WO2020194924A1 - 端末及び送信方法 - Google Patents

端末及び送信方法 Download PDF

Info

Publication number
WO2020194924A1
WO2020194924A1 PCT/JP2019/049540 JP2019049540W WO2020194924A1 WO 2020194924 A1 WO2020194924 A1 WO 2020194924A1 JP 2019049540 W JP2019049540 W JP 2019049540W WO 2020194924 A1 WO2020194924 A1 WO 2020194924A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
signal
terminal
unit
resource
Prior art date
Application number
PCT/JP2019/049540
Other languages
English (en)
French (fr)
Inventor
哲矢 山本
西尾 昭彦
鈴木 秀俊
イーフェイ リ
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US17/441,262 priority Critical patent/US20220132476A1/en
Priority to AU2019436989A priority patent/AU2019436989A1/en
Priority to BR112021016676-9A priority patent/BR112021016676A2/pt
Priority to JP2021508747A priority patent/JPWO2020194924A5/ja
Priority to KR1020217029736A priority patent/KR20210141507A/ko
Priority to MX2021011465A priority patent/MX2021011465A/es
Priority to EP19920718.4A priority patent/EP3952501A4/en
Priority to CN201980094386.8A priority patent/CN113615275A/zh
Publication of WO2020194924A1 publication Critical patent/WO2020194924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This disclosure relates to terminals and transmission methods.
  • NR 5th Generation mobile communication system
  • 5G 5th Generation mobile communication sysmtems
  • NR is a function that realizes ultra-reliable and low latency communication (URLLC: Ultra Reliable and Low Latency Communication) in combination with high speed and large capacity, which are the basic requirements for advanced mobile broadband (eMBB: enhanced Mobile Broadband).
  • URLLC Ultra Reliable and Low Latency Communication
  • eMBB enhanced Mobile Broadband
  • 3GPP TS 38.211 V15.4.0 "NR; Physical channels and modulation (Release 15),” December 2018.
  • 3GPP TS 38.212 V15.4.0 “NR; Multiplexing and channel coding (Release 15),” December 2018.
  • 3GPP TS 38.213 V15.4.0 “NR; Physical layer procedure for control (Release 15),” December 2018.
  • 3GPP TS 38.214 V15.4.0 “NR; Physical layer procedures for data (Release 15),” December 2018.
  • 3GPP, TS38.300 V15.4.0 “NR; NR and NG-RAN overall description; Stage 2 (Release 15)”, December 2018.
  • the non-limiting examples of the present disclosure contribute to the provision of terminals and transmission methods that can improve the efficiency of random access processing.
  • the terminal includes a control circuit for determining a resource used for transmitting a response signal to a downlink signal for a plurality of terminals based on parameters set for each of the plurality of terminals, and the above-mentioned terminal.
  • a transmission circuit for transmitting the response signal in the resource is provided.
  • the efficiency of random access processing can be improved.
  • Diagram showing an example of 4-step Random access procedure Diagram showing an example of 2-step Random access procedure Block diagram showing a partial configuration example of the terminal according to the first embodiment Block diagram showing a configuration example of a base station according to the first embodiment Block diagram showing a configuration example of a terminal according to the first embodiment A sequence diagram showing an operation example of the base station and the terminal according to the first embodiment.
  • Diagram showing a configuration example of Message B Diagram showing a configuration example of Message B
  • the terminal also called mobile station or UE: User Equipment
  • RACH Random Access Channel
  • RACH Random Access Channel
  • PRACH Also called Physical RACH
  • the Random access procedure is composed of, for example, the four steps shown in FIG. 1 (referred to as a 4-step Random access procedure or a 4-step RACH procedure) (see, for example, Non-Patent Document 8).
  • Step 1 Send Message 1>
  • the terminal for example, UE
  • the terminal is actually selected from a group of resource candidates (for example, resources defined by a combination of time resources, frequency resources, and series resources) of preamble signals (hereinafter, also referred to as RACH preamble, PRACH preamble, or simply preamble). Randomly select the PRACH preamble resource to be used for.
  • the terminal transmits the PRACH preamble to the base station (for example, gNB) using the selected PRACH preamble resource.
  • the PRACH preamble is sometimes called, for example, "Message 1".
  • Step 2 Send Message 2>
  • RAR Random Access Response
  • Message 2 the base station cannot identify the terminal that transmitted the PRACH preamble. Therefore, the RAR is transmitted, for example, to the entire cell covered by the base station.
  • RAR includes, for example, information on resources (uplink resources) used by the terminal in transmitting uplink signals (Step 3: transmission of Message 3), or information on uplink transmission timing by terminals.
  • the terminal that has transmitted the PRACH preamble does not receive the RAR within the period specified from the transmission timing of the PRACH preamble (for example, called the RAR reception window)
  • the PRACH preamble resource is selected again and the PRACH preamble is selected. (In other words, resend Message 1).
  • Step 3 Send Message 3>
  • the terminal transmits "Message 3" including, for example, an RRC (Radio Resource Control) connection request or a schedule request by using the uplink resource instructed by the base station by RAR.
  • RRC Radio Resource Control
  • ⁇ Step 4 Send Message 4>
  • the base station transmits a message (referred to as "Message 4") including identification information (for example, UE-ID) for identifying the terminal to the terminal.
  • the base station confirms that multiple terminals are not in conflict by sending Message 4 (contention resolution).
  • UE-ID for example, C-RNTI (Cell-Radio Network Temporary Identifier) or Temporary C-RNTI may be used.
  • Step 1 Send Message A>
  • the terminal is a message (hereinafter, "Message A") containing Message 1 (in other words, preamble) corresponding to Step 1 and Step 3 of the 4-step Random access procedure (see, for example, FIG. 1) and information corresponding to Message 3. Is called) to the base station.
  • Message A a message containing Message 1 (in other words, preamble) corresponding to Step 1 and Step 3 of the 4-step Random access procedure (see, for example, FIG. 1) and information corresponding to Message 3. Is called) to the base station.
  • Step 2 Send Message B>
  • the base station detects Message A, it sends Message B.
  • Message B contains, for example, information (eg, one or both) corresponding to Message 2 or Message 4 of the 4-step Random access procedure (see, eg, FIG. 1).
  • Message 2 transmission is a group cast (or multicast) transmission.
  • a MAC PDU Medium Access Control layer Protocol Data Unit
  • MAC RAR or MAC subPDU
  • HARQ Hybrid Automatic Repeat Request
  • the transmission of Message 4 is unicast transmission, and HARQ is applied to Message 4.
  • Message B contains at least a MAC PDU containing a RACH response (for example, RAR) and a message (for example, UE-ID) for identifying a terminal (for example, UE-ID).
  • RAR RACH response
  • UE-ID message for example, UE-ID
  • MAC PDUs including Contention resolution MAC CE
  • the base station 100 will send the downlink control channel (for example, PDCCH) to all the terminals that have randomly accessed.
  • the downlink control channel for example, PDCCH
  • Message B will be scheduled by (Physical Downlink Control Channel).
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • the transmission of Message B will be a group cast transmission, similar to Message 2 of the 4-step Random access procedure. As a result, the overhead of the downlink control channel can be reduced.
  • Message B includes, for example, a MAC PDU containing RRC signals related to RRC (Radio Resource Control) connection, RRC return, and RRC reconnection. May be.
  • RRC Radio Resource Control
  • the RRC signal has a large amount of data compared to other signals. Therefore, for example, it is expected that the utilization efficiency of downlink resources will be improved by applying HARQ to Message B as in Message 4 of the 4-step Random access procedure.
  • the terminal bases a response signal (for example, ACK / NACK: Acknowledgement / Negative Acknowledgment) indicating an error detection result of downlink data (for example, RRC signal) on the uplink.
  • ACK / NACK Acknowledgement / Negative Acknowledgment
  • Release 15NR introduces the allocation of uplink control channel (for example, PUCCH: Physical Uplink control channel) resource (hereinafter referred to as PUCCH resource) for transmitting ACK / NACK signal to Message4.
  • PUCCH resource Physical Uplink control channel resource
  • a base station uses a cell-specific upper layer signal (for example, RMSI: Reminaing Minimum System Information) such as SIB (System Information Block) to set a resource (for example, PUCCH resource set) that indicates a combination of a plurality of parameters related to PUCCH resources. ) Is notified to the terminal in advance.
  • RMSI Reminaing Minimum System Information
  • SIB System Information Block
  • the PUCCH resource set contains a combination of parameters related to 16 PUCCH resources.
  • the base station performs PUCCH based on some bits in the PDCCH that schedules Message 4 (for example, 3 bits in Release 15 NR) and the CCE (Control Channel Element) number that is the resource allocation information of the PDCCH. From the resource set, select one combination of parameters related to the PUCCH resource actually used by the terminal.
  • r PUCCH ceiling (2n CCE / N CCE ) + 2 ⁇ PRI (1)
  • n CCE represents the CCE number
  • N CCE represents the number of CCEs
  • ⁇ PRI is a value explicitly notified by some bits of PDCCH (eg, 3 bits) (eg, 0 to 0 to 3). Represents any of 7).
  • the base station since the transmission of Message 4 is unicast transmission, Message 4 for each terminal is scheduled by a different PDCCH. Therefore, for example, the base station appropriately sets the combination of the parameters related to the PUCCH resource shown in Eq. (1) and the ⁇ PRI notified by the PDCCH, so that the ACK / NACK signal for Message 4 can be obtained between terminals. PUCCH resources do not conflict.
  • Message B when the transmission of Message B is a group cast transmission, Message B includes MAC PDUs for a plurality of terminals. Therefore, depending on the channel state of each terminal, there is a possibility that a terminal capable of correctly decoding the MAC PDU and a terminal failing to decode the MAC PDU may coexist in the cell. In other words, the decoding result (in other words, ACK / NACK signal) for the MAC PDU of Message B (for example, the MAC PDU including the RRC signal) in each terminal may differ between the terminals.
  • the base station schedules Message B including MAC PDUs addressed to a plurality of terminals by one PDCCH. Therefore, for example, in the PUCCH resource allocation for Message 4 of Release 15 NR shown in the equation (1), the same PUCCH resource is allocated to all terminals. Therefore, when each terminal transmits an ACK / NACK signal according to the decoding result of the MAC PDU of Message B to the base station, all the terminals transmit the ACK / NACK signal in the same PUCCH resource. In other words, PUCCH resources may collide between terminals for the ACK / NACK signal for Message B.
  • the base station transmits the PDCCH including the ⁇ PRI for each terminal (see, for example, equation (1)), the collision of PUCCH resources between terminals can be suppressed for the ACK / NACK signal for Message B.
  • the overhead of PDCCH increases. For example, as with Release 15 NR, assuming a 3-bit ⁇ PRI , an overhead of the number of terminals (in other words, the number of users) x 3 bits can occur.
  • a method of transmitting an ACK / NACK signal to Message B when the transmission of Message B is a group cast transmission will be described in the 2-step Random access procedure. According to one embodiment of the present disclosure, it is possible to suppress the collision of PUCCH resources between terminals while suppressing the overhead of PDCCH.
  • the communication system includes a base station 100 and a terminal 200.
  • FIG. 3 is a block diagram showing a partial configuration example of the terminal 200 according to each embodiment of the present disclosure.
  • the control unit 209 (corresponding to the control circuit) uses a resource used for transmitting a response signal (for example, ACK / NACK signal) to a downlink signal (for example, Message B) for a plurality of terminals. , Determined based on the parameters set for each of the plurality of terminals.
  • the transmission unit 218 transmits a response signal in the above resource.
  • FIG. 4 is a block diagram showing a configuration example of the base station 100 according to the first embodiment of the present disclosure.
  • the base station 100 includes a control unit 101, a data generation unit 102, a coding unit 103, a retransmission control unit 104, a modulation unit 105, an upper control signal generation unit 106, and a coding unit 107.
  • Modulation unit 108 downlink control signal generation unit 109, coding unit 110, modulation unit 111, signal allocation unit 112, IFFT (Inverse Fast Fourier Transform) unit 113, transmission unit 114, and antenna 115.
  • FFT Fast Fourier Transform
  • the control unit 101 determines information for transmitting Message A of the terminal 200 (also referred to as a transmission parameter of Message A), and outputs the determined information to the extraction unit 118, the demodulation unit 120, and the decoding unit 121. Further, the control unit 101 outputs the determined information to the upper control signal generation unit 106.
  • the information for transmitting Message A may include, for example, information on the PRACH preamble resource of Message A, the PUSCH resource, the TBS (Transport Block Size) of PUSCH, or the MCS.
  • control unit 101 refers to a downlink signal for transmitting a data signal (for example, Message B or the like), a control signal of an upper layer (for example, an upper control signal), or downlink control information (for example, a downlink control signal).
  • Determine radio resource allocation eg downlink resources and MCS, etc.
  • the control unit 101 outputs the determined information (including, for example, scheduling information) to the coding units 103, 107, 110, the modulation units 105, 108, 111, and the signal allocation unit 112. Further, the control unit 101 outputs the determined information to the downlink control signal generation unit 109.
  • control unit 101 receives a decoding result of Message A (for example, C-Plane data or UP (User Plane) data) input from the decoding unit 121, and Message A (for example, PRACH) input from the detection unit 119. Based on the detection result of preamble), the information to be included in Message B is determined, and the determined information is output to the data generation unit 102.
  • Message A for example, C-Plane data or UP (User Plane) data
  • Message A for example, PRACH
  • control unit 101 determines the information regarding the PUCCH resource for the terminal 200 to transmit the ACK / NACK signal to the Message B.
  • the control unit 101 outputs the determined information to the upper control signal generation unit 106, the downlink control signal generation unit 109, the data generation unit 102, or the extraction unit 118.
  • the data generation unit 102 generates an information bit string (in other words, downlink data) of Message B using the information input from the control unit 101 and included in Message B, and transfers the generated information bit string to the coding unit 103. Output.
  • an information bit string in other words, downlink data
  • the coding unit 103 erroneously encodes the information bit string (data signal) input from the data generation unit 102, and outputs the encoded data signal to the retransmission control unit 104.
  • the retransmission control unit 104 outputs the encoded data signal input from the coding unit 103 to the modulation unit 105. In addition, the retransmission control unit 104 holds the encoded data signal. Further, the retransmission control unit 104 outputs the corresponding holding data to the modulation unit 105 when the NACK for the transmitted data signal is input from the decoding unit 121, and corresponds when the ACK for the transmitted data is input. Delete the retained data.
  • the modulation unit 105 modulates the data signal input from the retransmission control unit 104, and outputs the modulated data signal to the signal allocation unit 112.
  • the upper control signal generation unit 106 generates a control information bit string (upper control signal) using the control information input from the control unit 101, and outputs the generated control information bit string to the coding unit 107.
  • the coding unit 107 performs error correction coding on the control information bit string input from the upper control signal generation unit 106, and outputs the coded control signal to the modulation unit 108.
  • the modulation unit 108 modulates the control signal input from the coding unit 107, and outputs the modulated control signal to the signal allocation unit 112.
  • the downlink control signal generation unit 109 generates a control information bit string (downlink control signal, for example, DCI: Downlink Control Information) using the control information input from the control unit 101, and encodes the generated control information bit string. Output to 110. Since the control information may be transmitted to a plurality of terminals, the downlink control signal generation unit 109 adds identification information for all terminals to the control information (for example, PDCCH: Physical Downlink Control Channel) for each terminal. (For example, RA-RNTI: Random Access-RNTI) or terminal-specific identification information (for example, C-RNTI) may be used for scrambling.
  • DCI Downlink Control Information bit string
  • the coding unit 110 performs error correction coding on the control information bit string input from the downlink control signal generation unit 109, and outputs the coded control signal to the modulation unit 111.
  • the modulation unit 111 modulates the control signal input from the coding unit 110 and outputs the modulated control signal to the signal allocation unit 112.
  • the signal allocation unit 112 inputs from the data signal input from the modulation unit 105, the upper control signal input from the modulation unit 108, or the modulation unit 111 based on the information indicating the radio resource input from the control unit 101.
  • the downlink control signal to be generated is mapped to the radio resource.
  • the signal allocation unit 112 outputs the downlink signal to which the signal is mapped to the IFFT unit 113.
  • the IFFT unit 113 performs transmission waveform generation processing such as OFDM (Orthogonal Frequency Division Multiplexing) on the signal input from the signal allocation unit 112.
  • the IFFT unit 113 adds CP (not shown) in the case of OFDM transmission to which CP (Cyclic Prefix) is added.
  • the IFFT unit 113 outputs the generated transmission waveform to the transmission unit 114.
  • the transmission unit 114 performs RF (Radio Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from the IFFT unit 113, and wirelessly transmits to the terminal 200 via the antenna 115. Send a signal.
  • RF Radio Frequency
  • the receiving unit 116 performs RF processing such as down-conversion or A / D (Analog-to-Digital) conversion on the uplink signal waveform received from the terminal 200 via the antenna 115, and after the reception processing.
  • the uplink signal waveform is output to the FFT unit 117.
  • the FFT unit 117 performs FFT processing for converting the time domain signal into the frequency domain signal with respect to the uplink signal waveform input from the receiving unit 116.
  • the FFT unit 117 outputs the frequency domain signal obtained by the FFT process to the extraction unit 118.
  • the extraction unit 118 is a radio resource portion to which a PRACH preamble is transmitted or a radio resource portion to which a PUSCH of Message A is transmitted from a signal input from the FFT unit 117 based on the information input from the control unit 101. Is extracted.
