WO2015154573A1 - Dtx检测方法、装置及基站 - Google Patents

Dtx检测方法、装置及基站 Download PDF

Info

Publication number
WO2015154573A1
WO2015154573A1 PCT/CN2015/071665 CN2015071665W WO2015154573A1 WO 2015154573 A1 WO2015154573 A1 WO 2015154573A1 CN 2015071665 W CN2015071665 W CN 2015071665W WO 2015154573 A1 WO2015154573 A1 WO 2015154573A1
Authority
WO
WIPO (PCT)
Prior art keywords
dtx
bit
bits
dtx detection
detection threshold
Prior art date
Application number
PCT/CN2015/071665
Other languages
English (en)
French (fr)
Inventor
魏继东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015154573A1 publication Critical patent/WO2015154573A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a DTX (Discontinuous Transmission) detection method, apparatus, and base station.
  • DTX Continuous Transmission
  • the 3GPP TS 36.212 protocol defines that the uplink control information UCI can be transmitted on a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH) on the PUSCH (Physical Uplink Control Channel).
  • the transmission mode includes a bonding mode and a multiplexing mode. For example, refer to the UL-SCH (Uplink Shared Channel) and control information shown in FIG. 1 to transmit a resource map on the PUSCH.
  • the HARQ Hybrid Automatic Repeat Request
  • the triggering command of the HARQ retransmission has a certain interval from the specified data packet.
  • the triggering instruction refers to that the terminal receives a data packet and responds with a feedback signal. If the packet is correctly received, the terminal transmits an acknowledgment signal, that is, an ACK signal, on the designated subframe. If the data packet is not correctly received, the terminal also has the same A non-acknowledgement signal, that is, a NACK signal, is fed back on the designated subframe. In addition, the terminal may not detect the feedback signal from the base station.
  • the terminal performs DTX (Discontinuous Transmission) transmission. That is to say, when the base station detects the feedback signal, the result of the detection may be ACK, NACK or DTX.
  • DTX Continuous Transmission
  • the downlink DCI (DCI, Downlink Control Information, format 0, DCI for short) has a certain probability of loss event, it is necessary to determine whether the PUSCH transmission is valid by a certain detection method to determine whether the MAC needs to be heavy. Send a new DCI0 to reduce the number of HARQ failures. However, in this judgment process, there will be a large probability of missed detection. Therefore, the accuracy of the PUSCH activation determination can be further improved by UCI DTX detection.
  • the DTX case involves a failure to transmit a DL (Downlink) resource allocation grant for a particular UE.
  • the DL resource allocation fails, the PDCCH/PDSCH-related HARQ-ACK is missed from a given UL (Uplink) subframe (from the ACK/NACK perspective, this is DTX because the UE has been out for whatever reason)
  • the DL allocation is omitted, and therefore there is no reason to send the HARQ-ACK or include it in the UL subframe.
  • the base station cannot know that the HARQ-ACK does not exist, and as a result, the reception from the UE is incorrectly interpreted. There are two kinds of errors in the DTX detection process.
  • the first type of error is called false detection, that is, the detection of DTX error is HARQ-ACK.
  • the second type of error is called miss detection, which is to detect HARQ-ACK as DTX.
  • the performance target value is less than 1%. Therefore, in order to improve the DTX detection performance and reduce the detection error probability, various detection methods have appeared, mainly including two types of constant false alarm rate detection methods and dynamic threshold detection methods.
  • the constant false alarm rate detection method mainly refers to allowing a certain error detection probability in the case of transmitting DTX; the main idea of the dynamic threshold detection method is to adjust the HARQ-ACK using the instantaneous transmission channel state information reflected in the estimated signal amplitude.
  • the generated power reduces the interference of the HARQ-ACK signal on other signals.
  • the threshold in the dynamic threshold detection method is the product of the signal amplitude estimate and a constant associated with the channel, terminal movement speed, antenna diversity, and power offset value.
  • the constant false alarm rate detection method is the main method currently used. It is common to use the ratio of noise power and signal power or SINR to compare with the threshold value for DTX decision, but the threshold fluctuation of this method is relatively large and the error precision is relatively low, especially It is under the condition of small TBSize (Transport Block Size).
  • the embodiment of the invention provides a DTX detection method, device and base station, so as to at least solve the problem that the DTX detection precision is low in the related art.
  • an embodiment of the present invention provides a DTX detection method, including:
  • the extracted information bits are subjected to polarity processing
  • the information bit set to perform DTX detection includes: HARQ-ACK in the feedback signal Raw bit of the information bit, parity bit, or original bit, parity bit and placeholder bit of the HARQ-ACK information bit in the feedback signal; when the HARQ-ACK information bit included in the feedback signal is greater than 2 bits
  • the information bits set to perform DTX detection include coded bits.
  • the DTX detection value when the information bits set to perform DTX detection include original bits and check bits, or include coded bits, the DTX detection value includes according to the original bits and check bits. a first DTX detection value obtained by information bits of different polarities, the DTX detection threshold including a first DTX detection threshold;
  • the DTX detection value includes first DTX detection obtained according to information bits of different polarities of the original bit and the check bit. a value, and a second detection value obtained according to information bits of different polarity of the placeholder bit, the DTX detection threshold including a first DTX detection threshold and a second DTX detection threshold;
  • the DTX detection value includes a third DTX detection value obtained according to information bits of different polarities of the coding bits, and the DTX detection threshold includes third DTX detection. Threshold.
  • the information bits set to perform DTX detection include original bits and check bits
  • compare the DTX detection value with the DTX detection threshold and determine the result according to the comparison result.
  • the first DTX detection value is compared with the first DTX detection threshold, and if the first DTX detection threshold is smaller than the first DTX detection threshold, determining that the uplink terminal is in a DTX state;
  • the method includes: comparing the second DTX detection value with the second DTX detection threshold, and if the second DTX detection threshold is smaller than the second DTX detection threshold, comparing the first DTX detection value with the first DTX detection threshold, If the first DTX detection threshold is smaller than the first DTX detection threshold, determining that the uplink terminal is in a DTX state;
  • the first DTX detection value is: a ratio of an energy of a positive polarity information bit of the original bit and the parity bit and an energy sum of a negative polarity information bit, or a ratio of an absolute value of a total amplitude of the positive bit information bits of the original bit and the check bit to an absolute value of the total amplitude of the negative polarity information bits, or a total bit included in the positive polarity information bits of the original bit and the check bit
  • the first DTX detection threshold is a first DTX energy detection threshold, a first DTX amplitude detection threshold or a first DTX weight detection threshold;
  • the second DTX detection value is: a ratio of an energy of a positive polarity information bit of the placeholder bit to an energy sum of a negative polarity information bit, or an absolute amplitude of a positive polarity information bit of the placeholder bit. The ratio of the value to the absolute value of the total amplitude of the negative polarity information bits, or the ratio of the total number of bits included in the positive polarity information bits of the placeholder bits to the total number of bits included in the negative polarity information bits;
  • the second DTX detection threshold is a second DTX energy detection threshold, a second DTX amplitude detection threshold, or a second DTX weight detection threshold;
  • the third DTX detection value is: a ratio of an energy of a positive polarity information bit of the coded bit and an energy sum of a negative polarity information bit, or an absolute value of a total amplitude of a positive polarity information bit of the coded bit and a ratio of the absolute value of the total amplitude of the negative polarity information bits, or a ratio of the total number of bits included in the positive polarity information bits of the coded bits to the total number of bits included in the negative polarity information bits;
  • the three DTX detection threshold is a third DTX energy detection threshold, a third DTX amplitude detection threshold, or a third DTX weight detection threshold.
  • the original bit when the HARQ-ACK information bit included in the feedback signal is 1 bit, the original bit is a bit, the parity bit is y bits, and the placeholder bit is x bits; when the HARQ-ACK information bit included in the feedback signal is 2 bits, the original bit is The check bit is The placeholder bits are x bits.
  • the condition is whether the signal to noise ratio is greater than the signal to noise ratio threshold M, and/or whether the transport block size is smaller than the transport block size threshold N.
  • an embodiment of the present invention further provides a DTX detection apparatus, including a signal receiving module, a bit extraction module, a polarization processing module, a calculation module, and a determination module;
  • the signal receiving module is configured to receive a feedback signal sent by the uplink terminal
  • the bit extraction module is configured to extract information bits set to perform DTX detection in the feedback signal
  • the polarization processing module is configured to perform polarity-division processing on the extracted information bits
  • the calculating module is configured to obtain a DTX detection value according to information bits of different polarities
  • the determining module is configured to compare the DTX detection value with a preset DTX detection threshold, and determine, according to the comparison result, whether the uplink terminal is in a DTX state.
  • the bit extraction module includes an original bit extraction sub-module and a parity bit extraction sub-module; or includes an original bit extraction sub-module, a parity bit extraction sub-module, and a placeholder bit extraction sub-module. Or include a coded bit extraction sub-module;
  • the original bit extraction sub-module is configured to extract a raw bit of a HARQ-ACK information bit in the feedback signal when a HARQ-ACK information bit included in the feedback signal is less than or equal to 2 bits;
  • the check bit extraction submodule is configured to extract a check bit of a HARQ-ACK information bit in the feedback signal when a HARQ-ACK information bit included in the feedback signal is less than or equal to 2 bits;
  • the placeholder bit extraction submodule is configured to extract a placeholder bit of the HARQ-ACK information bit in the feedback signal when the HARQ-ACK information bit included in the feedback signal is less than or equal to 2 bits;
  • the coded bit extraction submodule is configured to extract coded bits of the HARQ-ACK information bits in the feedback signal when the HARQ-ACK information bits included in the feedback signal are greater than 2 bits.
  • the calculation module when the bit extraction module includes an original bit extraction sub-module and a check bit extraction sub-module, the calculation module includes a first detection value calculation sub-module; the bit extraction module includes an original The bit extraction sub-module, the check bit extraction sub-module, and the placeholder bit extraction sub-module, the calculation module includes a first detection value calculation sub-module and a second detection value calculation sub-module; the bit extraction module includes coded bit extraction The sub-module, the calculation module includes a third detection value calculation sub-module;
  • the first detection value calculation sub-module is configured as a first DTX detection value obtained according to information bits of different polarities of the original bit and the check bit, and the DTX detection threshold includes a first DTX detection threshold;
  • the second detection value calculation sub-module is configured as a second detection value obtained according to information bits of different polarity of the occupancy bit, and the DTX detection threshold further includes a second DTX detection threshold;
  • the third detection value calculation sub-module is configured as a third DTX detection value obtained according to information bits of different polarities of the coding bits, and the DTX detection threshold includes a third DTX detection threshold.
  • the determining module when the bit extraction module includes an original bit extraction sub-module and a check bit extraction sub-module, includes a first determining sub-module configured to detect the first DTX. The value is compared with the first DTX detection threshold, and if the value is smaller than the first DTX detection threshold, determining that the uplink terminal is in a DTX state;
  • the determining module includes a first determining sub-module and a second determining sub-module; the second determining sub-module The module is configured to compare the second DTX detection value with the second DTX detection threshold, and if less than the second DTX detection threshold, notify the first determining sub-module to use the first DTX detection value The first DTX detection threshold is compared, and if the first DTX detection threshold is smaller than the first DTX detection threshold, the uplink terminal is determined to be in a DTX state;
