to a predefined repetition rule, a repetition relationship between the symbols in the L symbols that are read; Repeated symbols for merging;
  • the predefined repetition rule is that the sequence of complex value symbols is repeated as a whole as a whole; or, the sequence of complex value symbols is repeated multiple times at the symbol level.
  • the terminal side selects N radio frames from the N′ radio frames, including:
  • the terminal side selects N radio frames among the N′ radio frames based on the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI pre-agreed by the local and the network side.
  • the terminal side selects, according to the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI, which is pre-agreed by the local and the network side, and selects N radio frames among the N′ radio frames, including:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the first N radio frames in the T radio frames, the selected N radio frames are the received N′ radio frames;
  • the N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N local discontinuities in the T radio frames in the TTI Radio frame
  • the first radio frame of the N'th radio frame is used as the first radio frame where the enhanced PBCH is located, and all N radio frames are determined according to the distribution of the N radio frames in which the enhanced PBCH is located.
  • the L REs read by the terminal side in each radio frame are PBCHs and physical downlink control channels specified by the terminal and the network in advance, except 3GPP Release 11 and the previous Long Term Evolution (LTE) protocol.
  • the L REs read by the terminal side in each radio frame are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency bands occupied by the first type of PBCH.
  • the L REs read by the terminal side in each radio frame are located in other frequency bands outside the frequency band of the system, and do not coincide with the frequency bands occupied by the first type of PBCH; the first type of PBCH is 3GPP.
  • PBCH specified in Release 11 and previous Long Term Evolution LTE protocols.
  • the SFN field carried by the enhanced PBCH received by the terminal side is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH received by the terminal side is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. A positive integer.
  • An apparatus for enhancing PBCH the apparatus receiving an enhanced PBCH with T radio frames as a transmission time interval TTI, including:
  • a determining unit configured to determine the number of radio frames that need to be received, N', N' are preset positive integers;
  • the parsing unit is used to repeat the following process until the enhanced PBCH is correctly detected:
  • the symbols of the enhanced PBCH corresponding to the N radio frames are combined into a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset greater than 1. A positive integer.
  • the determining unit determines the number of radio frames ⁇ ' to be received, including:
  • the determining unit determines the size of N' based on the location distribution of the plurality of radio frames in which the enhanced PBCH is pre-agreed in the local and network side.
  • the determining unit determines the size of N′ based on the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI that is pre-agreed by the local and the network side, and includes:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N local discontinuities in the T radio frames in the TTI
  • the radio frame determines N' as the sum of the first radio frame containing the N enhanced PBCH radio frames and the last radio frame and the number of all radio frames therebetween.
  • the parsing unit receives consecutive N' radio frames at a time, and parses the symbols of the enhanced PBCH from the symbols that are repeatedly mapped on the preset L REs in each received radio frame, including:
  • the parsing unit reads L symbols from the preset L REs in each of the received N′ radio frames;
  • the parsing unit de-duplicates the L symbols corresponding to each radio frame to obtain a complex-valued symbol sequence of length M symb /N corresponding to each radio frame.
  • the parsing unit de-duplicates the L symbols corresponding to each radio frame, respectively, including: the parsing unit determines, according to a predefined repetition rule, a repetitive relationship between each symbol in the read L symbols The parsing unit merges the repeated symbols;
  • the predefined repetition rule is that the sequence of complex value symbols is repeated as a whole as a whole; or, the sequence of complex value symbols is repeated multiple times at the symbol level.
  • the parsing unit selects N radio frames from the N′ radio frames, including:
  • the parsing unit selects N radio frames among the N′ radio frames based on the location distribution of the N radio frames in which the PBCH is enhanced in the TTI pre-agreed by the local and the network side.
  • the parsing unit selects N radio frames in the N′ radio frames based on the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI that is pre-agreed by the local and the network side, and includes:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the first N radio frames in the T radio frames, the N radio frames selected by the parsing unit are the received N′ radio frames;
  • the parsing unit uses the first radio frame of the N′ radio frames as the first radio frame where the enhanced PBCH is located, and determines all the radio frames according to the distribution of the N radio frames in which the enhanced PBCH is located. N radio frames.
  • the L REs read by the parsing unit in each radio frame are PBCH, PDCCH, downlink synchronization channel specified by the local and network, except 3GPP Release 11 and the previous LTE protocol.
  • the L REs read by the parsing unit in each radio frame are located on one or more subcarriers in the central frequency band of the system, and overlap or partially overlap with the frequency band occupied by the first type of PBCH.
  • the L REs read by the parsing unit in each radio frame are located in other frequency bands outside the center frequency band of the system, and do not coincide with the frequency bands occupied by the first type of PBCH;
  • the PBCH-like class is the PBCH specified in 3GPP Release 11 and the previous LTE protocol.
  • the SFN field carried by the enhanced PBCH received by the parsing unit is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, or the parsing unit is connected.
  • the received SFN field carried by the enhanced PBCH is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the agreed radio frame of the enhanced PBCH TTI, where X is a set positive integer .
  • a network side device which transmits an enhanced PBCH with T radio frames as a TTI, including a transceiver, and at least one processor connected to the transceiver, where:
  • the processor is configured to determine, in one TTI, N radio frames for carrying the enhanced PBCH, where N is less than or equal to ⁇ , N and T are preset positive integers greater than 1, and respectively in the N
  • the symbols of the enhanced PBCH are repeatedly mapped to the preset L resource units RE, and the transceiver is triggered to transmit the enhanced PBCH, where L is a preset greater than A positive integer of 1.
  • the TTI that is determined by the processor is used to carry the N radio frames of the enhanced PBCH, and includes: N radio frames pre-agreed by the network side and the terminal side in the TTI.
  • the N radio frames that are pre-agreed by the network side and the terminal side in the TTI determined by the processor include: any one of the T radio frames in the TTI, using any one of the agreed radio frames as the starting radio frame. Or consecutive radio frames; or, the first N radio frames in the T radio frames in the TTI; or any N non-contiguous radio frames in the T radio frames in the TTI; or Any N locally discontinuous radio frames within T radio frames in the TTI.
  • the processor is enhanced in each of the N radio frames
  • the symbols of the PBCH are repeated, they are mapped to the preset L resource units RE, and the transceiver is triggered to transmit the enhanced PBCH, including:
  • the processor after repeating the symbols of the enhanced PBCH in each of the N radio frames, is mapped to the PBCH and the physical downlink control channel specified by the Long Term Evolution (LTE) protocol in addition to the 3GPP Release 11 and the foregoing.
  • LTE Long Term Evolution
  • the processor is enhanced in each of the N radio frames
  • the symbols of the PBCH are repeated, they are mapped to the preset L REs for transmission, including:
  • the main processing unit adds the cyclic information CRC, convolutional coding, rate matching, scrambling, QPSK modulation, precoding, and layer mapping to the source information bits carried by the enhanced PBCH to obtain a complex value symbol sequence of length M symb ;
  • the processor divides the sequence of complex-valued symbols into N segments, wherein each of the obtained complex-valued symbol sequences has a length of M symb / N and corresponds to one of the N radio frames;
  • the processor respectively repeats each of the complex-valued symbol sequences in the corresponding radio frame according to a predefined repetition rule to obtain L symbols;
  • the processor maps the corresponding L symbols to the preset L in each of the N radio frames On the RE, and trigger the transceiver to transmit the enhanced PBCH.
  • the processor repeats any sequence of complex-valued symbols in the corresponding radio frame by using a predefined repetition rule to obtain L symbols, including:
  • the processor directly obtains L symbols by repeating the arbitrary sequence of complex-valued symbols by IJ ( M symb / N );
  • the processor passes the arbitrary sequence of complex-valued symbols through ⁇ /N), and after the repetition, selects the first L symbols from all the obtained symbols, or , select the middle L symbols, or select the last L symbols, or select any L symbols.
  • the predefined repetition rule used by the processor includes: repeating any sequence of complex-valued symbols as a whole as a whole; or, repeating the sequence of any of the complex-valued symbols at the symbol level multiple times.
  • the L REs used by the processor are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH, or
  • the L REs used by the processor are located in other frequency bands outside the frequency band of the system center, and do not coincide with the frequency bands occupied by the first type of PBCH;
  • the first type of PBCH is a PBCH specified by the 3GPP Release 11 and the previous Long Term Evolution (LTE) protocol.
  • the SFN field carried by the enhanced PBCH transmitted by the transceiver is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame; or, the transceiver
  • the SFN field carried by the enhanced PBCH transmitted by the machine is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the agreed radio frame of the enhanced PBCH TTI, and X is the set positive Integer.
  • a terminal that receives an enhanced PBCH with T radio frames as a transmission time interval TTI including a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to determine the number of radio frames that need to be received ⁇ ', N' is a preset positive integer;
  • the transceiver and processor are configured to repeat the following process until the enhanced PBCH is correctly detected:
  • the transceiver is configured to receive consecutive N' radio frames at a time
  • the processor is configured to parse out the symbols of the enhanced PBCH from the symbols repeatedly mapped on the preset L REs in each received radio frame; select N radio frames from the N′ radio frames;
  • the symbols of the enhanced PBCH corresponding to the radio frames constitute a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset positive integers greater than 1. .
  • the processor determines the number of radio frames that need to be received ⁇ ', including:
  • the processor determines the size of N' based on the location distribution of the plurality of radio frames in which the enhanced PBCH is pre-agreed in the local and network side.
  • the N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N local discontinuities in the T radio frames in the TTI
  • the radio frame determines N' as the sum of the first radio frame containing the N enhanced PBCH radio frames and the last radio frame and the number of all radio frames therebetween.
  • the processor parses the symbols of the enhanced PBCH from the symbols that are repeatedly mapped on the preset L REs in each of the received radio frames, including:
  • the processor reads L symbols from the preset L REs in each of the received N′ radio frames;
  • the processor de-duplicates the L symbols corresponding to each of the radio frames to obtain a complex-valued symbol sequence of length M symb /N corresponding to each radio frame.
  • the processor respectively de-duplicates the L symbols corresponding to each of the radio frames, where: the processor determines, according to the predefined repetition rule, a repetition relationship between the symbols in the L symbols that are read; the processor Repeated symbols for merging;
  • the predefined repetition rule is that the sequence of complex value symbols is repeated as a whole as a whole; or, the sequence of complex value symbols is repeated multiple times at the symbol level.
  • the processor selects N radio frames from the N′ radio frames, including:
  • the processor selects N radio frames among the N′ radio frames based on a location distribution of N radio frames in which the PBCH is enhanced in the TTI pre-agreed by the local and the network side.
  • the processor selects, according to the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI, which is pre-agreed by the local and the network side, and selects N radio frames among the N′ radio frames, including:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the first N radio frames in the T radio frames, the N radio frames selected by the processor are the received N′ radio frames;
  • the processor uses the first radio frame of the N′ radio frames as the first radio frame where the enhanced PBCH is located, and determines all N according to the distribution of the N radio frames in which the enhanced PBCH is located. Wireless frame.
  • the L REs read by the processor in each radio frame are PBCH, PDCCH, downlink synchronization channel, and downlink reference specified by the local and network in advance according to 3GPP Release 11 and previous LTE protocols.
  • the L REs read by the processor in each radio frame are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH.
  • the L REs read by the processor in each radio frame are located in other frequency bands outside the center frequency band of the system, and do not coincide with the frequency band occupied by the first type of PBCH; the first type of PBCH is 3GPP.
  • PBCH specified in Release 11 and previous Long Term Evolution LTE protocols.
  • the SFN field carried by the enhanced PBCH received by the transceiver is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH received by the transceiver is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. Positive integer.
  • the network side uses T radio frames as one TTI transmission enhanced PBCH, and in one TTI, the enhanced PBCH is only mapped to N radio frames (N is less than or equal to T); in each of the N radio frames Within a radio frame, the network side enhances the PBCH symbols and repeats them to map to the pre-defined L REs for transmission. In this way, only one PBCH transmission period is needed, and the network side can obtain the required combining gain through repeated mapping, which not only can achieve the enhanced PBCH coverage requirement, but also greatly reduces the data soft bit buffer required for the M2M terminal to detect the PBCH. , in turn, will not lead to an increase in the cost of the M2M terminal chip.
  • FIG. 1 is a flowchart of processing a PBCH channel on a base station side in the prior art
  • FIG. 2 is a schematic diagram of a time-frequency position of a PBCH in the prior art
  • FIG. 3 is a flowchart of performing enhanced PBCH transmission on a network side according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an enhanced PBCH transmitted by an M2M terminal to a network side according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a downlink reference signal in a normal CP according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a downlink reference signal in an extended CP according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of enhanced PBCH resource mapping in a conventional TPD standard CP according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of enhanced PBCH resource mapping in a second TDD standard conventional CP according to an embodiment of the present invention
  • Schematic diagram of the functional structure of the network side device in the example
  • FIG. 10 is a schematic structural diagram of a function of an M2M terminal according to an embodiment of the present invention. detailed description
  • the network side transmits the enhanced PBCH by using one T radio frame as a Transmission Time Interval (TTI), in one TTI.
  • TTI Transmission Time Interval
  • the enhanced PBCH is mapped only to N radio frames (N is less than or equal to T), and the network side respectively In each of the above N radio frames, the symbols of the enhanced PBCH are repeatedly transmitted and mapped to the preset L REs for transmission.
  • Step 300 The network side sends an enhanced PBCH by using one T radio frame as one TTI, and in one TTI, the network side determines to use The N radio frames carrying the enhanced PBCH, where N is less than or equal to ⁇ , and N and T are preset positive integers greater than 1.
  • the N radio frames carrying the enhanced PBCH are distributed in a certain pattern in the T radio frames in the corresponding TTI, and the network side and the M2M terminal pre-establish the N radio frames occupied by the PBCH in advance by protocol agreement. Location distribution within T radio frames in the TTI.
  • the N radio frames carrying the enhanced PBCH are N consecutive radio frames in the T radio frames in the corresponding TTI with any one of the agreed radio frames as the starting radio frame; or, the N carrying the enhanced PBCH
  • the radio frames are any N non-contiguous radio frames in the T radio frames in the corresponding TTI; or the N radio frames carrying the enhanced PBCH are any N local discontinuities in the T radio frames in the corresponding TTI
  • the radio frame local discontinuity refers to discontinuity between partial radio frames); or, the N radio frames carrying the enhanced PBCH may also be the first N radio frames in the T radio frames in the corresponding TTI.