  • the extraction unit 118 outputs the radio resource portion to which the extracted PRACH preamble is transmitted to the detection unit 119, and demodulates the radio resource portion to which another signal different from the PRACH preamble (for example, PUSCH of Message A) is transmitted. Output to. Further, the extraction unit 118 extracts the ACK / NACK signal for Message B from the signal input from the FFT unit 117 based on the information input from the control unit 101, and outputs the ACK / NACK signal to the demodulation unit 120.
  • the detection unit 119 detects the PRACH preamble for the radio resource portion corresponding to the PRACH preamble input from the extraction unit 118.
  • the detection unit 119 outputs information regarding the detection result of the PRACH preamble to the control unit 101.
  • the demodulation unit 120 demodulates the Message A data input from the extraction unit 118 or the ACK / NACK signal for Message B based on the information input from the control unit 101, and decodes the demodulation result (demodulation series). Output to 121.
  • the decoding unit 121 performs error correction decoding on the demodulation result input from the demodulation unit 120 based on the information input from the control unit 101, and performs a bit sequence after decoding (for example, C-Plane data or UP data). Includes) is output. Further, for example, the decoding unit 121 outputs the decoding result of Message A to the control unit 101.
  • a bit sequence after decoding for example, C-Plane data or UP data). Includes
  • the decoding unit 121 decodes the ACK / NACK signal for Message B based on the demodulation result input from the demodulation unit 120, and whether the ACK / NACK signal for the transmitted data signal indicates ACK or NACK. To judge.
  • the decoding unit 121 outputs the determination result (ACK or NACK) to the retransmission control unit 104.
  • FIG. 5 is a block diagram showing a configuration example of the terminal 200 according to the embodiment of the present disclosure.
  • the terminal 200 includes an antenna 201, a receiving unit 202, an FFT unit 203, an extraction unit 204, a demodulation unit 205, a decoding unit 206, a downlink control signal demodulation unit 207, and a decoding unit 208.
  • the receiving unit 202 performs RF processing such as down-conversion or A / D (Analog-to-Digital) conversion on the signal waveform of the downlink signal received from the base station 100 via the antenna 201, and obtains the signal waveform.
  • the received signal (baseband signal) to be received is output to the FFT unit 203.
  • the downlink signal includes, for example, a data signal (for example, Message B, etc.), an upper control signal, or a downlink control signal.
  • the FFT unit 203 performs FFT processing for converting a time domain signal into a frequency domain signal with respect to a signal (time domain signal) input from the receiving unit 202.
  • the FFT unit 203 outputs the frequency domain signal obtained by the FFT process to the extraction unit 204.
  • the extraction unit 204 Based on the control information input from the control unit 209 (for example, information about the radio resource of the control signal), the extraction unit 204 receives a data signal (for example, Message B, etc.) and a downlink from the signal input from the FFT unit 203. The control signal or the upper control signal is extracted. The extraction unit 204 outputs the data signal or the upper control signal to the demodulation unit 205, and outputs the downlink control signal to the downlink control signal demodulation unit 207.
  • a data signal for example, Message B, etc.
  • the extraction unit 204 outputs the data signal or the upper control signal to the demodulation unit 205, and outputs the downlink control signal to the downlink control signal demodulation unit 207.
  • the demodulation unit 205 demodulates the data signal or higher control signal input from the extraction unit 204, and outputs the demodulation result to the decoding unit 206.
  • the decoding unit 206 performs error correction decoding using the demodulation result input from the demodulation unit 205, and obtains received data (for example, Message B) or control information.
  • the decoding unit 208 outputs the obtained received data or control information to the control unit 209. Further, the decoding unit 206 performs error detection on the received data and outputs the error detection result (for example, with or without error) to the ACK / NACK generation unit 211.
  • the downlink control signal demodulation unit 207 demodulates the downlink control signal input from the extraction unit 204, and outputs the demodulation result to the decoding unit 208.
  • the decoding unit 208 performs error correction decoding using the demodulation result input from the downlink control signal demodulation unit 207, and obtains control information.
  • the decoding unit 208 outputs the obtained control information to the control unit 209.
  • the control unit 209 determines the parameters related to the uplink transmission (for example, the transmission of Message A) based on the control information input from the decoding unit 206 or the decoding unit 208.
  • the control unit 209 outputs the determined information to the PRACH preamble generation unit 210, the coding units 212 and 214, the modulation units 213 and 215, and the signal allocation unit 216.
  • control unit 209 has information on transmission of the ACK / NACK signal (for example, an uplink resource) based on the information on the resource for transmitting the ACK / NACK signal to Message B input from the decoding unit 206 or the decoding unit 208. , Transmission method or parameters, etc.).
  • the control unit 209 outputs the determined information to the coding unit 212, the modulation unit 213, and the signal allocation unit 216.
  • control unit 209 outputs information regarding the radio resource of the control signal included in the control information input from the decoding unit 206 or the decoding unit 208 to the extraction unit 204.
  • the PRACH preamble generation unit 210 generates a PRACH preamble based on the control information (for example, the transmission parameter of Message A) input from the control unit 209, and outputs the generated PRACH preamble to the signal allocation unit 216.
  • control information for example, the transmission parameter of Message A
  • the ACK / NACK generation unit 211 generates an ACK / NACK signal for the received downlink data (for example, Message B) based on the error detection result input from the decoding unit 206, and generates an ACK / NACK signal (for example, ACK). / NACK signal sequence) is output to the coding unit 212.
  • the coding unit 212 error-corrects and encodes the ACK / NACK signal sequence input from the ACK / NACK generation unit 211 based on the information input from the control unit 209 (for example, information regarding the transmission of the ACK / NACK signal). , The encoded ACK / NACK signal sequence is output to the modulation unit 213.
  • the modulation unit 213 modulates the ACK / NACK signal sequence input from the coding unit 212 based on the information input from the control unit 209, and assigns the modulated ACK / NACK signal (modulation symbol string) as a signal. Output to unit 216.
  • the coding unit 214 uses, for example, an information bit sequence (for example, C-Plane data and UP) transmitted in the data portion of Message A based on the control information (for example, the transmission parameter of Message A) input from the control unit 209.
  • the data is error-corrected and encoded, and the encoded bit sequence is output to the modulation unit 215.
  • the modulation unit 215 modulates the bit sequence input from the coding unit 214 based on the information input from the control unit 209, and outputs a data signal (modulation symbol string) to the signal allocation unit 216.
  • the signal allocation unit 216 maps the signal input from the PRACH preamble generation unit 210, the signal input from the modulation unit 213, or the signal input from the modulation unit 215 to the radio resource instructed by the control unit 209. ,
  • the uplink signal to which the signal is mapped is output to the IFFT unit 217.
  • the IFFT unit 217 performs transmission waveform generation processing such as OFDM on the signal input from the signal allocation unit 216.
  • the IFFT unit 217 adds CP (not shown) in the case of OFDM transmission to which CP is added.
  • CP not shown
  • a DFT Discrete Fourier Transform
  • the IFFT unit 217 outputs the generated transmission waveform to the transmission unit 218.
  • the transmission unit 218 performs RF processing such as D / A conversion and up-conversion on the signal input from the IFFT unit 217, and transmits a radio signal to the base station 100 via the antenna 201.
  • FIG. 6 shows an example of a flow related to transmission / reception processing of an ACK / NACK signal for Message B in the base station 100 and the terminal 200 according to the present embodiment.
  • the base station 100 notifies the terminal 200 of information regarding, for example, an uplink resource (for example, a PUCCH resource) (ST101).
  • the information about the PUCCH resource includes, for example, the information about the PUCCH resource for transmitting the ACK / NACK signal to Message B.
  • the terminal 200 acquires information about the PUCCH resource (ST102).
  • the base station 100 transmits, for example, scheduling information including the allocation information of Message B to the terminal 200 (ST103).
  • the scheduling information of Message B may be transmitted by, for example, PDCCH.
  • the terminal 200 acquires the scheduling information of Message B (ST104).
  • the base station 100 transmits Message B to the terminal 200, for example, based on the scheduling information of Message B (ST105).
  • the terminal 200 When the terminal 200 receives Message B, it demodulates and decodes Message B (ST106). Further, the terminal 200 generates an ACK / NACK signal for Message B.
  • the terminal 200 outputs an ACK / NACK signal to Message B (for example, RRC signal) based on at least one of information about PUCCH resources, scheduling information (for example, PDCCH), and Message B (for example, RAR).
  • Message B for example, RRC signal
  • the uplink resource for transmission is determined (ST107).
  • the terminal 200 transmits an ACK / NACK signal for Message B to the base station 100 based on the determined uplink resource (ST108).
  • the terminal 200 transmits an ACK / NACK signal to Message B, for example, in PUCCH.
  • the terminal 200 notifies the PUCCH resource for transmitting the ACK / NACK signal to Message B, for example, the notification of the PUCCH resource for transmitting the ACK / NACK signal to Message 4 of the 4-step Random access procedure (for example,). Determined based on the new parameter "X" in addition to the parameter shown in equation (1).
  • the parameter X may be, for example, a value set for each of a plurality of terminals 200 addressed to the transmission of Message B.
  • FIG. 7 shows an example of the 2-step RACH procedure in the operation example 1.
  • Each terminal 200 transmits Message A to the base station 100.
  • Message A includes, for example, RACH preamble (for example, any of Preamble # 1 to # 3) and PUSCH (for example, a data part or a UCI + data part).
  • the PUSCH includes, for example, a UE-ID for identifying the terminal 200 (for example, one of UE-ID # A, UE-ID # B, and UE-ID # C).
  • each terminal 200 operates the "Msg.B reception window" (in other words, a timer), which is the receivable period of Message B, from the transmission timing of RACH preamble (in other words, Message A).
  • Msg.B reception window in other words, a timer
  • Message B includes, for example, a message (eg, MAC RAR and MAC CE) including a UE-ID for identifying the RAR and the terminal 200.
  • a message eg, MAC RAR and MAC CE
  • the base station 100 when the base station 100 cannot detect Message A (for example, PRACH preamble) or cannot correctly decode Message A (for example, PUSCH), the base station 100 is addressed to the terminal 200 which transmitted the corresponding Message A. Do not include information in Message B.
  • Message A for example, PRACH preamble
  • PUSCH Message A
  • the base station 100 detects Preamble # 1 of Message A transmitted from UE # A (detection result: ⁇ ) and correctly decodes PUSCH (decoding result: ⁇ ). ).
  • the base station 100 (gNB) detects Preamble # 2 of Message A transmitted from UE # B (detection result: ⁇ ) and cannot correctly decode PUSCH (decoding result: ⁇ ).
  • the base station 100 (gNB) cannot detect Preamble # 1 of Message A transmitted from UE # C (detection result: ⁇ ) and cannot correctly decode PUSCH (decoding result: ⁇ ).
  • the base station 100 generates RAR for UE # A and Message B including UE-ID # A of UE # A.
  • Message B does not include information addressed to UE # B and UE # C.
  • the terminal 200 that transmitted the Message A receives the Message B including the information addressed to the terminal 200 within the period of the Msg.B reception window, and the UE-ID included in the Message B is included in the transmitted Message A. If it matches the UE-ID, it is judged that the RACH procedure was successful.
  • UE # A receives Message B addressed to UE # A within the period of Msg.B reception window, and the UE-ID (UE-ID # A) included in the Message B is Since it matches the UE-ID (UE-ID # A) included in the sent Message A, it is judged that the RACH procedure was successful (RA procedure: ⁇ ).
  • FIG. 8 shows an example of the 2-step RACH procedure in the operation example 2.
  • Each terminal 200 transmits Message A to the base station 100.
  • Message A includes, for example, RACH preamble (for example, any of Preamble # 1 to # 3) and PUSCH (for example, a data part or a UCI + data part).
  • the PUSCH includes, for example, a UE-ID for identifying the terminal 200 (for example, one of UE-ID # A, UE-ID # B, and UE-ID # C).
  • each terminal 200 operates the "Msg.B reception window" (in other words, a timer), which is the receivable period of Message B, from the transmission timing of RACH preamble (in other words, Message A).
  • Msg.B reception window in other words, a timer
  • Message B includes, for example, a message (eg, MAC RAR and MAC CE) including a UE-ID for identifying the RAR and the terminal 200.
  • a message eg, MAC RAR and MAC CE
  • the base station 100 detects the RACH preamble of Message A transmitted from each terminal 200, and transmits Message B even when the data portion cannot be decoded correctly. If the base station 100 detects the RACH preamble and cannot correctly decode the data portion, the base station 100 cannot identify the terminal 200 that transmitted the RACH preamble at this point. Therefore, in this case, for example, Message B includes RAR (in other words, UE-ID is not included).
  • the RAR may include, for example, information regarding a request for retransmission of a data portion and information regarding resources used in the uplink to the terminal 200 that has transmitted the corresponding RACH preamble.
  • the base station 100 when the base station 100 cannot detect Message A (for example, PRACH preamble), the base station 100 does not include the information addressed to the terminal 200 that transmitted the corresponding Message A in Message B.
  • Message A for example, PRACH preamble
  • the base station 100 detects Preamble # 1 of Message A transmitted from UE # A, as in operation example 1 (for example, FIG. 7) (detection result: ⁇ ). ), Decrypt PUSCH correctly (decoding result: ⁇ ).
  • the base station 100 (gNB) detects Preamble # 2 of Message A transmitted from UE # B (detection result: ⁇ ) and cannot correctly decode PUSCH (decoding result: ⁇ ).
  • the base station 100 (gNB) cannot detect Preamble # 1 of Message A transmitted from UE # C (detection result: ⁇ ) and cannot correctly decode PUSCH (decoding result: ⁇ ).
  • the base station 100 generates a Message B including a RAR for UE # A, a UE-ID # A for UE # A, and a RAR for UE # B.
  • Message B does not include information addressed to UE # C.
  • the terminal 200 that sent the Message A received the Message B containing the information addressed to the terminal 200 within the period of the Msg.B reception window, but the UE-ID included in the Message B was sent to the Message A. If it does not match the included UE-ID, uplink transmission is performed according to the information contained in the RAR corresponding to Message A (for example, PRACH preamble).
  • UE # B receives Message B (for example, RAR) addressed to UE # B within the period of Msg.B reception window, but UE-ID (UE-) included in the Message B.
  • UE # B may retransmit PUSCH, for example, based on the information contained in the RAR for UE # B of Message B. In other words, UE # B may fall back to the transmission of Message 3 of the 4-step Random access procedure.
  • the terminal 200 that has transmitted the Message A receives the Message B including the information addressed to the terminal 200 within the period of the Msg.B reception window, and the UE-ID included in the Message B is included in the transmitted Message A. If it matches the UE-ID, it is judged that the RACH procedure was successful.
  • UE # A receives Message B addressed to UE # A within the period of Msg.B reception window, and the UE-ID (UE-ID # A) included in the Message B is Since it matches the UE-ID (UE-ID # A) included in the sent Message A, it is judged that the RACH procedure was successful (RA procedure: ⁇ ).
  • Message B contains a MAC PDU including RAR and a message including a UE-ID for identifying the terminal 200 (for example, Contention). Includes MAC PDUs containing resolution MAC CE).
  • the MAC PDU including RAR includes, for example, information on transmission timing of uplink signals in terminal 200, TC-RNTI (Temporary C-RNTI), or information on resources used by terminal 200 in uplink. You may.
  • Message B may include, for example, a MAC PDU containing RRC signals for RRC connection, RRC return and RRC reconnection.
  • FIG. 9 and 10 show a configuration example of Message B.
  • FIG. 9 shows an example when Message B does not include a MAC PDU containing an RRC signal
  • FIG. 10 shows an example in which Message B contains a MAC PDU containing an RRC signal.
  • the terminal 200 receives the Message B including the information addressed to the terminal 200, and when the UE-ID included in the Message B matches the UE-ID included in the transmitted Message A, and the Message
  • B contains a MAC PDU containing an RRC signal addressed to the terminal 200
  • the MAC PDU containing the RRC signal is decoded, and the ACK / NACK signal corresponding to the decoding result (or error detection result) is output to the uplink resource.
  • PUCCH resource transmits to the base station 100.
  • the base station 100 notifies the terminal 200 in advance of a resource setting (for example, PUCCH resource set) indicating a combination of a plurality of parameters related to the PUCCH resource by, for example, a cell-specific upper layer signal (for example, RMSI) such as SIB.
  • a resource setting for example, PUCCH resource set
  • RMSI cell-specific upper layer signal
  • SIB SIB
  • the PUCCH resource set contains a combination of parameters related to 16 PUCCH resources.
  • the number of combinations of parameters related to PUCCH resources included in the PUCCH resource set is not limited to 16, and may be other numbers.
  • the base station 100 performs PUCCH based on some bits in the PDCCH that schedules Message B (for example, 3 bits in Release 15NR), the CCE number of the PDCCH, and additional notification information “X”. From the resource set, select one combination of parameters related to the PUCCH resource actually used by the terminal 200.
  • r PUCCH ceiling (2n CCE / N CCE ) + 2 ⁇ PRI + X (2)
  • n CCE represents the CCE number
  • N CCE represents the number of CCEs
  • ⁇ PRI represents the value explicitly notified by the 3 bits of PDCCH (any of 0 to 7). Note that ⁇ PRI is not limited to the 3 bits of PDCCH, and may be any other number of bits.
  • the terminal 200 has, for example, a value notified by the PDCCH regarding Message B (for example, ⁇ PRI ), a resource to which the PDCCH is assigned (for example, n CCE ), and a parameter set for each terminal 200.
  • the uplink resource used to transmit the ACK / NACK signal is determined.