  • the determining module includes a third determining sub-module, configured to compare the third DTX detection value with the third DTX detection threshold, such as less than the The three DTX detection threshold determines that the uplink terminal is in the DTX state.
  • the first DTX detection value is: a ratio of an energy of a positive polarity information bit of the original bit and the parity bit and an energy sum of a negative polarity information bit, or a ratio of an absolute value of a total amplitude of the positive bit information bits of the original bit and the check bit to an absolute value of the total amplitude of the negative polarity information bits, or a total bit included in the positive polarity information bits of the original bit and the check bit
  • the first DTX detection threshold is a first DTX energy detection threshold, a first DTX amplitude detection threshold or a first DTX weight detection threshold;
  • the second DTX detection value is: a ratio of an energy of a positive polarity information bit of the placeholder bit to an energy sum of a negative polarity information bit, or an absolute amplitude of a positive polarity information bit of the placeholder bit. The ratio of the value to the absolute value of the total amplitude of the negative polarity information bits, or the ratio of the total number of bits included in the positive polarity information bits of the placeholder bits to the total number of bits included in the negative polarity information bits;
  • the second DTX detection threshold is a second DTX energy detection threshold, a second DTX amplitude detection threshold, or a second DTX weight detection threshold;
  • the third DTX detection value is: a ratio of an energy of a positive polarity information bit of the coded bit and an energy sum of a negative polarity information bit, or an absolute value of a total amplitude of a positive polarity information bit of the coded bit and a ratio of the absolute value of the total amplitude of the negative polarity information bits, or a ratio of the total number of bits included in the positive polarity information bits of the coded bits to the total number of bits included in the negative polarity information bits;
  • the three DTX detection threshold is a third DTX energy detection threshold, a third DTX amplitude detection threshold, or a third DTX weight detection threshold.
  • an embodiment of the present invention further provides a base station, including a signal receiver, a polarity selector, and a processor; the signal receiver is configured to receive a feedback signal sent by the uplink terminal;
  • the polarity selector is configured to extract information bits set to perform DTX detection in the feedback signal, and perform polarity-division processing on the extracted information bits;
  • the processor is configured to obtain a DTX detection value according to information bits of different polarities, compare the DTX detection value with a preset DTX detection threshold, and determine, according to the comparison result, whether the uplink terminal is in a DTX state.
  • the information bit set to perform DTX detection includes: HARQ-ACK in the feedback signal Raw bit of the information bit, parity bit, or original bit, parity bit and placeholder bit of the HARQ-ACK information bit in the feedback signal; when the HARQ-ACK information bit included in the feedback signal is greater than 2 bits
  • the information bits set to perform DTX detection include coded bits.
  • the DTX detection value when the information bits set to perform DTX detection include original bits and check bits, the DTX detection value includes information bits of different polarities according to the original bits and check bits. Obtaining a first DTX detection value, where the DTX detection threshold includes a first DTX detection threshold;
  • the DTX detection value includes first DTX detection obtained according to information bits of different polarities of the original bit and the check bit. a value, and a second detection value obtained according to information bits of different polarity of the placeholder bit, the DTX detection threshold including a first DTX detection threshold and a second DTX detection threshold;
  • the DTX detection value includes a third DTX detection value obtained according to information bits of different polarities of the coding bits, and the DTX detection threshold includes third DTX detection. Threshold.
  • the processor compares the DTX detection value with the DTX detection threshold, according to comparison
  • determining whether the uplink terminal is in a DTX state comprises: comparing the first DTX detection value with the first DTX detection threshold, and if the first DTX detection threshold is smaller than the first DTX detection threshold, determining that the uplink terminal is in a DTX state;
  • the processor compares the DTX detection value with the DTX detection threshold, and determines the uplink terminal according to the comparison result. Whether the DTX state is in comparison: comparing the second DTX detection value with the second DTX detection threshold, and if the second DTX detection threshold is smaller than the second DTX detection threshold, detecting the first DTX detection value and the first DTX detection The threshold is compared, and if the threshold is smaller than the first DTX, the uplink terminal is determined to be in a DTX state;
  • the processor compares the DTX detection value with the DTX detection threshold, and determines whether the uplink terminal is in a DTX state according to the comparison result, including: The third DTX detection value is compared with the third DTX detection threshold, and if the third DTX detection threshold is smaller than the third DTX detection threshold, the uplink terminal is determined to be in a DTX state.
  • the first DTX detection value is: a ratio of an energy of a positive polarity information bit of the original bit and the parity bit and an energy sum of a negative polarity information bit, or a ratio of an absolute value of a total amplitude of the positive bit information bits of the original bit and the check bit to an absolute value of the total amplitude of the negative polarity information bits, or a total bit included in the positive polarity information bits of the original bit and the check bit
  • the first DTX detection threshold is a first DTX energy detection threshold, a first DTX amplitude detection threshold or a first DTX weight detection threshold;
  • the second DTX detection value is: a ratio of an energy of a positive polarity information bit of the placeholder bit to an energy sum of a negative polarity information bit, or an absolute amplitude of a positive polarity information bit of the placeholder bit. The ratio of the value to the absolute value of the total amplitude of the negative polarity information bits, or the ratio of the total number of bits included in the positive polarity information bits of the placeholder bits to the total number of bits included in the negative polarity information bits;
  • the second DTX detection threshold is a second DTX energy detection threshold, a second DTX amplitude detection threshold, or a second DTX weight detection threshold;
  • the third DTX detection value is: a ratio of an energy of a positive polarity information bit of the coded bit and an energy sum of a negative polarity information bit, or an absolute value of a total amplitude of a positive polarity information bit of the coded bit and a ratio of the absolute value of the total amplitude of the negative polarity information bits, or a ratio of the total number of bits included in the positive polarity information bits of the coded bits to the total number of bits included in the negative polarity information bits;
  • the three DTX detection threshold is a third DTX energy detection threshold, a third DTX amplitude detection threshold, or a third DTX weight detection threshold.
  • the DTX detection method, device and base station provided by the embodiment of the present invention extract information bits set for DTX detection from the feedback signal sent by the uplink terminal, perform polarity-division processing on the extracted information bits, and further, according to information of different polarities.
  • the bit obtains the DTX detection value; compares the DTX detection value with a preset DTX detection threshold, and determines whether the uplink terminal is in the DTX state according to the comparison result. That is, the solution provided by the embodiment of the present invention can complete the DTX detection by using the polarity characteristics of the information bits, thereby greatly reducing the possibility of false detection and miss detection, and improving the accuracy of the DTX detection, especially under the small TBSize condition.
  • 1 is a resource map of transmissions on an existing PUSCH
  • FIG. 2 is a schematic flowchart of a DTX detection method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a DTX detecting apparatus provided in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of another DTX detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic flowchart of a multiplexed 1-bit HARQ-ACK detection process according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of a multiplexing 2-bit HARQ-ACK detection process according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic flowchart of a binding 1-bit HARQ-ACK detection process according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic flowchart of a binding 2-bit HARQ-ACK detection process according to Embodiment 5 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the DTX detection method provided in this embodiment includes the following steps:
  • Step 201 Receive a feedback signal sent by the uplink terminal.
  • Step 202 Extract information bits set in the feedback signal for performing DTX detection.
  • Step 203 Perform polarity-division processing on the extracted information bits.
  • Step 204 Obtain a DTX detection value according to information bits of different polarities
  • Step 205 Compare the obtained DTX detection value with a preset DTX detection threshold, and determine, according to the comparison result, whether the uplink terminal is in a DTX state; that is, determine whether the uplink terminal transmits HARQ-ACK information.
  • extracting the information bits set to perform DTX detection includes: extracting original bits and parity bits of the HARQ-ACK information bits in the feedback signal;
  • the DTX detection value at this time includes a first DTX detection value obtained according to the extracted original bits and information bits of different polarities of the parity bits, and the DTX detection threshold includes a first DTX detection threshold corresponding to the first DTX detection value; At this time, the DTX detection value is compared with the DTX detection threshold, and the uplink end is determined according to the comparison result.
  • Whether the terminal is in the DTX state includes: comparing the obtained first DTX detection value with a preset first DTX detection threshold, and if less than the first DTX detection threshold, determining that the uplink terminal is in a DTX state; if the first DTX detection value is If the first DTX detection threshold is greater than the preset value, it is determined that the uplink terminal transmits the HARQ-ACK information, and the DTX is 0, that is, the uplink terminal is in the non-DTX state.
  • Solution 2 When the HARQ-ACK information bit included in the feedback signal is less than or equal to 2 bits, the original bit, the check bit and the placeholder bit of the HARQ-ACK information bit in the feedback signal are extracted.
  • the DTX detection value at this time includes a first DTX detection value obtained according to the extracted information bits of different polarities of the original bit and the check bit, and a second detection value obtained according to the information bits of different polarities of the extracted placeholder bits, DTX
  • the detection threshold includes a first DTX detection threshold and a second DTX detection threshold respectively corresponding to the first DTX detection value and the second DTX detection value.
  • extracting the information bit set to perform DTX detection includes: extracting the coded bit of the HARQ-ACK information bit in the feedback signal;
  • the DTX detection value at this time includes a third DTX detection value obtained according to information bits of different polarities of the extracted coded bits, and the DTX detection threshold includes a third DTX detection threshold corresponding to the third DTX detection value;
  • the first DTX detection value may be any one of the following detection values:
  • the first DTX detection thresholds respectively correspond to a first DTX energy detection threshold (A11), a first DTX amplitude detection threshold (A22) or a first DTX weight detection threshold (A33).
  • the second DTX detection value may also be any one of the following detection values:
  • the second DTX detection threshold is a second DTX energy detection threshold (B11), a second DTX amplitude detection threshold (B22) or a second DTX weight detection threshold (B33).
  • the third DTX detection value may also be any one of the following detection values:
  • the third DTX detection threshold is a third DTX energy detection threshold (C11), a third DTX amplitude detection threshold (C22) or a third DTX weight detection threshold (C33).
  • the DTX detection process involves a comparison of the second DTX detection value and the second DTX detection threshold and a comparison between the first DTX detection value and the first DTX detection threshold
  • the different types of detection values and the above may be specifically adopted.
  • Detect any combination of thresholds the second DTX detection value and the second DTX detection threshold may adopt B1 and B11, or B2 and B22, or B3 and B33, respectively
  • the first DTX detection value and the first DTX detection threshold may adopt A1 and A11, respectively, or A2.
  • A22, or A3 and A33 may be specifically adopted.
  • the 3GPP protocol defines different encoding modes of less than 3 (ie, 2 bits or less) bits and HARQ-ACKs larger than 2 bits (ie, 3 bits or more), when less than 3 bits,
  • the encoding mode of 1 bit and 2 bits is defined according to different modulation methods. For details, refer to Table 1 and Table 2 below, respectively, and then construct a bit sequence of defined length by means of cyclic connection.