  • Step 310 The network side transmits the enhanced PBCH symbols to each of the foregoing N radio frames, and then maps the symbols to the preset L REs, where L is a preset greater than 1. A positive integer.
  • the so-called enhanced PBCH symbol refers to a sequence of complex-valued symbols of length M symb obtained by adding CRC, convolutional coding, rate matching, scrambling, QPSK modulation, precoding and layer mapping to enhance the source information bits carried by the PBCH.
  • the network side divides the complex-valued symbol sequence into N segments, wherein each of the obtained complex-valued symbol sequences has a length of M symb /N and corresponds to one of the N radio frames respectively.
  • N corresponds to the i-th radio frame in the N radio frames in which the enhanced PBCH is located, and then the network side respectively re-compose each segment.
  • the sequence of value symbols repeats L symbols according to a predefined repetition rule in a corresponding radio frame, and then maps corresponding L symbols to a preset L in each of the N radio frames. Transfer on RE.
  • the resources occupied by the PBCH are enhanced (that is, L in each radio frame of the N radio frames)
  • the RE is occupied by channels and signals (such as PBCH, Physical Downlink Control Channel (PDCCH), downlink synchronization signal, and reference signal) specified in the existing protocol (3GPP Release 11 and previous LTE protocols).
  • the time-frequency resources of the L REs carrying the enhanced PBCH may be located on one or more subcarriers in the central frequency band of the system (ie, coincide with or partially coincide with the frequency band occupied by the existing system PBCH) in the corresponding radio frame. Can be located at other frequency bands outside the system center frequency band and with existing systems The frequency bands occupied by the PBCH channels do not overlap.
  • the network side and the M2M terminal pre-empt the positional relationship between the frequency band occupied by the enhanced PBCH and the central frequency point of the system through a protocol agreement.
  • the frequency band occupied by the existing system PBCH refers to 3GPP.
  • the L REs used by the network side in one radio frame are the J subcarriers in the central band of the system, and the existing system PBCH is removed in one or more downlink subframes in the radio frame, and the downlink synchronization signal is occupied.
  • L REs used in a radio frame by the network side are J subcarriers centered on subcarriers at a center frequency point B MHz (smaller or larger than the current system center frequency point number)
  • the REs of the K symbols in the one or more downlink subframes except the RE occupied by the downlink common reference signal are J subcarriers centered on subcarriers at a center frequency point B MHz (smaller or larger than the current system center frequency point number)
  • the REs of the K symbols in the one or more downlink subframes except the RE occupied by the downlink common reference signal the subframes occupied by the K symbols, the positions in the subframes by the network and the M2M
  • the network side will cover the complex value sequence of the data bits carried by the enhanced PBCH after adding CRC, convolutional coding, rate matching, scrambling, QPSK modulation, precoding, and layer mapping.
  • the above processing steps are consistent with the existing PBCH processing flow, but the length of the data bit of the rate matching output is ⁇ ', E' is the protocol Predefined integers greater than ⁇ (the size of ⁇ is already described in the background), and E' is an integer multiple of ⁇ .
  • M symb E '/2.
  • each radio frame maps the M symbsinglefrmne symbols carried in the radio frame to the L carrying the coverage enhanced PBCH in the radio frame.
  • the sequence of the time domain in the frequency domain is mapped to L REs; wherein, in the case of the i-th segment complex value symbol sequence, if L is an integer multiple of M symbsinglefrmne , the network side passes the i-th segment complex-valued symbol sequence (M Symb /N ) directly obtains L symbols after repeated; if L is not an integer multiple of M symb / N , the network side passes the sequence of the i-th complex-valued symbol through "L/(M symb /N), after repeated, The first L symbols are selected among all the obtained symbols, or the middle L symbols are selected, or the L symbols are selected, or any L
  • the above predefined repeat rules include but are not limited to the following two types:
  • the first type is: the network side repeats the corresponding M symbsmglefnme symbols (ie, a corresponding sequence of complex-valued symbols) as a whole in each of the N radio frames.
  • the second type is: in each radio frame of the N radio frames, the network side repeats the corresponding M symbsinglefrmne symbols (that is, a corresponding sequence of complex-valued symbols) multiple times at the symbol level, that is, the complex-valued symbol Sequence by symbol level One symbol is repeated one symbol at a time.
  • the enhanced PBCH is used to transmit the MIB
  • the MIB mainly includes the downlink bandwidth information, the PHICH and the SFN of the cell, where the network and the M2M terminal pre-increase the information carried by the PBCH through protocol agreement.
  • the SFN field is used to indicate a corresponding radio frame number of the initial radio frame (the first radio frame in the TTI) or the end radio frame (the last radio frame in the TTI) or other agreed radio frames of the enhanced PBCH period, Or, the SFN field is used to represent the binary of the starting radio frame (the first radio frame in the TTI) or the ending radio frame (the last radio frame in the TTI) of the enhanced PBCH period or the corresponding radio frame number of other agreed radio frames.
  • the high X bit of the bit, X is the positive integer value of the protocol convention.
  • the SFN value is composed of 10-bit binary bits
  • the lower 7 bits of the first radio frame in the enhanced PBCH TTI are binary sequences. 0000000"
  • Enhanced The lower 7 bits of the second radio frame in the PBCH TTI is the binary sequence "0000001”
  • the lower 7 bits of the third radio frame in the enhanced PBCH TTI are the binary sequence "0000010”, and so on.
  • the M2M terminal receives the detailed 3 ⁇ 4 u path of the enhanced PBCH transmitted by the network side:
  • Step 400 The M2M terminal receives the enhanced PBCH transmitted by using T radio frames as one TTI, and the M2M terminal determines the number of radio frames to be received ⁇ ', N' is a preset positive integer.
  • the terminal determines the size of N' based on the location distribution of the N radio frames in which the enhanced PBCH is located in the above-mentioned local and network side pre-agreed. Specifically:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames with any one of the agreed radio frames in the T radio frames in the TTI, or T wireless in the TTI
  • the first N radio frames in the frame, then ⁇ ⁇ ';
  • radio frame ⁇ the radio frame
  • radio frame K+l the radio frame
  • radio frame ⁇ +2 the radio frame
  • ⁇ ' 3.
  • N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N locally discontinuous radio frames in the T radio frames in the TTI, Then N' is the sum of the first radio frame and the last radio frame containing N enhanced PBCH radio frames and the number of all radio frames therebetween.
  • Step 410 Repeat the following procedure on the terminal side until the enhanced PBCH is correctly detected: Receiving consecutive N' radio frames at a time, and parsing the symbols of the enhanced PBCH from the symbols repeatedly mapped on the preset L REs in each received radio frame;
  • the symbols of the enhanced PBCH corresponding to the N radio frames are combined into a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset greater than 1. A positive integer.
  • the M2M terminal receives consecutive N' radio frames at a time, and in each received radio frame, when the symbols of the enhanced PBCH are parsed from the symbols repeatedly mapped on the preset L REs, the M2M terminal may firstly Reading L symbols from the preset L REs in each of the received N' radio frames, and respectively de-repeating the L symbols corresponding to each radio frame to obtain each
  • the radio frame corresponds to a sequence of complex value symbols of M symb / N ; the so-called de-repetition refers to determining a repetition relationship between symbols in the L symbols read based on a predefined repetition rule, and then performing the repeated symbols. Merging, wherein the predefined repeating rule is that a sequence of complex-valued symbols is repeated as a whole as a whole; or, a sequence of complex-valued symbols is repeated multiple times at the symbol level.
  • the M2M terminal selects N radio frames from the N′ radio frames
  • the location distribution of the N radio frames in which the PBCH is enhanced in the pre-defined TTIs of the local and network sides may be used in the N′ wireless.
  • N of the radio frames are selected in the frame. Specifically:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI, any one of the agreed radio frames is used as the starting radio frame, or T radio frames in the TTI.
  • the N radio frames selected by the M2M terminal are the received N' radio frames;
  • the M2M terminal uses the first radio frame of the N′ radio frames as the first radio frame where the enhanced PBCH is located, and determines all N radio frames according to the distribution of the N radio frames in which the enhanced PBCH is located (refer to the steps.
  • the related description of 400 will not be described here.
  • the L REs read by the M2M terminal in each radio frame are the PBCH, the physical downlink control channel PDCCH, and the downlink synchronization that are pre-agreed by the local and the network in addition to the 3GPP Release 11 and the long-term evolution LTE protocol.
  • the L REs read by the M2M terminal in each radio frame are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH, or the terminal side is in each
  • the L REs read in one radio frame are located in other frequency bands outside the center frequency band of the system, and do not coincide with the frequency bands occupied by the first type of PBCH; wherein the first type of PBCH is 3GPP version 11 and the previous long period The PBCH specified by the evolved LTE protocol.
  • the SFN field carried by the enhanced PBCH received by the M2M terminal is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame; or, for indicating the enhanced PBCH TTI
  • the starting radio frame or the high bit of the binary bit of the corresponding radio frame number of the ending radio frame or the agreed radio frame Bit, X is the set positive integer.
  • the process ends, if not from the selected N radio frames. If the enhanced PBCH can be correctly parsed, the first radio frame in the N' radio frames is deleted, and a new radio frame is received to form a new N' radio frame, and then N is selected from the new N' radio frames. The radio frames continue to parse the enhanced PBCH, and so on, until the enhanced PBCH is correctly parsed.
  • the enhanced PBCH uses the same center frequency as the existing PBCH.
  • the 24-bit PBCH information bit adds a 16-bit CRC total of 40 bits, and the convolutional coded output is 120 bits, and the rate-matched information bits are 480 bits under the normal CP (here, one radio frame bearer)
  • the PBCH bit can be 240 symbols, corresponding to 480 bits.
  • the actual bit stream length depends on the amount of PBCH resources in a radio frame.
  • PBCH is mapped to 40 radio frames
  • the length is 19200 bits.
  • 9600 symbols are mapped to the 40 radio frames where the enhanced PBCH is located.
  • Each radio frame needs to carry 240 symbols, and the symbol sequence of length 240 (denoted as S1) is repeated 10 Times, converted to a sequence of symbols of length 2400.
  • TDD Time Division Duplex
  • Table 1 the enhanced PBCH corresponding length sequence of 2400 is mapped to the downlink subframe 0.
  • the downlink subframe 1, the downlink subframe 5, and the downlink subframe 6 have a plurality of cases in consideration of the special subframe configuration, and the PBCH is not considered to be mapped in the special subframe.
  • the symbol sequence of length 2400 is mapped to the first time of the subframe 0 in the 15 physical resource blocks (PRBs) at the center frequency of the system according to the order of the time domain after the frequency domain.
  • PRBs physical resource blocks
  • the length of the symbol sequence that a radio frame needs to bear is 2160, which can be mapped to the symbol 2 to the symbol 5 of the first slot of the subframe 0, the symbol 4 of the second slot, and the first of the subframe 5.
  • a radio frame has 10 downlink subframes. Therefore, the enhanced PBCH corresponding symbol sequence length of 2400 can have more resource selection.
  • the symbol sequence of length 2400 corresponding to the enhanced PBCH is mapped to the symbol 3 and symbol 4 of the first slot of the subframe 0 in the 6 PRBs in the order of the frequency domain after the frequency domain.
  • symbol 5 and symbol 6, symbol 3 to symbol 6 of the first slot of subframe 5, and symbols 15 to 6 of the second slot have a total of 15 symbols.
  • the length of the symbol sequence to be carried by a radio frame is 2160, which can be mapped to the symbols 2 to 5 of the first slot of the subframe 0, and the symbols 2 to 5 of the first slot of the subframe 5. , symbol 0 to symbol 5 of the second time slot.
  • the resource mapping diagram of the enhanced PBCH is shown in Figure ⁇ .
  • the coverage gain source of the above scheme comes from two parts: the rate matching process, the above scheme is 10 times repetition of the existing PBCH scheme; the resource mapping process is repeated 10 times, and the combination of the two is equivalent to 100 repetition.
  • the above method can obtain 100 times of repeated combining gain, and reduce the soft bit data buffer of the M2M terminal to the original 10% (from 192000 soft bits to 19200).
  • Soft bits greatly reduce the buffering requirements required for M2M terminals to demodulate PBCH.
  • the foregoing resource mapping only considers the downlink subframes that are configured in the various TDD uplink and downlink configurations in subframe 0 and subframe 5, and does not consider the special subframe 1 and the special subframe.
  • Frame 6 performs PBCH resource mapping (the 6 PRBs in the center of the system band do not carry the symbols of the synchronization signal, and the subcarriers other than the 6 PRBs in the system center can carry the coverage enhanced PBCH); if the PBCH resources are mapped in the special subframe, Considering that only a larger M2M terminal bandwidth (5 MHz bandwidth and above) is supported, the 240 symbol sequences S1 carried by each radio frame can be repeated more frequently, thereby further reducing the soft bit resource overhead required for the M2M terminal to buffer the PBCH. Until there is no increase in the cost of the M2M terminal.
  • the enhanced PBCH uses different frequency bands than the existing PBCH.
  • the coverage enhanced PBCH uses a different frequency band than the existing PBCH, that is, does not occupy 6 PRBs of the system center band, the resource mapping of the coverage enhanced PBCH is not affected by the existing PBCH, the synchronization signal, and the like. Therefore, occupying the same number of PRBs, there may be more resource transmission coverage enhancement PBCH.
  • the coverage enhanced PBCH occupies 15 PRBs, and the center subcarrier of the frequency band occupied by the PBCH is 5 MHz away from the center frequency of the system bandwidth.
  • the M2M terminal and the network pre-empt the relative positional relationship between the frequency band occupied by the enhanced PBCH and the central frequency point of the system through a protocol agreement.
  • the FDD system can have more downlink subframes carrying PBCH, and this scheme can obtain greater gain), and can occupy subframe 0, subframe 1, subframe 5, and sub-frames.
  • a detailed example is as follows:
  • the 24-bit PBCH information bit adds a 16-bit CRC total of 40 bits, and the convolutional coded output is 120 bits.
  • the rate-matched information bits are 480 bits under the normal CP (here a radio frame)
  • the bearer PBCH bits can be carried as 240 symbols, corresponding to 480 bits.
  • 7680 symbols are mapped to the 16 radio frames where the PBCH is located, and 240 symbols are transmitted on each radio frame, and the symbol sequence of length 240 is recorded as S1) is repeated 28 times and converted into a symbol sequence of length 6720.
  • a symbol sequence of length 6720 is mapped to symbols 3 to 6 in the first slot of subframe 0, subframe 1, subframe 5, and subframe 6, and all 7 symbols of the second slot, except for a common reference. A total of 6,720 REs outside the signal.