  • the terminal 200 has a method different from, for example, a method of determining a PUCCH resource for transmitting an ACK / NACK signal for Message 4 of the 4-step Random access procedure (see, eg, equation (1)) (eg, the method).
  • equation (2) determine the PUCCH resource for sending the ACK / NACK signal to Message B.
  • the parameter “X” is notified from the base station 100 to the terminal 200 explicitly or implicitly by, for example, the following method (any or combination of Options 1 to 5). May be done.
  • the parameter “X” may be included in Message B's MAC RAR (in other words, information about the response to Message A (PRACH preamble)).
  • the MAC PDU including RAR may include information on the uplink transmission timing in the terminal 200, TC-RNTI, or information on the resources used by the terminal 200 in the uplink.
  • the parameter “X” may be a value associated with the UE-ID included in Message A transmitted by the terminal 200.
  • X UE-ID mod Y.
  • the parameter “X” may be a value associated with the RAR arrangement order (for example, called RAR order) corresponding to each of the plurality of terminals 200 in Message B.
  • Message B shown in FIG. 10 contains RAR in the order of MAC subPDU3A, MAC subPDU4A, and so on. Further, in Message B shown in FIG. 10, the RRC signal addressed to the terminal 200 corresponding to the MAC subPDU3A is included in the MAC subPDU3C, and the RRC signal addressed to the terminal 200 corresponding to the MAC subPDU4A is included in the MAC subPDU4C.
  • the number of RARs included in Message B and the value of X associated with the arrangement order of RARs are not limited to these.
  • the parameter “X” may be a value associated with the RACH preamble number (eg, PAID) used in Message A transmitted by the terminal 200.
  • X PAID mod Y.
  • the parameter “X” may be a value associated with the port number (for example, DMRS port number) of the PUSCH reference signal (for example, DMRS: Demodulation Reference Signal) used in Message A transmitted by the terminal 200.
  • X DMRS port index mod Y.
  • the parameter "X" is notified to the terminal 200 without increasing the overhead of PDCCH.
  • each terminal 200 can select a combination r PUCCH of parameters related to the PUCCH resource for each terminal 200.
  • the terminal 200 sets a PUCCH resource for transmitting an ACK / NACK signal for Message B (in other words, a signal addressed to a plurality of terminals 200) transmitted by group cast, as a parameter “X” set for each terminal 200.
  • ACK / NACK signal for Message B for example, RRC signal
  • the collision of PUCCH resources between the terminals 200 can be suppressed.
  • the ACK / NACK signal is transmitted to the RRC signal without increasing the overhead of PDCCH. It is possible to suppress the collision of PUCCH resources between the terminals 200. As a result, in the present embodiment, the efficiency of random access processing (for example, retransmission control) in Message B of the 2-step Random access procedure can be improved.
  • any one of Options 1 to 5 described above may be applied, or a combination of a plurality of Options may be applied.
  • the terminal 200 has a parameter in addition to a part of the bits of the PDCCH that schedules the Message B (for example, 3 bits in the Release 15NR) and the CCE number that is the resource allocation information of the PDCCH. It is not limited to the case where PUCCH is determined using “X”. For example, the terminal 200 may determine the PUCCH resource using the parameter “X” without using some bits of the PDCCH that schedules Message B and the CCE number. In this case, the overhead of PDCCH can be further reduced.
  • the terminal 200 may determine the PUCCH resource according to the transmission method of Message B. For example, the terminal 200 determines the PUCCH resource using the parameter “X” when the group cast type transmission is set for Message B (see, for example, equation (2)), whereas the terminal 200 is a unicast type. If transmission is set, the PUCCH resource may be determined without the parameter “X” (see, eg, equation (1)).
  • FIGS. 4 and 5 Since the base station and the terminal according to the present embodiment have the same basic configuration as the base station 100 and the terminal 200 according to the first embodiment, FIGS. 4 and 5 will be referred to for description.
  • the terminal 200 transmits an ACK / NACK signal to Message B on the uplink control channel (for example, PUCCH).
  • the uplink control channel for example, PUCCH
  • the base station 100 notifies the terminal 200 of the PUCCH resource for transmitting the ACK / NACK signal, for example, using the uplink allocation information (for example, called UL grant) included in the RAR of Message B. ..
  • the terminal 200 determines a PUCCH resource for transmitting an ACK / NACK signal for the Message B (for example, an RRC signal) based on the UL grant included in the RAR of the Message B addressed to the terminal 200, for example.
  • the base station 100 transmits Message B when Message A is detected and correctly decoded.
  • Message B includes a message including a UE-ID for identifying the RAR and the terminal 200.
  • the base station 100 when the base station 100 detects and correctly decodes Message A, it is an uplink resource for transmitting an ACK / NACK signal for Message B (for example, RRC signal) in the UL grant included in RAR. Notify (eg PUCCH resource).
  • Notify eg PUCCH resource.
  • the terminal 200 receives the Message B including the information addressed to the terminal 200, the UE-ID included in the Message B matches the UE-ID transmitted in the Message A, and the terminal 200 is connected to the Message B.
  • the MAC PDU When a MAC PDU including an RRC signal addressed to the address is included, the MAC PDU is decoded and the decoding result (for example, an ACK / NACK signal) is transmitted to the base station 100 in the PUCCH resource notified by the UL grant.
  • the decoding result for example, an ACK / NACK signal
  • the base station 100 detects Preamble # 1 of Message A transmitted from UE # A (detection result: ⁇ ) and correctly decodes PUSCH (decoding result: ⁇ ). ). Therefore, in Message B, the base station 100 sets a PUCCH resource for transmitting an ACK / NACK signal to Message B to the UL grant included in the RAR for UE # A.
  • UE # A sends an ACK / NACK signal to Message B based on the PUCCH resource shown in the UL grant included in the RAR for UE # A contained in Message B.
  • the base station 100 may detect the RACH preamble of Message A and cannot correctly decode the data portion.
  • Message B includes RAR.
  • the RAR includes, for example, information regarding a request for retransmission of a data portion to a terminal 200 that has transmitted the corresponding RACH preamble, and information regarding resources used by the terminal 200 in the uplink (UL grant). Good.
  • the base station 100 detects the RACH preamble of Message A (Message A of UE # B in FIG. 8), and if the data portion cannot be correctly decoded, the UL grant included in the RAR is included.
  • the uplink resource for example, PUSCH resource
  • Terminal 200 UE # B in FIG. 8 retransmits the data portion of Message A (eg, PUSCH) based on the PUSCH resource shown in the UL grant included in the RAR for Terminal 200 of Message B.
  • the UL grant included in RAR is composed of 27-bit fields.
  • a part of the 27-bit field included in the UL grant may be used for notification of the PUCCH resource for transmitting the ACK / NACK signal to Message B.
  • the size of the field included in the UL grant is not limited to 27 bits.
  • the notification of the PUCCH resource for transmitting the ACK / NACK signal to Message B is 4 Bits may be used and the remaining fields may be used for other purposes or reserved.
  • the number of bits used for notification of PUCCH resources is not limited to 4 bits.
  • the base station 100 notifies the PUCCH resource for transmitting the ACK / NACK signal to the Message B by the UL grant included in the RAR of the Message B.
  • the base station 100 can set (in other words, scheduling) the PUCCH resource for each terminal 200 in the UL grant included in the RAR for each terminal 200 of Message B.
  • the terminal 200 sets the PUCCH resource for transmitting the ACK / NACK signal to the message B (in other words, the signal addressed to the plurality of terminals 200) transmitted by the group cast based on the UL grant set for each terminal 200. Can be decided individually. Therefore, in the transmission of the ACK / NACK signal for Message B (for example, RRC signal), the collision of PUCCH resources between the terminals 200 can be suppressed.
  • the base station 100 since the base station 100 does not have to notify the PUCCH resource by PDCCH (in other words, DCI), the overhead of PDCCH can be reduced.
  • PDCCH in other words, DCI
  • FIGS. 4 and 5 Since the base station and the terminal according to the present embodiment have the same basic configuration as the base station 100 and the terminal 200 according to the first embodiment, FIGS. 4 and 5 will be referred to for description.
  • the terminal 200 transmits an ACK / NACK signal to Message B on the uplink data channel (for example, PUSCH).
  • the uplink data channel for example, PUSCH
  • the base station 100 notifies the terminal 200 of the PUSCH resource for transmitting the ACK / NACK signal, for example, by using the UL grant included in the RAR of Message B.
  • the terminal 200 determines a PUSCH resource for transmitting an ACK / NACK signal for the Message B (for example, an RRC signal) based on the UL grant included in the RAR of the Message B addressed to the terminal 200, for example.
  • the base station 100 transmits Message B when Message A is detected and correctly decoded.
  • Message B includes a message including a UE-ID for identifying the RAR and the terminal 200.
  • the base station 100 when the base station 100 detects and correctly decodes Message A, it is an uplink resource for transmitting an ACK / NACK signal for Message B (for example, RRC signal) in the UL grant included in RAR. Notify (eg PUSCH resources).
  • ACK / NACK signal for Message B for example, RRC signal
  • Notify eg PUSCH resources.
  • the terminal 200 receives the Message B including the information addressed to the terminal 200, the UE-ID included in the Message B matches the UE-ID transmitted in the Message A, and the terminal 200 is connected to the Message B.
  • the MAC PDU When a MAC PDU including an RRC signal addressed to the address is included, the MAC PDU is decoded and the decoding result (for example, an ACK / NACK signal) is transmitted to the base station 100 in the PUSCH resource notified by the UL grant.
  • the decoding result for example, an ACK / NACK signal
  • the base station 100 detects Preamble # 1 of Message A transmitted from UE # A (detection result: ⁇ ) and correctly decodes PUSCH (decoding result: ⁇ ). ). Therefore, in Message B, the base station 100 sets a PUSCH resource for transmitting an ACK / NACK signal to Message B to the UL grant included in the RAR for UE # A.
  • UE # A sends an ACK / NACK signal to Message B based on the PUSCH resource shown in the UL grant included in the RAR for UE # A contained in Message B.
  • the base station 100 may detect the RACH preamble of Message A and cannot correctly decode the data portion.
  • Message B includes RAR.
  • the RAR includes, for example, information regarding a request for retransmission of a data portion to a terminal 200 that has transmitted the corresponding RACH preamble, and information regarding resources used by the terminal 200 in the uplink (UL grant). Good.
  • the base station 100 detects the RACH preamble of Message A (Message A of UE # B in FIG. 8), and if the data portion cannot be correctly decoded, the UL grant included in the RAR is included.
  • the uplink resource for example, PUSCH resource
  • the terminal 200 UE # B in FIG. 8) retransmits the data portion (for example, PUSCH) of Message A based on the PUSCH resource indicated by the UL grant included in the RAR addressed to the terminal 200 of Message B.
  • the process of transmitting and acquiring information on the PUCCH resource for ACK / NACK transmission to Message B (for example, the process of ST101 and ST102) is unnecessary.
  • ACK / NACK signal mapping method in PUSCH for example, one of the following two methods may be applied.
  • the first method is to map the ACK / NACK signal to PUSCH in the same way as the data part, similar to UL-SCH (UL Shared Channel).
  • the ACK / NACK signal is transmitted according to the MCS notified by the UL grant.
  • the second method is to multiplex the ACK / NACK signal on the PUSCH when there is no UL-SCH in Release 15NR, for example, and UCI (Uplink Control Information) is multiplexed on the PUSCH (see, for example, Non-Patent Documents 2 and 3). ) To map to PUSCH.
  • the ACK / NACK signal may be transmitted according to the lower MCS compared to the MCS notified by the UL grant.
  • the base station 100 notifies the PUSCH resource for transmitting the ACK / NACK signal to the Message B by the UL grant included in the RAR of the Message B.
  • the base station 100 can set (in other words, scheduling) the PUSCH resource for each terminal 200 in the UL grant included in the RAR for each terminal 200 of Message B.
  • the terminal 200 sets the PUSCH resource for transmitting the ACK / NACK signal to the message B (in other words, the signal addressed to the plurality of terminals 200) transmitted by the group cast based on the UL grant set for each terminal 200. Can be decided individually. Therefore, in the transmission of the ACK / NACK signal for Message B (for example, RRC signal), the collision of PUSCH resources between the terminals 200 can be suppressed.
  • the base station 100 since the base station 100 does not have to notify the PUSCH resource by PDCCH (in other words, DCI), the overhead of PDCCH can be reduced.
  • PDCCH in other words, DCI
  • the UL grant included in the RAR of Message B is used as a PUSCH resource for retransmitting Message A (for example, PUSCH) or a PUSCH resource for transmitting an ACK / NACK signal to Message B.
  • the resource notified in the RAR of Message B is the PUSCH resource regardless of the detection and decoding result of Message A in the base station 100. Therefore, according to the present embodiment, the information notified by the UL grant of RAR does not have to be changed according to the decoding result of Message A in the base station 100, so that the configuration of RAR can be simplified.
  • the terminal 200 transmits an ACK / NACK signal (ACK or NACK) to Message B has been described. However, the terminal 200 does not have to transmit the NACK to the base station 100 when the decoding of the Message B fails, and does not need to transmit the ACK to the base station 100 when the decoding of the Message B is successful.
  • ACK ACK/ NACK signal
  • the terminal 200 correctly decodes the PDCCH that schedules Message B and correctly decodes the MAC PDU included in Message B, it determines that the random access operation has been completed correctly. Further, the terminal 200 does not transmit an ACK to the base station 100.
  • the terminal 200 transmits NACK to the base station 100 and requests retransmission of Message B.
  • the terminal 200 may operate the Timer from the transmission timing of NACK.
  • the base station 100 succeeds in receiving the NACK transmitted by the terminal 200, the base station 100 retransmits the Message B.
  • the base station 100 fails to receive the NACK transmitted by the terminal 200, the base station 100 determines that the terminal 200 has succeeded in receiving the Message B, and cannot retransmit the Message B.
  • the terminal 200 performs the RACH operation again.
  • the terminal 200 since the terminal 200 does not transmit the ACK, the overhead of the uplink resource can be reduced, and the power consumption of the terminal 200 can be reduced.
  • the terminal 200 does not transmit the ACK to the base station 100 when the decoding of the Message B is successful, and does not transmit the NACK to the base station 100 when the decoding of the Message B fails. You may.
  • Message B contains a MAC PDU containing RAR and a MAC PDU containing a message (for example, Contention resolution MAC CE) including identification information (for example, UE-ID) for identifying a terminal.
  • identification information for example, UE-ID
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • the present disclosure may be realized as digital processing or analog processing. Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is naturally possible to integrate functional blocks using that technology. There is a possibility of applying biotechnology.
  • the communication device may include a wireless transmitter / receiver (transceiver) and a processing / control circuit.
  • the wireless transmitter / receiver may include a receiver and a transmitter, or both as functions.
  • the radio transmitter / receiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator / demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.).
  • Digital players digital audio / video players, etc.
  • wearable devices wearable cameras, smart watches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth telemedicines remote health Care / medicine prescription
  • vehicles with communication functions or mobile transportation automobiles, airplanes, ships, etc.
  • combinations of the above-mentioned various devices can be mentioned.
  • Communication devices are not limited to those that are portable or mobile, but are not portable or fixed, any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • the communication device also includes devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • the terminal includes a control circuit for determining a resource used for transmitting a response signal to a downlink signal for a plurality of terminals based on parameters set for each of the plurality of terminals, and the above-mentioned terminal.
  • a transmission circuit for transmitting the response signal in the resource is provided.
  • control circuit determines the resource based on the value notified by the control information regarding the downlink signal, the resource to which the control information is assigned, and the parameter.
  • the downlink signal includes information regarding a response to a random access signal transmitted by each of the plurality of terminals, and the parameter is included in the information regarding the response.
  • the downlink signal includes information about a response to a random access signal transmitted by each of the plurality of terminals, and the parameter identifies each of the plurality of terminals included in the random access signal. Indicates the value associated with the information to be used.
  • the downlink signal includes information about a response to a random access signal transmitted by each of the plurality of terminals, and the parameter corresponds to each of the plurality of terminals in the downlink signal.
  • the values associated with the arrangement order of the information regarding the response are shown.
  • the downlink signal includes information about a response to a random access signal transmitted by each of the plurality of terminals, and the parameter is associated with the preamble number used in the random access signal. Indicates a value.
  • the downlink signal includes information about a response to a random access signal including a preamble unit and a data unit transmitted by the plurality of terminals, respectively, and the parameters are used in the data unit. Indicates the value associated with the port number of the reference signal.
  • the downlink signal includes information regarding a response to a random access signal transmitted by each of the plurality of terminals, and the parameter is uplink resource allocation information included in the information regarding the response. ..
  • the resource is an uplink control resource.
  • the resource is an uplink data resource.
  • a resource used for transmitting a response signal to a downlink signal for a plurality of terminals is determined based on parameters set for each of the plurality of terminals, and the resource is used.
  • the response signal is transmitted.
  • One embodiment of the present disclosure is useful for mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ランダムアクセス処理の効率を向上する端末。端末(200)において、制御部(209)は、複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、複数の端末毎にそれぞれ設定されるパラメータに基づいて決定し、送信部(218)は、リソースにおいて応答信号を送信する。