  • the bits are called raw bits; for the y bits in Table 1 and in Table 2 The bit is called a parity bit, where The x bits in Table 1 and the x bits in Table 2 are called placeholder bits.
  • the corresponding bits in the coding mode used for more than 2 bits can also be divided into original bits, parity bits and placeholder bits according to the above correspondence relationship.
  • the RM coding mode is adopted. First, the RM code generates bit information of length 32, and then generates information bits of a defined length by using a cyclic connection. The transmitting end maps to the corresponding resource location by using the constructed HARQ-ACK information bits. If it is in the binding mode, the structured information bits are first scrambled by the Walsh sequence, and then mapped to the corresponding resource location for transmission.
  • the HARQ-ACK information bit included in the feedback signal is 1 bit
  • the original bit is Bit
  • the check bit is y bit
  • the place bit is x bit
  • the original bit is Check bit is The placeholder bits are x bits.
  • the RM code is generally used to obtain a coded sequence of a specified length, and corresponding coded bits can be obtained from the sequence.
  • the process of performing polarity processing on the extracted information bits in the foregoing schemes 1 and 2 includes:
  • the extracted information bits are input to the polarity selection module for polarization, and then the obtained positive and negative information bits are respectively input to the corresponding positive polarity end and negative polarity end.
  • a polarity selection module and a corresponding positive and negative polarity end may be specifically set for the place bit, so as to exclusively occupy
  • the bit bits are subjected to polarization processing.
  • the extracted information bits can be directly used for polarity selection, and then input to the positive polarity terminal and the negative polarity terminal or the polarity selector of the placeholder bit respectively; if it is 2 (or greater than 2 bits)
  • bit HARQ-ACK use the above table 2
  • a three-bit relationship acquires information bits corresponding to three bits in a maximum likelihood manner. Eight possibilities for traversing three bits can be used. Since the probability of detecting errors when transmitting HARQ-ACK is small, for the simplicity of implementation, it is only necessary to traverse four possibilities for maximum likelihood selection when performing corresponding bit selection. The so-called four possibilities and three kinds of information bits satisfy the four combinations of the relationship between the three, respectively expressed as with Then, the detected bit information is multiplied by the extracted corresponding bits, and then the multiplied information bits are subjected to polarity selection.
  • the polarity-division processing of the extracted information bits may be specifically selected according to different lengths of the coding sequences.
  • An illustrative description is given below:
  • the length of the encoded bit sequence is 32. Then, the way of cyclic copying is connected to the bit sequence of the length required for encoding. Because, after using RM coding, the polarity characteristics of the bit sequence do not satisfy certain rules in the case of 1 bit and 2 bits, and the polarity of the bit information after descrambling is simply determined to perform false detection of DTX detection. phenomenon.
  • the polarity of the extracted bit information before the RM decoding is related to the base sequence used for the RM encoding. Therefore, it is determined whether there is a certain false detection according to the unipolar characteristic. phenomenon. Therefore, in the preferred embodiment, for the polarity determination of 3 bits, the following example can be used to determine:
  • the DTX decision is performed by using the same polarity of the RM coded bit information of the 32-length and the polarity of the corresponding copy bit information; the specific operation may use a coded bit for a 32-bit length.
  • the polarity judgment is performed on all the copy bit information corresponding thereto, and if the polarity is the same, the storage judgment result is 1, otherwise the storage judgment result is 0.
  • 32 bits are compared with all of the copied bits, and then the result of the judgment is stored one by one.
  • the ratio of the number of judgments 1 to the number of judgments 0 in all the judgment results is counted (it should be understood that it can also be converted into the number of judgments of 1 and the total number of judgments. Ratio, or statistically calculate the ratio of the sum of the energy of all corresponding bit information to the total energy to obtain a third DTX detection value, and then compare the ratio with the corresponding third DTX detection threshold, if greater than the third DTX detection threshold It is considered to be non-DTX, otherwise it is DTX.
  • this embodiment further provides another method for encoding length limitation, which is also applicable when the number of coding bits is greater than 64, as follows: First, the extracted descrambled bit information is re-created.
  • the summation processing performs the following operations according to the bit information of a column in which there is no zero-padding, preferably performs a summation process; and then performs RM decoding processing, and can select a decoding process using the Hadamard matrix to select an absolute value thereof.
  • the largest corresponding decoding process obtains a sequence of length 32 as the final extracted coding ratio set for DTX detection.
  • the polarity selector perform polarity selection, judge according to the ratio of the ratio of the two polarities or the ratio of the amplitudes and the corresponding threshold value, and judge whether it is DTX.
  • step 205 when it is determined that the uplink terminal transmits the HARQ-ACK information, in this embodiment, it may be further determined, according to the bit amplitude and the direction, whether the uplink terminal specifically transmits an ACK or a NACK.
  • this embodiment can also use two or more detection methods to perform DTX detection, in order to comprehensively utilize the advantages of each solution, avoid the influence of each shortcoming of each solution, improve the detection performance of DTX, and reduce the missed detection. And the probability of false detection.
  • the method further includes:
  • the condition is whether the SNR (Signal to Noise Ratio) is greater than the signal to noise ratio threshold M db, and/or whether the TBSize is smaller than the transport block size threshold.
  • DTX detection In this embodiment, the HARQ-ACK bit information length value or the like may also be transmitted as the activation decision basis of various methods.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the device includes a signal receiving module, a bit extraction module, a polarization processing module, a calculation module, and a determination module, where:
  • the signal receiving module is configured to receive a feedback signal sent by the uplink terminal
  • bit extraction module configured to extract information bits set to perform DTX detection in the feedback signal
  • the polarization processing module is configured to perform polarity processing on the extracted information bits
  • the calculation module is configured to obtain a DTX detection value according to information bits of different polarities
  • the determining module is configured to compare the obtained DTX detection value with a preset DTX detection threshold, and determine, according to the comparison result, whether the uplink terminal is in a DTX state.
  • the bit extraction module in the embodiment may include different sub-modules according to different specific bit information extracted therefrom. For example, when it corresponds to the first solution in the first embodiment, it specifically includes an original bit extraction sub-module and a check bit extraction sub-module; when corresponding to the second solution in the first embodiment, it specifically includes an original bit extraction sub-module and a checksum.
  • the role of each sub-module is as follows:
  • the original bit extraction sub-module is configured to extract original bits of the HARQ-ACK information bits in the feedback signal
  • the check bit extraction submodule is configured to extract a check bit of the HARQ-ACK information bit in the feedback signal
  • the placeholder bit extraction submodule is configured to extract a placeholder bit of the HARQ-ACK information bit in the feedback signal
  • the coded bit extraction sub-module is arranged to extract coded bits of HARQ-ACK information bits in the feedback signal.
  • the calculation module includes the first detection value calculation sub-module; corresponding to the second scheme in the first embodiment
  • the calculation module includes a first detection value calculation sub-module and a second detection value calculation sub-module; corresponding to the above embodiment
  • the calculation module includes a third detection value calculation submodule;
  • the first detection value calculation sub-module is configured as a first DTX detection value obtained according to information bits of different polarities of the original bit and the check bit, and the DTX detection threshold includes a first DTX detection threshold;
  • the second detection value calculation sub-module is set to a second detection value obtained according to information bits of different polarity of the occupancy bit, and the DTX detection threshold further includes a second DTX detection threshold;
  • the third detection value calculation sub-module is set to a third DTX detection value obtained according to information bits of different polarities of the coding bits, and the DTX detection threshold includes a third DTX detection threshold;
  • the judging module includes the first judging submodule and the second judging a sub-module; the second determining sub-module is configured to compare the second DTX detection value with the second DTX detection threshold, and if the second DTX detection value is greater than the second DTX detection threshold, indicating that the uplink terminal transmits the HARQ-ACK information, where
  • the DTX detection apparatus may further include a policy selection module, configured to determine whether the current polarity determination method is used to detect DTX before the bit extraction module extracts information bits from the feedback signal.
  • the HARQ-ACK bit information length value or the like may also be transmitted as the activation decision basis of various methods. In this way, two or more detection methods can be combined to perform DTX detection, so as to comprehensively utilize the advantages of each scheme, avoid the influence of each scheme's respective shortcomings, improve the detection performance of DTX, and reduce the probability of missed detection and false detection.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment provides a base station, as shown in FIG. 5, including a signal receiver, a polarity selector, and a processor, where:
  • the signal receiver is configured to receive a feedback signal sent by the uplink terminal
  • the polarity selector is configured to extract information bits set to perform DTX detection in the feedback signal, and perform polarity-division processing on the extracted information bits;
  • the processor is configured to obtain a DTX detection value according to information bits of different polarities, compare the DTX detection value with a preset DTX detection threshold, and determine, according to the comparison result, whether the uplink terminal is in a DTX state.
  • the extracted information bits set to perform DTX detection include: original bits of the HARQ-ACK information bits in the feedback signal, check bits, or original bits of the HARQ-ACK information bits in the feedback signal, check bits and A placeholder bit, or a coded bit of a HARQ-ACK information bit in the feedback signal. That is, the first one or the second one or the third one in the first embodiment can also be used.
  • the DTX detection value includes a first DTX detection value obtained according to information bits of different polarities of the original bits and the check bits, and the corresponding DTX detection threshold includes the first DTX detection threshold.
  • a preset first DTX detection threshold such as less than Determining, by the first DTX detection threshold, that the uplink terminal is in a DTX state
  • the DTX detection value includes a first DTX detection value obtained according to information bits of different polarities of the original bit and the check bit, and according to the placeholder bit
  • the second detection value obtained by the information bits of different polarities correspondingly, the DTX detection threshold includes a first DTX detection threshold and a second DTX detection threshold.
  • the processor compares the DTX detection value with the DTX detection threshold, and determining whether the uplink terminal is in the DTX state according to the comparison result includes: first comparing the second DTX detection value with the second DTX detection threshold, such as the second DTX detection.
  • the DTX detection value at this time includes a third DTX detection value obtained according to information bits of different polarities of the extracted coded bits, and the DTX detection threshold value includes a third DTX detection value corresponding to the third DTX detection value.
  • the third DTX detection threshold is compared.
  • the DTX detection value is compared with the DTX detection threshold, and determining whether the uplink terminal is in the DTX state according to the comparison result includes: comparing the obtained third DTX detection value with a preset third DTX detection threshold.
  • the first DTX detection value may also be any one of the following detection values:
  • the first DTX detection thresholds respectively correspond to a first DTX energy detection threshold (A11), a first DTX amplitude detection threshold (A22) or a first DTX weight detection threshold (A33).
  • the second DTX detection value may also be any one of the following detection values:
  • the second DTX detection threshold is a second DTX energy detection threshold (B11), a second DTX amplitude detection threshold (B22) or a second DTX weight detection threshold (B33).
  • the third DTX detection value may also be any one of the following detection values:
  • the third DTX detection threshold is a third DTX energy detection threshold (C11), a third DTX amplitude detection threshold (C22) or a third DTX weight detection threshold (C33).
  • the DTX detection process involves a comparison of the second DTX detection value and the second DTX detection threshold and a comparison between the first DTX detection value and the first DTX detection threshold
  • the different types of detection values and the above may be specifically adopted.
  • Detect any combination of thresholds the second DTX detection value and the second DTX detection threshold may adopt B1 and B11, or B2 and B22, or B3 and B33, respectively
  • the first DTX detection value and the first DTX detection threshold may adopt A1 and A11, respectively, or A2.
  • A22, or A3 and A33 may be specifically adopted.
  • the processor may be further configured to: after the signal receiver receives the feedback signal, the polarity selector is configured to determine whether the current polarity is satisfied before extracting the information bit set in the feedback signal for performing DTX detection.
  • the method detects the condition of the DTX, for example, the condition is whether the SNR is greater than Mdb, and/or the TBSize is less than 144; if yes, the bit extraction module is notified to perform the subsequent steps; otherwise, other detections may be selected according to preset rules.
  • the HARQ-ACK bit information length value or the like may also be transmitted as the activation decision basis of various methods.
  • two or more detection methods can be combined to perform DTX detection, so as to comprehensively utilize the advantages of each scheme, avoid the influence of each scheme's respective shortcomings, improve the detection performance of DTX, and reduce the probability of missed detection and false detection.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment further exemplifies the present invention by the DTX detection process during 1-bit and 2-bit HARQ-ACK transmission when HARQ-ACK multiplexing is transmitted on the PUSCH.
  • the DTX detection process is similar to that of the 2-bit HARQ-ACK transmission, and details are not described herein again.
  • the specific implementation steps are as follows:
  • FIG. 6 shows a schematic diagram of a multiplexed 1-bit HARQ-ACK detection process, which specifically includes:
  • Step 601 Extract information bits that need to be used for performing DTX detection from the soft information descrambled by the codeword, and the 1 bit includes Bit, y bit or Bit, y-bit, x-bit two schemes; for x-bits, mainly placeholders added in 16QAM and 64QAM modulation modes. Therefore, in the process of this step, if you need to use x bits, extract them according to their corresponding positions. Bit, y bit and x bit; if x bit information is not needed, only the corresponding position is extracted Bit, y bit.
  • the DTX decision using x bits is not considered in this embodiment, assuming all extracted
  • the bits and y bits are denoted as o i , y j, respectively ;
  • Step 602 Put the extracted original information bits ( Bit) and y bit polarity selector for polarity selection;
  • Step 603 input information bits with positive polarity and negative polarity to the corresponding positive and negative polarity terminals respectively; for 1-bit HARQ-ACK, the extracted information bits can be directly used for polarity selection, and then input to the respective Positive and negative ends.
  • Step 604 Acquire the first DTX detection value.
  • the sum of the amplitudes of the positive and negative polarity information bits may be respectively obtained, and then the ratio between the two values is calculated, and the maximum value of the two values is selected as the first DTX detection. value.
  • the ratio of the sum of the number of positive and negative information bits can also be used, and the maximum of the two values is obtained as the first DTX detection value;
  • Step 605 Determine whether the first DTX detection value is greater than the corresponding first DTX detection threshold, and if so, go to step 606; otherwise, go to step 607;
  • FIG. 7 shows a schematic diagram of a multiplexed 2-bit HARQ-ACK detection process, which specifically includes:
  • Step 701 Extract information bits that need to be used for performing DTX detection from the soft information descrambled by the codeword, where the 2 bits include or Both the x-bit scheme and the x-bit are mainly placeholders added in the 16QAM and 64QAM modulation modes. Therefore, in the process of this step, if you need to use x bits, extract them according to their corresponding positions. And x bits; if x bits of information are not needed, only the corresponding positions are extracted The DTX decision using x bits is not considered in this embodiment, assuming all extracted Expressed as with
  • Step 702 Acquire corresponding bits of three bits; due to the condition of 2 bits, it may be that the first-class ACK is sent, that is, '1' is sent, and the first-class may send NACK, that is, send '0', or both streams send ACK or NACK, for this problem, it is necessary to detect the extracted three bits of soft information.
  • the time of detection there are 23 combinations of three information bits, but they are satisfied.
  • the maximum likelihood method can be used to traverse the 2 3 combinations or satisfy the four combinations of the three-bit relationships.
  • the probability of correct detection can be very high when the detection is missed. Therefore, in the process of performing this operation, the present embodiment preferentially selects four combinations that satisfy the three-bit relationship for detection, and obtains the combination with the highest correlation, which is respectively expressed as with
  • Step 703 The obtained with with Multiply and select the polarity, with As shown in Table 3,
  • Step 704 Input information bits with positive polarity and negative polarity to the corresponding positive and negative polarity terminals respectively;
  • Step 705 Acquire the first DTX detection value.
  • the sum of the amplitudes of the positive and negative polarity information bits may be respectively obtained, and then the ratio between the two values is calculated, and the maximum value of the two values is selected as the first DTX detection. value.
  • the ratio of the sum of the number of positive and negative information bits can also be used, and the maximum of the two values is obtained as the first DTX detection value;
  • Step 706 Determine whether the first DTX detection value is greater than the corresponding first DTX detection threshold, and if so, go to step 707; otherwise, go to step 708;
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • DTX detection during 1-bit and 2-bit HARQ-ACK transmission is performed when HARQ-ACK binding is transmitted on the PUSCH.
  • the DTX detection process is similar to that of the 2-bit HARQ-ACK transmission, and details are not described herein again.
  • the binding mode differs from the multiplexing mode in that the Walsh sequence is added to scramble when encoding at the originating end, so the process of decoding the Walsh sequence is added when decoding.
  • FIG. 8 is a schematic diagram of a 1-bit HARQ-ACK detection process when the UE is bound to transmit on the PUSCH, and specifically includes:
  • Step 801 Extract information bits that need to be used for performing DTX detection from the soft information descrambled by the codeword, and the 1 bit includes Bit, y bit or Bit, y-bit, x-bit two schemes; this embodiment uses extraction Bit, y-bit, x-bit scheme;
  • Step 802 Perform a Walsh sequence descrambling process. If the Walsh sequence number is known, the Walsh sequence is directly used to perform the Walsh operation on the extracted soft information; if the Walsh serial number is not known, the Walsh serial number is first obtained, and the current 36.212 protocol is obtained. Four Walsh sequences are defined, and the Walsh serial number is usually obtained by the maximum likelihood method, which is not described in detail here; it is assumed that the Walsh sequence is 1 bit after the solution.
  • the bits and y bits and the x bits are denoted as o i , y j, or x s , respectively ;
  • Step 803 Input o i , y j, and x s obtained after solving the Walsh sequence into the corresponding polarity selector;
  • Step 804 input information bits with positive polarity and negative polarity to the corresponding polarity ends respectively; it should be noted that when polarity selection is performed, positive polarity and negative polarity after x bit polarity selection are selected. The soft information is input to its independent polarity end;
  • Step 805 Acquire a second DTX detection value and a first DTX detection value;
  • the second DTX detection value is a ratio of the amplitude (power) of the extreme acquisition positive and negative polarity bits of the X bit, or the number of positive and negative bits.
  • the first DTX detection value is the ratio of the sum of the amplitudes (power) of the extreme positive and negative polarity bits of the non-X bits (ie, the original bits and the check bits) or the sum of the number of positive and negative bits.
  • the first DTX is selected.
  • the detection value and the second DTX detection value respectively obtain a ratio of the sum of the number of positive and negative bits of the X-bit extreme to the sum of the amplitudes of the positive and negative polarities of the non-X-bit extreme;
  • Step 806 Perform DTX determination, specifically: first compare the second DTX detection value with the corresponding second DTX detection threshold, if it is greater than the second DTX detection threshold, go to step 807; otherwise, the first DTX detection The value is compared with the first DTX detection threshold, if it is less than the first DTX detection threshold, go to step 808; otherwise, go to step 807;
  • the figure shows a 2-bit HARQ-ACK detection process when the packet is transmitted on the PUSCH, and specifically includes:
  • Step 901 Extract information bits that need to be used for performing DTX detection from the soft information descrambled by the codeword, where the 2 bits include or And x-bit two schemes; this embodiment uses extraction And x such a scheme;
  • Step 902 Perform a Walsh sequence descrambling process. If the Walsh sequence number is known, the Walsh sequence is directly used to perform the Walsh operation on the extracted soft information; if the Walsh serial number is not known, the Walsh serial number is first obtained, and the current 36.212 protocol is currently used. Four Walsh sequences are defined, and the Walsh serial number is usually obtained by the maximum likelihood method, which is not described in detail here; And x bits are represented as with And x s . It should be noted that if X-bit information is not needed when performing DTX detection, X-bit processing is not required; in the description of this embodiment, X-bit information is used for DTX decision;
  • Step 903 Acquire corresponding bits of three bits; due to the condition of 2 bits, it may be that the first-class ACK is sent, that is, '1' is sent, and the first-class may send NACK, that is, send '0', or both streams send ACK or NACK, for this problem, it is necessary to perform detection on the extracted three bits of soft information.
  • the time of detection there are 23 combinations of three information bits, but they are satisfied. There are only four combinations of three information bit relationships.
  • the maximum likelihood method can be used to traverse the 2 3 combinations or satisfy the four combinations of the three-bit relationships. Considering the complexity of the implementation, the probability of correct detection can be very high when the detection is missed. Therefore, in the process of performing this operation, the present embodiment preferentially selects four combinations that satisfy the three-bit relationship for detection, and obtains the combination with the highest correlation, which is respectively expressed as with
  • Step 904 Obtaining the solution after obtaining the Walsh sequence with Multiplying x s with the extracted corresponding bits, and then performing polarity selection on the multiplied information bits;
  • Step 905 input information bits with positive polarity and negative polarity to the corresponding polarity ends respectively; it should be noted that when polarity selection is performed, the positive polarity and the negative polarity after selecting the x-bit polarity are selected. The soft information is input to its independent polarity end;
  • Step 906 Acquire a second DTX detection value and a first DTX detection value;
  • the second DTX detection value is a ratio of the amplitude (power) of the extreme acquisition positive and negative polarity bits of the X bit, or the number of positive and negative bits.
  • the first DTX detection value is the ratio of the sum of the amplitudes (power) of the extreme positive and negative polarity bits of the non-X bits (ie, the original bits and the check bits) or the sum of the number of positive and negative bits.
  • the first DTX detection value and the second DTX detection value are respectively selected to obtain a ratio of the sum of the number of positive and negative bits of the X-bit extreme to the sum of the amplitudes of the positive and negative polarities of the non-X-bit extreme;
  • Step 907 Perform DTX determination, specifically: first compare the second DTX detection value with the corresponding second DTX detection threshold, if it is greater than the second DTX detection threshold, go to step 908; otherwise, the first DTX detection The value is compared with the first DTX detection threshold, if it is less than the first DTX detection threshold, go to step 909; otherwise, go to step 908;
  • the solution provided by the present invention can complete the DTX detection by utilizing the polarity characteristics of the information bits, thereby greatly reducing the possibility of false detection and miss detection, and improving the accuracy of the DTX detection, especially under the condition of small TBSize.
  • the DTX detection method, apparatus, and base station provided by the embodiments of the present invention have the following beneficial effects: the problem of low DTX detection accuracy in the related art is solved, and the DTX detection can be completed by using the polarity characteristics of the information bits. It can greatly reduce the possibility of false detection and missed detection, and improve the accuracy of DTX detection, especially under small TBSize conditions.