  • the resource mapping diagram of the coverage enhanced PBCH is shown in Figure 8.
  • the M2M terminal first reads 6720 symbols on each radio frame in one PBCH period, and combines 6720 symbols into a sequence of original symbols of length 240, and after demodulation, becomes A soft bit sequence of 480 bits in length.
  • the total number of repetitions is 4 (the rate matching process is repeated 4 times) *28 (the resource mapping process is repeated 28 times)
  • the network side device sends the enhanced PBCH by using one T radio frame as one TTI, and the device includes:
  • the determining unit 90 is configured to determine, in a TTI, N radio frames for carrying the enhanced PBCH, where N is less than or equal to ⁇ , and N and T are preset positive integers greater than 1;
  • the main processing unit 91 is configured to: after repeating the symbols of the enhanced PBCH in each of the foregoing N radio frames, mapping to the preset L resource units RE, where L is a preset Positive than 1 Integer.
  • the network side device sends the enhanced PBCH by using one T radio frame as one TTI, and the device includes:
  • the terminal receives the enhanced PBCH by using T radio frames as one TTI, and the terminal includes a determining unit 100 and a parsing unit 101, where
  • a determining unit 100 configured to determine a number of radio frames that need to be received, ⁇ ', N' is a preset positive integer;
  • the parsing unit 101 is configured to repeat the following process until the enhanced PBCH is correctly detected:
  • the symbols on the RE resolve the symbols that enhance the PBCH
  • the symbols of the enhanced PBCH corresponding to the N radio frames are combined into a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset greater than 1. A positive integer.
  • the network side device transmits an enhanced PBCH for one TTI in T radio frames, including a transceiver, and at least one processor connected to the transceiver, where:
  • the processor is configured to determine, in one TTI, N radio frames for carrying the enhanced PBCH, where N is less than or equal to ⁇ , N and T are preset positive integers greater than 1, and respectively in the N
  • the symbols of the enhanced PBCH are repeatedly mapped to the preset L resource units RE, and the transceiver is triggered to transmit the enhanced PBCH, where L is a preset greater than A positive integer of 1.
  • the TTI that is determined by the processor is used to carry the N radio frames of the enhanced PBCH, and includes: N radio frames pre-agreed by the network side and the terminal side in the TTI.
  • the N radio frames that are pre-agreed by the network side and the terminal side in the TTI determined by the processor include: any one of the T radio frames in the TTI, using any one of the agreed radio frames as the starting radio frame. Or consecutive radio frames; or, the first N radio frames in the T radio frames in the TTI; or any N non-contiguous radio frames in the T radio frames in the TTI; or Any N locally discontinuous radio frames within T radio frames in the TTI.
  • the processor separately maps the symbols of the enhanced PBCH to the preset L resource units RE in each of the N radio frames, and triggers the sending and receiving.
  • the enhanced PBCH is transmitted by the machine, including:
  • the processor respectively repeats the symbols of the enhanced PBCH in each of the N radio frames, and then maps the PBCH and the physical downlink control channel PDCCH specified by the Long Term Evolution (LTE) protocol except 3GPP Release 11 and before.
  • LTE Long Term Evolution
  • the processor is enhanced in each of the N radio frames
  • the symbols of the PBCH are repeated, they are mapped to the preset L REs for transmission, including:
  • the main processing unit adds the cyclic information CRC, convolutional coding, rate matching, scrambling, QPSK modulation, precoding, and layer mapping to the source information bits carried by the enhanced PBCH to obtain a complex value symbol sequence of length M symb ;
  • the processor divides the sequence of complex-valued symbols into N segments, wherein each of the obtained complex-valued symbol sequences has a length of s ymb /N and corresponds to one of the N radio frames;
  • the processor respectively repeats each of the complex-valued symbol sequences in the corresponding radio frame according to a predefined repetition rule to obtain L symbols;
  • the processor maps the corresponding L symbols to the preset L REs in each of the N radio frames, and triggers the transceiver to transmit the enhanced PBCH.
  • the processor repeats any sequence of complex-valued symbols in the corresponding radio frame by using a predefined repetition rule to obtain L symbols, including:
  • the processor directly obtains L symbols by repeating the arbitrary sequence of complex-valued symbols by IJ (M symb /N );
  • the processor passes the arbitrary sequence of complex-valued symbols through ⁇ ⁇ /N), and after the repetition, selects the first L symbols from all the obtained symbols, or Select the middle L symbols, or select the last L symbols, or select any L symbols.
  • the predefined repetition rule used by the processor includes: repeating any sequence of complex-valued symbols as a whole as a whole; or, repeating the sequence of any of the complex-valued symbols at the symbol level multiple times.
  • the L REs used by the processor are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH, or
  • the L REs used by the processor are located in other frequency bands outside the frequency band of the system center, and do not coincide with the frequency bands occupied by the first type of PBCH;
  • the first type of PBCH is a PBCH specified by the 3GPP Release 11 and the previous Long Term Evolution (LTE) protocol.
  • the SFN domain carried by the enhanced PBCH transmitted by the transceiver is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH transmitted by the transceiver is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. Positive integer.
  • the terminal receives an enhanced PBCH with T radio frames as a transmission time interval TTI, including a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to determine the number of radio frames that need to be received ⁇ ', N' is a preset positive integer;
  • the transceiver and processor are configured to repeat the following process until the enhanced PBCH is correctly detected:
  • the transceiver is configured to receive consecutive N' radio frames at a time
  • the processor is configured to parse out the symbols of the enhanced PBCH from the symbols repeatedly mapped on the preset L REs in each received radio frame; select N radio frames from the N′ radio frames;
  • the symbols of the enhanced PBCH corresponding to the radio frames constitute a complex-valued symbol sequence, and the detection of the complex-valued symbol sequence attempts to recover the PBCH information bits; wherein, N is less than or equal to ⁇ , and N and T are preset positive integers greater than 1. .
  • the processor determines the number of radio frames that need to be received ⁇ ', including:
  • the processor determines the size of N' based on the location distribution of the plurality of radio frames in which the enhanced PBCH is pre-agreed in the local and network side.
  • the processor determines the size of N′ based on the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI pre-agreed by the local and the network side, including:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the N radio frames in which the PBCH is enhanced are any N discontinuous radio frames in the T radio frames in the TTI, or any N local discontinuities in the T radio frames in the TTI
  • the radio frame determines N' as the sum of the first radio frame containing the N enhanced PBCH radio frames and the last radio frame and the number of all radio frames therebetween.
  • the processor parses the symbols of the enhanced PBCH from the symbols that are repeatedly mapped on the preset L REs in each of the received radio frames, including:
  • the processor reads L symbols from the preset L REs in each of the received N′ radio frames;
  • the processor de-duplicates the L symbols corresponding to each of the radio frames to obtain a complex-valued symbol sequence of length M symb /N corresponding to each radio frame.
  • the processor de-duplicating the L symbols corresponding to each of the radio frames, respectively, including: the processor determining, according to the predefined repetition rule, a repetition relationship between the symbols in the L symbols that are read; The processor merges the repeated symbols;
  • the predefined repetition rule is that the sequence of complex value symbols is repeated as a whole as a whole; or, the sequence of complex value symbols is repeated multiple times at the symbol level.
  • the processor selects N radio frames from the N′ radio frames, including:
  • the processor selects N radio frames among the N′ radio frames based on a location distribution of N radio frames in which the PBCH is enhanced in the TTI pre-agreed by the local and the network side.
  • the processor selects, according to the location distribution of the N radio frames in which the enhanced PBCH is located in the TTI, which is pre-agreed by the local and the network side, and selects N radio frames among the N′ radio frames, including:
  • the N radio frames in which the PBCH is enhanced are N consecutive radio frames in the T radio frames in the TTI with any one of the agreed radio frames as the starting radio frame, or in the TTI