Description

端末及び送信方法
 本開示は、端末及び送信方法に関する。
 3GPP(3rd Generation Partnership Project)では、第5世代移動通信システム(5G:5th Generation mobile communication sysmtems)の実現に向けて、Release 15 NR(New Radio access technology)の仕様策定が完了した。NRでは、モバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)の基本的な要求条件である高速及び大容量と合わせ、超高信頼低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)を実現する機能をサポートしている(例えば、非特許文献1-7を参照)。
3GPP TS 38.211 V15.4.0, "NR; Physical channels and modulation (Release 15)," December 2018. 3GPP TS 38.212 V15.4.0, "NR; Multiplexing and channel coding (Release 15)," December 2018. 3GPP TS 38.213 V15.4.0, "NR; Physical layer procedure for control (Release 15)," December 2018. 3GPP TS 38.214 V15.4.0, "NR; Physical layer procedures for data (Release 15)," December 2018. 3GPP, TS38.300 V15.4.0, "NR; NR and NG-RAN overall description; Stage 2 (Release 15)", December 2018. 3GPP, TS38.321 V15.4.0, "NR; Medium accesss control (MAC) protocol specification (Release 15)", December 2018. 3GPP, TS38.331 V15.4.0, "NR; Radio resource control (RRC) protocol specification (Release 15)", December 2018. B. Bertenyi, S. Nagata, H. Kooropaty, X. Zhou, W. Chen, Y. Kim, X. Dai, and X. Xu, "5G NR radio interface," Journal of ICT, Vol. 6 and 2, pp. 31-58, 2018. RP-182881, "New work item: 2-step RACH for NR," ZTE Corporation, Sanechips, December 2018.
 しかしながら、ランダムアクセス処理について十分に検討されていない。
 本開示の非限定的な実施例は、ランダムアクセス処理の効率を向上できる端末及び送信方法の提供に資する。
 本開示の一実施例に係る端末は、複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、前記複数の端末毎にそれぞれ設定されるパラメータに基づいて決定する制御回路と、前記リソースにおいて前記応答信号を送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、ランダムアクセス処理の効率を向上できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
4ステップRandom access procedureの一例を示す図 2ステップRandom access procedureの一例を示す図 実施の形態1に係る端末の一部の構成例を示すブロック図 実施の形態1に係る基地局の構成例を示すブロック図 実施の形態1に係る端末の構成例を示すブロック図 実施の形態1に係る基地局及び端末の動作例を示すシーケンス図 実施の形態1に係る2ステップRandom access procedureの一例を示す図 実施の形態1に係る2ステップRandom access procedureの一例を示す図 Message Bの構成例を示す図 Message Bの構成例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 [Random access procedure]
 Release 15 NRにおいて、端末(移動局又はUE:User Equipmentとも呼ぶ)は、例えば、以下のケースにおいて、基地局(gNB又はeNBとも呼ぶ)に対してランダムアクセス信号(RACH:Random Access Channel、又は、PRACH:Physical RACHとも呼ぶ)を送信する。
 (1)初期アクセス時(例えば、RRC_IDLE状態からRRC_CONNECTED状態へ遷移する場合)
 (2)RRC_INACTIVE状態からRRC_CONNECTED状態へ復帰する場合
 (3)接続中(例えば、RRC_CONNECTED状態で上りリンク同期状態が“non-synchronized”の場合)において下りリンクデータ又は上りリンクデータが発生した時
 (4)オンデマンドのSI(System Information)を要求する場合
 (5)ビーム接続失敗から回復(BFR:Beam failure recovery)する場合
 これにより、端末から基地局への接続又は再同期確立が試行される。これらの端末から基地局への接続又は再同期確立のために行われる一連の動作は「Random access procedure」と呼ばれる。
 Release 15 NRでは、Random access procedureは、例えば、図1に示す4つのステップから構成される(4ステップRandom access procedure又は4ステップRACH procedureと呼ぶ)(例えば、非特許文献8を参照)。
 <Step 1:Message 1の送信>
 端末(例えば、UE)は、プリアンブル信号(以下、RACH preamble、PRACH preamble又は単にpreambleとも呼ぶ)のリソース候補(例えば、時間リソース、周波数リソース及び系列リソースの組み合わせにより規定されるリソース)群から、実際に用いるPRACH preambleリソースをランダムに選択する。そして、端末は、選択したPRACH preambleリソースを用いてPRACH preambleを基地局(例えば、gNB)へ送信する。PRACH preambleは、例えば、「Message 1」と呼ばれることがある。
 <Step 2:Message 2の送信>
 基地局は、PRACH preambleを検出した場合、RACH応答(RAR: Random Access Responseとも呼ぶ)を送信する。RARは、例えば、「Message 2」と呼ばれることがある。なお、この時点では、基地局は、PRACH preambleを送信した端末を特定できない。このため、RARは、例えば、基地局がカバーするセルの全体に送信される。
 RARには、例えば、端末が上りリンク信号の送信(Step 3:Message 3の送信)において使用するリソース(上りリンクリソース)に関する情報、又は、端末による上りリンクの送信タイミングに関する情報が含まれる。ここで、PRACH preambleを送信した端末は、PRACH preambleの送信タイミングから規定された期間(例えば、RAR reception windowと呼ぶ)内にRARを受信しない場合、再度、PRACH preambleリソースの選択、及び、PRACH preambleの送信(換言すると、Message 1の再送)を行う。
 <Step 3:Message 3の送信>
 端末は、RARによって基地局から指示された上りリンクリソースを用いて、例えば、RRC(Radio Resource Control)接続要求又はスケジュール要求等を含む「Message 3」を送信する。
 <Step 4:Message 4の送信>
 基地局は、端末を識別するための識別情報(例えば、UE-ID)を含むメッセージ(「Message 4」と呼ばれる)を端末へ送信する。基地局は、Message 4を送信することにより、複数の端末が競合していないことを確認する(contention resolution)。なお、UE-IDには、例えば、C-RNTI(Cell-Radio Network Temporary Identifier)又はTemporary C-RNTI等が使用されてよい。
 以上、4ステップRandom access procedureの一例について説明した。
 一方、Release 16 NRでは、端末から基地局への接続又は再同期確立を低遅延で効率的に行うために、例えば、図2に示す2ステップから構成されるRandom access procedure(2ステップRandom access procedure、又は、2-step RACH procedureと呼ぶこともある)が検討されている(例えば、非特許文献9を参照)。
 <Step 1:Message Aの送信>
 端末は、4ステップRandom access procedure(例えば、図1を参照)のStep 1及びStep 3に相当するMessage 1(換言すると、preamble)及びMessage 3に相当する情報を含むメッセージ(以下、「Message A」と呼ぶ)を基地局へ送信する。
 <Step 2:Message Bの送信>
 基地局は、Message Aを検出した場合、Message Bを送信する。Message Bには、例えば、4ステップRandom access procedure(例えば、図1を参照)のMessage 2又はMessage 4に相当する情報(例えば、何れか一方又はまたは両方)が含まれる。
 [Random access procedureにおける再送制御]
 4ステップRandom access procedureでは、Message 2の送信はグループキャスト(又はマルチキャスト)送信である。Message 2において、例えば、MAC PDU(Medium Access Control layer Protocol Data Unit)には、1又は複数の端末に対するMAC RAR(又は、MAC subPDU)が含まれる。また、Message 2に対しては、再送制御であるHARQ(Hybrid Automatic Repeat Request)は適用されていない。
 また、4ステップRandom access procedureでは、Message 4の送信はユニキャスト送信であり、かつ、Message 4に対してHARQが適用されている。
 一方、2ステップRandom access procedureでは、Message Bには、少なくともRACH応答(例えば、RAR)を含むMAC PDUと、端末を識別するための識別情報(例えば、UE-ID)を含めたメッセージ(例えば、Contention resolution MAC CE)を含むMAC PDUとが含まれる。
 例えば、Message Bの送信が4ステップRandom access procedureのMessage 4と同様、ユニキャスト送信であると、基地局100は、ランダムアクセスを行った全ての端末に対して、下りリンク制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)によってMessage Bをスケジューリングすることになる。この場合、例えば、ランダムアクセスを行う端末の数が増加するほど、下りリンク制御チャネルのオーバヘッドが増加する可能性がある。
 よって、Message Bの送信は、4ステップRandom access procedureのMessage 2と同様、グループキャスト送信とすることが想定される。これにより、下りリンク制御チャネルのオーバヘッドを削減できる。
 また、Message Bには、上述したRARを含むMAC PDU及びUE-IDを含むMAC PDUに加え、例えば、RRC(Radio Resource Control)接続、RRC復帰及びRRC再接続に関するRRC信号を含むMAC PDUが含まれてもよい。RRC信号を含むMAC PDUがMessage Bに含まれることにより、2ステップRandom access procedureの遅延を更に削減できる。
 ただし、RRC信号は、他の信号と比較してデータ量が大きい。そのため、例えば、Message Bに対して、4ステップRandom access procedureのMessage 4と同様、HARQを適用することにより、下りリンクリソースの利用効率を向上することが想定される。Message Bに対してHARQが適用される場合、端末は、上りリンクにおいて、下りリンクデータ(例えば、RRC信号)の誤り検出結果を示す応答信号(例えば、ACK/NACK:Acknowledgement/Negative Acknowledgment)を基地局へ送信する。
 しかしながら、2ステップRandom access procedureにおいてグループキャスト送信されるMessage Bに対してACK/NACK信号を送信する方法は十分に検討されていない。
 例えば、Release 15 NRでは、Message 4に対するACK/NACK信号を送信するための上りリンク制御チャネル(例えば、PUCCH:Physical Uplink control channel)のリソース(以下、PUCCHリソースと呼ぶ)の割当が導入されている(例えば、非特許文献3を参照)。
 例えば、基地局は、SIB(System Information Block)等のセル固有の上位レイヤ信号(例えば、RMSI:Reminaing Minimum System Information)によって、PUCCHリソースに関する複数のパラメータの組み合わせを示すリソース設定(例えば、PUCCH resource set)を端末に予め通知する。例えば、Release 15 NRでは、PUCCH resource setには、16個のPUCCHリソースに関するパラメータの組み合わせが含まれる。
 また、基地局は、Message 4をスケジューリングするPDCCH内の一部のビット(例えば、Release 15 NRでは3ビット)と、PDCCHのリソース割当情報であるCCE(Control Channel Element)番号とに基づいて、PUCCH resource setの中から、端末が実際に用いるPUCCHリソースに関するパラメータの組み合わせを1つ選択する。
 例えば、PUCCHリソースに関するパラメータの組み合わせrPUCCH(例えば、0~15の16個)は、次式で与えられる。
 rPUCCH = ceiling (2nCCE/NCCE) + 2ΔPRI    (1)
 式(1)において、nCCEはCCE番号を表し、NCCEはCCE数を表し、ΔPRIはPDCCHの一部のビット(例えば、3ビット)によって明示的に通知される値(例えば、0~7の何れか)を表す。
 ここで、Message 4の送信はユニキャスト送信であるので、各端末に対するMessage 4はそれぞれ異なるPDCCHによってスケジューリングされる。したがって、例えば、基地局が、式(1)に示すPUCCHリソースに関するパラメータの組み合わせと、PDCCHによって通知されるΔPRIとを適切に設定することにより、Message 4に対するACK/NACK信号について、端末間のPUCCHリソースは衝突しない。
 一方、Message Bの送信がグループキャスト送信である場合、Message Bには、複数の端末に対するMAC PDUが含まれる。よって、各端末のチャネル状態に応じて、セル内には、MAC PDUを正しく復号できる端末と、MAC PDUの復号に失敗する端末とが混在して発生する可能性がある。換言すると、各端末におけるMessage BのMAC PDU(例えば、RRC信号を含むMAC PDU)に対する復号結果(換言すると、ACK/NACK信号)は、端末間で異なる可能性がある。
 しかし、Message Bの送信がグループキャスト送信である場合、基地局は1つのPDCCHによって複数の端末宛のMAC PDUを含むMessage Bをスケジューリングする。このため、例えば、式(1)に示すRelease 15 NRのMessage 4のためのPUCCHリソース割当では、全ての端末に対して同一のPUCCHリソースが割り当てられる。よって、各端末がMessage BのMAC PDUの復号結果に応じたACK/NACK信号を基地局へ送信する場合、全ての端末が同一のPUCCHリソースにおいてACK/NACK信号を送信することになる。換言すると、Message Bに対するACK/NACK信号について、端末間においてPUCCHリソースが衝突し得る。
 例えば、基地局がPDCCHにおいて端末毎のΔPRI(例えば、式(1)を参照)を含めて送信することにより、Message Bに対するACK/NACK信号について、端末間のPUCCHリソースの衝突を抑制できる。しかし、この場合、PDCCHのオーバヘッドが増加する。例えば、Release 15 NRと同様、3ビットのΔPRIを仮定すると、端末数(換言すると、ユーザ数)×3ビットのオーバヘッドが生じ得る。
 そこで、本開示の一実施例では、2ステップRandom access procedureにおいて、Message Bの送信がグループキャスト送信である場合におけるMessage Bに対するACK/NACK信号の送信方法について説明する。本開示の一実施例によれば、PDCCHのオーバヘッドを抑制しつつ、端末間のPUCCHリソースの衝突を抑制できる。
 以下、各実施の形態について、詳細に説明する。
 (実施の形態1)
 [通信システムの概要]
 本開示の各実施の形態に係る通信システムは、基地局100及び端末200を備える。
 図3は、本開示の各実施の形態に係る端末200の一部の構成例を示すブロック図である。図3に示す端末200において、制御部209(制御回路に相当)は、複数の端末向けの下りリンク信号(例えば、Message B)に対する応答信号(例えば、ACK/NACK信号)の送信に用いるリソースを、複数の端末毎にそれぞれ設定されるパラメータに基づいて決定する。送信部218は、上記リソースにおいて応答信号を送信する。
 [基地局の構成]