Abstract

本发明公开了一种DTX检测方法、装置及基站,从上行终端发送的反馈信号中提取设置为进行DTX检测的信息比特,将提取的信息比特进行分极性处理;进而根据不同极性的信息比特得到DTX检测值;将该DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态。也即,本发明提供的方案利用信息比特的极性特点完成DTX检测,可大大降低误检和漏检的可能性,提升DTX检测的精度,尤其是在小TBSize条件下。

Description

DTX检测方法、装置及基站 技术领域
本发明涉及通信领域,具体涉及一种DTX(Discontinuous Transmission,不连续传输)检测方法、装置及基站。
背景技术
3GPP TS 36.212协议中定义了上行控制信息UCI可以在物理上行控制信道PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)上或者在PUSCH(Physical Uplink Shared Channel,物理上行业务共享信道)上传输,传输模式包括绑定模式和复用模式。例如,请参见图1所示的UL-SCH(Uplink Shared Channel,上行共享信道)和控制信息在PUSCH上传输资源映射图。为了防止数据包的丢失,协议中定义了HARQ(Hybrid Automatic Repeat Request,混合自动重传)重传机制,HARQ重传的触发指令与指定的数据包存在一定的间隔,对于FDD(Frequency Division Duplex,频分双工)来说该值为固定值,而对于TDD(Time Division Duplex,时分双工)来说,该值与上下行配置有关,具体在3GPP TS 36.213协议中作了定义。触发指令指的是终端接收到一个数据包,所作的响应反馈信号,如果正确接收到该包,则终端在指定的子帧上发射确认信号,即ACK信号,如果没有正确接收数据包,终端同样会在指定的子帧上反馈非确认信号,即NACK信号。另外,终端也有可能没有检测到来自基站的反馈信号,在这种情况下,终端不能接收到相应的数据包,则终端会进行DTX(Discontinuous Transmission,不连续传输)传输。也就是说,基站在对反馈信号进行检测的时候,检测的结果可能是ACK,NACK或者DTX。
由于下行DCI0(DCI,Downlink Control Information,下行控制信息,其格式0,简称DCI0)存在一定概率的丢失事件,因此需要通过一定的检测方式来判断此次PUSCH传输是否有效,以决定MAC是否需要重发新的DCI0,以减少HARQ失败次数。但在此判断过程中,会有较大的漏检概率。因此,可以通过UCI DTX检测来进一步提升PUSCH激活判断的准确性。
DTX情况涉及发送特定UE的DL(Downlink,下行链路)资源分配许可的失败。当DL资源分配失败时,从给定的UL(Uplink,上行链路)子帧遗漏与PDCCH/PDSCH相关的HARQ-ACK(从ACK/NACK角度,这是DTX,因为UE已出于无论什么原因遗漏了DL分配,并且因此没有理由发送HARQ-ACK或者将其包括在UL子帧中。然 而,基站不能知道HARQ-ACK不存在,结果,不正确地解释来自UE的接收。其中DTX检测过程中,存在着两种误差,第一种误差称为误检,也就是把DTX错误的检测为HARQ-ACK。第二种误差类型称为漏检,就是把HARQ-ACK检测为DTX。无论哪种误差概率,其性能目标值要小于1%。因此,为了提高DTX检测性能,降低检测误差概率,出现了各种的检测方法,主要包括恒定误警率检测方法和动态阀值检测方法两大类。恒定误警率检测方法主要指的是在发DTX情况下,允许存在一定的错误检测概率;动态阀值检测方法主要思想是使用反映在被估计的信号幅度瞬时传输信道状态信息,调整HARQ-ACK的发生功率,降低HARQ-ACK信号对其它信号的干扰。动态阀值检测方法中的阀值是信号幅度估计值与一个常量的乘积,而这个常量值与信道、终端移动速度、天线分集以及功率偏移值有关。恒定误警率检测方法是目前采用的主要方法,常见的有利用噪声功率和信号功率的比值或者SINR与阈值比较进行DTX判决,但是该方法阈值波动性比较大且误差精度也相对比较低,尤其是在小TBSize(Transport Block Size,传输块大小)条件下。
发明内容
本发明实施例提供了一种DTX检测方法、装置及基站,以至少解决相关技术中DTX检测精度低的问题。
为至少解决上述技术问题,本发明实施例提供一种DTX检测方法,包括:
接收上行终端发送的反馈信号;
提取该反馈信号中设置为进行DTX检测的信息比特;
将提取的信息比特进行分极性处理;
根据不同极性的信息比特得到DTX检测值;
将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
在本发明的一种实施例中,当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,所述设置为进行DTX检测的信息比特包括:所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特,或所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特;当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,所述设置为进行DTX检测的信息比特包括编码比特。
在本发明的一种实施例中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,或包括编码比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值包括第一DTX检测阈值和第二DTX检测阈值;
所述设置为进行DTX检测的信息比特包括编码比特时,所述DTX检测值包括根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
在本发明的一种实施例中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述设置为进行DTX检测的信息比特包括编码比特时,将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
在本发明的一种实施例中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
在本发明的一种实施例中,当所述反馈信号中包含的HARQ-ACK信息比特为1比特时,所述原始比特为
Figure PCTCN2015071665-appb-000001
比特,所述校验比特为y比特,所述占位比特为x比特;当所述反馈信号中包含的HARQ-ACK信息比特为2比特时,所述原始比特为
Figure PCTCN2015071665-appb-000002
所述校验比特为
Figure PCTCN2015071665-appb-000003
所述占位比特为x比特。
在本发明的一种实施例中,在提取该反馈信号中设置为进行DTX检测的信息比特之前,还包括;
判断当前是否满足采用极性判断方法检测DTX的条件;所述条件为判断信噪比是否大于信噪比阈值M,和/或传输块大小是否小于传输块大小阈值N。
为了解决上述问题,本发明实施例还提供了一种DTX检测装置,包括信号接收模块、比特提取模块、分极处理模块、计算模块以及判断模块;
所述信号接收模块设置为接收上行终端发送的反馈信号;
所述比特提取模块设置为提取所述反馈信号中设置为进行DTX检测的信息比特;
所述分极处理模块设置为将提取的信息比特进行分极性处理;
所述计算模块设置为根据不同极性的信息比特得到DTX检测值;
所述判断模块设置为将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
在本发明的一种实施例中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块;或包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块;或包括编码比特提取子模块;
所述原始比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的原始比特;
所述校验比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的校验比特;
所述占位比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的占位比特;
所述编码比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,提取所述反馈信号中HARQ-ACK信息比特的编码比特。
在本发明的一种实施例中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块时,所述计算模块包括第一检测值计算子模块;所述比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,所述计算模块包括第一检测值计算子模块和第二检测值计算子模块;所述比特提取模块包括编码比特提取子模块时,所述计算模块包括第三检测值计算子模块;
所述第一检测值计算子模块设置为根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
所述第二检测值计算子模块设置为根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值还包括第二DTX检测阈值;
所述第三检测值计算子模块设置为根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
在本发明的一种实施例中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块时,所述判断模块包括第一判断子模块,设置为将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,所述判断模块包括第一判断子模块和第二判断子模块;所述第二判断子 模块设置为将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,通知所述第一判断子模块将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述比特提取模块包括编码比特提取子模块时,所述判断模块包括第三判断子模块,设置为将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
在本发明的一种实施例中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
为了解决上述问题,本发明实施例还提供了一种基站,包括信号接收器、极性选择器以及处理器;所述信号接收器设置为接收上行终端发送的反馈信号;
所述极性选择器设置为提取所述反馈信号中设置为进行DTX检测的信息比特,将提取的信息比特进行分极性处理;
所述处理器设置为根据不同极性的信息比特得到DTX检测值,将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
在本发明的一种实施例中,当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,所述设置为进行DTX检测的信息比特包括:所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特,或所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特;当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,所述设置为进行DTX检测的信息比特包括编码比特。
在本发明的一种实施例中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值包括第一DTX检测阈值和第二DTX检测阈值;
所述设置为进行DTX检测的信息比特包括编码比特时,所述DTX检测值包括根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
在本发明的一种实施例中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
所述设置为进行DTX检测的信息比特包括编码比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
在本发明的一种实施例中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
本发明实施例的有益效果是:
本发明实施例提供的DTX检测方法、装置及基站,从上行终端发送的反馈信号中提取设置为进行DTX检测的信息比特,将提取的信息比特进行分极性处理;进而根据不同极性的信息比特得到DTX检测值;将该DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态。也即,本发明实施例提供的方案可利用信息比特的极性特点完成DTX检测,因此可大大降低误检和漏检的可能性,提升DTX检测的精度,尤其是在小TBSize条件下。
附图说明
图1为现有PUSCH上传输的资源映射图;
图2为本发明实施例一中提供的DTX检测方法流程示意图;
图3为本发明实施例二中提供的DTX检测装置结构示意图;
图4为本发明实施例二中提供的另一DTX检测装置结构示意图;
图5为本发明实施例三中提供的基站结构示意图;
图6为本发明实施例四中提供的复用1比特的HARQ-ACK检测流程示意图;
图7为本发明实施例四中提供的复用2比特的HARQ-ACK检测流程示意图;
图8为本发明实施例五中提供的绑定1比特的HARQ-ACK检测流程示意图;
图9为本发明实施例五中提供的绑定2比特的HARQ-ACK检测流程示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
请参见图2所示,本实施例提供的DTX检测方法包括以下步骤:
步骤201:接收上行终端发送的反馈信号;
步骤202:提取该反馈信号中设置为进行DTX检测的信息比特;
步骤203:将提取的信息比特进行分极性处理;
步骤204:根据不同极性的信息比特得到DTX检测值;
步骤205:将得到的DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定该上行终端是否处于DTX状态;也即确定该上行终端是否传输了HARQ-ACK信息。
在本实施例中,上述步骤202中提取反馈信号中设置为进行DTX检测的信息比特可以采用的不同的方案,下面仅以三种提取方案作为示例行的说明:
方案一:当反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取设置为进行DTX检测的信息比特包括:提取该反馈信号中HARQ-ACK信息比特的原始比特、校验比特;
此时的DTX检测值包括根据提取的原始比特和校验比特的不同极性的信息比特得到的第一DTX检测值,DTX检测阈值包括与该第一DTX检测值对应的第一DTX检测阈值;此时将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终 端是否处于DTX状态包括:将得到的第一DTX检测值与预设的第一DTX检测阈值进行比较,如小于第一DTX检测阈值,则判定该上行终端处于DTX状态;如果第一DTX检测值大于预设的第一DTX检测阈值,则判定该上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态。
方案二:当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取该反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特。此时DTX检测值包括根据提取的原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据提取的占位比特不同极性的信息比特得到的第二检测值,DTX检测阈值包括分别与第一DTX检测值和第二DTX检测值对应的第一DTX检测阈值和第二DTX检测阈值。此时将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态的过程包括:先将第二DTX检测值与第二DTX检测阈值进行比较,如第二DTX检测值大于第二DTX检测阈值,则表明上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态;如第二DTX检测值小于第二DTX检测阈值,则再将第一DTX检测值与第一DTX检测阈值进行比较,如第一DTX检测值小于第一DTX检测阈值,则判定上行终端处于DTX状态;否则,判定该上行终端传输了HARQ-ACK信息,此时DTX=0。
方案三:当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,提取设置为进行DTX检测的信息比特包括:提取该反馈信号中HARQ-ACK信息比特的编码比特;