  • the first N radio frames in the T radio frames, the N radio frames selected by the processor are the received N′ radio frames;
  • the processor uses the first radio frame of the N′ radio frames as the first radio frame where the enhanced PBCH is located, and determines all N according to the distribution of the N radio frames in which the enhanced PBCH is located. Wireless frame.
  • the L REs read by the processor in each radio frame are PBCH, PDCCH, downlink synchronization channel, and downlink reference specified by the local and network in advance according to 3GPP Release 11 and previous LTE protocols.
  • L REs other than the RE occupied by the signal are PBCH, PDCCH, downlink synchronization channel, and downlink reference specified by the local and network in advance according to 3GPP Release 11 and previous LTE protocols.
  • the L REs read by the processor in each radio frame are located on one or more subcarriers in the central frequency band of the system, and overlap or partially coincide with the frequency band occupied by the first type of PBCH.
  • the L REs read by the processor in each radio frame are located in other frequency bands outside the center frequency band of the system, and do not coincide with the frequency band occupied by the first type of PBCH; the first type of PBCH is 3GPP.
  • PBCH specified in Release 11 and previous Long Term Evolution LTE protocols.
  • the SFN field carried by the enhanced PBCH received by the transceiver is used to indicate the initial radio frame of the enhanced PBCH TTI or the corresponding radio frame number of the end radio frame or the agreed radio frame, according to any of the foregoing embodiments; or
  • the SFN field carried by the enhanced PBCH received by the transceiver is used to indicate the high X bit of the binary bit of the corresponding radio frame number of the initial radio frame or the end radio frame or the end of the radio frame or the agreed radio frame, X is set. Positive integer.
  • the network side uses T radio frames as one TTI transmission enhanced PBCH, and in one TTI, the enhanced PBCH is only mapped to N radio frames (N is less than or equal to T); Within each radio frame of the radio frame, the network side transmits the symbol repetition of the enhanced PBCH to the pre-defined L REs for transmission. In this way, only one PBCH transmission period is needed, and the network side can obtain the required combining gain through repeated mapping, which not only can achieve the enhanced PBCH coverage requirement, but also greatly reduces the data softness required for the M2M terminal to detect the PBCH.
  • the bit buffer does not result in an increase in the cost of the terminal chip.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种增强PBCH的传输方法及装置,用于在保证PBCH覆盖性能的同时,降低M2M终端的生产成本。该方法为:网络侧以T个无线帧为一个TTI发射增强PBCH,在一个TTI内,增强PBCH仅映射于其中N个无线帧(N小于等于T);在上述N个无线帧的每一个无线帧内,网络侧将增强PBCH的符号经过重复后,映射到预定义的L个RE上传输。这样,仅需要一个PBCH传输周期,网络侧即可以通过重复映射获得所需的合并增益,这不但可以达到增强PBCH的覆盖要求,同时,也极大降低了M2M终端检测PBCH所需要数据软比特缓存,进而不会导致M2M终端芯片成本的增加。

Description

一种增强 PBCH的传输方法及装置 本申请要求在 2013年 1月 18日提交中国专利局、 申请号为 201310019846.5、 发明名 称为"一种增强 PBCH的传输方法及装置"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种增强 PBCH的传输方法及装置。 背景技术
物联网技术方兴未艾, 在第三代移动通信系统以及其长期演进(Long Term Evolution,
LTE )系统中需要支持机器型通信( Machine Type Communications , MTC )功能。一台 MTC 设备 (也称 MTC终端)可能具有多种机器与机器( Machine to Machine, M2M )通信特性 之中的部分特性, 如低移动性、传输数据量小、对通信时延不敏感、要求极低功耗等特征。
M2M通信作为一种新型的通信理念, 其目的是将多种不同类型的通信技术有机结合, 如: 机器对机器通信、 机器控制通信、 人机交互通信、 移动互联通信等等, 从而推动社会 生产和生活方式的发展。 预计未来人对人通信的业务可能仅占整个 M2M终端市场的 1/3 , 而更大数量的通信是机器间 (小带宽系统)通信业务。
当前的移动通信网络是针对人与人之间的通信设计的, 如: 网络容量的确定等。 如果 希望利用移动通信网络来支持小带宽系统通信, 就需要根据小带宽系统通信的特点对移动 通信系统的机制进行优化, 以便能够在对传统的人与人通信不受或受较小影响的情况下, 更好地实现小带宽系统通信。
当前认识到的 MTC通信可能存在的一些特性有: MTC终端具有低移动性; MTC终 端与网络侧进行数据传输的时间是可控的, 即 MTC终端只能在网络指定的时间段内进行 接入; MTC终端与网络侧进行的数据传输对实时性要求不高, 即: 具有时间容忍性; MTC 终端能量受限,要求极低的功率消耗; MTC终端和网络侧之间只进行小数据量的信息传输;
MTC终端可以以组为单位进行管理; 一个实际的 MTC终端可以具有上述的一个或多 个特性。
目前, 物理广播信道 ( Physical Broadcast Channel, PBCH )是用来承载主系统信息块 ( Master Information Block, MIB ), 传输用于初始接入的参数的, 为了保证 PBCH的接收 性能, PBCH中承载的信息比特数比较少,只有 24比特, 包含接入系统所必须的系统参数, 包括: 下行带宽信息、 小区的物理混合自动请求重传指示信道 ( Physical Hybrid ARQ Indicator Channel, PHICH; Hybrid Automatic Repeat reQuest, HARQ )和系统帧号( System Frame Number, SFN■)。
LTE系统中主要是通过时间分集增益来保证 PBCH的接收性能; 在实际的传输中, 一 个 BCH传输块(携带下行带宽信息、小区的 PHICH和 SFN )通过添加循环冗余校验( Cyclic Redundancy Check, CRC), 卷积编码以及速率匹配后, 会映射到四个无线帧上传输, 具体 如图 1所示:
步骤 100: 在待传输的 BCH传输块中添加 CRC。
例如,在 24比特的信息 a^a a^asnaA^A: )添加 16比特 CRC得到长度为 40比 特的比特流
Figure imgf000004_0001
40)。
步骤 110: 卷积编码。
将长度为 40比特的比特流 , , 3,..., _1( = 40), 经过卷积编码输出 120比特的 比特 ud , ", ",
Figure imgf000004_0002
i =0,1,2, D=K=40。
步骤 120: 速率匹配。
将经卷积编码后的序列经过速率匹配后, 输出比特流6。,61,62, ,...,6^1 , 在常规循环前 缀( Cyclic Prefix, CP ) 下, 该比特流长度 E为 1920比特; 在扩展 CP下信息流长度 E为 1728比特。由于 PBCH信道是在 4个无线帧映射,所以折合常规 CP下每帧承载 480比特, 扩展 CP下每帧承载 432比特。
步骤 130: 加扰。
将经过速率匹配的比特流 e。 , , e2 , e3 , · · · , 在调制前釆用一个小区专属的序列进行加 扰。 加扰釆用的 Gold序列, 每一个无线帧编号 nf满足 nf mod4 = 0的无线帧 (即 PBCH传 输起始无线帧) 的对应的比特流加扰序列初始值为 cinit = N: c D e11 , 具体的加扰公式为:
=(^+^)ιηοά2(ΐ = 1,2,…… Ε;常规 CP, E = 1920; 扩展 CP, E = 1728)
步骤 140: 四相相移键控 ( Quadrature Phase Shift Keying, QPSK )调制。
将加扰后的比特流 …^^经过 QPSK调制成为信息符号 d。, A..., d^^-^ 步骤 150: 层映射和预编码。
将调制后的符号序列进行层映射和预编码操作, 这个过程是与多天线相关的, 层映射 是把调制好的数据符号映射到层上, 层是空间中能够区分的独立信道, 与信道环境有关; 然后每一层的数据进行预编码操作, 相当于在发送端做了一个矩阵变化, 使信道正交化, 获得最大的信道增益。 经过层映射和预编码后, 符号向量 y(i) = [y(Q)(i) ... y(p-W(i)f , i=0,...,Msymb- 1。
PBCH仅仅能进行传输分集的多天线传输, 即在两天线端口时, 预编码用空频块码
( Space Frequency Block Coding , SFBC ) , 四天线端口时, 预编码釆用 SFBC/FSTD ( Frequency Switched Transmit Diversity, 频率切换发送分集)。 因此, 用户在接收端只要知 道预编码的方式, 就可以知道天线端口配置。 步骤 160: 资源映射。
资源映射是实现数据到实际物理资源上的映射, 上述经过加扰、 调制、 预编码和层映 射的 PBCH信道的符号序列映射到 4个连续的无线帧 (分别为无线帧 4K、 4Κ+1、 4Κ+2、 4Κ+3 )上, 常规 CP下, 一个无线帧需要映射 240比特长度 (即 Msymb =240 ) 的符号序列, 在每个无线帧的第 0 个子帧的第 2 个 slot (时隙) 的前 4 个正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM )符号的中间 72个子载波上传输, 以常规 CP下 为例, 一个无线帧需要映射 240 比特长度(即 Msymb =240 ) 的符号序列, 该符号序列恰好 可以映射于前述 4个符号中间的 72个子载波上除去下行参考信号所占资源余下的 240个 资源单元 ( Resource Element, RE )上。
把 PBCH信道放在频带中间的 72个子载波上传输的原因在于: 在接收 PBCH信道数 据之前, 用户并不知道系统下行带宽, 只知道下行频带的中心频点, 因此 PBCH的传输必 须要与下行带宽大小无关, 用户在完成主同步信号 ( Primary Synchronization Signal, PSS ) 和副同步信号 ( Secondary Synchronization Signal, SSS ) 的接收后, 就可以知道 PBCH的 时频位置了, PBCH的时频位置具体如图 2所示。
由上述 PBCH的发送方法可以看出, PBCH信道映射到 4个无线帧(分别为无线帧 4K、
4Κ+1、 4Κ+2、 4Κ+3 )上, 因此, 对于信道条件较差的 Μ2Μ终端, 可以釆用合并分布于 上述 4个无线帧的信号以获取合并增益。 由于 Μ2Μ终端并不知哪一个无线帧为 PBCH信 道起始帧, 因此, 需要 M2M终端多次检测尝试获取 PBCH信道起始帧。 具体过程: M2M 终端接收 4个无线帧的 PBCH时频位置的数据, 对数据符号进行包括信道均衡、 SFBC或 SFBC+FSTD解码 /译码、 解 QPSK调制等操作步骤后, 釆用小区专属扰码对 4个无线帧的 软比特数据(常规 CP下,每一帧是 1920/4=480比特,扩展 CP情况下,每一帧为 1728/4=432 比特)进行解扰, 然后经过解速率匹配、 卷积译码以及 CRC校验等一系列处理步骤, 若 CRC校验成功, 则说明所接收的 4个无线帧的第一个无线帧就是 PBCH信道的起始帧,若 CRC校验失败, M2M终端需要抛弃 4个无线帧中的第一个无线帧的 PBCH的数据, 并接 收新一无线帧的 PBCH数据, 重复上述过程。 这样, 经过最多 4次尝试, M2M终端就可 以确认 PBCH信道的起始帧, 结合 PBCH信道携带的 SFN值, 就可以确定每一个无线帧 的 SFN。 可以看出, M2M终端合并 4个无线帧的数据, 需要保存 4个无线帧的解调制后 的软比特数据或类似数据量的符号数据 (例如, 也可以将解调制前的数据保存)。
为达到 20dB的覆盖增强, 一种可行的方法是对 LTE系统现有信道釆用重复传输等降 低码率的传输技术。 对于 PBCH信道而言, 需要重复 100次甚至数百次才可以满足 20dB 的覆盖增强。 然而, 由于 PBCH承载 MIB , 其中携带 SFN信息, 在一次 PBCH重复周期 中, 携带的 SFN值须保持不变才可以在 M2M终端侧获取合并增益。 这种方法也称为覆盖 增强的方案, 即将 PBCH数据块经过编码、 速率匹配等操作后, 数据比特流统一加扰并映 射到 M ( M为满足覆盖增强目标的 PBCH重复次数,可能为 100至数百)个无线帧上传输。 相应的, 与现有 M2M终端合并 4块 PBCH数据一样, M2M终端需要依照釆用滑动窗接收 的方式, 每一次尝试检测 PBCH需要接收并保存 M个无线帧的 PBCH数据并统一解扰, 直至解码正确并确认 PBCH的发送起始无线帧, 这期间, 要求 M2M终端需要保存 M块 PBCH数据的中间数据(例如, 解调制后的软比特数据)。
从上述介绍可以看出, 若釆用 PBCH覆盖增强方案, 每一次解码 PBCH尝试均需要接 收并保存 M个无线帧的 PBCH数据, 为了达到 20dB覆盖增强的增益, 需要将现有 PBCH 信道重复至少 100次, 因此 M2M终端需要緩存的数据量也将是现有需求的至少 100倍。
以 M2M终端緩存解调制后的软比特为例, 现有 PBCH信道每个无线帧緩存 480个软 比特(考虑必须支持常规 CP ), 现有方法合并 4个无线帧的 PBCH信号, 对应地 M2M终 端需緩存 480*4=1920个软比特, 若达到 20dB的覆盖增强, 则需要合并 M=400个无线帧 的 PBCH数据, 对应緩存 192000个软比特。
对于 3M带宽的 M2M终端而言, 其 HARQ软比特緩存数量大致可以存储约 57600个 软比特数据(考虑 M2M终端支持 8个进程), 由此可见, 即使将 M2M终端的緩存全部用 于 PBCH的接收处理,也远远不能满足上述 PBCH覆盖增强方案中 PBCH检测处理的软比 特需求。
由此可见,若釆用 PBCH覆盖增强的传输方案会带来 M2M终端緩存大幅增加的问题, 而 M2M终端芯片中用于处理数据的緩存在 M2M终端芯片成本中占比较大, 因而, 釆用 上述 PBCH覆盖增强方案会造成 M2M终端成本的增加, 这对于 M2M终端的大规模市场 普及显然是不利的。 发明内容
本发明实施例提供一种增强 PBCH的传输方法, 用以在保证 PBCH覆盖性能的同时, 降低 M2M终端的生产成本。
本发明实施例提供的具体技术方案如下:
一种增强 PBCH的传输方法, 包括:
网络侧以 T个无线帧为一个 TTI, 在一个 TTI内, 网络侧确定用于 7|载增强 PBCH的 N个无线帧, 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数;
网络侧分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上传输, 其中, L为预设的大于 1的正整数。
在实施中, 网络侧釆用的所述 TTI中用于承载增强 PBCH的 N个无线帧, 包括: 所述 TTI中由网络侧和终端侧预先约定的 N个无线帧。
进一步, 网络侧釆用的所述 TTI中由网络侧和终端侧预先约定的 N个无线帧, 包括: 所述 TTI中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 Ν个连续的无 线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内的前 Ν个无线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内任意 Ν个不连续的无线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内任意 Ν个局部不连续的无线帧。
在实施中, 网络侧釆用的所述 ΤΤΙ 中的起始无线帧为无线帧编号 nf 且满足为 nf rnodT = C的无线帧。
基于上述任一实施例, 网络侧分别在所述 N 个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
网络侧分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至除 3GPP版本 11及之前的 LTE协议规定的 PBCH、 PDCCH、 下行同步信道以及下 行参考信号所占的 RE之外的, 预设的 L个 RE上传输。
基于上述任一实施例, 网络侧分别在所述 N 个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
网络侧将增强 PBCH携带的源信息比特经过添加 CRC、 卷积编码、 速率匹配、 加扰、
QPSK调制、 预编码和层映射后得到长度为 Msymb的复值符号序列;
网络侧将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列长度为 Msymb /N且分别对应所述 N个无线帧中的一个无线帧;
网络侧分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经过重 复得到 L个符号;
网络侧分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至预设的 L 个 RE上传输。
进一步, 网络侧将任意一段复值符号序列在相应的无线帧内基于预定义的重复规则经 过重复得到 L个符号, 包括:
若 L是 Msymb /N的整数倍, 则将所述任意一段复值符号序列经过 ( Msymb /N )次重 复后直接获得 L个符号;
若 L非 Msymb /N的整数倍, 则将所述任意一段复值符号序列经过^^^^^ /!^),次重 复后, 在获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符号, 或者, 选取后 L 个符号, 或者选取任意 L个符号。
在实施中, 网络侧釆用的预定义的重复规则包括: 将任意一段复值符号序列作为一个 整体进行多次重复; 或者, 将所述任意一段复值符号序列以符号级别进行多次重复。