 図4は、本開示の実施の形態1に係る基地局100の構成例を示すブロック図である。図4において、基地局100は、制御部101と、データ生成部102と、符号化部103と、再送制御部104と、変調部105と、上位制御信号生成部106と、符号化部107と、変調部108と、下り制御信号生成部109と、符号化部110と、変調部111と、信号割当部112と、IFFT(Inverse Fast Fourier Transform)部113と、送信部114と、アンテナ115と、受信部116と、FFT(Fast Fourier Transform)部117と、抽出部118と、検出部119と、復調部120と、復号部121と、を有する。
 制御部101は、端末200のMessage A送信のための情報(又は、Message Aの送信パラメータとも呼ぶ)を決定し、決定した情報を抽出部118、復調部120及び復号部121へ出力する。また、制御部101は、決定した情報を上位制御信号生成部106へ出力する。Message A送信のための情報には、例えば、Message AのPRACH preambleリソース、PUSCHリソース、PUSCHのTBS(Transport Block Size)又はMCSに関する情報が含まれてもよい。
 また、制御部101は、データ信号(例えば、Message B等)、上位レイヤの制御信号(例えば、上位制御信号)又は下りリンク制御情報(例えば、下り制御信号)を送信するための下りリンク信号に対する無線リソース割当(例えば、下りリンクリソース及びMCS等)を決定する。制御部101は、決定した情報(例えば、スケジューリング情報を含む)を、符号化部103,107,110、変調部105,108,111、及び、信号割当部112へ出力する。また、制御部101は、決定した情報を下り制御信号生成部109へ出力する。
 また、制御部101は、復号部121から入力されるMessage A(例えば、C-Planeデータ又はUP(User Plane)データ)の復号結果、及び、検出部119から入力されるMessage A(例えば、PRACH preamble)の検出結果に基づいて、Message Bに含める情報を決定し、決定した情報をデータ生成部102へ出力する。
 また、制御部101は、端末200がMessage Bに対するACK/NACK信号を送信するためのPUCCHリソースに関する情報を決定する。制御部101は、決定した情報を、上位制御信号生成部106、下り制御信号生成部109、データ生成部102、又は、抽出部118へ出力する。
 データ生成部102は、制御部101から入力される、Message Bに含める情報を用いて、Message Bの情報ビット列(換言すると、下りリンクデータ)を生成し、生成した情報ビット列を符号化部103へ出力する。
 符号化部103は、データ生成部102から入力される情報ビット列(データ信号)に対して誤り符号化を行い、符号化後のデータ信号を再送制御部104へ出力する。
 再送制御部104は、初回送信時には、符号化部103から入力される符号化後のデータ信号を変調部105へ出力する。また、再送制御部104は、符号化後のデータ信号を保持する。また、再送制御部104は、復号部121から、送信したデータ信号に対するNACKが入力されると、対応する保持データを変調部105へ出力し、送信したデータに対するACKが入力されると、対応する保持データを削除する。
 変調部105は、再送制御部104から入力されるデータ信号を変調して、変調後のデータ信号を信号割当部112へ出力する。
 上位制御信号生成部106は、制御部101から入力される制御情報を用いて、制御情報ビット列(上位制御信号)を生成し、生成した制御情報ビット列を符号化部107へ出力する。
 符号化部107は、上位制御信号生成部106から入力される制御情報ビット列に対して誤り訂正符号化を行い、符号化後の制御信号を変調部108へ出力する。
 変調部108は、符号化部107から入力される制御信号を変調して、変調後の制御信号を信号割当部112へ出力する。
 下り制御信号生成部109は、制御部101から入力される制御情報を用いて、制御情報ビット列(下り制御信号。例えば、DCI:Downlink Control Information)を生成し、生成した制御情報ビット列を符号化部110へ出力する。なお、制御情報が複数の端末向けに送信されることもあるため、下り制御信号生成部109は、各端末向けの制御情報(例えば、PDCCH:Physical Downlink Control Channel)に、全端末向けの識別情報(例えば、RA-RNTI:Random Access-RNTI)又は端末固有の識別情報(例えば、C-RNTI)等を用いてスクランブルしてもよい。
 符号化部110は、下り制御信号生成部109から入力される制御情報ビット列に対して誤り訂正符号化を行い、符号化後の制御信号を変調部111へ出力する。
 変調部111は、符号化部110から入力される制御信号を変調して、変調後の制御信号を信号割当部112へ出力する。
 信号割当部112は、制御部101から入力される無線リソースを示す情報に基づいて、変調部105から入力されるデータ信号、変調部108から入力される上位制御信号、又は、変調部111から入力される下り制御信号を、無線リソースにマッピングする。信号割当部112は、信号がマッピングされた下りリンクの信号をIFFT部113へ出力する。
 IFFT部113は、信号割当部112から入力される信号に対して、OFDM(Orthogonal Frequency Division Multiplexing)等の送信波形生成処理を施す。IFFT部113は、CP(Cyclic Prefix)を付加するOFDM伝送の場合には、CPを付加する(図示せず)。IFFT部113は、生成した送信波形を送信部114へ出力する。
 送信部114は、IFFT部113から入力される信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ115を介して端末200に無線信号を送信する。
 受信部116は、アンテナ115を介して受信された端末200からの上りリンク信号波形に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換等のRF処理を行い、受信処理後の上りリンク信号波形をFFT部117に出力する。
 FFT部117は、受信部116から入力される上りリンク信号波形に対して、時間領域信号を周波数領域信号に変換するFFT処理を施す。FFT部117は、FFT処理により得られた周波数領域信号を抽出部118へ出力する。
 抽出部118は、制御部101から入力される情報に基づいて、FFT部117から入力される信号から、PRACH preambleが送信された無線リソース部分、又は、Message AのPUSCHが送信された無線リソース部分を抽出する。抽出部118は、抽出したPRACH preambleが送信された無線リソース部分を検出部119へ出力し、PRACH preambleと異なる他の信号(例えば、Message AのPUSCH)が送信された無線リソース部分を復調部120へ出力する。また、抽出部118は、制御部101から入力される情報に基づいて、FFT部117から入力される信号から、Message Bに対するACK/NACK信号を抽出し、復調部120へ出力する。
 検出部119は、抽出部118から入力される、PRACH preambleに対応する無線リソース部分に対して、PRACH preambleの検出を行う。検出部119は、PRACH preambleの検出結果に関する情報を制御部101へ出力する。
 復調部120は、制御部101から入力される情報に基づいて、抽出部118から入力されるMessageAのデータ、又は、Message Bに対するACK/NACK信号を復調し、復調結果(復調系列)を復号部121へ出力する。
 復号部121は、制御部101から入力される情報に基づいて、復調部120から入力される復調結果に対して誤り訂正復号を行い、復号後のビット系列(例えば、C-Planeデータ又はUPデータを含む)を出力する。また、例えば、復号部121は、Message Aの復号結果を制御部101へ出力する。
 また、復号部121は、復調部120から入力される復調結果に基づいて、Message Bに対するACK/NACK信号を復号し、送信したデータ信号に対するACK/NACK信号がACK及びNACKの何れを示しているかを判定する。復号部121は、判定結果(ACK又はNACK)を再送制御部104に出力する。
 [端末の構成]
 図5は、本開示の実施の形態に係る端末200の構成例を示すブロック図である。図5において、端末200は、アンテナ201と、受信部202と、FFT部203と、抽出部204と、復調部205と、復号部206と、下り制御信号復調部207と、復号部208と、制御部209と、PRACH preamble生成部210と、ACK/NACK生成部211と、符号化部212と、変調部213と、符号化部214と、変調部215と、信号割当部216と、IFFT部217と、送信部218と、を有する。
 受信部202は、アンテナ201を介して受信された基地局100からの下りリンク信号の信号波形に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換などのRF処理を行い、得られる受信信号(ベースバンド信号)をFFT部203に出力する。下りリンク信号には、例えば、データ信号(例えば、Message B等)、上位制御信号、又は下り制御信号が含まれる。
 FFT部203は、受信部202から入力される信号(時間領域信号)に対して、時間領域信号を周波数領域信号に変換するFFT処理を施す。FFT部203は、FFT処理により得られた周波数領域信号を抽出部204へ出力する。
 抽出部204は、制御部209から入力される制御情報(例えば、制御信号の無線リソースに関する情報)に基づいて、FFT部203から入力される信号から、データ信号(例えば、Message B等)、下り制御信号、又は、上位制御信号を抽出する。抽出部204は、データ信号又は上位制御信号を復調部205へ出力し、下り制御信号を下り制御信号復調部207へ出力する。
 復調部205は、抽出部204から入力されるデータ信号又は上位制御信号を復調し、復調結果を復号部206へ出力する。
 復号部206は、復調部205から入力される復調結果を用いて誤り訂正復号を行い、受信データ(例えば、Message B)又は制御情報を得る。復号部208は、得られた受信データ又は制御情報を制御部209に出力する。また、復号部206は、受信データに対して誤り検出を行い、誤り検出結果(例えば、誤り有り又は誤り無し)をACK/NACK生成部211へ出力する。
 下り制御信号復調部207は、抽出部204から入力される下り制御信号を復調し、復調結果を復号部208へ出力する。
 復号部208は、下り制御信号復調部207から入力される復調結果を用いて誤り訂正復号を行い、制御情報を得る。復号部208は、得られた制御情報を制御部209に出力する。
 制御部209は、復号部206又は復号部208から入力される制御情報に基づいて、上りリンク送信(例えば、Message Aの送信)に関するパラメータを決定する。制御部209は、決定した情報を、PRACH preamble生成部210、符号化部212,214、変調部213,215及び信号割当部216へ出力する。
 また、制御部209は、復号部206又は復号部208から入力される、Message Bに対するACK/NACK信号を送信するリソースに関する情報に基づいて、ACK/NACK信号の送信に関する情報(例えば、上りリンクリソース、送信方法又はパラメータ等)を決定する。制御部209は、決定した情報を符号化部212、変調部213及び信号割当部216へ出力する。
 また、制御部209は、復号部206又は復号部208から入力される制御情報に含まれる、制御信号の無線リソースに関する情報を、抽出部204に出力する。
 PRACH preamble生成部210は、制御部209から入力される制御情報(例えば、Message Aの送信パラメータ)に基づいて、PRACH preambleを生成し、生成したPRACH preambleを信号割当部216へ出力する。
 ACK/NACK生成部211は、復号部206から入力される誤り検出結果に基づいて、受信した下りリンクデータ(例えば、Message B)に対するACK/NACK信号を生成し、ACK/NACK信号(例えば、ACK/NACK信号系列)を符号化部212へ出力する。
 符号化部212は、制御部209から入力される情報(例えば、ACK/NACK信号の送信に関する情報)に基づいて、ACK/NACK生成部211から入力されるACK/NACK信号系列を誤り訂正符号化し、符号化後のACK/NACK信号系列を変調部213へ出力する。
 変調部213は、制御部209から入力される情報に基づいて、符号化部212から入力されるACK/NACK信号系列を変調して、変調後のACK/NACK信号(変調シンボル列)を信号割当部216へ出力する。
 符号化部214は、制御部209から入力される制御情報(例えば、Message Aの送信パラメータ)に基づいて、例えば、MessageAのデータ部分において送信される情報ビット系列(例えば、C-Planeデータ及びUPデータ)を誤り訂正符号化し、符号化後のビット系列を変調部215へ出力する。
 変調部215は、制御部209から入力される情報に基づいて、符号化部214から入力されるビット系列を変調して、データ信号(変調シンボル列)を信号割当部216へ出力する。
 信号割当部216は、PRACH preamble生成部210から入力される信号、変調部213から入力される信号、又は、変調部215から入力される信号を、制御部209から指示される無線リソースにマッピングし、信号がマッピングされた上りリンク信号をIFFT部217へ出力する。
 IFFT部217は、信号割当部216から入力される信号に対して、OFDM等の送信波形生成処理を施す。IFFT部217は、CPを付加するOFDM伝送の場合には、CPを付加する(図示せず)。または、IFFT部217がシングルキャリア波形を生成する場合には、信号割当部216の前段にDFT(Discrete Fourier Transform)部が追加されてもよい(図示せず)。IFFT部217は、生成した送信波形を送信部218へ出力する。
 送信部218は、IFFT部217から入力される信号に対してD/A変換、アップコンバート等のRF処理を行い、アンテナ201を介して基地局100に無線信号を送信する。
 [基地局100及び端末200の動作例]
 以上の構成を有する基地局100及び端末200における動作例について説明する。
 図6は、本実施の形態に係る基地局100及び端末200におけるMessage Bに対するACK/NACK信号の送受信処理に関するフローの一例を示す。
 図6において、基地局100は、例えば、上りリンクリソース(例えば、PUCCHリソース)に関する情報を端末200へ通知する(ST101)。PUCCHリソースに関する情報には、例えば、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースに関する情報が含まれる。端末200は、PUCCHリソースに関する情報を取得する(ST102)。
 基地局100は、例えば、Message Bの割当情報を含むスケジューリング情報を端末200へ送信する(ST103)。Message Bのスケジューリング情報は、例えば、PDCCHによって送信されてもよい。端末200は、Message Bのスケジューリング情報を取得する(ST104)。
 基地局100は、例えば、Message Bのスケジューリング情報に基づいて、Message Bを端末200へ送信する(ST105)。
 端末200は、Message Bを受信すると、Message Bを復調及び復号する(ST106)。また、端末200は、Message Bに対するACK/NACK信号を生成する。
 端末200は、例えば、PUCCHリソースに関する情報、スケジューリング情報(例えば、PDCCH)、及び、Message B(例えば、RAR)の少なくとも一つに基づいて、Message B(例えば、RRC信号)に対するACK/NACK信号を送信するための上りリンクリソースを決定する(ST107)。
 そして、端末200は、決定した上りリンクリソースに基づいて、Message Bに対するACK/NACK信号を基地局100へ送信する(ST108)。
 [Message Bに対するACK/NACK信号の送信方法]
 次に、Message Bに対するACK/NACK信号の送信方法の一例について説明する。
 本実施の形態では、端末200は、例えば、PUCCHにおいて、Message Bに対するACK/NACK信号を送信する。
 このとき、端末200は、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースを、例えば、4ステップRandom access procedureのMessage 4に対するACK/NACK信号を送信するためのPUCCHリソースの通知(例えば、式(1)に示すパラメータ)に加え、新たなパラメータ「X」に基づいて決定する。パラメータXは、例えば、Message Bの送信宛てになる複数の端末200毎にそれぞれ設定される値でもよい。
 まず、以下に、本実施の形態における2ステップRACH procedureの動作例1及び動作例2について説明する。
 ここでは、一例として、3つの端末200(例えば、UE#A、UE#B及びUE#C)がMessage Aを基地局100(例えば、gNB)へ送信する場合について説明する。
 [動作例1]
 図7は、動作例1における2ステップRACH procedureの一例を示す。
 <Message Aの送信>
 各端末200は、Message Aを基地局100へ送信する。
 Message Aには、例えば、RACH preamble(例えば、Preamble#1~#3の何れか)、及び、PUSCH(例えば、データ部分、又は、UCI+データ部分)が含まれる。また、PUSCHには、例えば、端末200を識別するためのUE-ID(例えば、UE-ID#A、UE-ID#B及びUE-ID#Cの何れか)が含まれる。
 また、各端末200は、RACH preamble(換言すると、Message A)の送信タイミングから、Message Bの受信可能期間である「Msg.B reception window」(換言すると、タイマ)を動作させる。
 <Message Bの送信>