此时的DTX检测值包括根据提取的编码比特的不同极性的信息比特得到的第三DTX检测值,DTX检测阈值包括与该第三DTX检测值对应的第三DTX检测阈值;此时将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态包括:将得到的第三DTX检测值与预设的第三DTX检测阈值进行比较,如小于第三DTX检测阈值,则判定该上行终端处于DTX状态;如果第三DTX检测值大于预设的第三DTX检测阈值,则判定该上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态。
本实施例中,第一DTX检测值可以为以下几种检测值中的任意一种:
提取的原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(A1);
提取的原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(A2);
提取的原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(A3);
对应的,第一DTX检测阈值分别对应为第一DTX能量检测阈值(A11)、第一DTX幅值检测阈值(A22)或第一DTX权重检测阈值(A33)。
本实施例中,第二DTX检测值也可以为以下几种检测值中的任意一种:
提取的占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(B1);
提取的占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(B2);
提取的占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(B3);
对应的,第二DTX检测阈值为第二DTX能量检测阈值(B11)、第二DTX幅值检测阈值(B22)或第二DTX权重检测阈值(B33)。
本实施例中,第三DTX检测值也可以为以下几种检测值中的任意一种:
提取的编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(C1);
提取的编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(C2);
提取的编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(C3);
对应的,第三DTX检测阈值为第三DTX能量检测阈值(C11)、第三DTX幅值检测阈值(C22)或第三DTX权重检测阈值(C33)。
应当理解的是,当DTX检测过程涉及到第二DTX检测值和第二DTX检测阈值的比较和第一DTX检测值和第一DTX检测阈值的比较时,具体可以采用上述不同类型的检测值和检测阈值的任意组合。例如:第二DTX检测值和第二DTX检测阈值可以分别采用B1和B11,或B2和B22,或B3和B33,第一DTX检测值和第一DTX检测阈值可以分别采用A1和A11,或A2和A22,或A3和A33。
下面对信息比特的具体提取过程结合具体的编码方式进行示例性的说明。但应当理解的是,不管编码方式如何变化,只要其提取过程遵循本方案的规则都在本方案的保护范围之内。
HARQ-ACK信息比特在发送的时候,3GPP协议定义了小于3(即小于等于2比特)比特和大于2比特(即大于等于3比特)的HARQ-ACK的不同的编码方式,小于3比特时,按照不同的调制方式定义了1比特和2比特的编码方式,具体请分别参照如下表一和表二,然后利用循环接连的方式构造出定义长度的比特序列。
表一
Figure PCTCN2015071665-appb-000004
表二
Figure PCTCN2015071665-appb-000005
对于表一中的
Figure PCTCN2015071665-appb-000006
比特和表二中的
Figure PCTCN2015071665-appb-000007
比特称为原始比特;对于表一中的y比特和表二中的
Figure PCTCN2015071665-appb-000008
比特称为校验比特,其中,
Figure PCTCN2015071665-appb-000009
表一中的x比特和表二中的x比特称为占位比特。对应的,对于大于2比特所采用的编码方式中对应的各比特也可按照上述对应关系划分成原始比特、校验比特和占位比特。而对于大于2比特的HARQ-ACK采用RM编码方式,首先RM编码生成长度为32的比特信息,然后再利用循环接连的方式生成定义长度的信息比特。发送端利用构造好的HARQ-ACK信息比特映射到相应的资源位置上。如果是绑定模式下需要先对构造的信息比特进行Walsh(沃尔什序列)序列加扰,然后再映射到相应的资源位置发送。
基于上述编码规则可知,当反馈信号中包含的HARQ-ACK信息比特为1比特时,原始比特为
Figure PCTCN2015071665-appb-000010
比特,校验比特为y比特,占位比特为x比特;当反馈信号中包含的HARQ-ACK信息比特为2比特时,原始比特为
Figure PCTCN2015071665-appb-000011
校验比特为
Figure PCTCN2015071665-appb-000012
Figure PCTCN2015071665-appb-000013
占位比特为x比特。当反馈信号中包含的HARQ-ACK信息比特为3比特时,一般采用RM编码获得指定长度的编码序列,可从该序列中获取到对应的编码比特。
上述方案一和方案二中对提取的信息比特进行分极性处理的过程包括:
将提取的信息比特输入极性选择模块进行分极,然后分别将得到的正、负极信息比特分别输入对应的正极性端和负极性端。值得注意的是,对于上述方案二,提取的为原始比特、校验比特和占位比特时,可以针对占位比特专门设置一路极性选择模块和对应的正、负极性端,以专门对占位比特进行分极处理。当然,根据实际需要,也可与原始比特和校验比特共用一路极性选择模块和正、负极性端。对信息比特的分极处理时,分1比特和2比特(或者大于2比特)两种情况。如果是1比特的HARQ-ACK,可直接利用提取的信息比特进行极性选择,然后分别输入到正极性端和负极性端或者占位比特的极性选择器;如果是2(或者大于2比特)比特HARQ-ACK时,利用上述表格二中
Figure PCTCN2015071665-appb-000014
三个比特关系,通过最大似然的方式获取三个比特所对应的信息比特。可以采用遍历三个比特的8种可能性,由于在发HARQ-ACK时检测错误的概率很小,为了实现的简单性,在进行对应比特选择的时候只要遍历四种可能性进行最大似然选择,所谓的四种可能性及三种信息比特满足三者之间关系的四种组合,分别表示为
Figure PCTCN2015071665-appb-000015
Figure PCTCN2015071665-appb-000016
然后利用所检测的比特信息与提取出的对应比特进行相乘,然后对相乘后的信息比特进行极性选择。
上述方案三中,对提取的信息比特进行分极性处理具体可根据不同的编码序列长度进行选定。下面进行示例性的说明:
从码字解扰后的软信息中提取出需要利用进行DTX检测的信息比特后,3比特或者说大于2比特的情况下,由于HARQ-ACK采用的是RM编码,编码后的比特序列长度为32,然后进行循环复制的方式衔接为编码要求的长度的比特序列。由于,采用RM编码后,比特序列的极性特点不像1比特和2比特的情况下满足一定的规律,单纯的对解扰后的比特信息进行极性判断来进行DTX检测会出现误检的现象。由于RM编码的特点,在进行RM译码之前的提取出来的比特信息的极性与RM编码采用的基序列是有关的,因此,按照利用单极性特点来判断是否为DTX存在一定的误检现象。所以优选的,针对3比特的极性判断,本实施例可以采用如下思路进行判断:
如果编码比特长度大于32,优选大于64时,利用32长度的RM编码比特信息的极性与对应的复制比特信息的极性相同的特点进行DTX判断;具体操作可以采用针对32比特长度的编码比特与其所有对应的所有复制比特信息进行极性判断,如果极性相同则存储判断结果为1,否则存储判断结果为0。如此,对32个比特与其所有复制比特进行对比,然后一一存储判断结果。最后,进行统计所有判断结果中判断1的个数与判断为0的个数之比(应当理解的是也可以转换成判断为1的个数与总判断个数之 比),或者统计判读为1的所有对应的比特信息的能量总和与总能量之比得到第三DTX检测值,然后用比值与对应的第三DTX检测阈值进行比较,如果大于第三DTX检测阈值则认为非DTX,否则为DTX。
如果编码比特长度小于32,则不能采用上述的方法进行极性判断,即便大于32且小于64时,虽然也可以采用上述的方法进行DTX检测,但是由于样点较少,检测准确率会有所降低,增加误检和漏检概率。所以,本实施例还提供了一种受编码长度限制的另一方法,该方法在编码比特个数大于64的时候同样适用,具体如下:首先,对上述提取的解扰后的比特信息进行重新排列,如果编码比特序列长度不满足32的整数倍,则在比特序列尾部补零,且满足总长度为32的整数倍,即从第一个比特开始,连续32个比特为一列,依次按照连续32个比特为一列进行排序;然后,所有列的每个比特信息和对应行的比特信息进行求和,也就是编码后的32比特和所有对应的复制比特信息进行求和处理,当然可以不做求和处理,按照其中的不存在补零的一列的比特信息进行下面的操作,优选进行求和处理;再然后进行RM译码处理,可以选择利用哈达马矩阵进行译码处理,选择其中绝对值最大的所对应的译码过程得到的长度为32的序列作为最终提取出的设置为进行DTX检测的编码比特;最后,把如上32比特的序列输入到极性选择器,进行极性选择,按照两种极性的个数之比或者幅值之比与对应的门限值进行判断,从判断得到是否为DTX。
上述步骤205中,当判定上行终端传输了HARQ-ACK信息是,本实施例中还可进一步根据比特幅值和方向确定该上行终端具体是传输的是ACK还是NACK。
另外,本实施例还可采用两种或者多种检测方法结合起来进行DTX检测,以综合利用各方案的优点,规避各个方案各自的缺点所带来的影响,提高DTX的检测性能,降低漏检和误检概率。此时在上述步骤202之前,还包括:
判断当前是否满足采用极性判断方法检测DTX的条件,例如该可条件为判断SNR(Signal to Noise Ratio,信噪比)是否大于信噪比阈值M db,和/或TBSize是否小于传输块大小阈值N,优选N=144;如满足,再进行后续的步骤120,否则,可根据实际情况选择其他的检测方法,例如,当SNR<=M dB时,采用“SNR判决方法”或者其他检测方法进行DTX检测。本实施例中也可以发送HARQ-ACK比特信息长度值等作为各种方法的激活判决依据。
实施例二:
本实施例公开了一种DTX检测装置,请参见图3所示,包括信号接收模块、比特提取模块、分极处理模块、计算模块以及判断模块,其中:
信号接收模块设置为接收上行终端发送的反馈信号;
比特提取模块设置为提取所述反馈信号中设置为进行DTX检测的信息比特;
分极处理模块设置为将提取的信息比特进行分极性处理;
计算模块设置为根据不同极性的信息比特得到DTX检测值;
判断模块设置为将得到的DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
实施例中的比特提取模块根据其具体提取的比特信息的不同可以包含不同的子模块。例如,对应上述实施例一中的方案一时,其具体包括原始比特提取子模块、校验比特提取子模块;对应上述实施例一中的方案二时,其具体包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块;对应上述实施例一中的方案三时,其具体包括编码比特提取子模块。具体的,各子模块的作用如下:
原始比特提取子模块设置为提取反馈信号中HARQ-ACK信息比特的原始比特;
校验比特提取子模块设置为提取反馈信号中HARQ-ACK信息比特的校验比特;
占位比特提取子模块设置为提取反馈信号中HARQ-ACK信息比特的占位比特;
编码比特提取子模块设置为提取反馈信号中HARQ-ACK信息比特的编码比特。
对应上述实施例一中的方案一时,即比特提取模块包括原始比特提取子模块、校验比特提取子模块时,计算模块包括第一检测值计算子模块;对应上述实施例一中的方案二时,即比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,计算模块包括第一检测值计算子模块和第二检测值计算子模块;对应上述实施例一中的方案三时,即比特提取模块包括编码比特提取子模块时,计算模块包括第三检测值计算子模块;
第一检测值计算子模块设置为根据原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,DTX检测阈值包括第一DTX检测阈值;
第二检测值计算子模块设置为根据占位比特不同极性的信息比特得到的第二检测值,DTX检测阈值还包括第二DTX检测阈值;
第三检测值计算子模块设置为根据编码比特不同极性的信息比特得到的第三DTX检测值,DTX检测阈值包括第三DTX检测阈值;
对应上述实施例一中的方案一时,即比特提取模块包括原始比特提取子模块、校验比特提取子模块时,判断模块包括第一判断子模块,设置为将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;否则,判定该上行终端传输了HARQ-ACK信息,此时DTX=0。
对应上述实施例一中的方案二时,也即比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,判断模块包括第一判断子模块和第二判断子模块;第二判断子模块设置为将第二DTX检测值与第二DTX检测阈值进行比较,如第二DTX检测值大于第二DTX检测阈值,则表明上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态;如第二DTX检测值小于第二DTX检测阈值,通知第一判断子模块将第一DTX检测值与第一DTX检测阈值进行比较,如小于第一DTX检测阈值,判定上行终端处于DTX状态;否则,判定该上行终端传输了HARQ-ACK信息,此时DTX=0。
对应上述实施例一中的方案三时,即比特提取模块包括编码比特提取子模块时,判断模块包括第三判断子模块,设置为将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态;否则,判定该上行终端传输了HARQ-ACK信息,此时DTX=0。
请参见图4所示,本实施例提供的DTX检测装置还可进一步包括策略选择模块,设置为在比特提取模块从反馈信号中提取信息比特之前,判断当前是否满足采用极性判断方法检测DTX的条件,例如该可条件为判断SNR是否大于Mdb,和/或TBSize是否小于144;如满足,再通知比特提取模块进行后续的步骤,否则,可根据预设的规则选择其他的检测方法,例如,当SNR<=MdB时,采用“SNR判决方法”或者其他检测方法进行DTX检测。本实施例中也可以发送HARQ-ACK比特信息长度值等作为各种方法的激活判决依据。这样可采用两种或者多种检测方法结合起来进行DTX检测,以综合利用各方案的优点,规避各个方案各自的缺点所带来的影响,提高DTX的检测性能,降低漏检和误检概率。
实施例三:
本实施例提供了一种基站,请参见图5所示,包括信号接收器、极性选择器以及处理器,其中:
信号接收器设置为接收上行终端发送的反馈信号;
极性选择器设置为提取该反馈信号中设置为进行DTX检测的信息比特,将提取的信息比特进行分极性处理;
处理器设置为根据不同极性的信息比特得到DTX检测值,将DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态。
本实施例中,提取的设置为进行DTX检测的信息比特包括:反馈信号中HARQ-ACK信息比特的原始比特、校验比特,或反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特,或反馈信号中HARQ-ACK信息比特的编码比特。也即也可采用实施例一中的方案一或方案二或方案三。
当提取的信息比特包括原始比特和校验比特时,DTX检测值包括根据原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,对应的DTX检测阈值包括第一DTX检测阈值;此时处理器将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态包括:将得到的第一DTX检测值与预设的第一DTX检测阈值进行比较,如小于第一DTX检测阈值,则判定该上行终端处于DTX状态;如果第一DTX检测值大于预设的第一DTX检测阈值,则判定该上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态。
当提取的信息比特包括原始比特、校验比特和占位比特时,DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据占位比特不同极性的信息比特得到的第二检测值,对应的,DTX检测阈值包括第一DTX检测阈值和第二DTX检测阈值。此时处理器将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态的过程包括:先将第二DTX检测值与第二DTX检测阈值进行比较,如第二DTX检测值大于第二DTX检测阈值,则表明上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态;如第二DTX检测值小于第二DTX检测阈值,则再将第一DTX检测值与第一DTX检测阈值进行比较,如第一DTX检测值小于第一DTX检测阈值,则判定上行终端处于DTX状态;否则,判定该上行终端传输了HARQ-ACK信息,此时DTX=0。