基于上述任一实施例, 网络侧釆用的 L个 RE, 位于系统中心频带处的一个或多个子 载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 网络侧釆用的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH 所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。 基于上述任一实施例, 网络侧传输的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者,
网络侧传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结 束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
一种增强 PBCH的传输装置,该装置以 T个无线帧为一个 TTI发送增强 PBCH,包括: 确定单元, 用于在一个 TTI内, 确定用于承载增强 PBCH的 N个无线帧, 其中, N小 于等于 τ, N和 T均为预设的大于 1的正整数;
主处理单元, 用于分别在所述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号 经过重复后, 映射至预设的 L个资源单元 RE上传输, 其中, L为预设的大于 1的正整数。
在实施中, 确定单元确定的所述 TTI用于承载增强 PBCH的 N个无线帧, 包括: 所述 TTI中由网络侧和终端侧预先约定的 N个无线帧。
进一步,确定单元确定的所述 TTI中由网络侧和终端侧预先约定的 N个无线帧,包括: 所述 TTI中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 N个连续的无 线帧; 或者, 所述 TTI中的 T个无线帧内的前 N个无线帧; 或者, 所述 TTI中的 T个无 线帧内任意 N个不连续的无线帧; 或者, 所述 TTI中的 T个无线帧内任意 N个局部不连 续的无线帧。
在实施中, 确定单元确定的所述 TTI 中的起始无线帧为无线帧编号 nf 且满足为 nf modT = 0的无线帧。
基于上述任一实施例, 主处理单元分别在所述 N个无线帧中的每一个无线帧内, 将增 强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
主处理单元分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重 复后, 映射至除 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH、物理下行控制信 道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的, 预设的 L个 RE上传输。
基于上述任一实施例, 主处理单元分别在所述 N个无线帧中的每一个无线帧内, 将增 强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
主处理单元将增强 PBCH携带的源信息比特经过添加 CRC、 卷积编码、 速率匹配、 加 扰、 QPSK调制、 预编码和层映射后得到长度为 Msymb的复值符号序列;
主处理单元将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列长度 为 Msymb/N且分别对应所述 N个无线帧中的一个无线帧;
主处理单元分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经 过重复得到 L个符号;
所述主处理单元分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至 预设的 L个 RE上传输。
进一步, 主处理单元将任意一段复值符号序列在相应的无线帧内基于预定义的重复规 则经过重复得到 L个符号, 包括:
若 L是 Msymb/N 的整数倍, 则所述主处理单元将所述任意一段复值符号序列经过 ( symb/N )次重复后直接获得 L个符号;
若 L 非 Msymb /N 的整数倍, 则所述主处理单元将所述任意一段复值符号序列经过 「L/(Msymb /N),次重复后, 从获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符 号, 或者, 选取后 L个符号, 或者, 选取任意 L个符号。
在实施中, 主处理单元釆用的预定义的重复规则包括: 将任意一段复值符号序列作为 一个整体进行多次重复; 或者, 将所述任意一段复值符号序列以符号级别进行多次重复。
基于上述任一实施例, 主处理单元釆用的 L个 RE, 位于系统中心频带处的一个或多 个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者,
主处理单元釆用的 L 个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类
PBCH所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的 LTE协议规定的 PBCH。
基于上述任一实施例, 主处理单元传输的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者,
主处理单元传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧 或结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正 整数。
一种增强 PBCH的接收方法, 包括:
终端侧接收以 T个无线帧为一个传输时间间隔 TTI的增强 PBCH, 终端侧确定需要接 收的无线帧数目 N' , N'为预设的正整数;
终端侧重复如下过程, 直至正确检测出增强 PBCH:
一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号;
从所述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
在实施中, 终端侧确定需要接收的无线帧数目 Ν' , 包括:
终端侧基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧的位置 分布确定 N'的大小。
进一步,终端侧基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布确定 N'的大小, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则 Ν=Ν';
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧,或者,为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧,则 N' 为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无线帧的 数目之和。
在实施中, 终端侧一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映 射在预设的 L个 RE上的符号解析出增强 PBCH的符号, 包括:
终端侧分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读取 L个 符号;
终端侧分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线帧对应 的长度为 Msymb/N的复值符号序列。
进一步, 终端侧分别将所述每一个无线帧对应的 L个符号进行去重复, 包括: 终端侧基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 终端侧将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
在实施中, 终端侧从所述 N'个无线帧中选取 N个无线帧, 包括:
终端侧基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置 分布, 在所述 N'个无线帧中选取其中 N个无线帧。
进一步,终端侧基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则将 所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依据增强 PBCH 所在的 N个无线帧的分布来确定所有的 N个无线帧。 基于上述任一实施例, 终端侧在每一个无线帧中读取的 L个 RE, 为本地由终端与网 络预先约定的除 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH、物理下行控制信 道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的 L个 RE。
基于上述任一实施例, 终端侧在每一个无线帧中读取的 L个 RE, 位于系统中心频带 处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 终端侧 在每一个无线帧中读取的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频带不重合; 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协 议规定的 PBCH。
基于上述任一实施例, 终端侧接收的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者,
终端侧接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结 束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
一种增强 PBCH的接收装置,该装置接收以 T个无线帧为一个传输时间间隔 TTI的增 强 PBCH, 包括:
确定单元, 用于确定需要接收的无线帧数目 N' , N'为预设的正整数;
解析单元, 用于重复如下过程, 直至正确检测出增强 PBCH:
一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号;
从所述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
在实施中, 所述确定单元确定需要接收的无线帧数目 Ν' , 包括:
所述确定单元基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧 的位置分布确定 N'的大小。
进一步, 所述确定单元基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N 个无线帧的位置分布确定 N'的大小, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则确定 Ν=Ν';
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则确 定 N'为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无 线帧的数目之和。 在实施中, 所述解析单元一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从 重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号, 包括:
所述解析单元分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读 取 L个符号;
所述解析单元分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线 帧对应的长度为 Msymb/N的复值符号序列。
进一步, 所述解析单元分别将所述每一个无线帧对应的 L个符号进行去重复, 包括: 所述解析单元基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 所述解析单元将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
在实施中, 所述解析单元从所述 N'个无线帧中选取 N个无线帧, 包括:
所述解析单元基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧 的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧。
进一步, 所述解析单元基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N 个无线帧的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则所述解析单元选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则所 述解析单元将所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依 据增强 PBCH所在的 N个无线帧的分布来确定所有的 N个无线帧。
基于上述任一实施例, 所述解析单元在每一个无线帧中读取的 L个 RE, 为本地与网 络预先约定的除 3GPP版本 11及之前的 LTE协议规定的 PBCH、 PDCCH、 下行同步信道 以及下行参考信号所占的 RE之外的 L个 RE。
基于上述任一实施例, 所述解析单元在每一个无线帧中读取的 L个 RE, 位于系统中 心频带处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 所述解析单元在每一个无线帧中读取的 L个 RE,位于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频带不重合; 所述第一类 PBCH为 3GPP版本 11及之前的 LTE 协议规定的 PBCH。
基于上述任一实施例,解析单元接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者, 解析单元接 收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约 定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
一种网络侧设备, 该网络侧设备以 T个无线帧为一个 TTI发送增强 PBCH, 包括收发 信机、 以及与该收发信机连接的至少一个处理器, 其中:
处理器被配置用于在一个 TTI内, 确定用于承载增强 PBCH的 N个无线帧, 其中, N 小于等于 Τ, N和 T均为预设的大于 1的正整数; 以及分别在所述 N个无线帧中的每一个 无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上, 并触发 收发信机传输该增强 PBCH, 其中, L为预设的大于 1的正整数。
在实施中, 处理器确定的所述 TTI用于承载增强 PBCH的 N个无线帧, 包括: 所述 TTI中由网络侧和终端侧预先约定的 N个无线帧。
进一步, 处理器确定的所述 TTI中由网络侧和终端侧预先约定的 N个无线帧, 包括: 所述 TTI中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 N个连续的无 线帧; 或者, 所述 TTI中的 T个无线帧内的前 N个无线帧; 或者, 所述 TTI中的 T个无 线帧内任意 N个不连续的无线帧; 或者, 所述 TTI中的 T个无线帧内任意 N个局部不连 续的无线帧。
在实施中, 处理器确定的所述 TTI 中的起始无线帧为无线帧编号 nf 且满足为 nf rnodT = C的无线帧。
基于上述任一实施例, 处理器分别在所述 N 个无线帧中的每一个无线帧内, 将增强
PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上, 并触发收发信机传输该增 强 PBCH, 包括:
处理器分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至除 3GPP版本 11 及之前的长期演进 LTE协议规定的 PBCH、 物理下行控制信道
PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的预设的 L个 RE上, 并触发收 发信机传输该增强 PBCH。
基于上述任一实施例, 处理器分别在所述 N 个无线帧中的每一个无线帧内, 将增强
PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
所述主处理单元将增强 PBCH携带的源信息比特经过添加循环冗余 CRC、 卷积编码、 速率匹配、 加扰、 QPSK调制、 预编码和层映射后得到长度为 Msymb的复值符号序列; 处理器将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列长度为 Msymb /N且分别对应所述 N个无线帧中的一个无线帧;
处理器分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经过重 复得到 L个符号;
处理器分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至预设的 L 个 RE上, 并触发收发信机传输该增强 PBCH。
进一步, 处理器将任意一段复值符号序列在相应的无线帧内基于预定义的重复规则经 过重复得到 L个符号, 包括:
若 L是 Msymb /N的整数倍, 则处理器将所述任意一段复值符号序列经过 IJ ( Msymb /N ) 次重复后直接获得 L个符号;
若 L非 Msymb/N的整数倍,则处理器将所述任意一段复值符号序列经过^^^^^ /N), 次重复后, 从获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符号, 或者, 选取 后 L个符号, 或者, 选取任意 L个符号。
在实施中, 处理器釆用的预定义的重复规则包括: 将任意一段复值符号序列作为一个 整体进行多次重复; 或者, 将所述任意一段复值符号序列以符号级别进行多次重复。
基于上述任一实施例, 处理器釆用的 L个 RE, 位于系统中心频带处的一个或多个子 载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者,
处理器釆用的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH 所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。 基于上述任一实施例,收发信机传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者, 收发信机传 输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约 定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
一种终端, 该终端接收以 T个无线帧为一个传输时间间隔 TTI的增强 PBCH, 包括收 发信机、 以及与该收发信机连接的至少一个处理器, 其中:
处理器被配置用于确定需要接收的无线帧数目 Ν' , N'为预设的正整数;
收发信机和处理器被配置用于重复如下过程, 直至正确检测出增强 PBCH:
收发信机被配置一次接收连续的 N'个无线帧;
处理器被配置在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析 出增强 PBCH的符号; 从所述 N'个无线帧中选取 N个无线帧; 将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
在实施中, 处理器确定需要接收的无线帧数目 Ν' , 包括:
处理器基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧的位置 分布确定 N'的大小。
进一步,处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布确定 N'的大小, 包括: 基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则确定 Ν=Ν';
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则确 定 N'为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无 线帧的数目之和。
在实施中, 处理器在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号 解析出增强 PBCH的符号, 包括:
处理器分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读取 L个 符号;
处理器分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线帧对应 的长度为 Msymb/N的复值符号序列。
进一步, 处理器分别将所述每一个无线帧对应的 L个符号进行去重复, 包括: 处理器基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 处理器将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
在实施中, 处理器从所述 N'个无线帧中选取 N个无线帧, 包括:
处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置 分布, 在所述 N'个无线帧中选取其中 N个无线帧。