 基地局100は、各端末200から送信されるMessage Aを検出し、かつ、正しく復号した場合、Message Bを送信する。Message Bには、例えば、RAR及び端末200を識別するためのUE-IDを含めたメッセージ(例えば、MAC RAR及びMAC CE)が含まれる。
 一方、基地局100は、Message A(例えば、PRACH preamble)を検出できなかった場合、又は、Message A(例えば、PUSCH)を正しく復号できなかった場合、対応するMessage Aを送信した端末200宛の情報をMessage Bに含めない。
 例えば、図7に示す例では、基地局100(gNB)は、UE#Aから送信されたMessage AのPreamble#1を検出し(検出結果:○)、PUSCHを正しく復号する(復号結果:○)。一方、基地局100(gNB)は、UE#Bから送信されたMessage AのPreamble#2を検出し(検出結果:○)、PUSCHを正しく復号できない(復号結果:×)。また、基地局100(gNB)は、UE#Cから送信されたMessage AのPreamble#1を検出できず(検出結果:×)、PUSCHを正しく復号できない(復号結果:×)。
 よって、図7に示す例では、基地局100は、UE#Aに対するRAR、及び、UE#AのUE-ID#Aを含むMessage Bを生成する。換言すると、図7では、Message Bには、UE#B及びUE#C宛ての情報は含まれない。
 <Message Bの受信>
 Message Aを送信した端末200は、Msg.B reception windowの期間内に当該端末200宛の情報を含むMessage Bを受信しない場合、Message Aを再送する(換言すると、Random access処理をMessage Aの送信から再度行う)。図7に示す例では、UE#B及びUE#Cは、Msg.B reception windowの期間内にUE#B及びUE#C宛てのMessage Bを受信しないので、Message Aを再送する。
 一方、Message Aを送信した端末200は、Msg.B reception windowの期間内に当該端末200宛の情報を含むMessage Bを受信し、Message Bに含まれるUE-IDが、送信したMessage Aに含めたUE-IDと一致する場合、RACH procedureが成功したと判断する。図7に示す例では、UE#Aは、Msg.B reception windowの期間内にUE#A宛てのMessage Bを受信し、当該Message Bに含まれるUE-ID(UE-ID#A)が、送信したMessage Aに含めたUE-ID(UE-ID#A)と一致するので、RACH procedureが成功したと判断する(RA procedure:○)。
 <動作例2>
 図8は、動作例2における2ステップRACH procedureの一例を示す。
 <Message Aの送信>
 各端末200は、Message Aを基地局100へ送信する。
 動作例1と同様、Message Aには、例えば、RACH preamble(例えば、Preamble#1~#3の何れか)、及び、PUSCH(例えば、データ部分、又は、UCI+データ部分)が含まれる。また、PUSCHには、例えば、端末200を識別するためのUE-ID(例えば、UE-ID#A、UE-ID#B及びUE-ID#Cの何れか)が含まれる。
 また、各端末200は、RACH preamble(換言すると、Message A)の送信タイミングから、Message Bの受信可能期間である「Msg.B reception window」(換言すると、タイマ)を動作させる。
 <Message Bの送信>
 基地局100は、各端末200から送信されるMessage Aを検出し、かつ、正しく復号した場合、Message Bを送信する。Message Bには、例えば、RAR及び端末200を識別するためのUE-IDを含めたメッセージ(例えば、MAC RAR及びMAC CE)が含まれる。
 また、基地局100は、各端末200から送信されるMessage AのRACH preambleを検出し、データ部分を正しく復号できなかった場合もMessage Bを送信する。基地局100は、RACH preambleを検出し、データ部分を正しく復号できなかった場合、この時点では、当該RACH preambleを送信した端末200を特定できない。よって、この場合、例えば、Message Bには、RARが含まれる(換言すると、UE-IDは含まれない)。RARには、例えば、対応するRACH preambleを送信した端末200に対して、データ部分の再送の要求に関する情報及び上りリンクにおいて使用するリソースに関する情報が含まれてもよい。
 一方、基地局100は、Message A(例えば、PRACH preamble)を検出できなかった場合、対応するMessage Aを送信した端末200宛の情報をMessage Bに含めない。
 例えば、図8に示す例では、動作例1(例えば、図7)と同様、基地局100(gNB)は、UE#Aから送信されたMessage AのPreamble#1を検出し(検出結果:○)、PUSCHを正しく復号する(復号結果:○)。一方、基地局100(gNB)は、UE#Bから送信されたMessage AのPreamble#2を検出し(検出結果:○)、PUSCHを正しく復号できない(復号結果:×)。また、基地局100(gNB)は、UE#Cから送信されたMessage AのPreamble#1を検出できず(検出結果:×)、PUSCHを正しく復号できない(復号結果:×)。
 よって、図8に示す例では、基地局100は、UE#Aに対するRAR、UE#AのUE-ID#A、及び、UE#Bに対するRARを含むMessage Bを生成する。換言すると、図7では、Message Bには、UE#C宛ての情報は含まれない。
 <Message Bの受信>
 Message Aを送信した端末200は、Msg.B reception windowの期間内に当該端末200宛の情報を含むMessage Bを受信しない場合、Message Aを再送する(換言すると、Random access処理をMessage Aの送信から再度行う)。図8に示す例では、UE#Cは、Msg.B reception windowの期間内にUE#C宛てのMessage Bを受信しないので、Message Aを再送する。
 一方、Message Aを送信した端末200は、Msg.B reception windowの期間内に当該端末200宛の情報を含むMessage Bを受信したものの、Message Bに含まれるUE-IDが、送信したMessage Aに含めたUE-IDと一致しない場合、Message A(例えば、PRACH preamble)に対応するRARに含まれる情報に従って、上りリンク送信を行う。図8に示す例では、UE#Bは、Msg.B reception windowの期間内にUE#B宛てのMessage B(例えば、RAR)を受信するものの、当該Message Bに含まれるUE-ID(UE-ID#A)が、送信したMessage Aに含めたUE-ID(UE-ID#B)と一致しないので、RACH procedureが未だ成功していないと判断する(RA procedure:×)。UE#Bは、例えば、Message BのUE#Bに対するRARに含まれる情報に基づいて、PUSCHを再送してもよい。換言すると、UE#Bは、4ステップRandom access procedureのMessage 3の送信へFallbackしてもよい。
 また、Message Aを送信した端末200は、Msg.B reception windowの期間内に当該端末200宛の情報を含むMessage Bを受信し、Message Bに含まれるUE-IDが、送信したMessage Aに含めたUE-IDと一致する場合、RACH procedureが成功したと判断する。図8に示す例では、UE#Aは、Msg.B reception windowの期間内にUE#A宛てのMessage Bを受信し、当該Message Bに含まれるUE-ID(UE-ID#A)が、送信したMessage Aに含めたUE-ID(UE-ID#A)と一致するので、RACH procedureが成功したと判断する(RA procedure:○)。
 以上、2ステップRandom access procedureの動作例1及び2について説明した。
 上述したように、基地局100がMessage Aを検出及び正しく復号した場合、Message Bには、RARを含むMAC PDU、及び、端末200を識別するためのUE-IDを含めたメッセージ(例えば、Contention resolution MAC CE)を含むMAC PDUが含まれる。
 また、RARを含むMAC PDUには、例えば、端末200における上りリンク信号の送信タイミングに関する情報、TC-RNTI(Temporary C-RNTI)、又は、端末200が上りリンクで使用するリソースに関する情報が含まれてもよい。
 また、Message Bには、RAR及びUE-IDを含むMAC PDUの他に、例えば、RRC接続、RRC復帰及びRRC再接続のためのRRC信号を含むMAC PDUが含まれてもよい。
 図9及び図10は、Message Bの構成例を示す。図9は、Message BにRRC信号を含むMAC PDUが含まれない場合の一例を示し、図10は、Message BにRRC信号を含むMAC PDUが含まれる一例を示す。
 例えば、端末200は、端末200宛の情報を含むMessage Bを受信し、Message Bに含まれるUE-IDが、送信したMessage Aに含まれるUE-IDと一致している場合、かつ、当該Message Bに端末200宛のRRC信号を含むMAC PDUが含まれている場合、RRC信号を含むMAC PDUを復号し、復号結果(又は、誤り検出結果)に対応するACK/NACK信号を、上りリンクリソース(例えば、PUCCHリソース)において基地局100へ送信する。
 以下、ACK/NACK信号を送信するPUCCHリソースの決定方法について説明する。
 基地局100は、例えば、SIB等のセル固有の上位レイヤ信号(例えば、RMSI)によって、PUCCHリソースに関する複数のパラメータの組み合わせを示すリソース設定(例えば、PUCCH resource set)を端末200に予め通知する。例えば、Release 15 NRでは、PUCCH resource setには、16個のPUCCHリソースに関するパラメータの組み合わせが含まれる。なお、PUCCH resource setに含まれるPUCCHリソースに関するパラメータの組み合わせの数は、16個に限定されず、他の個数でもよい。
 また、基地局100は、Message BをスケジューリングするPDCCH内の一部のビット(例えば、Release 15 NRでは3ビット)と、PDCCHのCCE番号と、追加の通知情報“X”とに基づいて、PUCCH resource setの中から、端末200が実際に用いるPUCCHリソースに関するパラメータの組み合わせを1つ選択する。
 例えば、PUCCHリソースに関するパラメータの組み合わせrPUCCH(例えば、0~15の16個)は、次式で与えられる。
 rPUCCH = ceiling (2nCCE/NCCE) + 2ΔPRI + X    (2)
 式(2)において、nCCEはCCE番号を表し、NCCEはCCE数を表し、ΔPRIはPDCCHの3ビットによって明示的に通知される値(0~7の何れか)を表す。なお、ΔPRIはPDCCHの3ビットに限らず、他のビット数でもよい。
 このように、端末200は、例えば、Message Bに関するPDCCHによって通知される値(例えば、ΔPRI)と、当該PDCCHが割り当てられるリソース(例えば、nCCE)と、端末200毎に設定されるパラメータ“X”とに基づいて、ACK/NACK信号の送信に用いる上りリンクリソースを決定する。換言すると、端末200は、例えば、4ステップRandom access procedureのMessage 4に対するACK/NACK信号を送信するためのPUCCHリソースを決定する方法(例えば、式(1)を参照)とは異なる方法(例えば、式(2)を参照)に基づいて、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースを決定する。
 式(2)において、パラメータ“X”は、例えば、以下の方法(Option 1~5の何れか又は組み合わせ)により、明示的(explicit)又は黙示的(implicit)に基地局100から端末200へ通知されてよい。
 <Option 1>
 パラメータ“X”は、Message BのMAC RAR(換言すると、Message A(PRACH preamble)に対する応答に関する情報)に含まれてもよい。
 RARを含むMAC PDUには、パラメータ“X”の他に、端末200における上りリンクの送信タイミングに関する情報、TC-RNTI、又は端末200が上りリンクで使用するリソースに関する情報が含まれてもよい。
 <Option 2>
 パラメータ“X”は、端末200が送信したMessage Aに含まれるUE-IDと関連付けられた値でもよい。
 例えば、X = UE-ID mod Yのように関連付けられてもよい。ここで、YはPUCCH resource setに含まれるPUCCHリソースに関する複数のパラメータの組み合わせの数であり、Release 15 NRではY=16である。
 <Option 3>
 パラメータ“X”は、Message Bのおける、複数の端末200宛にそれぞれ対応するRARの配置順番(例えば、RAR orderと呼ぶ)と関連付けられた値でもよい。
 例えば、図10に示すMessage Bには、MAC subPDU3A、MAC subPDU4A、…の順にRARが含まれている。また、図10に示すMessage Bでは、MAC subPDU3Aに対応する端末200宛のRRC信号がMAC subPDU3Cに含まれ、MAC subPDU4Aに対応する端末200宛のRRC信号がMAC subPDU4Cに含まれている。
 この場合、例えば、Message BにおいてRARが含まれる順番(配置順番)に基づいて、MAC subPDU3C(例えば、1番目のRAR)に対応する端末200に対してはX=0が設定され、MAC subPDU4C(例えば、2番目のRAR)に対応する端末200に対してX=1が設定されてもよい。なお、Message Bに含まれるRARの数、及び、RARの配置順番に関連付けられるXの値は、これらに限定されない。
 <Option 4>
 パラメータ“X”は、端末200が送信するMessage Aにおいて使用されたRACH preamble番号(例えば、PAID)と関連付けられた値でもよい。
 例えば、X = PAID mod Yのように関連付けられてもよい。ここで、Yは、PUCCH resource setに含まれるPUCCHリソースに関する複数のパラメータの組み合わせの数であり、Release 15 NRではY=16である。
 <Option 5>
 パラメータ“X”は、端末200が送信するMessage Aにおいて使用されたPUSCHの参照信号(例えば、DMRS:Demodulation Reference Signal)のポート番号(例えば、DMRS port番号)と関連付けられた値でもよい。
 例えば、X = DMRS port index mod Yのように関連付けられてもよい。ここで、YはPUCCH resource setに含まれるPUCCHリソースに関する複数のパラメータの組み合わせの数であり、Release 15 NRではY=16である。
 以上、パラメータ“X”の通知方法(Option 1~5)について説明した。
 上述した5つのOptionによれば、PDCCHのオーバヘッドの増加無しに、パラメータ“X”が端末200に通知される。
 また、例えば、パラメータ“X”を含む式(2)によって、各端末200は、PUCCHリソースに関するパラメータの組み合わせrPUCCHを、端末200毎に選択できる。換言すると、端末200は、グループキャスト送信されるMessage B(換言すると、複数の端末200宛ての信号)に対するACK/NACK信号を送信するPUCCHリソースを、端末200毎にそれぞれ設定されるパラメータ“X”に基づいて個別に決定できる。よって、Message B(例えば、RRC信号)に対するACK/NACK信号の送信において、端末200間におけるPUCCHリソースの衝突を抑制できる。
 よって、本実施の形態によれば、Message B(例えば、RRC信号を含む)がグループキャスト送信される場合でも、PDCCHのオーバヘッドを増加することなく、当該RRC信号に対するACK/NACK信号の送信において、端末200間におけるPUCCHリソースの衝突を抑制できる。これにより、本実施の形態では、2ステップRandom access procedureのMessage Bにおけるランダムアクセス処理(例えば、再送制御)の効率を向上できる。
 なお、上述したOption1~5のうち、何れか1つが適用されてもよく、複数のOptionの組み合わせが適用されてもよい。
 また、本実施の形態において、端末200が、Message BをスケジューリングするPDCCHの一部のビット(例えば、Release 15 NRでは3ビット)、及び、PDCCHのリソース割当情報であるCCE番号に加えて、パラメータ“X”を用いてPUCCHを決定する場合に限定されない。例えば、端末200は、Message BをスケジューリングするPDCCHの一部のビット及びCCE番号を用いずに、パラメータ“X”を用いてPUCCHリソースを決定してもよい。この場合、PDCCHのオーバヘッドを更に削減できる。
 また、Message Bにおいてグループキャスト型、及び、ユニキャスト型の複数の送信方法がサポートされる場合、端末200は、Message Bの送信方法に応じてPUCCHリソースを決定してもよい。例えば、端末200は、Message Bに対してグループキャスト型送信が設定される場合、パラメータ“X”を用いてPUCCHリソースを決定するのに対し(例えば、式(2)を参照)、ユニキャスト型送信が設定される場合、パラメータ“X”を用いないでPUCCHリソースを決定してもよい(例えば、式(1)を参照)。
 (実施の形態2)
 本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図4及び図5を援用して説明する。