当提取的信息比特的编码比特时,此时的DTX检测值包括根据提取的编码比特的不同极性的信息比特得到的第三DTX检测值,DTX检测阈值包括与该第三DTX检测值对应的第三DTX检测阈值;此时将DTX检测值与DTX检测阈值进行比较,根据比较结果确定上行终端是否处于DTX状态包括:将得到的第三DTX检测值与预设的第三DTX检测阈值进行比较,如小于第三DTX检测阈值,则判定该上行终端处于 DTX状态;如果第三DTX检测值大于预设的第三DTX检测阈值,则判定该上行终端传输了HARQ-ACK信息,此时DTX=0,也即上行终端处于非DTX状态。
本实施例中,第一DTX检测值也可以为以下几种检测值中的任意一种:
提取的原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(A1);
提取的原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(A2);
提取的原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(A3);
对应的,第一DTX检测阈值分别对应为第一DTX能量检测阈值(A11)、第一DTX幅值检测阈值(A22)或第一DTX权重检测阈值(A33)。
本实施例中,第二DTX检测值也可以为以下几种检测值中的任意一种:
提取的占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(B1);
提取的占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(B2);
提取的占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(B3);
对应的,第二DTX检测阈值为第二DTX能量检测阈值(B11)、第二DTX幅值检测阈值(B22)或第二DTX权重检测阈值(B33)。
本实施例中,第三DTX检测值也可以为以下几种检测值中的任意一种:
提取的编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值(C1);
提取的编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值(C2);
提取的编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值(C3);
对应的,第三DTX检测阈值为第三DTX能量检测阈值(C11)、第三DTX幅值检测阈值(C22)或第三DTX权重检测阈值(C33)。
应当理解的是,当DTX检测过程涉及到第二DTX检测值和第二DTX检测阈值的比较和第一DTX检测值和第一DTX检测阈值的比较时,具体可以采用上述不同类型的检测值和检测阈值的任意组合。例如:第二DTX检测值和第二DTX检测阈值可以分别采用B1和B11,或B2和B22,或B3和B33,第一DTX检测值和第一DTX检测阈值可以分别采用A1和A11,或A2和A22,或A3和A33。
本实施例中,处理器还可设置为在信号接收器接收到反馈信号后,极性选择器设置为提取该反馈信号中设置为进行DTX检测的信息比特之前,判断当前是否满足采用极性判断方法检测DTX的条件,例如该可条件为判断SNR是否大于Mdb,和/或TBSize是否小于144;如满足,再通知比特提取模块进行后续的步骤,否则,可根据预设的规则选择其他的检测方法,例如,当SNR<=MdB时,采用“SNR判决方法”或者其他检测方法进行DTX检测。本实施例中也可以发送HARQ-ACK比特信息长度值等作为各种方法的激活判决依据。这样可采用两种或者多种检测方法结合起来进行DTX检测,以综合利用各方案的优点,规避各个方案各自的缺点所带来的影响,提高DTX的检测性能,降低漏检和误检概率。
实施例四:
本实施例以HARQ-ACK复用在PUSCH上传输时,1比特和2比特的HARQ-ACK传输时的DTX检测过程对本发明进行进一步的示例性说明。对于大于2比特的HARQ-ACK传输时,其DTX检测过程与2比特的HARQ-ACK传输时的过程类似,在此不再赘述。具体实现步骤如下:
请参见图6所示,该图所示为复用1比特的HARQ-ACK检测流程示意图,具体包括:
步骤601:从码字解扰后的软信息中提取出需要利用进行DTX检测的信息比特,1比特包括
Figure PCTCN2015071665-appb-000017
比特、y比特或
Figure PCTCN2015071665-appb-000018
比特、y比特、x比特两种方案;对于x比特主要是在16QAM和64QAM调制方式下加入的占位符。因此,在此步骤操作的过程中,如果需要利用x比特,按照其对应位置分别提取出
Figure PCTCN2015071665-appb-000019
比特、y比特和x比特;如果不需要利用x比特信息,则按照对应位置分别只提取出
Figure PCTCN2015071665-appb-000020
比特、y比特。在本实施 例的中不考虑采用x比特进行DTX判决,假设提取出来的所有
Figure PCTCN2015071665-appb-000021
比特、y比特分别表示为oi,、yj,
步骤602:把提取出来的信息原始比特(
Figure PCTCN2015071665-appb-000022
比特)和y比特极性选择器进行极性选择;
步骤603:把极性为正和极性为负的信息比特分别输入到对应的正负极性端;对于1比特的HARQ-ACK,可直接利用提取的信息比特进行极性选择,然后分别输入到正极性端和负极性端。
步骤604:获取第一DTX检测值,本实施例可以分别获取正、负极性信息比特的幅值总和,然后计算两个之间的比值大小,选取两个值中的最大值作为第一DTX检测值。对于这一步骤也可以采用正、负极性的信息比特个数总和之比,并获取两个值中的最大值作为第一DTX检测值;
步骤605:判断第一DTX检测值是否大于对应的第一DTX检测阈值,如是,转至步骤606;否则,转至步骤607;
步骤606:判定发送了HARQ-ACK,DTX=0。此时还可进一步统计提取的每个码字的信息比特,如果信息比特和小于0表示发送了“ACK”,大于0表示发送了“NACK”。
步骤607:判定没有发送HARQ-ACK,DTX=1。
请参见图7所示,该图所示为复用2比特的HARQ-ACK检测流程示意图,具体包括:
步骤701:从码字解扰后的软信息中提取出需要利用进行DTX检测的信息比特,2比特包括
Figure PCTCN2015071665-appb-000023
或者
Figure PCTCN2015071665-appb-000024
和x比特两种方案,对于x比特主要是在16QAM和64QAM调制方式下加入的占位符。因此,在此步骤操作的过程中,如果需要利用x比特,按照其对应位置分别提取出
Figure PCTCN2015071665-appb-000025
和x比特;如果不需要利用x比特信息,则按照对应位置分别只提取出
Figure PCTCN2015071665-appb-000026
在本实施例的中不考虑采用x比特进行DTX判决,假设提取出来的所有
Figure PCTCN2015071665-appb-000027
分别表示为
Figure PCTCN2015071665-appb-000028
Figure PCTCN2015071665-appb-000029
步骤702:获取三比特的对应比特;由于2比特的条件下,可能其中一流发ACK,也就是发‘1’,另外一流可能发NACK,也就是发‘0’,或者两流都发ACK或者NACK, 针对该问题,需要进行对所提取的三个比特的软信息进行检测。在进行检测的时候由于三个信息比特的组合有23种组合,但是满足
Figure PCTCN2015071665-appb-000030
三个信息比特关系的组合只有四种。在进行信息比特的检测的时候可以采用最大似然的方法遍历23组合或者满足三比特关系的四种组合,考虑到实现的复杂度,另外在漏检时,能够正确检对的概率非常高,因此在进行此操作的过程中,本实施例优先选择采用满足三比特关系的四种组合进行检测,获取相关性最高的组合,分别表示为
Figure PCTCN2015071665-appb-000031
Figure PCTCN2015071665-appb-000032
步骤703:对得到的
Figure PCTCN2015071665-appb-000033
Figure PCTCN2015071665-appb-000034
Figure PCTCN2015071665-appb-000035
相乘并进行极性选择,
Figure PCTCN2015071665-appb-000036
Figure PCTCN2015071665-appb-000037
如表三所示,
表三
Figure PCTCN2015071665-appb-000038
所获取的
Figure PCTCN2015071665-appb-000039
Figure PCTCN2015071665-appb-000040
分别有四种组合,考虑到利用获取的信息比特与对应的软信息相乘的过程,如果获取的信息比特为“-1”,进行相乘后的操作后,所获取的比特的软信息的极性发生改变,也就是原来时正极性的变为负极性,原来负极性的变为正极性;如果获取的信息比特为“1”时,相乘后不改变原来软信息的极性。因此,利用这特点,如果所获取的
Figure PCTCN2015071665-appb-000041
比特为“1”时,则对应的软信息
Figure PCTCN2015071665-appb-000042
进行极性选择,把选择的正极性的信息比特输入到正极端,负极性的信息输入到负极端;如果所获取的
Figure PCTCN2015071665-appb-000043
比特为“-1”时,则对应的软信息
Figure PCTCN2015071665-appb-000044
进行极性选择;
步骤704:把极性为正和极性为负的信息比特分别输入到对应的正负极性端;
步骤705:获取第一DTX检测值,本实施例可以分别获取正、负极性信息比特的幅值总和,然后计算两个之间的比值大小,选取两个值中的最大值作为第一DTX检测值。对于这一步骤也可以采用正、负极性的信息比特个数总和之比,并获取两个值中的最大值作为第一DTX检测值;
步骤706:判断第一DTX检测值是否大于对应的第一DTX检测阈值,如是,转至步骤707;否则,转至步骤708;
步骤707:判定发送了HARQ-ACK,DTX=0。此时还可进一步统计提取的每个码字的信息比特,如果信息比特和小于0表示发送了“ACK”,大于0表示发送了“NACK”。
步骤708:判定没有发送HARQ-ACK,DTX=1。
实施例五:
本实施例以HARQ-ACK绑定在PUSCH上传输时,1比特和2比特的HARQ-ACK传输时的DTX检测。对于大于2比特的HARQ-ACK传输时,其DTX检测过程与2比特的HARQ-ACK传输时的过程类似,在此不再赘述。绑定模式与复用模式不同的是,在发端进行编码的时候增加Walsh序列进行加扰的过程,因此在进行解码的时候要增加解Walsh序列的过程。具体实现步骤如下:
请参见图8所示,该图所示为绑定在PUSCH上传输时,1比特的HARQ-ACK检测流程示意图,具体包括:
步骤801:从码字解扰后的软信息中提取出需要利用进行DTX检测的信息比特,1比特包括
Figure PCTCN2015071665-appb-000045
比特、y比特或
Figure PCTCN2015071665-appb-000046
比特、y比特、x比特两种方案;本实施例采用提取
Figure PCTCN2015071665-appb-000047
比特、y比特、x比特这种方案;
步骤802:进行Walsh序列解扰处理,如果知道Walsh序列号时,直接利用该Walsh序列对提取的软信息进行解Walsh操作;如果不知道Walsh序列号时,首先要获取Walsh序列号,目前36.212协议中定义了4种Walsh序列,通常采用最大似然的方法获取Walsh序列号,在此不做详述;假设解Walsh序列后1比特的
Figure PCTCN2015071665-appb-000048
比特和y比特以及x比特分别表示为oi,、yj,或者xs
步骤803:把解Walsh序列后获取的oi,、yj,和xs输入到对应的极性选择器中;
步骤804:把极性为正和和极性为负的信息比特分别输入到对应的极性端;需要说明的是,在进行极性选择的时候,把x比特极性选择后的正极性和负极性软信息分别输入到其独立的极性端;
步骤805:获取第二DTX检测值和第一DTX检测值;第二DTX检测值为X比特的极端获取正负极性比特的幅值(功率)总和之比,或者是正负比特的个数总和之比,第一DTX检测值为非X比特(即原始比特和校验比特)极端的正负极性比特的幅值(功率)总和之比或者正负比特的个数总和之比。在此实施例子中,选择第一DTX 检测值和第二DTX检测值分别获取X比特极端的正负比特的个数总和之比非X比特极端的正负极性比特的幅值总和之比;
步骤806:进行DTX判断,具体为:首先将第二DTX检测值与对应的第二DTX检测阈值进行比较,如果大于第二DTX检测阀值,转至步骤807;否则,再将第一DTX检测值与第一DTX检测阈值进行比较,如果小于第一DTX检测阀值,转至步骤808;否则转至步骤807;
步骤807:判定发送了HARQ-ACK,且DTX=0;此时可进一步统计提取的每个码字的信息比特,如果信息比特和小于0表示发送了“ACK”,大于0表示发送了“NACK”。
步骤808:判断为没有发HARQ-ACK,且DTX=1,也即处于DTX状态。
请参见图9所示,该图所示为绑定在PUSCH上传输时,2比特的HARQ-ACK检测流程示意图,具体包括:
步骤901:从码字解扰后的软信息中提取出需要利用进行DTX检测的信息比特,2比特包括
Figure PCTCN2015071665-appb-000049
或者
Figure PCTCN2015071665-appb-000050
和x比特两种方案;本实施例采用提取
Figure PCTCN2015071665-appb-000051
和x这种方案;
步骤902:进行Walsh序列解扰处理,如果知道Walsh序列号时,直接利用该Walsh序列对提取的软信息进行解Walsh操作;如果不知道Walsh序列号时,首先要获取Walsh序列号,目前36.212协议中定义了4种Walsh序列,通常采用最大似然的方法获取Walsh序列号,在此不做详述;假设2比特的
Figure PCTCN2015071665-appb-000052
和x比特分别表示为
Figure PCTCN2015071665-appb-000053
Figure PCTCN2015071665-appb-000054
和xs。需要说明的是如果在进行DTX检测时不需要利用X比特信息,则不需要对X比特进行处理;在此实施例描述过程中考虑采用X比特信息进行DTX判决;
步骤903:获取三比特的对应比特;由于2比特的条件下,可能其中一流发ACK,也就是发‘1’,另外一流可能发NACK,也就是发‘0’,或者两流都发ACK或者NACK,针对该问题,需要进行对所提取的三个比特的软信息进行检测。在进行检测的时候由于三个信息比特的组合有23种组合,但是满足
Figure PCTCN2015071665-appb-000055
三个信息比特关系的组合只有四种。在进行信息比特的检测的时候可以采用最大似然的方法遍历23组合或者满足三比特关系的四种组合,考虑到实现的复杂度,另外在漏检时,能够正确检对的 概率非常高,因此在进行此操作的过程中,本实施例优先选择采用满足三比特关系的四种组合进行检测,获取相关性最高的组合,分别表示为
Figure PCTCN2015071665-appb-000056
Figure PCTCN2015071665-appb-000057
步骤904:把解Walsh序列后获取的
Figure PCTCN2015071665-appb-000058
Figure PCTCN2015071665-appb-000059
和xs与提取出的对应比特进行相乘,然后对相乘后的信息比特进行极性选择;
步骤905:把极性为正和和极性为负的信息比特分别输入到对应的极性端;需要说明的是,在进行极性选择的时候,把x比特极性选择后的正极性和负极性软信息分别输入到其独立的极性端;
步骤906:获取第二DTX检测值和第一DTX检测值;第二DTX检测值为X比特的极端获取正负极性比特的幅值(功率)总和之比,或者是正负比特的个数总和之比,第一DTX检测值为非X比特(即原始比特和校验比特)极端的正负极性比特的幅值(功率)总和之比或者正负比特的个数总和之比。在此实施例子中,选择第一DTX检测值和第二DTX检测值分别获取X比特极端的正负比特的个数总和之比非X比特极端的正负极性比特的幅值总和之比;
步骤907:进行DTX判断,具体为:首先将第二DTX检测值与对应的第二DTX检测阈值进行比较,如果大于第二DTX检测阀值,转至步骤908;否则,再将第一DTX检测值与第一DTX检测阈值进行比较,如果小于第一DTX检测阀值,转至步骤909;否则转至步骤908;
步骤908:判定发送了HARQ-ACK,且DTX=0;此时可进一步统计提取的每个码字的信息比特,如果信息比特和小于0表示发送了“ACK”,大于0表示发送了“NACK”。
步骤909:判断为没有发HARQ-ACK,且DTX=1,也即处于DTX状态。
可见,本发明提供的方案可利用信息比特的极性特点完成DTX检测,因此可大大降低误检和漏检的可能性,提升DTX检测的精度,尤其是在小TBSize条件下。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种DTX检测方法、装置及基站,具有以下有益效果:解决了相关技术中DTX检测精度低的问题,可利用信息比特的极性特点完成DTX检测,因此可大大降低误检和漏检的可能性,提升DTX检测的精度,尤其是在小TBSize条件下。