进一步,处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则处理器选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则处 理器将所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依据增强 PBCH所在的 N个无线帧的分布来确定所有的 N个无线帧。
基于上述任一实施例, 处理器在每一个无线帧中读取的 L个 RE, 为本地与网络预先 约定的除 3GPP版本 11及之前的 LTE协议规定的 PBCH、 PDCCH、 下行同步信道以及下 行参考信号所占的 RE之外的 L个 RE。 基于上述任一实施例, 处理器在每一个无线帧中读取的 L个 RE, 位于系统中心频带 处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 处理器 在每一个无线帧中读取的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频带不重合; 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协 议规定的 PBCH。
基于上述任一实施例,收发信机接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者,
收发信机接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或 结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整 数。
本发明实施例中, 网络侧以 T个无线帧为一个 TTI发射增强 PBCH, 在一个 TTI内, 增强 PBCH仅映射于其中 N个无线帧 (N小于等于 T ); 在上述 N个无线帧的每一个无线 帧内, 网络侧将增强 PBCH的符号经过重复后, 映射到预定义的 L个 RE上传输。 这样, 仅需要一个 PBCH传输周期, 网络侧即可以通过重复映射获得所需的合并增益, 这不但可 以达到增强 PBCH的覆盖要求, 同时, 也极大降低了 M2M终端检测 PBCH所需要数据软 比特緩存, 进而不会导致 M2M终端芯片成本的增加。 附图说明
图 1为现有技术下基站侧 PBCH信道处理流程图;;
图 2为现有技术下 PBCH的时频位置示意图;
图 3为本发明实施例中网络侧进行增强 PBCH传输流程图;
图 4为本发明实施例中 M2M终端接收网络侧传输的增强 PBCH流程图;
图 5为本发明实施例中普通 CP下的下行参考信号示意图;
图 6为本发明实施例中扩展 CP下的下行参考信号示意图;
图 7为本发明实施例中第一种 TDD制式常规 CP下增强 PBCH资源映射示意图; 图 8为本发明实施例中第二种 TDD制式常规 CP下增强 PBCH资源映射示意图; 图 9为本发明实施例中网络侧装置功能结构示意图;
图 10为本发明实施例中 M2M终端功能结构示意图。 具体实施方式
为了在保证 PBCH覆盖性能的同时, 降低 M2M终端的生产成本, 本发明实施例中, 网络侧以 T 个无线帧为一个传输时间间隔 (Transmission Time Interval, TTI )传输增强 PBCH, 在一个 TTI内, 增强 PBCH仅映射于 N个无线帧(N小于等于 T ), 且网络侧分别 在上述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图 3所示, 本发明实施例中, 网络侧进行增强 PBCH传输的具体流程如下: 步骤 300: 网络侧以 T个无线帧为一个 TTI发送增强 PBCH, 在一个 TTI内, 网络侧 确定用于承载增强 PBCH的 N个无线帧, 其中, N小于等于 Τ, N和 T均为预设的大于 1 的正整数。
本发明实施例中, 承载增强 PBCH的 N个无线帧在相应的 TTI中的 T个无线帧内以 一定的图样分布, 网络侧与 M2M终端预先通过协议约定增强 PBCH所占的 N个无线帧在 TTI中的 T个无线帧内的位置分布。 较佳的, 承载增强 PBCH的 N个无线帧为相应的 TTI 中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 N个连续的无线帧; 或者, 承载增强 PBCH的 N个无线帧为相应的 TTI中的 T个无线帧内任意 N个不连续的无线帧; 或者, 承载增强 PBCH的 N个无线帧为相应的 TTI中的 T个无线帧内任意 N个局部不连 续的无线帧 (局部不连续是指部分无线帧之间不连续); 或者, 承载增强 PBCH的 N个无 线帧也可以是相应 TTI中的 T个无线帧中的前 N个无线帧。
进一步的, 较佳的. 网络侧釆用的 TTI 中的起始无线帧为无线帧编号 nf且满足为 nf modT = 0的无线帧。
步骤 310: 网络侧分别在上述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号 经过重复后, 映射至预设的 L个 RE上传输, 其中, L为预设的大于 1的正整数。
所谓增强 PBCH的符号即是指增强 PBCH携带的源信息比特经过添加 CRC、卷积编码、 速率匹配、 加扰、 QPSK调制、 预编码和层映射后得到长度为 Msymb的复值符号序列, 在执 行步骤 310时, 网络侧在生成上述复值符号序列后将其等分为 N段, 其中, 获得的每一段 复值符号序列长度为 Msymb/N且分别对应上述 N个无线帧中的一个无线帧, 即第 i段复值 符号序列 (i=l , 2, …… N )对应映射到增强 PBCH所在的 N个无线帧中的第 i个无线帧, 接着, 网络侧分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经过重 复得到 L个符号,再分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至 预设的 L个 RE上传输。
进一步, 较佳的, 增强 PBCH所占的资源 (即 N个无线帧中每一个无线帧内的 L个
RE )为除现有协议( 3GPP版本 11以及之前的 LTE协议)中规定的信道及信号〔如, PBCH, 物理下行控制信道( Physical Downlink Control Channel, PDCCH ), 下行同步信号以及参考 信号〕所占的 RE之外的预设的 L个 RE。 在相应的无线帧内, 承载增强 PBCH的 L个 RE 的时频资源, 可以位于系统中心频带处的一个或多个子载波上(即与现有系统 PBCH所占 的频带重合或部分重合), 也可以位于系统中心频点频带外的其他频带处且与现有系统 PBCH信道所占的频带不重合, 网络侧与 M2M终端预先通过协议约定覆盖增强的 PBCH 所占的频带与系统的中心频点之间的位置关系,其中,现有系统 PBCH所占频带是指 3GPP 版本 11及之前的长期演进 LTE协议规定的 PBCH。
例如, 网络侧在一个无线帧中釆用的 L个 RE, 为在系统中心频带的 J个子载波上, 在上述无线帧中一个或多个下行子帧中除去现有系统 PBCH、 下行同步信号占用的时域符 号的 K个符号上除下行公共参考信号所占用的 RE之上的 RE; K个符号所占子帧、 在子 帧内的位置由网络与 M2M终端预先协议约定, 其中, L= J*K-J个子载波 K个符号上的参 考符号所占 RE的个数。
又例如: 网络侧在一个无线帧中釆用的 L个 RE, 为在以距离系统中心频点 B MHz处 (比现有系统中心频点编号小或大) 的子载波为中心的 J个子载波上, 在上述无线帧中一 个或多个下行子帧中 K个符号上除下行公共参考信号占用的 RE之外的 RE; K个符号所 占子帧、 在子帧内的位置由网络与 M2M终端预先协议约定, 其中, L=J*K-J个子载波 K 个符号上的参考符号所占 RE的个数。
另一方面, 在执行步骤 310 时, 网络侧将覆盖增强 PBCH携带的数据比特经过添加 CRC、 卷积编码、 速率匹配、 加扰、 QPSK调制、 预编码和层映射后, 输出的复值符号序 列为 y ( p ) (i), i = 0,..., Msymb -l , 上述处理步骤与现有 PBCH处理流程一致, 但速率匹配 输出的数据比特的长度为 Ε' , E'为协议预定义的大于 Ε ( Ε的大小已在背景技术中介绍) 的整数, 且 E'为 Ν的整数倍。 Msymb =E'/2。 经过上述处理后, 将长度为 Msymb的复值符号 序列,映射到 N个无线帧上,每个无线帧需要承载的复值符号个数为 Msymbsinglefeme=Msymb / N , 即将复值符号序列分为 N段后, 每一段复值符号序列的长度为 MsymbsmgMra∞=Msymb / N , 接 着,每个无线帧将承载的 Msymbsinglefrmne个符号映射于该无线帧中承载覆盖增强的 PBCH的 L 个 RE上。具体方法包括:在 N个无线帧中的每一个无线帧上,网络侧将相应的 Msymbsinglefrmne 个符号按照预定义的重复规则经过 Q=IJ Msymbsinglefrmne次重复且选取出 L个符号后, 依照先 频域后时域的顺序映射于 L个 RE上;其中,以第 i段复值符号序列为例,若 L是 Msymbsinglefrmne 的整数倍, 则网络侧将第 i段复值符号序列经过 ( Msymb /N )次重复后直接获得 L个符 号; 若 L非 Msymb/N的整数倍, 则网络侧将第 i段复值符号序列经过「L/(Msymb /N),次重复 后, 在获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符号, 或者, 选取后 L个 符号, 或者, 选取任意 L个符号。
上述预定义的重复规则包括但不限于如下两种:
第一种为:网络侧在 N个无线帧中的每一个无线帧内,将相应的 Msymbsmglefnme个符号(即 相应的某一段复值符号序列)作为一个整体进行多次重复。
第二种为:网络侧在 N个无线帧中的每一个无线帧内,将相应的 Msymbsinglefrmne个符号(即 相应的某一段复值符号序列) 以符号级别进行多次重复, 即将复值符号序列按照符号级别 一个符号一个符号地进行多次重复。
在上述实施例中, 与现有技术同理, 增强 PBCH是用于传输 MIB的, MIB主要包含 下行带宽信息、 小区的 PHICH和 SFN , 其中, 网络与 M2M终端预先通过协议约定增强 PBCH承载的信息域中 SFN域所表达的具体含义。
具体地, SFN域用于表示增强 PBCH周期的起始无线帧 ( TTI内第一个无线帧)或结 束无线帧(TTI内最后一个无线帧)或其他约定的无线帧的对应的无线帧编号, 或者, SFN 域用于表示增强 PBCH周期的起始无线帧 (TTI内第一个无线帧)或结束无线帧 (TTI内 最后一个无线帧)或其他约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为 协议约定的正整数值。
其中, 当 SFN域表示无线帧编号的二进制比特的高 X位时, 其余的未携带的低 S位 通过增强的 PBCH解码隐式获得, 且 2AS>=T。
例如, 假设 SFN值由 10位二进制比特组成, 当 SFN域表达的是增强 PBCH TTI内第 一个无线帧的高 3位,则增强 PBCH TTI内第一个无线帧的低 7位为二进制序列 "0000000" , 增强 PBCH TTI内第二个无线帧的低 7位为二进制序列 "0000001" , 增强 PBCH TTI内第 三个无线帧的低 7位为二进制序列 "0000010" , 依此类推。
基于上述实施例, 参阅图 4所示, 相应的, M2M终端接收网络侧传输的增强 PBCH 的详细 ¾ u程 ¾口下:
步骤 400: M2M终端接收以 T个无线帧为一个 TTI传输的增强 PBCH, M2M终端确 定需要接收的无线帧数目 Ν' , N'为预设的正整数。
较佳的, Μ2Μ终端基于本地和网络侧预先约定的上述 ΤΤΙ中增强 PBCH所在的 N个 无线帧的位置分布确定 N'的大小。 具体为:
基于约定若增强 PBCH所在的 N个无线帧为 TTI中的 T个无线帧内以任意一个约定 的无线帧作为起始无线帧的 N个连续的无线帧,或者, 所述 TTI中的 T个无线帧内的前 N 个无线帧, 则 Ν=Ν' ;
例如, 若 Ν个无线帧为 ΤΤΙ中连续的 3个无线帧, 如, 无线帧 Κ、 无线帧 K+l、 无线 帧 Κ+2, 则 Ν'=3。
基于约定若增强 PBCH所在的 N个无线帧为 TTI中的 T个无线帧内任意 N个不连续 的无线帧, 或者, 为 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则 N'为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无线帧的数目之 和。
例如, 若 N个无线帧为 TTI中不连续的 3个无线帧, 如, 无线帧 K、 无线帧 Κ+2、 无 线帧 Κ+4, 则 Ν'=5。
步骤 410: Μ2Μ终端侧重复如下过程, 直至正确检测出增强 PBCH: 一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号;
从所述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
本发明实施例中, M2M终端一次接收连续的 N'个无线帧,在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号时, 可以先分别在接收的 N'个无线帧中的每一个无线帧内, 从预设的 L个 RE上读取 L个符号, 再分别将每一个无 线帧对应的 L个符号进行去重复, 获得每一个无线帧对应的长度为 Msymb /N的复值符号序 列; 所谓去重复即是指先基于预定义的重复规则确定读取的 L个符号中各符号之间的重复 关系, 再将重复的符号进行合并, 其中, 预定义的重复规则为, 将一段复值符号序列作为 一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
本发明实施例中, M2M终端从 N'个无线帧中选取 N个无线帧时, 可以基于本地和网 络侧预先约定的 TTI中增强 PBCH所在的 N个无线帧的位置分布, 在 N'个无线帧中选取 其中 N个无线帧。 具体为:
基于约定若增强 PBCH所在的 N个无线帧为 TTI中的 T个无线帧内以任意一个约定 的无线帧作为起始无线帧的 N个连续的无线帧, 或者, 为 TTI中的 T个无线帧内的前 N 个无线帧, 则 M2M终端选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为 TTI中的 T个无线帧内任意 N个不连续 的无线帧, 或者, 为 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则 M2M终端 将 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧, 并依据增强 PBCH 所在的 N个无线帧的分布来确定所有的 N个无线帧(具体参见步骤 400的相关描述,在此 不再赘述)。
本发明实施例中, M2M终端在每一个无线帧内读取的 L个 RE为本地与网络预先约定 的除 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH、物理下行控制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的 L个 RE。
以及 M2M终端在每一个无线帧中读取的 L个 RE,位于系统中心频带处的一个或多个 子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 终端侧在每一个无线帧 中读取的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频 带不重合;其中,第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。
另一方面, M2M终端接收的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的 起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号;或者,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X 位, X为设定的正整数。
在上述实施例中, 进一步的, M2M终端在接收了 N'个无线帧后, 若从选取的 N个无 线帧中正确解析出增强 PBCH, 则结束流程, 若从选取的 N个无线帧中未能正确解析出增 强 PBCH, 则删除 N'个无线帧中的第一个无线帧, 并接收一个新的无线帧, 组成新的 N' 个无线帧, 再从新的 N'个无线帧中选取 N个无线帧继续解析增强 PBCH, ··· ···以此类推, 直至正确解析出增强 PBCH。
下面釆用具体的应用场景对上述实施例作出进一步详细说明。
第一种应用场景下, 增强 PBCH与现有 PBCH釆用相同的中心频点。
在此应用场景下, 覆盖增强 PBCH以 400个无线帧为周期发送, 各周期的起始无线帧 为无线帧编号 nf满足 nf mod 400 = 0的无线帧,增强 PBCH映射于周期内的前 40个无线帧。 与现有方式类似, 24比特的 PBCH信息比特添加 16比特 CRC共 40比特, 经过卷积编码 输出为 120比特, 经过速率匹配后的信息比特在常规 CP下为 480比特(此处一个无线帧 承载的 PBCH比特可以为 240个符号, 对应 480比特为例, 实际比特流长度取决于一个无 线帧内 PBCH的资源量) *40 ( PBCH映射到 40个无线帧) =19200比特,经过长度为 19200 比特的扰码序列加扰、 QPSK调制后, 9600个符号映射到增强 PBCH所在的 40个无线帧 上, 每一个无线帧上需要承载 240个符号, 长度为 240的符号序列 (记为 S1 )重复 10次, 变换为长度为 2400的符号序列。
表 1
( TDD上下行子帧比例配置图)
Figure imgf000021_0001
在时分双工 ( Time Division Duplex, TDD )制式下, 考虑支持各种 TDD上下行子帧 配置 (具体如表 1所示;), 增强 PBCH对应的长度为 2400的符号序列映射于下行子帧 0、 下行子帧 1、 下行子帧 5和下行子帧 6 , 考虑特殊子帧配置有多种情况, 暂不考虑在特殊 子帧中映射 PBCH。
那么, 常规 CP中, 长度为 2400的符号序列依照先频域后时域的顺序映射于系统中心 频点处 15个物理资源块 ( Physical Resource Block, PRB )内的子帧 0的第一个时隙的符号 3、 符号 5和符号 6 , 第二个时隙的符号 4和符号 5 , 以及子帧 5的第一个时隙的符号 3至 符号 6、 第二个时隙的符号 0至符号 5共 15个符号上, 除去小区专属参考信号所占 RE共 2400个 RE, 其中, 小区专属参考信号所占 RE具体如图 5和图 6所示。
扩展 CP下, 一个无线帧需要承载的符号序列长度为 2160, 可映射于子帧 0的第一个 时隙的符号 2到符号 5 , 第二个时隙的符号 4, 子帧 5的第一个时隙的符号 2到符号 5、 第 二个时隙的符号 0到符号 4。
在频分双工 (Frequency Division Duplex, FDD )制式下, 一个无线帧共有 10个下行 子帧。 所以增强 PBCH对应的长度为 2400的符号序列可以有更多的资源选择。
常规 CP下,增强 PBCH对应的长度为 2400的符号序列依照先频域后时域的顺序映射 于系统中心频点处 6个 PRB内的子帧 0的第一个时隙的符号 3、 符号 4、 符号 5和符号 6, 子帧 5的第一个时隙的符号 3到符号 6 , 第二个时隙的符号 0至符号 6共 15个符号。
扩展 CP下, 一个无线帧需要承载的符号序列长度为 2160, 可映射于子帧 0的第一个 时隙的符号 2至符号 5 , 子帧 5的第一个时隙的符号 2至符号 5、 第二个时隙的符号 0至 符号 5。
以 TDD制式, 常规 CP下为例, 覆盖增强 PBCH的资源映射示意图如图 Ί所示。 M2M终端在检测时, 以常规 CP下为例, M2M终端首先读取一个 PBCH周期内各个 无线帧上的 2400个符号, 将 2400个符号合并为长度为 240的原符号序列, 经过解调, 变 为长度为 480比特的软比特序列。显然, M2M终端仅需要保存 40个无线帧的 480*40=19200 比特的软比特序列, 即可以检测 PBCH。
上述方案的覆盖增益来源, 来源于两部分: 速率匹配过程, 上述方案为现有 PBCH方 案的 10倍重复; 资源映射过程又进行 10倍重复, 两者复合则相当于 100倍重复。
可以看出, 在一个 PBCH传输周期内, 上述方式将可获取 100倍的重复的合并增益, 又将 M2M终端的软比特数据緩存降低为原有的 10% (从 192000个软比特降低到 19200 个软比特), 大大降低了 M2M终端解调 PBCH所需的緩存需求。 当然, 受制于 TDD下行 子帧数量的限制, 上述资源映射仅仅考虑在子帧 0和子帧 5这些各种 TDD上下行配置均 会配置的下行子帧, 且没有考虑在特殊子帧 1和特殊子帧 6进行 PBCH资源映射(在系统 频带中心 6个 PRB不承载同步信号的符号, 在系统中心 6个 PRB以外的子载波均可以承 载覆盖增强的 PBCH );若考虑在特殊子帧映射 PBCH资源和考虑仅支持更大的 M2M终端 带宽 (5MHz带宽以及以上), 则每一个无线帧承载的 240个符号序列 S1可以经过更多次 重复, 进而进一步大幅降低 M2M终端緩存 PBCH所需的软比特资源开销, 直至对 M2M 终端的成本没有任何增加。
第二种应用场景下, 增强 PBCH与现有 PBCH釆用不同频带。
若覆盖增强 PBCH釆用与现有 PBCH不同的频带,即不占用系统中心频带的 6个 PRB , 则覆盖增强 PBCH的资源映射不会受到现有 PBCH、 同步信号等的影响。 所以占用相同的 PRB个数, 可以有更多的资源传输覆盖增强 PBCH。 与第一种应用场景相同, 艮设覆盖增强 PBCH占用 15个 PRB , 且该 PBCH所占频带 的中心子载波距离系统带宽的中心频点的距离为 5MHz。 M2M终端与网络预先通过协议约 定覆盖增强 PBCH所占频带与系统中心频点的相对位置关系。