 本実施の形態では、端末200は、上りリンク制御チャネル(例えば、PUCCH)において、Message Bに対するACK/NACK信号を送信する。
 このとき、基地局100は、ACK/NACK信号を送信するためのPUCCHリソースを、例えば、Message BのRARに含まれる上りリンク割当情報(例えば、ULグラントと呼ぶ)を用いて端末200へ通知する。端末200は、例えば、端末200宛てのMessage BのRARに含まれるULグラントに基づいて、Message B(例えば、RRC信号)に対するACK/NACK信号を送信するためのPUCCHリソースを決定する。
 例えば、実施の形態1における2ステップRandom access procedureの動作例2(例えば、図8を参照)では、基地局100は、Message Aを検出及び正しく復号した場合、Message Bを送信する。このとき、Message Bには、RAR及び端末200を識別するためのUE-IDを含めたメッセージが含まれる。
 本実施の形態では、基地局100は、Message Aを検出及び正しく復号した場合、RARに含まれるULグラントにおいて、Message B(例えば、RRC信号)に対するACK/NACK信号を送信するための上りリンクリソース(例えば、PUCCHリソース)を通知する。端末200は、例えば、端末200宛ての情報を含むMessage Bを受信し、Message Bに含まれるUE-IDがMessage Aで送信したUE-IDと一致している場合、かつ、Message Bに端末200宛てのRRC信号を含むMAC PDUが含まれている場合、MAC PDUを復号し、復号結果(例えば、ACK/NACK信号)を、ULグラントで通知されたPUCCHリソースにおいて基地局100へ送信する。
 例えば、図8に示す例では、基地局100(gNB)は、UE#Aから送信されたMessage AのPreamble#1を検出し(検出結果:○)、PUSCHを正しく復号する(復号結果:○)。そこで、基地局100は、Message Bにおいて、UE#Aに対するRARに含まれるULグラントに、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースを設定する。UE#Aは、Message Bに含まれるUE#Aに対するRARに含まれるULグラントに示されるPUCCHリソースに基づいて、Message Bに対するACK/NACK信号を送信する。
 また、実施の形態1における2ステップRandom access procedureの動作例2(例えば、図8を参照)では、基地局100は、Message AのRACH preambleを検出し、データ部分を正しく復号できなかった場合もMessage Bを送信する。このとき、Message Bには、RARが含まれる。RARには、例えば、対応するRACH preambleを送信した端末200に対して、データ部分の再送の要求に関する情報、及び、端末200が上りリンクで使用するリソースに関する情報(ULグラント)が含まれてもよい。
 本実施の形態では、例えば、基地局100は、Message A(図8では、UE#BのMessage A)のRACH preambleを検出し、データ部分を正しく復号できなかった場合、RARに含まれるULグラントにおいて、Message Aにおけるデータ部分(例えば、PUSCH)を再送するための上りリンクリソース(例えば、PUSCHリソース)を通知する。端末200(図8では、UE#B)は、Message Bの端末200に対するRARに含まれるULグラントに示されるPUSCHリソースに基づいて、Message Aのデータ部分(例えば、PUSCH)を再送する。
 なお、RARには、ULグラントによってMessage A(例えば、PUSCH)の再送のための上りリンクリソースが通知されるのか、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースが通知されるのかを識別するフラグが含まれてもよい。
 Release 15 NRでは、例えば、RARに含まれるULグラントは27ビットのフィールドで構成される。本実施の形態では、例えば、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースの通知には、ULグラントに含まれる27ビットフィールドの一部が使用されてもよい。なお、ULグラントに含まれるフィールドのサイズは27ビットに限定されない。
 また、例えば、Release 15 NRと同様にPUCCH resource setに含まれるPUCCHリソースに関する複数のパラメータの組み合わせの数が16である場合、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースの通知に4ビットが使用され、残りのフィールドをその他の用途又はReservedとしてもよい。なお、PUCCHリソースの通知に使用されるビット数は4ビットに限定されない。
 本実施の形態によれば、基地局100は、Message BのRARに含まれるULグラントによって、Message Bに対するACK/NACK信号を送信するためのPUCCHリソースを通知する。換言すると、基地局100は、Message Bの各端末200に対するRARに含まれるULグラントにおいて、端末200毎のPUCCHリソースをそれぞれ設定(換言すると、スケジューリング)できる。
 これにより、端末200は、グループキャスト送信されるMessage B(換言すると、複数の端末200宛ての信号)に対するACK/NACK信号を送信するPUCCHリソースを、端末200毎にそれぞれ設定されるULグラントに基づいて個別に決定できる。よって、Message B(例えば、RRC信号)に対するACK/NACK信号の送信において、端末200間におけるPUCCHリソースの衝突を抑制できる。
 また、基地局100は、PDCCH(換言すると、DCI)によってPUCCHリソースを通知しなくてもよいので、PDCCHのオーバヘッドを削減できる。
 (実施の形態3)
 本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図4及び図5を援用して説明する。
 本実施の形態では、端末200は、上りリンクデータチャネル(例えば、PUSCH)において、Message Bに対するACK/NACK信号を送信する。
 このとき、基地局100は、ACK/NACK信号を送信するためのPUSCHリソースを、例えば、Message BのRARに含まれるULグラントを用いて端末200へ通知する。端末200は、例えば、端末200宛てのMessage BのRARに含まれるULグラントに基づいて、Message B(例えば、RRC信号)に対するACK/NACK信号を送信するためのPUSCHリソースを決定する。
 例えば、実施の形態1における2ステップRandom access procedureの動作例2(例えば、図8を参照)では、基地局100は、Message Aを検出及び正しく復号した場合、Message Bを送信する。このとき、Message Bには、RAR及び端末200を識別するためのUE-IDを含めたメッセージが含まれる。
 本実施の形態では、基地局100は、Message Aを検出及び正しく復号した場合、RARに含まれるULグラントにおいて、Message B(例えば、RRC信号)に対するACK/NACK信号を送信するための上りリンクリソース(例えば、PUSCHリソース)を通知する。端末200は、例えば、端末200宛ての情報を含むMessage Bを受信し、Message Bに含まれるUE-IDがMessage Aで送信したUE-IDと一致している場合、かつ、Message Bに端末200宛てのRRC信号を含むMAC PDUが含まれている場合、MAC PDUを復号し、復号結果(例えば、ACK/NACK信号)を、ULグラントで通知されたPUSCHリソースにおいて基地局100へ送信する。
 例えば、図8に示す例では、基地局100(gNB)は、UE#Aから送信されたMessage AのPreamble#1を検出し(検出結果:○)、PUSCHを正しく復号する(復号結果:○)。そこで、基地局100は、Message Bにおいて、UE#Aに対するRARに含まれるULグラントに、Message Bに対するACK/NACK信号を送信するためのPUSCHリソースを設定する。UE#Aは、Message Bに含まれるUE#Aに対するRARに含まれるULグラントに示されるPUSCHリソースに基づいて、Message Bに対するACK/NACK信号を送信する。
 また、実施の形態1における2ステップRandom access procedureの動作例2(例えば、図8を参照)では、基地局100は、Message AのRACH preambleを検出し、データ部分を正しく復号できなかった場合もMessage Bを送信する。このとき、Message Bには、RARが含まれる。RARには、例えば、対応するRACH preambleを送信した端末200に対して、データ部分の再送の要求に関する情報、及び、端末200が上りリンクで使用するリソースに関する情報(ULグラント)が含まれてもよい。
 本実施の形態では、例えば、基地局100は、Message A(図8では、UE#BのMessage A)のRACH preambleを検出し、データ部分を正しく復号できなかった場合、RARに含まれるULグラントにおいて、Message Aにおけるデータ部分(例えば、PUSCH)を再送するための上りリンクリソース(例えば、PUSCHリソース)を通知する。端末200(図8では、UE#B)は、Message Bの端末200宛てのRARに含まれるULグラントに示されるPUSCHリソースに基づいて、Message Aのデータ部分(例えば、PUSCH)を再送する。
 なお、本実施の形態では、例えば、図6において、Message Bに対するACK/NACK送信のためのPUCCHリソースに関する情報の送信及び取得する処理(例えば、ST101及びST102の処理)は不要である。
 また、PUSCHにおけるACK/NACK信号のマッピング方法については、例えば、以下の2つの方法の何れかを適用してもよい。
 1つ目の方法は、UL-SCH(UL Shared Channel)と同様に、ACK/NACK信号をデータ部分と同様の方法でPUSCHにマッピングする方法である。この場合、ACK/NACK信号は、ULグラントによって通知されたMCSに従って送信される。
 2つ目の方法は、ACK/NACK信号を、例えば、Release 15 NRにおいてUL-SCHが無い場合にUCI(Uplink Control Information)をPUSCH上に多重する方法(例えば、非特許文献2及び3を参照)でPUSCHにマッピングする方法である。この場合、ACK/NACK信号は、ULグラントによって通知されたMCSと比較して低いMCSに従って送信されてもよい。
 本実施の形態によれば、基地局100は、Message BのRARに含まれるULグラントによって、Message Bに対するACK/NACK信号を送信するためのPUSCHリソースを通知する。換言すると、基地局100は、Message Bの各端末200に対するRARに含まれるULグラントにおいて、端末200毎のPUSCHリソースをそれぞれ設定(換言すると、スケジューリング)できる。
 これにより、端末200は、グループキャスト送信されるMessage B(換言すると、複数の端末200宛ての信号)に対するACK/NACK信号を送信するPUSCHリソースを、端末200毎にそれぞれ設定されるULグラントに基づいて個別に決定できる。よって、Message B(例えば、RRC信号)に対するACK/NACK信号の送信において、端末200間におけるPUSCHリソースの衝突を抑制できる。
 また、基地局100は、PDCCH(換言すると、DCI)によってPUSCHリソースを通知しなくてもよいので、PDCCHのオーバヘッドを削減できる。
 また、本実施の形態では、Message BのRARに含まれるULグラントによって、Message A(例えば、PUSCH)の再送のためのPUSCHリソース、又は、Message Bに対するACK/NACK信号を送信するためのPUSCHリソースが通知される。換言すると、本実施の形態では、基地局100におけるMessage Aの検出及び復号結果に依らず、Message BのRARにおいて通知されるリソースは、PUSCHリソースである。よって、本実施の形態によれば、RARのULグラントによって通知される情報は、基地局100におけるMessage Aの復号結果に応じて変更しなくてよいので、RARの構成を簡易化できる。
 以上、本開示の一実施例について説明した。
 上述した各実施の形態では、端末200がMessage Bに対するACK/NACK信号(ACK又はNACK)を送信する場合について説明した。しかし、端末200は、例えば、Message Bの復号に失敗した場合にNACKを基地局100へ送信し、Message Bの復号に成功した場合にはACKを基地局100へ送信しなくてもよい。
 例えば、端末200は、Message BをスケジューリングするPDCCHを正しく復号し、かつMessage Bに含まれるMAC PDUを正しく復号した場合、ランダムアクセス動作が正しく完了したと判断する。また、端末200は、基地局100に対してACKを送信しない。
 一方、端末200は、Message BをスケジューリングするPDCCHを正しく復号したものの、Message Bに含まれるMAC PDUを正しく復号できなかった場合、NACKを基地局100へ送信し、Message Bの再送を要求する。
 また、端末200は、NACKの送信タイミングからTimerを動作させてもよい。基地局100は、端末200が送信したNACKの受信に成功した場合、Message Bを再送する。一方、基地局100は、端末200が送信したNACKの受信に失敗した場合、端末200がMessage Bの受信に成功したと判断し、Message Bの再送を行うことができない。このとき、端末200は、NACKの送信タイミングから動作させたTimerが一定期間を超えた場合、RACH動作を再度行う。
 このように、端末200は、ACKを送信しないので、上りリンクリソースのオーバヘッドを低減でき、端末200の消費電力を低減できる。
 また、上述した各実施の形態では、端末200はMessage Bの復号に成功した場合にACKを基地局100へ送信し、Message Bの復号に失敗した場合にはNACKを基地局100へ送信しなくてもよい。
 例えば、Message Bに、RARを含むMAC PDUと、端末を識別するための識別情報(例えば、UE-ID)を含めたメッセージ(例えば、Contention resolution MAC CE)を含むMAC PDUとが含まれる場合、端末200は、Message Bの復号に失敗した場合、復号を試みたMessage Bが自端末宛かどうかを識別することができない。そのため、端末200は、基地局100に対してNACKを送信しなくてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る端末は、複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、前記複数の端末毎にそれぞれ設定されるパラメータに基づいて決定する制御回路と、前記リソースにおいて前記応答信号を送信する送信回路と、を具備する。
 本開示の一実施例において、前記制御回路は、前記下りリンク信号に関する制御情報によって通知される値、前記制御情報が割り当てられるリソース、及び、前記パラメータに基づいて、前記リソースを決定する。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記応答に関する情報に含まれる。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記ランダムアクセス信号に含まれる前記複数の端末をそれぞれ識別する情報に関連付けられた値を示す。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記下りリンク信号における、前記複数の端末にそれぞれ対応する前記応答に関する情報の配置順番に関連付けられた値を示す。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記ランダムアクセス信号において使用されたプリアンブル番号に関連付けられた値を示す。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信する、プリアンブル部及びデータ部を含むランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記データ部において使用された参照信号のポート番号に関連付けられた値を示す。
 本開示の一実施例において、前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、前記パラメータは、前記応答に関する情報に含まれる上りリンクリソース割当情報である。
 本開示の一実施例において、前記リソースは、上りリンク制御リソースである。
 本開示の一実施例において、前記リソースは、上りリンクデータリソースである。
 本開示の一実施例に係る送信方法は、複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、前記複数の端末毎にそれぞれ設定されるパラメータに基づいて決定し、前記リソースにおいて前記応答信号を送信する。
 2019年3月27日出願の特願2019-061499の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、移動通信システムに有用である。
 100 基地局
 101,209 制御部
 102 データ生成部
 103,107,110,212,214 符号化部
 104 再送制御部
 105,108,111,213,215 変調部
 106 上位制御信号生成部
 109 下り制御信号生成部
 112,216 信号割当部
 113,217 IFFT部
 114,218 送信部
 115,201 アンテナ
 116,202 受信部
 117,203 FFT部
 118,204 抽出部
 119 検出部
 120,205 復調部
 121,206,208 復号部
 200 端末
 207 下り制御信号復調部
 210 PRACH preamble生成部
 211 ACK/NACK生成部