Claims (17)

  1. 一种DTX检测方法,包括:
    接收上行终端发送的反馈信号;
    提取该反馈信号中设置为进行DTX检测的信息比特;
    将提取的信息比特进行分极性处理;
    根据不同极性的信息比特得到DTX检测值;
    将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
  2. 如权利要求1所述的DTX检测方法,其中,当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,所述设置为进行DTX检测的信息比特包括:所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特,或所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特;当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,所述设置为进行DTX检测的信息比特包括编码比特。
  3. 如权利要求2所述的DTX检测方法,其中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,或包括编码比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
    所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值包括第一DTX检测阈值和第二DTX检测阈值;
    所述设置为进行DTX检测的信息比特包括编码比特时,所述DTX检测值包括根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
  4. 如权利要求3所述的DTX检测方法,其中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,将所述DTX检测值与所述DTX检测阈值进 行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述设置为进行DTX检测的信息比特包括编码比特时,将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
  5. 如权利要求3或4所述的DTX检测方法,其中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
    所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
    所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
  6. 如权利要求2-4任一项所述的DTX检测方法,其中,当所述反馈信号中包含的HARQ-ACK信息比特为1比特时,所述原始比特为
    Figure PCTCN2015071665-appb-100001
    比特,所述校验比特为y比特,所述占位比特为x比特;当所述反馈信号中包含的HARQ-ACK信息比特为2比特时,所述原始比特为
    Figure PCTCN2015071665-appb-100002
    所述校验比特为
    Figure PCTCN2015071665-appb-100003
    Figure PCTCN2015071665-appb-100004
    所述占位比特为x比特。
  7. 如权利要求1-4任一项所述的DTX检测方法,其中,在提取该反馈信号中设置为进行DTX检测的信息比特之前,还包括;
    判断当前是否满足采用极性判断方法检测DTX的条件;所述条件为判断信噪比是否大于信噪比阈值M,和/或传输块大小是否小于传输块大小阈值N。
  8. 一种DTX检测装置,包括信号接收模块、比特提取模块、分极处理模块、计算模块以及判断模块;
    所述信号接收模块设置为接收上行终端发送的反馈信号;
    所述比特提取模块设置为提取所述反馈信号中设置为进行DTX检测的信息比特;
    所述分极处理模块设置为将提取的信息比特进行分极性处理;
    所述计算模块设置为根据不同极性的信息比特得到DTX检测值;
    所述判断模块设置为将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
  9. 如权利要求8所述的DTX检测装置,其中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块;或包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块;或包括编码比特提取子模块;
    所述原始比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的原始比特;
    所述校验比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的校验比特;
    所述占位比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,提取所述反馈信号中HARQ-ACK信息比特的占位比特;
    所述编码比特提取子模块设置为当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,提取所述反馈信号中HARQ-ACK信息比特的编码比特。
  10. 如权利要求9所述的DTX检测装置,其中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块时,所述计算模块包括第一检测值计算子模块;所述比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,所述计算模块包括第一检测值计算子模块和第二检测值计算子模块;所述比特提取模块包括编码比特提取子模块时,所述计算模块包括第三检测值计算子模块;
    所述第一检测值计算子模块设置为根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
    所述第二检测值计算子模块设置为根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值还包括第二DTX检测阈值;
    所述第三检测值计算子模块设置为根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
  11. 如权利要求10所述的DTX检测装置,其中,所述比特提取模块包括原始比特提取子模块、校验比特提取子模块时,所述判断模块包括第一判断子模块,设置为将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述比特提取模块包括原始比特提取子模块、校验比特提取子模块和占位比特提取子模块时,所述判断模块包括第一判断子模块和第二判断子模块;所述第二判断子模块设置为将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,通知所述第一判断子模块将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述比特提取模块包括编码比特提取子模块时,所述判断模块包括第三判断子模块,设置为将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
  12. 如权利要求10或11所述的DTX检测装置,其中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
    所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
    所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
  13. 一种基站,包括信号接收器、极性选择器以及处理器;所述信号接收器设置为接收上行终端发送的反馈信号;
    所述极性选择器设置为提取所述反馈信号中设置为进行DTX检测的信息比特,将提取的信息比特进行分极性处理;
    所述处理器设置为根据不同极性的信息比特得到DTX检测值,将所述DTX检测值与预设的DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态。
  14. 如权利要求13所述的基站,其中,当所述反馈信号中包含的HARQ-ACK信息比特为小于等于2比特时,所述设置为进行DTX检测的信息比特包括:所述 反馈信号中HARQ-ACK信息比特的原始比特、校验比特,或所述反馈信号中HARQ-ACK信息比特的原始比特、校验比特和占位比特;当所述反馈信号中包含的HARQ-ACK信息比特为大于2比特时,所述设置为进行DTX检测的信息比特包括编码比特。
  15. 如权利要求14所述的基站,其中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,所述DTX检测阈值包括第一DTX检测阈值;
    所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述DTX检测值包括根据所述原始比特和校验比特不同极性的信息比特得到的第一DTX检测值,以及根据所述占位比特不同极性的信息比特得到的第二检测值,所述DTX检测阈值包括第一DTX检测阈值和第二DTX检测阈值;
    所述设置为进行DTX检测的信息比特包括编码比特时,所述DTX检测值包括根据所述编码比特不同极性的信息比特得到的第三DTX检测值,所述DTX检测阈值包括第三DTX检测阈值。
  16. 如权利要求15所述的基站,其中,所述设置为进行DTX检测的信息比特包括原始比特和校验比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述设置为进行DTX检测的信息比特包括原始比特、校验比特和占位比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第二DTX检测值与所述第二DTX检测阈值进行比较,如小于所述第二DTX检测阈值,将所述第一DTX检测值与所述第一DTX检测阈值进行比较,如小于所述第一DTX检测阈值,判定所述上行终端处于DTX状态;
    所述设置为进行DTX检测的信息比特包括编码比特时,所述处理器将所述DTX检测值与所述DTX检测阈值进行比较,根据比较结果确定所述上行终端是否处于DTX状态包括:将所述第三DTX检测值与所述第三DTX检测阈值进行比较,如小于所述第三DTX检测阈值,判定所述上行终端处于DTX状态。
  17. 如权利要求15或16所述的基站,其中,所述第一DTX检测值为:所述原始比特和校验比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述原始比特和校验比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述原始比特和校验比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第一DTX检测阈值为第一DTX能量检测阈值、第一DTX幅值检测阈值或第一DTX权重检测阈值;
    所述第二DTX检测值为:所述占位比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述占位比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述占位比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第二DTX检测阈值为第二DTX能量检测阈值、第二DTX幅值检测阈值或第二DTX权重检测阈值;
    所述第三DTX检测值为:所述编码比特的正极性信息比特的能量和与负极性信息比特的能量和的比值,或为所述编码比特的正极性信息比特的总幅值绝对值与负极性信息比特的总幅值绝对值的比值,或为所述编码比特的正极性信息比特包含的总比特个数与负极性信息比特包含的总比特个数的比值;对应的,所述第三DTX检测阈值为第三DTX能量检测阈值、第三DTX幅值检测阈值或第三DTX权重检测阈值。
PCT/CN2015/071665 2014-09-17 2015-01-27 Dtx检测方法、装置及基站 WO2015154573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410475510.4A CN105491591A (zh) 2014-09-17 2014-09-17 Dtx检测方法、装置及基站
CN201410475510.4 2014-09-17

Publications (1)

Publication Number Publication Date
WO2015154573A1 true WO2015154573A1 (zh) 2015-10-15

Family

ID=54287286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071665 WO2015154573A1 (zh) 2014-09-17 2015-01-27 Dtx检测方法、装置及基站

Country Status (2)

Country Link
CN (1) CN105491591A (zh)
WO (1) WO2015154573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650122A (zh) * 2022-05-18 2022-06-21 成都爱瑞无线科技有限公司 物理上行共享信道不连续传输检测方法、装置及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827376B (zh) * 2016-05-26 2019-07-16 北京邮电大学 一种进行harq反馈的方法及装置
CN108075862A (zh) * 2016-11-16 2018-05-25 深圳市中兴微电子技术有限公司 一种物理上行共享信道上ack/nack检测的方法和装置
CN108900277B (zh) * 2018-04-23 2020-07-07 中国科学院自动化研究所 一种基于5g通信网络的dtx检测方法及系统
US11363578B2 (en) * 2020-03-24 2022-06-14 Hong Kong Applied Science And Technology Research Institue Company Limited Method and device for detecting discontinuous transmission (DTX) for small block encoded signals
US11197279B1 (en) * 2020-07-07 2021-12-07 Hong Kong Applied Science and Technology Research Institute Company Limited Method and an apparatus for physical uplink control channel (PUCCH) discontinuous transmission (DTX) determination in a wireless communication system
CN114258060B (zh) * 2020-09-24 2023-10-20 大唐移动通信设备有限公司 Dtx检测方法、装置及处理器可读存储介质
US11611987B2 (en) * 2021-01-05 2023-03-21 Hong Kong Applied Science And Technology Research Institute Co., Ltd Method and device for detecting partial discontinuous transmission (DTX) using soft bits correlation
CN114710973B (zh) * 2021-01-05 2023-06-23 香港应用科技研究院有限公司 一种利用软比特相关检测部分非连续传输的方法和装置
US11375486B1 (en) * 2021-01-07 2022-06-28 Hong Kong Applied Science And Technology Research Institute Co., Ltd Method and device for detecting discontinuous transmission (DTX) assisted by noise estimation
US11457502B2 (en) 2021-02-09 2022-09-27 Hong Kong Applied Science And Technology Research Institute Co., Ltd Method and device for detecting partial discontinuous transmission (DTX) using channel estimation data
CN114126094A (zh) * 2021-11-02 2022-03-01 锐捷网络股份有限公司 一种dtx判决的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081097A1 (en) * 2002-09-30 2004-04-29 Francis Dominique Method and apparatus for DTX frame detection
CN101882981A (zh) * 2009-05-04 2010-11-10 中兴通讯股份有限公司 获取确认/非确认信息的方法及系统
CN102740316A (zh) * 2011-04-08 2012-10-17 中兴通讯股份有限公司 Dtx状态的检测方法及装置
CN103959728A (zh) * 2011-06-27 2014-07-30 英特尔移动通信有限责任公司 考虑噪声功率和信道功率的用于对取三个可能值(ack、nack、dtx)的接收信号值进行估计的接收器电路和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039171B (zh) * 2007-03-15 2011-08-24 中兴通讯股份有限公司 一种hs-dpcch信道ack时隙信号解调方法
CN101400155B (zh) * 2007-09-25 2012-11-14 中兴通讯股份有限公司 维护连续性包连接方式的ue状态及接收功率上报方法
CN101729217B (zh) * 2008-10-31 2013-02-27 华为技术有限公司 一种传输方法、装置和系统
WO2013166690A1 (en) * 2012-05-10 2013-11-14 Renesas Mobile Corporation Enhancement of in-device interference
WO2014036710A1 (en) * 2012-09-06 2014-03-13 Broadcom Corporation Method and apparatus of energy saving in radio access networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081097A1 (en) * 2002-09-30 2004-04-29 Francis Dominique Method and apparatus for DTX frame detection
CN101882981A (zh) * 2009-05-04 2010-11-10 中兴通讯股份有限公司 获取确认/非确认信息的方法及系统
CN102740316A (zh) * 2011-04-08 2012-10-17 中兴通讯股份有限公司 Dtx状态的检测方法及装置
CN103959728A (zh) * 2011-06-27 2014-07-30 英特尔移动通信有限责任公司 考虑噪声功率和信道功率的用于对取三个可能值(ack、nack、dtx)的接收信号值进行估计的接收器电路和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650122A (zh) * 2022-05-18 2022-06-21 成都爱瑞无线科技有限公司 物理上行共享信道不连续传输检测方法、装置及存储介质
CN114650122B (zh) * 2022-05-18 2022-08-02 成都爱瑞无线科技有限公司 物理上行共享信道不连续传输检测方法、装置及存储介质

Also Published As

Publication number Publication date
CN105491591A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2015154573A1 (zh) Dtx检测方法、装置及基站
US10631179B2 (en) HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection
US10778377B2 (en) Methods, apparatuses and user equipment for hybrid automatic repeat request transmission
US10159069B2 (en) Method, device and system for transmitting control information
KR101168118B1 (ko) 개선된 ack/nack dtx 검출 및 다운링크 할당 승인 메시지를 수신하지 않음의 시그널링
WO2011000673A2 (en) A method and apparatus for arq control in wireless communications
WO2009087529A1 (en) Method of exchanging data between a base station and a mobile station.
WO2018090571A1 (zh) 确认/非确认信息的检测方法、装置及存储介质
CN105847199B (zh) Pusch信道检测ack/nack状态的方法及装置
WO2015106625A1 (zh) 一种混合自动重传请求方法及相关装置
EP2127244B1 (en) Techniques for improved error detection in a wireless communication system
JP5610162B2 (ja) Harqインジケーターの決定方法
KR20120034138A (ko) 무선 통신 시스템에서 확인응답 메시지를 전송하기 위한 시스템들 및 방법들
CN113728671B (zh) 用于小分组码信号的非连续传输检测(dtx)的改进方法及装置
WO2022147852A1 (en) A method and device for detecting discontinuous transmission (dtx) assisted by noise estimation
EP3499769B1 (en) Method and device for transmitting and receiving hybrid automatic retransmission request information
KR101247142B1 (ko) Lte 통신 시스템에서의 harq 검출 방법
CN113597745A (zh) 一种通过噪声估计辅助检测非连续传输(dtx)的方法和装置
CN113170333A (zh) 一种利用信道估计数据检测局部非连续传输(dtx)的方法和装置
CN108616325A (zh) 一种通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777346

Country of ref document: EP

Kind code of ref document: A1