仅以资源受限的 TDD制式为例 (FDD制式可以有更多的下行子帧承载 PBCH, 釆用 本方案可以获取更大的增益), 可以占用子帧 0、 子帧 1、 子帧 5和子帧 6的第一个时隙符 号 3至符号 6, 第二个时隙的所有 7个符号, 除去公共参考信号所占资源,共有 4*[( ( 4+7 ) *12-20)*15]=6720个 RE。由于单个无线帧可以将第一种应用场景下的长度为 240比特的符 号序列 S1重复达 28次, 则由此进一步大幅降低 M2M终端接收 PBCH信号所需数据软比 特緩存。 详细举例如下:
PBCH 以 400 个无线帧为周期发送, 各周期的起始帧为无线帧编号 nf 满足 nf mod 400 = 0的无线帧, PBCH 映射于周期内的前 16 个无线帧。 与现有方式类似, 24 比特的 PBCH信息比特添加 16比特的 CRC共 40比特, 经过卷积编码输出为 120比特, 经过速率匹配后的信息比特在常规 CP下为 480比特(此处一个无线帧承载的 PBCH比特 可以承载为 240个符号, 对应 480比特为例, 实际比特流长度取决于一个无线帧内 PBCH 的资源量) *16 ( PBCH映射到 16个无线帧) =7680比特。 经过长度为 7680比特的扰码序 列加扰、 QPSK调制后, 7680个符号映射到 PBCH所在的 16个无线帧上, 在每一个无线 帧上承载 240个符号, 长度为 240的符号序列 (记为 S1 )重复 28次, 变换为长度为 6720 的符号序列。 长度为 6720的符号序列映射于子帧 0、 子帧 1、 子帧 5和子帧 6的第一个时 隙内的符号 3至符号 6, 第二个时隙的所有 7个符号, 除公共参考信号外的共计 6720个 RE上。
以 TDD制式, 常规 CP下为例, 覆盖增强 PBCH的资源映射示意图如图 8所示。 M2M终端检测时, 以常规 CP下为例, M2M终端首先读取一个 PBCH周期内各个无 线帧上的 6720个符号, 将 6720个符号合并为长度为 240的原符号序列, 经过解调, 变为 长度为 480比特的软比特序列。 M2M终端仅需要保存 4个无线帧的 480*16=7680长的软 比特序列, 即可以检测 PBCH, 降低为原有方案的 4% , 且该緩存需求量已小于 M2M终端
HARQ緩存。 总计重复次数为 4 (速率匹配过程重复 4次) *28 (资源映射过程重复 28次)
=112次。
基于上述实施例, 参阅图 9所示, 本发明实施例中, 网络侧装置以 T个无线帧为一个 TTI发送增强 PBCH, 该装置包括:
确定单元 90, 用于在一个 TTI内, 确定用于承载增强 PBCH的 N个无线帧, 其中, N 小于等于 Τ, N和 T均为预设的大于 1的正整数;
主处理单元 91 , 用于分别在上述 N个无线帧中的每一个无线帧内, 将增强 PBCH的 符号经过重复后, 映射至预设的 L个资源单元 RE上传输, 其中, L为预设的大于 1的正 整数。
上述确定单元 90和主处理单元 91所执行的具体操作与上述实施例中的方法相对应, 在此不再——赘述。
基于上述实施例, 参阅图 9所示, 本发明实施例中, 网络侧装置以 T个无线帧为一个 TTI发送增强 PBCH, 该装置包括:
参阅图 10所示, 本发明实施例中, 终端以 T个无线帧为一个 TTI接收增强 PBCH, 该终端包括确定单元 100和解析单元 101 , 其中,
确定单元 100, 用于确定需要接收的无线帧数目 Ν' , N'为预设的正整数;
解析单元 101 , 用于重复如下过程, 直至正确检测出增强 PBCH:
一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个
RE上的符号解析出增强 PBCH的符号;
从上述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
上述确定单元 100和解析单元 101所执行的具体操作与上述实施例中的方法相对应, 在此不再——赘述。
下面结合优选的硬件结构, 对本发明实施例提供的网络侧设备的结构、 处理方式进行 说明。
在图 9的实施例中, 网络侧设备以 T个无线帧为一个 TTI发送增强 PBCH, 包括收发 信机、 以及与该收发信机连接的至少一个处理器, 其中:
处理器被配置用于在一个 TTI内, 确定用于承载增强 PBCH的 N个无线帧, 其中, N 小于等于 Τ, N和 T均为预设的大于 1的正整数; 以及分别在所述 N个无线帧中的每一个 无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上, 并触发 收发信机传输该增强 PBCH, 其中, L为预设的大于 1的正整数。
在实施中, 处理器确定的所述 TTI用于承载增强 PBCH的 N个无线帧, 包括: 所述 TTI中由网络侧和终端侧预先约定的 N个无线帧。
进一步, 处理器确定的所述 TTI中由网络侧和终端侧预先约定的 N个无线帧, 包括: 所述 TTI中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 N个连续的无 线帧; 或者, 所述 TTI中的 T个无线帧内的前 N个无线帧; 或者, 所述 TTI中的 T个无 线帧内任意 N个不连续的无线帧; 或者, 所述 TTI中的 T个无线帧内任意 N个局部不连 续的无线帧。
在实施中, 处理器确定的所述 TTI 中的起始无线帧为无线帧编号 nf 且满足为 nf rnodT = C的无线帧。 基于上述任一实施例, 处理器分别在所述 N 个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上, 并触发收发信机传输该增 强 PBCH, 包括:
处理器分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至除 3GPP版本 11 及之前的长期演进 LTE协议规定的 PBCH、 物理下行控制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的预设的 L个 RE上, 并触发收 发信机传输该增强 PBCH。
基于上述任一实施例, 处理器分别在所述 N 个无线帧中的每一个无线帧内, 将增强
PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
所述主处理单元将增强 PBCH携带的源信息比特经过添加循环冗余 CRC、 卷积编码、 速率匹配、 加扰、 QPSK调制、 预编码和层映射后得到长度为Msymb的复值符号序列; 处理器将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列长度为 symb/N且分别对应所述 N个无线帧中的一个无线帧;
处理器分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经过重 复得到 L个符号;
处理器分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至预设的 L 个 RE上, 并触发收发信机传输该增强 PBCH。
进一步, 处理器将任意一段复值符号序列在相应的无线帧内基于预定义的重复规则经 过重复得到 L个符号, 包括:
若 L是 Msymb/N的整数倍, 则处理器将所述任意一段复值符号序列经过 IJ ( Msymb /N ) 次重复后直接获得 L个符号;
若 L非 Msymb/N的整数倍,则处理器将所述任意一段复值符号序列经过^ ^^^ /N), 次重复后, 从获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符号, 或者, 选取 后 L个符号, 或者, 选取任意 L个符号。
在实施中, 处理器釆用的预定义的重复规则包括: 将任意一段复值符号序列作为一个 整体进行多次重复; 或者, 将所述任意一段复值符号序列以符号级别进行多次重复。
基于上述任一实施例, 处理器釆用的 L个 RE, 位于系统中心频带处的一个或多个子 载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者,
处理器釆用的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH 所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。 基于上述任一实施例,收发信机传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者, 收发信机传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或 结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整 数。
下面结合优选的硬件结构, 对本发明实施例提供的终端的结构、 处理方式进行说明。 在图 10的实施例中, 终端接收以 T个无线帧为一个传输时间间隔 TTI的增强 PBCH, 包括收发信机、 以及与该收发信机连接的至少一个处理器, 其中:
处理器被配置用于确定需要接收的无线帧数目 Ν' , N'为预设的正整数;
收发信机和处理器被配置用于重复如下过程, 直至正确检测出增强 PBCH:
收发信机被配置一次接收连续的 N'个无线帧;
处理器被配置在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析 出增强 PBCH的符号; 从所述 N'个无线帧中选取 N个无线帧; 将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
在实施中, 处理器确定需要接收的无线帧数目 Ν' , 包括:
处理器基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧的位置 分布确定 N'的大小。
进一步,处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布确定 N'的大小, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则确定 Ν=Ν';
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则确 定 N'为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无 线帧的数目之和。
在实施中, 处理器在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号 解析出增强 PBCH的符号, 包括:
处理器分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读取 L个 符号;
处理器分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线帧对应 的长度为 Msymb/N的复值符号序列。
进一步, 处理器分别将所述每一个无线帧对应的 L个符号进行去重复, 包括: 处理器基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 处理器将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
在实施中, 处理器从所述 N'个无线帧中选取 N个无线帧, 包括:
处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置 分布, 在所述 N'个无线帧中选取其中 N个无线帧。
进一步,处理器基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线 帧的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则处理器选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则处 理器将所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依据增强 PBCH所在的 N个无线帧的分布来确定所有的 N个无线帧。
基于上述任一实施例, 处理器在每一个无线帧中读取的 L个 RE, 为本地与网络预先 约定的除 3GPP版本 11及之前的 LTE协议规定的 PBCH、 PDCCH、 下行同步信道以及下 行参考信号所占的 RE之外的 L个 RE。
基于上述任一实施例, 处理器在每一个无线帧中读取的 L个 RE, 位于系统中心频带 处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者, 处理器 在每一个无线帧中读取的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频带不重合; 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协 议规定的 PBCH。
基于上述任一实施例,收发信机接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应的无线帧编号; 或者,
收发信机接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或 结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整 数。
综上所述, 本发明实施例中, 网络侧以 T个无线帧为一个 TTI发射增强 PBCH, 在一 个 TTI内, 增强 PBCH仅映射于其中 N个无线帧 ( N小于等于 T ); 在上述 N个无线帧的 每一个无线帧内, 网络侧将增强 PBCH的符号重复映射到预定义的 L个 RE上传输。这样, 仅需要一个 PBCH传输周期, 网络侧即可以通过重复映射获得所需的合并增益, 这不但可 以达到增强 PBCH的覆盖要求, 同时, 也极大降低了 M2M终端检测 PBCH所需要数据软 比特緩存, 进而不会导致 Μ2Μ终端芯片成本的增加。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种增强物理广播信道 PBCH的传输方法, 网络侧以 T个无线帧为一个传输时间 间隔 TTI发送增强 PBCH, 其特征在于, 包括:
在一个 TTI内, 网络侧确定用于承载增强 PBCH的 N个无线帧,其中, N小于等于 T, N和 T均为预设的大于 1的正整数;
网络侧分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE上传输, 其中, L为预设的大于 1的正整数。
2、 如权利要求 1所述的方法, 其特征在于, 网络侧釆用的所述 TTI中用于承载增强 PBCH的 N个无线帧, 包括:
所述 TTI中由网络侧和终端侧预先约定的 N个无线帧。
3、 如权利要求 2所述的方法, 其特征在于, 网络侧釆用的所述 TTI中由网络侧和终 端侧预先约定的 N个无线帧, 包括:
所述 TTI中的 T个无线帧内以任意一个约定的无线帧作为起始无线帧的 N个连续的无 线帧; 或者,
所述 TTI中的 T个无线帧内的前 N个无线帧; 或者,
所述 TTI中的 T个无线帧内任意 N个不连续的无线帧; 或者,
所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧。
4、 如权利要求 1所述的方法, 其特征在于, 网络侧釆用的所述 TTI中的起始无线帧 为无线帧编号 nf且满足为 nf modT = 0的无线帧。
5、 如权利要求 1 _ 4任一项所述的方法, 其特征在于, 网络侧分别在所述 N个无线帧 中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个资源单元 RE 上传输, 包括:
网络侧分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经过重复后, 映射至除 3GPP版本 11 及之前的长期演进 LTE协议规定的 PBCH、 物理下行控制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的, 预设的 L个 RE上传输。
6、 如权利要求 1 _ 4任一项所述的方法, 其特征在于, 网络侧分别在所述 N个无线帧 中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
网络侧将增强 PBCH携带的源信息比特经过添加循环冗余 CRC、卷积编码、速率匹配、 加扰、 四相相移键控 QPSK调制、 预编码和层映射后得到长度为 Msymb的复值符号序列; 网络侧将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列长度为 Msymb/N且分别对应所述 N个无线帧中的一个无线帧; 网络侧分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规则经过重 复得到 L个符号;
网络侧分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至预设的 L 个 RE上传输。
7、 如权利要求 6 所述的方法, 其特征在于, 网络侧将任意一段复值符号序列在相应 的无线帧内基于预定义的重复规则经过重复得到 L个符号, 包括:
若 L是 Msymb/N的整数倍, 则将所述任意一段复值符号序列经过 U ( Msymb /N )次重 复后直接获得 L个符号;
若 L非 Msymb/N的整数倍, 则将所述任意一段复值符号序列经过^^^^^ /!^),次重 复后, 在获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符号, 或者, 选取后 L 个符号, 或者选取任意 L个符号。
8、 如权利要求 6 所述的方法, 其特征在于, 网络侧釆用的预定义的重复规则包括: 将任意一段复值符号序列作为一个整体进行多次重复; 或者, 将所述任意一段复值符号序 列以符号级别进行多次重复。
9、 如权利要求 1 _ 4任一项所述的方法, 其特征在于, 网络侧釆用的 L个 RE, 位于 系统中心频带处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合或部分重合, 或者,
网络侧釆用的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一类 PBCH 所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。
10、 如权利要求 1 _ 4任一项所述的方法, 其特征在于, 网络侧传输的增强 PBCH携 带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对应 的无线帧编号; 或者,
网络侧传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结 束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
11、 一种增强物理广播信道 PBCH的传输装置, 该装置以 T个无线帧为一个传输时间 间隔 TTI发送增强 PBCH, 其特征在于, 包括:
确定单元, 用于在一个 TTI内, 确定用于承载增强 PBCH的 N个无线帧, 其中, N小 于等于 Τ, N和 T均为预设的大于 1的正整数;
主处理单元, 用于分别在所述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号 经过重复后, 映射至预设的 L个资源单元 RE上传输, 其中, L为预设的大于 1的正整数。
12、 如权利要求 11所述的装置, 其特征在于, 所述确定单元确定的所述 TTI用于承 载增强 PBCH的 N个无线帧, 包括: 所述 TTI中由网络侧和终端侧预先约定的 Ν个无线帧。
13、 如权利要求 12所述的装置, 其特征在于, 所述确定单元确定的所述 ΤΤΙ中由网 络侧和终端侧预先约定的 Ν个无线帧, 包括:
所述 ΤΤΙ中的 Τ个无线帧内以任意一个约定的无线帧作为起始无线帧的 Ν个连续的无 线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内的前 Ν个无线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内任意 Ν个不连续的无线帧; 或者,
所述 ΤΤΙ中的 Τ个无线帧内任意 Ν个局部不连续的无线帧。
14、 如权利要求 11所述的装置, 其特征在于, 所述确定单元确定的所述 ΤΤΙ中的起 始无线帧为无线帧编号 nf且满足为 nf modT = 0的无线帧。
15、如权利要求 11 _ 14任一项所述的装置, 其特征在于, 所述主处理单元分别在所述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个资 源单元 RE上传输, 包括:
所述主处理单元分别在所述 N个无线帧中的每一个无线帧内,将增强 PBCH的符号经 过重复后, 映射至除 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH、物理下行控 制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的, 预设的 L个 RE上传 输。
16、如权利要求 11 _ 14任一项所述的装置, 其特征在于, 所述主处理单元分别在所述 N个无线帧中的每一个无线帧内, 将增强 PBCH的符号经过重复后, 映射至预设的 L个 RE上传输, 包括:
所述主处理单元将增强 PBCH携带的源信息比特经过添加循环冗余 CRC、 卷积编码、 速率匹配、 加扰、 四相相移键控 QPSK调制、 预编码和层映射后得到长度为 Msymb的复值 符号序列;