Claims (11)

  1.  複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、前記複数の端末毎にそれぞれ設定されるパラメータに基づいて決定する制御回路と、
     前記リソースにおいて前記応答信号を送信する送信回路と、
     を具備する端末。
  2.  前記制御回路は、前記下りリンク信号に関する制御情報によって通知される値、前記制御情報が割り当てられるリソース、及び、前記パラメータに基づいて、前記リソースを決定する、
     請求項1に記載の端末。
  3.  前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記応答に関する情報に含まれる、
     請求項2に記載の端末。
  4.  前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記ランダムアクセス信号に含まれる前記複数の端末をそれぞれ識別する情報に関連付けられた値を示す、
     請求項2に記載の端末。
  5.  前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記下りリンク信号における、前記複数の端末にそれぞれ対応する前記応答に関する情報の配置順番に関連付けられた値を示す、
     請求項2に記載の端末。
  6.  前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記ランダムアクセス信号において使用されたプリアンブル番号に関連付けられた値を示す、
     請求項2に記載の端末。
  7.  前記下りリンク信号は、前記複数の端末がそれぞれ送信する、プリアンブル部及びデータ部を含むランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記データ部において使用された参照信号のポート番号に関連付けられた値を示す、
     請求項2に記載の端末。
  8.  前記下りリンク信号は、前記複数の端末がそれぞれ送信するランダムアクセス信号に対する応答に関する情報を含み、
     前記パラメータは、前記応答に関する情報に含まれる上りリンクリソース割当情報である、
     請求項1に記載の端末。
  9.  前記リソースは、上りリンク制御リソースである、
     請求項8に記載の端末。
  10.  前記リソースは、上りリンクデータリソースである、
     請求項8に記載の端末。
  11.  複数の端末向けの下りリンク信号に対する応答信号の送信に用いるリソースを、前記複数の端末毎にそれぞれ設定されるパラメータに基づいて決定し、
     前記リソースにおいて前記応答信号を送信する、
     送信方法。
PCT/JP2019/049540 2019-03-27 2019-12-18 端末及び送信方法 WO2020194924A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/441,262 US20220132476A1 (en) 2019-03-27 2019-12-18 Terminal and transmission method
AU2019436989A AU2019436989A1 (en) 2019-03-27 2019-12-18 Terminal and transmission method
BR112021016676-9A BR112021016676A2 (pt) 2019-03-27 2019-12-18 Terminal e método de transmissão
JP2021508747A JPWO2020194924A5 (ja) 2019-12-18 端末、通信方法及び集積回路
KR1020217029736A KR20210141507A (ko) 2019-03-27 2019-12-18 단말 및 송신 방법
MX2021011465A MX2021011465A (es) 2019-03-27 2019-12-18 Terminal y metodo de transmision.
EP19920718.4A EP3952501A4 (en) 2019-03-27 2019-12-18 TERMINAL AND TRANSMISSION METHOD
CN201980094386.8A CN113615275A (zh) 2019-03-27 2019-12-18 终端及发送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061499 2019-03-27
JP2019061499 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020194924A1 true WO2020194924A1 (ja) 2020-10-01

Family

ID=72608734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049540 WO2020194924A1 (ja) 2019-03-27 2019-12-18 端末及び送信方法

Country Status (8)

Country Link
US (1) US20220132476A1 (ja)
EP (1) EP3952501A4 (ja)
KR (1) KR20210141507A (ja)
CN (1) CN113615275A (ja)
AU (1) AU2019436989A1 (ja)
BR (1) BR112021016676A2 (ja)
MX (1) MX2021011465A (ja)
WO (1) WO2020194924A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153750B (zh) * 2019-06-28 2022-08-26 华为技术有限公司 一种随机接入的方法及通信装置
US20230144525A1 (en) * 2021-11-05 2023-05-11 Qualcomm Incorporated Traffic and feedback management based on frame decoding
CN115843001A (zh) * 2022-08-03 2023-03-24 中兴通讯股份有限公司 一种通信方法、装置、通信节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026433A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2017063323A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2018088415A1 (ja) * 2016-11-09 2018-05-17 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018128192A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ装置、基地局、及びプリアンブル送信方法
JP2018528694A (ja) * 2015-09-25 2018-09-27 ソニー株式会社 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
JP2019061499A (ja) 2017-09-27 2019-04-18 ヤマハ株式会社 電源回路および音響機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981740B2 (ja) * 2012-03-15 2016-08-31 シャープ株式会社 端末、基地局、通信システムおよび通信方法
CN106454923A (zh) * 2015-08-13 2017-02-22 中国电信股份有限公司 上行资源确定方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026433A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2017063323A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2018528694A (ja) * 2015-09-25 2018-09-27 ソニー株式会社 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
WO2018088415A1 (ja) * 2016-11-09 2018-05-17 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018128192A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ装置、基地局、及びプリアンブル送信方法
JP2019061499A (ja) 2017-09-27 2019-04-18 ヤマハ株式会社 電源回路および音響機器

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"NR; Medium access control (MAC) protocol specification (Release 15", 3GPP, TS38.321, December 2018 (2018-12-01)
"NR; Multiplexing and channel coding (Release 15", 3GPP TS 38.212, December 2018 (2018-12-01)
"NR; NR and NG-RAN overall description; Stage 2 (Release 15", 3GPP, TS38.300, December 2018 (2018-12-01)
"NR; Physical channels and modulation (Release 15", 3GPP TS 38.211, December 2018 (2018-12-01)
"NR; Physical layer procedure for control (Release 15", 3GPP TS 38.213, December 2018 (2018-12-01)
"NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214, December 2018 (2018-12-01)
"NR; Radio resource control (RRC) protocol specification (Release 15", 3GPP, TS38.331, December 2018 (2018-12-01)
B. BERTENYIS. NAGATAH. KOOROPATYX. ZHOUW. CHENY KIMX. DAIX. XU: "5G NR radio interface", JOURNAL OF ICT, vol. 6-2, 2018, pages 31 - 58
See also references of EP3952501A4
ZTE CORPORATIONSANECHIP: "New work item: 2-step RACH for NR", RP-182881, December 2018 (2018-12-01)

Also Published As

Publication number Publication date
BR112021016676A2 (pt) 2021-10-13
CN113615275A (zh) 2021-11-05
KR20210141507A (ko) 2021-11-23
US20220132476A1 (en) 2022-04-28
MX2021011465A (es) 2021-10-22
EP3952501A1 (en) 2022-02-09
AU2019436989A1 (en) 2021-10-21
EP3952501A4 (en) 2022-05-25
JPWO2020194924A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US20200296719A1 (en) Mobile station apparatus, method, and processor of the same
US11425748B2 (en) User equipments, base stations and methods for SP-CSI reporting
EP3566368B1 (en) Signaling, procedures, user equipment and base stations for uplink ultra reliable low latency communications
WO2021066117A1 (en) User equipments, base stations and methods for multiple active semi-persistent scheduling configurations
WO2020255531A1 (en) User equipments, base stations and methods for downlink control information (dci) in dci format(s)
WO2020222295A1 (en) User equipment, base stations and signaling for multiple active configured grants
WO2020217797A1 (en) User equipments, base stations and methods for configured grant confirmation mac ce for multiple active configured grants
WO2020194924A1 (ja) 端末及び送信方法
WO2020026532A1 (ja) 端末及び通信方法
WO2021024922A1 (en) Multiplexing harq-ack of different service types on a single pusch
WO2020217611A1 (ja) 端末及び通信方法
EP2656678A1 (en) Method and arrangement for acknowledgement of contention- based uplink transmissions in a telecommunication system
WO2017194016A1 (zh) 传输方法、设备和传输系统、及存储介质
WO2020196237A1 (en) User equipments, base stations and methods for configuration for priority indication
WO2018193777A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2020194934A1 (ja) 端末及び送信方法
WO2021090606A1 (en) User equipments, base stations and methods for transmission configuration indication for pdsch
WO2021090604A1 (en) User equipments, base stations and methods for configurable downlink control information for demodulation reference signal for a physical uplink shared channel
CN114073161B (zh) 终端、基站、通信方法及集成电路
WO2020145320A1 (en) User equipments, base stations and methods for multiple active configurations for uplink transmission
WO2021090734A1 (en) User equipments, base stations and methods for activation and release of multiple configured grants
WO2020222291A1 (en) User equipments, base stations and methods for monitoring a control channel for pusch transmission
WO2020196166A1 (en) User equipments, base stations and methods for processing of priority indication
JPWO2020026518A1 (ja) 端末及び通信方法
WO2021060231A1 (en) User equipments, base stations and methods for transmission(s) of a physical uplink control channel (pucch) and a physical uplink shared channel (pusch)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508747

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016676

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021016676

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210823

ENP Entry into the national phase

Ref document number: 2019436989

Country of ref document: AU

Date of ref document: 20191218

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021126142

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019920718

Country of ref document: EP

Effective date: 20211027