所述主处理单元将所述复值符号序列等分为 N段, 其中, 获得的每一段复值符号序列 长度为 Msymb /N且分别对应所述 N个无线帧中的一个无线帧;
所述主处理单元分别将每一段复值符号序列在相应的无线帧内基于预定义的重复规 则经过重复得到 L个符号;
所述主处理单元分别在所述 N个无线帧中的每一个无线帧内将相应的 L个符号映射至 预设的 L个 RE上传输。
17、 如权利要求 16 所述的装置, 其特征在于, 所述主处理单元将任意一段复值符号 序列在相应的无线帧内基于预定义的重复规则经过重复得到 L个符号, 包括:
若 L是 Msymb /N 的整数倍, 则所述主处理单元将所述任意一段复值符号序列经过 ( Msymb /N )次重复后直接获得 L个符号; 若 L 非 Msymb /N 的整数倍, 则所述主处理单元将所述任意一段复值符号序列经过 「L/(Msymb /N),次重复后, 从获得的所有符号中选取前 L个符号, 或者, 选取中间 L个符 号, 或者, 选取后 L个符号, 或者, 选取任意 L个符号。
18、 如权利要求 16 所述的装置, 其特征在于, 所述主处理单元釆用的预定义的重复 规则包括: 将任意一段复值符号序列作为一个整体进行多次重复; 或者, 将所述任意一段 复值符号序列以符号级别进行多次重复。
19、 如权利要求 11 _ 14任一项所述的装置, 其特征在于, 所述主处理单元釆用的 L 个 RE, 位于系统中心频带处的一个或多个子载波上, 且与第一类 PBCH所占的频带重合 或部分重合, 或者,
所述主处理单元釆用的 L个 RE, 位于系统中心频点频带外的其他频带上, 且与第一 类 PBCH所占的频带不重合;
其中, 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。
20、如权利要求 11 _ 14任一项所述的装置, 其特征在于, 所述主处理单元传输的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线 帧的对应的无线帧编号; 或者,
所述主处理单元传输的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无 线帧或结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定 的正整数。
21、一种增强物理广播信道 PBCH的接收方法, 终端侧接收以 T个无线帧为一个传输 时间间隔 TTI的增强 PBCH, 其特征在于, 包括:
终端侧确定需要接收的无线帧数目 Ν' , N'为预设的正整数;
终端侧重复如下过程, 直至正确检测出增强 PBCH:
一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符号;
从所述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
22、 如权利要求 21所述的方法, 其特征在于, 终端侧确定需要接收的无线帧数目 Ν' , 包括:
终端侧基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧的位置 分布确定 N'的大小。
23、 如权利要求 22所述的方法, 其特征在于, 终端侧基于本地和网络侧预先约定的 所述 TTI中增强 PBCH所在的 N个无线帧的位置分布确定 N'的大小, 包括: 基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则 Ν=Ν';
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧,或者,为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧,则 N' 为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无线帧的 数目之和。
24、 如权利要求 21所述的方法, 其特征在于, 终端侧一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个 RE上的符号解析出增强 PBCH的符 号, 包括:
终端侧分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读取 L个 符号;
终端侧分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线帧对应 的长度为 Msymb/N的复值符号序列。
25、 如权利要求 24所述的方法, 其特征在于, 终端侧分别将所述每一个无线帧对应 的 L个符号进行去重复, 包括:
终端侧基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 终端侧将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
26、 如权利要求 22所述的方法, 其特征在于, 终端侧从所述 N'个无线帧中选取 N个 无线帧, 包括:
终端侧基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置 分布, 在所述 N'个无线帧中选取其中 N个无线帧。
27、 如权利要求 26 所述的方法, 其特征在于, 终端侧基于本地和网络侧预先约定的 所述 TTI中增强 PBCH所在的 N个无线帧的位置分布, 在所述 N'个无线帧中选取其中 N 个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则将 所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依据增强 PBCH 所在的 N个无线帧的分布来确定所有的 N个无线帧。
28、 如权利要求 21 - 27任一项所述的方法, 其特征在于, 终端侧在每一个无线帧中 读取的 L个 RE, 为本地由终端与网络预先约定的除 3GPP版本 11及之前的长期演进 LTE 协议规定的 PBCH、 物理下行控制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的 L个 RE。
29、 如权利要求 21 - 27任一项所述的方法, 其特征在于, 终端侧在每一个无线帧中 读取的 L个 RE, 位于系统中心频带处的一个或多个子载波上, 且与第一类 PBCH所占的 频带重合或部分重合, 或者, 终端侧在每一个无线帧中读取的 L个 RE, 位于系统中心频 点频带外的其他频带上,且与第一类 PBCH所占的频带不重合;所述第一类 PBCH为 3GPP 版本 11及之前的长期演进 LTE协议规定的 PBCH。
30、 如权利要求 21 - 27任一项所述的方法, 其特征在于, 终端侧接收的增强 PBCH 携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线帧的对 应的无线帧编号; 或者,
终端侧接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线帧或结 束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的正整数。
31、一种增强物理广播信道 PBCH的接收装置, 该装置接收以 T个无线帧为一个传输 时间间隔 TTI的增强 PBCH, 其特征在于, 包括:
确定单元, 用于确定需要接收的无线帧数目 N' , N'为预设的正整数;
解析单元, 用于重复如下过程, 直至正确检测出增强 PBCH:
一次接收连续的 N'个无线帧, 在接收的每一个无线帧中, 从重复映射在预设的 L个
RE上的符号解析出增强 PBCH的符号;
从所述 N'个无线帧中选取 N个无线帧;
将 N个无线帧对应的增强 PBCH的符号组成一个复值符号序列,对该复值符号序列检 测尝试恢复出 PBCH信息比特; 其中, N小于等于 Τ, N和 T均为预设的大于 1的正整数。
32、 如权利要求 31 所述的装置, 其特征在于, 所述确定单元确定需要接收的无线帧 数目 Ν' , 包括:
所述确定单元基于本地和网络侧预先约定的所述 ΤΤΙ中增强 PBCH所在的 Ν个无线帧 的位置分布确定 N'的大小。
33、 如权利要求 32所述的装置, 其特征在于, 所述确定单元基于本地和网络侧预先 约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置分布确定 N'的大小, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则确定 Ν=Ν'; 基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则确 定 N'为包含 N个增强 PBCH无线帧的第一个无线帧和最后一个无线帧及其之间的所有无 线帧的数目之和。
34、 如权利要求 31所述的装置, 其特征在于, 所述解析单元一次接收连续的 N'个无 线帧,在接收的每一个无线帧中,从重复映射在预设的 L个 RE上的符号解析出增强 PBCH 的符号, 包括:
所述解析单元分别在接收的 N'个无线帧中的每一个无线帧内,从预设的 L个 RE上读 取 L个符号;
所述解析单元分别将所述每一个无线帧对应的 L个符号进行去重复, 获得每一个无线 帧对应的长度为 Msymb/N的复值符号序列。
35、 如权利要求 34所述的装置, 其特征在于, 所述解析单元分别将所述每一个无线 帧对应的 L个符号进行去重复, 包括:
所述解析单元基于预定义的重复规则确定读取的 L个符号中各符号之间的重复关系; 所述解析单元将重复的符号进行合并;
其中, 所述预定义的重复规则为, 将一段复值符号序列作为一个整体进行多次重复; 或者, 将一段复值符号序列以符号级别进行多次重复。
36、 如权利要求 32所述的装置, 其特征在于, 所述解析单元从所述 N'个无线帧中选 取 N个无线帧, 包括:
所述解析单元基于本地和网络侧预先约定的所述 TTI中增强 PBCH所在的 N个无线帧 的位置分布, 在所述 N'个无线帧中选取其中 N个无线帧。
37、 如权利要求 36 所述的装置, 其特征在于, 所述解析单元基于本地和网络侧预先 约定的所述 TTI中增强 PBCH所在的 N个无线帧的位置分布, 在所述 N'个无线帧中选取 其中 N个无线帧, 包括:
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内以任意一个 约定的无线帧作为起始无线帧的 N个连续的无线帧,或者, 为所述 TTI中的 T个无线帧内 的前 N个无线帧, 则所述解析单元选取的 N个无线帧即是接收的 N'个无线帧;
基于约定若增强 PBCH所在的 N个无线帧为所述 TTI中的 T个无线帧内任意 N个不 连续的无线帧, 或者, 为所述 TTI中的 T个无线帧内任意 N个局部不连续的无线帧, 则所 述解析单元将所述 N'个无线帧的第一个无线帧作为增强 PBCH所在的第一个无线帧,并依 据增强 PBCH所在的 N个无线帧的分布来确定所有的 N个无线帧。
38、 如权利要求 31 - 37任一项所述的装置, 其特征在于, 所述解析单元在每一个无 线帧中读取的 L个 RE, 为本地与网络预先约定的除 3GPP版本 11及之前的长期演进 LTE 协议规定的 PBCH、 物理下行控制信道 PDCCH、 下行同步信道以及下行参考信号所占的 RE之外的 L个 RE。
39、 如权利要求 31 - 37任一项所述的装置, 其特征在于, 所述解析单元在每一个无 线帧中读取的 L个 RE, 位于系统中心频带处的一个或多个子载波上, 且与第一类 PBCH 所占的频带重合或部分重合, 或者, 所述解析单元在每一个无线帧中读取的 L个 RE, 位 于系统中心频点频带外的其他频带上, 且与第一类 PBCH所占的频带不重合; 所述第一类 PBCH为 3GPP版本 11及之前的长期演进 LTE协议规定的 PBCH。
40、 如权利要求 31 - 37任一项所述的装置, 其特征在于, 所述解析单元接收的增强 PBCH携带的 SFN域, 用于表示增强 PBCH TTI的起始无线帧或结束无线帧或约定的无线 帧的对应的无线帧编号; 或者,
所述解析单元接收的增强 PBCH携带的 SFN域,用于表示增强 PBCH TTI的起始无线 帧或结束无线帧或约定的无线帧的对应的无线帧编号的二进制比特的高 X位, X为设定的 正整数。
PCT/CN2014/070691 2013-01-18 2014-01-16 一种增强pbch的传输方法及装置 WO2014111023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310019846.5A CN103944663B (zh) 2013-01-18 2013-01-18 一种增强pbch的传输方法及装置
CN201310019846.5 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014111023A1 true WO2014111023A1 (zh) 2014-07-24

Family

ID=51192172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070691 WO2014111023A1 (zh) 2013-01-18 2014-01-16 一种增强pbch的传输方法及装置

Country Status (2)

Country Link
CN (1) CN103944663B (zh)
WO (1) WO2014111023A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717031B (zh) * 2014-09-25 2020-06-30 株式会社Kt Mtc ue发送/接收信号的方法及其装置
CN105723765B (zh) * 2014-10-20 2019-12-06 华为技术有限公司 一种系统信息的传输方法、装置及系统
US10492047B2 (en) * 2015-01-28 2019-11-26 Sharp Kabushiki Kaisha Terminal device, base station device, and method
WO2016127412A1 (zh) * 2015-02-13 2016-08-18 华为技术有限公司 Pbch重复传输的方法及基站
WO2017171929A1 (en) * 2016-03-28 2017-10-05 Intel IP Corporation Systems, methods, and devices for transmission of network information in the physical broadcast channel (pbch)
CN108347770B (zh) * 2017-01-24 2020-07-17 北京佰才邦技术有限公司 小区公共信号的覆盖增强、获取方法、装置、基站及终端
CN108738137B (zh) * 2017-04-14 2021-08-03 普天信息技术有限公司 一种发送pbch的处理方法及装置
CN106936558B (zh) * 2017-04-19 2021-03-30 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
CN108737970B (zh) * 2017-04-25 2021-05-25 普天信息技术有限公司 传输pbch的方法、装置、基站及用户设备
CN109451575B (zh) 2017-05-05 2019-11-19 华为技术有限公司 通信方法和通信装置
CN108933641B (zh) 2017-05-22 2022-10-11 中兴通讯股份有限公司 数据发送、处理方法及装置,网络侧设备和终端
CN108933647B (zh) * 2017-05-26 2023-09-12 华为技术有限公司 一种比特映射的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626280A (zh) * 2008-07-07 2010-01-13 中兴通讯股份有限公司 一种广播控制信道的实现方法
WO2011025205A2 (ko) * 2009-08-24 2011-03-03 삼성전자 주식회사 이동통신 시스템에서 방송 제어 채널 송수신 방법 및 장치
CN102076018A (zh) * 2010-12-22 2011-05-25 上海华为技术有限公司 一种检测物理广播信道方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064920A (zh) * 2010-12-31 2011-05-18 大唐移动通信设备有限公司 Cqi信息的获取方法和设备
CN102307082B (zh) * 2011-09-28 2014-03-19 电信科学技术研究院 一种上行控制信令的传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626280A (zh) * 2008-07-07 2010-01-13 中兴通讯股份有限公司 一种广播控制信道的实现方法
WO2011025205A2 (ko) * 2009-08-24 2011-03-03 삼성전자 주식회사 이동통신 시스템에서 방송 제어 채널 송수신 방법 및 장치
CN102076018A (zh) * 2010-12-22 2011-05-25 上海华为技术有限公司 一种检测物理广播信道方法及装置

Also Published As

Publication number Publication date
CN103944663A (zh) 2014-07-23
CN103944663B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
KR102534044B1 (ko) 이동 통신 시스템에서 데이터 디코딩 방법 및 장치
WO2014111023A1 (zh) 一种增强pbch的传输方法及装置
KR102476993B1 (ko) 통신 시스템에서 전송들의 반복을 위한 자원 할당
US11349593B2 (en) Method and device for transmitting and receiving control information in wireless cellular communication system
CN113841348A (zh) 无线通信系统中发送控制信息的方法及设备
CN109586882B (zh) 用于在无线通信系统中发射和接收数据信息的方法和设备
US20200228251A1 (en) Method and apparatus for feedback transmission and reception in wireless communication system
US11528741B2 (en) Method and device for determining transmission time in wireless communication system
CN113541869B (zh) 通信系统中的终端、基站及其执行的方法
WO2017000291A1 (zh) 传输上行数据的方法和设备
EP4054104A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
US11963174B2 (en) Method and apparatus for mapping uplink control information in wireless communication system
KR102536946B1 (ko) 무선통신 시스템에서 제어 정보 송수신 방법 및 장치
KR20180099412A (ko) 무선 셀룰라 통신 시스템에서 제어 및 데이터 신호의 사용자 구분 방법 및 장치
US11864188B2 (en) Method and apparatus for scheduling and transmitting data in wireless cellular communication system
US20210321291A1 (en) Method and apparatus for transmission and reception of data in communication system
KR20180049748A (ko) 무선 셀룰라 통신 시스템에서 제어신호 검출 방법 및 장치
US12058697B2 (en) Method and device for determining transmission time in wireless communication system
CN113261226A (zh) 通信装置、基础设施设备及方法
KR20210049612A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN113016154A (zh) 用于在通信系统中发送或接收数据的方法和设备
US12069618B2 (en) Method and device for transmitting/receiving signals in communication system
EP3925157B1 (en) Method and apparatus for transmitting uplink channels in wireless communication system
KR20180108320A (ko) 무선 통신 시스템에서 하향링크 제어신호 검출 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740700

Country of ref document: EP

Kind code of ref document: A1